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Abstract of the Dissertation 

 

Enhancing the efficacy of BH3 mimetics in blood cancers 

 

By 

Jong-Hoon Scott Lee 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2016 

Professor David A. Fruman, Chair 

 

 Evasion of cell death is one of the hallmarks of cancer that has only recently 

become targetable using small molecule inhibitors. By antagonizing the pro-survival 

function of BCL-2 family proteins, these so-called BH3 mimetics skew cells towards 

undergoing apoptosis. Though single-agent approaches have yielded promising clinical 

efficacy in some contexts, it is often insufficient to induce substantial patient responses. 

This dissertation investigates the potential of using rational targeted therapies to 

enhance the efficacy of BH3 mimetics. 

In Chapter 2, we pursue the simple hypothesis that targeting a pathway whose 

aberrant activation is associated with cancer (the PI3K/AKT/mTOR pathway) can 

sensitize cells to BCL-2 inhibition. We demonstrate that inhibitors of this pathway 

synergize strongly with two BH3 mimetics, ABT-263 and ABT-199, and that the extent 

of this synergy can be predicted using dynamic BH3 profiling. By suppressing AKT 

activity, PI3K pathway inhibitors induced mitochondrial accumulation of pro-apoptotic 
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proteins. This work provided insight into markers of pharmacodynamic response, tools 

for predicting efficacy, and evidence warranting further investigation. 

In Chapter 3 we pursue an alternative approach: that targeting a key metabolic 

pathway for which inhibitors are already FDA-approved, can also sensitize cells to BH3 

mimetics. We show that targeting HMG-CoA reductase using statins selectively primes 

cancer cells for apoptosis and enhances the efficacy of ABT-199 in vitro and in vivo. We 

build on the work from Chapter 2 to demonstrate the predictive capabilities of dynamic 

BH3 profiling in cell lines and primary patient samples. Additionally, we identify 

downstream targets contributing to the sensitization effect, supporting further 

investigation. 

Lastly, in Chapter 4, I present incomplete or unpublished data that follows up on 

the work presented in Chapters 2 and 3. I also discuss potential future directions 

derived from those experiments as well as the implications of this work.  

 



 1 

 

 

 

 

 

Chapter One 

Introduction 
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Parts of the following introduction contain excerpts taken from our review article 

published in The British Journal of Clinical Pharmacology (2016), entitled “Targeting 

mTOR for the treatment of B cell malignancies”. 

 

Resistance to apoptosis: a hallmark of cancer 

The goal of modern cancer therapies is to deliver treatments that can selectively 

kill cancer cells and spare normal cells. The first effective chemotherapies exploited the 

tendency of transformed cells to rapidly proliferate (1), but were associated with 

significant toxicity against normal dividing cells. While advances in modern 

chemotherapies have improved patient responses and managed toxicities, many 

patients still do not respond and require alternative therapies. As a result, a large effort 

has been to identify effective therapies that target cancer-specific mutations. By 

targeting pathways or processes on which tumor cells are more dependent, these so-

called targeted therapies promised efficacy with minimal toxicity. Indeed, the 

prototypical example of targeted therapy, imatinib, yielded impressive responses in 

chronic myelogenous leukemias driven by the BCR-ABL translocation with few toxicities 

(2). Coincident with this early success, decades of research that expanded our 

understanding of the defining characteristics of cancer cells were aggregated in the 

seminal paper: “The Hallmarks of Cancer” (3). By summarizing the features required for 

cancer, Drs. Hanahan and Weinberg highlighted multiple potential vulnerabilities that 

could be exploited using targeted therapies. After only a decade, a follow-up report 

revealed that nearly every hallmark of cancer could be targeted using an existing or 

newly discovered compound (4). Among these hallmarks, resisting cell death is a 
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promising target for therapies to induce tumor-selective apoptosis. This dissertation 

extends upon this idea and focuses on identifying rational combinations that directly 

target cell death machinery to achieve selective killing of tumor cells, particularly B cell 

lymphoma.  

 

Diffuse large B cell lymphoma (DLBCL) 

Diffuse large B cell lymphoma is the most common form of adult non-Hodgkin’s 

lymphoma representing over a quarter of all new B cell neoplasm diagnoses each year 

(5). Given that DLBCL is predominantly diagnosed in elderly patients (median age ~70 

(6)), tolerability of therapies is a growing concern. Indeed, a recent retrospective study 

of ~400 DLBCL patients age 75 or older revealed that fewer than a quarter of patients 

completed the full regimen of chemotherapy (7). Major reasons for failure to receive 

therapy included personal/family decisions, comorbidities, and overall lower resilience. 

Five year survival rates for those patients that receive combination chemotherapy (R-

CHOP: rituximab, cyclophosphamide, hydroxydaunorubicin, oncovine, and prednisone) 

are quite good (approaching 60%). However, a subset of patients still respond poorly to 

the standard of care. Thus, while there has been substantial progress in treating the 

disease, there is still a significant need for effective alternative therapies. 

 While early diagnosis of DLBCL hinged on histological identification, whole 

exome sequencing of DLBCL patient samples revealed three distinct subtypes with 

unique expression profiles. These were named activated B cell like (ABC), germinal 

center-like (GCB), and primary mediastinal B cell lymphoma (PMBL) based on 

similarities to normal gene expression programs (8,9). Importantly, each subtype is 
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separable from another in terms of oncogenic driver mutations (9) as well as chemo-

sensitivity (10). As a result, targeted therapy approaches to treating each disease varies 

greatly between subtypes. For example, while therapies that target activating mutations 

in B cell receptor signaling are effective in the ABC subtype, they have little efficacy in 

the GCB subtype (11,12). Instead, poor patient responses in GCB-DLBCL are often 

associated with over-expression of BCL-2 (13-15). Consequently, for the majority of this 

dissertation we focus on approaches to treating GCB-DLBCL using small molecule 

inhibitors of BCL-2. 

 

BCL-2 family proteins 

Apoptosis is a critical process whereby cells undergo a controlled form of cell 

death that is crucially required for diverse biological processes ranging from mounting 

immune responses to maintaining tissue homeostasis (16,17). However, aberrant 

suppression of this pathway has been linked to tumorigenesis, and evasion of cell death 

is widely acknowledged as a hallmark of cancer (4). Apoptosis is primarily regulated by 

the B cell lymphoma 2 (BCL-2) family proteins, which interact in a dynamic balance to 

control whether a cell lives or dies (18). Currently, there are over 25 known proteins in 

the BCL-2 family, each of which exerts either a pro- or anti-apoptotic effect. Based on 

their function, these proteins can be divided into one of four major groups: the anti-

apoptotic proteins (BCL-2, BCL-XL, BCL-w, and MCL-1 (19-22)), the apoptotic 

sensitizers (PUMA, BMF, BAD, BIK, NOXA, and HRK (23-28)), apoptotic activators 

(BIM and BID (29,30)), or the apoptotic effectors (BAX and BAK (31,32)).  
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The function of BCL-2 family proteins is largely determined by their BCL-2 

homology (BH) domains (Figure 1.1). For example, the multi-domain “effectors” BAX 

and BAK serve as the final arbiters of apoptosis (33,34). Upon activation, these proteins 

oligomerize to form pores that promote mitochondrial outer membrane permeabilization 

(MOMP) and allow the release of cytochrome c and other apoptotic factors into the 

cytoplasm (35-37). Cytochrome c then interacts with pro-caspase-9 and apoptosis 

protease-activator factor-1 (APAF-1), forming a holoenzyme that promotes the auto-

proteolytic cleavage and activation of caspase-9 (38,39). Upon activation, caspase-9 

then initiates a cascade of proteolytic activity which promote effector caspase (3, 6, and 

7)-mediated proteolysis and DNA fragmentation (16). 

 In order for BAX and BAK to oligomerize, they must first interact with the 

apoptotic “activators” BIM or BID. Upon binding with the BH3 domains of BIM/BID, 

BAX/BAK undergo a conformational change that allows for oligomerization 

(34,36,40,41) (Figure 1.2A). Importantly, these BIM/BID BH3 domains are both 

necessary and sufficient for activator function (26,29,30,41,42). As such, suppression of 

apoptosis requires the prevention of BIM/BID interactions with BAX/BAK (43). Indeed, 

all anti-apoptotic proteins possess a hydrophobic pocket formed at the interface of BH1, 

BH2, and BH3 domains that establishes a binding site for BH3 domains (43-45). By 

directly binding to pro-apoptotic BH3 domains, anti-apoptotic proteins not only prevent 

BIM/BID from activating BAX/BAK (Figure 1.2A), but can also directly suppress the 

effector functions of BAX/BAK (43). 
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Figure 1.1. BCL-2 family proteins. BCL-2 family proteins can be broken into major 
groups based on their BH domains, which define their binding partners and function. 

 

 Unlike the activators, which also only contain a single BH3 domain, the 

sensitizers proteins cannot directly activate BAX and BAK (41), likely due to the 

absence of strictly conserved amino acid motifs across BH3 domains (46,47). Instead, 

sensitizer proteins neutralize the anti-apoptotic proteins by competing for access to the 

BH3 domain binding pocket. However, due to the lack of conservation among the BH3 

domain, different BH3-only proteins exhibit preferential binding affinities for different 

anti-apoptotic proteins (48). Among all BH3-only proteins, only BIM and PUMA 

demonstrate comparable binding affinities to all anti-apoptotic factors. On the other 

hand, BAD and BMF preferentially bind BCL-2, BCL-XL, and BCL-w, NOXA binds to 
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MCL-1, and BID, BIK, and HRK bind to BCL-XL and BCL-w (24-26,28,30,49) (Figure 

1.2A, B). Thus, sensitizers promote apoptosis by displacing activators from anti-

apoptotic proteins, allowing activation of BAX and BAK and subsequent initiation of 

apoptosis. 

 

 

Figure 1.2. Overview of BCL-2 family protein interactions. (A) Overview of 
mitochondrial apoptotic pathway, with binding interactions highlighted. (B) Binding 
affinity of BH3 only peptides for anti-apoptotic BCL-2 family proteins, figure adapted 
from Deng et al (50). 

 

 The nature of cancer requires an enhanced survival phenotype. Several 

hallmarks of cancer like genomic instability, oncogene activation, and loss of survival 

signaling promote induction of apoptosis (4,51,52). Thus, evading apoptosis is essential 

in the development and progression of cancer. Based on the interaction of BCL-2 family 

proteins, it is feasible to imagine several potential strategies whereby cancer may resist 

death (Figure 1.3). First, silencing of BH3-only proteins (especially BIM) may skew cells 

towards survival and hinder effective activation of BAX/BAK (53-55). Second, loss of 

apoptotic effectors suppresses induction of MOMP (56,57). Lastly, over-expression of 
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anti-apoptotic factors, via translocation, gene amplification, or copy number alteration 

can similarly buffer cancer cells against induction of apoptosis (58,59). Thus, identifying 

and targeting these cancer-specific evasion tactics may lead to effective therapies. 

 

 

Figure 1.3. Strategies for evading apoptosis. Evading apoptosis is a hallmark of 
cancer, as such there are many strategies that cancer cells use to achieve this. For 
example, cancers can silence apoptotic activators (panel 1) or effectors (panel 2) to limit 
induction of MOMP. Alternatively, some cancers over-express anti-apoptotic factors to 
prevent BAX/BAK activation (panel 3). 

 

Targeting BCL-2 in blood cancers 

Since its identification as the proto-oncogene involved in the t(14;18) 

translocations defining human follicular lymphoma (FL) (58,60), BCL-2 has been 

inextricably linked to lymphoid malignancies. Indeed, over-expression of this protein is 

widely associated with poorer patient outcomes across blood cancers (13-15,61-65), 

where it enables aberrant cell survival (19,58,66-70). While insufficient to initiate 
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tumorigenesis itself, extended survival conferred by BCL-2 over-expression enhances 

the acquisition of additional oncogenic mutations that can drive transformation (71-74). 

In particular, BCL-2 cooperates exceedingly well with mutations promoting cell 

proliferation, like MYC, which often promotes forms of death that BCL-2 can suppress 

(51,52,75). Indeed, lymphomas that over-express both MYC and BCL-2 (“double-hit” 

lymphomas) represent the most difficult to treat subset of lymphomas in human patients 

(76).   

Given their clear role in cancer cell survival, the development of therapeutics 

targeting this family of proteins has progressed rapidly over the past two decades. While 

early approaches included antisense oligonucleotides (77) and drugs identified through 

compound screens, the ability of these compounds to kill BAX/BAK-deficient cells 

suggested non-specific off-target toxicity (78-80). Fortunately, following the elucidation 

of the structure of BCL-XL in complex with the BH3 domain of BAK (81), a team of 

scientists working in conjunction with Abbott Laboratories (now AbbVie) succeeded in 

developing compounds that could mimic the function of BH3-only proteins (82). Termed 

BH3-mimetics, the first-in-class molecule, ABT-737, could effectively bind BCL-2, BCL-

XL, and BCL-w and demonstrated potent activity against multiple cancer lines (82), but 

not BAX/BAK-null cells (83,84). However, due to poor oral bioavailability, ABT-737 was 

succeeded by its sister compound, ABT-263 (navitoclax) (85). In clinical trials, ABT-263 

demonstrated tremendous single-agent activity in patients with chronic lymphocytic 

leukemia (CLL), a disease in which the leukemia cells are known to depend on BCL-2 

for survival (86-88). Unfortunately, due to on-target BCL-XL inhibition, ABT-263 
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presented with dose-limiting thrombocytopenia that hindered its clinical advancement 

(87-91). 

In response to this on-target toxicity, second-generation BH3 mimetics were 

reverse engineered to reduce activity against BCL-XL. The result was ABT-199 

(venetoclax or Venclexta®), a compound that exhibits several orders of magnitude 

increased selectivity for BCL-2 over BCL-XL (92,93). Importantly, subsequent clinical 

trials with ABT-199 revealed profound single-agent efficacy and minimal platelet toxicity, 

leading to FDA approval as a second line therapy in p53-deleted (17p(del)) CLL (94). 

However, despite BCL-2 being associated with poor prognosis in acute myeloid 

leukemia (AML), DLBCL, and FL (14,65), ABT-199 monotherapy demonstrated limited 

efficacy in these malignancies (95,96). Thus, the main premise of this dissertation is 

to investigate whether rational combinations may augment the efficacy of BH3 

mimetics in these cancers. 

 

BH3 profiling 

Since most effective cytotoxic therapies are dependent on induction of apoptosis 

(97), understanding how a cell decides to die may be the key to predicting effective 

therapies. Unlike in other fields where approaches like ex vivo drug screening routinely 

yield clinically relevant predictions (98), predictive diagnostics have yet to mature in a 

cancer setting. Indeed, most studies tying BCL-2 family proteins to clinical cancer 

outcomes have been prognostic rather than predictive (e.g. correlative associations 

between BCL-2 expression and poorer outcomes). While logistical challenges in 

acquiring viable specimens is a key consideration, predicting the induction of apoptosis 



 11 

has its own biological challenges as well. For example, different stimuli can result in 

vastly different BH3-only responses between different cells (99,100). Additionally, many 

BCL-2 proteins can be sequestered away from the mitochondria where they do not 

affect mitochondrial apoptosis, complicating the relationship between expression levels 

and functional activity. 

Despite these challenges, emerging functional diagnostic technology is beginning 

to yield clinically relevant predictive biomarkers. In particular, dynamic BH3 profiling 

(DBP), which is based off a previously described assay (static BH3 profiling), directly 

measures a key cellular attribute known as “mitochondrial priming” to predict chemo-

sensitivity (50,101,102). Conceptually, this attribute represents how close a cell is to the 

threshold for undergoing apoptosis; the higher the priming, the closer the cell is to 

dying. Both static and dynamic BH3 profiling detect the loss of mitochondrial charge as 

a surrogate readout for MOMP. By exposing cells to synthetic peptides that mimic the 

function of BH3-only proteins (102,103), both assays essentially ask how much 

apoptotic input is required to induce apoptosis. If a higher degree of MOMP can be 

induced by relatively lower concentrations of BH3 peptide, it can be inferred that this cell 

is more primed for apoptosis. Importantly, studies have shown that static BH3 profiling 

can accurately predict differential chemo-sensitivity within cell lines and primary 

samples (50,104-106). More recently, by pre-treating cells with candidate compounds 

for a few hours before profiling the cells, DBP has been shown to accurately predict 

whether the cells are likely to respond to prolonged exposure (107).  

While both static and dynamic BH3 profiling have yielded compelling evidence 

that mitochondrial priming may correlate with clinical responses, their predictive power 
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is still limited in some cases. For example, static BH3 profiling may not accurately 

predict whether cells will die in response to some chemotherapies (104). Furthermore, 

recent DBP data demonstrates that while some inhibitors can significantly increase 

mitochondrial priming, they may not induce apoptosis after prolonged treatment 

(108,109). Fortunately, some of these challenges can be circumvented when 

considering BH3 mimetics. Because these compounds act directly at the mitochondria, 

static BH3 profiling has consistently predicted single-agent sensitivity to this class of 

compounds (82,85,92)) across several cancer cell types (42,110-113). In Chapters 2 

and 3, we demonstrate that while DBP of cells pretreated with targeted inhibitors did not 

predict apoptosis, it did predict enhanced sensitivity to BH3 mimetics (109). Together, 

these studies highlight the potential of DBP to identify inhibitors that can synergize with 

BH3 mimetics. 

 

PI3K/AKT/mTOR pathway 

Phosphoinositide 3-kinase (PI3K) 

 The PI3K pathway is one of the most commonly activated pathways in human 

cancer where aberrant upregulation promotes cell growth, proliferation, metabolism, and 

survival. Activation of this network has been associated with virtually every hallmark of 

cancer (4,114), and elevated activity is associated with poor prognosis and drug 

resistance. In support, many models of resistance to tyrosine kinase inhibitors (TKIs, 

e.g. imatinib, erlotinib, gefitinib, trastuzumab), show sustained PI3K activation (115-

118). Additionally, PI3K-activating mutations are sufficient to confer resistance in many 

cases (119), and affect expression or localization of many BCL-2 family proteins to 
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promote survival (Figure 1.4 (114)). Given this interplay with the apoptotic pathway, in 

Chapter 2 we explore the potential of using PI3K pathway inhibitors to enhance the 

efficacy of BH3 mimetics. 

 

 

Figure 1.4. Known interactions between the PI3K pathway and BCL-2 family 
proteins. Aberrant PI3K activation affects the expression/activity of many BCL-2 family 
proteins, skewing cells towards survival by reducing pro-apoptotic proteins (BAD, 
NOXA, PUMA, Bim (120-122)) and increasing pro-survival proteins ((123). 

 

 There are three major classes of PI3Ks (class I, II, and III), which differ in 

structure and substrate specificity. Class I PI3K will be the focus of this dissertation as 

they are primarily responsible for survival signaling. Class I PI3Ks function as 

heterodimers and preferentially phosphorylate the 3 position of phosphatidylinositol-4,5-

bisphosphate (PI(4,5)P2) to generate the crucial second messenger, PI(3,4,5)P3 



 14 

(114,124-127). All class I PI3Ks consist of a catalytic subunit (p110) bound to a 

regulatory subunit, the exact composition of which defines the class IA and IB PI3K 

subtypes. Class IA PI3Ks contain one of three catalytic subunits: p110α (PIK3CA), 

p110β (PIK3CB), or p110δ (PIK3CD) bound to one of five regulatory subunits: p85α, 

p55α, or p50α (alternative products from PIK3R1), p85β (PIK3R2), or p85𝛾 (PIK3R3). 

On the other hand, class IB PI3Ks consist of p110𝛾 (PI3K4G) bound to either p84 

(PIK3R6) or p101 (PIK3R5).  

 In addition to these structural differences, class IA and IB PI3K also have distinct 

mechanisms of activation. Facilitated by Src homology (SH) domains that selectively 

bind phospho-tyrosine residues, class IA PI3Ks are activated downstream of receptor 

tyrosine kinases (RTKs). On the other hand, class IB PI3Ks are activated by G protein-

coupled receptors (GPCRs). Ultimately, both interactions localize PI3K to the plasma 

membrane where it can efficiently generate PIP3. Importantly, each of the genes 

encoding class I PI3K have demonstrated potential for oncogenic transformation (128), 

and the negative regulators of PI3K activity, the lipid phosphatases PTEN and SHIP, 

are frequently lost or silenced in many types of cancer (129,130). 

 The generation of the PIP3 induces rapid co-localization of enzymes containing 

pleckstrin-homology (PH) domains. Following recruitment to the membrane, AKT, a 

serine/threonine kinase (131,132), is phosphorylated at Thr308 by phosphoinositide-

dependent kinase 1 (PDK1) and Ser473 by mechanistic target of rapamycin complex 2 

(mTORC2) (133-136). Upon activation via these phosphorylation events, AKT then 

transduces a significant portion of the PI3K signal through interactions with a diverse 

substrate pool. Some key AKT targets include Forkhead box group O (FOXO) 



 15 

transcription factors, tuberous sclerosis complex (TSC)-2, proline-rich AKT substrate of 

40 kDa (PRAS40), and the BH3-only protein BAD. In addition to these substrates 

directly contributing to cell survival and proliferation (Figure 1.4 and 1.5) (129,137,138), 

they also connect PI3K signaling to mTOR complex 1 (mTORC1), a master regulator of 

cell growth and proliferation (139,140).  

 

 

Figure 1.5. Overview of PI3K/AKT/mTOR signaling pathway. Activation of PI3K by 
growth factor receptor leads to generation of PIP3. This recruits PDK1 and AKT to the 
plasma membrane where AKT is activated. This in turn activates Rheb-GTP and 
mTORC1 by suppressing the TSC1/2 complex. 
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Mechanistic target of rapamycin (mTOR) 

mTOR is a serine/threonine kinase that is active in two distinct multi-protein 

complexes (mTORC1 and mTORC2) characterized by the defining subunits RAPTOR 

and RICTOR, respectively (141,142).  Each complex is differentially regulated and has 

a distinct set of substrates (Figure 1.5). mTORC2 activation is directly regulated by the 

levels of PIP3 (143), and is required for full activity of AKT (133). On the other hand, 

mTORC1 functions by integrating growth factor and nutrient signals (i.e. from the 

PI3K/AKT pathway) to ensure that the cell is at an appropriate bioenergetic state to 

support cell growth and division (144,145). Upon activation, mTORC1 promotes key 

biosynthetic pathways including translation, transcription, and lipogenesis, while 

suppressing apoptotic and autophagic processes (146,147). Importantly, hyper-

activating mutations in mTOR have been identified in many cancers, providing a clear 

link between mTOR and tumorigenesis (148). 

The most well-characterized downstream targets of mTORC1 include the p70 

ribosomal-S6 kinases (S6Ks) and eukaryotic initiation factor 4E (eIF4E, Figure 1.5), 

which coordinately regulate mRNA translation (149,150). In addition to promoting 

translation via interactions with PDCD4, eIF4B, and ribosomal protein S6 (rS6) (151), 

S6Ks also regulate ribosome biogenesis, lipid and nucleotide synthesis, and metabolic 

reprogramming (152-154). There are two known isoforms of S6K (S6K1 and S6K2) that 

have partially redundant functions. While single knockout mice exhibit different 

phenotypes, double knockout mice lacking both S6K1 and S6K2 exhibit perinatal 

lethality, emphasizing the importance of S6Ks in growth, development, or survival (155).  
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Whereas mTORC1 activates S6Ks directly, it activates eIF4E indirectly by 

suppressing the eIF4E binding proteins (4E-BPs) (156). When mTORC1 activity is low, 

4E-BPs compete with eIF4G for binding to eIF4E, preventing the assembly of the eIF4F 

translation initiation complex (157). However, upon phosphorylation by activated 

mTORC1, 4E-BPs lose this capacity to bind eIF4E. As a result, eIF4E can facilitate 

assembly of eIF4F at the 5’ mRNA cap to initiate translation (158-160). Importantly, this 

regulation is specific for a subset of oncogenic mRNAs (161,162), including the 

proliferative proteins, MYC and cyclin D1, as well as the anti-apoptotic protein, MCL-1 

(123,163-165). 

 

Targeting the PI3K/AKT/mTOR pathway 

Given that each major kinase in the PI3K pathway has its own distinct set of 

substrates, a plethora of chemical inhibitors specific for each node in the pathway have 

been developed. In Chapter 2, we take advantage of these tool compounds to isolate 

and study the contribution of PI3K, AKT, or mTOR inhibition to apoptotic sensitization. 

These inhibitors, their targets, and in vitro kinase activities are summarized in Table 1.1. 

Rapamycin and its analogs (“rapalogs”) are highly potent allosteric inhibitors of 

mTORC1. Upon entry into a cell, rapalogs bind to FKBP12, forming a complex that 

selectively suppresses mTORC1 kinase activity by limiting substrate access to the 

active site (166,167). Importantly, the rapamycin-FKBP12 complex cannot bind to 

mTORC2 (142,168), though prolonged exposure may limit the assembly of mTORC2 

(169). Due to their unique mechanism of action, rapalogs demonstrate unique biological 

effects. For example, rapalogs are known to incompletely inhibit the phosphorylation of 

a subset of mTORC1 substrates (170). Additionally, mTORC1 inhibition induces robust 
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feedback activation of upstream PI3K/AKT and MAPK pathways (Figure 1.6). Despite 

restricting access to the active-site, mTORC1-mediated phosphorylation of 4E-BP1 is 

refractory to long-term treatments (171). Consequently, many cells maintain 4E-BP 

phosphorylation even in the presence of rapamycin (172-175).  

 

    IC50 (nM) 

Target Inhibitor p110a p110b p110d p110g AKT 
(1,2,3) mTOR 

PI3K 

GDC-0941 
(176,177) 3 33 3 75   580 

ZSTK474 
(178) 16 44 4.6 49     

AKT 

AKT Inhibitor 
VIII (179-181)         58, 210, 

2120   

MK-2206 
(182)         8, 12, 

65   

mTOR 

MLN0128 
(183) 219 5293 230 221   1 

AZD8055 
(184) 3590   3200     0.8 

PI3K/ 
mTOR 

NVP-BEZ235 
(185) 4   7 5   6 

GDC-0980 
(186) 5 27 7 14   17 

Table 1.1 In vitro kinase activity of PI3K pathway inhibitors. 

 

The timely development of mTOR kinase inhibitors (TOR-KIs) directly addressed 

the biochemical disadvantages of rapalogs. By competing with ATP for binding to the 

mTOR active site, not only do TOR-KIs more completely block mTORC1 substrate 

phosphorylation (namely 4E-BPs), but they also inhibit mTORC2 activity (173-175,187-

189). This results in reduced phosphorylation of AKT at Ser473 (Figure 1.6), 

dampening the feedback activation of PI3K/AKT (190-192). Several structurally distinct 
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mTOR-selective inhibitors have been developed. Most notable among them are PP242 

(188), Torin1 (187), Ku-0063794 (193), AZD8055 (194), AZD2014 (194), MLN0128 

(previously INK128 (183)), and CC-223 (195). However, it is important to note that by 

competing with ATP, TOR-KIs inhibit several other related kinases at higher doses, 

including PI3K. Conversely, several compounds that are often used pre-clinically as 

PI3K inhibitors (wortmannin, LY294002) also directly inhibit mTORC1 and mTORC2 at 

similar concentrations. Interestingly, some companies have capitalized on the 

similarities between PI3K and mTOR active sites, leading to the development of 

optimized compounds with dual specificity for both kinases (e.g. NVP-BEZ235 and 

GDC-0980) (185,186). 

Through additional optimizations, novel PI3K-selective inhibitors have also been 

developed. In particular, GDC-0941 (176,177) is an ATP-competitive inhibitor with 

comparable activity against all class I PI3K isoforms (p110α, p110β, p110𝛾, and p110δ) 

but has limited efficacy against mTOR (Table 1.1). Similarly, ZSTK474 is another PI3K 

inhibitor with even less activity against mTOR (178). In addition to these pan-isoform 

selective PI3K inhibitors, isoform selective inhibitors also exist (e.g. TGX-221 for p110b 

(196) and CAL-101 for p110d (197)). While these inhibitors have demonstrated unique 

anti-cancer potential in certain contexts (198,199), for the purposes of this dissertation, 

we chose to focus on pan-PI3K inhibitors in Chapter 2.  
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Figure 1.6. Rapamycin versus TOR kinase inhibitors. Rapamycin only partially 
inhibits mTORC1 activity, promoting activation of upstream PI3K, mTORC2, and AKT 
via loss of feedback inhibition through IRS1. Conversely, TOR-KIs suppress all mTOR 
outputs. 

 

In addition to PI3K and mTOR inhibitors, compounds selectively targeting AKT 

are also under development. However, neither ATP-competitive inhibitors nor 

phosphatidylinositol analogs have yielded compounds selective for the AKT isozymes 

(200). As a result, in Chapter 2 we primarily utilize allosteric inhibitors. Despite being PH 

domain dependent, allosteric AKT inhibitors retain selectivity for AKT and commonly 

display preferential inhibition of single isozymes. For example, AKT Inhibitor VIII, 
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preferentially inhibits the AKT1 (179-181). Nevertheless, second generation allosteric 

AKT inhibitors such as MK-2206, demonstrate more widespread activity against all 

three (182). These inhibitors suppress activation of AKT downstream of PI3K by 

stabilizing inactive conformations of the protein, suppressing phosphorylation at both 

the PDK1 (Thr308) and mTORC2 (Ser473) sites. 

 

Mevalonate (MVA) pathway 

The mevalonate pathway is a metabolic network that produces several key 

bioactive molecules that are necessary for diverse cellular processes (Figure 1.7). The 

most widely known function of this lipid metabolism pathway is the de novo production 

of sterol isoprenoids (i.e. cholesterol) (201). However, mevalonate is also used to 

produce non-sterol isoprenoids that have essential roles in regulating cell growth, 

differentiation, and survival. Collectively, these mevalonate-derived products are crucial 

in maintaining lipid homeostasis and sustaining tumor growth and survival (202,203). 

Entry into the mevalonate pathway begins with the two-step condensation of 

acetyl-CoA into acetoacetyl-CoA then 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 

(Figure 1.7). This is followed by the rate-limiting step in the mevalonate pathway, 

reduction of HMG-CoA to mevalonic acid. Importantly, transcription of the enzyme 

catalyzing this reaction (HMG-CoA reductase, HMGCR) is tightly regulated by sterol 

regulatory element-binding proteins (SREBPs) (204,205) in a classic negative feedback 

loop. In the absence of sterol isoprenoids, SREBP cleavage activating protein (SCAP) 

facilitates the cleavage of SREBP allowing translocation to the nucleus and activation of 

downstream target genes (204). In addition to HMGCR, SREBPs are also thought to 
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regulate nearly every enzyme in the cholesterol biosynthesis pathway (206), making 

them critical regulators of flux through the mevalonate pathway.  

Upon production of mevalonic acid, two phosphorylation steps catalyzed by 

mevalonate kinase and phosphomevalonate kinase yield mevalonate pyrophosphate. 

Followed by a series of additional reactions (207), the generation of farnesyl 

pyrophosphate (FPP) represents a critical branch point in the pathway (Figure 1.7). At 

this junction, FPP can be metabolized into one of several intermediates that yield 

distinct products. For example, squalene synthase (SS) catalyzes the first committed 

step of the cholesterol biosynthesis pathway yielding squalene from FPP. After an 

additional 21 steps, squalene is then converted to cholesterol for use in membrane 

integrity or as a precursor for bile acids and steroid hormones (208).  

 

HMG-CoA reductase inhibitors (statins) 

Beginning with the observation that cancer cells consume a disproportionately 

large amount of glucose (209), altered metabolism is now widely acknowledged as a 

hallmark of cancer (4). In essence, it is thought that the transformed state requires 

increased demand for key metabolic products including those products of the 

mevalonate pathway (210,211). In support, dysregulation of the mevalonate pathway 

(via over-expression of HMGCR) enhances tumorigenesis and cooperates with 

oncogenic RAS to promote cellular transformation (212). Additionally, many cancers up-

regulate lipid and cholesterol synthesis genes, with high cholesterol levels correlating 

with reduced chemo-sensitivity (202,213,214) and resistance to apoptosis (215). 



 23 

Collectively, these studies further suggest that suppressing the mevalonate pathway 

may yield therapeutic benefit in cancer.  

 

 

Figure 1.7. Overview of the mevalonate pathway. Mevalonate pathway is a multi-step 
metabolic pathway that converts acetyl-CoA to multiple bioactive molecules. The rate 
limiting step is catalyzed by HMG-CoA reductase, which can be inhibited using statins. 
Following production of farnesyl-PP, the pathway branches to produce molecules that 
are used in distinct cellular processes (colored boxes).  

 

Initially developed and heralded as a blockbuster drug for the treatment of 

hypercholesterolemia (201,211), the statin family of drugs may also have selective anti-

cancer potential. By inhibiting the HMGCR, the rate-limiting enzyme in the mevalonate 

pathway (Figure 1.7), statins effectively block production of mevalonate and suppress 

all downstream metabolic pathways. In this manner, statins induce a remarkable 

homeostatic feedback loop which activates SREBPs to compensate for the loss of 
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cholesterol biosynthesis. As a result, SREBP-mediated up-regulation of the low-density 

lipoprotein (LDL) receptor induces rapid internalization of LDL-cholesterol thereby 

lowering circulating cholesterol levels. While different statins may have widely divergent 

pharmacokinetic properties (211,216), they all share common structural features that 

allow them to bind to catalytically active HMGCR (217). Importantly, statins are among 

the most widely prescribed drugs, and their tolerability has been well documented 

(218,219), with the major adverse effect being muscle toxicity (220). These 

characteristics, coupled with promising preclinical work using cancer cell lines, suggest 

statins may be an attractive cancer therapy.  

Early evidence of statin efficacy revealed a potent anti-proliferative effect cancer 

cells that stemmed from a block in the G1/S phase transition. In fact, lovastatin was 

routinely used to synchronize cancer cells in vitro by reversing its potent cell cycle arrest 

with exogenous mevalonate (221). Later studies revealed that some cancers, 

particularly acute myeloid leukemias (AML) were exceptionally sensitive to statins as 

single agents (222,223), and that statins seemed selective for transformed rather than 

normal cells (223,224). However, despite these promising preclinical studies, clinical 

trials, retrospective analyses, and epidemiological studies have yielded mixed results 

regarding the anti-cancer efficacy of statins. While there are some cases of response 

(particularly in AML (225)), several retrospective analyses of DLBCL suggested statins 

had no effect on chemotherapy (211,226-228). While the lack of response may in part 

be due to known resistance mechanisms that up-regulate HMGCR (229,230), a better 

understanding of statin efficacy may also yield more informative biomarkers. For 

example, while mechanistic studies implicate downstream protein prenylation pathways, 
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particularly protein geranylgeranylation (231), as well as BCL-2 modulation (211,232), 

the exact mechanisms are still largely unknown. Nevertheless, both these findings 

provide a strong rationale to 1) test statins in combination with BH3 mimetics, and 2) 

investigate the potential of targeting downstream prenylation pathways. 

 

Protein prenylation 

Apart from cholesterol biosynthesis, FPP can also be converted to 

geranylgeranyl pyrophosphate (GGPP) via GGPP synthase. Both FPP and GGPP are 

substrates for protein prenylation (Figure 1.8), a post-translational modification whereby 

hydrophobic lipid groups are covalently attached to proteins. The three enzymes that 

carry out this modification in eukaryotes are farnesyltransferase (FT), geranylgeranyl 

transferase 1 (GGT-1), and geranylgeranyl transferase 2 (GGT-2) (Figure 1.8). While 

all proteins undergoing this modification share a common carboxy-terminal cysteine-

containing motif, the exact composition of the motif dictates whether it receives an 

isoprene farnesyl (C-15) or isoprene geranylgeranyl group (C-20). GGT-2 exclusively 

prenylates Rab GTPases and recognizes CXC or CC motifs, where X is any amino acid 

(233). On the other hand, both FT and GGT-1 recognize CAAX motifs where C is 

cysteine and A is any aliphatic amino acid. While FT prefers X to be methionine, serine, 

glutamine, or cysteine, GGT-1 prefers leucine or isoleucine at this residue (234-236). 

While these preferences can be exploited by introducing mutations that alter or switch 

dependence on farnesylation or geranylgeranylation (237), it is important to note that 

the preferences are not absolute, as some proteins may be subject to both farnesylation 

and geranygeranylation (238-240). Following prenylation, proteins are then further 
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processed to augment the functionality of the lipid group. These processing steps are 

executed by RAS-converting CAAX endopeptidase 1 (RCE1) and isoprenylcysteine 

carboxylmethyltransferase (ICMT), and yield a carboxy-terminal Cys residue that is both 

prenylated and methylated (241,242).  

Functionally, both farnesylation and geranylgeranylation enhance protein 

interactions with cellular membranes, ultimately affecting subcellular localization, 

protein-protein interactions, and/or protein stability. While the exact number of proteins 

that undergo prenylation is unknown, contemporary reviews estimate that there are 

several hundred that may be subject to this modification (236,243). Importantly, both 

farnesylation and geranylgeranylation are essential processes for normal development. 

In support, knockout of FT is embryonic lethal in mice (244), though it is dispensable for 

postnatal development and adult tissue homeostasis. Parallel studies have not yet been 

done with GGT-1 in mice, though results from model organisms support the notion that 

GGT-1 is a similarly essential protein (245,246). 

Several proteins that are confirmed substrates for protein prenylation have key 

roles in regulating cell growth, proliferation, and survival. Perhaps the most famous 

example is RAS, one of the most frequently activated oncogenes across human 

cancers, which undergoes farnesylation. Subsequent work later elucidated that this 

modification of RAS was required for its transforming activity (247), suggesting that 

targeting of prenyltransferases may be effective at combating cancer. In support, 

several other prenylation substrates with relevance to known oncogenic signaling 

pathways have also been identified (Figure 1.8). In particular, small GTPases like those 

of the Rac, Rho, and Rheb subfamilies, make up a large majority of the known 
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“prenylome.” These proteins play major roles in oncogenesis, contributing to critical 

pathways including the Raf-MEK-ERK (248), PI3K/AKT/mTOR (249,250), and Rho-

ROCK pathways.  

 

 

Figure 1.8. Targeting protein prenylation pathways. Two key isoprenoids, FPP and 
GGPP, are used to prenylate CAAX-containing proteins, many of which are small 
GTPases of the Ras, Rac, Rheb, and Rho sub-families (green). Distinct enzymes carry 
out these reactions (blue) that are targetable using small molecule inhibitors (red). 

 

Farnesyltransferase and geranylgeranyl transferase inhibitors 

The finding that inhibiting farnesylation also suppresses oncogenic RAS, a 

protein that is notoriously difficult to target by direct small molecule inhibitors, launched 

a global effort to develop FT and GGT-1 inhibitors (FTIs and GGTIs) as cancer 

therapeutics (251). The result of these efforts were CAAX peptidomimetics that mimic 

substrate binding and compete for access to the active site. Consequently, structural 

differences between prenyltransferase inhibitors (PTIs) dictate both the selectivity and 

potency of these drugs. Pre-clinically, both classes of PTIs demonstrate potent 
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apoptotic and anti-proliferative effects in a variety of cancer settings. For example, FTIs 

consistently induce mitotic arrest and apoptosis in RAS-driven cancer cells (251-253) 

and can induce tumor regression in vivo (254,255). Similarly, conditional GGT-1 

deficiency and GGTI treatment also suppresses tumor outgrowth in transgenic mouse 

models of lung and breast cancer (256,257).  

Mechanistically, the anti-cancer effects of both FTIs and GGTIs involves cell 

cycle inhibition and p53-independent apoptosis (255,258-260). Depending on the 

context, PTIs have been shown to suppress AKT-mediated inhibition of BAD (258,261), 

enhance death receptor signaling (262,263), or suppress NF-kB survival outputs (264). 

However, despite the clear link between prenylation and RAS activity, it is clear that 

other farnesylated proteins may contribute to the efficacy of FTIs (252). Consequently, 

incomplete understanding of which substrates are required for sensitivity to FTIs 

represents a substantial hurdle towards improving clinical responses (265-268). 

Collectively, these studies suggest potential synergism between PTIs and agents 

targeting the apoptotic machinery and indicate the need for developing improved 

companion diagnostic and/or predictive tools. 

 

Organization of chapters  

Evasion of apoptosis is a hallmark of cancer that is now directly targetable using 

small molecule BCL-2 inhibitors. While clearly effective in some settings (namely CLL), 

it becoming increasingly apparent that these so-called BH3 mimetics induce incomplete 

responses in other contexts. A promising approach to improving their efficacy is through 

rational combinations. Several oncogenic pathways feed into regulation of the BCL-2 
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family proteins and may contribute to poor sensitivity to BCL-2-targeting therapies. 

Thus, this dissertation addresses whether targeting two different pathways important to 

cancer (PI3K and MVA) can sensitize cells to BCL-2 inhibition by priming cells for 

undergoing apoptosis (Figure 1.9). Understanding how this sensitization occurs, and 

whether it can be predicted using techniques like BH3 profiling, is critical for efforts to 

improve the use of BCL-2 antagonists in a clinical setting.  

In Chapter 2, we present a mechanistic investigation into the efficacy of 

combining PI3K pathway inhibitors with BH3 mimetics. Using pharmacological and 

genetic approaches, we identify a mechanism of action that complements previously 

published studies and strongly supports further clinical investigation. In addition, we 

demonstrate the merits of DBP in predicting the most potent sensitizers to BCL-2 

inhibition. These findings led to a first-author publication in Oncotarget.  

Chapter 3 investigates the potential repurposing an FDA-approved drug (statins) 

to enhance the efficacy of BH3 mimetics in blood cancer. Using several preclinical 

models, we demonstrate the efficacy and selectivity of this combination across different 

blood cancers. We also reaffirm the merits of DBP as a predictive tool, this time in 

identifying which cells are likely to respond to combinations. Lastly, we characterize a 

mechanism involving potentially-targetable downstream effectors. 

Lastly, Chapter 4 summarizes the major findings of this dissertation, discusses 

unpublished or incomplete data, and provides insight into unanswered mechanistic 

questions regarding the efficacy of the two combinations presented. We also present 

some future directions for enhancing the efficacy of BH3 mimetics in cancer. 
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Figure 1.9. Central hypothesis: combination approaches to treating cancer using 
BH3 mimetics. In some contexts, treatment with BH3 mimetics may be insufficient to 
kill cells as single agents. The addition of other targeted agents may prime these cells 
for apoptosis, leading to an effective combination. 
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Chapter Two 

PI3K/AKT/mTOR inhibitors enhance the efficacy of BCL-2 inhibitors in diffuse 

large B cell lymphoma  
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 This chapter is largely derived from a manuscript published in Oncotarget 6(34) 

pages 35202-35217 (2015), entitled “MCL-1-independent mechanisms of synergy 

between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma”. 

Supplementary materials originally published from this manuscript have been 

incorporated into the main text. 

 

Abstract  

 Aberrant activation of the PI3K/AKT/mTOR pathway is associated with poor 

prognosis in patients with diffuse large B cell lymphoma (DLBCL). However, inhibitors 

targeting this pathway are often insufficient to evoke strong clinical responses as single 

agents, suggesting that combinations may hold potential. In support, previous studies 

have demonstrated marked synergy with BCL-2 inhibitors in other cancer subsets (e.g. 

lung cancer) where PI3K/mTOR inhibitors suppress expression of MCL-1. Here, we 

demonstrate that PI3K/AKT/mTOR inhibitors also synergize with BCL-2 antagonists in 

DLBCL cell lines, a phenomenon that could be predicted using dynamic BH3 profiling 

(DBP). Unlike in solid tumors, mTORC1 inhibition did not suppress MCL-1 expression. 

Instead, inhibition of AKT induced mitochondrial accumulation of pro-apoptotic proteins 

BAD and BIM. Thus, our work identifies an additional mechanism of synergy between 

PI3K pathway inhibitors and BCL-2 antagonists that strengthens the rationale for testing 

this combination in DLBCL. 
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Introduction 

 PI3K inhibitors have recently received increased attention in blood cancers, 

where an inhibitor of the p110δ catalytic isoform (idelalisib) elicits significant patient 

responses in both chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin’s 

lymphoma (1). However, more aggressive blood cancers such as diffuse large B cell 

lymphoma (DLBCL) do not respond to monotherapy with inhibitors targeting this 

network (2). Nevertheless, inhibition of the PI3K pathway may still be effective in 

rational combinations with other therapies. Indeed, in the activated B cell (ABC) 

subtype, the combination of PI3K pathway inhibitors with the BTK inhibitor, ibrutinib, has 

shown promise (3,4). Despite this efficacy in ABC-DLBCL, combined BTK and PI3K 

inhibition fails to kill the germinal center subtype (GCB) cells (4). In this context, 

elevated expression of BCL-2 (a hallmark of the GCB subtype (5,6)) may limit the 

cytotoxic potential of PI3K inhibitors (7,8). These observations suggest that PI3K 

pathway inhibitors may still sensitize GCB-DLBCL to BH3 mimetics. 

 Previously, others have demonstrated synergism between PI3K inhibitors and 

BCL-2 antagonists in several contexts (9-11). For example, in DLBCL sublines that are 

selected for resistance to ABT-199/737, mTOR inhibition can revert the resistance 

(12,13). In other cancer subtypes, similar efficacy is observed where mTORC1 inhibition 

decreases MCL-1 expression (14). However, the PI3K pathway has several other 

survival outputs, particularly from AKT (15,16), that may also enhance BCL-2 inhibitor 

sensitivity. Additionally, the effect of these drug combinations on normal lymphocytes 

has not yet been explored. 
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 Here, we show that the combination of PI3K pathway and BCL-2 inhibitors 

synergistically induces apoptosis in a panel of GCB-DLBCL cell lines, with dual 

PI3K/mTOR inhibition providing the greatest effect. Importantly, we also demonstrate 

that dynamic BH3 profiling of cells treated with PI3K pathway inhibitors correlates 

strongly with the degree of synergy, suggesting this assay may be used to predict 

treatment responsiveness. Furthermore, the combination is also effective in chemo-

resistant DLBCL lines, but lack toxicity in normal T lymphocytes. Contrary to other tumor 

cell contexts, MCL-1 expression in GCB-DLBCL cells does not decrease following 

PI3K/mTOR inhibition. Instead, treatment with dual PI3K/mTOR inhibitors increases 

mitochondrial accumulation of BAD and BIM. These effects are dependent on 

suppression of AKT activity, as a constitutively active mutant of AKT abolishes both the 

synergy and up-regulation effects. These findings identify a promising combination 

approach to achieve selective GCB-DLBCL death, and highlight a previously 

unpredicted mechanism of synergy.  

 

Materials and Methods 

Chemicals 

 We obtained rapamycin, MLN0128, GDC-0941, and NVP-BEZ235 from LC 

Laboratories (Woburn, MA, USA); ABT-263, ABT-199, MK2206 and GDC-0980 from 

Active Biochem (Wan Chai, Hong Kong), and AKT inhibitor VIII from Chemdea 

(Ridgewood, NJ, USA). InSolution Q-VD-OPh was obtained from EMD Millipore 

(Billerica, MA, USA), dimethyl sulfoxide (DMSO) from Fisher Scientific (Waltham, MA, 

USA) and doxycycline from Sigma-Aldrich (St. Louis, MO). 
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Cell Culture    

 OCI-LY1, OCI-LY7, OCI-LY8, and SU-DHL4 cell lines (a gift from Dr. Laura 

Pasqualucci, Columbia University) were cultured in IMDM (GE Healthcare Hyclone, 

Little Chalfont, UK) supplemented with 10% FBS, 10 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 10 mM L-Glutamine, 100 I.U. penicillin, and 

100 µg/ml streptomycin. Cells were grown in a humidified 37°C incubator with 5% CO2. 

Cells were routinely tested to ensure absence of mycoplasma, and were maintained at 

or below 2 x 106 cells/mL. Human embryonic kidney (HEK) 293T cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, Carlsbad, CA, USA) 

supplemented with 10% calf serum, 100 I.U. penicillin, and 100 µg/mL streptomycin. 

Human peripheral blood mononuclear cells (PBMCs) were isolated from blood samples 

by centrifugation through Ficoll-Paque™ (GE Healthcare, Piscataway, NJ, USA) and 

were grown in RPMI (Corning, NY, USA) with identical additives as IMDM. 

 

Western blotting 

 Cells were lysed in radio-immunoprecipitation assay (RIPA) buffer (150 mM 

NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris, 

pH 8.0, 2 mM EDTA, 50 mM NaF) supplemented with protease inhibitor cocktail 

(Calbiochem, USA) and phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich). Protein 

concentrations were normalized using a Bradford protein assay (Bio-Rad). Lysates were 

prepared at 1 µg/µl concentration in 1X XT Sample Buffer (Bio-Rad) and 5% 2-

mercaptoethanol (Sigma-Aldrich). Lysates were run on 4-12% Bolt® Bis-Tris Plus gels 
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(Life Technologies), and transferred onto nitrocellulose membranes. The following 

antibodies were used: phospho-AKT (S473), phospho-PRAS40 (T246), phospho-rS6 

(S240/244), phospho-BAD (S136), 4E-BP1, GAPDH, PARP, caspase 9, cleaved 

caspase 3, cleaved caspase 8, MCL-1, BIM, COX IV, ERK, phospho-FOXO1 

(T24)/FOXO3 (T32), HA-Tag, BCL-XL, Bad (Cell Signaling Technology, Beverly, MA, 

USA), BCL-2 (BD Pharmingen, San Diego, CA, USA), and Bad (Santa Cruz 

Biotechnology, Dallas, TX, USA). The following secondary HRP-conjugated antibodies 

were used: anti-mouse IgG, anti-rabbit IgG (Promega, Madison, WI, USA), and Protein 

A (BD Pharmingen). Blots were developed using Pierce ECL Western Blotting Substrate 

or SuperSignal West Femto Maximum Sensitivity Substrate (Life Technologies) and 

detected using a Nikon D700 SLR camera as described previously (17). Images were 

processed using Adobe Photoshop software and densitometry was quantified using 

ImageJ software.  

 

Cell Viability  

 Cell viability assays were performed in 96-well plates, with 6 x 104 cells in 200 µl. 

Cells were harvested by centrifuging the 96-well plate in a plate spinner centrifuge at 

500 g for 5 minutes. Cells were incubated in 1 µg/ml 7-aminoactinomycin D (Life 

Technologies) in Hank’s Balanced Salt Solution (HBSS; Life Technologies) 

supplemented with 2.5% bovine serum albumin for 10 min at room temperature. Cell 

fluorescence was assessed using a FACSCalibur flow cytometer (Becton-Dickinson, 

San Jose, CA, USA). Analysis of the data was completed using FlowJo Software 

v10.0.7 (TreeStar, Ashland, OR). All IC50 values were calculated using GraphPad Prism 
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version 5c software (GraphPad Software, La Jolla, CA, USA) from the average of three 

independent experiments using half-log dilutions of the indicated inhibitor. 

 

BH3 profile  

 OCI-LY1 and SU-DHL4 cell lines were profiled as previously described,(18) with 

modifications. Cells were plated at 8 x 106 cells per 10 ml of media and treated with 

inhibitors for 16 hours. 4 x 105 cells were incubated in T-EB buffer (300 mM trehalose, 

10 mM HEPES, 80 mM potassium chloride, 1 mM EGTA, 1 mM EDTA, 0.1% BSA, and 

5 mM succinic acid) with 200 nM JC-1 (Life Technologies), 0.001% digitonin (Sigma-

Aldrich), and 10 µg/ml oligomycin (Sigma-Aldrich) with either DMSO or BH3-only 

peptides for 60 minutes prior to analysis using a FACScalibur (Becton-Dickinson). The 

sequences and method of synthesis of BH3-only peptides were described previously 

(19). Percent depolarization caused by each BH3-only peptide was calculated as the 

percent difference in the JC-1 red fluorescence (590 nm) relative to DMSO-treated 

control cells.  

 

Retro/lentiviral Transductions  

 For all viral productions, 293T HEK cells were transfected using X-tremeGene 

HP DNA Transfection Reagent (Roche, Switzerland). 293T cells were incubated for 24 

hours prior to replacing medium with IMDM. These virus-containing media were then 

harvested after an additional 24 hours and used to transduce DLBCL cell lines. For 

retroviral production, 293T cells were co-transfected with pCL-ampho viral packaging 

vector (Novus Biologicals, Littleton, CO, USA) whereas pCMV-VSVG (Addgene plasmid 
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8454) and psPAX2 (Addgene plasmid 12260) were co-transfected for lentivirus 

production. To transduce DLBCL cell lines, we incubated cells in viral supernatants for 

72 hours (changing supernatant every 24 hours) with 10 µg/ml 1,5-dimethyl-1,5-

diazaundecamethylene polymethobromide (polybrene, Sigma-Aldrich). Cells were 

treated with either blasticidin (8 µg/ml) or puromycin (2 µg/ml) for 5 days after 

transduction to select for stably transduced cells. Plasmid-positive cells were 

maintained with blasticidin (4 µg/ml) or puromycin (1 µg/ml).  

 

Expression plasmids   

 To generate DLBCL cells with doxycycline-inducible expression of a gene of 

interest, cells were first transduced with pMA2640 (Addgene plasmid #25434) and 

selected for blasticidin resistance. Expression of the improved tetracycline-controlled 

transactivator (rtTA-Advanced) allowed for doxycycline-inducible expression of genes 

downstream of the modified Tet-responsive element provided in the pLVX-tight-puro 

vector (Clontech). To generate MCL-1 expression plasmid, the human MCL-1 cDNA was 

cloned from pCMV-Flag-hMCL-1 (Addgene plasmid #25392) into pUC118 using BamHI 

and EcoRV. MCL-1 was then cloned into plvx-tight-puro using BamHI and NotI. To 

generate the AKT(S473D)-pLVX-tight-puro plasmid, we cloned AKT (S473D) from a 

plasmid received from Dr. Bing Su (Yale University) into pLVX-tight-puro using NotI and 

EcoRI. To generate BAD expression plasmids, murine Bad (S136A) in pcDNA3 

(Addgene plasmid #8798) was cloned into plvx-tight-puro using EcoRI. WT murine Bad 

was generated using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies, Santa Clara, CA, USA) to introduce a point mutation to restore 
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expression of a serine rather than alanine at position 136. The following primers were 

used for this purpose 5’-AGGACGCTCGCGTTCGGCTCCCC-3’ and 5’-

GGGAGCCGAACGCGAGCGTCCT-3’. To generate BCL-2 expression plasmid, the 

human BCL-2 cDNA was cloned from pMIG-BCL-2 (Addgene plasmid #8793) into 

pLVX-tight-puro using EcoRI. pLKO.1 shRNA expression plasmids containing MCL-1 

hairpins (TRCN0000005514, TRCN0000005516, TRCN0000005517) were a gift from 

Dr. Anand Ganesan (UC Irvine). All pLVX-tight-puro plasmids were sequenced using the 

following primer, 5’-AGCTCGTTTAGTGAACCGTCAGATC-3’. 

 

Subcellular Fractionation  

 Subcellular fractionation was performed as described previously (20). In brief, 

cells were harvested and resuspended in isotonic buffer (250 mM sucrose, 20 mM 

HEPES, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM 

phenylmethylsulfonyl fluoride, protease inhibitor cocktail (Calbiochem, USA), and 

phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich)). Cells were lysed by passing 

through 28 gauge insulin syringes and resulting lysates were spun at 800 g for 10 

minutes at 4˚C four times to remove intact cells and nuclear fractions. Supernatants 

were then spun at 10,000 g for 30 minutes at 4˚C to separate the mitochondria-enriched 

heavy membrane pellet from the supernatant containing cytoplasmic fractions. Pellets 

were then lysed using RIPA buffer and run for immunoblotting as described above.  
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Co-immunoprecipitation  

 Co-immunoprecipitations were performed as described previously (20). Briefly, 

total cell lysates were prepared using 1% CHAPS buffer (5 mM MgCl2, 137 mM NaCl, 1 

mM EDTA, 1 mM EGTA, 1% CHAPS, 20 mM Tris-HCL (pH 7.5), and protease inhibitor 

cocktail (Calbiochem, USA)). BCL-2 was immunoprecipitated from 500 µg protein using 

anti-BCL-2 (BD Pharmingen) and a slurry of protein G-Sepharose beads (GE 

Healthcare) at 4˚C for 16 hours. Immunoprecipitates were washed three times in 1% 

CHAPS buffer and eluted from beads by boiling in 1X XT Sample Buffer (Bio-Rad) in 

1% CHAPS buffer with 5% 2-mercaptoethanol (Sigma-Aldrich) for 10 minutes.  

 

Cell Cycle  

 Cells were plated at 1 x 106 cells/ml and treated with inhibitors for 48 hours. Cells 

were then harvested and permeabilized in 90% ethanol. RNA was degraded using 

RNAse A (100 µg/ml) before staining DNA with propidium iodide (50 µg/ml) in 5 mM 

EDTA in 1X PBS. Fluorescence was measured using FACScalibur (Becton-Dickinson) 

and cell cycle populations were analyzed using FlowJo Software v10.0.7 (TreeStar). 

 

SUnSET puromycin incorporation  

 We performed SUnSET puromycin incorporation in OCI-LY1 and SU-DHL4 cells 

as previously reported (21), with modifications. Cells were plated at 3 x 106 cells in 3 ml 

and treated with inhibitors for 24 hours. Nascent peptide chains were labeled by 

incubating cells in 1 µg/ml puromycin (Sigma-Aldrich) for 30 minutes. Control cells were 

co-treated with 20 µg/ml cycloheximide (Sigma-Aldrich) during puromycin labeling. 
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Lysates from these cells were run for immunoblotting as described above. An anti-

puromycin primary antibody (EMD Millipore, Billerica, MA, USA) was used and 

visualized using chemiluminescence after incubation with an anti-mouse HRP-

conjugated secondary (Promega). 

 

Luciferase Assays   

 For measurement of FOXO transcriptional activity, cells were co-transfected with 

equal amounts of the pRL-TK plasmid (Promega) and the FOXO3 Firefly luciferase 

reporter plasmid (gift from Dr. Anne Brunet, Stanford University). For cap-dependent 

translation studies, the pRSTF-CVB3 dual-luciferase reporter plasmid was used as 

described previously (22). For all experiments, cells were transfected using a 

GenePulser Xcell™ (Bio-Rad) at 280 V and 0.975 F. All cells were treated with indicated 

inhibitors for 16 hours, prior to harvesting. Luciferase activity was measured using 

substrates from the Dual-Luciferase Reporter Assay System kit (Promega) and a Sirius 

single tube luminometer (Titertek-Berthold, Pforzheim, Germany). 

 

Statistical Analysis  

Statistical analyses were performed in the GraphPad Prism software version 5c 

(GraphPad Software). Unless otherwise indicated, results indicate mean±S.D. of three 

independent experiments. Unless otherwise indicated, all western blots are 

representative of three independent experiments. P < 0.05 was considered statistically 

significant and was annotated throughout as: * P < 0.05, ** P < 0.005, *** P < 0.001. For 
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drug synergy calculations, combination index versus fraction affected curves were 

generated using CalcuSyn software (Biosoft, Cambridge, UK). 

 

Results 

 

Inhibitor Inhibitor Class Selective Concentration (nM) 

GDC-0941 Pan-PI3K 100 

ZSTK-474 Pan-PI3K 100 

AKT Inhibitor VIII Allosteric AKT 1000 

MK2206 Allosteric AKT 300 

MLN0128 mTOR kinase 50 

AZD8055 mTOR kinase 50 

Rapamycin Allosteric mTOR 10 

BEZ235 Dual PI3K/mTOR 50 

GDC-0980 Dual PI3K/mTOR 300 

Table 2.1. Minimum required dose of PI3K pathway inhibitors required for full 
inhibition of targets in DLBCL. The above listed concentrations were determined by 
treating cells with half-log dilutions of each inhibitor for 3 hours. Doses reflect the 
minimum dose required to fully block phosphorylation of substrate proteins.  

 

PI3K pathway inhibition increases mitochondrial priming and enhances cytotoxicity of 

ABT-263 in DLBCL 

 To evaluate the impact of PI3K pathway inhibitors as single agents, we used 

several classes of chemical inhibitors targeting distinct nodes in the PI3K/AKT/mTOR 

axis. For each class of inhibitor, we compared the effects of two chemically distinct 



 60 

compounds to limit the contribution of off-target effects (Table 2.1). Using the minimum 

dose of the inhibitors required to completely inhibit their intended nodes (Figure 2.1A), 

we demonstrate that PI3K inhibitors alone do not significantly kill GCB-DLBCL cell lines 

(Figure 2.1B). However, all inhibitors caused an accumulation of cells in the G1 phase 

(Figure 2.1C), indicative of a cytostatic response.   

  

Figure 2.1. Suppression of the PI3K/AKT/mTOR pathway components is cytostatic 
in DLBCL. (A) western blot of OCI-LY1 cells treated with indicated inhibitors 
(concentrations indicated in Table 2.1) for 3 or 6 hours. (B) Viability of DLBCL cell lines 
(OCI-LY1, SU-DHL4, and OCI-LY8) treated with inhibitors for 48 hours. (C) Cell cycle 
analysis of cells treated for 48 hours. Percentage of cells in the G1 stage of cell cycle 
was obtained using FlowJo (v10) software.  
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 Since PI3K pathway inhibitors can synergize with BCL-2 antagonists in other 

contexts (9-12), we used BH3 profiling to investigate whether these inhibitors were 

priming cells for apoptosis without killing them outright (18). Interestingly, all inhibitors 

significantly increased mitochondrial priming, indicated by elevated MOMP by the BIM, 

PUMA, and BAD peptides (Figures 2.2A, D and 2.3A). Importantly, sensitivity to the 

NOXA peptide, a readout for MCL-1 modulation, remained unchanged (Figure 2.3A).  

 Heightened sensitivity to the BAD peptide (Figure 2.3A) suggested that PI3K 

inhibitors were increasing dependence on anti-apoptotic factors that could neutralize 

BAD (e.g. BCL2 and BCL-XL). Consistent with this interpretation, previous studies have 

shown that increased sensitivity to the BAD peptide correlates with higher efficacy of the 

dual BCL-2/BCL-XL antagonist, ABT-737 (23). Indeed, combined PI3K and BCL-2/BCL-

XL inhibition killed significantly more DLBCL cells compared to single-agent treatments 

(Figures 2.2B, E). In addition, the degree of enhanced apoptosis correlated strongly 

with the extent of BIM-induced MOMP (Figures 2.2C, F). In other words, DBP seemed 

to predict which PI3K inhibitor would best enhance ABT-263 cytotoxicity.  
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Figure 2.2. PI3K pathway inhibition increases mitochondrial priming and 
enhances efficacy of ABT-263 in DLBCL cell lines. (A, D) BH3 profile of OCI-LY1 
and SU-DHL4 cells treated with inhibitors for 16 hours. (B, E) Viability of OCI-LY1 and 
SU-DHL4 cells treated with ABT-263 with or without PI3K pathway inhibitors for 48 
hours. (C, F) Spearman correlation between ABT-263 sensitivity (IC50) and MOMP 
induced by BIM peptide. (G) ABT-263 sensitivity of four DLBCL cell lines with or without 
BEZ235. (H) Viability of cells treated with combinations of ABT-263 and BEZ235 with or 
without Q-VD-OPh (pan-caspase inhibitor).  
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Figure 2.3. Dual PI3K/mTOR inhibition consistently demonstrates greatest 
enhancement of ABT-263 efficacy. (A) BH3 profile of OCI-LY1 cells treated with 
various PI3K pathway inhibitors for 16 hours prior. (B) Sensitivity of four DLBCL cell 
lines to ABT-263 in the presence or absence of various PI3K pathway inhibitors. (C) 
Sensitivity of two DLBCL cell lines to ABT-263 in combination with two chemically 
distinct dual PI3K/mTOR inhibitors (BEZ235 and GDC-0980).  

 

 Among the classes of PI3K pathway inhibitors used, the dual PI3K/mTOR 

inhibitors, BEZ235 and GDC-0980, were consistently the most potent sensitizers to 

ABT-263 across several DLBCL cell lines tested (Figures 2.2G and 2.3B, C). Thus, we 

focused further experiments on the effects of dual PI3K/mTOR inhibitors. Using the 

median-effect method (24), we confirmed that combining BEZ235 and ABT-263 

demonstrated formal synergy in both OCI-LY1 and SU-DHL4 cell lines (Figure 2.4). To 

confirm the induction of apoptosis, we co-treated DLBCL cells with the pan-caspase 

inhibitor, Q-VD-OPh (25), which rescued the death effects of BEZ235 and ABT-263 

(Figure 2.2H). We further confirmed that the combination induced dose- and time-
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dependent cleavage of caspase 3, caspase 9, and poly ADP ribose polymerase (PARP, 

Figure 2.5), indicative of an activated apoptosis pathway. Cleavage of caspase 8 also 

occurred concurrently with caspase 3 cleavage, and may be the result of a positive-

feedback loop (26).  

 

Figure 2.4. BEZ235 and ABT-263 synergistically kill DLBCL cell lines. (A) Viability 
of OCI-LY1 and SU-DHL4 were treated with indicated inhibitors (note that concentration 
for ABT-263 in the SU-DHL4 cells is 6-fold higher than the indicated dose). (B) Formal 
synergy analysis of (A).  
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Figure 2.5. Combining BEZ235 and ABT-263 induces caspase and PARP cleavage. 
(A) Western blot of OCI-LY1 cells treated with increasing doses of ABT-263 with or 
without BEZ235 for 6 hours. (B) Western blot of OCI-LY1 cells treated with ABT-263 
(100 nM) in combination with BEZ235 (50 nM) for indicated duration. 

 

Combined PI3K/mTOR and BCL-2 inhibition spares normal T cells 

 By inhibiting BCL-XL, ABT-263 results in the on-target toxicity of 

thrombocytopenia (27), which is not observed with the selective BCL-2 inhibitor, ABT-

199 (28). Thus, to test whether PI3K/mTOR inhibitors could also enhance the efficacy of 

the more clinically relevant BH3 mimetic, we treated DLBCL cells with both ABT-263 

and ABT-199 in combination with BEZ235. The lack of change in sensitivity to the HRK 

peptide (Figure 2.3A) suggested that BCL-XL inhibition was dispensable for the 

observed synergy between ABT-263 and BEZ235. Indeed, while ABT-199 was effective 

at 10-fold lower concentrations than ABT-263, the efficacies of both BCL-2 inhibitors 

were significantly enhanced by the addition of either BEZ235 or GDC-0980 (Figure 

2.6A).  



 66 

 

Figure 2.6. BEZ235 does not enhance the toxicity of BH3 mimetics in normal 
human T cells. (A) Viability of OCI-LY1 and SU-DHL4 cells treated with ABT-263 (50 or 
300 nM, respectively) or ABT-199 (5 or 50 nM, respectively) with or without BEZ235 or 
GDC-0980. (B) Viability of PBMCs isolated from normal human blood donors treated 
with ABT-263 (30 nM) or ABT-199 (3 nM) with or without BEZ235 for 48 hours.  

  

 To evaluate the tolerability of this combination, we tested whether BEZ235 plus 

ABT-199 is toxic to normal human lymphocytes, particularly the CD4+ T cells that 

contribute to anti-tumor immune responses (29,30). We isolated PBMCs from healthy 

human donors and treated the cells with BEZ235 and either ABT-199 or ABT-263. In 

agreement with previous work (27), treatment with either BCL-2 antagonist alone for 48 

hours was sufficient to eradicate normal B cells (Figure 2.6B). However, at doses of 

ABT-263 and ABT-199 that synergized with BEZ235 in OCI-LY1 cells, there was no 

significant effect on the viability of CD4+ T cells (Figure 2.6B). Importantly, the addition 
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of BEZ235 did not further enhance the cytotoxicity of ABT-199 in CD4 T cells, 

suggesting that the combination may be selective for cancer cells. 

 

Chemo-resistant DLBCL cells over-expressing BCL-2 remain sensitive to BEZ235 with 

ABT-199 

 Overexpression of BCL-2 is associated with chemo-resistance, particularly in 

GCB-DLBCL (5,31). Thus, to determine whether the combination of ABT-199 and 

BEZ235 could efficiently eliminate cells that over-express BCL-2, we established stable 

cell lines that could inducibly over-express BCL-2 (Figure 2.7A). While excessive over-

expression of BCL-2 was toxic (via cleavage to a pro-apoptotic isoform, data not 

shown), modest increases in BCL-2 expression were sufficient to induce resistance to 

the chemotherapeutic agent, vincristine (Figure 2.7B). As expected, increased BCL-2 

expression also reduced sensitivity to ABT-199 as a single agent (Figure 2.7C). 

Nevertheless, the addition of BEZ235 enhanced the killing effect of ABT-263 in BCL-2-

over-expressing cells (Figure 2.7C).  
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Figure 2.7. DLBCL cells over-expressing BCL-2 are resistant to a 
chemotherapeutic drug but remain sensitive to BEZ235 and ABT-199. (A) Western 
blot of cells treated with indicated doxycycline doses for 24 hours. (B) Viability of cells 
pre-treated with doxycycline (25 ng/ml or 1 µg/ml, respectively) for 24 hours, prior to 
treatment with vincristine for an additional 48 hours. (C) Viability of cells pre-treated with 
doxycycline (25 ng/ml or 1 µg/ml, respectively) for 24 hours prior to treatment with ABT-
199 (100 nM, respectively) with or without BEZ235 for 48 hours.  

 

Dual PI3K/mTOR inhibition does not affect MCL-1 expression in DLBCL cell lines 

 Previous studies have revealed a critical role for MCL-1 in modulating sensitivity 

to BCL-2 antagonists (32-35). In particular, suppression of mTORC1-mediated 

translation of MCL-1 sensitized various cancer cells, including ABT-199-resistant 

DLBCL, to BH3 mimetics (9-12). Thus, to test whether mTORC1 inhibition could also 

suppress MCL-1 expression in our DLBCL cell lines, we treated cells with either 

BEZ235, MLN0128, or PIK-75 (a compound that suppresses MCL-1 transcription (36)) 

and monitored MCL-1 expression by western blot. Surprisingly, while PIK-75 fully 

suppressed MCL-1 expression within 8 hours, neither BEZ235 nor MLN0128 reduced 
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expression of MCL-1 (Figures 2.8A and 2.9A, B). By contrast, BEZ235 strongly 

suppressed expression of MCL-1 in a human leukemia cell line (BV173). Interestingly, 

comparing parental and ABT-199-resistant SU-DHL6 cells, BEZ235 only reduced MCL-

1 expression in resistant cells (Figure 2.8A), consistent with previous findings (12).  

 

Figure 2.8. BEZ235 does not affect MCL-1 expression in OCI-LY1 cells. (A) Western 
blot of cells treated with BEZ235 or PIK-75 for increasing duration. (B) Sensitivity of 
cells stably transduced with shMCL-1 or shScramble to ABT-263 with or without 
BEZ235. (C) Sensitivity of cells stably transduced with empty vector or a doxycycline-
inducible MCL-1 expression vector to ABT-263. Cells were pre-treated with doxycycline 
(1 µg/ml) for 24 hours prior to determining IC50.  
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Figure 2.9. BEZ235 does not affect MCL-1 expression in DLBCL cell lines. (A,B) 
Western blot of cells treated with PIK-75 and either BEZ235 (A) or MLN0128 (B), 
concentrations indicated. (C) Dual luciferase cap-dependent reporter assay of cells 
treated with BEZ235 for 16 hours. (D) Western blot of cells pre-treated with vehicle 
(DMSO) or BEZ235 for 6 hours prior to pulse treatment of puromycin (1 µg/ml) for 30 
minutes, or co-treatment with cycloheximide (CHX, 20 µg/ml) and puromycin for 30 
minutes. Representative of two independent experiments. (E) Western blot of cells 
treated with cycloheximide (20 µg/ml) for indicated duration. 

 

 We considered two possibilities to explain why dual PI3K/mTOR inhibition did not 

reduce MCL-1 expression. First, we tested the possibility that BEZ235 does not 

sufficiently suppress cap-dependent translation in DLBCL cells. However, a dual-

luciferase reporter assay confirmed that BEZ235 strongly inhibits cap-dependent 

translation (Figure 2.9C). In addition, BEZ235 reduced the rate of puromycin 
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incorporation into newly synthesized peptides (SUnSET (21), Figure 2.9D). Second, we 

considered whether MCL-1 was aberrantly stabilized. In particular, because mutations in 

MCL-1 may confer increased protein stability (37), we assessed whether cycloheximide 

could abolish MCL-1 expression in a time frame consistent with normal stability. In 

agreement with previous studies (37), we confirmed MCL-1 has a half-life of roughly 90 

minutes in DLBCL (Figure 2.9E). Thus, our data suggest that MCL-1 levels are not 

regulated by mTORC1-dependent translation in these DLBCL cell lines.  

 To further assess whether MCL-1 contributes to the enhancement effect, we 

modulated MCL-1 expression and monitored the degree of sensitization. Using shRNA, 

we knocked down expression of MCL-1 (Figure 2.10A). Knocked down cells were 

expectedly more sensitive to ABT-263 (Figure 2.8B). However, the addition of BEZ235 

further enhanced ABT-263 killing (Figure 2.8B), consistent with a model in which 

BEZ235 likely primes for apoptosis through an alternative mechanism. To determine 

whether uncoupling MCL-1 translation from regulation by mTORC1 could rescue from 

the synergy, we expressed of a form of MCL-1 lacking its endogenous 5' UTR (Figure 

2.10B) (14). Despite conferring resistance to ABT-263, ectopic expression of MCL-1 

was insufficient to abolish the synergy between BEZ235 and ABT-263 (Figure 2.8C). 

Thus, despite the clear influence of MCL-1 expression levels on ABT-263 sensitivity, 

suppression of PI3K/mTOR likely synergizes with BCL-2 antagonists through a non-

MCL-1-dependent mechanism. 
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Figure 2.10. Confirmation of MCL-1 knockdown and overexpression. (A) 
Representative western blot of MCL-1 knockdown using three distinct shRNAs (upper) 
and quantification (lower). (B, C) Western blot of MCL-1 expression in cells transduced 
with empty vector or a doxycycline-inducible MCL-1 expression vector. Cells were pre-
treated with doxycycline (1 µg/ml) for 24 hours before treatment with BEZ235 for 24 or 
48 hours.  
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PI3K pathway inhibition increases mitochondrial localization of BAD and BIM 

 Other than suppressing mTORC1-dependent translation of pro-survival factors 

(e.g. MCL-1 and BCL-XL), inhibition of the PI3K pathway also affects the expression of 

several other BCL-2 family proteins (38). Since some BCL-2 family proteins are 

regulated by subcellular localization (39), we examined the abundance of BCL-2 family 

proteins in mitochondria-enriched lysate fractions. After 16 hours, PI3K pathway 

inhibition induced mitochondrial accumulation of BAD and BIM (Figure 2.11A, B). To 

confirm that these BH3-only proteins were functionally contributing to priming, we used 

immunoprecipitation to assess whether there was increased loading onto BCL-2. 

BEZ235 increased both the total abundance of BIM as well as its direct binding to BCL-

2 (Figure 2.11C), suggesting that BCL-2 mitigates the induction of BH3-only proteins to 

support survival. These results are consistent with increased sensitivity to the BAD 

peptide (Figure 2.3A), which similarly suggested that DLBCL cells rely on BCL-2 for 

survival in the absence of PI3K activity. However, the addition of ABT-199 displaced 

BIM from BCL-2 (Figure 2.11C) allowing BIM-mediated induction apoptosis (40). In 

addition to changes in BIM expression, the reduction of cytoplasmic phospho-BAD 

(S136), and concomitant increase in the mitochondrial abundance of BAD, also support 

a model of increased dependence on BCL-2 following PI3K pathway inhibition (Figure 

2.11A). Mitochondrial accumulation of BAD is likely a result of its binding to BCL-2 (41), 

suggesting that BAD may amplify the effect of BIM up-regulation by limiting the amount 

of BCL-2 that can counteract BIM. Together, these data suggest that inhibition of 

PI3K/mTOR by BEZ235 enhances the effect of BCL-2 antagonists by increasing the 

abundance of BIM and BAD at the mitochondria. 
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Figure 2.11. PI3K pathway inhibitors increase mitochondrial abundance of BAD 
and BIM. (A) Western blot of mitochondrial and cytoplasmic fractions of OCI-LY1 cells 
treated with indicated PI3K pathway inhibitors for 16 hours. (B) Average densitometry 
values of three replicates of panel (A). (C) Western blot of immunoprecipitation of BCL-2 
(upper) or whole cell lysates (lower) following 16 hour treatment with BEZ235, ABT-199 
(100 nM), or the combination. All cells were also treated with 10 µM Q-VD-OPh to 
prevent cleavage of BCL-2 family proteins by caspases. 

 

Inhibition of AKT is required for apoptotic sensitization in DLBCL cell lines 

 Previous work has established that both BAD and BIM can be regulated in part 

by AKT (42). Thus, to test whether sustained activation of AKT could abolish the 

synergy enhancement effect of PI3K inhibitors, we used a doxycycline-inducible system 

to express a phospho-mimetic mutant of AKT (S473D). Expression of this mutant not 

only elevated basal AKT activity, but also rendered AKT activity insensitive to direct 

PI3K or allosteric AKT inhibitors (Figures 2.12A and 2.13). Importantly, AKT S473D also 

completely blocked the ability of MK2206 and BEZ235 to increase the mitochondrial 

abundance of BIM and BAD (Figure 2.12B). Lastly, AKT S473D expression completely 

abrogated the synergy between AKT inhibitors and BCL-2 inhibitors in DLBCL cells, and 

partially reversed the sensitization by dual PI3K/mTOR inhibitors (Figure 2.12C). 
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Together, these data support the importance of AKT in modulating sensitivity to BCL-2 

antagonists by regulating the mitochondrial abundance of BAD and BIM.  

 

Figure 2.12. AKT suppression is a critical component of synergy between BEZ235 
and ABT-199. (A) Western blot of OCI-LY1 cells expressing either empty vector or 
phospho-mimetic AKT (S473D) treated with indicated inhibitors for 3 hours. Cells were 
pre-treated with doxycycline (1 µg/ml) for 24 hours prior to treatment. (B) Western blot 
of mitochondrial (M) and cytoplasmic (C) fractions of cells in panel (A). (C) Sensitivity of 
three DLBCL cell lines expressing AKT S473D to ABT-199 in the presence or absence 
of MK2206, BEZ235, or GDC-0980. Cells were pre-treated with doxycycline (1 µg/ml) 
for 24 hours prior to treatment. 
 

 The capacity for AKT to modulate BIM expression has been attributed to direct 
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transcriptional activity of FOXOs (15). Treatment with either MK2206 or BEZ235 

significantly increased FOXO activity in control cells, but neither inhibitor affected FOXO 

activity in cells expressing AKT S473D (Figure 2.14) where phospho-FOXO levels are 

maintained (Figure 2.12A). These results support a model where activation of FOXOs 

downstream of AKT inhibition contributes to BEZ235-mediated apoptotic sensitization.  

 

 

Figure 2.13. Confirmation of expression of AKT S473D in SU-DHL4 and OCI-LY8 
cells. Western blot of SU-DHL4 and OCI-LY8 cells expressing either empty vector or 
phospho-mimetic AKT (S473D). Cells were pre-treated with doxycycline (1 µg/ml) for 24 
hours prior to treatment with indicated PI3K pathway inhibitors for an additional 3 hours.  
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Figure 2.14. Expression of AKT S473D suppresses FOXO activation following 
inhibition of AKT. Relative FOXO transcriptional activity measured using a luciferase 
reporter assay system. Cells were co-transfected with pRL-TK (renilla) and firefly 
luciferase downstream of the putative FOXO3 binding site prior to treatment with 
indicated inhibitor for 16 hours.   

 

 To investigate the contribution of AKT-mediated phosphorylation of BAD to the 

sensitization effect, we over-expressed either wild-type or phospho-null (S136A) mutant 

of murine Bad (Figure 2.15A) (43). While expression of either form of Bad was sufficient 

to induce apoptosis (Figure 2.15B, C), the phospho-null mutant induced significantly 

more death than wild-type Bad, despite being expressed at comparable levels (Figure 

2.15). These data suggest that basal AKT activity can limit the cytotoxic potential of wild-

type Bad. In support, when cells were treated with BEZ235 and MK2206, both forms of 

Bad induced comparable levels of cell death (Figures 2.15B, C). Together these data 

support a model where the amount of de-phosphorylated (active) Bad determines the 

degree of apoptosis. Overall, these data indicate that inhibition of AKT, and subsequent 
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accumulation of BAD and BIM, is a key component of the synergy between BEZ235 and 

ABT-199. 

 

  

Figure 2.15.  Expression of exogenous murine Bad sensitizes OCI-LY1 cells to 
AKT inhibition. (A) Western blot of murine BAD (mBAD) induction following 24 hour 
treatment with indicated doses of doxycycline. Cells were also treated with 10 µM Q-
VD-OPh to prevent caspase cleavage of BAD. # Indicates murine isoform, ## indicates 
human isoform. (B, C) Viability of OCI-LY1 cells transduced with empty vector, mBAD 
wild-type (WT), or phospho-null mBAD (S136A) treated with increasing concentrations 
of doxycycline ± BEZ235 (B) or MK2206 (C) for 48 hours.  

 

Discussion  

 Despite showing promising clinical efficacy in some blood cancers (1), 

PI3K/mTOR inhibitors lack single-agent cytotoxicity in aggressive diseases like DLBCL 

(38). However, there is an increasing body of evidence suggesting that these inhibitors 

may be effective in combination therapies. In this study, we show combined inhibition of 
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PI3K/mTOR and BCL-2 synergistically induced cell death, even in cells over-expressing 

BCL-2 or MCL-1, which are predictors of poor therapeutic response (5,31,34). 

Using DBP, we demonstrate that degree of priming correlates with the degree of 

enhanced killing by ABT-263, suggesting the assay may have predictive capabilities. 

Importantly, we also show that this combination lacks toxicity in normal human T 

lymphocytes, which important for mediating durable anti-tumor responses (29,30). 

However, unlike in other cancers where suppression of mTORC1 has been shown to 

reduce MCL-1 expression (9-11), our analysis reveals an unpredicted mechanism. DBP 

identified that BCL-2 and BCL-XL maintain survival following PI3K pathway inhibition.  

Consistent with these findings, induction of BAD and BIM (which are both BCL-2/BCL-

XL antagonists) was the primary mechanism of sensitization (Figure 2.16). Together, 

these data provide an alternative rationale for combining PI3K/mTOR and BCL-2 

inhibitors as a promising therapy for GCB-DLBCL.  

 It is surprising that unlike in other contexts (9-11), inhibiting mTORC1-dependent 

translation did not reduce MCL-1 levels. A simple explanation is that MCL-1 regulation 

may be cell-type-specific. In support, PI3K/mTOR inhibition significantly reduced MCL-1 

expression in cells derived from a different B cell malignancy (BV173, B-ALL cells). 

However, work from others demonstrating the sensitivity of MCL-1 expression to 

PI3K/mTOR inhibitors in ABT-199/737-resistant GCB-DLBCL cells (12,13), requires an 

alternative explanation. In this situation, it is plausible that the selection of ABT-199-

resistant cells enriches for those cells that up-regulate MCL-1 in an mTORC1-

dependent manner (34,44,45). Indeed, when compared to the parental SU-DHL6 line, 

PI3K/mTOR inhibition down-regulated MCL-1 only in ABT-199-resistant cells. It is 



 80 

important to note that dysregulated MCL-1 expression can be conferred by defects in 

any of the multiple layers of regulation (transcriptional (36,46), translational (45), and 

post-translational levels (47-49)). Nevertheless, our data that knockdown or over-

expression of MCL-1 can modulate sensitivity to BCL-2 antagonists strongly supports 

the work of others that describe the potential of targeting MCL-1 in rational 

combinations involving BH3 mimetics.  

 

Figure 2.16. Model of synergy between BEZ235 and ABT-263 in DLBCL cell lines. 
Treatment with BEZ235 in DLBCL cell lines completely inhibits signaling through the 
PI3K and downstream effectors, AKT and mTORC1. Loss of AKT activity promotes 
FOXO-mediated transcription of BIM and facilitates mitochondrial accumulation of de-
phosphorylated BAD. 
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 Complementary to previous reports, we demonstrate that PI3K/mTOR inhibitors 

induce the mitochondrial accumulation of BAD and BIM, which sensitizes cells to BH3 

mimetics. Both effects require inhibition of AKT, as constitutively active AKT nullified the 

induction. The requirement for BIM in the initiation of apoptosis has been well-

characterized (50). Indeed, BIM up-regulation is required for synergy of BEZ235 and 

ABT-737 in ovarian cancer cells (11). Similarly, the consequences of over-activating 

BAD are straightforward. By activating BAD, PI3K pathway inhibitors increase the 

concentration of endogenous BCL-2 antagonists (BAD and BIM protein), which 

enhances the effects of pharmacological BCL-2 antagonists (ABT-199/263) (10). 

Despite sensitizing cells to BCL-2 inhibitors, PI3K pathway inhibitors are insufficient to 

induce apoptosis as single agents. As such, it is also unlikely that suppression of AKT 

would confer sensitivity to BH3 mimetics in cells that are fundamentally resistant to 

apoptosis (e.g. BAX/BAK null or MCL-1 over-expressing cells). Regardless, these data 

identify an alternative mechanism of synergy between PI3K/mTOR and BCL-2 inhibitors 

in which suppression of AKT enhances the activity/expression of pro-apoptotic factors. 

 In conclusion, while the mechanism may differ depending on the context, the 

combination of PI3K/AKT/mTOR inhibitors and BCL-2 antagonists strongly synergizes 

to kill DLBCL cells. The existence of multiple mechanisms of synergy may prove 

beneficial in combating tumor heterogeneity and preventing acquired resistance in a 

clinical setting. In addition, our results define alternative markers of response and 

identify situations in which tracking MCL-1 expression may not be predictive of patient 

responses. Thus, the results of this and other studies provide a strengthening rationale 

for testing dual PI3K/mTOR inhibitors with BCL-2 inhibitors in GCB-DLBCL patients.  
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Chapter Three 

Statins enhance the efficacy of BCL-2 inhibitors in blood cancers 
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Abstract 

BCL-2 is a key pro-survival protein that is highly expressed in many leukemias 

and lymphomas. ABT-199 (venetoclax) is a small molecule inhibitor of BCL-2 that has 

demonstrated promising clinical potential in chronic lymphocytic leukemia (CLL). 

However, other hematologic malignancies are less responsive to ABT-199 as a single 

agent, suggesting that combinations of targeted therapies may be required to elicit more 

promising responses. We have investigated the potential of combining ABT-199 with 

HMG-CoA reductase (HMGCR) inhibitors (statins), which have known anti-cancer 

potential in hematologic malignancies. Using multiple chemically distinct statin 

compounds, we observed profound synergistic induction of apoptosis when combined 

with ABT-199 in both human diffuse large B cell lymphoma (DLBCL) as well as acute 

myeloid leukemia (AML) cell lines. This synergy was also seen in primary murine B 

lymphoma cells over-expressing MYC and BCL-2. Importantly, addition of exogenous 

mevalonate completely rescued cells from the combination, confirming on-target 

efficacy of HMGCR inhibition. Using BH3 profiling, we found that simvastatin 

significantly primed lymphoma cells for undergoing apoptosis (termed mitochondrial 

priming). Notably, the degree of priming correlated with its ability to synergize with ABT-

199, suggesting that this method may be used to predict patient responses. Strikingly, 

the combination did not synergize to kill normal human peripheral blood mononuclear 

cells from healthy donors, suggesting that statins may selectively prime cancer cells for 

apoptosis. Mechanistic studies support the hypothesis that statins synergize with ABT-

199 by suppressing protein prenylation, particularly protein geranylgeranylation. In 

support, the addition of exogenous geranylgeranyl pyrophosphate (GGPP) completely 
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rescued cells from the effects of simvastatin. Furthermore, selective inhibition of protein 

geranylgeranyl transferase (GGT) was sufficient to recapitulate the effects of 

simvastatin in combination with ABT-199. Lastly, we have identified Rap1A de-

prenylation and PUMA upregulation as markers of pharmacodynamic response to 

statins in vivo. Thus, this project highlights a novel combination for use in aggressive 

lymphomas, establishes its efficacy and tolerability using preclinical models, and 

provides proof-of-concept to warrant investigation of its clinical potential.  

 

Introduction 

BCL-2 is the founding member of a family of proteins that interact in a dynamic 

balance to regulate cell fate. Initially cloned from the t(14;18) translocation that 

characterizes follicular lymphoma (FL), BCL-2 has since been shown to promote 

survival and chemo-resistance in multiple lymphoid cancers. Indeed, over-expression of 

this protein is frequently associated with poorer patient outcomes in CLL, AML, and 

DLBCL (1-5). BH3 mimetic drugs are an exciting class of anticancer drugs that mimic 

the activity of BCL-2 antagonists to promote apoptosis (6-9). While the first potent 

inhibitor of BCL-2, navitoclax, demonstrated marked in vitro efficacy in a variety of 

cancers, dose-limiting thrombocytopenia stemming from its activity against BCL-XL 

precluded its clinical potential (10). A second generation inhibitor, ABT-199, which lacks 

this on-target toxicity (8), has recently been granted FDA approval as a second line 

therapy in 17p(del) CLL (11). However, in phase I trials, ABT-199 monotherapy 

demonstrated limited efficacy in other lymphoid malignancies (12), warranting further 
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investigation into whether rational combinations may augment its efficacy in these 

contexts. 

Previous studies have identified potent synergy between BH3 mimetics and 

inhibitors of the PI3K/AKT/mTOR pathway in DLBCL (13,14). However, the clinical use 

of this combination is hindered by a lack of regulatory approval (15), and immune cell 

toxicity (16). As part of a growing effort to “repurpose” FDA-approved drugs to treat 

cancer (17), several groups have reported HMGCR inhibitors (statins) may have an 

anti-cancer potential related to BCL-2 family modulation (18-20). While statins are 

commonly used to safely control plasma cholesterol levels (21), by inhibiting the rate-

limiting enzyme of the mevalonate pathway, statins also suppress production of 

isoprenoids that are required for the normal function of key oncogenic proteins like the 

Ras superfamily (22). Consequently, statins also have single-agent anti-cancer activity 

in certain contexts like AML cell lines (23,24). Therefore, we hypothesized that statins 

would enhance the efficacy of ABT-199 in a broad selection of blood cancers.  

Here, we report that multiple chemically distinct statin compounds profoundly 

enhance the ability of ABT-199 to kill DLBCL, CLL, and AML cells. In addition, the 

combination was effective at reducing lymphoma burden in a syngeneic mouse model 

of BCL-2/MYC-driven “double-hit” lymphoma. We also show that statins significantly 

prime lymphoma cells for undergoing apoptosis (termed mitochondrial priming) and that 

dynamic BH3 profiling (DBP) may be used to predict which samples are likely to 

respond to this combination. Consistent with an increase in mitochondrial priming, we 

show that statins induce up-regulation of BH3-only protein PUMA. Mechanistically, 

inhibition of protein geranylgeranylation is both necessary and sufficient to recapitulate 
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the sensitizing effect of simvastatin. Thus, this project establishes the efficacy and 

selectivity of a novel combination for use in aggressive lymphomas.  

 

Materials and Methods 

Chemicals  

Simvastatin, atorvastatin calcium salt, rosuvastatin calcium salt, and fluvastatin 

sodium salt were obtained from Cayman Chemical Company (Ann Arbor, MI, USA). 

Simvastatin was activated as reported elsewhere (25). ABT-199 and ABT-263 were 

obtained from Active Biochem (Wan Chai, Hong Kong). InSolution Q-VD-OPh was 

obtained from EMD Millipore (Billerica, MA, USA). NVP-BEZ235 was obtained from LC 

laboratories (Woburn, MA, USA). Doxorubicin, vincristine, mevalonate, squalene, 

cholesterol, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate were all 

obtained from Sigma-Aldrich (St. Louis, MO, USA). 

 

Cell culture 

OCI-LY1, OCI-LY7, OCI-LY8, and SU- DHL4 cell lines (a gift from Dr. Laura 

Pasqualucci, Columbia University) were cultured in IMDM (GE Healthcare Hyclone, 

Little Chalfont, UK) supplemented with 10% FBS, 10 mM 4-(2-hydroxyethyl)-1- 

piperazineethanesulfonic acid (HEPES), 10 mM L-Glutamine, 100 I.U. penicillin, and 

100 μg/ml streptomycin. OCI-AML2, OCI-AML3, and MOLM13 cell lines (a gift from Dr. 

Anthony Letai) were cultured in RPMI (Corning, NY, USA) supplemented with 10% FBS, 

10 mM HEPES, 10 mM L-Glutamine, 100 I.U. Penicillin, and 100 µg/ml streptomycin. 

Cells were grown in a humidified 37°C incubator with 5% CO2. Cells were routinely 
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tested to ensure absence of mycoplasma, and were maintained at or below 2 x 106 

cells/mL. Human embryonic kidney (HEK) 293T cells were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM; Life Technologies, Carlsbad, CA, USA) supplemented 

with 10% calf serum, 100 I.U. penicillin, and 100 μg/mL streptomycin. Human peripheral 

blood mononuclear cells (PBMCs) and primary CLL samples were isolated from blood 

samples by centrifugation through Ficoll-PaqueTM (GE Healthcare, Piscataway, NJ, 

USA) and were grown in RPMI with 10% FBS, 10 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 10 mM L-Glutamine, 100 I.U. penicillin, 100 

μg/ml streptomycin. In the case of primary CLL samples, cells were grown on NK.Tert 

immortalized bone marrow stromal cell line. 

 

Cell viability 

Cell viability assays were performed in 96-well format as described previously 

(14). Briefly, 6 x 104 cells were cultured in 200 µL growth medium with inhibitors for 48 

hours. Cells were harvested and stained with Annexin V, Alexa Fluor 647 conjugate and 

propidium iodide (Life Technologies). Fluorescence was measured by flow cytomety 

using FACScalibur (Becton-Dickinson, San Jose, CA, USA) and viability of cells was 

quantified using FlowJo software v10.1r7 (FlowJo LLC, Ashland, OR, USA). In the case 

of primary CLL samples, stromal cells were seeded onto 96-well plates 24 hours before 

each experiment at 6 x 104 cells/well. Confluence was confirmed by phase-contrast 

microscopy before seeding of CLL cells at 6 x 105 cells/well. Cells were then treated 

with simvastatin for 16 hours prior to addition of ABT-199 for an additional 8 hours. Cells 

were then harvested and stained for CD19, and viability was assessed using Annexin V. 
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BH3 profiling 

BH3 profiling of DLBCL cells was performed as described previously (14). Briefly, 

cells were incubated in T-EB buffer (300 mM trehalose, 10 mM HEPES, 80 mM 

potassium chloride, 1 mM EGTA, 1 mM EDTA, 0.1% BSA, and 5 mM succinic acid) with 

200 nM JC-1 (Life Technologies), 0.001-0.005% digitonin (Sigma-Aldrich), and 10 μg/ml 

oligomycin (Sigma-Aldrich) with either DMSO or BH3-only peptides for 60 minutes prior 

to analysis using a FACScalibur (Becton-Dickinson). The sequences and method of 

synthesis of BH3-only peptides were described previously (26). Percent depolarization 

caused by each BH3-only peptide was calculated as the percent difference in the JC-1 

red fluorescence (590 nm) relative to DMSO-treated control cells.  

 

Western blotting 

Cells were lysed in radio-immunoprecipitation assay (RIPA) buffer (150 mM 

NaCl, 1.0% IGEPAL® CA- 630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM 

Tris, pH 8.0, 2 mM EDTA, 50 mM NaF) supplemented with protease inhibitor cocktail 

(Calbiochem, USA) and phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich). Protein 

concentrations were normalized using a Bradford protein assay (Bio-Rad). Lysates were 

prepared at 1 μg/μl concentration in 1X XT Sample Buffer (Bio-Rad) and 5% 2-

mercaptoethanol (Sigma-Aldrich). Lysates were run on 4-12% Bolt® Bis-Tris Plus gels 

(Life Technologies), and transferred onto nitrocellulose membranes. The following 

antibodies were used: GAPDH, PARP, caspase 9, cleaved caspase 3, MCL-1, BCL-XL, 

BIM, BID, BAX, BAK, PUMA, COX IV, ERK (Cell Signaling Technology, Beverly, MA, 
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USA), BCL-2 (BD Pharmingen, San Diego, CA, USA), Bad, Rap1A, HRK (Santa Cruz 

Biotechnology, Dallas, TX, USA), and HDJ-2 (Thermo Scientific). The following 

secondary HRP-conjugated antibodies were used: anti-mouse IgG, anti-rabbit IgG 

(Promega, Madison, WI, USA), anti-goat IgG (Santa Cruz Biotechnology), and Protein A 

(BD Pharmingen). Blots were developed using Pierce ECL Western Blotting Substrate 

or SuperSignal West Femto Maximum Sensitivity Substrate (Life Technologies) and 

detected using a Nikon D700 SLR camera as described previously (27). Images were 

processed using Adobe Photoshop software and densitometry was quantified using 

ImageJ software. 

 

Animal studies 

All animal studies were conducted in accordance with guidelines of the University 

of California Institutional Animal Care and Use Committee. 10 week old female 

C57BL/6N mice were purchased from Charles River and sub-lethally irradiated (4G) 24 

hours prior to injection of lymphoma cells by tail vein. Lymphoma burden was measured 

by FACS using peripheral blood collected via Goldenrod animal lancets (Braintree 

Scientific, Inc, Braintree, MA, USA). Drug administration was performed by oral gavage 

with vehicle formulations as follows: ABT-199 in 10% ethanol, 30% polyethylene glycol 

400, and 60% Phosal 50 PG and simvastatin in 0.5% methylcellulose and 0.1% Tween-

80. 
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Subcellular fractionation 

Cells were harvested and re-suspended in isotonic buffer (250 mM sucrose, 20 

mM HEPES, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM 

phenylmethylsulfonyl fluoride, protease inhibitor cocktail (Calbiochem, USA), and 

phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich)). Cells were lysed by passing 

through 28 gauge insulin syringes and resulting lysates were spun at 800 g for 10 

minutes at 4˚C six times to remove intact cells and nuclear fractions. Supernatants were 

then spun at 10,000 g for 30 minutes at 4˚C to separate the mitochondria-enriched 

heavy membrane pellet from the supernatant containing cytoplasmic fractions. Pellets 

were then lysed using RIPA buffer and run for western blotting as described above. 

 

Statistical Analysis 

Statistical analyses were performed in the GraphPad Prism software version 5c 

(GraphPad Software, La Jolla, CA, USA). Unless otherwise indicated, results indicate 

mean±S.D. of three independent experiments. P < 0.05 was considered statistically 

significant and was annotated throughout as: * P < 0.05, ** P < 0.005, *** P < 0.001. For 

drug synergy calculations, combination index versus fraction affected curves were 

generated using CalcuSyn software (Biosoft, Cambridge, UK). 

 

Results 

Statins selectively enhance the efficacy of ABT-199 against cancer cells in vitro  

 We first tested several human germinal center B cell-like (GCB) DLBCL (where 

BCL-2 plays a clear role in disease progression and outcomes (3,5)) and AML cell lines 
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for sensitivity to ABT-199, simvastatin, or the combination. Strikingly, in all three AML 

cell lines and in two out of four DLBCL cell lines, the combination of simvastatin and 

ABT-199 induced significantly more death than either treatment alone (Figures 3.1A 

and 3.2A). We confirmed that this interaction was synergistic using the median-effect 

method (Figure 3.2B (28)), and also confirmed the combination kills cells via the 

intrinsic apoptosis pathway. In particular, the pan-caspase inhibitor, Q-VD-OPh, 

completely rescued the viability of cells treated with the combination (Figure 3.3A). In 

addition, we also observed rapid cleavage of caspase 3, caspase 9, and PARP 

following treatment with simvastatin and ABT-199 (Figures 3.3B, C). Having confirmed 

efficacy using cell lines, we next tested whether the combination was equally effective in 

both primary murine lymphoma cells and primary human patient cells. Both simvastatin 

and fluvastatin were effective at sensitizing primary murine lymphoma cells expressing 

MYC and BCL-2 oncogenes (29), representing human “double-hit” lymphoma that has 

poor prognosis (Figures 3.1B and 3.2C).  
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Figure 3.1. Statins selectively enhance the efficacy of ABT-199 against blood 
cancer cells. (A) viability of DLBCL and AML cell lines treated with increasing doses of 
ABT-199, simvastatin, or the combination for 48 hours. Concentrations for each drug 
are as follows; ABT-199: 1X indicated dose for all cell lines, Simvastatin: 66.67X for 
LY8, 200X for LY1, 33.33X for all other cell lines. (B) viability of primary murine 
lymphoma cells co-cultured on irradiated 3T3 stroma and treated for 48 hours with 
indicated inhibitors. (C) viability of primary CLL cells grown on NK.tert stroma and 
treated with simvastatin for 16 hours prior to addition of ABT-199 for an additional 8 
hours. (D) viability of primary AML cells treated with simvastatin for 16 hours prior to 
addition of ABT-199 for an additional 8 hours. (E) viability of PBMC subsets treated with 
simvastatin (3 µM), ABT-199 (100 nM), or the combination for 48 hours before staining. 
Significance testing was performed by two-tailed paired Student’s t-test relative to 
vehicle-treated control samples unless otherwise indicated.  
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CLL cells are very sensitive to ABT-199 alone (1,2). At low concentrations of 

ABT-199, simvastatin augmented killing of primary CLL samples including some with 

17p(del) (Figure 3.1C and Table 3.1). The combination had mixed efficacy in primary 

AML samples where three of eight samples tested showed an increased effect of the 

combination relative to single-agent treatments (Figure 3.1D). Given this broad efficacy 

across blood cancers, we next investigated whether the combination would exacerbate 

any toxicities in normal human peripheral blood mononuclear cell (PBMC) subsets. 

Importantly, we found that while ABT-199 alone had some toxicity in most subsets 

(particularly CD19+ cells), the addition of simvastatin did not enhance this toxicity in any 

subset except CD14+ monocytes where simvastatin also exhibited single-agent toxicity 

(Figure 3.1E). Collectively, these data identify a promising combination effect between 

statins and ABT-199 in a broad spectrum of blood cancers. However, the variability of 

response among some sample sets emphasizes the importance of identifying 

biomarkers that are predictive of response. 
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Figure 3.2. Statins synergize with ABT-199 in blood cancer cells. (A) viability of 
OCI-LY7 cells treated with increasing doses of ABT-199 (1X indicated dose), 
simvastatin (33.33X indicated dose), or the combination for 48 hours. (B) formal 
synergy analysis of DLBCL and AML cell lines using data from Figure 3.1A and 3.2A. 
(C) viability of primary murine lymphoma cells co-cultured on irradiated 3T3 stroma and 
treated for 48 hours with indicated inhibitors. 
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Figure 3.3. Simvastatin plus ABT-199 induce apoptosis in DLBCL and AML cell 
lines. (A) viability of cells treated with indicated drugs with (grey bars) or without (white 
bars) pan-caspase inhibitor Q-VD-OPh (10 µM). (B-C) western blot of cells pre-treated 
with vehicle or simvastatin for 16 hours before addition of ABT-199 for indicated times. 
Doses of ABT-199 are as follows: 10 nM for OCI-LY1, 30 nM for OCI-LY8, 300 nM for 
all other cell lines. 

 

Sample	ID	 Therapies	 Cytogenetics	

2016-012	 NA	
46XY	+12,	

t(14;18)(q32;q21),	
del(17p)	

2016-014	 Simvastatin	 NA	
2016-015	 Ibrutinib	 NA	

2016-019	 Bendamustine,	Rituximab	
Ibrutinib	 NA	

2016-028	 Rosuvastatin	 NA	
2016-029	 Bendamustine,	Rituximab	 del(17p),	trisomy	12	
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Dynamic BH3 profiling predicts sensitization to ABT-199 by simvastatin 

 The development and utilization of functional diagnostics for patient selection 

criteria has been an area of growing emphasis in precision medicine (30). A promising 

approach in these efforts has been dynamic BH3 profiling (DBP), which seeks to 

measure the effect of treatments on how readily cells undergo mitochondrial outer 

membrane permeabilization (MOMP) (31,32). In so doing, DBP can rapidly predict 

whether a treatment is likely to elicit an apoptotic response and a characteristic that can 

be used to match patients with drugs to which their cancers are likely to be sensitive 

(33). We previously reported that DBP could be used to predict enhanced sensitivity to 

combinations involving BCL-2 antagonists (14). Therefore, we sought to investigate 

whether DBP could also be used as a diagnostic tool to predict which cells were 

sensitive to the combination of statins with ABT-199. Strikingly, in DLBCL cell lines 

where the combination of simvastatin with ABT-199 was synergistic (Figure 3.1A), DBP 

identified increased mitochondrial priming (Figure 3.4A). Notably, in OCI-LY1 cells 

where simvastatin did not synergize with ABT-199 (Figure 3.1A), there was no 

measurable increase in priming (Figure 3.4A). Both the priming effect and the 

sensitization to ABT-199 were dose-dependent, with significant priming observed using 

1 µM simvastatin (Figures 3.5A, B). In addition, simvastatin primed most primary CLL 

samples tested except sample 029 (Figure 3.4B). Consistent with our hypothesis that 

DBP may be used to predict responses, the addition of simvastatin did not enhance 

killing by ABT-199 in this sample (Figure 3.1C).  
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 Previous studies using BH3 profiling have demonstrated that in untreated cells, 

basal priming levels can predict chemo-sensitivity (31). Therefore, we next tested 

whether the increase in priming by simvastatin could also enhance the efficacy of 

various chemotherapies. Surprisingly, simvastatin did not significantly increase 

sensitivity to either doxorubicin or vincristine, as measured by the change in IC50 for 

chemotherapy (Figure 3.5B). While these data are in agreement with numerous 

retrospective studies in DLBCL indicating no effect of statin-use on chemotherapy 

outcomes (34-36), they are at odds with the notion that basal priming can predict 

chemo-sensitivity. However, it is possible that simvastatin may antagonize the effects of 

chemotherapy. In particular, simvastatin significantly reduces cell proliferation (Figure 

3.5C), an attribute which also determines chemo-sensitivity (37-39). 
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Figure 3.4. Dynamic BH3 profiling predicts sensitization to ABT-199 by 
simvastatin. (A) dynamic BH3 profiles for all cells treated with 10 µM simvastatin or 50 
nM BEZ235 for 16 hours. (B) limited dynamic BH3 profile (BAD peptide) of primary CLL 
samples treated with indicated concentration of simvastatin for 16 hours.  
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Figure 3.5. Statins induce a dose-dependent increase in mitochondrial priming, 
but do not sensitize to chemotherapy. (A) dynamic BH3 profiles for cells treated with 
indicated doses of simvastatin for 16 hours. (B) sensitivity (IC50) of two DLBCL cell 
lines to ABT-199 or two chemotherapies. Cells were treated with inhibitors for 48 hours. 
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Combination of statins and ABT-199 is effective in a syngeneic mouse model of 

lymphoma  

 Given the efficacy of the combination in vitro, we next sought to determine 

whether statins could synergize with ABT-199 in an in vivo model of mouse lymphoma. 

To this end, we injected murine lymphoma cell line 27-L1, which were sensitive to the 

combination in vitro (Figure 3.1B), into C57BL6/N mice as a syngeneic mouse model of 

lymphoma (29). After only five days of dosing, we observed efficacy of simultaneous 

targeting of both HMGCR and BCL-2. In particular, the combination markedly reduced 

lymphoma burden (%GFP+) in both lymph nodes and spleens compared to ABT-199 

treatment alone (Figure 3.6A). Additionally, the degree of splenomegaly was 

significantly reduced in mice receiving both simvastatin and ABT-199 relative to control 

groups (Figure 3.6B). We next confirmed that the dose of simvastatin was sufficient to 

inhibit HMGCR by western blot for un-prenylated Rap1A (Figure 3.6C), a marker of 

suppressed mevalonate production (40).  
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Figure 3.6. Combination of simvastatin and ABT-199 is effective in a syngeneic 
mouse model of lymphoma. (A) percent lymphoma burden in indicated organs of mice 
treated with ABT-199 (75 mg/kg/day), simvastatin (50 mg/kg/day), or the combination 
for 5 days. (B) spleen weights for mice treated as in A. (C) western blots for 
pharmacodynamic effect of simvastain (Rap1A de-prenylation) in indicated organs of 
mice treated as in B. Note two spleens from simvastatin-treated groups were lost due to 
errors in processing. (D) Kaplan-Meier survival curve of mice injected with 27-L2 cells 
and treated with ABT-199 (100 mg/kg/day), simvastatin (50 mg/kg/day), or the 
combination. (E) spleen weights of mice from D, measured at sacrifice. (F) percent 
lymphoma burden in indicated organs of mice from D, measured at sacrifice. 
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completely negated the enhanced killing effect conferred by simvastatin in DLBCL and 

AML cells (Figures 3.7B and 3.8C). Importantly, mevalonate specifically counteracted 

the effects of simvastatin, but not the dual PI3K/mTOR inhibitor BEZ235, which also 

synergizes with ABT-199 in DLBCL (14). Collectively, these data show that the ability of 

statins to enhance the killing of BCL-2 antagonism in DLBCL and AML cell lines stems 

from on-target inhibition of HMGCR. 

 

 
Figure 3.7. Effect of statins is due to on-target HMGCR inhibition. (A) viability of 
cells treated with increasing doses of different chemically distinct statins (colors) with 
(dashed lines) or without (solid lines) ABT-199 (30 nM for LY8, 300 nM for HL4). (B) 
viability of cells treated with indicated drugs with (grey bars) or without (white bars) 
mevalonate (1 mM). Doses of drugs are 10 µM simvastatin, 30 nM (LY8) or 300 nM 
(HL4) ABT-199, and 50 nM NVP-BEZ235.  
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Figure 3.8. Sensitization by statins is on-target. (A) viability of cells treated with 
increasing doses of different chemically distinct statins (colors) with (dashed lines) or 
without (solid lines) ABT-199 (10 nM for LY1, 300 nM for LY7). (B) viability of cells 
treated with increasing doses of different chemically distinct statins (colors) with 
(dashed lines) or without (solid lines) ABT-263 (50 nM for LY1, 300 nM for all other cell 
lines). (C) viability of cells treated with indicated inhibitors with (grey bars) or without 
(white bars) 1 mM mevalonate. 
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whether the addition of mevalonate metabolites required for these processes could also 

rescue cells from simvastatin. While mevalonate reliably rescued DLBCL and AML cell 

lines from simvastatin, we found that only addition of geranylgeranyl pyrophosphate 

(GGPP) could also consistently rescue viability (Figures 3.9A and 3.10). A related 

metabolite, farnesyl pyrophosphate (FPP), also moderately rescued some cells, but 

addition of exogenous cholesterol or squalene had no effect on viability of cells treated 

with a combination of simvastatin and ABT-199 or ABT-263. Both FPP and GGPP are 

required for protein prenylation, a post-translational modification that mediates 

membrane localization (41). Thus, to confirm whether protein prenylation was 

suppressed by HMGCR inhibition, we performed western blotting for un-prenylated 

Rap1A (Figure 3.11A), a marker of reduced geranylgeranylation (40). In all DLBCL cell 

lines tested, treatment with simvastatin inhibited prenylation of Rap1A in a dose-

dependent manner that correlated with the degree of sensitization to ABT-199 (Figure 

3.11B).  
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Figure 3.9. Sensitization to ABT-199 requires inhibition of protein 
geranylgeranylation. (A) viability of cells treated with the combination of 300 nM ABT-
263 and 10 µM simvastatin supplemented with indicated metabolites for 48 hours. 
Abbreviations are as follows; MVA: mevalonate, FPP: farnesyl pyrophosphate, GGPP: 
geranylgeranyl pyrophosphate. (B) viability of cells treated with indicated 10 µM 
simvastatin, GGTI-298, or FTI-277 with (grey bars) or without (white bars) ABT-199 (30 
nM for LY8, 300 nM for HL4) for 48 hours. Viability was assessed by flow cytometry 
using Annexin-V and PI double-negativity. (C) western blot of cells treated with 10 µM of 
indicated inhibitors for 16 hours. (D) dynamic BH3 profile of cells treated with 10 µM 
simvastatin (grey bars) or GGTI-298 (black bars) for 16 hours. Significance testing was 
performed by two-tailed paired Student’s t-test relative to vehicle-treated control 
samples unless otherwise indicated. 
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Figure 3.10. Mevalonate and geranylgeranyl pyrophosphate are sufficient to 
rescue from the effects of simvastatin. (A-B) viability of DLBCL cell lines treated with 
indicated inhibitors for 48 hours with or without addition of indicated metabolites. 
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Figure 3.11. Simvastatin inhibits protein geranylgeranylation in a dose-dependent 
manner in DLBCL. (A) western blots of DLBCL cell lines treated with increasing doses 
of simvastatin for 16 hours. (B) viability of cells treated with doses of simvastatin in A for 
48 hours with (dashed lines) or without (solid lines) ABT-199. Doses of ABT-199 are as 
follows: 30 nM for OCI-LY8, 10 nM for OCI-LY1, 300 nM for OCI-LY7 and SU-DHL4.  
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that inhibition of protein geranylgeranylation is both required and sufficient to sensitize 

cells to BCL-2 antagonism in both DLBCL and AML cells.  

 Because we had previously observed that DBP could accurately predict 

enhanced sensitivity to ABT-199 by simvastatin, we next tested whether GGTI-298 

could also prime DLBCL cells for apoptosis. In both OCI-LY8 and SU-DHL4 cell lines, 

where GGTI-298 sensitized cells to ABT-199, DBP detected significant increases in 

mitochondrial priming (Figure 3.9D), supporting the notion that DBP may be used as a 

functional diagnostic to predict responses to combinations involving ABT-199. 

 

 
Figure 3.12. Inhibition of GGT is sufficient to recapitulate the effects of 
simvastatin in AML cell lines. (A) viability of AML cell lines treated with indicated 
inhibitors for 48 hours. (B) western blot of AML cell lines treated with 10 µM indicated 
inhibitors for 16 hours. 
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Statins induce expression of PUMA 

 The anti-cancer effect of statins as a single agent has been previously studied, 

particularly in AML, where efficacy was associated with a reduction in BCL-2 expression 

(20). Thus, to investigate whether statins could affect expression of BCL-2 family 

members similarly, we enriched for mitochondria-containing lysate fractions and probed 

for expression of the major BCL-2 family proteins by western blot. Using this approach, 

we observed that none of the major pro-survival factors (BCL-2, MCL-1, BCL-XL), 

apoptotic effectors (BAX and BAK), or activators (BID and BIM) were substantially 

affected by treatment with simvastatin (Figure 3.13). Instead, we observed consistent 

induction of PUMA expression in both DLBCL and AML cell lines (Figures 3.14A, B). 

Furthermore, we confirmed that this increase in PUMA expression also correlated with 

an accumulation of PUMA in the mitochondria-enriched fractions where it exerts its pro-

apoptotic function (Figure 3.14C). This increase was also seen in at one 27-L2 primary 

mouse lymphoma cells, but not 27-L1 (Figure 3.15). 
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Figure 3.13. Simvastatin does not affect expression of many BCL-2 family 
proteins. Western blot of cell lysate fractions enriched for heavy membranes (M) or 
cytoplasmic (C) proteins following 16 hour treatment with 10 µM simvastatin.  
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Figure 3.14. Statins induce up-regulation of PUMA in DLBCL and AML cell lines.  
(A-B) representative western blots of cells treated with 10 µM indicated statin for 16 
hours (left) and quantitation across replicates (right). (C) representative western blot of 
mitochondrial (M) and cytoplasmic (C) fractions isolated from cells treated with 10 µM 
indicated statin for 16 hours (left) and quantitation across replicates (right). 
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Figure 3.15. Statins induce PUMA in one primary mouse lymphoma cell line. 
Western blot of primary mouse lymphoma cells treated with 10 µM indicated statin for 
16 hours.  

 

Discussion 
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Whether doses exceeding the anti-hypercholesterolemia doses may further augment 

statin efficacy is also currently under investigation. In humans, a phase I clinical trial 

using doses of 1680 mg/day yielded serum concentrations nearing 1 µM with few 

toxicities (46). Additionally, preclinical studies in rabbits estimate that doses of 200 

mg/kg/day can achieve circulating concentrations reaching 20 µM, though with 

substantial toxicity (47). Thus, it will be important to carefully test statin dosing levels 

and schedules and to balance the efficacy of the combination against high-dose toxicity. 

Despite few toxicities being reported in the high-dose statin trial (46), a major 

secondary concern is whether the combination will exacerbate any single-agent 

toxicities. While the dose-limiting toxicity of ABT-199 is tumor lysis syndrome, statins 

are associated with myotoxicity (particularly myositis (48)). Previous work on smooth 

muscle cells suggest that statins can induce apoptosis via downregulation of BCL-2 

(49), cautioning that ABT-199 may exacerbate this toxicity through shared targeting of 

BCL-2. However, significant myotoxicity from ABT-199 has not yet been reported in any 

clinical trials and statin use did not appear to exacerbate any adverse events. In 

addition, simvastatin did not enhance ABT-199 toxicity among most PBMC 

subpopulations. Collectively, these results suggest that the combination may retain an 

acceptable safety profile and achieve reasonable cancer cell selectivity. 

Accompanying the growing emphasis on precision medicine, a key area of 

research is to develop biomarkers and/or diagnostics that can match patients with the 

efficacious drugs. Here, we provide compelling evidence that illustrates the predictive 

capacity of dynamic BH3 profiling as a functional diagnostic. Across DLBCL cell lines, 

DBP accurately predicted which lines would respond best to combined statin and ABT-
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199 treatment. Further, statin-induced sensitivity to the BAD peptide correlated with 

additivity between statins and ABT-199 in primary CLL samples. In addition to DBP, we 

also identify protein markers of pharmacodynamic response and enhanced sensitivity to 

ABT-199. While Rap1A de-prenylation can determine whether statins suppress protein 

prenylation in vivo, PUMA up-regulation may be used to predict cells that respond to the 

combination. Indeed, across DLBCL and AML cell lines, only those cell lines that 

significantly up-regulated PUMA expression after statin treatment were more sensitive 

to the combination. 

Up-regulation of PUMA suggested that p53 may be activated by statin treatment. 

However, the combination of statins and ABT-199 was equally effective across primary 

CLL samples irrespective of p53 status. In support, early work using prenyltransferase 

inhibitors identified p53-independent mechanisms of apoptosis (50,51). These data 

broaden the potential for statins as apoptotic sensitizers and provide a strong rationale 

for testing statins prospectively. 

 With any targeted therapy, identifying alternative targets in the pathway may be 

key to circumventing potential bypass, resistance, or feedback mechanisms that can 

limit efficacy. Our approach uncovered a key downstream target whose inhibition is both 

necessary and sufficient for sensitization to ABT-199. By inhibiting protein 

geranylgeranylation directly, GGT-1 inhibitors obviate statin effects on cholesterol 

biosynthesis, ubiquinone production, and glycosylation. Whether isolating this effect will 

amplify or dampen the efficacy and/or tolerability of statins remains to be determined. 

Clinically, only GGTI-2418 has progressed to clinical trials where it had favorable 

tolerability and plasma concentrations in patients with refractory solid tumors (52,53). 
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Combinations of GGTIs and BH3 mimetics have not yet been studied in preclinical or 

clinical studies. 

A goal for future research is to identify the proteins whose de-prenylation is 

required for statin and GGTI efficacy. There is an unknown number of proteins in the 

prenylome, though contemporary reviews place this number at approximately 500 

(40,54). Identifying which proteins mediate the effect of statins and GGTIs will be key to 

identifying novel targets that may elevate responses and mitigate concerns regarding 

toxicity or clinical feasibility. Advances in standard methods to identify and study 

prenylation using novel tagging methods may facilitate the annotation of a complete 

prenylome (55). Coupled with recent advances in CRISPR/Cas9 gene editing, it is 

reasonable to anticipate prenylome-wide screens will identify genomic mediators or 

predictors of response to statins and/or prenyltransferase inhibitors. 

 The identification of rational combinations of targeted therapies has yielded 

several treatments with promising preclinical efficacy. We report a novel combination 

involving two FDA-approved treatments that induces selective cancer cell death across 

several blood cancers both in vitro and in vivo. Our results strengthen an existing 

rationale for the development of DBP as a predictive diagnostic tool and support a 

growing body of evidence regarding the importance of the mevalonate pathway in 

cancer. More generally, this work provides a solid preclinical foundation warranting 

clinical evaluation of combining statins and BH3 mimetics to treat blood cancers. 
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Chapter Four 

Conclusions and future directions 
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Parts of the following conclusion contain excerpts taken from our review article 

published in The British Journal of Clinical Pharmacology (2016), entitled “Targeting 

mTOR for the treatment of B cell malignancies”. 

 

In this Chapter, we provide a summary of the main conclusions from Chapters 2 and 3, 

then present unpublished data derived from these studies. Subsequently, we discuss 

potential future directions as well as the implication of this dissertation work as a whole. 

 

 The discovery of BH3 mimetics opened a new avenue by which a key hallmark of 

cancer (resisting apoptosis) could be directly targeted to induce cancer cell death. With 

initial success in generating BCL-2 antagonists, early work revealed potent activity of 

these molecules in many contexts, especially where BCL-2 dependence could be 

established (1,2). Due to their selectivity for BCL-2, second generation BH3 mimetics 

maintained this efficacy while also being well tolerated with minimal toxicities against 

normal cells. However, given the diversity of methods to evade apoptosis (Figure 1.3), 

it is not surprising that BH3 mimetics have not been universal cancer killers. A 

straightforward approach to improving efficacy is to simultaneously target survival 

pathways that are important for cancer cells. This dissertation investigates two targeted 

therapies with which to combine BCL-2 inhibitors in order to augment their anti-cancer 

efficacy while maintaining their tolerability. 
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Targeted therapies that enhance the efficacy of BH3 mimetics 

PI3K/AKT/mTOR pathway 

 Pursuing the simple hypothesis that targeting two pathways whose over-

expression/activation are correlated with poor prognosis, in Chapter 2 we uncovered 

synergy between PI3K/AKT/mTOR pathway inhibitors and BH3 mimetics in DLBCL. By 

using DBP to measure mitochondrial priming, we provide evidence that this assay has 

potential in predicting efficacious combinations. We also show the addition of 

PI3K/mTOR inhibitors does not exacerbate toxicity of BH3 mimetics among PBMC 

subsets, providing preclinical evidence for tolerability of this combination. Unlike 

previous reports implicating suppression of MCL-1 expression, we demonstrate that 

PI3K/AKT/mTOR inhibitors increase mitochondrial accumulation of BAD and BIM. Using 

pharmacological and genetic approaches, we identify that AKT inhibition is required for 

this effect. This work supports the notion that as combinations of PI3K and BCL-2 

inhibitors mature, it will be critical to fully understand the breadth of interactions with 

BCL-2 family proteins to identify predictive markers of response. 

 

Mevalonate pathway 

 In Chapter 3, we investigated the potential of targeting the mevalonate pathway 

with HMGCR inhibitors (statins) to enhance the efficacy of BH3 mimetics. We 

uncovered striking synergy between these two drug classes, and expanded these 

findings beyond DLBCL to other blood cancers where ABT-199 is under clinical 

investigation (i.e. AML and CLL). By again applying the DBP approach, we reaffirm that 

therapy-induced priming is a strong predictor of enhanced responses to BH3 mimetics 
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across cell lines and primary patient samples. Mechanistically, we implicate a crucial 

role for suppressing protein geranylgeranylation, which leads to upregulation of PUMA. 

These findings hint at alternative downstream targets, though the relative efficacy and 

tolerability of these strategies remains to be seen. Collectively, our data provide 

compelling evidence for the tolerability and efficacy of the statin/ABT-199 combination 

and strongly support further clinical investigation. As this clinical data matures, it will be 

important to monitor the tolerability and efficacy of these mevalonate-targeting 

strategies in combination with BH3 mimetics, and verify the utility of DBP as a predictive 

companion diagnostic. 

 

Targeting downstream of PI3K/AKT/mTOR 

In Chapter 2, we observed that both rapamycin and TOR-KIs also enhanced the 

efficacy of BH3 mimetics in DLBCL, similar to dual PI3K/mTOR inhibitors. This 

suggested a role for mTORC1 in mitochondrial priming. To test this hypothesis we used 

chemical and genetic approaches to selectively inhibit two major downstream mTORC1 

effectors, 4E-BP and S6K. Using an S6K1-specific small molecule inhibitor (LY2584702 

(3)) that suppresses phosphorylation of S6 protein in DLBCL (Figure 4.1A), we 

observed no significant enhancement of ABT-263 (Figure 4.1B), suggesting that the 

kinase activity of S6K1 is not important to the sensitization effect.  

To mimic selective inhibition of the mTORC1-4E-BP-eIF4E axis, we expressed a 

constitutively active form of 4E-BP1, which has all five phosphorylation sites mutated to 

alanine residues and cannot be inhibited by mTOR kinase activity (4). Treatment of cells 

with doxycycline strongly induced expression of 4E-BP1, suppressed cap-dependent 
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translation and increased the extent of MOMP induced by BIM, BAD, and PUMA 

(Figure 4.2A-C), all patterns that phenocopied pharmacological PI3K pathway 

inhibition. In contrast to S6K1 inhibition, genetic suppression of eIF4E was also 

sufficient to enhance the efficacy of ABT-263 (Figure 4.2D). Interestingly, the sensitivity 

to ABT-263 exhibited an inverse correlation with the amount of cap-dependent 

translation, implicating protein synthesis in survival signaling (Figure 4.2E). Induction of 

mutant 4EBP1 did not significantly affect expression of survivin, BCL-XL, or MCL-1 

(Figure 4.2F), candidate pro-survival proteins reported to be regulated by cap-

dependent translation downstream of mTORC1 in other systems. Together, our data 

suggest a key role for the mTORC1-4EBP1-eIF4E axis in modulating sensitivity to BCL-

2 antagonists, via translational control of gene products yet to be determined. 

 

 
Figure 4.1. S6K inhibition does not sensitize DLBCL cells to ABT-263. (A) Western 
blot of cells treated with increasing doses of S6K1 inhibitor for 3 hours. (B) Viability of 
cells treated with indicated inhibitors for 48 hours. Viability was assessed using 7-AAD 
dye exclusion by FACS. 
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Given this data, it is likely that there is a complementary mTORC1-dependent 

mechanism that augments the priming effects of AKT inhibition that we described in 

Chapter 2. This hypothesis is supported by the observation that dual PI3K/mTOR 

inhibitors consistently produced the strongest effect, likely due to their ability to 

suppress both AKT and mTORC1 activity. Indeed, the addition of MLN0128 or BEZ235 

to cells expressing mutant 4E-BP1 further sensitized cells to BH3 mimetics, likely due to 

inhibition of AKT (Figure 4.2D). Interestingly, expression of wild type 4E-BP1 also 

enhanced the sensitizing effects of TOR-KIs. This is likely a consequence of altering the 

ratio of eIF4E to 4E-BP, which augments the severity of cap-dependent translation 

inhibition by mTORC1 inhibition (5). Thus, an alternative means with which to sensitize 

cells to BH3 mimetics may be to target eIF4E downstream of mTORC1. A promising 

approach is to disrupt the assembly of the cap-dependent translation initiation complex 

(eIF4F). The compound SBI-0640756 achieves this by preventing eIF4G from binding to 

eIF4E, thereby disrupting complex formation and suppressing cap-dependent 

translation (6). Thus, an interesting question is whether this inhibitor may also enhance 

the efficacy of BH3 mimetics in blood cancers and whether this approach may be more 

effective/tolerable than TOR-KIs. Distinct from disruption of complex assembly, another 

approach is to target the enzymatic activity of other proteins in the eIF4F complex. For 

example, the helicase eIF4A represents an attractive target due to its demonstrated 

importance in the translation of certain mRNAs (7), and the availability of compounds 

that directly inhibit its activity (silvestrol and hippuristanol (8,9)). Interestingly, silvestrol 

has already demonstrated efficacy in B cell leukemias, and is also associated with B cell 

toxicity (10). Moving forward, key questions will be to compare these inhibitors with 
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TOR-KIs and note whether these therapies are 1) more effective at priming cells and 2) 

whether they are more tolerable. 

 

 
Figure 4.2. Expression of constitutively active 4E-BP1 sensitizes OCI-LY1 cells to 
ABT-263. (A) Western blot of OCI-LY1 cells expressing empty vector, 4E-BP1 wild type 
(WT), or 4E-BP1-5A mutant (Mut) treated with indicated inhibitors for 3 hours. (B) Dual 
luciferase assay measuring ratio of cap-dependent translation after treatment for 16 
hours. (C) BH3 profile of cells expressing mutant 4E-BP1. (D) Sensitivity of indicated 
cells to ABT-263 with or without MLN0128 or BEZ235. (E) Spearman correlation 
between data in (B) and (D). (F) Western blot of cells treated with inhibitors for 16 
hours. In all cases, cells were pre-treated with doxycycline (1 µg/µL) for 24 hours prior 
to indicated treatments. 
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In an effort to expand the findings of Chapter 2, we used a proteomics approach 

to identify additional downstream effects of PI3K pathway inhibition in DLBCL cells. In 

collaboration with the MD Anderson Cancer Center (Houston, TX) we performed 

reverse phase protein array (11) on DLBCL cells treated with several PI3K pathway 

inhibitors for 3 hours. Importantly, two sterol-regulatory element binding protein 

(SREBP) target genes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) 

were significantly down-regulated by PI3K pathway inhibitors (Figure 4.3). SREBPs are 

transcription factors that promote expression of genes required for cholesterol and fatty 

acid biosynthesis (12). Recently, it has become appreciated that the PI3K/AKT/mTOR 

pathway plays a critical role in both the activation, expression, and stability of SREBPs 

(13). In support, activation of PI3K and AKT is required for both the expression of 

SREBPs (14) and its nuclear accumulation (15,16). In addition, both mTORC1 and 

p70S6K1 inhibit the function of Lipin 1, which suppresses SREBP1 transcriptional 

activity (17). Collectively, these data suggested that inhibition of PI3K may also affect 

cholesterol or fatty acid synthesis, warranting an investigation of direct inhibitors of 

these pathways (i.e. statins). While these experiments ultimately led us to the discovery 

that statins prime blood cancers for apoptosis, it has become clear that sensitization by 

PI3K pathway inhibitors is independent of effects on mevalonate (Figure 3.7B).  
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Figure 4.3. PI3K pathway inhibitors suppress expression of SREBP target genes. 
Heat map of reverse phase protein array (RPPA) data on SU-DHL4 cells treated with 
indicated inhibitors for 3 hours.  
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inhibition of Rho-associated protein kinase (ROCK, a major effector of Rho activity) 

could similarly sensitize DLBCL cells to ABT-199. Impressively, treatment with RKI-

1447 inhibited phosphorylation of the ROCK substrate, MYPT1 (Figure 4.5A), and 

almost completely reproduced the effects of statin treatment (Figure 4.5B). Collectively, 

these data suggested that ROCK inhibition is sufficient to prime DLBCL cells for 

apoptosis and sensitize them to BCL-2 antagonism.  

 

 
Figure 4.4. Statins suppress prenylation of RhoA. Heavy membrane preparation of 
cells treated with 10 µM of indicated inhibitors for 16 hours. Heavy membrane fractions 
(M) were separated from cytoplasmic (C) fractions by lysis in isotonic buffer and 
differential centrifugation. 
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Figure 4.5. ROCK inhibitors recapitulate the sensitizing effect of statins in DLBCL 
cell lines. (A) Western blot of cells treated with indicated concentration (nM) of RKI-
1447 for 3 hours. (B) Viability of DLBCL cells treated with increasing doses of RKI-1447 
(black lines) or simvastatin (grey lines) with (dashed) or without (solid) ABT-199 for 48 
hours. Viability was assessed using Annexin V and propidium iodide. 
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which BCL-2 family proteins may be regulated by this phenotype. Interestingly, the BH3-

only protein BMF can be sequestered away from the mitochondria through an 

interaction with myosin and actin (18). Thus, we hypothesized that by inducing actin de-

polymerization, ROCK inhibition may free BMF to prime cells for apoptosis. However, 

when we examined the mitochondrial abundance of BMF following statin or RKI-1447 

treatment, we observed no significant increase (Figure 4.7). Furthermore, RKI-1447 did 

not induce PUMA accumulation (Figure 4.7), suggesting that the effects of ROCK 

inhibition may be distinct from the effects of statins. 

 

 

Figure 4.6. Rho and ROCK regulate actin dynamics. (A) Schematic of 
Rho/ROCK/Actin pathway. Inhibition of RhoA/ROCK releases cofilin from inhibition by 
LIMK leading to actin de-polymerization. (B) MFI of phalloidin staining in DLBCL cells 
treated with 10 µM indicated inhibitor for 16 hours. Cells were permeabilized and fixed 
prior to staining with Phalloidin-AlexFluor 647 to measure total f-actin levels. 
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Figure 4.7. Statins and RKI-1447 do not induce mitochondrial accumulation of 
BMF. Western blot of cells treated with 10 µM of indicated inhibitors for 16 hours. 
Mitochondrial (mito) and cytoplasmic (cyto) fractions were separated by centrifugation. 
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pathway in mediating the efficacy of statins. Nevertheless, irrespective of whether 

inhibition of Rho is the primary mechanism by which statins prime DLBCL cells for 

apoptosis, the promising synergy between RKI-1447 and ABT-199 suggest that the 
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Rho/ROCK pathway may be another target for combination therapies. Clinically, ROCK 

inhibitors (fasudil and K-115) have found success in treatment of glaucoma with 

favorable tolerability, and recent data demonstrating preclinical efficacy of ROCK 

inhibitors support further investigation into their anti-cancer potential (20,21).  

  

Identification of geranylgeranylated proteins in DLBCL 

 Identification of the exact mechanisms that induce mitochondrial priming 

downstream of protein geranylgeranylation may lead to alternative targets or biomarkers 

that would supplement strategies for how best to deploy MVA/BCL-2 targeting 

combinations. However, given the vast number of proteins that are potentially subject to 

this post-translational modification (22,23), this task is nontrivial. Emerging techniques 

to study prenylation may yield useful tools with which to identify and validate substrates 

of GGT-1 that may be important for modulating apoptotic sensitivity. In particular, novel 

tagging strategies utilizing GGPP labeled with an azide group enables easy pulldown 

when coupled with a alkyne-labeled beads (24). Commercially available (Life 

Technologies) azido-GGPP has already been confirmed to be cell permeant and can be 

incorporated directly into newly prenylated proteins. Following an azide-alkyne 

cycloaddition, these proteins can be covalently linked to beads, purified from whole cell 

lysates, and utilized in mass spectrometry analysis to yield a comprehensive list of 

geranylgeranylated proteins. Performing these experiments in DLBCL cell lines will 

circumvent any context-dependent differences in the prenylome. Standard protocols for 

confirming geranylgeranylation are also readily available to validate the targets from 

such an experiment (22). 
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 Given this abbreviated list of geranylgeranylated proteins, a straightforward 

approach to identify those proteins whose loss of function contributes to mitochondrial 

priming is by knockout screen. Using pooled RNAi or CRISPR/Cas9 approaches, one 

could selectively knockout expression of geranylgeranylated proteins. Once cells are 

placed under ABT-199 selection (at doses that do not significantly kill parental cells), 

only those short-hairpin RNAs (shRNAs) or guide RNAs (gRNAs) targeting relevant 

proteins would “dropout” of the pool (i.e. a synthetic lethality screen (25)). The relative 

abundance of each shRNA/gRNA can then be identified using high-throughput 

sequencing (26,27) to yield a list of those geranylgeranylated proteins whose loss of 

expression sensitizes cells to ABT-199. With any screen, the most important factors are 

approaches to follow-up and validate those hits in a biologically meaningful way. For 

these experiments, the most pertinent experiment is to specifically alter the 

geranylgeranylation of these target proteins and measure changes in sensitivity to 

combined HMGCR/BCL-2 inhibition. For example, introducing CAAX-mutant variants of 

these candidate proteins will render proteins dependent on FTs rather than GGTs. 

Thus, only those proteins whose CAAX-mutant variants can rescue cells from GGTI 

would be important for mediating the effects of statins and GGTIs. Overall, much is still 

unknown regarding how geranylgeranylation affects mitochondrial priming and which 

proteins mediate this effect. Nonetheless, as candidates begin to be revealed from large 

scale screens, it will be important to test whether targeting these proteins directly will be 

more effective/tolerable relative to statins. 
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p53-independent mechanisms of PUMA up-regulation 

 In Chapter 3 we describe a statin-induced increase in PUMA expression, but do 

not identify the mechanism by which this occurs. Typically, PUMA up-regulation is 

linked to p53 activation (hence, p53-upregulated modulator of apoptosis). However, 

since simvastatin plus ABT-199 demonstrated efficacy in 17p(del) primary CLL patient 

samples, we hypothesized a mechanism of priming that was independent of p53 

activation. In support, neither statins nor GGTI-298 increased p53 phosphorylation or 

stabilization in DLBCL after 16 hour treatment (Figure 4.8A). While this data supports 

the notion that p53 is not activated by statins, in order to test this directly we used 

pifithrin-a (PFT), a chemical inhibitor of p53 activity (28). If p53 activity is required for the 

synergism between statins and ABT-199, then inhibition of p53 should protect from the 

combination. However, we observed no rescue from the combination using up to 30 µM 

PFT (Figure 4.8B). While p53 suppression was not confirmed (either by qPCR or 

western blot of p53 and its target genes), these data strongly suggest that statin-

induced PUMA expression is p53-independent.  

 To investigate whether increased PUMA expression occurs via up-regulation of 

transcription, we used qPCR to measure the abundance of PUMA mRNAs following 16 

hour treatment with statins or PTIs. In both DLBCL cells tested, both simvastatin and 

fluvastatin increased mRNA levels of PUMA (Figure 4.8C). In addition, statins also 

induced up-regulation of HRK, a BH3-only protein with high affinity for BCL-XL. 

Unexpectedly, treatment with etoposide (which causes DNA-damage-induced p53 

activation (29)) did not induce PUMA transcription, suggesting that these cells express 

non-functional p53. Consistent with this interpretation, etoposide also failed to promote 
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p53 accumulation despite inducing its phosphorylation (Figure 4.8A). Collectively, the 

data support the hypothesis that statins do not induce p53 activation.  

 

 
Figure 4.8. Statins increase PUMA transcription in a p53-independent manner. (A) 
Western blot of cells treated with 10 µM of indicated inhibitors for 16 hours prior. (B) 
Viability of cells treated with increasing doses of pifithrin-a. Cells were co-treated with 
vehicle (black lines) or simvastatin plus ABT-199 (grey lines). Doses for cells are 10 µM 
simvastatin, and 30 nM (OCI-LY8) or 300 nM (SU-DHL4) ABT-199. (C) qPCR of cells 
treated with 10 µM indicated inhibitor for 16 hour. N = 2 for OCI-LY8, N = 1 for SU-
DHL4. 
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 Our data suggest that statins induce transcription of both PUMA and HRK to 

promote mitochondrial priming in a mechanism that is independent from p53 activation. 

An alternative explanation is through activation of FOXO transcription factors, which 

also regulate PUMA transcription (30). Supporting this hypothesis, we observed that 

statins consistently suppressed phosphorylation of AKT at the Ser473 site (Figure 

4.8A). However, GGTI-298 did not inhibit this phosphorylation. Thus, either 1) statins 

and GGTI-298 have alternative mechanisms of priming, or 2) inhibition of AKT is 

dispensable for priming. Given that GGPP completely rescues cells from the effects of 

simvastatin, it is highly unlikely that their mechanisms are not shared. Furthermore, 

AKT-dependent up-regulation of PUMA and/or HRK in these cell lines would be 

inconsistent with the phenotypes we presented in Chapter 2 (BAD and BIM 

accumulation). In addition, preliminary experiments using a phospho-mimetic form of 

AKT (S473D) suggested that this mutant was insufficient to dampen the synergy 

(Figure 4.9). Overall, the exact mechanism whereby PUMA and HRK transcription is 

induced remains to be identified. Moving forward, identifying the precise mechanism 

may give clues to which pathways downstream of geranylgeranylation are important for 

the effects of statins and GGTI. In addition, this mechanistic insight may also yield novel 

targets whose efficacy and tolerability might have advantages relative to statins or 

GGTIs. 
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Figure 4.9. AKT S473D expression does not protect from statin sensitization. 
Viability of cells expressing AKT S473D (red lines) or empty vector (black lines). Cells 
were pre-treated with doxycycline to induce expression 24 hours before treating cells 
with increasing concentrations of ABT-199 with vehicle (solid lines), simvastatin (10 µM, 
dashed lines), or fluvastatin (10 µM, dotted lines).  

 

BCL-2 and MCL-1 over-expression do not rescue from effects of statins 

 Since statins up-regulate PUMA, which has the capacity to neutralize all anti-

apoptotic BCL-2 family proteins, we also investigated whether the combination of statins 

could work in cells over-expressing either MCL-1 or BCL-2. Over-expression of either of 

these proteins is associated with resistance to BCL-2 inhibitors (31,32). In support, 

expression of BCL-2 or MCL-1 significantly reduced sensitivity to ABT-263 (Figure 

4.10). However, simvastatin retained its ability to enhance the killing effects of BCL-2 

inhibition (Figure 4.10), suggesting the combination may be effective in contexts of 

known resistance to BCL-2-inhibitors. 
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Figure 4.10. BCL-2 and MCL-1 over-expression do not rescue from statin 
sensitization. Viability of cells pre-treated with doxycycline for 24 hours prior to 
assessment of ABT-263 IC50 +/- simvastatin (10 µM) after 48 hour treatment. 

 

BH3 profiling as a functional diagnostic with predictive power 

In both Chapters 2 and 3 we present compelling data regarding the power of 
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patients that receive ineffective therapies are not receiving potentially effective 
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improve patient outcomes by improving treatment/patient selection criteria.  
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can yield lasting clinical responses. These efforts have been strongly supported over 

the years, with the most poignant example being the dramatic efficacy of imatinib in 

targeting the BCR-ABL translocation in chronic myelogenous leukemia (CML). 

Subsequent discoveries of epidermal growth factor receptor 1 (EGFR) or anaplastic 

lymphoma kinase (ALK) mutations in non-small cell lung cancer (NSCLC) (34,35), 

HER2/neu mutations or amplifications in breast cancer (36,37), and BRAF mutations in 

melanoma (38,39) have all yielded promising targeted therapies in their respective 

settings.  

Further success in biomarker identification has also stemmed from an 

understanding of synthetic lethality, which supports utilizing non-druggable alterations 

as predictive biomarkers of therapeutic responses. For example, in ovarian cancer, the 

loss BRCA or BRCA-like genes is strongly predictive of clinical responses to PARP 

inhibition (40). Given these successes, it is unsurprising that there has been a recent 

surge in studies seeking to exploit cancer genomics for use as predictive biomarkers 

(41,42). However, only a small percentage of patients have diseases where an FDA-

approved biomarker-treatment combination exists (43). In addition, none of the 

subsequently identified biomarker-therapy combinations have come close to producing 

the magnitude of response that was observed in CML (44). In support, a recent 

prospective trial comparing biomarker paired genomics-to-therapy approaches to 

control groups showed only modest gains in progression free survival (PFS) and overall 

survival (OS) across cancer subtypes (45). Given the lack of substantial responses, it is 

likely that genomics based approaches to biomarker discovery do not fully capture the 

complexity of translating genotypes to phenotypes. Thus, our work demonstrating the 
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clear capacity of DBP to predict effective combinations provides compelling evidence 

that DBP might be an exciting opportunity to develop a functional diagnostic with 

predictive power. 

 

Further development of DBP 

While our profiling data with primary CLL patient samples corresponded nicely 

with the efficacy of the combination in vitro, a key concern is whether this ex vivo testing 

accurately reflects/predicts patient responses in vivo. Correlative evidence from the 

Letai lab demonstrates clear potential for BH3 profiling to predict chemo-sensitivity (46-

48), but the clinical utility of DBP to specifically predict sensitivity to combinations with 

BH3 mimetics has not yet been tested prospectively. Our data support that DBP may be 

used in two distinct methods: 1) screen for compounds that prime cells or 2) screen for 

patients that respond to a given compound. While the two approaches are not mutually 

exclusive, it will be important to prioritize which clinical use would be most effectively 

implemented. Given the skill- and time- intensive nature of DBP, it is likely that these 

restrictions would favor the latter method. Nonetheless, as DBP matures and more 

therapies receive regulatory approval, the utility of DBP might expand such that ex vivo 

screens would be clinically feasible.  

Apart from these clinical considerations, it is important to note that our work 

suggests that changes in mitochondrial priming do not necessarily provide insight into 

the molecular mechanisms driving those changes. While it is tempting to interpret 

enhanced sensitivity to specific peptides as indicative of potential mechanisms, the 

complexity of the binding interactions among BCL-2 family proteins makes this analysis 
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non-trivial. Indeed, treatments that increase priming may do so in any number of ways. 

For example, any increase in priming may be reflective of 1) decreases in anti-apoptotic 

expression, 2) increases in pro-apoptotic proteins, 3) changes in post-translational 

modifications, or 4) changes in subcellular localization. Thus, a thorough mechanistic 

investigation is required. Nevertheless, the capacity for DBP to predict enhanced 

sensitivity to BH3 mimetics has consistently been captured by increased sensitivity to 

the BAD peptide, suggesting that limited profiling based on this peptide may be 

sufficient for predicting ABT-199 sensitivity.  

Lastly, a common issue that limits the efficacy of targeted therapies is the 

existence of intra-tumoral heterogeneity and the emergence of resistance. Clinically, 

this may lead to changes in DBP responses as non-sensitive cell populations are 

selected for, or as resistance emerges. Whether sequential profiling can be used to 

identify alternative effective therapies is another aspect that must be tested. Ongoing 

developments in DBP are also likely to yield advantages over the FACS-based assays 

presented in this dissertation. For example, the kinetics of depolarization may be 

entirely circumvented by modifications to the protocol. By permeabilizing and fixing 

cells, depolarization can be accurately measured by cytochrome C intracellular staining 

(depolarized cells lose intracellular cytochrome C). Alternatively, cells can be mounted 

for microscopy to detect single-cell differences in responses to BH3 only peptides (using 

cytochrome C). While accompanying computational methods and validation will be 

needed to test whether this accurately reflects patient responses, these advancements 

are likely to directly address current shortcomings of DBP. Thus, DBP represents an 

attractive strategy to predict which combinations of drugs can be used in combination 
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with BH3 mimetics to elicit patient responses and warrants further preclinical and clinical 

testing.  

 

Targeting BCL-2 family proteins  

Future directions for BCL-2 antagonism 

 Moving forward, a key question is whether combinations with BCL-2 inhibitors will 

have broader efficacy in other cancer settings. The rationale for targeting BCL-2 in 

blood cancers is derived from their dependence on BCL-2 for survival (1,2). Indeed, the 

earliest evidence of this dependence came from knockout studies where loss of BCL-2 

caused massive apoptosis in lymphoid organs following maturation (49,50). Later 

studies using BH3 profiling confirmed that blood cancer cells are both inherently primed 

for apoptosis, and reliant on BCL-2 for survival (46,51), making them prime targets for 

BCL-2 inhibitors. Following this logic, it plausible that since mice lacking BCL-2 develop 

polycystic kidney disease (PKD) as a result of kidney cell apoptosis (52), renal cell 

cancers may also be sensitive to BH3 mimetics (50). RNA-seq data compiled by 

Memorial-Sloan Kettering (cBioPortal) clearly illustrates the tendency of renal cell 

carcinomas (RCC) cells to express high levels of BCL-2 (Figure 4.11) and, elevated 

BCL-2 expression is correlated with poor prognosis in patients with RCC (53,54). These 

studies suggest that BCL-2 antagonists may have efficacy in this setting, but to date, 

there have been no publications examining this. In addition to RCC, uveal melanomas 

and breast cancers also express elevated levels of BCL-2 (Figure 4.11). Preclinical 

data from these settings suggest that single agent BH3 mimetics are insufficient to 

induce apoptosis (55). However, combinations have shown promising efficacy (55). 
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Ongoing clinical trials in breast cancer cell are also reporting encouraging responses in 

patients treated with ABT-199 combined with chemotherapy (ISRCTN98335443). 

Lastly, follicular lymphoma, a disease characterized by BCL-2 over-expression, may 

also benefit from BCL-2 antagonists. However, early clinical trial data suggest limited 

single-agent efficacy (56). Overall, BCL-2 inhibitors may find success in contexts 

beyond blood cancers, though combinations may be required to unleash its full 

potential. 

 
Figure 4.11. Relative expression of BCL-2 mRNA across cancers. Data are taken 
directly from cBioPortal.org and show relative BCL-2 mRNA expression across 
indicated cancers subtypes. Data are derived from The Cancer Genome Atlas (TCGA) 
database. 

 

Alternative targets of BH3 mimetics 

 The development of current BCL-2-selective inhibitors directly demonstrates the 

importance of choosing which BCL-2 family protein to target. First generation inhibitors 

(ABT-263 and ABT-737) directly mimicked the molecular function of the BAD. However, 
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because they inhibited BCL-XL these drugs were inseparable from on-target, dose-

limiting thrombocytopenia (57-59). The second generation compound, ABT-199, lacks 

this toxicity due to reduced affinity for BCL-XL (60), emphasizing the striking difference 

between BCL-2 and BCL-XL inhibition. While it is tempting to believe that potent 

inhibition of multiple BCL-2 family proteins will be more effective at eliminating cancer 

cells, this approach will likely have massive toxicities and limited tolerability. Instead, 

selective inhibition of single BCL-2 family members and rational combinations may be 

the key to uncovering effective and tolerable anti-cancer therapies. 

 Whether targeting other pro-survival BCL-2 family members may yield broader 

efficacy without added toxicity is still unknown. A promising target for new approaches is 

MCL-1. Indeed, cancers that become resistant to BCL-2-targeting therapies often up-

regulate MCL-1 (31,61). Thus, it stands to reason that those cancers that are resistant 

to single agent BCL-2 inhibition, may instead rely on MCL-1 for survival. Spearheaded 

by work from Steven Fesik’s laboratory, development of small molecule MCL-1 

inhibitors is under way (62-64). Recent preclinical data using a novel molecule, S63845, 

demonstrated promising anti-cancer effects in vitro and in vivo in a variety of blood 

cancer models (65). However, it will be important to test pre-clinically which normal and 

cancer cells are most likely to be affected. Given elevated levels of MCL-1 mRNA in 

lung, prostate, breast, ovarian, renal, and glial cancers (66), MCL-1 inhibitors may also 

find success in these settings. Additionally, whether MCL-1 inhibitors can be given to 

patients whose tumors become resistant to ABT-199 may be another promising 

approach. However, knockout studies in mice caution of potentially devastating 

toxicities. In particular, inducible loss of MCL-1 caused depletion of hematopoietic stem 
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cells (HSCs (67)). Thus, it will be important to test these inhibitors extensively in mouse 

models to investigate potential complications from acute MCL-1 inhibition. 

 

Balancing combination toxicities  

 A major goal of targeted therapies is to maximize efficacy against cancer cells 

and minimize the toxicity against normal cells. Based off previous studies, we examined 

lymphocyte subpopulations due to the role of BCL-2 in lymphocyte survival (49,50). 

With both combinations, we observed little enhancement of ABT-199 toxicity among 

PBMC subsets, but did not extend these findings to other contexts. Thus, a key 

outstanding question is whether these priming agents will also sensitize normal cells 

and reveal new toxicities. In an expanded test of CD19 B cell toxicity, we saw no effect 

between ABT-199 and simvastatin until very high concentrations (Figure 4.12), 

suggesting that statins selectively prime malignant but not normal B cells. Furthermore, 

in a prolonged survival assay, we observed no signs of toxicity (i.e. weight loss) in mice 

dosed with ABT-199 and simvastatin for up to 3 weeks (Figure 4.13). While we did not 

directly test whether statins prime normal cells, it is possible that statins selectively 

affect cancer cells due to a lower requirement for mevalonate products in normal cells 

compared to cancer cells. However, further mechanistic insight into how statins prime 

cancer cells will be required to shed light on the likelihood of this explanation. 

Nonetheless, these studies may provide invaluable insight into potential predictive 

biomarkers (i.e. cancers that are likely to be primed by statins) or markers of response.  
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Figure 4.12. Simvastatin does not enhance sensitivity of normal CD19+ B cells to 
ABT-199. PBMCs from healthy human donors treated with indicated inhibitors for 48 
hours prior to measuring viability by 7-AAD dye exclusion. Cells were stained with 
subpopulation markers to distinguish B cells (CD19+).  

 

 
Figure 4.13. Mice treated with ABT-199 and/or simvastatin do not show excessive 
weight loss after 3 weeks. Tumor bearing C57BL6/N were treated with simvastatin (50 
mg/kg/day), ABT-199 (100 mg/kg/day), or the combination for up to 3 weeks. Dosing 
followed a 6-day-ON, 1-day-OFF weekly schedule. 
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 Identification/prediction of combination toxicities must be fully investigated using 

preclinical approaches. Thus, when choosing which combinations to combine with ABT-

199, it will be important to consider the toxicities of each individual drug. The safety 

profile of statins is well-described, with the major adverse effect (AE) being myotoxicity 

(68). While there is little evidence of overlapping toxicity between statins and ABT-199, 

the combination might augment myotoxicity through shared targeting of BCL-2 (69). A 

direct approach to assess myotoxicity in a preclinical setting might be to measure serum 

creatinine kinase (a measure of myotoxicity, CK) levels in mice treated with single agent 

statin or the combination. Complete blood counts and weight loss/muscle function may 

also be monitored in these mice to determine whether unforeseen toxicities may arise. 

Nonetheless, preliminary analysis of retrospective data of patients on ABT-199 

suggested that there were no additional toxicities associated with concurrent statin use. 

Furthermore, supplementation by coenzyme Q10 may be sufficient to counteract statin 

toxicities (70-73). Thus, despite the potential for some toxicities, the combination of 

statins and ABT-199 seems like an appealing combination with potential for rapid 

clinical application. 

 Contrary to statins where literature regarding AEs is abundantly available, 

toxicities from PI3K pathway inhibitors are still incompletely understood. In Chapter 2, 

we focused on dual PI3K/mTOR inhibitors due to the consistency of their sensitization 

to BH3 mimetics across DLBCL cell lines. Indeed, clinical data support that PI3K/mTOR 

inhibitors have the broadest activity profile across cancer types (74,75). However, this 

approach tends to be less tolerable relative to other approaches (76). While pan-PI3K 

did not exacerbate toxicity in PBMCs, it is unclear what effect immune modulation may 
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have on patient responses (76,77). Thus, it may be necessary to test whether isoform 

selective inhibitors also synergize with BH3 mimetics. Another approach is to directly 

target AKT. While few AKT inhibitors have progressed to clinical trials, MK-2206 was 

recently shown to have mild and tolerable side effects (78,79). Indeed, our mechanistic 

studies support that AKT inhibition is required for enhanced sensitivity to BH3 mimetics, 

and thus warrant further clinical investigation.  

 An alternative to targeting PI3K/AKT is to target downstream mTORC1. The most 

well-tolerated mTOR inhibitors are rapalogs, which have gained European approval in 

mantle cell lymphoma (80). Nonetheless, clinical evidence of several toxicities including 

thrombocytopenia, mucositis, and hyperlipidemia suggests that prolonged treatment will 

be difficult to manage (81). Rapamycin was also the least potent at priming DLBCL cells 

for apoptosis. On the other hand, TOR-KIs were more effective than rapamycin, yet are 

generally less tolerable (82). A single agent tolerability test of AZD2014 showed dose-

limiting toxicities that were similar to rapalogs (83), but both CC-223 and MLN0128, also 

induced hyperglycemia (84,85). While it is possible that lowering the dose of TOR-KIs 

may improve their tolerability, it will also impinge on their ability to fully suppress mTOR 

kinase activity. Moving forward, it will be important to determine whether these 

potentially suboptimal doses, which only partially inhibit mTOR, will be more effective 

than clinically tolerable doses of rapalogs, which potently inhibits phosphorylation of 

some, but not all, mTORC1 substrates. Overall, despite advances in PI3K pathway 

inhibitors, much is still unknown regarding how best to position them in a clinical setting. 

Thus, as the clinical data matures, it will be important to revisit which strategies may 
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best combine with BH3 mimetics, in what contexts they will be effective, and how to 

manage or minimize the toxicities. 

 

Concluding remarks 

 The development of agents that directly target apoptotic machinery has yielded 

new strategies by which to selectively induce cancer cell death. While BCL-2-targeting 

strategies have proven effective in some contexts, responses have been limited in 

others. In this dissertation we demonstrate that two combinations can enhance the 

efficacy of BH3 mimetics in blood cancers without increasing toxicities. Whether new 

combinations or targeting of other BCL-2 family proteins may extend the efficacy of BH3 

mimetics to other contexts remains to be seen. Nonetheless, the work presented here 

offers insight into exploitable mechanisms of sensitization, reveals the promising 

predictive capacity of DBP, and provides a strong rationale for prospectively testing 

combinations of BH3 mimetics in blood cancer. 
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