UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Selecting The Best Case For A Case-Based Reasoner

Permalink
https://escholarship.org/uc/item/9gv7f4z{

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Author
Kolodner, Janet L.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/9gv7f4zt
https://escholarship.org
http://www.cdlib.org/

SELECTING THE BEST CASE FOR A CASE-BASED REASONER®

Janet L. Kolodner
School of Information and Computer Science
Georgia Institute of Technology

Abstract

The most important support process a case-based
reasoner needs is a memory for cases. Among its
functions, the memory for cases must be able to
select out the most appropriate cases for the
case-based reasoner to use at any time. In this
paper, we present the selection processes
implemented in PARADYME, a case memory
designed to work alongside a case-based reasoner.
PARADYME has a two-step retrieval process. In
the first step, it retrieves the set of partial matches
from the memory. In the second, it selects out a
small set of "best” matches, PARADYME chooses
"best” cases using a set of six preference
heuristics: goal-directed preference, salience,
specificity, frequency, recency, and ease of
adaptation. PARADYME is novel in two ways. Its
use of preferences for choosing a best case means
that its principles act as selectors rather than
restrictors. And its emphasis in choosing best
cases is on usefulness rather than similarity.

Introduction

A host is planning a meal for a set of people who
include, among others, several people who eat no
meat or poultry, one of whom is also allergic to
milk products, several meat-and-potatoes men,

*This research was supported in part by NSF under grant
No. IST-8608362, and in part by DARPA under contract no.
F49620-88-C-0058, monitored by AFOSR. Initial work on
this project was begun while the author was on sabbatical
at Thinking Machines, Inc., Cambridge, Mass. Thanks to
Thinking Machines for providing machine and programming
support for the project. Programming was done by Robert
Thau.

155

and her friend Anne. Since it is tomato season,
she wants to use tomatoes as a major ingredient in
the meal. As she is planning the meal, she
remembers the following:

I once served tomato tart (made from
mozzerella cheese, tomatoes, dijon
mustard, basil, and pepper, all in a pie
crust) as the main dish during the
summer when I had vegetarians come
for dinner. It was delicious and easy to
make. But I can’t serve that to Elana
(the one allergic to milk).

I have adapted recipes for Elana before
by substituting tofu products for
cheese. I could do that, but I don’t
know how good the tomato tart will
taste that way.

She decides not to serve tomato tart and continues
planning. Since it is summer, she decides that
grilled fish would be a good main course. But now
she remembers something else:

Last time I tried to serve Anne grilled
fish, she wouldn’t eat it. I had to put
hotdogs on the grill at the last minute.

Considering this, she decides that fish as the main
dish would be inappropriate. Having already ruled
out meat and poultry as main dishes, she is in a
quandry, since it seems that no single main dish
will satisfy all the guests. At this point, she comes
up with a solution.

I've had this problem before. ... In
that case, what I did was to provide a



KOLODNER

choice of main dishes with side dishes
that matched all of them. In fact, I
usually do that whenever I serve buffet
style.

The hypothetical host is employing case-based
reasoning (cf., Hammond, 1986, Kolodner, et al.,
1985) to plan a meal. In case-based reasoning, a
reasoner remembers previous situations similar to
the current one and solves a new problem by
adapting the solutions to those situations to meet
the needs of the new one. In this case, the host is
remembering meals she has planned previously to
help her generate a plan for her new meal. Some
are particular meals (e.g., the tomato-tart meal,
the time Anne came for dinner, the last time she
served a group of picky eaters), while some are
generalized or composite ones, i.e., they've been
used over and over with only the variables
changed each time (e.g., serving buffet style). The
meals she remembers are used to suggest means of
solving the new problem (e.g., to suggest a main
dish, to suggest serving buffet style, to suggest a
means of dealing with all the picky eaters easily),
to suggest means of adapting a solution that
doesn’t quite fit (e.g., substitute a tofu product for
cheese), and to warn of possible failures (e.g.,
Anne won't eat fish).

The most important support process a case-based
reasoner needs is a memory for cases. The memory
must make cases accessible when retrieval cues are
provided to it and it must incorporate new cases
1nto its structures as they are experienced, in the
process maintaining accessibility of the items
already in the memory. It must be able to handle
cases in all of their complexity, and it must be
able to manage thousands of cases in its memory.
But most importantly, it must be able to select
out the most appropriate cases for the case-based
reasoner to use at any time.

There are three major ways researchers in the
case-based reasoning community are addressing
the selection problem. Some people are addressing
it by trying to determine how to best choose
indexes (e.g., Barletta & Mark, 1988, Hammond,
1986, Kolodner, 1983, Owens, 1988, Schank, 1982)
so that only the best cases will be retrieved from
the memory. Indexes are used to restrict traversal

of memory, and only those cases whose indexed
features match the retrieval probe are recalled.
One problem with this is that one cannot predict
every important feature of an event at the time it
happens. Thus, this method is too restrictive.
Another problem with this method is that it does
not insure that only a small number of cases will
be recalled, since many cases might be indexed the
same way. While it has worked fine in several
implementations, the memories have either been so
small that selection was not a problem (as in, e.g.,
CHEF (Hammond, 1986), MEDIATOR (Simpson,
1985)), or they have had as their goal to recall as
much as they could (as in CYRUS (Kolodner,
1983)), where again selection is not a problem.

A second selection method is to filter the problem
description before probing memory so that only
those features of the problem description relevant
to the reasoner’s current goal are part of the
memory probe (as in, e.g., CHEF (Hammond,
1986)). The problem with this is that some
process outside of memory has to choose which
features of the problem are the salient ones. It
makes more sense to have salience judged in the
context of cases already in the memory.
Considering the example above, it is a coincidence
of circumstances that makes the fact that Anne is
a guest an important part of the problem
description. That is, the experience already in
memory is what tells us that that feature is an
important one. We cannot expect an outside
process to always know which features or
combinations of features are relevant to solving a
new problem. It is exactly this task that we want
memory to help with.

Other researchers propose filtering methods that
are used after retrieval (e.g., Koton, 1988,
Riesbeck, 1988, Stanfill, 1987, Rissland & Ashley,
1988). The methods all tend to be special
purpose, however, and each has restrictions that
keep it from being general. Koton’s method, for
example, depends on a causal model being
available. Rissland’s method is specific to
adversarial situations. Stanfill’s depends on the
memory having large numbers of cases in it in
quantities representative of the problem’s domain
so that an accurate evaluation function can always
be computed based entirely on memory’s contents.



KOLODNER

And Riesbeck’s depends on a static
(pre-computed) evaluation function, and thus
can't make use of context to decide on a best case.

In the remainder of this paper, we discuss the
selection processes used in PARADYME
(Kolodner, 1988, Kolodner & Thau, 1988), a case
memory designed to be able to select out a small
set of best cases from a large case base.
PARADYME is designed to work alongside a
problem solver. Its cases come from JULIA
(Hinrichs, 1988, Kolodner, 1987a,b, Shinn, 1988),
a case-based problem solver that plans meals. The
problem solver has certain goals to achieve in the
context of some problem and a partial solution.
The problem, the partial solution, and the goals of
the problem solver form the probe to
PARADYME’s memory (Kolodner, 1988,
Kolodner & Thau, 1988).

Upon being probed, PARADYME's first task is to
retrieve partial matches from its memory based on
the problem description and the partial solution.
For the problem described in the introduction, this
step would retrieve all meals with vegetarians in
attendance, all meals with people allergic to milk
products, all meals with meat-and-potatoes men
as guests, all meals with Anne as a guest, all meals
with tomatoes used as a major ingredient, all
summer meals, and all combinations of the above.
If the host is someone who entertains or cooks a
lot, then clearly, this step will result in retrieval of
a lot of cases.

PARADYME'’s next step, the one we concentrate
on in the rest of this paper, is to select out the
"best” of those cases. While PARADYME'’s
selection method is based on many of the same
principles guiding other case memories, it differs
from others in several ways. First, what has been
built into previous case memories as restrictors is
built into PARADYME as preference heuristics of
selectors. Thus, PARADYME does not get hurt by
the inability to predict every important part of a
case at the time it happens. PARADYME prefers
cases whose salient features (indexes) match the
probe but if no cases with indexed features match,
it will recall a case with other matching features.
Thus, even if memory update procedures had not
indexed the meal where a dish was adapted for

157

Elana by features present in this case, it could still
be recalled if no indexed case were found.

PARADYME uses the reasoner’s goals similarly.
Rather than using reasoning goals to select out a
portion of a problem to use as a probe,
PARADYME sends the whole problem as a probe
and lets previous experience (i.e,. memory) be the
guide to which features are the important ones.
This way, for example, memory can determine
that Anne being a guest 1s a salient feature at a
particular point in the problem solving rather than
having the problem solver choose out "guests” as
salient features every time an evaluation is done.

Second, PARADYME'’s emphasis when ranking
cases is on usefulness. Using this criterion for
ranking means that PARADYME takes the
reasoner’s goals into account in selecting out a
"best” case. Rather than choosing a most similar
case, it chooses the most similar of those cases
that are first judged most useful. When the
hypothetical reasoner above recalls another case
where she adapted a recipe with milk for Elana,
for example, it is recalled because it predicts how
to achieve the goal of adapting a dairy recipe for a
non-milk eater. There may be other cases in the
memory that are more similar to the situation
(perhaps many of the guests match), but this one
is most useful for achieving the current goal.
Similarly when the case where choice was provided
is recalled. There may have been many cases that
were more similar than this one, but this one is
most useful to the goal of dealing with
unsatisfiable food constraints.

Preference Heuristics

PARADYME'’s selection procedure is based on a
set of preference heuristics.! These heuristics are
applied to the set of partially-matching cases to
choose a small set of "best” cases. PARADYME
uses six different types of preference for this task.

o Goal-Directed Preference

1See Rissland & Ashley (1988) for a discussion of why
numerical weighting schemes won’t work.



KOLODNER

Salient-Feature Preference

Specificity Preference

Frequency Preference

Recency Preference

Ease-of-Adaptation Preference

The first preference, goal-directed preference is
based on the principle of utility. That is, since the
memory is working in conjunction with a reasoner
that has goals, it makes sense to prefer those cases
that can help in achieving the problem solver’s
goals. Thus, when the problem solver is trying to
come up with a main dish, those cases that match
on main dish constraints will be preferred over
others. When it is trying to evaluate the goodness
of a solution, those cases that predict success or
failure under similar circumstances are preferred.
We state this heuristic as follows:

Goal-Directed Preference: Prefer
cases that can help address the
reasoner’s current reasoning goal, and
of these, prefer those that share more
constraints over those that share fewer.

The second preference heuristic, salient-feature
preference, is based on the principle that we
should use experience to tell us which features of a
new situation are the ones to focus on. If memory
has done a good job of recording its experiences,
they can be used to tell us which features of
previous events led to the choice of particular
solutions or solution methods and which features
of previous events were responsible for success or
failure in those cases. These features are the
salient features of previous cases, and in indexed
memories, they form the indexes. When salient
features of previous cases exist in a new situation,
they can be used to suggest solutions and predict
outcomes for the new case. The case where Anne
didn't eat fish, for example, has a salient feature
set that predicts failure and includes the following
facts: Anne was a guest, fish was served,
preparation style of the fish was grilled. When all
of these features are present in a probe, we can
predict that Anne won’t eat. PARADYME prefers

158

cases that share full sets of salient features with
the new problem over other cases whose full
salient feature sets are not in the probe. We state
this preference as follows:

Salient-Feature Preference: Prefer
cases that match on salient features
over those that match on other
features, and prefer those that match
on a larger subset of salient features
over those matching on a smaller
subset.

The third preference heuristic is based on the
principle that a more specific match can be more
predictive than a less specific match. Thus, all
other things being equal, cases that match more
specifically are preferred over less specific matches.
PARADYME has several ways to judge specificity.
First, according to PARADYME's definition of
specificity, a case i1s more specific than another if
the features that match in the less specific case are
a proper subset of the features that match in the
more specific case. Thus, a probe 1s more
specifically matched by a case that matches all of
its features than one that matches only a subset.
Second, a case matches more specifically than one
of its ancestors in memory’s generalization
hierarchy. For example, a particular Italian meal
1s more specific than a generic Italian meal. Third,
a case matches more specifically if the probe
matches features in more of its parts. The
specificity preference follows:

Specificity Preference: Prefer cases
that match more specificallv over less
specific matches.

The fourth and fifth heuristics are based on two
principles psychologists have discovered — that
items that are referenced more frequently are more
likely to be recalled than other similar items and
that items that have been referenced more
recently are more likely to be recalled than other
similar items (all else being equal). This gives rise
to two preference heuristics:

Frequency Preference: Prefer cases
that have been accessed more



KOLODNER

frequently over less frequently-accessed
cases.

Recency Preference: Prefer cases
that have been accessed more recently
over less recently-accessed cases.

A sixth preference heuristic is also based on the
principle of utility, and is specific to case-based
reasoning. Some adaptations of previous solutions
are easier to make than others. This heuristic says
to prefer cases whose solutions are easier to adapt
than those whose solutions are harder to adapt.

Ease-of-Adaptation Preference:
Cases that match on features that are
known to be hard to fix should be
preferred over those that match on
easy-to-fix features.

Application of Preference Heuristics

The application of preference heuristics is
complicated. Each preference heuristic attempts
to select out a set of better matches. When a
heuristic does this, that set is sent on to the next
heuristic for pruning. When no subset of cases is
better than the rest using some heuristic, however,
the entire set it was selecting from is selected. In
this way, the preferences act as selectors rather
than restrictors. We prefer to recall a case that
can address the reasoner’s current goal but we
don’t require it. We prefer to recall a case that
matches on salient features, but if there are none,
the preference heuristics allow recall of a case that
matches on a random set of features.

The heuristics are also ordered. Goal-directed
preference is applied first, then salience, then
specificity, and then frequency and recency. This
way, the set of cases that can be used to achieve
the reasoner’s current goal is selected out first,
then any that match on a full set of salient features
(of the right kind) are selected from those, the
most specific of those are chosen (if some are more
specific than others), and then the more frequently
or recently recalled cases are selected from those.

There are also other ways the preference heuristics
could be applied. For example, some other order

159

might work better. Or, it may be better to run all
the preferences on the whole set of partial matches
and then to prefer those cases that were selected
by more of the preferences. Qur current research
is focussing on exactly this problem.

Support Processes

While PARADYME chooses best cases by
applying its preference heuristics at retrieval time,
there are other parts of PARADYME that

contribute to making the preference heuristics
work. PARADYME has five parts:

1. a hierarchical organization of knowledge and
cases

2. a parallel memory retrieval process that
chooses out all partially-matching cases from
the memory

3. a set of preference heuristics that choose the
best matching case from the partial matches
activated in step 2

4. a set of transformation rules that transform
and elaborate a retrieval probe to get a
better “best match” than is possible from
the original set of cues

5. a memory update process that marks cases
with their salient features and creates
generalizations as called for

The hierarchical organization (1) provides a way
of determining which partially matching memory
structures are more specific than others and gives
a way for the retrieval process to determine which
partial matches are in the right ballpark. The
memory retrieval process (2) chooses the set of
cases to focus on in choosing a best match. The
transformation rules (4) allow better matches to
be found than could be done with only the initial
probe. And memory update processes (5) annotate
cases with salient feature sets that tell selection
processes under what circumstances the case is
likely to be relevant. As we stated previously,
salient feature sets are similar in function to
indexes found in indexed memories. Since they are



KOLODNER

so important in allowing the preference heuristics
to function, we continue by discussing the types of
salient feature sets (indexes) PARADYME
assumes its cases will have.

Salient-Feature Sets

We have found three kinds of salient-feature sets
(indexes) useful for problem solving. The first
contain features that predict the applicability of
some method for achieving a goal
(goal-achievement predictor sets). Second are
those that predict the success or failure of a
solution (solution-evaluation predictor sets). Third
are those that describe unusual outcomes
(outcome-achievement descriptor sets).

Goal-Achievement Predictor Sets are
generally conjunctions of goals, constraints on
these goals, and problem and environmental
features that predict the method or solution for
achieving the goal or goal set. If the features of a
goal-achievement set are all present in a new
situation, and if the problem solver’s current goal
matches the goal achieved by the salient feature
set, then the method of reaching the goal or the
solution to the goal can be predicted from the
previous case. Cases that match on the basis of
goal-achievement predictors are most helpful
during problem solving when the problem solver
knows what goals it is trying to achieve and knows
the environment in which it needs to achieve those
goals.

These sets of features may include one or several
goals. They include one if the solution that was
chosen for that goal did not involve other goals.
They include several if sclutions to several goals
were integrated. Constraints and descriptors on
these goals are also included, as are features of the
world or features of the problem that determined
which of several possible solutions or solution
methods was chosen. If all of the features in one of
these conjunctive feature sets is designated in a
retrieval probe, the solution or solution method
used in the previous case can be predicted.

Solution-Evaluation Predictor Sets are
conjunctions of features predicting unusual

160

outcomes - in general, failures, unexpected
successes, and unexpected side effects. If the
features of a solution-evaluation prediction set are
all present in a new situation, the unexpected
result from the previous case can be predicted in
the new case. Cases that match on the basis of
solution-evaluation sets are most helpful when a
reasoner has proposed a solution and needs to
evaluate it.

Outcome-Achievement Descriptor Sets are
conjunctions of features describing unusual
outcomes. If the features of an
outcome-achievement set are all present in a new
situation, the previous case that is recalled can be
used to help explain why the unusual outcome
arose. In addition, if these features are all present
in a new situation and the reasoner is attempting
to figure out how to achieve such an outcome, the
method by which it was achieved previously can
be suggested by the recalled case. These are thus
useful in two situations: when the reasoner is
trying to explain an anomolous situation and
when the reasoner knows the shape of a solution
but not how to achieve it.

Any particular case may have several salient
feature sets associated with it. For example, it
could have one for each goal that was achieved in
some unusual way in the course of reasoning about
the case. It might also have several associated
with outcome and several associated with solution
evaluation. When attempting to choose best cases,
preference heuristics prefer those cases that have
one or more salient feature sets of the right kinds
that are fully matched by the new situation. That
is, if the reasoner is attempting to evaluate the
potential for success of a plan, it prefers cases with
fully matching solution-evaluation feature sets. If
it is trying to achieve a goal, it prefers cases with
fully matching goal-achievement feature sets
whose goals match its current goal. If it
attempting to explain an anomolous situation, or
if it is attempting to find out how to achieve a
state of affairs, it prefers cases with fully matching
outcome-achievement feature sets.



KOLODNER

Discussion

Best cases are chosen in PARADYME by taking
into account which features or combinations of
features have been found to be most important in
the past, and the goodness of fit of a previous case
is judged in the context of other possible matches.
Preference heuristics select best matches based on
what has been relevant in solving previous
problems, what the case-based reasoner’s current
goals are, and the relative specificity of
partially-matching cases. This allows the
importance of features to be judged in context,
where context is provided by the retrieval probe
along with the items that are retrieved by partial
matching.

While PARADYMIE's selection method is based
on many of the same principles guiding case
selection in other case memories, its selection
method differs in two ways. First, what has been
built into previous case memories as restrictors is
built into PARADYME as preference heuristics or
selectors. Salient feature sets, for example, are
equivalent to what others in the case-based
reasoning community call inderes. That is, they
are the features that have been useful previously
in making decisions or have been responsible
previously for reasoning successes and failures.
When salient features from a previous case match
features of a new case, they allow predictions or
suggestions to be made for the new situation
based on the old case. This is the basis of
case-based reasoning. Salient feature sets,
however, are used differently than indexes have
been used. Indexed memories use indexes as
restrictors — cases are recalled only when salient
features from a previous case match features of the
new case. PARADYME’s memory, on the other
hand, prefers cases that match on salient features
over those with no salient features matching, but
it also allows recall based on features that were
not singled out as salient at memory update time
if no cases matching on salient features can be
found in memory.

Similarly, PARADYME uses the goals of the
reasoner as selectors rather than restrictors. While
previous case-based reasoners (e.g., CHEF) used
the reasoner’s current goal to extract out features

161

from the problem statement to probe memory
with, PARADYME sends all the information it
has about a situation to memory along with the
reasoner’s current goals. The preference heuristics
use those goals to choose a set of useful
partially-matching cases. The major advantage to
using the reasoner’s goal as a selector rather than
a restrictor is that it provides a way to let
experience (previous cases) designate which
features of the new situation are most relevant to
consider in achieving a goal.

The second difference between PARADYME and
other case memories is in the emphasis on finding
a most useful set of cases rather than a most
similar set. Choosing a most similar case means
focussing on the correspondences between features
of two cases. In aiming to choose a most useful
case, on the other hand, we give much attention to
what the reasoner needs to do with the case.
Correspondences are certainly important
(salient-feature preference focusses on these), but
they are not sufficient. It only makes sense to
focus on the relative goodness of correspondences
after we know that the reasoner’s goals are being
attended to. PARADYME has two preference
heuristics that address usefulness: goal-directed
preference and ease-of-adaptation preference.
Goal-directed preference says that cases that can
be used to address the reasoner’s current goal
should be preferred over others.
Ease-of-adaptation is more specifically aimed at
the reasoner’s method of achieving its current goal
- if it is to use case-based reasoning, and two cases
are equally good matches based on other criteria,
it should prefer cases that require less work to
adapt.

Bibliography

1. Barletta, R. (1988). Explanation-Based
Indexing of Cases. Proceedings of the
DARPA Workshop on Case-Based

Reasoning.

2. Hammond, K. J. (1986). Case-Based
Planning: An integrated theory of planning,
learning, and memory. Ph.D. Thesis. Dept.
of Computer Science. Yale University.



10.

11.

12.

13.

KOLODNER

. Hinrichs, T. (1988). Towards an architecture

for open world problem solving. Proceedings
of the DARPA Workshop on Case-Based
Reasoning.

. Kolodner, J. L. (1983). Reconstructive

Memory: A Computer Model. Cognitive
Science, vol. T.

. Kolodner, J. L. (1987a). Extending problem

solver capabilities through case-based
inference. Proceedings of the 1987
International Machine Learning Workshop.

. Kolodner, J. L. (1987b). Capitalizing on

failure through case-based inference.
Proceedings of the 1987 Conference of the
Cognitive Science Sociely.

. Kolodner, J. L. (1988). Retrieving Events

from a Case Memory: A Parallel
Implementation. Proceedings of the DARPA
Case-Based Reasoning Workshop.
Morgan-Kaufmann, San Mateo, CA.

. Kolodner, J. L., Simpson, R. L., & Sycara,

E. (1985). A Process Model of Case-Based
Reasoning in Problem Solving. Proceedings

of IJCAI-85.

. Kolodner, J. L. & Thau, R. (1988). Design

and Implementation of a Case Memory.
Technical Report No. GIT-ICS-88/34.

School of Information and Compute Science.

Georgia Institute of Technology, Atlanta,
GA.

Koton, P. (1988). Reasoning about evidence
in causal explanations. Proceedings of the
DARPA Workshop on Case-Based
Reasoning.

Owens, C. (1988). Domain-Independent
Prototype Cases for Planning. Proceedings
of the DARPA Workshop on Case-Based

Reasoning.

Riesbeck, C. (1988). An Interface for
Case-Based Knowledge Acquisition.
Proceedings of the DARPA Workshop on
Case-Based Reasoning

Rissland, E. & Ashley, K. (1988). Weighting
on weighting. Proceedings of AAAI-88.

162

14.

15.

16.

17.

Schank, R. C. (1982) Dynamic Memory.
Cambridge: Cambridge University Press.

Shinn, H. (1988). Abstractional Analogy: A
Model of Analogical Reasoning. Proceedings
of the DARPA Workshop on Case-Based
Reasoning.

Simpson, R. L. (1985). A Computer Model
of Case-Based Reasoning in Problem
Solving. Ph.D. Thesis. Technical Report No.
GIT-ICS/85/18. School of Information and
Computer Science. Georgia Inst. of
Technology. Atlanta, GA.

Stanfill, C. (1987). Memory-Based
Reasoning Applied to English Pronunciation.
Proceedings of AAAI-87.



	cogsci_1989_155-162



