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Abstract

Automatic Learning of Block Storage Access Time Models

by

Adam Crume

Performance models for storage devices are an important part of simulations of large-

scale computing systems. Storage devices are traditionally modeled using discrete event

simulation. However, this is expensive in terms of computation, memory, and config-

uration. Configuration alone can take months, and the model itself requires intimate

knowledge of the internal layout of the device. The difficulty in white-box model creation

has led to the current situation, where there are no current, precise models. Automati-

cally learning device behavior is a much more desirable approach, requiring less expert

knowledge, fewer assumptions, and less time. Other researchers have created behavioral

models of storage device performance, but none have shown low per-request errors. By

making use of only a few high-level domain-specific assumptions, such as spatial period-

icity and the existence of a logical-to-physical mapping, neural nets can learn to predict

access time with low per-request errors. Providing neural nets with specific sinusoidal

inputs allows them to generate periodic output, which is necessary for this problem.

Weight sharing in the neural net accounts for regularities in the structure of the input,

which reduces data requirements and error by reducing the number of free parameters.

A trigonometric change of variables in the output of the neural net removes a disconti-

nuity in the objective function, which makes the problem more amenable to neural nets

and reduces error. Combining these approaches, we demonstrate that a neural net can

predict access times with a mean absolute error of about 0.187 ms over a small portion

of a hard disk drive, and a mean absolute error of about 2.120 ms over half of a hard

disk drive.
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Chapter 1

Introduction

Storage device performance modeling is an integral part of modeling computing

systems. These models are used for simulating supercomputers [77], for parallel file

system simulation [78], for storage configuration [7], and for data placement [53]. The

most accurate models are discrete event simulation-based models such as DiskSim [19],

which is used by many people [22, 117, 78]. Discrete event simulation is a type of white-

box modeling based on processing simulation events that modify state and/or generate

new events. White-box models require intimate knowledge of the internal layout of

the device, which can take months to extract. Automatically learning device behavior

is a much more desirable approach, potentially requiring less expert knowledge, fewer

assumptions, and less time. Others have created behavioral models of storage device

performance, but none have shown low per-request errors. Barriers to machine learning

of request latencies include periodicity, caching effects, stateful behavior, discontinuities,

sparsity of samples, and many other factors. We propose a method for generating black-

box models of block storage device performance using machine learning.

We chose the block interface as the level to model because of its simplicity,

universality, and low-level aspect. Other storage interfaces are available, including OSD

and POSIX. Since most storage devices (including hard disk drives, SSDs, and RAID

arrays) expose a block interface, object storage and file systems are built on top of the

block interface. These higher-level interfaces are more complex, offering a richer set of

operations, and hide details about lower levels. We believe that modeling these higher-

level interfaces would produce useful results, but that modeling them with machine
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learning is likely to be more difficult than modeling the block interface. Furthermore,

the higher-level interfaces are more transparent and thus more amenable to white-box

modeling.

Modern storage devices are complex, meaning that white-box models of them

are also complex. The simulator must know the storage device’s caching and scheduling

algorithms, as well as the physical placement of each block. The very large number of

parameters and the reluctance of manufacturers to provide implementation details make

characterization a long, difficult, and error-prone process. In fact, configuring DiskSim

to accurately model a modern hard disk drive took six months in one case [87]. Other

researchers have also noted the difficulty of parameterizing DiskSim [86, 72].

Many researchers use the outdated disk models that come with DiskSim,

presumably because this is easier than obtaining or creating models for newer disk

drives. Hard disk drives commonly modeled with DiskSim include the Quantum At-

las 10K [26, 103, 71, 114], which was released in 1999 [71]; the Seagate Cheetah 9LP

ST39102LW [103, 75, 108, 76], which appears to have been released in 1998 [84]; and the

Seagate Barracuda 4LP ST32171 [117], which appears to have been released between

1996 and 1998 [9]. All of these papers used models which come with DiskSim, and these

models were at least 11 years old when the papers were published. The capacities of the

modeled devices were at most 9.2 GB, with sustained data transfer rates of at most 41

MB/s [1, 9, 84]. For comparison, consider top of the line models released in 2010, the

year of the earliest publication above. The WD Caviar Green 3TB [31] and the Seagate

3TB FreeAgent GoFlex Desk [2], had capacities of around 3000 GB and sustained data

transfer rates of around 123 MB/s [3] (sizes measured using 1 GB = 109 bytes). This

means that the models used in the papers were at least a factor of 326 times smaller and

3 times slower than top of the line drives of the time. Using such out of date models

likely hampers research relevance, but it is nearly inevitable when models are so hard

to create.

Tools such as DIG can extract some of the necessary DiskSim parameters [46].

Unfortunately, they require assumptions about the internal structure of the storage de-

vice. This structure is highly proprietary and frequently changing. Examples of changes

introduced include zoning, zero-latency reads, and serpentine layouts. Manufacturers

2



do not release this information, so researchers must reverse-engineer a device before

modifying DIG and DiskSim to support the new layout. Furthermore, models are ex-

tremely different between storage device types, and new models must be created by

hand whenever a new storage device type appears.

Because of the complexity of modern hard disk drives, there are no publicly

available request-level models. This means that for drives on the market today, the

only way to really know how a system will perform with those drives is to build it

and test it. Furthermore, accurately reproducing today’s experiments in the future

will be impossible once the hardware is gone, since models do not exist. Existing

simulators, such as DiskSim, are so difficult to configure that comparing the accuracy

of new methods to them is fallacious; the accuracy of a simulator is only relevant when

paired with a correct parameterization.

Rather than white-box simulation, a more desirable approach is to use machine

learning to generate models that can reproduce the behavior with as few assumptions

as possible. Some progress has been made in behavioral modeling of storage device

performance [59, 26, 109, 117], but none of the models described can accurately model

individual requests. Optimizing layout of multidimensional data on disk [94], auto-

tuning parallel I/O [10], and real-time scheduling [102] are use cases where request-level

predictions would certainly be beneficial. Request-level accuracy in machine learning-

based storage device performance models warrants further research.

Machine learning approaches can be divided into two classes, online and of-

fline. With online approaches, models receive feedback from the system being modeled

and continue to adapt. With offline approaches, models do not receive feedback, and

therefore do not change after being created. Many of our use cases do not allow for

feedback. Furthermore, simpler approaches have been shown to work in some online

cases [97]. Therefore, we limit ourselves to offline machine learning.

Because of the challenges in machine learning of storage device performance

models, preprocessing the data is an important step. In the preprocessing stage, we use

high-level domain knowledge to represent the data in a fashion that is more amenable

to machine learning. This knowledge includes the importance of phenomena such as

periodicity and a single device-wide logical-to-physical mapping. Better representing

3



periodicity requires explicitly including periodic data as additional inputs (see chap-

ter 8). Recognition of a single logical-to-physical mapping allows us to share part of

the model across requests (see section 7.1.2). Embedding high-level assumptions into

the model using periodic inputs and weight sharing is especially important because the

amount of data that can be sampled is very sparse relative to the amount of complexity

in the raw data.

In this thesis, we focus on a random, read-only workload. This emphasizes

the effect of access time, and de-emphasizes other effects such as transfer time, caching,

and read-ahead. Transfer time can be addressed by simply including a size input [109].

Caching can be captured by techniques such as including LRU stack distance [59]. Read-

ahead can be addressed by including a sequentiality flag in the input [109]. Access time

is a component of the overall latency prediction problem which has proven difficult to

solve in the past, which is why we focus on that component. We demonstrate that with

specific periodic inputs, and with customizations such as weight sharing and remapped

output which removes discontinuities, we can train a neural net to predict access times

over the majority of a modern hard disk drive.

1.1 Research questions

The general question is how to create a practical black-box access time model

of a block storage device. This can be broken down into specific questions:

• What assumptions are necessary?

• What model is most appropriate for this problem?

• What data representation is best, or in machine learning parlance, what features

are important?

• How should error be measured?

• How much data is necessary?

• Is the model fast enough?

• Is the model accurate enough?

4



1.2 Contributions

The overall contribution of this work is a method for automatically generating

storage device request access time models for random, read-only workloads. Specific

sub-contributions include:

• Selection of neural networks as a useful model. This applies to the question of

which model is appropriate.

• Use of weight sharing to reduce the number of neural network parameters. This

applies to the question of which model is appropriate.

• Method of input augmentation to allow the neural network to internally generate

necessary frequencies in recognition of the importance of periodicity. This applies

to the questions of representation and assumptions. We find that periodicity is a

very useful assumption to make.

• Use of L1 norm in recognition of non-Gaussian errors. This applies to the question

of how error should be measured.

• Method for removing rotation-related discontinuities in the access time function.

This applies to the questions of representation and assumptions.

• Method for tuning neural network hyperparameters. This applies to the question

of which model is appropriate.

• Identification of 29.5 hours of trace data as sufficient for 2.120 ms mean absolute

error over 250 GB of storage. This applies to the question of how much data is

necessary.

• Identification of 9.5 ms as the real time necessary to generate an access time pre-

diction over 250 GB of storage with a model not tuned for speed. This compares

with the median device access time over the same range, which is 12.495 ms. This

means that using the model is (slightly) faster than using the actual hard disk

drive, which makes the model plausibly fast enough for some use cases, such as

emulating a hard disk drive’s performance with faster hardware. Since the model

was not tuned for speed, the time per prediction can almost certainly be reduced.
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• Identification of 2.120 ms mean absolute error over 250 GB of storage. Most of this

error comes from mispredicting rotation misses. After adding or subtracting an

integer multiple of the rotational latency to predictions to correct for this fact, the

mean absolute error drops to 0.485 ms. This compares to a constant-value model,

which has a mean absolute error of 2.792 ms over the same range. This applies to

the question of whether the model is accurate enough.

1.3 Overview of this thesis

The rest of this thesis is organized as follows: In chapter 2 we discuss related

work for storage device modeling and machine learning of periodic functions. In chap-

ter 3 we describe our assumptions about storage devices as well as challenges in modeling

them. In chapter 4 we discuss methods for quantifying prediction errors. In chapter 5

we discuss inherent uncertainties in modeling block storage device performance. In

chapter 6 we compare machine learning approaches and discuss their relative merits. In

chapter 7, after selecting neural nets as an appropriate machine learning approach, we

propose a modification (weight sharing) to decrease error. In chapter 8, we describe our

method for finding periodicity, which many machine learning approaches do not handle

well, and feeding it into the machine learning algorithm. In chapter 9, we discuss the

problem of modeling discontinuous functions with neural nets, and how the problem

can be mitigated for hard disk drives. Future work is discussed in chapter 10, and we

conclude in chapter 11.
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Chapter 2

Related work

2.1 Predicting request latencies

Storage device latency models can be categorized in many ways. Perhaps the

most basic is online versus offline models. Online models receive feedback from the

actual storage device and can therefore be continuously updated. Offline models receive

no such feedback and are not modified after being created. Another crucial dividing

point is white-box versus black-box models. White-box models use information about

the internal behavior of the device; this class includes analytical models and models

based on discrete event simulation. Virtually all white-box models are offline models

since they are constructed by humans. Black-box models look only at the input and

output of the device; this class includes machine learning models such as decision trees,

neural nets, support vector regression, etc. Models can also be characterized by the

granularity of their input and output. Some take individual requests as inputs, and

some take aggregate statistics over many requests. Some predict latencies for individual

requests, and some predict average latencies over time slices or entire workloads. Even

when predicting individual request latencies, the black-box models described below have

only shown the predictions to be accurate in aggregate. None of the existing black-box

approaches we have seen have shown low per-request errors.

DiskSim [19] is a well-regarded disk model based on discrete event simulation.

It has been validated to produce request-level accuracy. However, it is computationally

expensive and difficult to configure for modern disks. As detailed in chapter 1, the
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difficulty is so great that researchers frequently use decade-old models rather than create

new ones.

Many analytic models have been created, including work by Lebrecht, Dingle,

and Knottenbelt [67], as well as work by Lingenfelter, Khurshudov, and Vlassarev [72].

Analytic models are relatively easy to understand and can be extremely fast due to

their compact formulae. Unfortunately, they require very detailed expert knowledge to

create. Often, they are limited to certain classes of workloads and are not useful alone

in generalized contexts.

Kelly et al . describe a black-box probabilistic model [59] similar to table-based

models such as the one by Garcia et al . [42]. Requests are categorized based on features

including size, LRU stack distance, number of pending reads, number of pending writes,

and some RAID-specific information. Oddly, they do not appear to include any sort

of sequentiality feature. Table-based models are limited by the table size. If too many

dimensions are used, or the granularity within dimensions is too fine, the table grows

far too large. This limits the ability of the models to capture smooth transitions or

complex cross-dimensional features. The work by Kelly et al . ameliorates the issue by

essentially not requiring the entire table to be filled in, but the problem is not fully

solved.

Mesnier et al . create a model for relative performance of storage devices [81].

This first requires workload characterization which may not be feasible ahead of time

for a large-scale system simulation, especially if the workload is dynamic. Furthermore,

given a relative model for device B compared to device A, simulating device B still

requires a model for device A.

A popular approach is to use decision trees to predict response time. Dai et

al . predict performance with a combination of decision trees and support vector re-

gression [26]. However, their models are workload-specific, and their prediction errors

are based on one-second averages rather than per-request latencies. Wang et al . also

calculate errors based on windows, using one-minute windows in their case [109]. (See

section 6.1.4 for more information on decision trees, and section 6.1.6 for more informa-

tion on support vector regression.)

Erazo et al . created FileSim to simulate parallel file systems. They used a
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simple disk model instead of DiskSim and were able to reproduce behavior of a real

system [35]. Liu et al . modeled the performance of burst buffers for smoothing traffic

to storage systems attached to supercomputers [77]. Tarasov et al . demonstrate how

accurate models of hard disk drive latencies can be used to improve performance in a

real-time scheduler [102]. All of these are applications which could benefit by including

models generated by our approach.

Our approach is orthogonal to storage device emulators in that our generated

models can provide high-fidelity timing models to emulators, such as those by Griffin et

al . [48] and Agrawal et al . [5]. Griffin et al . implemented a storage device emulator using

DiskSim as the underlying performance simulator. Agrawal et al . also implemented a

storage device emulator, but with an analytical model for the simulator. Some storage

device emulators do not alter performance to mimic any particular device and essentially

map from one interface to another [88, 29]; these are unrelated.

2.2 Learning periodic functions

We posit that periodicity in block number is an important yet high-level feature

of storage device performance. In hard disk drives, periodicity is seen in the division

of sectors into tracks, the skew between tracks, spare sectors, and so on. Periodicity is

also seen in other storage devices, such as in the striping patterns of RAID arrays.

Unfortunately, a limitation of many general-purpose machine learning ap-

proaches, including neural nets and decision trees, is their difficulty in recognizing pe-

riodic patterns in the data. This can be seen with the checkerboard problem [100]

(fig. 2.1a) as well as the two-spirals problem [37, 95] (fig. 2.1b).

Neural nets can be trained on periodic functions in many ways. Some setups

predict the value of the function directly from the input. These invariably use a fixed

interval with a very small number of oscillations [50, 49, 90, 38, 116]. Extrapolating

beyond the training range leads to poor performance [62]. This approach is infeasible

for our problem because the number of oscillations is on the order of a million.

If the function is known to have period p, another approach is to map the

input x into the range (0, p) using x mod p. Common examples include time-of-day or

day-of-year inputs for functions that are daily or yearly periodic [64, 34]. An alternative
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Figure 2.1: Classically hard periodic problems

is to map it to sin(2πx/p) and cos(2πx/p) [43]. (This pair of functions has many nice

properties; they are both continuous and bounded, and weighted sums are equal to other

sinusoids with varying phase.) This is similar to our approach, except that we determine

the period empirically, and we augment the original values with the transformed values

rather than replace them.

Neurons in a neural net calculate their output by taking a weighted sum of

the inputs and applying an activation function or transfer function, typically tanh(x) or

1
1+e−x (logistic sigmoid). Rather than using one of these as the activation function, one

may use sin(x). However, sin(x) does not approach a limit for large x, while tanh(x)

and 1
1+e−x do. Lack of a such a limit can lead to instability [113]. Periodic activation

functions also introduce many local minima [99].

A powerful tool for time series data is recurrent or delay networks [85, 56].

These feed the network back into itself, so that the network predicts output values from

other output values, rather than from input values. In other words, they predict f(x)

given f(x−δ) instead of predicting f(x) given x. This style of prediction, where f values

are predicted from other f values, we will call a recurrent model. Recurrent models also

include Kalman filters [111] in addition to recurrent neural nets. Unfortunately, any

recurrent model will require either enormous amounts of computation or an enormous

training dataset to accurately generate predictions for storage device access times. Since
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Figure 2.2: Predicting positioning times using a recurrent model. Sample sparsity leads

to deep recursion.

we have a 2D problem, we would predict f(a, b) from f(a− δ, b) and f(a, b− δ). Since

we only have a very sparse sampling of f , we will almost certainly need to recursively

compute f(a− δ, b) from f(a− 2δ, b) and f(a− δ, b− δ), and compute f(a, b− δ) from

f(a − δ, b − δ) and f(a, b − 2δ), where δ = 1 sector (fig. 2.2). Limiting the recursive

computation to one million predictions would require sampling full rows and columns

every thousand sectors. Given that the size of a modern 500 GB hard disk drive is

approximately a billion sectors, this comes to two million rows and columns, each with

a billion entries. If we assume an average access time of 10 ms, it would take 2 × 106 ·
109 · 10 ms ≈ 634,000 years to capture the dataset. Thus, no recurrent model will be

practical for predicting access times (when recursing in space).
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Chapter 3

Storage devices

3.1 Scope of work

This thesis is limited to block storage devices, rather than other storage models

such as object storage devices or file systems. Block storage devices work with blocks,

which are fixed-size (traditionally 512 bytes) pieces of data numbered sequentially. Re-

quests are sent to the storage device and responses are sent back. Multiple requests

may be in flight at a time, and responses may be sent back out of order. Each request

consists of a read/write flag, the start block, the block count, and, for writes, the data

to be written. We assume that response times are independent of the actual contents

written or read, so we ignore the contents (but not their size) in our models. Given a

sequence of requests, our task is to predict the timestamps of their responses.

3.2 Challenges

Storage device performance modeling is a challenging problem. In this section

we outline the major challenges that we believe are important to overcome. We intend

to address these challenges except for those in section 3.2.8.

These challenges are phenomena that impact storage device performance and

are difficult for many general-purpose machine learning approaches to handle “out of

the box”. Challenges were selected based on three criteria. First, the phenomenon

must have a large impact on storage device performance. Since we are not aiming
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for perfection, phenomena with small impact are considered unimportant. Second, the

phenomenon must occur relatively often in the environment of interest. Again, if it

occurs rarely, it is considered unimportant. We simply accept that we will have high

error on rare occasions. Third, the phenomenon must require preprocessing of the

data, require reformulation of the problem, or otherwise cause large errors for multiple

machine learning approaches.

These challenges arise from assumptions made by machine learning approaches

that do not match well with storage device performance prediction. For example, most

machine learning approaches assume that training examples are independent of each

other. This assumption clashes with the existence of state, caching, and reordering.

Most machine learning approaches also assume that the function to be learned is rel-

atively smooth. This assumption clashes with the existence of complex geometry and

discontinuities. Reformulation of the problem is necessary to align the problem with

the assumptions made by the machine learning algorithm.

3.2.1 State

Storage devices are stateful, and requests are not independent. The model

must accept a series of requests and predict a series of response times. Because of

mechanical state, caching, read-ahead, garbage collection, etc., the time to complete a

request is dependent on previous requests seen.

State changes can also persist for long periods. Figure 3.1 shows hard disk

drive response times after a seek, after queueing effects are removed. This is a mostly

sequential workload that occasionally seeks to a random position. Here, response times

are affected for approximately 1100 requests after the seek. This same signature also

occurs spuriously in the same trace (fig. 3.2). The cause is uncertain but may be due

to remapped sectors. Whatever the cause, it is unpredictable, and this effect amplifies

rare occurrences.

Many machine learning approaches do not natively support time series. The

most straightforward way to model a stateful process with most machine learning ap-

proaches is to include past stimuli in the model’s input. Unfortunately, the number of

relevant past requests can number in the thousands or more, so many must be excluded.
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This is especially a problem for linear models, because adding nonlinear combinations

of raw inputs leads to a combinatorial explosion.

3.2.2 Periodicity

Periodicity shows up in the behavior of many types of storage devices. In hard

disk drives, periodicity comes from rotation. The rotational nature of hard disk drives

leads to many periodic effects such as the arrangement of sectors into tracks, track skew,

and so on. Hard disk drives are a classic example of storage devices with periodicity.

In RAID arrays, periodicity comes from the regular striping of data across component

devices. Requests for sectors that are a multiple of a stripe width apart will hit the same

component device and contend with each other. In SSDs, although hidden by the flash

translation layer (FTL), periodicity comes from the hierarchy of channels, packages,

dies, planes, blocks, and pages [6, 32]. Groups of requests may have different degrees of

parallelism based on how they are arranged in the hierarchy [58]. Periodicity is likely

to occur in other device types as well, because of the benefits of regular repetition in

designs.

As described in section 2.2, periodicity is challenging for general-purpose ma-

chine learning algorithms. If they do not recognize periodicity, each oscillation appears

to add unique information about the function being learned, causing the necessary num-

ber of parameters to rise as the number of oscillations rises. Our test hard disk drive

has roughly a million tracks and therefore roughly a million times a million oscillations

in the access time function. Having on the order of a trillion parameters is clearly

infeasible, so periodicity must be addressed.

3.2.3 Complex geometry

Storage devices often have complex internal geometry. Hard disk drives in par-

ticular have long ago moved away from a linear cylinder-head-sector mapping. Modern

hard disk drives use zoning, which varies the number of sectors per track in each cylin-

der. Skewed layouts, in which the angular position of the first sector of each track varies

across tracks, are employed to reduce rotational latency caused by misses when switch-

ing tracks. Many modern hard disk drives also use serpentine layouts, in which the
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logical tracks zig-zag inward and outward across the disk (see fig. 3.3). This is intended

to reduce head switching. There are multiple variants, including cylinder, surface, and

hybrid [46]. Geometrical details are not typically provided by the manufacturers and

are likely to change as better layouts are found. Even worse, geometry varies from

drive to drive even within a model line [63], meaning that perfect accuracy requires this

extraction be done for the specific disk being modeled.

After modification, we were able to extract the layout of a drive using DIG [46].

This is very time-consuming, requiring days to complete. The results were also full of

errors that had to be manually corrected using hopefully reasonable assumptions about

the disk’s layout. These were most likely caused by fluctuations in timing causing DIG

to report a false positive or negative about a track boundary. DIG’s MIMD algorithm,

while necessary and useful, often multiplied these errors across tracks. We suspect that

the final result still contains undetected errors.

Another tool, DIXtrac, should be faster and more accurate but does not sup-

port drives with serpentine layouts [93]. DIXtrac works by issuing SCSI commands to

directly query the drive about the physical locations of sectors, and therefore does not

support interfaces such as SATA.

In RAID arrays, the geometry may be viewed as the particular striping and

parity strategies in use. For large arrays with many component drives, geometry also

includes the arrangement of controllers, busses, etc. that may be shared among some

but not all drives.

SSDs are internally divided into channels, packages, dies, planes, blocks, and

pages [6, 32]. These allow for differing degrees and granularities of parallelism [58]. The
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sizes and layouts of these structures define the SSD geometry.

3.2.4 Request reordering

Many storage devices support a request queue within the device, a feature

called Native Command Queuing (NCQ) in SATA. Since this queue is held in the device,

the requests can be reordered using details not readily available to the host. For hard

disk drives, this includes the exact cylinder and angular position of the sectors, as

well as the angular position of the platter. Devices may also use different scheduling

algorithms to determine the ordering, so predicting the ordering is difficult even if the

exact geometry is known. Reordering also means that a request’s response time can

depend on requests issued later. In other words, if request A is sent to the device, then

request B, it is possible for A’s time to depend on B’s parameters and access time.

Request reordering is a large factor due to the amount of time a request spends

in the queue. For a queue size of 32 (the size of the native command queue in our test

device, and the maximum size of an NCQ queue), a sequential request on a loaded device

will spend approximately 1/32 of its time being physically processed and 31/32 of its

time in the queue. If the queue is heavily reordered (due to random accesses or bad

sectors), the amount of time spent in the queue will vary wildly, causing response times

to vary wildly. Random block accesses can be caused by fragmented files or metadata

access, so even sequential file access may induce reordering.

Simple models may assume that there is only one queue and that only one

request may be physically serviced at a time, as shown in fig. 3.4. This is mostly

true for hard disk drives but is not true for RAID arrays and SSDs. This assumption

would allow us to split the model into two parts, a request scheduler model and an

access time model. These are then black box models on their respective subproblems.

Unfortunately, this assumption is not valid in general.

3.2.5 Caching

Caching strategies can be very complex, vary between models, and are not

exposed to the user. Beyond simply the cache size, caches may have an internal struc-

ture, as well as many possibilities for replacement policies and flush policies. By design,
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caches can have a significant impact on performance and therefore should not be ignored

by a performance model.

3.2.6 Nonlinearity and discontinuity

Response time is highly nonlinear. Read-ahead, caching, reordering, etc. intro-

duce step functions in the response time function. Access time is also highly nonlinear,

partly due to the rotational nature of the drive (for hard disk drives). Rotational la-

tency adds a sawtooth to the access time function which is extremely high frequency.

As an example of nonlinearity, fig. 3.5 shows seek times for the first 1000 tracks of the

test hard disk drive.

3.2.7 Nondeterminism

Response time is not entirely deterministic. Small variations should be ex-

pected, since this involves timing measurements of a physical process. Measurement

error can creep in through scheduler noise on the CPU. Actual response times can vary

as well, due to unrelated bus traffic and variations in seek time, settle time, and rotation

time.

Rotation misses can amplify small variations into quite large ones. An arbi-

trarily small change in seek time can mean that a sector which could barely be read
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during the current rotation has to wait for another rotation, adding a rotational latency

to the response time. For our test devices, this means that response time can easily

vary nondeterministically by 8.33 ms.

We measured the nondeterminism of our test devices by issuing identical pairs

of requests repeatedly. We calculated the mean absolute deviation from the median

(MAD-median) for the access time of the second request. This is equivalent to measuring

the mean absolute error when using the median as the prediction. For HD1, we

measured the MAD-median to be 0.142 ms, and for HD2 it is 0.024 ms. When rotation

misses are excluded, these fall to 0.003 ms and 0.003 ms. For further details about HD1

and HD2, see section 3.3.

The nature of the nondeterminism affects the design and evaluation of the

model. The non-Gaussian nature of the deviations affects our choice of error function

(section 4.2), making mean square error less desirable. Nondeterminism also means that

a predictor will have a non-zero lower bound on error, because even a perfect predictor

cannot predict inherently nondeterministic fluctuations. For our selected error function

19



(section 4.2.5), this lower bound is given by the MAD-median above.

3.2.8 Other internal and external factors not addressed

Modern storage devices can be affected by factors difficult or impossible to

account for. These include vibration [106, 92] and temperature [91]. Because these are

difficult to measure and have little impact in normal operating environments, we consider

their effects to be out of scope. Devices may also include power saving features [54].

Because our use cases focus on performance of heavy workloads, we consider power

saving features to be out of scope.

3.3 Devices studied

We tested our approach against two hard disk drives. The first, which we

call HD1, is a Western Digital Black WD5002AALX 500 GB 7200 RPM, with a total of

976,773,168 sectors. It has a cache size of 32 MB and NCQ queue length of 32. The

second hard drive, HD2, is a Seagate ST31000340SV 1 TB 7200 RPM, with a total of

1,953,525,168 sectors. It also has a cache size of 32 MB and NCQ queue length of 32.

We originally studied HD1 in a Kingwin EZ-Dock external enclosure (model

EZD-2535), connected via e-SATA. Due to predictability problems that seem to be

caused by the enclosure or connector, we moved the drive to an internal bay.

In the final setup, both drives were installed internally and connected with

SATA. The host runs 64-bit Ubuntu Linux, kernel version 2.6.35-28-server. It has an

Intel Core i7 quad-core CPU (plus hyper-threading) running at 2.80 GHz and 12 GB of

RAM.

3.4 Capturing response times

Block-level traces were usually captured using blktrace. The value that we

define to be response time is the D2C or device-to-completion time. This is the time

between the OS IO scheduler sending the request to the device driver and receiving a

response from the device driver. Tracing was done below the OS IO scheduler because

that is better understood and will likely be modeled separately. To the best of our
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knowledge, there is no simple way to capture traces excluding time spent in the device

driver, short of bus-level tracing. This requires special hardware setup, though, and the

benefit likely to be gained was very small compared to the work required. Because of

the speeds of modern CPUs compared to hard disk drives, the time spent in the device

driver should be negligible compared to the time spent in the hard disk drive.

In some cases, especially for random read workloads against hard disk drives,

traces were captured with a user space program. The program opens the device as a file

in direct mode, and latency is defined as the latency of a pread64 call. While slightly

less accurate, this method makes it much easier to retrieve the data and is immune to

kernel state issues with blktrace which occasionally require reboots. For random read

workloads against hard disk drives, the latency of the hard disk drive is significantly

greater than latency introduced by the user-space-level tracing, so the amount of noise

in the data should be acceptable.

Before capturing data, the OS’s scheduler was set to noop (FIFO), software

read-ahead was disabled, and the read and write caches were flushed. This should ensure

that the OS performs minimal processing of I/O requests so that observed patterns can

be trusted to be caused by the storage device.
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Chapter 4

Latency modeling

This chapter is about access time modeling from a machine learning point of

view, specifically, challenges and how error should be measured.

Access time modeling is challenging for our use cases (see chapter 1) particu-

larly because of lack of feedback, low memory constraints, and low latency constraints.

These challenges shape our choices when designing a model.

Determining how to measure error is crucial in machine learning, because not

only is it used to report results, but the choice of error function actually affects what

model is produced. We chose mean absolute error as the error function for access

times (section 4.2.1) and mean square error of 1-of-k encoding as the error function for

scheduling (section 4.3.1.3).

4.1 Challenges

Besides the difficulties in modeling storage devices themselves, there are addi-

tional challenges posed by the environment in which our model would run.

4.1.1 Lack of feedback

When used as part of a larger simulation, the model would not have feedback

from the storage device being modeled. This means that the model cannot correct for

how long a request actually took, or know how accurate its predictions are. In machine

learning terminology, we are limited to offline models, as opposed to online models,
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which receive feedback.

When feedback is available, a linear model can be sufficient for many prob-

lems. The feedback corrects small deviations between the predicted and actual state,

preventing state errors from building up. Without feedback, these errors accumulate,

and more accurate models are needed to prevent the errors in the first place. Since the

phenomena of interest are inherently nonlinear, linear models would yield large errors,

so nonlinear models are necessary.

For quality of service applications, the model will be able to receive feedback,

but it is not required to use that information. Making use of feedback when available

is left for future work.

4.1.2 Low footprint

The model is almost certainly going to be used as part of a larger system,

rather than by itself, so it is important to use as little memory and CPU as possible.

This is especially true for quality of service applications, where the entire purpose is to

make performance more reliable. This is also true for large system simulations, where a

storage device model is just one small part of a large system and cannot use up all the

simulation resources.

The model may also be used in parameter sweeps. These are when many

simulations are run with slightly varying parameters to see how those parameters affect

the result. Because the simulations are independent of each other, they may be run

concurrently. The storage device model must not be so heavyweight that it prevents

many simulations from being run concurrently.

4.1.3 Low prediction latency

The model must also generate predictions reasonably fast. If the model is 100%

accurate but takes an hour to predict each individual latency, it is worthless. This is

especially true for quality of service applications, where the time to predict a request

latency must be much less than the request latency itself. The prediction time must also

be less than the request latency when used in emulation. If the model is slower than the

device it is emulating, then the emulated performance cannot match the performance
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of the original device.

4.2 Quantifying response time accuracy

Given a sequence of actual values y0, y1, . . . , yN−1 and a sequence of predicted

values ŷ0, ŷ1, . . . , ŷN−1, we need an error function to define the difference between the

two sequences. Choice of error function during the training phase is crucial because

different functions will lead to different models being generated. Typically, best results

are seen when the training error function and test error function are the same.

Response times are obviously positive, since a response arrives after the cor-

responding request was sent, and they vary over several orders of magnitude. For our

test hard disk drive, response time can be as low as 0.002 ms for a read cache hit and as

high as 300 ms for a random read with a full queue. We want accuracy in both regimes,

so a good error function will look at the ratio of predicted versus actual response times.

4.2.1 L1 versus L2 type error functions

An L1 type error function is one that depends on the absolute value of the

error, such as mean absolute error (MAE):

1

N

∑
|yi − ŷi| (4.1, MAE)

whereas an L2 type error function is one that depends on the square of the error, such

as mean square error (MSE):
1

N

∑
(yi − ŷi)2 (4.2, MSE)

We use the terms “L1 type” and “L2 type” instead of “L1” and “L2” because

the error functions we discuss do not necessarily exactly match the definition of the Lp

norm, which is

‖v‖p :=

(∑
i

|vi|p
)1/p

(4.3, Lp norm)

where v = y − ŷ for an error function. Note that eq. (4.2, MSE) is equal to 1
N ‖y − ŷ‖

2
2.

While 1
N ‖y − ŷ‖

2
2 and ‖y − ŷ‖2 have the same minima, they differ in other properties.

One important difference is that the derivative of 1
N ‖y− ŷ‖

2
2 is separable in terms of the

yis, while the derivative of ‖y − ŷ‖2 is not. This makes 1
N ‖y − ŷ‖

2
2 easier to optimize.
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Many machine learning approaches have traditionally used an L2 type error

function, partly because it is easier to study analytically, and partly because its gradient

is linear, making it simpler to minimize. However, it is sensitive to outliers. A single

value that is very wrong can affect the error disproportionately. An L1 type error

function punishes outliers to a smaller extent, making it more robust.

Another way of looking at it is that an L2 type error function yields models

that predict the mean of possible values, given their uncertainty, whereas an L1 type

error function yields models that predict the median of possible values. To see this,

consider

arg min
ŷ

∑
i

(ŷ − yi)2 (4.4)

To solve, we set the derivative to zero:

0 =
∂

∂ŷ

∑
i

(ŷ − yi)2 (4.5)

=
∑
i

2(ŷ − yi) (4.6)

= 2nŷ − 2
∑
i

yi (4.7)

ŷ =
1

n

∑
i

yi (4.8)

Or for L1, consider

arg min
ŷ

∑
i

|ŷ − yi| (4.9)

Again, we set the derivative to zero:

0 =
∂

∂ŷ

∑
i

|ŷ − yi| (4.10)

=
∑
i

sgn(ŷ − yi) (4.11)

=
∑
i

1ŷ>yi −
∑
i

1ŷ<yi (4.12)

∑
i

1ŷ<yi =
∑
i

1ŷ>yi (4.13)

In other words, this is solved when equal numbers of yi are less than and greater than

ŷ, which means ŷ is the median.
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4.2.2 Request-level accuracy

The default error function for most machine learning algorithms is mean square

error (eq. (4.2, MSE)). This has many nice properties from a theoretical machine learning

point of view, including convexity (for linear models) and a linear derivative. Convex

functions are functions in which the value of every point in the interior of an interval

is less than or equal to the value of a linear function connecting the endpoints of the

interval. More intuitively, it means that the function is bowl-shaped and curves up far

from the minimum. This error function is most applicable when the values can range

over the entire real line. Unfortunately for our purposes, this is an L2-type error, which

is sensitive to outliers (section 4.2.1). Since our data contains a lot of outliers, we want

to avoid this error function.

A common definition of relative error is

1

N

∑ |yi − ŷi|
yi

(4.14)

Unfortunately, this penalizes overestimation more than underestimation. For example,

a prediction with y = 1, ŷ = 10 gives an error of 9, whereas y = 10, ŷ = 1 gives an

error of 0.9. This asymmetry produces models that nearly always underestimate the

true value.

Instead, we may predict the log of the response time instead of the response

time. Let yi = lnui. Then

1

N

∑
|yi − ŷi| =

1

N

∑
|lnui − ln ûi|

=
1

N

∑∣∣∣∣ln uiûi
∣∣∣∣ (4.15)

In other words, when using the mean absolute error function and predicting the log of

the response time, we minimize the ratio of the actual and predicted response times.

Furthermore, underestimation and overestimation are penalized by the same amount.

4.2.3 Trace-level accuracy

Assuming a loaded device, an intuitive error function is the relative difference

in total time to complete a series of requests. Ignoring queueing and reordering, this is
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Figure 4.1: Demerit compares CDFs

roughly equivalent to
max(

∑
y,
∑
ŷ)

min(
∑
y,
∑
ŷ)
− 1 (4.16)

Demerit is a more complex error function that is useful when the distribution

of response times is important, such as when there are downstream queueing effects.

Demerit (as defined by Ruemmler [91]) is the root mean square horizontal distance

between the cumulative distribution functions (CDFs) of the actual times and simulated

times (see fig. 4.1). More precisely:

demerit =

√∫ 1

0

(
f−1(y)− g−1(y)

)2
dy (4.17)

where f is the CDF of actual response times and g is the CDF of simulated response

times.

Of course, any trace-level error function is very coarse-grained. A specific

deficit is that trace-level error functions are unable to capture how closely the simulation

tracks changing workloads.
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4.2.4 Window-based error functions

A compromise between request-level and trace-level error functions is to use

window-based error functions, which allow for an adjustable degree of granularity. An

example error function for a window size w would be

w

N

N/w−1∑
i=0

(
max(si, ŝi)

min(si, ŝi)
− 1

)
(4.18)

where

si =
w−1∑
j=0

ywi+j (4.19)

ŝi =

w−1∑
j=0

ŷwi+j (4.20)

Note that when w = N , this is equivalent to eq. (4.16).

Very small window sizes are similar to request-level accuracy and will reflect

a model’s ability to reproduce fine-grained detail. Small windows also provide more in-

stances (training examples), since the number of windows is larger, which helps prevent

overfitting. Very large window sizes are similar to trace-level accuracy and are appropri-

ate for models which are unable to reproduce fine-grained detail, when fine-grained data

is noisy, or when long-term biases are important. If the model is not able to capture

long-term state, windows should probably be at least 1000 requests wide, if not wider,

to capture stateful behavior mentioned in section 3.2.1. If sliding windows are not used,

the width should probably be several multiples of this to minimize the effect of states

starting in one window and ending in the next.

4.2.5 Selected error function

Because of our goal of request-level accuracy, and because of our current focus

on fixed-size random reads, our current error function is mean absolute error:

1

N

∑
i

|ŷi − yi| (4.21, MAE)

For more varied workloads, with a larger range in access times, a more appro-

priate error function would likely be the mean absolute error of the logarithm of the
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access time:
1

N

∑
i

|log ŷi − log yi| (4.22)

but since this thesis uses only random reads, we use eq. (4.21, MAE).

4.3 Quantifying scheduling accuracy

For a random-read workload, access time alone is insufficient to predict the

total latency. If multiple requests are outstanding, devices can schedule the requests in

a non-FIFO fashion. Predicting scheduling order is also necessary to predict the total

latency. Note that this thesis is focused solely on access time; scheduling is considered

as a factor relevant for future work.

We want to find a request scheduler that mimics the scheduler in a real de-

vice as closely as possible. The input to a scheduler is a sequence of n requests, R =

{r0, r1, r2, . . . , rN−1}, and the output is a permuted sequence, R′ = {r′0, r′1, r′2, . . . , r′N−1}.
The scheduler has a fixed, finite maximum queue length Q, meaning that at any time,

at most Q requests have been issued for which responses have not been received.

A simple storage device with one queue and one physical medium is shown in

fig. 3.4. We define an injection event to be the time a request is sent to the device and

consequently inserted into the queue. An ejection event is when the scheduler removes

a request from the queue and sends it to the physical medium. Since we cannot measure

this directly, we define the ejection time to be the time the response is received for the

previous request, or for an idle drive, the ejection time is the same as the injection time.

To quantify a scheduler’s accuracy, we need an error function, a few of which

are outlined here. In this section, all indexing is 0-based.

4.3.1 Per-request error functions

For these error functions, we assume that the actual ejected request is the

request ejected from both the device and simulator queues. In other words, the contents

of the device and simulator queues are always the same (ignoring order). Therefore, we

can refer to the set of requests in the queue without ambiguity.
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A per-request error function computes, for each ejection, some notion of dis-

tance between the actual ejected request and the predicted ejected request. On ejection

(ejectt), let at be the actual ejected request, pt be the predicted ejected request, and qt

be the set of requests in the queue. The error function defines a per-request distance

d(at, pt, qt) satisfying 0 ≤ d(at, pt, qt) ≤ Q, and the total error is given by the mean of d

normalized by the queue length:

error =
1

N

∑
ejectt

d(at, pt, qt)

|qt|
(4.23)

satisfying 0 ≤ error ≤ 1.

4.3.1.1 Mistake count

The distance is 0 if the prediction is correct, and |q| otherwise. This means

that error is simply the number of mistakes divided by the number of predictions. This

is simple, but not ideal, because every mistake is given equal weight.

4.3.1.2 Scheduler rank distance

The scheduler predicts ejections by applying a function w : Request→ R which

takes a request in the queue (and implicit context such as the previous ejected request)

and assigns a weight. The queued request with the highest weight is the predicted

ejection. The distance is the number of requests with higher weight than at.

d(a, p, q) = |{r ∈ q : r 6= a,w(r) ≥ w(a)}| (4.24)

If the error is non-zero, it tells us how “close” we were to being right; if the

error is 1, our second guess was correct, if the error is 2, our third guess was correct, etc.

While this error function may be interesting for training, it is less useful for evaluation.

In the end, it does not matter if the scheduler was close to predicting the correct answer;

only the actual prediction is relevant.

4.3.1.3 Mean square error of 1-of-k encoding

Similar to scheduler rank distance, the scheduler predicts ejections by applying

a function w : Request → R which takes a request in the queue (and implicit context
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such as the previous ejected request) and assigns a weight. The queued request with

the highest weight is the predicted ejection. The distance is the mean square error of

w compared to the 1-of-k encoding.

d(a, p, q) =
1

|q|
∑
r∈q

(w(r)− 1r=a)2 (4.25)

This is a poor error function for determining how well the scheduler performs,

because identical ejection sequences can have different errors, but it is useful for training

because it is differentiable. We discuss this further in section 4.3.3.

4.3.1.4 Injection distance

The distance is the number of requests in the queue injected between at and

pt, plus one if at 6= pt. Let a ≺inject b mean that request a was injected before request

b.

d(a, p, q) =


|{r ∈ q : a �inject r ≺inject p}| a ≺inject p
|{r ∈ q : p �inject r ≺inject a}| p ≺inject a
0 a = p

(4.26)

This error function is probably of little use, because injection order is largely

irrelevant. For example, consider the request sequence

a, b, c, d, e, f, g (4.27)

and the response sequences

predicted = a,g, b, c, d, e, f (4.28)

actual = g,a, b, c, d, e, f (4.29)

the injection distance error function would report a large error, because a and g are

far apart in the request stream, even though the response sequences are actually very

similar.

4.3.1.5 Predicted ejection distance

The predicted ejection order is not defined at any particular time step, because

the scheduler only predicts the next ejection, not the ones that follow it (although, see
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section 4.3.1.2). Furthermore, because the actual ejected request is the one removed

from the queue, the scheduler may predict the same request multiple times, or not at

all. This means that a global predicted ejection order is not defined.

If it was defined, a non-zero error would mean that the actual ejected request

was ejected sooner than predicted, and the error measures how much. The predicted

ejected request is ejected early, and the error function doesn’t tell us how much, but we

could infer it from the actual ejection order.

4.3.1.6 Actual ejection distance

The distance is the number of requests in the queue that will be ejected after

at and before pt, plus one if at 6= pt. Let a ≺eject b mean that request a is ejected before

request b. Note that at �eject pt.

d(a, p, q) = |{r ∈ q : a �eject r ≺eject p}| (4.30)

This is the most useful per-request error function. It is computable (unlike pre-

dicted ejection distance), utilizes available relevant information (unlike mistake count),

and ignores irrelevant information (unlike injection distance and scheduler rank dis-

tance).

4.3.2 Permutation-based error functions

A permutation-based error function compares the full actual order output by

the device and the full predicted order output by the simulator. Simulator error is

compounded, and the two outputs of size N are compared.

In this section, a permutation of length N is a sequence of the numbers 0

through N − 1 (inclusive), with each number occurring exactly once. The identity

permutation 1S is simply the numbers in order ({0, 1, 2, ..., N − 1}).
The sections below will define an error function M(τ) which measures the

distance from the permutation τ to 1S . We require M(τ) = M(τ−1), M(1S) = 0, and

M(τ) > 0 for τ 6= 1S . Let R̂′ be the predicted sequence of responses. Let σ be the

permutation from R to R′, and let σ̂ be the permutation from R to R̂′. The error is

then

error = M(σ−1σ̂) (4.31)
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Note that when R̂′ = R′, then σ̂ = σ, so error = M(σ−1σ) = M(1S) = 0, and the error

is otherwise positive.

Our set of possible permutations P (which is limited by the queue size q)

is known as the set of q-bounded permutations. For our values of q and N , P is

much smaller than the entire set of permutations. Unfortunately, P is not closed under

composition or inversion.

4.3.2.1 Inversion count

The inversion count of a permutation σ is the number of out-of-order pairs:

I(σ) = |{(i, j) : i < j, σi > σj}| (4.32)

We let M = I. This is also known as the unscaled or unnormalized Kendall’s tau. The

maximum error for a queue of size q is

max error =

 1
2N(N − 1) N ≤ 2q

(2N − 2q + 1)(q − 1) N > 2q
(4.33)

so we can calculate percent error if needed. (For proof, see appendix D).

The inversion count tells us how many responses are out of order between the

actual and predicted outputs; how many pairs of requests (a, b) such that a comes before

b in the actual order, but b comes before a in the predicted order (or vice-versa). For

example, given

R′ = {1, 2, 0} (4.34)

and

R̂′ = {1, 0, 2} (4.35)

the inversion count is 1 because the pair (0, 2) is inverted, i.e. 2 comes before 0 in the

actual order, but 0 comes before 2 in the predicted order.

4.3.2.2 Spearman’s footrule

Spearman’s footrule measures how far each element is moved from its original

position:

F (σ) =
∑
i

|i− σi| (4.36)
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and we let M = F .

This tells us how far apart each response is in the actual and predicted outputs;

if a particular response is at position 3 in one output, and it is at position 4 in the other

output, then its contribution to the error is 1. For example, given

R′ = {1, 2, 0} (4.37)

and

R̂′ = {1, 0, 2} (4.38)

the footrule is 2 because 0 moved by one slot and 2 moved by one slot.

Interestingly, the Diaconis-Graham (DG) inequality states that Spearman’s

Footrule and the inversion count are within a constant factor of each other [30]:

I(τ) ≤ F (τ) ≤ 2I(τ) (4.39)

Because of this similarity, neither has much intrinsic benefit over the other unless one

has a specific application in mind. However, since we have proof of the upper bound

for the inversion count, which makes it easier to interpret, we use the inversion count

as the preferred permutation-based measure of scheduler error.

4.3.3 Selected error function

Training and testing with the same error function virtually always results in

the lowest error. In other words, training with error function A and testing with error

function A will almost certainly give lower error than training with error function B and

testing with error function A. When the simulator is actually used, the error will com-

pound, since our assumption of offline machine learning means that there is no source of

correction. Testing is therefore best done with a permutation-based error function such

as inversion count. Unfortunately, training a neural net (described in sections 6.1.2

and 7.1) with a permutation-based error function and a gradient-based optimization

algorithm is extremely difficult due to the lack of separability and impossible due to

the fact that the gradient is zero everywhere it is defined. Since we use a RMSprop for

training, which is a gradient-based optimization algorithm, it is an absolute requirement

that the error function have a useful gradient. Because of this, training is performed

using mean square error of the 1-of-k encoding described in section 4.3.1.3.
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Chapter 5

Inherent uncertainties

Due to data capture limitations, and the physical nature of devices, any model

is limited in how accurately it can reproduce storage device performance. Here we

discuss some of those limitations and sources of uncertainty as well as the lower bound

they imply on model accuracy.

5.1 Nondeterminism

Since hardware is not entirely deterministic, we measured the amount of non-

determinism in the hard disk drives. Request pairs were submitted repeatedly and each

access time measured. Each pair was submitted and measured 25 times. The median

of those 25 measured access times was taken to be the “true” value of the access time

function for that pair of sectors. We then computed the mean absolute error of all the

measurements compared with the median, treating the measurements as if they were

predictions. (In statistics, this is known as the “sample mean absolute deviation from

the median,” or sample MAD-median.) This error was computed for many independent

sectors pairs and averaged.

More formally, for each of N = 100,000 random sector pairs (ai, bi), K = 25

samples sik were taken. To capture sample sik, a read is issued for sector ai, then a

read is issued for sector bi. sik is then defined to be equal to the completion time for bi
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minus the completion time for ai. The MAD-median is

mi =
1

K

∑
k

|sik −median(si1, si2, . . . , siK)| (5.1)

and this is averaged over all generated sector pairs:

average MAD-median =
1

N

∑
i

mi (5.2)

=
1

NK

∑
ik

|sik −median(si1, si2, . . . , siK)| (5.3)

After sampling from the first 237,631 sectors of HD1, the mean absolute de-

viation from the median is 0.048 ms. This means that the lowest mean absolute error

achievable over this range is about 0.048 ms.

After sampling from the entirety of HD1, the mean absolute deviation from

the median is 0.147 ms. This means that the lowest mean absolute error achievable is

about 0.147 ms. When adjusting for rotation misses, the mean absolute deviation from

the median is 0.003 ms. This shows that the vast majority of nondeterminism comes

from the number of rotations not being fixed.

After sampling from the entirety of HD2, the mean absolute deviation from the

median is 0.029 ms. When adjusting for rotation misses, the mean absolute deviation

from the median is 0.008 ms. This shows again that the vast majority of nondeterminism

comes from the number of rotations not being fixed, although the ratio is lower than

for HD1.

5.2 Seek versus rotation time

We also looked at the sum of the access time of reading sector B after sector A,

plus reading sector A after sector B (fig. 5.1). In other words, we read sector A, then B,

then A, and the value is the time difference between the two A responses. This has the

intriguing property of always being an integer multiple of the rotational latency of the

drive. (Unfortunately, predicting exactly which integer appears to be no simpler than

the prediction problem in general.) To better understand this, ignore B and consider A

only. Obviously, an integer number of rotations occurs between two reads of A, so the

time is an integer multiple of the rotational latency. Incorporating this knowledge into
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the structure of the model could either reduce error or reduce the amount of training

data required, at the expense of making further assumptions about the storage device.
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Figure 5.1: Time to read sector B after sector A, plus the time to read sector A after

sector B. Note that the total is an integer multiple of the rotational latency, 8.33 ms.

Also note that the segments overlap.
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Figure 5.2: One-dimensional slice through fig. 5.1. Note that, ignoring fuzzy edges, any

x-coordinate intersects exactly two lines.
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Chapter 6

Common machine learning approaches

Because we want to automatically generate models by computer, we turned to

machine learning. Our goal is an application of machine learning, not an advancement

of machine learning itself, so we wanted to avoid creating any new machine learning

approaches and instead rely on existing approaches.

Machine learning problems generally break down into choosing a data repre-

sentation, model, error function, and optimization method. Data representation is how

real-world observations are translated into numbers which can be manipulated by com-

puter. A model (more formally, a hypothesis space) describes describes how pieces of

data relate to each other, and specifically in the case of supervised machine learning

(described below), how the output relates to the input. Choice of model affects what

types of relationships are easily learned from the data. Error functions determine which

particular models are better than other models. Optimization methods are used to

choose a particular model from a set of models by minimizing the error function. We

discussed error functions in section 4.2, and non-trivial aspects of data representation

will be discussed in chapter 8. That leaves the choice of model and optimization method,

which are discussed in this chapter. Ensemble methods are a special category which are

difficult to split into model and optimization method, so they are discussed separately.

Our problem is naturally framed in terms of supervised machine learning. In

supervised machine learning, the model has access to sample input, output pairs. The

model is trained so its output matches the desired output as closely as possible. We

evaluated several models and optimization methods to see which best fit our needs.
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Our most important criteria are prediction speed, memory footprint, ability

to use a sparse data set, and accuracy. Training speed is less important, as long as it is

reasonable. Data can be captured at roughly 100 data points per second (depending on

workload details), so models are not limited by extremely small data set sizes. However,

since there are roughly 1018 data points which could potentially be captured, which

would take roughly half a billion years to capture, the model must be able to use

an extremely sparse sampling. Increased data set sizes also increase training time in

addition to data capture time. Since we are producing black-box models, we are not

interested in whether or not the approach produces models that are interpretable by

humans. In most of our use cases, a reference device is not available at runtime, so only

offline machine learning approaches are applicable.

A few properties of the access time function make machine learning difficult.

For one, the access time function has a large number of discontinuities. For example,

there are roughly half a million uniformly distributed values where increasing the start

sector of the current request by 1 will change the output by a large amount. Also,

the access time function has periodic or quasi-periodic components. If the machine

learning algorithm does not support periodic functions, this makes the access time

function appear to be much more information rich than it really is. A successful machine

learning approach must be able to handle these difficulties, either directly or through

preprocessing the data.

In general, models can be trained with multiple optimization methods, and

optimization methods can be applicable to multiple models. There are constraints,

though, that prevent all possible combinations from being meaningful or useful, and we

specify which combinations are commonly used. In some cases, a model has a single

commonly-used optimization method, or an optimization method is commonly used

for only a single model, and the distinction between model and optimization method

can be a little unclear. This is especially true for non-parametric models (defined in

section 6.1).

We chose neural nets as the most appropriate model. They are expressive,

interpolate smoothly, are relatively fast to evaluate, straightforward to train, and allow

us to embed the problem structure into the network. (See section 7.1.2 for details on
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subnets and weight sharing.)

6.1 Models

Models fall roughly into two categories: parametric and non-parametric.

A parametric model consists of a set of parameters θ in a parameter space

Θ ⊂ Rd that parameterize a function fθ such that fθ(Xn) = Ŷn ≈ Yn. Parametric

models can be trained by defining an associated error function J(Ŷn, Yn) : RL×RL → R

that is small when Ŷn is near Yn and large when they are very different. (In general,

J could be defined on all instances simultaneously, i.e. on Ŷ and Y , but we assume

here that it is separable.) This error function is then minimized, which finds a set of

parameters θ that makes the predicted values Ŷn as close as possible to the actual values

Yn. More formally, training solves the problem

θ∗ = arg min
θ∈Θ

∑
n

J(fθ(Xn), Yn) (6.1)

and the trained model is fθ∗ . Methods of solving this are discussed in section 6.2.

Non-parametric is a misnomer, as it does not mean that the model has no

parameters, but rather that the number of parameters is not fixed. In other words,

there is still a notion that θ ∈ Θ, but there is no finite d independent of the number of

training examples such that Θ ⊂ Rd. The number of parameters grows without bound,

in some cases even requiring a parameter per input variable per example. In the limit,

some models essentially store the entire set of training data in their parameters.

Some models can be either parametric or non-parametric depending on the

optimization method, such as neural nets. Multilayer perceptrons, a traditional formu-

lation of neural nets, have a fixed number of neurons and connections and are therefore

parametric. However, more generic neural nets can be trained using algorithms that

allow adding new neurons and connections as training goes on, making the model non-

parametric. Models may also have a varying number of parameters, but with a fixed

upper bound, making them somewhere between parametric and non-parametric.

The distinction between parametric and non-parametric models is important

because many optimization methods are only applicable to models with a fixed number

of parameters, and particularly to models where ∂J/∂θ is defined and easy to calculate.
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6.1.1 Linear regression

Given a feature vector x, a linear regression model uses a learned matrix A

and vector b to predict

ŷ = Ax+ b (6.2)

Linear models are fast to train, fast to execute, and easy to understand. However, they

are not able to capture interactions between features or nonlinear behavior of a single

feature. This can be partially addressed by adding nonlinear functions of the original

features as new features. Unfortunately, this quickly leads to an explosion in the number

of features, which leads to a larger memory footprint and slower prediction speed.

When feedback is available, and when the function to predict is relatively

smooth, linear models are attractive. Their simplicity and speed are very advantageous,

and feedback prevents large errors from building up. QBox is an example of linear

latency models with feedback being used successfully for performance isolation [97].

Linear regression is parametric.

6.1.2 Neural nets

Artificial Neural Nets (ANNs) are inspired by simplified biological processes [73].

Neural nets consist of relatively simple neurons, each of which accepts multiple real-

valued inputs and generates one real-valued output. Neurons apply an activation func-

tion (also called a transfer function) to a weighted combination of their input vector

in:

out = a(b+ in · w) (6.3)

where common choices of activation function are

a(x) = x (linear) (6.4)

a(x) =
1

1 + e−x
(logistic sigmoid) (6.5)

a(x) = tanh(x) (6.6)

(For a linear activation function, multiplicative and additive constants are not necessary

because the same flexibility is accomplished by the combination of inputs.) We use the
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more general definition of sigmoid to mean any S-shaped curve, including tanh and

logistic sigmoid.

In the simplest and most common case, neurons are arranged in layers, often

with an input layer, a hidden layer, and an output layer. Each neuron in the hidden and

output layers is connected to each of the neurons in the previous layer. The input layer

simply outputs the inputs of the problem, the hidden layer uses a sigmoid activation

function, and the output uses either a linear or sigmoid activation function. In this

configuration, with the output neurons using a linear activation function, the universal

approximation theorem or Cybenko theorem, states that a neural net is a universal

approximator for continuous functions on compact subsets of Rn [25].

General neural nets are stateless. The most common way to add state is to

add past requests as additional inputs. Another approach is to use recurrent networks,

where the outputs for one instance are used as additional inputs for the next instance.

Unfortunately, this approach is slow to learn patterns involving large distances in time,

at least when using gradient descent [13]. RMSProp (section 6.2.5) should alleviate

this problem, since large time distances in a recurrent network is equivalent to a deep

feedforward network. Another approach is to change the structure of the recurrent net

and use Long Short-Term Memory (LSTM) [52].

An advantage of neural nets is their ability to learn complex interactions be-

tween features.

Neural nets are usually formulated as parametric models. However, some train-

ing algorithms, such as NEAT [101], change the number of connections or neurons. In

that case, the neural net is a non-parametric model.

6.1.3 Associative memory

An associative memory, also known as content-addressable memory, is a type

of neural net that stores patterns and will converge to a full pattern when presented

with a partial pattern [73]. Features take on boolean values, so continuous features

must be converted to boolean features, typically by binning. In other words, a single

continuous feature will be represented as multiple boolean features, each representing

a range of values. The discreteness requirement holds not only for the inputs but the
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outputs as well. The large number of continuous inputs and the fine granularity needed

for inputs and inputs means that a large number of bins is needed.

Hopfield networks, the traditional form of associative memory, do not scale

well. The number of unique input vectors that can be stored is sublinear in the length

of the input vector [80], although the number of parameters is quadratic. Hopfield

networks are parametric models.

6.1.4 Decision trees

Decision trees are trees where each inner node specifies a decision and each leaf

node specifies a result [70]. For a particular input, the tree is traversed starting at the

root, and descending left or right based on the decision. In the simplest case, decisions

are of the form “Is the value of feature x greater than the constant y?” and results are

constants. Decision trees are typically fast and capable of learning nonlinear functions.

Decision trees are formed top-down, and nodes are formed by looking at the

set of instances, which is initially the entire set. If the set is small, a leaf node is formed,

and the result at that node is the mean of the values. Otherwise, an inner node is formed

by finding a decision that divides the instances well. Essentially, the mean of the values

going left should be as different as possible from the mean of the values going right,

and the variances should be small. The left and right child nodes are then recursively

created with their respective partitions.

One disadvantage of decision trees is their statelessness. Again, this can be

addressed by adding past requests as inputs.

Another disadvantage is their difficulty in learning patterns with certain sym-

metries. For example, consider inputs (x, y, z) with x, y ∈ [0, 1], z ∈ [0, 0.1], and the

function f(x, y, z) = (x+y mod 1)+z. Assuming the inputs are uniformly distributed,

{f(x, y, z) : x < x∗} is distributed the same as {f(x, y, z) : x ≥ x∗} for any 0 < x∗ < 1,

and likewise for y. This means that there is no x∗ or y∗ that splits the set well, and the

algorithm will use something like z∗ = 0.05 instead. Note that after using a “bad” split

such as x∗ = 0.5, the next level down will have good splits, and the end result would

be much better than splitting on z∗. This is a result of the algorithm being greedy.

(Finding an optimal tree is NP-hard [66] and therefore impractical.) Since we see these
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symmetries in our data, decision trees are unlikely to have high accuracy.

Decision trees are non-parametric.

6.1.5 Nearest neighbor

Nearest neighbor simply finds the example that most closely matches the input,

and uses its value as the prediction [23]. Nearest neighbor is obviously capable of

learning any function as long as the examples are dense enough. The main disadvantages

are the required density, large memory footprint (all the examples must be stored), and

long search time. Indexing with a structure such as a k-d tree can ameliorate the search

cost.

Nearest neighbor is non-parametric.

6.1.6 Support vector regression

SVR (related to support vector machines, SVM) works by finding a subset of

the most useful training examples (so called support vectors) and combining them to

produce predictions [98]. SVR performs a modified form of linear regression and can

be extended to nonlinear regression by performing linear regression in an internal space

that may not be equal to the input space. Vectors in this internal space (which may be

quite large) do not need to be materialized, thanks to the kernel trick.

The kernel trick relies on the fact that only inner products between vectors in

the internal space are ever used. Therefore, instead of specifying a function φ from the

input space to the internal space, one need only specify a kernel function that is equal

to the inner product of outputs of some φ, i.e.

k(x, y) = 〈φ(x), φ(y)〉 (6.7)

Common choices for the kernel function include:

k(x, y) = (x · y + 1)d (polynomial) (6.8)

k(x, y) = exp(−γ‖x− y‖2) for γ > 0 (Gaussian) (6.9)

k(x, y) = tanh(κx · y + c) for some κ > 0 and c < 0 (hyperbolic tangent) (6.10)
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Figure 6.2: IOHMM

Choice of kernel function determines the type of nonlinearity introduced and

affects how well SVR will perform on a particular problem.

SVR is non-parametric.

6.1.7 Input-output hidden Markov models

An IOHMM is an HMM augmented to include input [12] (see fig. 6.2). The

state transition probabilities and output probabilities are then conditioned on the in-

put [12]. This is done by using neural nets to generate the state transition matrix and

output distribution per state, given the input.

IOHMMs have the advantage of natively supported time series data. However,

they assume that the state space is discrete. Some components of the state space for

storage devices, such as angular position for hard disk drives or time of the previous

request, are effectively continuous. IOHMMs could be mapped to the problem by dis-

cretizing the state space, but the number of states would be too large to practically

learn.

IOHMMs are parametric.
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6.1.8 Genetic programming

Genetic programming is a specific type of genetic algorithm which entails evolv-

ing programs [83]. These programs are typically represented as trees, with operators as

inner nodes and constants or variables as leaves. This is more expressive than the usual

approach with genetic algorithms, because genetic programming evolves the structure

of g, not just constants within a fixed formula.

One major advantage of this approach is its native support of time series.

The most straightforward way to model a stateful process with most machine learning

approaches is to include past stimuli in the model’s input. With a genetic programming

model, it is possible to include state directly as state variables.

We initially attempted to model latency using a stateful genetic programming

model. As with all evolutionary algorithms, genetic programming is trivial to parallelize

as long as the number of individuals in the population is not less than the number of

threads. We took advantage of this by training on multiple machines concurrently. This

model was successful in reproducing seek times and queue congestion, although it was

not able to model rotational effects. We saw slight improvements by using a cellular

variation, in which individuals are laid out on a grid and can only mate with neighbors.

This appears to help by reducing mixing and encouraging diversity.

Unfortunately, genetic programming is slow to train, due to the large number

of models that need to be created and evaluated.

Genetic programming is non-parametric.

6.2 Optimization methods

An optimization method takes a model and modifies the parameters to generate

a better model. Equivalently, it takes a point in parameter space θ and finds another

point θ′ such that J(θ′) ≤ J(θ) (with good probability). Most provide the guarantee,

or at least the intent, that running the optimization longer asymptotically results in a

model at a local optimum. Most cannot guarantee convergence to the global optimum

unless the error function J is convex in terms of θ.

Most of the optimization methods here are applicable only to parametric mod-
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els, and particularly to models where the gradient of the error function with respect to

the parameters, i.e.

∇iJ (t)
n :=

∂

∂θi
J
(
Ŷ (t)
n , Yn

)
(6.11)

is defined and easy to calculate. All of the methods are applicable to at least one model

described in section 6.1.

We use RMSProp because it is a stochastic method and our large data sets

means that stochastic methods vastly outperform batch methods, and because RM-

SProp performs better than its competitors for deep neural networks, which are our

chosen model.

6.2.1 Gradient descent (GD)

Gradient descent (GD), sometimes called steepest descent or method of steep-

est descent, simply takes steps “downhill,” in the direction opposite the gradient. In

the context of neural networks, GD is also known as backpropagation or batch back-

propagation. Given parameters θ(t) at time t and a learning rate γ, the GD update

is

θ(t+1) = θ(t) − γ 1

N

∑
n

∇J (t)
n (6.12)

Gradient descent has good convergence properties in terms of the number of

iterations [16]. However, it is a batch algorithm, meaning that each iteration requires

summing over all training examples. Better results in practice can be seen with stochas-

tic gradient descent (SGD).

6.2.2 Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD) is a modification of gradient descent that

takes more frequent, less accurate steps. Instead of averaging the gradient over all train-

ing examples, SGD takes a step based on the gradient evaluated on a single, randomly-

chosen training example. In the context of neural networks, SGD is also known as

stochastic backpropagation. Given parameters θ(t) at time t and a learning rate γ(t),

the SGD update is

θ(t+1) = θ(t) − γ(t)∇J (t)
n (with randomly chosen n) (6.13)
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To guarantee convergence, the learning rate γ(t) must satisfy [16]

∞∑
t=0

γ(t) =∞ (6.14)

∞∑
t=0

(
γ(t)
)2

<∞ (6.15)

One good choice is to use

γ(t) =
γ(0)

1 + ηt
(6.16)

where γ(0) is the initial learning rate and η is the learning rate dropoff rate. The

optimal value of η is γ(0)λmin, where λmin is the smallest eigenvalue of the Hessian

at the optimum [16]. Since λmin may not be known, η may instead be chosen using

cross-validation or other hyperparameter tuning techniques.

SGD converges more slowly than GD in terms of iterations, since each step

uses a noisy estimation of the gradient. However, since steps are much faster, SGD is

often much faster in practice for large data sets. SGD is also more resistant to local

minima [15]. This resistance to local minima is shared with genetic optimization.

6.2.3 Conjugate gradient (CG)

Conjugate gradient (CG) chooses search directions that are (in some sense)

orthogonal to previous search directions [96]. The idea is to reduce redundancy by not

searching in the same direction multiple times. CG is a batch algorithm (like GD), so

each iteration is slow to compute. Nonlinear CG requires a line search at each step. This

means that at each step, once a search direction is chosen, a new optimization problem

must be solved to find how far to move in that direction. The nested optimization

problem further increases the cost of each iteration.

6.2.4 Resilient propagation (Rprop)

Rprop is a batch algorithm that looks at the sign but not the magnitude of

each term in the gradient. One advantage of this approach is that it is unaffected by the

fact that for deeper networks, the gradient can be very small or very large for weights

near the input. Rprop comes in at least four variants called iRprop+, iRprop-, Rprop+,
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and Rprop-. It performs well compared to other algorithms [55]. Unfortunately, we find

that Rprop often diverges on our test dataset when combined with weight sharing.

6.2.5 RMSProp

RMSProp [104] is a stochastic algorithm similar to Rprop. The learning rate

for a parameter is divided by a running average of the magnitudes of the gradients for

that parameter. This acts as a form of preconditioning which normalizes the impact of

the gradient to be roughly the same for each parameter. This is especially useful for

deep neural networks, where the gradients of weights in early layers tend to have much

smaller or much larger magnitudes than gradients of weights in later layers.

θ
(t+1)
i = θ

(t)
i − γ

(t)∇iJ
(t)
n√
κ

(t)
i

(with randomly chosen n) (6.17)

κ
(t+1)
i = (1− α)κ

(t)
i + α

(
∇iJ (t)

n

)2
(with same randomly chosen n) (6.18)

Here, κ
(t)
i is the running average of the squared magnitude of the i-th com-

ponent of the gradient at time t, and α ∈ (0, 1) determines how quickly the running

average responds to changes. Since

∇iJ (t)
n√
κ

(t)
i

≈ 1 (6.19)

each component in the parameter update has approximately equal magnitude. While not

as ideal theoretically as making use of the Hessian [27], RMSProp is easy to implement

and only requires local information when scaling parameter updates.

6.2.6 Quickprop

Quickprop (sometimes called Qprop) assumes that the error surface is locally

parabolic and jumps to the minimum of the parabola [110]. Equivalently, it assumes

that the gradient is locally linear and jumps to the root. Quickprop does not work well in

non-convex areas of the error surface. In concave areas of the error surface, Quickprop

will construct a concave parabola and actually jump toward a local maximum, not

minimum.
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6.2.7 L-BFGS

Limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) is a quasi-Newton

optimization method. It uses an implicit representation of an approximation of the in-

verse Hessian matrix and does not require computing second derivatives [74]. It does

require storing several recent parameter and gradient deltas, however, which increases

memory consumption and compute cost.

6.2.8 Levenberg-Marquardt (LM)

This is an optimization algorithm that interpolates between the Gauss-Newton

algorithm and gradient descent. One major disadvantage is that it requires multiplying

large matrices (N ×M and M ×N , where N is the number of parameters and M is the

number of training examples) [115].

6.2.9 Simulated annealing

Simulated annealing [47] is intended to be analogous to annealing in metallurgy.

The process starts at a high temperature, where the parameters change almost randomly.

The temperature is slowly reduced, meaning the probability of switching from a good set

of parameters to a worse set of parameters is reduced. Finally, the temperature reaches

zero, where the algorithm behaves the same as hill climbing, i.e. parameters are updated

only if the new configuration is better than the old one. Simulated annealing does not

require gradient information and is good at escaping local minima, but it can be slow to

converge. Simulated annealing can be used with parametric or non-parametric models.

6.2.10 Genetic algorithms (GA)

Genetic algorithms are optimization methods that “evolve” a set of inputs to

minimize or maximize a particular function [21]. If the function is to be minimized,

it is typically called the error function or loss function, and if it is to be maximized,

it is typically called the fitness function. Each set of inputs, or individual, is usually

represented as a string.
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A population of individuals is initialized to randomly generated strings. Each

individual in the population is evaluated using the fitness function/error function. In-

dividuals with low fitness/high error are discarded. A new population is generated by

applying crossover and mutation operators to the remainder. Then, the individuals in

the new population are evaluated, another population is created, and so on.

Genetic algorithms are similar to simulated annealing in that they do not

require gradient information and are good at escaping local minima, but can be slow

to converge. They are trivial to parallelize, with each individual being evaluated in a

separate thread. Genetic algorithms can be used with parametric or non-parametric

models.

6.3 Ensemble methods

Ensemble methods create a composite model from many base models. They

are especially useful with base models which are fast to evaluate, since the compute cost

usually grow linearly with the number of base models in the ensemble.

6.3.1 Bagging

Bagging, named for Bootstrap AGgregation, averages many independent mod-

els [18]. This is commonly used with decision trees.

Given a training dataset D, many resampled datasets B1, B2, . . . , Bk are

created. Each consists of elements chosen with replacement from D, and are often the

same size as D. Each resampled dataset Bi is used to train a base model f̂i, and the

final model is simply the average over f̂i.

Bagging does not typically cause overfitting.

6.3.2 Boosting

Boosting is a general framework which generates base models serially, training

each new base model to reduce the residual error. The final model is then the sum of

the base models.

There are many boosting algorithms, but we will use gradient boosting [41]
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as an example and assume we are minimizing mean square error. The first model f̂0

is simply a constant, which is the mean of the values to predict y. Each new model

f̂m is then trained on the residual error (x, y −
∑m−1

i=0 f̂i(x)), and the final model is

f̂(x) =
∑

i f̂i(x).

Because the base models are not independent, each new base model increases

the number of parameters in the composite model. This can lead to overfitting if steps

are not taken to prevent it.
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Chapter 7

Automatic learning

This chapter is about our basic approach and how it performs. In this chapter,

because of the difficulty of the general problem, we focus on a simpler subproblem by

restricting ourselves to a single zone of a hard disk drive. Scaling and cross-zone effects

are addressed in later chapters. Our basic approach is to feed sines and cosines into

specially constructed neural nets. In this chapter, we use Fourier analysis to discover

the sines and cosines, although we describe the disadvantages of Fourier analysis and

an alternate approach in chapter 8. We show that with Fourier analysis and specially

constructed neural nets, we can achieve low error over a single zone of a hard disk

drive. We describe empirical results of training with different error functions described

in section 4.2.2 and show that mean absolute error is most appropriate for our problem.

We also describe a method for automatically tuning neural network hyperparameters,

since the hyperparameters (which describe the network structure) are very influential

on the final results but difficult to tune.

7.1 Neural nets

Neural nets are the machine learning algorithm that we use for predicting

response times. Neural nets have many advantages, including that they interpolate

smoothly, have small memory requirements, support continuous inputs, and are rea-

sonably fast to train (compared to genetic programming). Neural nets do not require

choosing a kernel function, which is a critical choice for SVR [20], but not at all an obvi-
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Figure 7.1: Network architecture when subnets are not used

ous choice for response time prediction. Neural nets also allow us to use weight sharing,

described in section 7.1.2. Finally, neural nets are capable of reproducing behavior with

arbitrary periods based on a base set of periodic inputs, described in section 8.3.

7.1.1 General configuration

We start with a configuration that is commonly used and well-studied. We

use a multilayer perceptron (MLP), which is a neural network that consists of layers

of neurons, where each layer is typically fully connected with the next. MLPs are

feed-forward, which means that signals propagate in one direction, with no loops.

As is common with MLPs, the neural net has three layers: input, hidden,

and output. (When using shared weights, described in section 7.1.2, there are multiple

hidden layers.) The input layer has a neuron per input feature. Neurons in this layer do

not perform any computation; they simply output the value in their part of the input

vector. The hidden layer consists of a relatively large number of neurons, all with a

nonlinear transfer function. The output layer consists of a single neuron with the linear

transfer function x, which allows its value to vary over the entire real line.

Remember that commonly used transfer functions are 1
1+e−x and tanh(x)

(eqs. (6.5) and (6.6)). The transfer function that we use for hidden neurons is 1
1+e−x .

We have also tried tanh(x), but it seems to make no substantive difference, which makes

sense because 1
1+e−x = 1

2 tanh(1
2x) + 1

2 . Another transfer function worth exploring is

x
1+|x| . While similar in shape to tanh(x), x

1+|x| is roughly 10 times faster to calculate

than 1
1+e−x .
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7.1.2 Shared weights

A useful and device-independent assumption is that all sectors map from LBNs

to geometrical space in the same way. This is encoded into the neural net by applying

weight sharing across two subnets (see fig. 7.2). This means that the weights in each

neuron in subnet 1 are identical to the weights in the corresponding neuron in subnet 2.

This is essentially a very simple convolutional neural net with only two instances of the

convolving subnet and no overlap of inputs. A similar approach was used by Kindermann

et al . for solving functional equations with neural nets [60]. Another interpretation is

that the subnets perform feature extraction, knowing that the two sectors are instances

in the same input space. This is often used in image processing [105]. Effectively, this

means that instead of a single data point from a 2D function for each sector pair, the

subnets get two data points from a 1D function. This makes our sampling effectively

much denser.

More formally, the net assumes f can be expressed as

f(a, b) = h(g(a), g(b)) (7.1)

where g (the subnet) maps from LBNs to geometry, and h (the main net) maps from

geometry to access time. Reuse of g, which is equivalent to weight sharing in the neural

network, formalizes the assumption that all sectors map to geometry in the same way.

Technically, f is not restricted as long as the intermediate space is at least as large as the

input space, and if g is expressive enough, since one could always use g(x) = x and h = f ,

but weight sharing predisposes the neural net to learn more useful decompositions.

All neurons use a sigmoidal activation function except the final output, which

is linear. This is common practice for neural nets performing regression [38]. The

number of layers and their sizes are chosen as per section 7.3.

7.1.3 Training

We use RMSProp (section 6.2.5) with a minibatch size of 10 to train the neural

net. The networks can be relatively deep (3–10 hidden layers), which causes problems

with plain gradient descent due to the exploding/vanishing gradient problem. We also

found that stochastic variants are much faster than batch training, probably due to

56



a

sin(2πa/p1)

cos(2πa/p1)
...

...

b

sin(2πb/p1)

cos(2πb/p1)
...

...

Subnet 1

Subnet 2 ...

H1 H2

H3

Figure 7.2: Network architecture when subnets are used. Note that the weights in

subnet 1 are identical to the weights in subnet 2.

our relatively large dataset sizes. Use of RMSProp actually turns out to be crucial for

training the neural net in a reasonable amount of time, since plain gradient descent does

not work for deep neural networks.

7.2 L1 norm versus L2 norm

We chose to minimize the L1 norm (equivalent to minimizing Mean Absolute

Error, or MAE) instead of the L2 norm (equivalent to minimizing Root Mean Square

Error, or RMSE) mainly because the L2 norm is known to be sensitive to outliers [8, 112].

Empirically, minimizing the L1 norm gives a tighter correspondence between

predicted and actual values compared with the L2 norm (fig. 7.3). We also found

that minimizing the L1 error reduces both the L1 error and, surprisingly, the L2 error

(table 7.1). In other words, minimizing the L1 error during training resulted in lower

L2 error during testing than minimizing the L2 error during training. We believe this

is probably due to the sensitivity of the L2 norm to non-Gaussian errors causing the

model to generalize poorly.
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L1 test error L2 test error

Minimizing L1 training error 0.139± 0.003 0.730± 0.019

Minimizing L2 training error 0.273± 0.005 0.799± 0.019

Table 7.1: Effect of minimizing L1 versus L2 as measured by L1 and L2, with 95%

confidence interval over 50 runs

Figure 7.3 shows large errors at extreme values. The cause is the fact that

the access time function has many large discontinuities (see fig. 7.7a) where it “wraps”

from the maximum to minimum value. Near a discontinuity, a small error may push

the predicted value to the wrong side of the discontinuity compared to the actual value,

yielding a large error. Hence, extreme values have a higher chance of large error.
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Figure 7.3: Comparison of L1 versus L2 norm for neural nets with subnets. (A narrow

cluster along the diagonal y = x is better.) High errors are seen at extreme values due

to discontinuities in the access time function. For details, see section 7.2.

7.3 Hyperparameter tuning

Hyperparameters are variables which affect what biases a model has or how

an algorithm learns and usually must be set before training begins. Neural network

hyperparameters include layer sizes, learning rate, momentum, and magnitudes of the
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initial weights. Hyperparameters are often tuned using some combination of manual

search and grid search [51, 68, 65, 14], although genetic algorithms are also used [69,

4, 57, 39]. Grid search is known to be inefficient if not all hyperparameters have equal

importance [14], and manual search is not reproducible. We use a genetic algorithm to

tune the machine learning algorithms’ hyperparameters.

A set of hyperparameters is evaluated by running the machine learning algo-

rithm with those parameters and evaluating its performance. Since training a neural

network or building an ensemble of decision trees is relatively expensive, we use a rela-

tively small population size to reduce the amount of computation needed.

The representation used in our genetic algorithm includes booleans (for periods

to be included or not, discussed more in section 8.1.5), positive integers (for layer sizes),

and positive reals (for the learning rate, momentum, and initial weight magnitudes).

Using a representation that matches our problem should provide better performance

than using a simple bit string [82]. When mutating, booleans are flipped, and integers

are incremented or decremented, and reals are multiplied by a log-normally distributed

value.

Initial hidden layer sizes were sampled from a log-normal distribution with

µ = ln 10 and σ = ln 10 (then cast to an integer). The initial learning rates were sampled

from a log-normal distribution with µ = ln(4× 10−3) and σ = ln 100. Momenta were

sampled uniformly from 0 to 1, which is the range of momentum values which are useful

and meaningful. The initial weight standard deviations were sampled from a log-normal

distribution with µ = 0 and σ = ln 10. Other than momentum, distributions are chosen

to be somewhat reasonable values based on experience and literature. The idea is that

the values do not need to be precise, since the genetic algorithm will tune them. There

just needs to be a reasonably high probability of choosing a value that is not outrageous.

Individuals were evaluated by training a neural net with stochastic backprop-

agation and minimizing the L1 error. Initial weights were sampled from a normal dis-

tribution with mean 0 and standard deviation that is a hyperparameter that depended

on the layer. A random 10% of the dataset was set aside as a test set, and the neural

net was trained on the remainder for 10 epochs. A penalty of 1.8× 10−5 per connection

was added to the error to discourage unnecessary bloat. This value for the penalty was
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chosen to be roughly 10% of the raw error.

After each generation, the best 25% was kept for mating, and the rest were dis-

carded. Random pairs were selected for mating, and attributes were randomly swapped

to generate pairs of children. Each child was mutated such that the expected number

of attributes changed was 5/8. On mutation, a layer size would be incremented or

decremented, and real values would be multiplied by a value sampled from a log-normal

distribution with µ = 0, σ2 = 10−2 (so that an “average” change would be ±10%).

Multiple generation lengths were tested to see if the optimal parameters depend

on the generation length. Generation length is the number of epochs spent training each

neural network.

The error of the genetic algorithm drops quickly, with most of the gain seen in

the first 50 generations (fig. 7.4). We ran the genetic algorithm for 400 generations to

ensure maximum benefit, but this is not necessary if one wants faster results.

0.3

0.35

0.4

0.45

0.5

0.55

0 50 100 150 200 250 300 350 400

E
rr

o
r

(L
1

n
or

m
in

m
s,

p
lu

s
p

en
al

ti
es

)

Generation

Figure 7.4: Error versus generation of the genetic algorithm for neural nets with subnets.

The neural net is trained to predict access times over the first zone of HD1. Note that

this is higher than the final error because 1) this error includes penalties, and 2) this

error is calculated based on neural nets trained for a smaller number of epochs.

For neural nets with subnets, the H2 layer (fig. 7.2), which corresponds to the

output of the g subnets, evolves to a relatively small size (about 6 or 7 neurons) with

little variance (fig. 7.5a). This suggests that the dimensionality of the space of physical
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sector locations is low, and that allowing for a larger intermediate space may actually

be detrimental.

When comparing the actual and predicted access time functions (fig. 7.7), we

see that the shape is matched very well. Even the notches in the stripes are in the

predicted locations.

Different experiments converge to the same values for most hyperparameters

regardless of generation length (fig. 7.5). This is useful because it means that the

hyperparameters can be chosen using a short generation length, and then the final

neural network can be trained for a longer period of time. This is the approach we

take, with neural nets being trained for 10 epochs during hyperparameter tuning, then

trained for 1000 epochs for the final evaluation. Using 10 epochs per generation for

hyperparameter tuning limits the amount of time spent in the hyperparameter tuning

phase, and training for 1000 epochs once the hyperparameters are chosen gives the

neural net time to reduce its error to a near-minimal value.
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(b) training time: 40 epochs per generation

Figure 7.5: Size of hidden layers versus generation. Training only for 10 epochs versus

40 epochs reveals about the same results.

Unsurprisingly, a higher learning rate is chosen when the generation length is

very short. This makes intuitive sense because if the generation stops while a neural

network’s error is still dropping rapidly, a small increase in the learning rate will provide

a large benefit. Even though the higher learning rate increases noise in the training error,

the early cutoff means that the training is stopped before this becomes a problem.
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Since the optimal learning rate (and an associated hyperparameter, the mo-

mentum) are dependent on how many epochs the neural net is trained for, and since the

number of epochs is significantly different for the final training phase (1000) than the

hyperparameter tuning phase (10), we discard those learned values and used fixed values

of 4× 10−4 for the learning rate and 0.3 for the momentum when training a network for

evaluation. Learning for the same number of epochs during the hyperparameter tuning

phase and the training phase would allow us to use the automatically tuned learning

rate and momentum, at the expense of the hyperparameter tuning phase taking 100

times as long to complete.

7.4 Results

7.4.1 Baseline data

For reference, we ran DIG (section 3.2.3) against HD1 (section 3.3). From the

DIG data, the track length at the beginning of the drive is 2528 sectors, and the skew

is 1.1908 ms, which corresponds to 361.37 sectors (given the rotation time of 8.33 ms).

We expected to see a dominant period of 2528 − 361.37 = 2166.63 sectors, which is a

frequency of 1/2166.63 = 4.62 · 10−4. From the Fourier analysis, the actual dominant

period is 1/(4.52 · 10−4) = 2212.99 sectors, which is close to our prediction of 2166.63.

7.4.2 Errors

Access time errors are listed in table 7.2. The first entry is the error for a

model that always predicts the mean value of the dataset.

When using decision trees, adding the sines and cosines as additional features

reduced the error noticeably. Bagging the decision trees reduced error further, but only

when the periodic information was included. The lowest mean absolute error achieved

with decision trees was 0.526 ms.

When using neural nets, adding the sines and cosines reduced the error sig-

nificantly. Weight sharing reduced the error further by a small but noticeable amount.

The lowest mean absolute error achieved with neural nets was 0.149 ms, which is close

to the inherent noise level of 0.048 ms (section 5.1).
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Most of the time, neural net tests with random periods fared worse than tests

with no period information. However, one test with random periods performed much

better, although not as well as tests with the correct period information. This appears

to have been caused by one of the random periods being nearly equal to twice the most

useful period.

When comparing the actual and predicted access time functions (fig. 7.7), we

see that the shape is matched very well. Even the notches in the stripes are in the

predicted locations.

Effectiveness of scheduling prediction was also tested (table 7.3). The entire

contents of the queue was presented to the machine learning algorithm, and the index

of the next request to complete was predicted (using a 1-of-k encoding with the neural

net). Neural nets outperformed decision trees, at least when the correct periodicity

information was provided. Again, we see that including the correct periodicity infor-

mation is crucial for the performance of both decision trees and neural nets. Weight

sharing had a much more significant impact than in the response time experiment. This

may be due to the fact that the scheduling experiment feeds a larger number of requests

into the neural net simultaneously, thereby increasing the number of weights that can

be shared. As previously noted, this thesis is focused solely on access time; scheduling

is considered as a factor relevant for future work.

7.4.3 Model creation time

The GA was run on a cluster with 72 cores. A population size of 144 individuals

was used, which gives 2 individuals per core for reasonable CPU utilization. For the

workload of 40,000 half-zero random reads over the first zone (237,631 sectors), each

individual was trained for 5 minutes, which gives 10 minutes per generation. Reasonable

results can be achieved after about 50 generations, which gives a total run time of 8

hours and 20 minutes. Larger regions will increase the amount of data and size of the

neural nets required, which will increase the training time. This time could be decreased

by starting with a better initial population and running for fewer generations.

When training an individual neural net, error initially drops rapidly, then

declines slowly (fig. 7.6). To give a sense of magnitude of training times, in one example,
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Figure 7.6: Error of the neural net over time while training

training for 5 minutes yields an error of about 0.27 ms, while training for an hour yields

an error of about 0.18 ms. Of course, all training time depends on the configuration

chosen and the computer running the training.
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Configuration L1 error (ms) L2 error (ms)
constant value 1.651± 0.017 2.014± 0.019

M
an

u
al

ly
tu

n
ed

d
ec

is
io

n
tr

ee
s no periods, w/o bagging 1.650± 0.001 2.014± 0.008

no periods, w/ bagging 1.655± 0.000 2.023± 0.004
random periods, w/o bagging 1.608± 0.062 1.969± 0.056
random periods, w/ bagging 1.545± 0.152 1.925± 0.180
Fourier periods, w/o bagging 1.082± 0.085 1.544± 0.183
Fourier periods, w/ bagging 0.748± 0.009 1.349± 0.338

A
u

to
-t

u
n

ed
d

ec
is

io
n

tr
ee

s no periods, w/o bagging 1.640± 0.009 2.006± 0.016
no periods, w/ bagging 1.649± 0.001 2.016± 0.005
random periods, w/o bagging 1.519± 0.169 2.022± 0.015
random periods, w/ bagging 1.058± 0.336 1.507± 0.295
Fourier periods, w/o bagging 0.865± 0.046 1.717± 0.129
Fourier periods, w/ bagging 0.526± 0.019 1.032± 0.018

M
an

u
al

ly
tu

n
ed

n
eu

ra
l

n
et

s

no periods, w/o subnets 1.603± 0.016 2.058± 0.017
no periods, w/ subnets 1.593± 0.023 2.043± 0.026
random periods, w/o subnets 1.616± 0.024 2.072± 0.030
random periods, w/ subnets 1.401± 0.426 1.894± 0.365
Fourier periods, w/o subnets 0.308± 0.009 0.969± 0.034
Fourier periods, w/ subnets 0.236± 0.010 0.808± 0.036

A
u

to
-t

u
n

ed
n

eu
ra

l
n

et
s

no periods, w/o subnets 1.613± 0.020 2.079± 0.026
no periods, w/ subnets 1.608± 0.027 2.059± 0.030
random periods, w/o subnets 1.270± 0.455 1.791± 0.390
random periods, w/ subnets 1.394± 0.417 1.862± 0.363
Fourier periods, w/o subnets 0.298± 0.012 0.961± 0.060
Fourier periods, w/ subnets 0.157± 0.015 0.785± 0.065
“unrestrained” neural net* 0.149± 0.021 0.781± 0.072

0 1 2 0 1 2

Table 7.2: Average errors for access time predictions. Neural nets were trained for 1000 epochs. Solid bars show the mean

error, and thin bars show the standard deviation of the error. For more details, see section 7.4.

*The “unrestrained” neural net was evolved with all penalties set to 0, so it has lower error at the expense of larger size.
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Configuration Error (%)

D
ec

is
io

n
tr

ee
s

no periods, without bagging 33.11± 1.02

no periods, with bagging 32.20± 0.64

6 random periods, without bagging 34.33± 0.01

6 random periods, with bagging 33.42± 0.95

6 periods, without bagging 31.24± 0.70

6 periods, with bagging 20.50± 1.04

N
eu

ra
l

n
et

s

no periods, without subnets 38.80± 1.91

no periods, with subnets 33.60± 0.29

6 random periods, without subnets 42.59± 0.55

6 random periods, with subnets∗ 38.26± 14.80

6 periods, without subnets 10.40± 2.69

6 periods, with subnets 5.50± 0.75

Table 7.3: Average scheduling error, as measured in section 4.3.1.1.
∗One run had an error of 11.80%, and the others averaged 44.88%.
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Figure 7.7: Access time over the first 4 tracks of a hard disk drive, in milliseconds
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Chapter 8

Periodicity

8.1 Scalable discovery of periodicity

Periodicity shows up in the behavior of many types of storage devices. In hard

disk drives, periodicity comes from rotation, arrangement of sectors into tracks, track

skew, and so on. In RAID arrays, periodicity comes from the regular striping of data

across component devices. In SSDs, although hidden by the FTL, periodicity comes

from the hierarchy of channels, packages, dies, planes, blocks, and pages [6, 32]. As

described in section 2.2, periodicity is challenging for general-purpose machine learning

algorithms. To make up for this, we incorporate the periodicity explicitly into the

machine learning algorithm’s input.

We assume that the access time function may have components that are locally

periodic. By locally periodic, we mean that the function’s domain can be partitioned

such that the function is periodic when restricted to any particular partition. This is a

fairly lax assumption. First of all, it is well-known that these functions do have locally

periodic components for existing hard disk drives, due to track lengths and track skews

that are constant within a serpentine. Periodicity is likely to occur in other devices as

well, because of the benefits of regular repetition in designs. Secondly, as described in

section 8.1.4 the cost is minor if these functions do not have locally periodic components.
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8.1.1 Useful frequencies

The most accurate method of determining which frequencies are useful is to

train models with different frequencies included and observe how the frequencies affect

the models’ errors. Unfortunately, this is prohibitively expensive. The number of fre-

quencies to search is roughly the number of sectors in the storage device, or 976,773,168

for our test hard disk drive. Training a model takes a few minutes to a few hours, de-

pending on the approach and size of the dataset, so training a model for each frequency

would take a very long time.

To identify useful frequencies faster, we can calculate the Fourier transform

of the access time function and find frequencies with large Fourier components, which

we call strong frequencies. Although they correlate well, useful frequencies do not

necessarily correspond one-to-one with strong frequencies. (Section 8.3 further discusses

this problem and how to work around it by bypassing the Fourier transform entirely.) A

useful frequency may occur with multiple phases in different locations and cancel itself

out, thereby causing its Fourier component to be small. A strong frequency may be

useless because it is a harmonic of a useful frequency and therefore redundant.

It is unlikely that a frequency will occur in multiple phases in such a way to

cancel itself out entirely, so the set of useful frequencies is likely to be a subset of the

set of strong frequencies. After strong frequencies are isolated, more expensive methods

may be used to cull the useless frequencies using a class of machine learning techniques

known as feature selection. This is discussed in section 8.1.5.

8.1.2 Finding strong frequencies

We refer to the previously accessed sector as the start sector, which is the

current position of the head, and the first sector of the current request as the end

sector, which will be the new position of the head. Let f(a, b) be the access time

function, where a and b are the LBNs of the start and end sectors, and f returns the

access time in milliseconds. Capturing the access time for every sector pair takes a very

long time. Given our test device’s mean access time of 15.5 ms and 976,773,1682 pairs of

sectors, the time to capture all of them would be roughly 469 million years. Obviously,

this is infeasible, so we are limited to a very sparse sampling.
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The sparsity means that we cannot use the Fast Fourier Transform, so we fall

back to the brute force method of calculation. Let x = (a, b) and ξ = (u, v), where u

and v are coordinates in frequency space. Further define N as the number of data points

(in our case, the number of requests in the trace), M as the number of frequencies to

search, and f̃ as the Fourier transform of f . The discrete Fourier transform is defined:

f̃(ξ) =
1

N

∑
k

f(xk)e
−2πixk·ξ (8.1)

which takes O(N) time to calculate for a single frequency vector ξ, so calculating f̃

for M frequencies takes O(MN) time. Searching all frequencies in the 2D space leads

to infeasible computation time for large datasets or datasets over larger regions of the

drive.

One way to approach the Fourier analysis is to use a search-based method,

rather than scanning uniformly. Assuming the number of strong frequencies is small, this

should be much faster, roughly O(kN logM) for k strong frequencies. Unfortunately,

these methods require performing convolutions which result in dense matrices that are

far too large to calculate. Instead, we rely on uniform scanning, but only in a small

portion of the space.

8.1.3 Scaling the search for strong frequencies

Note that the access time depends mostly on the difference between the sectors.

This is intuitively true, as the time to move from sector 0 to sector 9 should be roughly

the same as the time to move from sector 1 to sector 10. This causes stripes in the

access time function along a = b (see fig. 7.7a), and the Fourier transform of a function

with stripes has strong components in the direction orthogonal to the stripes [44], which

means that strong components of the access time function should lie on u = −v. We see

this empirically in fig. 8.1. By searching only this diagonal instead of the entire space,

the computation time becomes feasible.

Off-diagonal frequencies occur, but they are mostly related in a straightforward

fashion to frequencies on the diagonal. An example would be a dataset that includes

track sizes of 10 and 11. Strong coefficients are likely at periods (10, 10), (10, 11), (11,

10), and (11, 11). Since the diagonal provides (10, 10) and (11, 11) (or just 10 and
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Figure 8.1: Full 2D Fourier spectrum for the first K = 237,631 sectors out to 200
K ×

200
K ,

which corresponds to periods of at least K
200 = 1188.155 sectors. Values for u and v are

in oscillations per K sectors. Plot is clipped to magnitude 1 to show detail, but central

spike goes up to 8.6, and other diagonal spikes go up to 3.9. This figure shows that

strong frequencies do lie on the diagonal v = −u.

11 in 1D), the locations of the others could be inferred, although that is not actually

necessary.

To determine a threshold for strong frequencies, we sample 1000 frequencies at

random and calculate |f̃ |. The threshold is then set to the mean plus six standard devi-

ations. Assuming the magnitudes are normally distributed, this means that a frequency

has roughly a 1 in 500 million chance of being spuriously flagged.

We scan across v = −u with a step size of 0.1/blockCount, looking for local

maxima above the threshold. The peaks were often not centered on integer multiples of

1/blockCount, which is why the step size is not 1/blockCount. After finding a maximum,

we perform a local search to fine-tune its position.

Due to structures such as serpentines, f may have higher-order periods. In
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other words, f may have period p1 for a subrange, then p2, then p1, then p2, etc.,

with the switch between p1 and p2 being periodic. Currently, we have no method for

detecting these explicitly, although we have seen them show up as useful periods in

their own right. These actually cause further problems by reducing the utility of the

lower-level periods. The multiple regions using period p may be out of phase, causing

|f̃ | to drop. Essentially, this is a form of mixed interference which results in a weaker

signal than if the signals interfered purely constructively. This issue is sidestepped in

section 8.3 by dropping the Fourier transform.

8.1.4 Input augmentation

Once all useful periods have been found, the input vectors for the neural net

are augmented. Given an input (a, b) and periods p1, . . . , pk, the augmented input

vector is
(
a, cos(2πa/p1), sin(2πa/p1), . . ., cos(2πa/pk), sin(2πa/pk), b, cos(2πb/p1),

sin(2πb/p1), . . ., cos(2πb/pk), sin(2πb/pk)
)
. We use sinusoids of a and b separately

rather than sinusoids of b− a because the period changes for each input separately. For

example, if a is in a region where p1 dominates, and b is in a region where p2 dominates,

then sin(2πa/p1) and sin(2πb/p2) are useful, but sin(2π(b − a)/p3) is not likely to be

useful for any period p3.

If no useful periods are found, then the input vectors are unchanged. This

means that for devices with no periodicity, the cost of the periodicity assumption is just

the time to search for periods. The neural net is unchanged, and therefore the speed

and accuracy of the model is unchanged.

8.1.5 Hyperparameters

The top 25 periods with the largest Fourier magnitudes were used as candidate

periods. Adding to the hyperparameters discussed in section 7.3, each period has an

associated boolean which determines whether that period is used or not. This allows

us to find the subset of strong frequencies that are useful frequencies. Each period was

initially included (its boolean set to true) with a probability of 10%. On mutation, a

period’s inclusion would be toggled.

A penalty per included period is added to prevent inclusion of unnecessary
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periods and to improve convergence. When no penalty term is added, the included

periods do not converge well (fig. 8.2a). Although some periods are strongly selected for

(top of the plot), and others are strongly selected against (bottom of the plot), many

flip back and forth within a run and are inconsistent across runs. By including the

penalty term, the included periods converge quickly (clear middle area, fig. 8.2b).
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(b) 4 · 10−3 penalty per period

Figure 8.2: Usage of periods versus generation (neural nets with subnets). Note that

with no penalty, periods converge poorly, i.e. cross y = 0.5 even in later generations.

The value of the penalty was chosen by starting with 10−3, which would give a

penalty term roughly equal to 10% of the L1 norm. We then doubled the penalty until

we saw that the periods converged well, which happens with a penalty of 4× 10−3.

8.2 Changes in periodicity

As track lengths change across the platter, the periodicity changes. This causes

the Fourier transform to be messy fig. 8.3. Peaks are short, misshapen, and not cen-

tered exactly on the relevant frequency. Temporal information (i.e. the location of the

frequency shift) is also lost.

To account for this, we split the logical block space into regions. Each region

has its Fourier transform computed separately. Each region also gets its own subnet,

which is swapped into the neural net when a request lies in that region fig. 8.4.

Treating each region entirely separately would require too many subnets to be
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Fourier transform

Figure 8.3: If periodicity is not constant, the Fourier transform is messy. Peaks are

short, misshapen, and off-center.
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Figure 8.4: Block space is split into regions which are handled separately
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feasible, about 3000. Thankfully, many non-contiguous regions have the same spectra.

This appears to be caused partly by serpentines switching between sides of the plat-

ter. Grouping regions together by spectrum allows us to reuse subnets across regions,

reducing the number of subnets. This is important because it reduces the number of

parameters in the model, which means the model can be trained with less data and will

generalize better.

Regions that have the same spectra may be out of phase with each other, so

the input needs to be adjusted to reuse the subnets effectively. Phase offset parameters

are added that shift the sines and cosines for each region, but otherwise the inputs and

subnet are the same across regions with the same spectra.

To be formal: The raw input for a particular instance is a sequence of blocks

x = {x1, x2, ..., xm}. (Currently, m = 2.) Each block xm lies in a region ρ with spectrum

s which consists of K periods ps,1, ps,2, ..., ps,K . For each block xm in the input, the

input is augmented with {cosω1, sinω1, cosω2, sinω2,..., cosωK , sinωK}. Without

subnet reuse, we use:

ωk(xm) = 2πxm/ps,k (8.2)

When subnets are reused, we allow for different regions having the same spectrum to

have different phases, with a per-period phase offset φρ,k and/or per-region phase offset

ψρ. Then the angles are:

ωk(xm) = 2πxm/ps,k + φρ,k + ψρ (8.3)

8.3 Period composition

As detailed in section 8.1, the Fourier transform is difficult to calculate for

our problem. Furthermore, because the data contains many large discontinuities, the

Fourier transform is not well-behaved. In particular, a dominant pattern in the data is

a sawtooth, whose Fourier transform has harmonics whose coefficients decay as 1/n. In

other words, a very large number of harmonics have significant power. This masks even

the fundamental frequency of other waves with lower power.
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Figure 8.5: Mapping from request blocks to sets of periods
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Figure 8.6: Fourier transform of signal has useful frequencies at the marked locations,

but correlation between usefulness and Fourier coefficient magnitude is weak.
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Signals which are not simple and precisely periodic may also have useful fre-

quencies that do not show up in the Fourier transform. For example, consider:

f(x) =

sin(456 · 2πx+ ψk) sin(50 · 2πx) < 0

sin(567 · 2πx+ ψk) otherwise
(8.4)

where

k = b2 · 50xc (8.5)

with ψ defined to make f continuous. In other words, the frequency of this signal

switches between 456 and 567, with the switching occurring with frequency 50. The

Fourier transform of this function is seen in fig. 8.6. None of the frequencies mentioned

correspond exactly to a peak in the Fourier transform. Of course, the Fourier transforms

of individual zones of this function have sharp peaks at the appropriate frequencies, but

in the real data the locations of the boundaries and even the number of zones are not

known ahead of time.
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Figure 8.7: Section of the Fourier transform of access times from the first few tracks,

with darker colors indicating higher magnitude. Note that the peak is not centered on

a pair of integer coordinates.

Another problem is that our data contains off-grid frequencies (fig. 8.7), or

frequencies which are not exact integers. Many sparse Fourier algorithms do not work

well with off-grid frequencies [17], and will instead report many frequencies near the
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frequency of interest, but with lower magnitudes. A sparse Fourier algorithm which is

two-dimensional, supports off-grid frequencies, is computationally efficient, is efficient

in the number of samples required, has reasonable constant factors, and which generally

scales to the size of our problem is currently unknown.

Because of the difficulties of computation and limitations in the result of the

Fourier transform, we decided that the best approach was to let the neural net compute

the frequencies for itself. Computing periodic waveforms directly is a difficult problem

(see checkerboard problem [100] and two-spirals problem [37, 95]), so we feed the neural

net a base set of sinusoids from which it can compute arbitrary sinusoids.

From basic trigonometry, the angle sum formulas for sine and cosine are:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) (8.6)

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β) (8.7)

Adding a time parameter gives:

cos((α+ β)t) = cos(αt) cos(βt)− sin(αt) sin(βt) (8.8)

sin((α+ β)t) = sin(αt) cos(βt) + cos(αt) sin(βt) (8.9)

which means that a neural net can construct sines and cosines with frequency α + β

very simply given sines and cosines with frequencies α and β. By extension, sinusoids

of any integer frequency n can be constructed by a neural net with depth O(log log n)

given O(log n) input sinusoids with frequencies of the form 2k. Of course, this is not

necessarily the mechanism by which the neural net computes its output, but it serves

as an explanation to show that the idea has theoretical merit.

Since the number of sectors, and therefore the number of periods, is on the

order of a billion, and since we use frequencies of the form 2k, the number of input

frequencies is roughly log2 109 ≈ 30. Combining an arbitrary subset of these may be

too difficult an operation for a neural net with a reasonable number of neurons to

perform in a single layer, so we allow the neural net to have multiple hidden layers.

This corresponds to the O(log log n) depth mentioned in the previous paragraph.

To demonstrate that this is possible, we constructed a simple neural net (no

subnets) to predict a sine wave with a non-integer frequency (fig. 8.8). Even though the
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Figure 8.8: Predicted versus actual value of sin(1000.47 · 2πx) generated by a neural

net. The neural net has 4 hidden layers of 100 neurons each. The input consists of sines

and cosines of x with frequencies of the form 2k with 0 ≤ k < 30. The mean absolute

error is 0.00215. This shows that the neural net can generate non-integer frequencies

well.

frequency was not fed in directly, and even though it was not an integer, the neural net

was able to construct a sine wave with that frequency. The neural net actually performs

the task extremely well, with a mean absolute error of 0.00215. This is an interesting

direction for future research (see chapter 10), since an efficient method for performing a

sparse Fourier transform fitting our requirements (extremely sparse dataset, non-integer

frequencies, multidimensional) is not yet known.

8.4 Learning to compose periods

The problem of learning to compose periods, find the difference between the

phases of the composed periods, and generate an appropriate output waveform is too

difficult for a neural net to learn all at once. In fact, our attempts to do so failed. One

problem is that there is a large number of inputs, about 30 sines and cosines per input

request, and learning to combine the appropriate subset of these is a difficult problem

in and of itself. Another problem is that different zones of the disk have different track

lengths, meaning that different composite periods are required, so the neural net must
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learn to switch between them.

Our intent is that these subproblems are handled by different parts of the

neural net, whose architecture is shown in fig. 7.2. Specifically, period choice and com-

position should be performed by the input subnets, and the phase comparison and

output generation should be performed by the output subnet. By breaking the training

into stages that focus on parts of the neural net, the difficulty of each stage of training

is reduced. This idea of multi-stage training shares a conceptual thread with the pre-

training used with deep learning for classifying images [36]. In these approaches, the

researchers pretrain layers close to the input before moving to the main training phase.

Although their motivation is different (making use of unlabeled data), it has much the

same effect.

One approach is to start by training with data from a tiny portion of the drive.

We then increase the covered portion of the drive, training along the way, until the entire

drive is covered. When the covered portion is much less than one composite period, the

phase is approximately linear in the sector number. This means that approximating the

composite period is very easy, and most of the training is focused on the output subnet,

which computes the phase difference and output waveform. As more of the drive is

covered, the difficulty of approximating the composite periods is gradually increased.

Unfortunately, this approach does not work very well. When we stop expanding the

coverage and focus on reducing the error, we are unable to reduce the error to a rea-

sonable amount. We believe this is because the neural net gets stuck in a configuration

that is good for the early parts of training, essentially in a local minimum and unable

to change to a configuration that is good for the larger area.

A better approach is to train the period composition first, and then train the

phase differencing. This is accomplished by capturing a training set where the start

sector is always sector 0, and the end sector varies. Since one of the sectors is constant,

computing the difference is trivial, and training is focused on learning to generate the

composite periods. The start sector can then be allowed to vary more and more until

it can be any sector on the drive.

We use a workload that consists of random reads, except with half of the reads

randomly changed to sector 0. This means that (previous, current) sector pairs in the
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workload consist of a mix of (0, 0), (0, x), (x, 0), and (x, y). The (0, 0) pairs are discarded,

since they are useless, leaving an even mix of (0, x), (x, 0), and (x, y). Training on these

all at once avoids the local minimum problem in the previous approach, which seems to

be caused by changing characteristics of the training set over time. Doing so also avoids

the question of when to switch data sets. Although the data is provided all at once,

the neural net presumably learns the (0, x) and (x, 0) pairs first, since they are easier,

and then learns the (x, y) pairs. Testing is performed only against the (x, y) pairs to

eliminate the unrealistic bias of the (0, x) and (x, 0) pairs.

8.5 Period composition results

Predicted versus actual access times when using period composition can be

seen in fig. 8.9. This is for a workload of 40,000 half-zero random reads over the first

zone of HD1 (237,631 sectors). Testing was performed against a purely random read

workload. The subnet hidden layer sizes were 39, 56, 164, 9, and 5. The subnet output

layer size was 18, and the main net hidden layer sizes were 51 and 15. The mean absolute

error is 0.333. If we correct for predictions which are off by exactly one rotation, the

mean absolute error falls to 0.176.

When automatically tuning hyperparameters, the genetic algorithm consis-

tently chooses deep rather than shallow architectures. It makes sense that deep neural

networks are more efficient for this task than shallow networks because of the composi-

tional nature of the task. This is also in line with the O(log log n) depth mentioned in

section 8.3.
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Figure 8.9: Predicted versus actual access times over the first 237,631 sectors of HD1

using period composition. The mean absolute error is 0.333. If we correct for predictions

which are off by exactly one rotation, the mean absolute error falls to 0.176. (This plot

is identical to fig. 9.2a.)
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Chapter 9

Discontinuities

9.1 Cause and appearance

A basic characteristic of neural nets is that they assume that the function being

approximated is continuous, and so they do not handle discontinuities well. This is very

unfortunate, because the function we are approximating is full of large discontinuities.

Thankfully, these discontinuities have a structure that makes them removable.

The discontinuities are caused by the rotational nature of a hard disk drive. In

this paragraph, seek time is defined to include settle time and head switch time. If the

seek time is less than the rotation time, then the head simply waits on the destination

track until the destination sector rotates underneath it. If the seek time is greater than

the rotation time, the head will miss the sector and must wait for an additional rotation.

The discontinuities in the access time function are (mostly) places where the seek time

is almost exactly equal to the rotation time, and a slight change in the sector number,

which implies a slight change in rotation time, causes a rotation miss. This explanation

predicts that the discontinuities will have a height which is equal to the rotational period

of the drive, which is borne out by data.

9.2 Removal

Consider a continuous section of the access time function between two discon-

tinuities. This section runs from a minimum to a maximum (or from a maximum to a
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minimum). The section can be translated and scaled so that it runs from −π to π. If

it is now treated as an angle, instead of as a real number, then −π and π are equal, so

the discontinuity is gone. This is shown geometrically in fig. 9.1.

Figure 9.1: A 2D sawtooth can be rolled up into a 3D helix to remove its discontinuities.

In more concrete terms, consider the sawtooth f(x) which has a minimum of

−h and a maximum of h. Instead of predicting f(x) directly, we predict c = cos
(
π
hf(x)

)
and s = sin

(
π
hf(x)

)
. These are continuous functions of x, so the neural net sees no

discontinuities. The value of f(x) can be reconstructed using f̂(x) = h
πatan2(c, s).

The problem is slightly complicated by the fact that while the access time

function looks locally like the sawtooth described, globally it has a greater range between

its minimum and maximum. To account for this, we use a sliding window approach.

The neural net predicts a lower bound for the access time function, l, in addition to c

and s. The final predicted access time is then f̂(x) = h
πatan2(c, s) + 2kh, where k is the

smallest integer such that h
πatan2(c, s) + 2kh ≥ l. In other words,

f̂(x) =
h

π
atan2(c, s) + 2h

⌈
l

2h
− 1

2π
atan2(c, s)

⌉
(9.1)

which guarantees f̂(x) ≥ l.

9.3 Results

The result of removing discontinuities over the first zone of the drive are shown

in fig. 9.2. This is for a workload of 40,000 half-zero random reads over the first zone

of HD1 (237,631 sectors). (See section 8.4 for a description of the workload and its

purpose.) Testing was performed against a purely random read workload. The mean

absolute error is reduced significantly, from 0.333 to 0.187. If we correct for predictions
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which are off by exactly one rotation, the mean absolute error falls from 0.176 to 0.029.

Note that when discontinuities are removed (fig. 9.2b), predictions may be off by exactly

one rotation, but they do not fall in between as they do when discontinuities are not

removed (left and right side of fig. 9.2a).
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(a) Direct access time prediction. The mean

absolute error is 0.333. If we correct for pre-

dictions which are off by exactly one rotation,

the mean absolute error falls to 0.176. (This

plot is identical to fig. 8.9.)
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(b) Predictions with the discontinuities re-

moved. The mean absolute error is 0.187. If

we correct for predictions which are off by ex-

actly one rotation, the mean absolute error

falls to 0.029.

Figure 9.2: Predicted versus actual access time over the first 237,631 sectors of HD1,

without and with discontinuities removed.

When combining period composition, half-zero sampling, and discontinuity re-

moval, we can get a neural net to cover roughly 60% of HD1 (fig. 9.3). (Note that only

angular error and not seek error is plotted to make the plot more readable.) The plot of

predicted versus actual values for the first half of the drive is seen in fig. 9.4. This snap-

shot was taken at iteration 36, after which improvement was minimal. Unfortunately,

it took 90 hours to train to this point, which makes auto-tuning with the GA infeasi-

ble, so hyperparameters were manually tuned. (Note that the 90 hour training time is

still significantly faster than the months of model creation time for existing methods

(chapter 1).) The subnet hidden layer sizes were 368, 1016, 528, 244, 112, and 100. The

subnet output layer size was 13, and the main net hidden layer size was 37. Given the
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gains seen with auto-tuning in table 7.2, tuning these parameters would probably result

in a significant improvement. A total data set size of 8,480,000 requests was used, which

took about 29.5 hours to capture.
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Figure 9.3: Error versus sector for HD1. The neural net was fed data sets with exponen-

tially increasing range, all intermingled. The neural net was able to cover approximately

60% of the drive. The error stabilizes at 1 on the high end because if learning fails, the

neural net will output the constant value with the lowest error, and the constant output

that yields the lowest MSE is a “sin” and “cos” of 0, which gives an MSE of 1.
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Figure 9.4: Predicted versus actual access times for the first half of HD1. The mean

absolute error is 2.120 ms, and the mean absolute error when correcting for rotation

misses is 0.485 ms. The real time necessary to generate each prediction is 9.5 ms.
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Chapter 10

Future work

There are many, many ways this work could be extended, and we describe

some of them in this chapter.

When composing periods by providing 2k-period inputs (see section 8.3), the

latent frequencies generated are not immediately apparent. It is not clear how the

generated frequencies could be determined, but doing so would provide a method for

performing a sparse Fourier transform on an extremely sparse, multidimensional dataset

with non-integer frequencies.

Our approach could be combined with existing approaches mentioned in sec-

tion 2.1 to support more diverse workloads. Some workload characteristics can be ad-

dressed by adding input features. For example, a read/write flag [26, 109] and request

size [72, 26, 109] parameters are natural extensions. Additionally, LRU stack distance

has been used to approximate caching effects [59], and a sequentiality flag has been

used to approximate read-ahead [26, 109]. Better handling of cross-request interac-

tions, such as caching and read-ahead, can also be handled by providing more than just

the latest and previous request to the neural net. A simple extension is to use the past k

requests as input [109, 26]. An alternative would be to use a recursive neural net (RNN)

to explicitly store state, which is often used when modeling time-series data [85, 45].

This would avoid imposing an artificial bound on the length of time the neural net can

retain state.

Other optimization methods for training the neural net could be explored. Our

experience has been that stochastic methods such as RMSProp give the fastest results.
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However, stochastic methods are intrinsically difficult to parallelize, and a batch method

may be preferable, especially with increasing core counts. New optimization methods

are continually being developed, such as the saddle-free Newton [28] (and its stochastic

version, equilibrated stochastic gradient descent (ESGD) [27]), stochastic Hessian-free

optimization (SHF) [61], and target propagation [11]. (Note that these have not yet

been peer-reviewed except for the saddle-free Newton.)

Better hyperparameter tuning methods could explored. Surrogate-based opti-

mization [40], also known as sequential model-based optimization (SMBO), is of partic-

ular interest, since the function evaluation (training and evaluating a neural net) is very

expensive. Another possibility is gradient-based hyperparameter optimization [79].

Transfer learning [89] could allow for faster or more accurate learning on new

hard drives, once a model has been trained on other hard drives. Such a model would

essentially have a sense of how hard drives in general behave, not just the current one

being modeled.

A feedback loop could be incorporated if a reference device is available at run

time. This would benefit quality of service and other scheduling applications. The

model would then be able to predict what will happen based not only on requests issued,

but also on the latencies of past requests. This may allow simpler models to be used.

Higher-level interfaces such as POSIX calls could be modeled. Although this

would obscure block-level information, it adds file system contextual information which

is unavailable at the block level. For example, file content reads may tend to cache

differently than metadata reads, even though these would be difficult to distinguish in

terms of block reads. Being coarser-grained, POSIX-level modeling may require less

overhead than block-level modeling. Furthermore, it would allow non-block-based file

systems such as NFS or future file systems based on non-volatile memory (NVM).

If the issues with explicitly identifying periods, such as by using Fourier analy-

sis, can be worked out (see section 8.3), then the question of the relevance of higher-order

periods becomes important again. Future research could explore how easy higher-order

periods are to identify and whether they are best used as additional neural net inputs,

as help in segmenting the drive into zones, or in other ways.

More domain knowledge could be incorporated into the neural network. This
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is already done with the separate subnets and the weight sharing between them (see sec-

tion 7.1.2) and with discontinuity removal (see chapter 9). Another piece of knowledge

which could theoretically be incorporated is the fact that the time to read sector a then

b plus the time to read sector b then a is an integer multiple of the rotational latency.

This fact is only applicable for hard drives, and other such facts may be limited to

specific types of device, moving the model from black-box to gray-box.

More architectural flexibility could be allowed in the neural net. Currently, the

net consists of fully-connected layers with no skip-layer connections (see fig. 7.2). Arbi-

trary network topologies could be allowed by using an algorithm such as NEAT [101].

The transfer function could also be tuned, possibly even allowing a different trans-

fer function for each neuron. An even more esoteric possibility is using product units

instead of sum units [33].

Our approach is currently approximately 14 times slower than DiskSim, and

both use only a few kilobytes of model state. Measuring process memory usage is

unhelpful, because different codebases will have different constant overhead, and because

memory used to store trace data is model independent. The neural net has 4928 neurons

(counting 64 input neurons per subnet for the sines and cosines, and counting the

subnets separately), each of which has one number as state (its activation), which takes

a total of 19 KB of storage using single-precision floats. DiskSim’s memory usage varies

based on the number of events in its queue, but the size of the structs containing

disk state (ignoring statistics structs) plus all queued events averages roughly 15 KB

to 20 KB. This is comparing our final neural net, which covers a 250 GB range and is

unoptimized, to the Cheetah 9LP model which comes with DiskSim and is a 9.1 GB

disk. Automatically tuning the neural net and penalizing for evaluation time should

significantly speed up the neural net, especially if sparser network topologies are allowed.

Benchmarking our MSST results [24] shows a 10% speedup of the automatically tuned

neural net over the manually tuned neural net. The speedup is likely to be more

dramatic for our final neural net, since the longer evaluation time meant that fewer

tuning iterations were performed. Further improvements, such as the use of vector

CPU instructions or GPU processing, especially if processing multiple requests at once,

should also speed up the neural net. In fact, careful optimization of a neural net,
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including use of SIMD instructions, can speed up evaluation by a factor of 10, even

without using a GPU [107].

Other devices could be modeled, not just hard disk drives. Obvious extensions

include RAID arrays, raw flash devices, or non-volatile memory. SSDs would be difficult

to model with low per-request error because of the flash translation layer (FTL).
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Chapter 11

Conclusion

We have created methods for successful machine learning in a difficult domain,

where sampling is, by necessity, extremely sparse. Storage devices, and particularly

hard disk drives, have a large amount of internal structure which is not readily taken

advantage of by existing general-purpose machine learning algorithms. We have found

high-level assumptions, such as periodicity and the existence of a logical-to-physical

mapping, which allow machine learning algorithms to make use of the structure without

requiring a human expert to hand-craft specific features.

Black-box approaches to storage device performance modeling, used by many

other researchers in addition to ourselves, stand in stark contrast to white-box ap-

proaches such as DiskSim. While potentially very accurate as long as properly config-

ured, and as long as the codebase reflects reality, DiskSim is difficult to configure and

maintain due to its tight coupling with the often proprietary internal details of complex

devices.

While this thesis looks at predicting access times for random reads, models

of read-only workloads have several use cases. First of all, many read-only workloads

exist. These include static web serving (assuming access logs are on a separate device),

media serving, and analytic query processing. Second, if write-back is disabled, reads

and writes have nearly identical performance in hard disk drives. Furthermore, the

approach in this thesis could be combined with existing approaches for storage latency

modeling to create a model capable of predicting individual request latencies for general

read/write workloads.
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We have shown that accurately predicting individual request access times with

black-box models is possible for random read workloads on hard drives. Periodicity is

inherent in the task, caused partly by the rotational nature of hard disk drives, but also

more generally by the benefits of a regularly repeating design. This periodicity mani-

fests itself in the access time function and makes the problem difficult for unmodified

machine learning algorithms. Recognition of periodicity and explicitly addressing it (by

augmenting the input vector with sines and cosines) is crucial for success on this task.

We have also shown that neural nets are a good choice of model for this task.

The structure inherent in neural nets makes them amenable to modifications such as

weight sharing, which reduces the number of parameters, thus speeding up learning and

reducing error.

Deep neural networks are more efficient for this task than shallow networks,

probably because of the compositional and periodic nature of this task. When automat-

ically tuning hyperparameters, the genetic algorithm consistently chooses deep rather

than shallow architectures. Although training deep networks would have been inefficient

a few years ago, relatively recent advances such as RMSProp make them more effective.

Discontinuities in the access time function are a major hurdle, especially for

models such as neural nets which assume a smooth function. Although reasonable

results can be achieved with an unmodified learning algorithm, embedding the output

in a higher-dimensional space can remove the discontinuities and reduce error. This is

made possible by knowing the rotational latency of a hard drive, which is provided by

the manufacturer and also easy to determine empirically.

Although neural nets are proven to be universal function approximators, the

idea that applying a plain neural net to unprocessed input data will automatically

yield good results is naive. The universal approximation theorem says nothing about

the number of hidden units necessary, and using a single-hidden-layer network with

unprocessed inputs may require an infeasible number of hidden units and an infeasible

amount of training data to yield useful results. Furthermore, although a neural network

with sufficiently low error conceptually exists for any given problem, actually finding the

neural network can be a difficult task. Training is usually performed using a gradient-

based optimization algorithm, which is a greedy algorithm, and no guarantee is possible
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that the global minimum will be found. In addition to local minima, training can also

be confounded by saddle points, plateaus, deep ravines, and other undesirable features

in the parameter space. Domain knowledge, good strategies, good algorithms, tuning,

and patience are required to achieve good results.
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Appendix A

Notation

1P indicator function; 1 when the predicate P is true and 0 otherwise

x̂ predicted value of x

x̃ Fourier transform of x

xi ith component of vector x

Xi row i of matrix X

Xi,j entry i, j of matrix X

x∗ optimal value of x

x(t) value of x at time t

r1 ≺inject r2 request r1 was issued (injected into the queue) before request r2

r1 �inject r2 request r1 was issued (injected into the queue) before request r2 or is request r2

r1 ≺eject r2 request r1 was ejected from the queue before request r2

r1 �eject r2 request r1 was ejected from the queue before request r2 or is request r2

bxc floor function; “round down”
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Appendix B

Symbols

i imaginary number

i index

k index to particular period in a region’s spectrum

Ks number of periods in spectrum s

m index to particular feature within an instance

M number of input features

n index to particular instance

N number of instances

ps periods in the spectrum s

ps,k period k of the spectrum s

Q maximum queue depth

r request

R number of regions

s index to particular spectrum

S number of spectra

X N ×M matrix of input data, instance/row n is the vector Xn

Y output data; the output for instance n is Yn

Ŷ predicted output data; the predicted output for instance n is Ŷn

lat latencies, latency of instance n is latn

l̂at predicted latencies, predicted latency of instance n is l̂atn
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θ parameters of a model

ρ index to particular region

φρ,k phase offset of period k in region ρ

ψρ phase offset of region ρ

ωk(x) angle k of block x

110



Appendix C

Glossary

Some definitions may not be standardized and simply refer to how the term is

used in this thesis.

access time

This is the time between a request being ejected from the on-device queue and

when the head starts reading or writing. This includes seek time, settle time, and

rotational time.

cylinder

Outdated term which refers to a set of tracks at a fixed distance from the spindle.

This term is no longer useful because track widths can vary on opposite sides of a

platter and across platters, meaning that tracks on opposite sides of a platter do

not necessarily align with each other.

feature/attribute

A feature is a specific property of an instance, which may be considered a particular

input or output. For example, when learning f(a, b) = a + b, the features are a,

b, and a+ b. Equivalent to a column in a database.

feature extraction/generation

Process of creating new features based on existing ones. Often used for dimen-

sionality reduction, but may also be used to convert complex features into simpler

ones.
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instance

An instance is a tuple consisting of a value for each feature, which may be used

as a training example provided to a machine learning algorithm. Equivalent to a

row in a database.

response time/request latency

This is the D2C time according to blktrace, which is the interval between the

OS sending the request to the driver and receiving the response. This should not

include queueing time within the OS, but does include time spent in any on-device

queue.

LBA/LBN

Short for Logical Block Address or Logical Block Number. One-dimensional num-

bering scheme for blocks, starting at 0. This is the scheme used to identify blocks

between the device and the host computer.

locally periodic

If a function is locally periodic, then its domain can be partitioned such that the

function is periodic when restricted to any particular partition.

NCQ

Short for Native Command Queuing. This is part of the SATA specification

which allows a device to support an internal request queue with a length of up to

32 requests. This queue gives the device the ability to schedule requests based on

information not available to the host.

rotational latency

Time for the platter to rotate until the desired sector is under the read/write head.

scheduler

Algorithm in a storage device that determines when, or in which order, pending

requests are processed.
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sector/block

Smallest unit of data transferable between the storage device and the host com-

puter. For hard disk drives, this is typically 512 bytes.

seek latency

Time for the arm to move to the destination track.

serpentine layout

Zig-zag manner of numbering tracks to reduce head switches. This prevents seek

time from being a monotonic function of difference in track numbers.

strong frequency

A frequency is considered strong if its coefficient in the latency function’s Fourier

transform has a large magnitude. Compare: useful frequency.

track

Collection of sectors on the same side of the platter and same distance from the

center.

transfer function/activation function

Function used by a neuron in a neural net, applied to the weight sum of the inputs

to generate the output.

transfer time

Time to physically transfer the data to/from the media. This is typically propor-

tional to the size of the request.

useful frequency

A frequency is considered useful if its inclusion as an additional input decreases

the model’s error. Compare: strong frequency.

zone

We define a zone to be a contiguous set of logical sectors which all fall in tracks of

the same length. More traditional definitions of zone may be problematic because

of the fact that track lengths can vary on opposite sides of a platter or on different

platters.
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Appendix D

Diameter of the set of q-bounded

length-n permutations

D.1 Background

Definition 1. The symmetric group Sn consists of all permutations of n unique el-

ements. We use the set of elements {1, 2, . . . , n}, so a permutation π ∈ Sn can be

represented as a sequence of positive integers. If i is the index of x in π, i.e. πi = x,

then π−1
x = i.

Definition 2. The rank of index i in permutation π is one more than the number of

smaller elements to the right:

rank(i, π) = |{j : i ≤ j, πi ≥ πj}| (D.1)

Definition 3. The set P qn ⊆ Sn is the set of length-n, q-bounded permutations, i.e.

permutations that can be generated by a machine with a memory of size q. (In the litera-

ture, k is usually used instead of q.) Note that π ∈ P qn if and only if maxi rank(i, π) ≤ q.

Definition 4. Given permutations π, σ, the distance d(π, σ) is (in this document) the

inversion count of τ = π−1σ, i.e. the number of pairs (i, j) such that i < j and τi >

τj . This is also the minimum length of a sequence of adjacent transpositions which

transforms π to σ.

Definition 5. The diameter of a set S (w.r.t. adjacent transpositions) is maxx,y∈S d(x, y)
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D.2 Theorems

Lemma 1. If π ∈ P qn, moving the maximal element in π to the end results in an element

in P qn.

Proof. Let i = π−1
n be the index of the maximal element. Let π′ be the transformed π,

i.e.

π′k =


πk k < i

πk+1 i ≤ k < n

n n

(D.2)

For j < i, rank(j, π′) = rank(j, π) ≤ q, because rearranging the elements to the right

of j does not affect its rank. For i ≤ j < n, rank(j, π′) = rank(j + 1, π) ≤ q, because

adding a larger element (the maximal element) to the right of j does not affect its rank.

For i = n, rank(i, π′) = 1 < q. Since rank(j, π′) ≤ q for all j, π′ ∈ P qn .

Lemma 2. The diameter of P qn is at most

diameter(P qn) ≤

 1
2n(n− 1) n ≤ 2q

(2n− 2q + 1)(q − 1) n > 2q
(D.3)

Proof. Let π and σ be permutations in P qn . We always have that d(π, σ) ≤ 1
2n(n − 1),

because the number of (i, j) pairs where i < j is 1
2n(n− 1), which provides the bounds

for the case n ≤ 2q.

When n = 2q,

(2n− 2q + 1)(q − 1) = (2n− n+ 1)(
1

2
n− 1) (D.4)

=
1

2
(n+ 1)(n− 2) (D.5)

≥ 1

2
n(n− 1) (for n ≥ 1) (D.6)

so d(π, σ) ≤ (2n− 2q + 1)(q − 1) for n = 2q.

Otherwise, assume n > 2q and that d(π, σ) ≤ (2n′−2q+1)(q−1) for n′ = n−1.

Since π ∈ P qn , its maximal element is at an index i ≥ n − q + 1, or else its rank would

be greater than q. We can move the element to the end, generating π′, using at most

q−1 adjacent transpositions. Likewise, we can transform σ ∈ P qn to σ′. By lemma 1, we
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have π′, σ′ ∈ P qn , and since the maximal element is at the end of each, we can consider

them to be in P qn−1. By induction we have that

d(π′, σ′) ≤ (2(n− 1)− 2q + 1)(q − 1) (D.7)

We then have

d(π, σ) ≤ d(π, π′) + d(π′, σ′) + d(σ′, σ) (D.8)

= q − 1 + (2(n− 1)− 2q + 1)(q − 1) + q − 1 (D.9)

= 2(q − 1) + (2n− 2− 2q + 1)(q − 1) (D.10)

= (2n− 2q + 1)(q − 1) (D.11)

Lemma 3. The diameter of P qn is at least

diameter(P qn) ≥

 1
2n(n− 1) n ≤ 2q

(2n− 2q + 1)(q − 1) n > 2q
(D.12)

Proof. For n ≤ 2q − 2, define

πi =

 i i < q

q + n− i i ≥ q
(D.13)

and let σ be the reflection of π (i.e. σi = πn−i+1). Both are in P qn , which can be seen by

looking at the ranks of the elements. Since they are reflections, the distance is 1
2n(n−1).

Otherwise, n > 2q − 2. Define

π =


i i < q

i+ q − 1 q ≤ i ≤ n− q + 1

q + n− i i > n− q + 1

(D.14)

σ =


q − 1 + i i < q

i+ q − 1 q ≤ i ≤ n− q + 1

n+ 1− i i > n− q + 1

(D.15)

and note that π and σ are in P qn . (Example: for q = 4 and n = 32, we have π = {1, 2,

3, 7, 8, 9, ..., 30, 31, 32, 6, 5, 4} and σ = {4, 5, 6, 7, 8, 9, ..., 30, 31, 32, 3, 2, 1}.)
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Then

π−1 =


i i < q

n+ q − i q ≤ i ≤ 2q − 2

i− q + 1 i > 2q − 2

(D.16)

(Example: for q = 4 and n = 32, we have π−1 = {1, 2, 3, 32, 31, 30, 4, 5, 6, ..., 27, 28, 29}.)
Then

π−1σ =


n+ 1− i i < q

i q ≤ i ≤ n− q + 1

n+ 1− i i > n− q + 1

(D.17)

(Example: for q = 4 and n = 32, we have π−1σ = {32, 31, 30, 4, 5, 6, ..., 27, 28, 29, 3, 2, 1}.)
Now we consider the inversion count of τ = π−1σ. We count the inverted pairs

{(i, j) : i < j, τi > τj} by their start index:

Case 1 (i < q). Each i has n− i inversions, totaling∑
1≤i<q

n− i = n(q − 1)− 1

2
q(q − 1) (D.18)

= (q − 1)(n− 1

2
q) (D.19)

Case 2 (q ≤ i ≤ n− q + 1). Each i has q − 1 inversions, totaling (q − 1)(n− 2q + 2).

Case 3 (i > n− q + 1). Each i has n− i inversions, totaling∑
n−q+1<i≤n

n− i =
∑

0≤j<q−1

j (substitute j = n− i) (D.20)

=
1

2
(q − 1)(q − 2) (D.21)

The final total is then

d(π, σ) = (q − 1)(n− 1

2
q) + (q − 1)(n− 2q + 2) +

1

2
(q − 1)(q − 2) (D.22)

= (q − 1)(n− 1

2
q + n− 2q + 2 +

1

2
q − 1) (D.23)

= (q − 1)(2n− 2q + 1) (D.24)
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Finally, note that for n = 2q − 1:

(2n− 2q + 1)(q − 1) = (2n− (n+ 1) + 1)(
1

2
(n+ 1)− 1) (D.25)

= (2n− n)(
1

2
n− 1

2
) (D.26)

=
1

2
n(n− 1) (D.27)

and that again for n = 2q:

(2n− 2q + 1)(q − 1) ≥ 1

2
n(n− 1) (D.28)

so d(π, σ) ≥ 1
2n(n− 1) for both cases where n ≤ 2q.

Theorem 4. The diameter of P qn is exactly

diameter(P qn) =

 1
2n(n− 1) n ≤ 2q

(2n− 2q + 1)(q − 1) n > 2q
(D.29)

Proof. The upper and lower bounds shown by lemmas 2 and 3 are equal.

Version: fdffdf34d105bf6f20cb958733c119166d551be2
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access time, 10, 11, 17, 18, 56, 62, 67,

69, 70, 111

access time function, 18, 63, 68–70
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activation function, see transfer function

aggregation, 7

analytical models, 7, 8

associative memory, 43–44

attribute, see feature

auto-tuning, 3, 85

backpropagation, 48

bagging, 52, 62, 65, 66

behavioral modeling, x, 3

black-box modeling, 1, 7, 8, 40, 90, see

also white-box modeling

blktrace, 20, 112

block, 9, 12, 15–17, 68, 112

block interface, 1

block storage device, 12

boosting, 52–53

burst buffers, 9

bus-level tracing, 21

caching, 1, 2, 4, 13, 17–18, 21, 24, 88

CDF, 27

checkerboard problem, 9, 10, 78

conjugate gradient, 49

content-addressable memory, see asso-

ciative memory

contributions, 5

convergence, 48, 49, 51, 52, 73

convexity, 26, 50

convolution, 70

CPU utilization, 63

crossover, 52

Cybenko theorem, 43

cylinder, 111

D2C, 20, 112

data placement, 1

decision trees, 7–9, 44–45, 59, 62, 65, 66

deep learning, 80

demerit, 27

device characterization, 2

Diaconis-Graham inequality, 34

diagonal, 70, 71

diameter, 114

DIG, 2, 3, 16, 62

dimensionality, 61

direct mode, 21

discontinuities, 13, 40, 58, 75, 83–86, 90

discrete event simulation, x, 1, 7
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DiskSim, 1–3, 7, 9

DIXtrac, 16

dynamic workloads, 8

e-SATA, 20

ejection, 29–32

emulation, 23

emulator, 9

ensemble methods, 52

equilibrated stochastic gradient descent,

89

error function, 24, 26, 51, 54

ESGD, see equilibrated stochastic gra-

dient descent

expert knowledge, 1, 8

external enclosure, 20

Fast Fourier Transform, 70

feature, 8, 42–44, 55, 62, 111, 112

feature extraction, 56, 111

feature selection, 69

feed-forward, 55

feedback, 7, 89

FFT, see Fast Fourier Transform

FIFO, 21

file system, 12

simulation, 1

file systems

parallel, 8

FileSim, 8

fitness function, 51, 52

flash, 91

Fourier analysis, 54, 62, 68

search-based, 70

Fourier transform, 70, 75

frequencies, 62

high, 18

frequency threshold, 71

FTL, 15, 68, 91

fully-connected layers, 90

garbage collection, 13

Gauss-Newton, 51

genetic algorithm, 47, 51–52, 58–63

genetic programming, 47

geometry, 15–17, 56

gradient, 48–52

gradient descent, 43, 48, 51

granularity, 7, 8, 16, 28, 44

gray-box modeling, 90

grid search, 59

half-zero random reads, 79–81, 84

hard disk drive, 1, 2, 9, 13, 15, 17, 18,

24, 46, 62, 68, 69, 113

harmonics, 69, 75

head switch, 16, 83, 113

helix, 84

Hessian, 51

high frequencies, 18

higher-order periods, 71, 89

hill climbing, 51

HMMs, 46, see also IOHMMs

Hopfield networks, 44

hyperparameters, 54, 58–62, 85
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idle, 29

image processing, 56

individuals, 52

injection, 29, 31

input augmentation, 72

instability, 10

instance, 28, 43, 44, 56, 111, 112

interference, 72

inversion count, 33, 34, 114

IOHMMs, xii, 46

k-d tree, 45

Kalman filter, 10

Kendall’s tau, 33

kernel function, 45, 55

kernel trick, 45

L-BFGS, 51

L1 norm, 24–25, 57–58

L2 norm, 24–25, 57–58

layer size, 59, 60

LBA, see LBN

LBN, 56, 69, 112

learning rate, 59, 61, 62

Levenberg-Marquardt, 51

line search, 49

linear regression, 42

local minima, 10, 51, 52

locally periodic, 68, 112

log-normal distribution, 59

logistic sigmoid, 10, 42

LRU stack distance, 4, 8, 88

machine learning, 1, 3, 9, 12, 13, 15, 26,

39, 40, 47, 54, 68, 69, 112

offline, 7, 22, 40

online, 7, 23

supervised, 39

MAD-median, see mean absolute devia-

tion from the median

MAE, see mean absolute error

manual search, 59

manufacturers, 2, 16

mating, 60

mean, 25

mean absolute deviation from the me-

dian, 19, 35

mean absolute error, 19, 54, 57, see also

L1 norm, mean square error

mean square error, 19, 26, see also L2

norm, mean absolute error, root

mean square error

median, 19, 25

memory footprint, x, 40, 45, 54

method of steepest descent, see gradient

descent

mistake count, 30

momentum, 59, 62

MSE, see mean square error

multi-stage training, 80

multidimensional data, 3

multilayer perceptron, 55

mutation, 52, 59

NCQ, 17, 20, 112
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nearest neighbor, 45

NEAT, 90

neural nets, 7, 9, 10, 41–43, 46, 48, 50,

54, 59–60, 62, 63, 65, 66, 72, 83,

113

convolutional, 56

neuron, 10, 42, 43, 55, 56, 113

NFS, 89

noise, 28

non-Gaussian, 19

non-Gaussian errors, 57

non-parametric models, 41

non-volatile memory, 89, 91

nondeterminism, 18, 35–36

noop, 21

NVM, see non-volatile memory

object storage device, 12

off-diagonal frequencies, 70

off-grid frequencies, 77

orthogonal, 49

OSD, 1

outdated models, 2

outliers, 25, 57

overfitting, 28, 52, 53

parallelism, 15, 16, 52, 89

parameter sweeps, 23

parametric models, 41, 48

penalty, 59, 72–73

period composition, 75, 79–81

periodic functions, 9

periodicity, 4, 9–11, 15, 40, 68, 72

in block number, 9

permutation, 32, 114

q-bounded, 33, 114

platter, 17, 112, 113

population, 52

POSIX, 1, 89

power saving, 20

pread64, 21

preprocessing, 3, 13, 40

pretraining, 80

probabilistic model, 8

product unit, 90

QoS, see quality of service

quality of service, 23, 89

quasi-Newton, 51

queue, 13, 17, 20, 24, 27, 29–33, 111, 112

quickprop, 50

RAID, 1, 8, 9, 15–17, 68, 91

random periods, 63, 65, 66

random reads, 21

rank, 30, 114

read-ahead, 13, 18, 21, 88

read/write head, 112

real-time scheduling, 3, 9

reboot, 21

recurrent model, 10, 11

recurrent neural net, 10, 43, 88

regression tree, see decision tree

relative error, 26

relative performance, 8

request reordering, 13, 17–18, 27

122



request-level accuracy, 26, see also trace-

level accuracy

resilient propagation, 49–50

response time, 8, 12, 13, 17, 18, 20, 24,

26, 27, 54, 112

RMSE, see root mean square error

RMSProp, 50, 89

root mean square error, 57, see also mean

square error

rotation, 15, 18, 68, 83

rotation miss, 36, 83

rotation time, 83

rotational latency, 18, 36, 90, 111, 112

Rprop, see resilient propagation

saddle-free Newton, 89

SATA, 16, 17, 20, 112

sawtooth, 18, 75, 84

scheduler, 20, 21, 30, 112

scheduling, 2, 89

accuracy, 29

per-request error functions, 29

SCSI, 16

sector, see block

sector remapping, 13

sector sparing, 9

seek, 13

seek latency, 111, 113

seek time, 18, 83

sequential model-based optimization, see

surrogate-based optimization

sequentiality, 8

sequentiality flag, 88

serpentine layout, 2, 16, 113

serpentines, 68, 71

settle time, 83, 111

shared weights, 4, 50, 55–56, 62, 90

shingling, 2

sigmoid, 43, 56

simulated annealing, 51–52

simulation

parallel file system, 1

sinusoids, 10, 72

skew, 9, 15, 68

skip-layer connections, 90

SMBO, see surrogate-based optimization

sparse Fourier, 77

sparse sampling, 69

Spearman’s footrule, 33, 34

speed, x, 7, 40, 45

SSDs, 1, 15–17, 68, 91

state, 1, 13–15, 28, 43, 44, 46, 47, 88

long-term, 13

state space, 46

state transition matrix, 46

steepest descent, see gradient descent

step size, 71

stochastic backpropagation, 48, 59

stochastic gradient descent, 48–49, 89

stochastic Hessian-free optimization, 89

storage configuration, 1

stripes, 63, 70

striping, 9, 15, 16, 68
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strong frequencies, 69–72, 113

supercomputers, 9

support vector regression, 7, 8, 45–46,

55

surrogate-based optimization, 89

SVR, see support vector regression

table-based models, 8

target propagation, 89

temperature, 20, 51

time series, 10, 13, 46

time slices, 7

topology, see geometry

trace-level accuracy, 26, see also request-

level accuracy

tracing, 20

track length, 62, 68

track skew, 15

tracks, 9, 15, 68, 113

training, 9, 24, 34, 56

training data, 10

training time, 40, 54, 69

transfer function, 10, 42, 55, 90, 113

transfer learning, 89

transfer time, 113

transposition, 114

two-spirals problem, 9, 10, 78

unlabeled data, 80

useful frequencies, 69, 113

user space, 21

vibration, 20

weight sharing, see shared weights

white-box modeling, 1, 7, see also black-

box modeling

window-based error functions, 28

windows

sliding, 28

workload, 7, 8, 13, 20, 27

workload characterization, 8

workload-specific, 8

zero-latency reads, 2

zone, 54, 113

zoning, 2, 15
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