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Computation

This paper presents a design procedure for six-bar linkages that use eight accuracy
points to approximate a specified input—output function. In the kinematic synthesis of
linkages, this is known as the synthesis of a function generator to perform mechanical
computation. Our formulation uses isotropic coordinates to define the loop equations of
the Watt 11, Stephenson I, and Stephenson 11l six-bar linkages. The result is 22 polyno-
mial equations in 22 unknowns that are solved using the polynomial homotopy software
BERTINI. The bilinear structure of the system yields a polynomial degree of 705432. Our
first run of BERTINI generated 92,736 nonsingular solutions, which were used as the basis

of a parameter homotopy solution. The algorithm was tested on the design of the Watt 11
logarithmic function generator patented by Svoboda in 1944. Our algorithm yielded his
linkage and 64 others in 129min of parallel computation on a Mac Pro with
12 x 2.93 GHz processors. Three additional examples are provided as well.

[DOI: 10.1115/1.4027443]

1 Introduction

This paper presents a methodology for the design of mechanical
computers that approximate a function specified by eight angular
pairs of accuracy points. This is known as the kinematic synthesis
of a function generator, see Refs. [1-4]. In 1944, Svoboda [5,6]
used a nomograph formulation to design a six-bar linkage that
generates a logarithmic function, which he called a “double three-
bar” because it is a Watt II type six-bar that can be viewed as two
connected four-bar linkages. More recently, Hwang and Chen [7]
presented a methodology for the synthesis of six-bar function gen-
erators of the Stephenson II type.

This work uses isotropic coordinates to formulate the loop
equations of three types of six-bar linkages that are useful for
function generation: the Watt II, Stephenson II, and Stephenson
III types, see Fig. 1. For each linkage type, we specify eight pairs
of input—output joint angles, (¢;,v;), j=1...8, called accuracy
points that satisfy a specified input—output function. Two con-
straint equations and one normalization condition are obtained
from each of eight accuracy points which leads to a system of 24
nonlinear equations in 24 unknowns. This system can be simpli-
fied to obtain 22 bilinear equations in 22 unknowns, which has a
maximum of 705,432 solutions.

The polynomial homotopy continuation software BERTINI was
used to solve the synthesis equations to yield 92,736 nonsingular
solutions in 107 min on a Mac Pro with 12 x 2.93 GHz processors.
This solution was then used in a parameter homotopy to design
linkages for three different examples of function specification.

2 Literature Review

A mechanical computer is a linkage system that calculates an
output for a given input, also called a function generator. Svoboda
[5] designed function generators by fitting the input—output func-
tions of a given set of linkages to the desired function. He
patented a Watt II type six-bar linkage that computed a logarith-
mic function [6]. Freudenstein [8] introduced a new approach that
used the loop equations of a four-bar linkage to fit a given set of
accuracy points to obtain a four-bar function generator.
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McLarnan in 1963 [9] formulated the loop equations for three
types of six-bar linkages, the Watt II, Stephenson II and III types,
to design function generators. He obtained algorithms for six,
seven, eight, and nine accuracy points for the Watt II six-bar link-
age, which were executed on an IBM 704 computer. He obtained
two Watt II linkages that achieved seven accuracy points, and
noted the problem of the separation of accuracy points on differ-
ent linkage branches, now known as a branch defect. Three deca-
des later, Dhingra et al. [10] formulated the synthesis equations
for Watt II, Stephenson II and III function generators and used a
numerical homotopy algorithm to solve these equations. They
report 1.5 s to track each of 71,680 homotopy paths for eight accu-
racy points on an 486 PC. This is approximately 30 h to complete
one synthesis calculation, and does not include the analysis of
each design to verify that its accuracy points are on the same
branch.

Recently, Hwang and Chen [7] formulated the design of Ste-
phenson II six-bar function generators using optimization techni-
ques to find defect-free linkages. Sancibrian [11] takes a similar
approach using the generalized reduced gradient to find the link-
age parameters that minimize the difference between the input—
output function of the linkage and the desired function.

In this paper, we formulate complex versions of the loop equa-
tions for the Watt II, Stephenson II and III six-bar linkages and
use numerical homotopy to solve the equations, see Refs. [12—14].
Our focus is fitting a function generator to eight accuracy points,
which yields 22 synthesis equations in 22 unknowns. In order to
find Watt II, and Stephenson II and III six-bar function generators
that have the eight accuracy points on a single branch, we also an-
alyze each of the resulting designs to verify its performance.

3 Complex Vectors and Isotropic Coordinates

Erdman et al. [15] formulate planar kinematics using complex
numbers to represent the coordinates of points in the plane. In this
formulation, the coordinates P = (P,, Py) of a point are formulated
as the complex number

P =P, +iP, 1)

The component-wise sum of a complex number is the same as
for coordinate vectors, and the product of complex numbers per-
forms rotation and scaling operations. In particular, the exponen-
tial exp(i0) is a rotation operator on complex vectors that yield
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Fig. 1 The three types of Watt and Stephenson six-bar link-
ages that are useful for mechanical computation at fixed pivots.
The angle ¢ at the fixed pivot A is the input value and the angle
y at the fixed pivot B is the output value of the function.

the same result as a 2 X 2 rotation matrix operating on vectors,
that is

P = ei()p
P+ iPy, = (cos 0 + isin 0)(py + ipy), 2)
P, +iPy = (cos Opx — sin Opy) + i(sin Opy + cos Opy)
Wampler [13] shows that it is convenient to consider the com-
plex number P and its conjugate P as components of “isotropic

coordinates” (P, P) because the original components are obtained
from the linear transformations

031012-2 / Vol. 6, AUGUST 2014

(P+P), Py=5(P—P) 3)

For our purposes, the reference to isotropic coordinates means
that both the complex and complex conjugate loop equations are
used in the formulation of the synthesis equations.

4 Synthesis Equations

The formulation of the synthesis equations for Watt II, Stephen-
son II and III function generators is closely parallel to each other.
Note that synthesis of the Watt I and Stephenson I mechanisms
was not studied because coordination between their ground pivots
results in four-bar synthesis. Function generation between moving
pivots was not studied in this paper.

In this section, the loop equations are formulated for each topol-
ogy, a normalization condition is appended for each accuracy
point, then each system of equations is put into the polynomial
form shown in Eq. (35). Putting all three topologies into this form
allows us to compute solutions to a single general polynomial sys-
tem that can be used to construct straight-line homotopies for all
three topologies that are computationally less expensive [16]. The
solutions to these systems using the BERTINI software are described
in Sec. 5.

4.1 Watt II Synthesis Equations. The synthesis task for a
Watt II function generator (Fig. 1(@)) is to coordinate the orienta-
tion of links AD and BF such that they move through the angle
pairs (¢;,1;), j=1...., 8. Note that the input-output functions
between link CGH and links AD or BF are not of interest because
these are four-bar function generators.

Three sets of complex numbers are introduced to represent the
rotations of links AD, CGH, and BF measured relative to the
ground frame

(0),0) = (e,e7),
(Rj,R}) = (e,e7), )
(S;,85;) = (ei,e™), j=1,...,8

= Qi

The complex vectors (Q;, 0;) and (S;,S;) are known from the task
specification, while (R;,R;) are to be determined in the synthesis
process.

The loop equations of the Watt II linkage are formulated to
define the two floating links DG and FH, as

Ly: G—-D=A+0Q;d—-C—Rjg,
Ly H-F=B+Sf-C-Rh j=1,...8 (5

The constraints that the lengths m = |G — D| and n = |H — F| be
constant for the movement of the six-bar linkage yield the
equations

Cii m*=(A+0Qid—C—Rg)(A+Q;d — C—Ryg),
Cx: n*=(B+Sf—C—Rh)(B+Sf—C—Rh),
j=1,...,8 6)

Note that in the equations above, ¢ = g as the angle of p measures
directly to this complex vector. The 16 constraint equations (6) to-
gether with the eight equations defining the pairs (R;,R;) as unit
vectors

j=1,...,8 7
yield 24 synthesis equations. The unknowns of these equations

are the 16 values of (R;,R;) and the eight unknowns
(C,C,d,d,f,f,m,n). The designer is free to specify the fixed
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pivots A and B and the dimensions g and (h, /1) of the link CGH.
Unknowns m and n are eliminated by subtracting the first equa-
tions of C; and C, from the rest of the equations in each set,
respectively. Next, the unknowns are placed in seven sets of
vectors

vi = (C,d,R,R\,1), j=2,...,8,
®)
= (C,f,R;,R1,1), j=2,...,8
Then, the synthesis equations can be written in the form
C\'[0 M; My My Mg7/C
d My 0 My Msp My d
ViMlvi= | R | |My My O 0 My || R [=0
Ry My Ms; 0O 0 —Ms||R
1/ Mg My My —Mg O 1
ji=2,...,8 )
where
Myj=—-0;+01, My=g, Msy=-g,
My =—0jg, Msj =01, Mg =0, 10)
My = (Q; — 01A, Mg = —Ag
and
C\"[0 Nj Ny Ny Ng71/C
Ny 0 Ny N5 Ny || f
wiNIwj=| R | [Ny Njy 0 0 Ny |[R |=0
Ry Ny Ns; 0 0 —Ng || R,
1 [Nej N7j Ng; —Ng; 0 | \'1
j=2,...,8 (11
where
Nij=—S;+Si, Nyj=h, N3=—h,
Nyj = —S;jh, Nsj=Sih, Ne =0, (12)

N7j= (Sj*Sl)B_, Ngj= 7Eh

This results in 22 synthesis equations for the Watt II function gen-
erator where the first two sets of seven equations are obtained
from the constraint equations (9) and (11), and the last set of eight
is obtained from the normalization conditions (7). These equations
have a bilinear structure

(C,d,R;,Ri,1)(C,d,R;,Ry, 1), j=2,..8,
<C7f7Rj7R171>< fR R > ]:2a '78a (13)
(Ri,1)(R;,1), j=1,...,8

For computation purposes, it is useful to divide the variables into
two groups

<C7d7f7RlaR27R37R47R57R67R77R8>7
(C.d.f Ry R,

R3,R4,Rs,Re,R7,Rs) (14)

Journal of Mechanisms and Robotics

The number of solutions to this system and the use of the BERTINI
software package in order to solve are discussed in Sec. 5.

4.2 Stephenson II Synthesis Equations. The function gener-
ation problem of a Stephenson II linkage (Fig. 1(b)) is to move its
input link AC and its output link BDF through the angle pairs
(d)j, 1//_/~),] 1,..., 8. The orientations of links AC, CGH, and BDF
are given by angles ¢, p;, and i, respectively. The complex vec-
tor operators for each of these angles are Q;, R;, and S;, respec-
tively. The exponential definitions of these three operators and
their conjugates appear in Eq. (4). The conjugate pairs (Q,7 Qj)
and (S;,S;) are known from the accuracy points and (R;,R;) is to
be determmed.

The loop equations are used to express links DG and FH

,Cli G—D:A+Q/C+R_/g—B—de7
52: H*F=A+QjC+th*stjf

j=1,...8 (15)
These links are constrained to the constant lengths m = |G — D)
and n = |H — F|, yielding the equations
Ci: m*=(A+Qjc+Rig—B—S;d)(A+ Q5+ —B—Sd),
Co: n* = (A+Qjc+Rih—B—Sf)(A+Qjc+R; Efo),
j=1,...,8 (16)

These 16 constraint equations along with the eight normalization
conditions

an

yield 24 synthesis equations in the 24 unknowns (R;,R;) and
(c,c,d,d,f,f,m,n). Fixed pivots A and B are specified as well as
the dimensions g and (h, /) of link CGH. Unknowns m and n are
eliminated by subtracting the first equations of C; and C; from the
rest of the equations in each set, respectively. Next, the unknowns
are placed in seven sets of vectors

v]:(cad7Rj7R171)7 _i:2,...,87
(18)
_( 7f Rla )7 ]:2,,8
Then, the synthesis equations can be written in the form
c\'[0 My My My Mg (¢
d | |My 0 My My My || d
v MV = | R My My O 0 My R | =0
Ry [ |My Ms; O 0  —Mg||R
1 Mg M7 Mg —Ms; 0 1
j=2,....8 (19)
where
Mi;= =05+ 0151, My=0Q;8, My=-0ig,
My = —Sig, Msj=5Si1g, Me=(0j—Q1)(A—B), (20)
Mo = —(S;—S1)(A—B), Msj=(A-B)g
and
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c\'[O0 Nj Ny Ny Ngl/¢
Nij 0 Ny Ns; Ny f
wNJw; = | R; Ny Ngg 0 0 Ny Rj | =0
R, Ny Ns; 0 0 —Ng|| R
1 [Nej Nij Ny —Ng; 0 ] \1
j=2,...,8 21
where
Ny =—=0;Sj+ 0181, Noyj=0Qjh, N3 =—-0ih,
Ny = —S;h, Ns;=Sih, Nej=(Q;—01)(A—B), (22
N7j=—(S; =S1)(A=B), Ngj=(A—B)h

Equations (17), (19), and (21) form 22 synthesis equations of the
form

<C7d7RjaR171><EvgaRj7R17l>’ .j:27"'787
<C7f7Rj7R171><E7f7Rj7R171>7 j:27"'787
(Ri, 1)(R;,1), j=1,....8

(23)

The bilinear structure of the above equations allows us to place
unknowns into the two groups

<c7d7f7RlaR27R3>R47R57R67R77R8>7

<E7J7f7§11R27R37§47R57§67R77R8> (24)

The computation of solutions is described in Sec. 5.

4.3 Stephenson III Synthesis Equations. The task of the
Stephenson III function generator (Fig. 1(c)) is to coordinate links
AD and BF according to the eight pairs of angles (¢;, ;). j= L....,
8. Note that the input—output function between links AD and CG
is not of interest because they both belong to the same four-bar
loop. As well, when BF is the output link, the synthesis problem
remains the same whether AD or CG is the input link.

Rotations by the angles ¢;, pj, and y; are implemented by the
complex vector operators Q;, R;, and S, respectively. These opera-
tors and their conjugates are defined in Eq. (4). The complex pairs
(0;,0)) and (S;,S;) are known from the task specification and
(Rj,R;) remain to be solved by the synthesis procedure.

Links CG and FH are expressed via the loop equations to yield

ﬁ]i G—C:A+Q_/d+Rjg_C,
Lo: H—F=A+Qjd+Rjh—B — S,

j=1,...8 25)

These links are constrained to be the constant lengths
m = |G — C| and n = |H — F|. The squares of these lengths are
expressed by multiplying £; and £, by their conjugates to attain

Cio m* = (A+Q;d +Rig — C)(A+ Q;d +Rig — C),

Cot 0 = (A+Qid +Rih — B — Sif)(A + Qjd + Rih — B — §f),
j=1..8 (26)

By including the eight normalization conditions

@7

RR, =1, j=1,.8

we obtain 24 synthesis equations in the 24 unknowns (R;, R;) and
(C,C,d,d,f,f,m,n). Fixed pivots A and B, and the dimensions g

031012-4 / Vol. 6, AUGUST 2014

and (h, h) of link CGH are specified. Unknowns m and n are elim-
inated by subtracting the first equations of C; and C, from the rest
of the equations in each set, respectively. Next, the unknowns are
placed in seven sets of vectors

V/:(d7C7Rj7R17])7 ].:2,...787
(28)
W/':(d7f7Rj7Rl>1)7 ]:27,8
Then, the synthesis equations can be written in the form
d T r 0 Mlj sz M3j M6j b d
¢ My 0 My Msp My C
V}F[Mj]vj =R sz M4j 0 0 My 71- =0
Ri| |My Msg 0 0 —My||R,
1 | Mej My Ms; —Mg; 0 1
j=2,....8 (29)
where
My =—-0;+ 01, My=0;3 Msy=-0g,
My =—g, Ms=g, M= (0;— Q1A (30)
My =0, Mg =Ag
and
d rr 0 Nlj sz N3j Nﬁj T d
f Ny 0 Ny N5 Ny || f
R N3y Ns; 0 0 —Ng||R
1/ [Ne Nij Ny —Ng; 0 J\1
j=2,....8 3D
where
Ny =—0;S;+ 0151, Ny=Qjh, N3y =-0ih,
Ny = —=Sih, Nsj=S8ih, Ng=(0;—0Q1)(A-B), (32)
N7y =—(S;—S1)(A—B), Ngj=(A—B)h

Equations (27), (29), and (31) form 22 synthesis equations of the
form

The bilinear structure of the above equations allows us to place
unknowns into two groups

<C7 d»faRl7R27R33R47R57R67R77R3>7
(C,d,f,Ri, Rz, R3, Ry, Rs, R, R, Rg) (34)

The computation of solutions is described in Sec. 5.
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5 Solution of the Synthesis Equations

The synthesis equations for Watt II, Stephenson II and III func-
tion generators each yields a set of 22 equations in 22 unknowns
of the form

VIIMv; =0, j=2,..8,
wiNJw; =0, j=2,...8, (35)

RR —1=0, j=1,...,8

The Bezout degree for a system of this form is 2°*=4,194, 304.
However, because the equations are bilinear, the general linear

bound for this system is (ﬁ) = 705,432 [14,17-19]. The syn-

thesis equations are solved for the dimensions of the function gen-
erator by using the numerical homotopy software, BERTINI.
Numerical homotopy provides a standardized way to solve these
equations [14,20].

Numerical homotopy solves a polynomial system P(z) =0 by
starting with the similar polynomial system Q(z)=0 with a
known set of solutions. The system Q(z) is deformed into P(z) so
the solutions of Q(z)=0 move to become the solutions of
P(z)=0. The tracking of solution paths can be set up as the nu-
merical solution of a set of ordinary differential equations where
the solutions of Q(z) =0 are the initial conditions [18].

Once a general solution is found for the synthesis equations, pa-
rameter homotopy continuation is used to increase the efficiency
of the computation [14,16]. Parameter continuation is built into
the BERTINI software package. The idea behind parameter continua-
tion is to solve Eq. (35) via continuation with the 224 parameters
of matrices [M;] and [N,], j=2,...,8 specified as random complex
numbers. This includes specifying (M,”,M,H) and (Nq,,Nq,) such
that they are not complex conjugate pairs. This one-time computa-
tion tracks all 705,432 solutions and sorts out the 92,736 nonsin-
gular solutions. The randomly generated parameters are then used
in conjunction with these nonsingular solutions to construct
straight-line homotopies for Eq. (35), where matrices [M;] and
[N;] are redefined for synthesis according to Egs. (10) and (12),
Egs. (20) and (22), or Egs. (30) and (32). The straight-line homo-
topies need only to track 92,736 paths. The time required to track
all paths of the single generic homotopy took 107 min. The aver-
age computational time of the straight-line homotopies reported in
this paper was 40 min. All computations were run in parallel on a
Mac Pro with 12 x 2.93 GHz processors.

Note that choosing qu,Mq],Nq],N as parameters for the gen-
eral solve that sets up our parameter homotopy makes the struc-
ture of Eq. (35) indistinguishable between Watt 11, Stephenson II
and III cases. However, the general number of synthesis solutions
is not necessarily the same between the three cases. Evidence of
this is provided in Dhingra et al. [10]. Because of this, our method
does not take advantage of further numerical reductions that
would be produced by the parameter continuation method if each
case were treated individually and the constants internal to coeffi-
cients M, My, Nyj, Ny (Egs. (9), (11), (19), (21), (29), (31)) were
taken as parameters instead.

6 Analysis Equations

The solutions to the forward kinematics equations are used to
find all the assembly configurations for a given input value ¢. We
formulate the forward kinematics for each of the three topologies
individually. Each assembly configuration is represented by an
input value ¢, and values for angles p and i/, which are found on
different loops of the six-bar. As well, for each value of ¢, there
will always be multiple values of p and s corresponding to differ-
ent assembly configurations.

6.1 Watt II Analysis Equations. The constraint equations
(6) that were used for the synthesis of the Watt II are also used to
form its forward kinematics equations

Journal of Mechanisms and Robotics

Ci(Q,0,R,R)=(A+Qd—C—Rg)(A+Qd—C

C2(Q,0.R.R.S,S) = (B+Sf —C—Rh)(B+Sf —C—Rh) —n*=0

(36)

together with the normalizing conditions
(37

Note that the input angle ¢ is represented by (Q, Q) and the con-
figuration angles p and  are represented by (R,R) and (S,S),
respectively. All other parameters are known linkage dimensions.
Equations (36) and (37) form four bilinear equations in the
unknowns (R, R, S,S). Note that {C;,N;} form a quadratic sub-
system that can be solved independently for two solutions of
(R,R). These solutions can be plugged into {C,,N,} to form two
more systems of two quadratic equations. Each of which has two
solutions of (S ,S) for a total of four solutions for a single input

pair (Q,0).

6.2 Stephenson II Analysis Equations. The constraint equa-
tions (16) that were used for the synthesis of the Stephenson II are
also used to form its forward kinematics equations

Cl(Q? Q7R7R7Sa§) =
x (A + Q¢+ Rg — B — 8d)
C2(Q,0,R.R.S,S) = (A+ Qc +Rh — B — 5f)

X (A+Q¢+Rh—B—Sf)—n*=0

(A4+Qc+Rg—B—5d)

—m? =0,

(3%)

along with the normalizing conditions (37) to form four bilinear
equations in the unknowns (R7I§,S7§). McCarthy and Soh [19]
use an algebraic elimination procedure to solve equations of this
form for the synthesis of a spherical RR chain. His procedure
results in a degree six polynomial resultant, the roots of which
result in the dimensions of six RR chains. For the case of Eqs.
(37) and (38), these roots represent six assembly configurations of
a Stephenson II six-bar actuated from link AC.

It is important to note that in this paper we study Stephenson II
function generators that move through the accuracy points
(¢;, l//j),] 1,..., 8, where ¢ is the input and  is the output. We
do not analyze function generators that move through the inverse
function, where  is the input and ¢ is the output. Although for
the latter case the synthesis equations do not change, the analysis
of a linkage is dependent upon which parameter is the input. The
analysis routine presented in this paper focuses on the elimination
of branch defects, and a mechanism’s branches are dependent on
which link is driven [21].

6.3 Stephenson III Analysis Equations. The forward kine-
matics equations are formed from the constraint equations (26) to
yield

Ci(Q,Q.R.R) = (A+Qd +Rg - C)
x(A+Qd+Rg—C)—m* =0,
C2(0,0,R,R,S,S) = (A+ Qd + Rh — B — Sf)

x (A+Qd+Rh—B—Sf)—n*=0 (39)

Combining these equations with the normalizing conditions (37)
forms four bilinear equations in the unknowns (R, R, S, S). The so-
lution of which follows that of the Watt II forward kinematics
equations, resulting in four solutions corresponding to four assem-
bly configurations.
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Similar to the Stephenson II case, we have neglected analyzing
Stephenson III function generators actuated with / as the input
and ¢ as the output, despite having synthesis equations identical
to those presented in this paper. Also note that the synthesis and
analysis procedures are the same whether AD or CG is the input
link and BF is the output link.

7 Analysis Procedure

The objective of this analysis is to determine whether the link-
age solutions generated by BERTINI are capable of producing a
smooth trajectory that moves the input and output links through
all required accuracy points. Our notion of a smooth trajectory is
defined as a continuous set of configurations that does not pass
through a singular point, what others have referred to as a mecha-
nism branch [21,22].

Prior to this analysis, linkage solutions that are not physically
realizable or that contain particularly small link lengths are sorted
out. The condition for a solution to be physically realizable is that
the two variable groups that appear in Eqgs. (14), (24), and (34)
need to be complex conjugates of each other. The large majority
of solutions found are not physically realizable. As well, solutions
in which the magnitude of C, d, or f was found to be less than or
equal to 0.005 were removed in order to limit solutions with par-
ticularly small link lengths.

In this section, we examine all the mechanism branches a link-
age is capable of producing and determining whether or not it
achieves the desired accuracy points. Mechanism branches are
pieced together by solving the forward kinematics equations as
presented in Sec. 6 for all assembly configurations for a series of
input angles ¢ that represent a full revolution of the input link.
Each configuration is sorted into a trajectory according to a sort-
ing algorithm. These trajectories represent mechanism branches.
Note that we regard a circuit that possesses no singular points to
contain a single mechanism branch.

7.1 Sorting Assembly Configurations. In order to determine
the movement of a six-bar linkage, the forward kinematics equa-
tions are solved for an array of input angles ¢, to obtain p;, and
Vi, where [=1,...,6 identifies the configurations for that input
angle. As ¢, is incremented, the solutions to these equations do
not appear in any order. It is the goal of this section to sort each
configuration (¢, p; ;, ¥, ;) into a smooth trajectory curve.

The input of a mechanism at position £ is defined as a vector x;.
and the output as a vector y;, such that

Ry
) S
w= (%) aa vo=| | 1=1..6 o
O ’ Ry
Sk
The vector F is formed such that
Cl (X7 y) 0
C2 (X7 Y) 0
F(x,y) = = @1)
Ni(y) 0
Na(y) 0

where the kinematics equations {C;, C,} are defined in Egs. (36),
(38), or (39) and {N, N,} are defined in Eq. (37). The Jacobian of
this function is

OF OF OF OF} @)

Vel = {a?ﬁa?%

The objective of this algorithm at an input step £ is to connect
each configuration from set .4 to a configuration in set 3 where
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A= {(xk,ykﬂl)‘l ~1,..,6} (43)

and

B = {(Xk+1~,yk+1_,,)’l7 = 17 76} (44)

Note that in general a connecting pair will have /# p. In order to
connect each pair, a Taylor series expansion is used to approxi-
mate the kinematics equations at position £ + 1 given by

F(Xi1,¥ip1y) & F(Xk+17Yk,[) + [JF}k(YkJrl,l - Yk,z) (45)

In order to estimate the values of y,, that yield F=0, the
approximate values y,  ; are computed

5’1&111 =Y — [JF];lF(XkHvyk_[): I=1,...,6 (46)
These values form the set /3 of approximations where
B ={(X1,5,10)| = 1,....6} 7

If the /th element of B is sufficiently close to the pth element of B,
then the pth element of B is taken as the neighbor of the /th ele-
ment of A on a smooth trajectory. Once each element of A is con-
nected to a element of B, the algorithm increments to the next
step. Cases in which one to one correspondence does not occur
are described in Sec. 7.2.

7.2 Identifying Branch Points. The technique described
above for sorting the roots of the kinematics equations among as-
sembly configurations can fail at singular and near-singular con-
figurations. That is where

det[Jr (Xt, ¥, )] = 0 (48)

Near-singular configurations can be present even if there is no sin-
gularity in the vicinity. Near-singular cases are troublesome
because the tracking algorithm can jump from one smooth trajec-
tory to another.

Unlike other methods that explicitly solve for all singular points
beforehand [23], our algorithm attempts to sort through the singu-
lar points with no prior knowledge to their location. Because sin-
gularities mark the input limits of a mechanism, our algorithm
sorts configurations whether or not they are entirely physically
realizable.

In particular, the tracked curves consist of the elements
(R,S,R,S) parameterized by ¢. Insight to the behavior of curves
in this space is given in Fig. 2. This figure plots the real and imag-
inary components of the output S against the independent input
parameter ¢. Configurations are physically realizable at locations,
where |S| = 1, that is, where the curves lie on the cylinder. Singu-
lar locations were explicitly computed using the method outlined
in Myszka et al. [23] for this figure and are marked with purple
dots. Note that the curves in Fig. 2 can cross at nonsingular loca-
tions because this graph does not include information about R.
However, in the higher dimensional configuration space, curves
only cross at singular points.

Additionally, note that our analysis and sorting algorithm uti-
lizes a constant step size of angle ¢. Additional computational
benefits may be attained by implementing a variable step size
based on proximity to singular locations.

It is near singularities that the algorithm can fail to find a one to
one correspondence between sets A and 5 described in Eqgs. (43)
and (44). Logic is used to address this issue. The set .4 contains
the last elements of the trajectories arriving at position &, and B
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Re(S) 2

Fig. 2 Example of branch sorting and the presence of
singularities

contains the first elements of the trajectories departing from posi-
tion k+ 1. At each position we apply the following logic:

(1) If each element of A connects uniquely to an element of 3,
the algorithm moves on to the next position.

(2) If an element of B is not connected to an element of A, that
element of 3 begins a new trajectory.

(3) If an element of A connects to multiple elements of 3, the
trajectory associated with that element of 4 is duplicated
and each duplicate connects to a matching element of B.

(4) If an element of A does not connect to an element of B, the
trajectory associated with that element of A is concluded.

Physically realizable sections are separated out upon conclusion
of the path tracking algorithm. These sections are then split at
points where the sign of the Jacobian determinant changes in
order to find cases where the algorithm may jump between trajec-
tories. It is possible for such a jump between trajectories to occur
without change in sign of the Jacobian [21]. Our algorithm cannot
detect these jumps.

7.3 Determining Useful Designs. Once a six-bar function
generator has been designed and mechanism branches have been
constructed, it is next determined how many accuracy points lie
on a single branch trajectory. Ideally, we prefer to find trajectories
that pass through all eight accuracy points. However, we have
found that trajectories that pass through seven points and six
points can be of practical use as well. Therefore, we enumerate all
these mechanisms and leave them for the designer’s review.

In order to determine that an accuracy point is on a trajectory,
we must decide if the accuracy point is within a specified distance
of the list of points that define a trajectory. To do this, it is deter-
mined whether an accuracy point is contained in a box defined by
two neighboring trajectory points in the ¢— plane as shown in
Fig. 3. Note that six-bar linkages with nonzero error at the accu-
racy points can satisfy this criterion.

8 Svoboda’s Logarithm Linkage

In this section, our design methodology is verified by solving
for Watt II six-bar linkages that generate the logarithm function
generated by Svoboda’s patented design. Figure 4(a) shows his
“double three-bar” linkage, which is now called a Watt II six-bar
linkage. The function that Svoboda mechanized is given by
1 <x <50 (49)

Xy = log;ox1,

Journal of Mechanisms and Robotics

1
>

Not included
in trajectory

Included in
trajectory

e Trajectory Point e Accuracy Point

Fig. 3 Criterion used for determining whether a trajectory con-
tains an accuracy point

(b)

Fig. 4 Comparison of (a) Svoboda’s logarithm linkage (U.S.
Patent 2,340,350, Feb. 1, 1944) and (b) the computed Watt Il six-
bar linkage
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Table 1 (a) Accuracy points and (b) specified dimensions
attained from Svoboda’s linkage design. Points were specified
up to 8 decimal digits.

(a) Accuracy points

J ¢; (deg) W (deg)

1 37.71666667 113.16981735

2 39.80000000 134.21966883

3 44.10000000 152.52871342

4 52.20000000 169.93900165

5 68.80000000 187.47879093

6 85.20000000 197.28493451

7 101.80000000 204.41742081

8 117.63333333 210.05171929
(b) Specified dimensions

A 0+ 0i

B 2.04592938 4 0.80063801

g 2.37259 4 0i

h 2.37259 4 0i

Table 2 Computation information for Svoboda’s logarithm
function

Nonsingular solutions 29,395
Physically realizable solutions 953
Eight-point mechanisms 65
Seven-point mechanisms 81
Six-point mechanisms 136
Synthesis computation time 45 min
Analysis computation time 84 min

Analysis timeouts 0
Analysis resolution 0.18009 deg

Table 3 Comparison of Svoboda’s design and design found by
our algorithm

Percent
Dimensions Original Computed difference (%)
C 1401 1.02430996 + 0.01025573i 2.64
d 1.80124 4 0i  1.79466456 — 0.00510634i 0.46
f 2.95982+0i 2.96851339 4 0.01689144i 0.64
m 1.20607 +0i  1.23350280 + 0i 2.27
n 1.4230040i 1.40068248 + 0i 1.57

He introduced the following scaling so that the variables x; and
X, could be read from the input and output angles, ¢ and V, of the
linkage

G = 36.08500000 < ¢ < P, = 117.63333333

(50)
WYmin = 113.16981735 < W < Y.« = 210.05171929
The result is the function
l//max — lpmin SO(d) — ¢min)
=577 —_ . 51
l// lOgIO 50 o810 ¢max - ¢min * wmm ( )

Our goal is to find the Watt II six-bar linkages that fit this function
at eight accuracy points, Table 1.

BERTINI's parameter homotopy followed 92,736 paths to obtain
29,395 nonsingular solutions. Of these, only 65 linkages were
found that passed through all eight accuracy points without a
branch defect. A summary of the computational information is
provided in Table 2. As noted by McLarnan [9], linkages that may
be defective can be useful if they have seven, even six accuracy
points on a single branch, which yields an additional 81 and 136
linkage designs, respectively.

A comparison of these linkages with Svoboda’s linkage shows
that one of the 65 linkages that reach all eight accuracy points has

Table 4 Accuracy points and dimensions specified for the par-
abolic function generator. For these calculations 300 decimal
digits were used.

(a) Accuracy points

i ¢; (deg) W, (deg)
1 0 0
2 15 2.5
3 30 10
4 44 21.511111
5 57 36.1
6 69 52.9
7 80 71.111111
8 90 90
(b) Specified dimensions
A 0+ 0i
B 1+0i
g 0.333333+0i
h 0.166667 + 0.28867514i

2,00

(a) (b)

Sl S 05 == 05 1.0 15 20 25
4 yoN

Fig. 5 Three more Watt Il six-bar linkages that fit the eight accuracy points of Svoboda’s logarithmic function. Each linkage is

displayed in the sixth accuracy position.
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Table 5 Computation information for synthesis of the para-
bolic function generators

Watt 1T Stephenson I Stephenson I1I
Nonsingular solutions 22,987 64,078 45,763
Realizable solutions 493 141 600
Eight-point mechanisms 86 19 73
Seven-point mechanisms 97 20 113
Six-point mechanisms 95 18 86
Synthesis computation 37 34 33
time (min)
Analysis computation 19 24 30
time (min)
Analysis timeouts 0 12 0
Analysis resolution (deg) 0.36036 0.36036 0.36036

similar dimensions, Fig. 4. Table 3 shows that the differences
between the dimensions that define Svoboda’s mechanical com-
puter and our six-bar linkage are less than 3%. Figure 5 presents
three other Watt II six-bar linkages that fit the eight accuracy
points of Svoboda’s logarithm function.

9 Comparison of Six-Bars for Three Functions

In this section, the design of Watt II, Stephenson II and III func-
tion generators is carried out for three different task functions.
The three functions examined are (i) a parabolic function used by
McLarnan [9], (ii) a range ballistic function, and (iii) an elevation

(e)

ballistic function. The ballistic functions were adapted from an
example provided by Svoboda [5].

In each case, the number of defect-free linkages is determined
that fit all eight accuracy points, as well as those that have seven
and six accuracy points on a single branch. Examples of these
designs are provided to illustrate the results.

9.1 Parabolic Function. In this example, designs for Watt II,
Stephenson II and III function generators are found for a parabolic
function defined by the equation

1
V=554

where ¢ is the input angle and y is the output angle measured in
degrees. The function is approximated by choosing eight accuracy
points. Specified linkage dimensions are shown in Table 4.

BERTINI'S parameter homotopy was run for 92,736 paths to
obtain 22,987, 64,078 and 45,763 nonsingular solutions, respec-
tively, for the Watt II, Stephenson II and III six-bar function gen-
erators, Table 5. For the three cases, there were 86, 19, and 73
useful linkages that achieved the eight accuracy points. Thus, for
this function one useful six-bar linkage was found for every 1078,
4881, and 1270 homotopy paths, respectively.

An example design for each mechanism type is shown in
Fig. 6. Also shown is a comparison of the specified function and
the linkage input—output function with the difference between
these functions amplified by 10,000. The largest deviation from
the specified function among these three example linkages is
found to be 0.025 deg in Fig. 6(f).

(52)

o Specified Function @ Accuracy Points

® Mechanized Function ® Error (degx10,000)

¥ (deg)
150

¢ (deg)

¥ (deg)

¢ (deg)

¥ (deg)
250[ o

200/ *
150~
100,

50

=50

U

Fig. 6 Design options for the parabolic function for each topology
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Table 6 The eight accuracy points and specified dimensions
for the range ballistic function. Values were specified up to 300
decimal digits.

(a) Accuracy points

J ¢; (deg) W (deg)

1 0 4.5152437790

2 40 8.9342612197

3 80 13.5874276442

4 115 18.0021905273

5 150 22.9854405071

6 185 29.1127003302

7 210 35.3496863870

8 224 42.5192890583
(b) Specified dimensions

A 0—1i

B 0+0i

g 0.5+40i

h 0.25 4 0.4330127019i

Table 7 Computation information for synthesis of the range
ballistic function generators

Watt II Stephenson II ~ Stephenson III
Nonsingular solutions 23,052 63,753 45,992
Realizable solutions 891 3497 1920
Eight-point mechanisms 1 0 15
Seven-point mechanisms 40 16 77
Six-point mechanisms 80 78 140
Synthesis computation 35 31 37
time (min)
Analysis computation 36 340 126
time (min)
Analysis timeouts 0 1 3
Analysis resolution (deg) 0.36036 0.36036 0.36036

Examination of the error curve produced by the Watt II design
(Fig. 6(b)) shows that the error at the fourth accuracy point is not
zero, indicating that the displayed trajectory does not pass exactly
through this accuracy point. It is actually the case that this linkage
has a different branch that does contain the fourth accuracy point.
This demonstrates the susceptibility of computational synthesis to
numerical error. In this case, two linkage branches are separated
by only 0.0025 deg of the accuracy point.

9.2 Range Ballistic Function. Svoboda [5] provides a two
degree of freedom linkage that computes the elevation of a gun to
hit a target at a given distance and altitude. We separate this into
two functions: (i) the range ballistic function that computes the
gun elevation angle to reach a given distance at zero altitude and
(ii) the elevation ballistic function to reach an altitude at a given
range. These calculations assume the muzzle velocity of the artil-
lery round is vo =500 m/s and there is no air resistance so that the
trajectory is a parabola.

The range ballistic function is designed so that the range scales
linearly with the input angle ¢ such that ¢ =0 deg is set to
4000 m, and ¢ = 225 deg is set to 25,484.2m. The result is the
range ballistic function

1 25,484.2 — 4000
W :45deg—§arccos<—§ (( : )¢+4000))

V2 225

(53)
where g is the gravitational constant. This function is approxi-

mated by choosing eight accuracy points. Specified linkage
dimensions are shown in Table 6.

031012-10 / Vol. 6, AUGUST 2014

(a)

® Specified Function @ Accuracy Points

® Mechanized Function e Error (degx1,000)

Y (deg)
100

cae

80

60~

=20+

(b)

Fig.7 Design option for the range ballistic function

km
12}
10}
8r . <
—— Line of gunsight
6f —— Path of projectile
af — Initial velocity vector
2 l
km
0 5 10 15 20 25

Fig. 8 The line of the gunsight and the parabolic path of the
projectile intersect at a horizontal distance of 15 km

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 04/06/2015 Terms of Use: http://asme.org/terms



Table 8 The eight accuracy points and specified dimensions
for the ballistic function. Values were specified up to 300 deci-
mal digits.

(a) Accuracy points

J ¢, (deg) W (deg)
1 0 18.0288613860
2 5 23.6695051767
3 10 29.4387864830
4 14 34.1969096229
5 18 39.1602575004
6 22 44.4884326438
7 26 50.6650944462
8 29 58.7006824116
(b) Specified dimensions
A 0—1i
B 04 0i
g 0.5+0i
h 0.25 +0.4330127019i
1.0+
2.0
1.5
(a)
e Specified Function = ® Accuracy Points
® Mechanized Function e Error (degx1,000)
¥ (deg)
60+ K]
e
40 e o
e @
s o
20 eeeee" °
(rermmrmventerbestesentontostesertrrivrirersredesternasistent ey L ' ¢ (d
5 10 15 20 25 30¢( 0
=201

(b)
Fig. 9 Design options for the elevation ballistic function
BERTINI'S parameter homotopy was run for 92,736 paths and
yielded 1, 0, and 15 Watt II, Stephenson II and III six-bar function

generators that reach eight accuracy points, Table 7. Thus, useful
Watt II and Stephenson II linkages with eight accuracy points for

Journal of Mechanisms and Robotics

Table 9 Computation information for the elevation ballistic
function generators

Watt 1T Stephenson I~ Stephenson I1I
Nonsingular solutions 21,315 60,680 42,691
Realizable solutions 1785 2739 2077
Eight-point mechanisms 83 125 92
Seven-point mechanisms 773 473 691
Six-point mechanisms 415 809 502
Synthesis computation 45 48 50
time (min)
Analysis computation 71 266 114
time (min)
Analysis timeouts 3 76 18
Analysis resolution (deg) 0.36036 0.36036 0.36036

this function were rare. A useful Stephenson III six-bar linkage
was found for every 6,182 homotopy paths. Furthermore, exami-
nation of each design revealed link lengths of unacceptable
dimensions, either too long or too short.

Figure 7 shows a Stephenson III linkage design that reaches
seven accuracy points. Although the designed linkage reaches
only seven accuracy points j=2,...,8, it does pass close to the
remaining accuracy point. A video of this linkage is available at
http://www.mechanicaldesign101.com. This is another example of
the numerical sensitivity of the computational synthesis process.

9.3 Elevation Ballistic Function. The elevation ballistic
function sets the elevation angle of a gun so that a ballistic round
reaches a specific altitude at a given range, in this case 15,000 m.
The function was constructed so that the input angle ¢ is directed
at the target, and the elevation of the gun is the output angle y, as
shown in Fig. 8. This elevation ballistic function is given by

000

1 1 1
Y =45deg + 3 ¢ — Earccos (— #cos ¢ + sin d)> (54)
Yo

This function is approximated with eight accuracy points. Speci-
fied dimensions are shown in Table 8. Several useful designs were
found for all topologies. A Stephenson II design is shown in
Fig. 9.

BERTINI'S parameter homotopy was run for 92,736 paths to
obtain 83, 125, and 92 useful Watt II, Stephenson II and III six-
bar function generators that pass through the eight accuracy points
shown in Table 9. This shows that a useful linkage was found in 1
out of 1117, 742, and 1008 homotopy paths, respectively.

10 Summary of Results

This study of the computational synthesis of useful Watt II, Ste-
phenson II, and Stephenson III six-bar linkages shows that a large
number of nonsingular solutions must be generated and examined
to find useful designs. For the functions presented here, if we con-
sider a useful mechanism to pass through six, seven, or eight accu-
racy points, then one was found for every 97, 615, and 133
nonsingular solutions on average over the above examples for the
Watt II, Stephenson II and III designs, respectively.

The computation time needed to find and analyze each linkage
type varied widely as well. It can be seen that the design and anal-
ysis of Stephenson II linkages took more time than the other two
types of linkages for the above three examples. The Watt II and
Stephenson III computation times ranged from 0.9 to 1.1h,
respectively, for the parabolic function, and from 1.9 to 2.7h for
the elevation ballistic function. In contrast, the computation time
for the Stephenson II was 1.0, 6.2, and 5.2h for the three func-
tions. These computations were performed in parallel on a Mac
Pro with 12 x 2.93 GHz processors.
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11 Conclusion

This paper examines the synthesis of Watt II, Stephenson II, and
Stephenson III six-bar linkages that generate a specified function
using eight accuracy points, together with performance verification.
This problem was originally formulated in 1963 [9], but the compu-
tational resources needed were not available until 1994 [10]. Com-
plete solution of this problem requires not just solution of the
synthesis equations but verification that the eight accuracy points
lie on one branch. Our results yield a parameter homotopy that
tracks 92,736 paths for the eight accuracy point synthesis problem
for Watt II, Stephenson II or III six-bar linkages. As well, we evalu-
ate the nonsingular solutions to identify physical linkages, and then
evaluate each physical linkage to verify performance.

Three examples were presented: a parabolic function, a range
ballistic function, and an elevation ballistic function. For each of
the three functions, the Watt II synthesis equations yielded 86, 1,
and 83 designs, respectively, that reached all eight accuracy
points. Thus, the probability that any particular path of the homo-
topy will yield a useful linkage is less than one in 1000. Similar
results were obtained for the Stephenson II and Stephenson III
linkages. The complete design calculation for a particular six-bar
linkage type requires approximately 2 h on a Mac Pro with
12 x 2.93 GHz processors.
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