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Abstract

In this paper we address the problem of counting the

number of distinct header patterns (flows) seen on a high

speed link. Such counting can be used to detect DoS

attacks and port scans, and to solve measurement prob-

lems. The central difficulty is that count processing

must be done in a packet arrival time (8 nsec at OC-768

speeds) and hence must take a small number of memory

references to limited, fast memory. A naive solution that

maintains a hash table requires several Mbytes because

the number of flows can be more than a million. By con-

trast, our new algorithms take very little memory and are

fast. The reduction in memory is particularly importan-

t for applications that run multiple concurrent counting

instances. For example, we used one of our new algo-

rithms to replace the port scan detection component of

the popular intrusion detection system Snort. Doing so

reduced the memory usage on a ten minute trace from 51

Mbytes to 5.7 Mbytes while maintaining a 99.78% pro-

bability of alarming on a scan within 6 seconds of when

the large-memory algorithm would alarm. By contrast,

the best known prior algorithm (probabilistic counting)

takes 4 times more memory on the port scan application

and 8 times more memory on a measurement applica-

tion. Fundamentally, this is because our algorithms can

be customized to take advantage of special features of ap-

plications such as a large number of instances that have

very small counts, or prior knowledge of the likely range

of the count.

1 Introduction

Internet links operate at high speeds, and past trends

predict that these speeds will continue to increase rapid-

ly. Routers and Intrusion Detection devices that operate

up to OC-768 speeds (40 Gigabits/second) are current-

ly being developed. While the main bottlenecks (e.g.,

lookups, classification, QoS) in a traditional router are

well understood, what are the corresponding functions

that should be hardwired in the brave new world of secu-

rity and measurement? Ideally, we wish to abstract out

functions that are common to several security and mea-

surement applications. We also wish to study efficient

algorithms for these functions, especially those with a

compact hardware implementation.

Towards this goal, this paper isolates and provides so-

lutions for an important problem that occurs in various

networking applications: counting the number of active

flows in packets received on a link in a specified time

period. A flow is defined by a set of header fields; two

packets belong to distinct flows if they have different val-

ues for the specified header fields that define the flow.

For example, if we define a flow by source and destina-

tion IP addresses, we can count the number of distinct

source-destination IP address pairs seen on a link in a

specified time period. Our algorithms measure the num-

ber of active flows using very small memory that can ea-

sily be stored in on-chip SRAM or even processor regis-

ters. By contrast, the naive algorithms we describe below

would require massive amounts of (slow) DRAM.

For example, the naive method to count source-

destination pairs would be to keep a counter together

with a hash table that stores all the distinct 64 bit source-

destination address pairs seen thus far. When a packet

arrives with source and destination addresses say S;D,

we search the hash table for S;D; if there is no match,

the counter is incremented and S;D is added to the hash

table. Unfortunately, given that backbone links can have

up a million flows [3] today, this naive scheme would

minimally require 8 Mbytes of high speed memory. 1

Such large SRAM memory is expensive or not feasible

for a modern router.

1It must at least store the flow identifier, which in this example is

64 bits, for each of a million flows.
1



By contrast, in this paper we will describe a random-

ized scheme called adaptive bitmap, that can count the

number of distinct flows on a link that contains anywhere

from 0 to 100 million flows with an average error of

less than 1 % using only 2 Kbytes of memory. We will

also describe a scheme called triggered bitmap (that is

optimized for running multiple concurrent application-

s of the counting problem many of which have small

counts) which uses even less memory than running adap-

tive bitmap on each instance.

1.1 Problem Statement

A flow is defined by an identifier given by the val-

ues of certain header fields2. The problem we wish to

solve is counting the number of distinct flow identifier-

s (flow IDs) seen in a specified measurement interval.

For example, an intrusion detection system looking for

port scans could could count for each active source ad-

dress the flows defined by destination IP and port and

suspect any source IP that opens more than 3 flows in 12

seconds of performing a port scan. An alternate way of

defining the problem without using measurement inter-

val is by counting the flows that have at least one packet

in a queue that packets are added to and removed from

dynamically. In this paper we will mainly focus on the

definition based on measurement intervals.

Also, while many applications define flows at the gran-

ularity of TCP connections, one may want to use other

definitions. For example when detecting DoS attacks we

may wish to count the number of distinct sources, not the

number of TCP connections. Thus in this paper we use

the term flow in this more generic way.

As we have seen, a naive solution using a hash table of

flow IDs is accurate but takes too much memory. Thus

we seek solutions that use a very small amount of memo-

ry, use only 1 or 2 memory memory accesses, 3 and have

high accuracy. In particular, we examine the tradeoff be-

tween memory usage and average error.

2We can also generalize by allowing the identifier to be a function

of the header fields (e.g., using prefixes instead of addresses, based on

routing tables).
3Actually, larger numbers of memory accesses are perfectly feasi-

ble at high speeds using SRAM and pipelining; however, in order to

compare the tradeoff between memory and accuracy we prefer to keep

the number of memory accesses to be no more than that of the naive

scheme.

1.2 Motivation

Why is information about the number of flows useful?

We describe five possible categories of use.

Detecting port scans: Intrusion detection systems

warn of port scans when a source opens too many con-

nections within a given time. The widely deployed Snort

IDS[9] uses the naive approach of storing a record for

each active connection. This is obvious waste since most

of the connections are not part of a port scan. Even for

actual port scans, if the IDS only reports the number of

connections and not the actual IPs and ports the con-

nections were made to, we don’t need to keep a record

for each connection either. Since the number of sources

can be very high, it is desirable to find algorithms that

count the number of connections of each source using

little memory. Further, if an algorithm is able to distin-

guish quickly between suspected port scanners and nor-

mal traffic, the IDS need not perform expensive opera-

tions (e.g. logging) on most of the traffic, thus becoming

more scalable in terms of memory usage and speed. Such

scalability is particularly important in the context of the

recent race to provide wire speed intrusion detection [1].

Estimating the Spreading Rate of a Worm: Dur-

ing Aug 1 - Aug, while trying to track the recent Code

Red worm [7]. 12, collecting packet headers for Code

Red traffic on a /8 network produced 0.5GB per hour of

compressed data. In order to determine th rate at which

the virus was spreading, it was necessary to count the

number of distinct Code Red sources passing through the

link. This was actually done using a large log and a hash

table which was expensive in time and also inaccurate

(because of losses in the log).

Detecting denial of service attacks: In [6] Mahajan

et al. propose a mechanism that allows backbone routers

to limit the effect of (distributed) DoS attacks. While

the mechanism assumes that these routers can detect an

ongoing attack it does not give a concrete algorithm for

it. In [2] Estan and Varghese discuss a number of al-

gorithms that can detect destination addresses or prefix-

es that receive large amounts of traffic. While this can

identify the victims of attacks it also gives many false

positives because many destinations have large amounts

of legitimate traffic. To differentiate between legitimate

traffic and an attack we can use the fact that DoS tools

use fake source addresses chosen at random. If for each

of the suspected victims we count the number of sources

of packets that come from some networks known to be

sparsely populated, a large count is a strong indication

that a denial of service attack is in progress.



General measurement: Often counting the num-

ber of distinct values in given header fields can provide

useful data. For example one could measure the number

of sources using a protocol version or variant to get an

accurate image of protocol deployment. Another exam-

ple is dimensioning the various caches in routers which

benefits from prior measurements of typical workload.

Such caches include: packet classification caches, multi-

cast route caches for Source-Group (S-G) state, and ARP

caches.

Packet scheduling: Many scheduling algorithms try

to ensure that all flows can send at the current “fair share”

of the available bandwidth. While there are scheduling

algorithms that compute the fair share without using per-

flow state (e.g. CSFQ [11]), they require explicit coop-

eration between edge and core routers. Being able to

count the number of distinct flows that have packets in

the queue of the router might allow the router to estimate

the “fair share” without outside help.

Thus while counting the number of flows is usually in-

sufficient by itself, it can provide a useful building block

for complex tasks that range from detecting DoS attacks

to fair packet scheduling.

2 Related work

The networking problem of counting the number

of distinct flows has a well-studied equivalent in the

database community: counting the number of distinct

database records (or distinct values of an attribute). Thus

the major piece of related work is a seminal algorithm

called probabilistic counting, due to Flajolet and Mar-

tin [4], introduced in the context of databases. We will

use probabilistic counting as a base to compare our al-

gorithms against. Whang et al address the same problem

in [12] and propose an algorithm that is equivalent to the

simplest (direct bitmap) algorithm we describe.

The insight behind probabilistic counting is to com-

pute a metric of how uncommon a certain record is and

keep track of the “uncommonness” across all records. If

we see very uncommon records, the algorithm concludes

it saw a large number of records. More precisely, for

each record the algorithm computes a hash function on

L bits. It then counts the number of consecutive zeroes

starting from the least significant position of the hash re-

sult. It then stores in a bitmap the numbers seen so far.

For example if the algorithm has seen records with 1,2,3

and 5 consecutive zeroes, the accumulated bitmap would

be 111010000. For this bitmap, the algorithm computes

the metric of uncommonness r = 3 (not 5 which is an

outlier). The final estimate for the number of flows is

n = �2

r, where � is a “magic constant” that represents a

statistical correction factor. This basic form can guaran-

tee at most 50% accuracy. By dividing the hash values in-

to nmap groups and averaging over the estimates for the

count provided by each of them, probabilistic counting

reduces the error of its final estimate. We will describe a

family of algorithms that outperform probabilistic count-

ing by an order of magnitude by exploiting application

specific characteristics.

In networking, there are general purpose traffic mea-

surement systems such as Cisco’s NetFlow [8] or LFAP

that report per flow records for very fine grained flows.

This is useful for traffic engineering. The information

can be used by to count flows, but is not optimized for

such a purpose. Besides the large amount of memory

needed, in modern high speed routers updating state on

every packet arrival is infeasible at high speeds. Ideal-

ly, such state should be in high speed SRAM (which is

expensive and limited) to allow wire-speed forwarding.

Because NetFlow state is so large, Cisco Routers write

NetFlow state to slower speed DRAM which slows down

router processing. For example, Cisco recommends the

use of sampling at speeds above OC-3: only the sampled

packets result in updates to the flow cache that keeps the

per flow state. Unfortunately, sampling has problems of

its own since it affects the accuracy of the measurement

data. Sampling works reasonably for estimating the traf-

fic sent by large flows, but has extremely poor accuracy

for estimating the number of flows. This is because u-

niform sampling will tend to produce more samples of

flows that send more traffic, thereby biasing any simple

estimator that counts the number of flows in the sample

and multiplies this count by the inverse of the sampling

rate.

The Snort [9] intrusion detection system (IDS) uses a

similar memory-intensive approach to detect port scans:

it maintains a record for each active connection and a

connection counter for each source IP. More elaborate

algorithms have been used in other settings. When con-

trolling the medium access in wireless networks, some

protocols rely on an estimate of the number of senders.

The GRAP protocol described in [13] uses techniques

equivalent to our direct bitmap and virtual bitmap to es-

timate this number, but has no equivalent of our more so-

phisticated multiresolution, adaptive, or triggered bitmap

algorithms.



3 A family of counting algorithms

Our family of algorithms for estimating the number

of active flows relies on updating a bitmap at run time.

Different members of the family have different rules for

updating the bitmap. At the end of the measurement in-

terval (1 second, 1 minute or even 1 hour), the bitmap

is processed to yield an estimate for the number of ac-

tive flows. Since we do not keep per flow state, all of

our results are estimates. However, we prove analytical-

ly and through experiments on traces that our estimates

are close to actual values. The family contains three core

algorithms and five derived algorithms. Even though the

first two core algorithms (direct and virtual bitmap) have

been invented earlier, we present them here because they

form the basis of our new algorithms (multiresolution,

adaptive and triggered bitmaps), and because we present

new applications in a networking context (as opposed to

a database or wireless context).

We start in Section 3.1 with the first core algorithm, di-

rect bitmap, that uses a large amount of memory. Next, in

Section 3.2 we present the second core algorithm called

virtual bitmap that uses sampling over the flow ID s-

pace to reduce the memory requirements. While virtual

bitmap is extremely accurate, it needs to be tuned for a

given anticipated range of the number of flows. We re-

move the “tuning” restriction of virtual bitmap with our

third algorithm called multiresolution bitmap described

in Section 3.3, at the cost of increased memory usage.

Finally, in Section 3.4 we describe the five derived algo-

rithms. In this section we only describe the algorithms;

we leave an analysis of the algorithms to Section 4.

3.1 Direct bitmap

The direct bitmap is a simple algorithm for estimating

the number of flows. We use a hash function on the flow

ID to map each flow to a bit of the bitmap. At the begin-

ning of the measurement interval all bits are set to zero.

Whenever a packet comes in, the bit its flow ID hashes

to is set to 1. Note that all packets belonging to the same

flow map to the same bit, so each flow turns on at most

one bit irrespective of the number of packets it sends.

We could use the number of bits set as our estimate of

the number of flows, but this is inaccurate because two or

more flows can hash to the same bit. In Section 4.1, we

derive a more accurate estimate with a correction factor

that takes into account hash “collisions”4. Even with this

4We assume in our analysis that the hash function distributes the

correction factor, the algorithm becomes very inaccurate

when the number of flows is much larger than the number

of bits in the bitmap. The only way to preserve accuracy

is to have a bitmap size that scales with the number of

flows, which is often impractical.

3.2 Virtual bitmap

The virtual bitmap algorithm reduces the memory us-

age by storing only a small portion of the big direct

bitmap one would need for accurate results (see Figure 1)

and extrapolates the number of bits set. This can also be

thought of as sampling the flow ID space. The larger the

number of flows the smaller the portion of the flow ID s-

pace we cover. Virtual bitmap generalizes direct bitmap:

direct bitmap is a virtual bitmap which covers the entire

flow ID space.

Unfortunately, a virtual bitmap does require tuning the

“sampling factor” based on prior knowledge of the num-

ber of flows; if the number of flows differs significantly

from what we configured it for, the estimates are inac-

curate. While in general one wants an algorithm that is

accurate over a wider range, we note that even an un-

adorned virtual bit map is useful. For example, consi-

der a security application where we wish to set an alarm

when the number of flows crosses a threshold. The vir-

tual bitmap can be tuned for this threshold.

In Section 4 we derive formulae for the average error

of the virtual bitmap estimates. The analysis also pro-

vides insight for choosing the right sampling factor. Per-

haps surprisingly, the analysis also indicates that we can

achieve an average error of 3% with 292 bytes, irrespec-

tive of the number of flows, as long as the sampling factor

is set to an optimal value.

3.3 Multiresolution bitmap

Virtual bitmap is simple to implement, uses little

memory and gives very accurate results. But it does re-

quire us to know in advance a reasonably narrow range

for the number of flows. An immediate solution to this

shortcoming is to use many virtual bitmaps, each using

the same number of bits of memory, but different sam-

pling factors, so that each is accurate for different an-

ticipated ranges of the number of active flows (different

flows randomly. In an adversarial setting, the attacker who knows the

hash function could produce flow identifiers that produce excessive col-

lisions thus evading detection. This is not possible if we use a random

seed to our hash function.



“resolutions”). The union of all these ranges is chosen

to cover all possible values for the number of flows. The

“lowest resolution” bitmap is a direct bitmap that works

well when there are very few flows. The “higher resolu-

tion” bitmaps cover a smaller and smaller portion of the

flow ID space. The problem with the naive approach of

using several virtual bitmaps of differing granularities is

that instead of updating one bitmap for each packet, we

need to update several, causing more memory accesses.

The main innovation in multiresolution bitmap is to

maintain the advantages of multiple bitmaps configured

for various ranges while performing a single update for

each incoming packet. Figure 1 illustrates the direct

bitmap, virtual bitmap, multiple bitmaps and multires-

olution bitmap. Before explaining how the multiresolu-

tion bitmap works it can help to switch to another way of

thinking about how the virtual bitmap operates. We can

consider that instead of generating an integer between 0

and the size of the virtual bitmap, the hash function cov-

ers a continuous interval. The virtual bitmap covers the

full interval while the physical bitmap covers a small-

er portion (the ratio of the sizes of the two is the sam-

pling factor of the virtual bitmap). We divide the inter-

val corresponding to the physical bitmap into equal sized

sub-intervals, each corresponding to a bit. A bit in the

physical bitmap is set to 1 if the hash of the incoming

packet maps to the sub-interval corresponding to the bit.

The multiple bitmaps solution is shown below the virtual

bitmap solution in Figure 1.

A multiresolution bitmap is essentially a combination

of multiple bitmaps of different “resolutions”, such that

for each packet only the highest resolution bitmap it

maps to is updated. Thus each bitmap loses a small por-

tion of its bits which are covered by higher resolution bit-

maps. But those bits can easily be recovered later (dur-

ing the analysis phase) from the finer grained bitmaps by

OR-ing together the bits in the higher resolution bitmaps

that correspond to individual bits in the lower resolution

bitmap. We call these regions with different resolutions

components (of the multiresolution bitmap).

In Section 4.3 we answer questions such as what is the

best ratio between the resolutions of neighboring compo-

nents, how many bits we need in each etc. In Appendix E

we compare our multiresolution bitmap to probabilistic

counting showing that while that both algorithms use n-

early identical hashes to set bits, they interpret the data

very differently, thus the differences in the accuracy of

the results.

3.4 Derived algorithms

In this section we describe three derived algorithms for

counting the number of active flows. Adaptive bitmap de-

scribed Section 3.4.1 achieves both the accuracy of vir-

tual bitmap and the robustness of multiresolution bitmap

by combining them and relying on the stationarity of

the number of flows. Triggered bitmap described in

Section 3.4.2 combines direct bitmap and multiresolu-

tion bitmap to reduce the total amount of memory used

by multiple instances of flow counting when most of the

instances count few flows. In Section 3.4.3 we show

how we can adapt the core algorithms to the alternate

definition of active flows: the ones that have packets in a

queue that supports arbitrary additions and removals (not

those that send any packets during a fixed measurement

interval).

3.4.1 Adaptive bitmap

It would be nice to have an algorithm that provides the

best of both worlds: the accuracy of a well tuned virtual

bitmap with the wide range of multiresolution bitmaps.

Adaptive bitmap is such an algorithm that combines a

large virtual bitmap and a small multiresolution bitmap.

It relies on a simple observation: measurements show

that the number of active flows does not change dramat-

ically from one measurement interval to the other. We

use the small multiresolution bitmap to detect changes

in the order of magnitude of the count, and the virtual

bitmap for precise counting within the currently expect-

ed range. Assuming “quasi-stationarity”, the algorith-

m will be accurate most of the time because it uses the

large, well-tuned virtual bitmap for estimating the num-

ber of flows. At startup and in the very unlikely case of

dramatic changes in the number of active flows the mul-

tiresolution bitmap will provide a less accurate estimate.

Updating these two bitmaps separately would require

two memory updates per packet, but we can avoid the

need for multiple updates by combining the two bitmaps

into one. Specifically, we use a multiresolution bitmap in

which r adjacent components of the expected resolution

are replaced with a single large component consisting of

a virtual bitmap. The location of the virtual bitmap with-

in the multiresolution bitmap is determined by the cur-

rent estimate of the count. If the current number of flows

is small, we replace coarse components with the virtual

bitmap. If the number of flows is large, we replace fine

components. The update of the bitmap happens exactly

as in the case of the multiresolution bitmap, except that
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Multiple bitmaps

Virtual bitmap

Physical bitmap

Virtual bitmap

Direct bitmap

11101* 1111111

111100011001*11000*

000* 001* 010* 011* 100* 101*

Multiresolution bitmap

Figure 1: The multiresolution bitmap from this example uses a single 7-bit hash function to decide which bit to map a

flow to

the logic is changed slightly when the hash value maps

to the virtual bitmap component.

3.4.2 Triggered bitmap

Consider the concrete example of detecting port scans.

If one used a multiresolution bitmap per active source

to count the number of connections, the multiresolution

bitmap would need to be able to handle a large number of

connections because port scans can use very many con-

nections. The size of such a multiresolution bitmap can

be quite large. However, most of the traffic is not port

scans and most sources open only one or two connec-

tions. Thus using a large bitmap for all of sources is

wasteful.

The triggered bitmap combines a very small direct

bitmap with a large multiresolution bitmap. All sources

are allocated a small direct bitmap. Once the number

of bits set in the small direct bitmap exceeds a certain

trigger value, a large multiresolution bitmap is allocated

for that source and it’s used for counting the connections

from there on. Our estimate for the number of connec-

tions is the sum of the flows counted by the small direct

bitmap and the multiresolution bitmap.

As described so far, this algorithm introduces a sub-

tle error that makes a small change necessary. If a flow

is active both before and after the large multiresolution

bitmap is allocated it gets counted by both the direct

bitmap and the multiresolution bitmap. Only using the

multiresolution bitmap for our final estimate is not a so-

lution either because than we would not count the flows

that were active only before the multiresolution bitmap

was allocated. To avoid this problem we change the algo-

rithm the following way: after the multiresolution bitmap

is allocated, we only map to it those flows that do not map

to one of the bits already set in the direct bitmap. This

way if the flows that set the bits in the direct bitmap send

more packets, they will not influence the multiresolution

bitmap. It’s true that the multiresolution bitmap will not

catch all the new flows, just the ones that map to one of

the bits not set in the direct bitmap. This is equivalent to

the “sampling factor” of the virtual bitmap and we can



compensate for it (see Section 4.1).

3.4.3 Handling packet removals

We said earlier that counting the the number of flows that

have packets in the queue of a router can help determine

the “fair share” used by the scheduling algorithm. In this

case, we need to not only handle the case of new packets

arriving but also the case of packets getting removed. We

only note that all our algorithms can be modified to han-

dle this case by replacing every bits with a counter. When

the queue is empty all counters are 0. When a new pack-

et arrives, the counter it maps to is incremented. When a

packet is removed from the queue, the counter is decre-

mented. We use the number of counters with value zero

to compute our estimate of the number of active flows

exactly the same way we used the number of zero bits in

the case with measurement intervals. A counter will be

zero if and only if no active flows map to it.

4 Algorithm Analysis

In this section we provide approximate analyses for

our algorithms. We focus on three types of results. In

Section 4.1, we derive formulae for estimating the num-

ber of active flows based on the observed bitmaps. In

Section 4.2, we analytically characterize the accuracy of

the algorithms by deriving formulae for average error. In

Section 4.3, we use the analysis to derive rules for di-

mensioning the various bitmaps so that we achieve the

desired accuracy over the desired range for the number

of flows.

4.1 Estimate Formulae

Direct bitmap: To derive a formula for estimating

the number of active flows for a direct bitmap we have

to take into account collisions. Let b be the size of the

bitmap. The probability that a given flow hashes to a

given bit is p = 1=b. Assuming that n is the number

of active flows, the probability that no flow hashes to a

given bit is p
z

= (1 � p)

n

� (1=e)

n=b. By linearity

of expectation this formula gives us the expected num-

ber of bits not set at the end of the measurement interval

E[z℄ = bp

z

� b(1=e)

n=b. If the number of zero bits is z,

Equation 1 gives our estimate bn for the number of active

flows.

bn = b ln

�

b

z

�

(1)

Virtual bitmap: Let v be the size of the virtual

bitmap and b the number of bits of physical memory

used. We use � = b=v for the sampling factor (the frac-

tion of the virtual bitmap that is covered by the physical

bitmap). The probability for a given flow to hash to the

physical bitmap is equal to the sampling factor p
ph

= �.

Let m be the number of flows that actually hash to the

physical bitmap. Its probability distribution is binomial

with an expected value of E[m℄ = �n. By substituting

in Equation 1, we obtain Equation 2 for the estimate of

the number of active flows.

bn =

1

�

b ln

�

b

z

�

= v ln

�

b

z

�

(2)

Multiresolution bitmap: The multiresolution bitmap

is a combination of many components, each tuned to

provide accurate estimates over a particular range. But

when we compute our estimate we don’t know in ad-

vance which component is the one that provides the most

accurate estimate (we call this the base component). As

we will see in Section 4.2, we obtain the smallest error by

choosing the coarsest component that has no more that

set

max

bits set as the base component in lines 1 to 5 of

Figure 2. set
max

is a precomputed threshold set so that

we choose the component that gives us the most accurate

result. Once we have the base component, we estimate

the number of flows hashing to the base and all the higher

resolution ones using Equation 1 and add them together

(lines 13 to 17 in Figure 2). To obtain the result we only

need to apply the correction corresponding to the sam-

pling factor (lines 18 and 19). Other parameters used by

this algorithm are the ratio k between the resolutions of

neighboring components and b

last

the number of bits in

the last component (which is different from b).

Adaptive bitmap: The algorithm for adaptive bitmap

is very similar to multiresolution bitmap. The only dif-

ference is that we use different thresholds for the big

component. For brevity, we omit the algorithm.

Triggered bitmap: If the triggered bitmap did not

allocate a multiresolution bitmap, we simply use the for-

mula for direct bitmaps (Equation 1). Let’s use g for the

number of bits that have to be set in the direct bitmap be-

fore the multiresolution bitmap is allocated and d for the



ESTIMATEFLOWCOUNT

1 base = 
� 1

2 while bitsSet(
omponent[base℄) < set

max

and base > 0

3 base = base� 1

4 endwhile

5 base = base+ 1

6 if base == 
 and bitsSet(
omponent[
℄) > setlast

max

)

7 if bitsSet(
omponent[
℄) == b

7 return “Cannot give estimate”

9 else

10 warning “Estimate might be inaccurate”

11 endif

12 endif

13 m = 0

14 for i = base to 
� 1

15 m = m+ b ln(b=bitsZero(
omponent[i℄))

16 endfor

17 m = m+ b

last

ln(b

last

=bitsZero(
omponent[
℄))

18 fa
tor = k

base�1

19 return fa
tor �m

Figure 2: Algorithm for computing the estimate of the number of active flows for a multiresolution bitmap

total number of bits in the direct bitmap. If the multires-

olution bitmap is deployed, we use the algorithm from

Figure 2 to compute the number of flows hashing to the

multiresolution bitmap, multiply that by d=(d � g) and

add the estimate of the direct bitmnap.

4.2 Accuracy

To determine the accuracy of these algorithms we look

at the standard deviation of the estimate bn of the number

of active flows n. Our measure of accuracy is the average

(relative) error bn=n. One parameter that is useful in these

analyses is the flow density � which gives the average

number of flows that hash to a bit.

Direct bitmap: Since the bits in the bitmaps are set

almost independently5 with the same probability, we can

model the bits as independent Bernoulli trials. Thus we

get Equation 3 for the average error of a direct bitmap.

The error in our estimates occurs because we can’t al-

ways guess right about the number of collisions that oc-

cured. Equation 3 is derived for large values of n and

b of the same order of magnitude. When n is small this

bound is not tight.

5Appendix B has a more detailed discussion about why and when it

is valid to rely on this assumption

SD[bn℄

n

�

p

b

n

p

e

n=b

� 1 =

p

b

n

p

e

�

� 1 (3)

Virtual bitmap: Besides the randomness in the col-

lisions, there is another source of error for the virtual

bitmap: we assume that the ratio between the number

of flows that hash to the physical bitmap and all flows is

exactly the sampling factor while due to the randomness

of the process the number can differ. In Appendix B we

analyze these two errors. Equation 4 takes into account

their cumulative effect on the result. When the flow den-

sity is too large the error increases exponentially because

of the collision errors. When it is too small, the error

increases as the sampling errors take over.

SD[bn℄

n

�

q

e

�

+ �� 1�

b

n

�

2

�

p

b

<

p

e

�

+ �� 1

�

p

b

(4)

Multiresolution bitmap: To compute the average

error of the estimate of the multiresolution bitmap, we

could take into account the collision errors of all finer

components. This would result for a different formula for

each component. Equation 5 is a slightly weaker bound

that holds for all components but the last one as long as
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Figure 3: 8 of the 19 components of the multiresolution

bitmap are replaced by the virtual bitmap of size 15208

(b=94)

the number of bits in the last component b
last

is at least

b=(1 � 1=k). Based on this formula we compute nu-

merically the flow density �
max

where a estimates based

on a given component are still more accurate than those

based on the next one (whose flow density is �0 = �=k)

and thus obtain set

max

= b(1 � e

��

max

) . For the

last component of the multiresolution bitmap we can use

Equation 4 directly.

SD[bn℄

n

/

q

(1�

1

k

)(e

�

� 1) + e

�=k

+ �� 1

�

q

b=(1�

1

k

)

(5)

Adaptive bitmap: The error of the estimates of

the adaptive bitmap depends strongly on the number of

flows: the errors are much larger if the number of flows is

unexpectedly large or small. The exact formulas, omitted

for brevity are not very different from the ones seen so

far. We give an example instead. Figure 3 gives the av-

erage error as predicted by our formulae for the adaptive

bitmap we use in for measurements (Section 5.3). We

first represent the average error of the original multireso-

lution bitmap and then the average error we obtain by re-

placing various groups of 8 consecutive components with

the virtual bitmap. It is apparent from this figure that by

changing which components are replaced by the virtual

bitmap we can change the range for which the adaptive

bitmap is accurate.

Algorithm Memory (bits)

Direct bitmap >

N

1:5+

p

6A

2

N�3:75

Virtual bitmap 2:097

A

2

Multiresolution bmp. 0:87

A

2

(log

2

(A

2

N))

Adaptive bitmap '

2:097

A

2

Table 1: The size of the direct bitmap scales worse than
p

N=A, the size for the virtual bitmap depends only on

the square of the average error, the size of the multires-

olution bitmap depends on the square of the average er-

ror times the logarithm and under certain assumptions,

the adaptive bitmap delivers the accuracy of the virtual

bitmap while dynamically adapting to the number of ac-

tive flows

4.3 Configuring the bitmaps

In this section we address the configuration details and

implicitly the memory needs of the bitmap algorithms.

The two main parameters we use to configure the bit-

maps are the maximum number of flows one wants them

to count N and the acceptable average error A. We base

our computations on the formulas of the previous section.

Direct bitmap: We can see that if n increases very

much the exponential takes over and dominates the error

in Equation 3. So the size of the bitmap scales almost

linearly with N . To obtain the proper lower bound from

Table 1, we approximateA2

N � (e

�

� 1)=� > (1+ �+

�

2

=2! + �

3

=3!� 1)=� = 1 + �=2 + �

2

=6.

Virtual bitmap: The error of the virtual bitmap

( Equation 4) is minimized by a certain value of the flow

density. Using simple calculus we find that �
optimal

= 2

and this corresponds to 13:5% of the bits of the bitmap

being not set. By substituting, we obtain the error for

this “sweet spot” in Equation 6. By inverting this we ob-

tain the formula from Table 1 for the number of bits of

physical memory we need to achieve a certain accuracy.

When we need to configure the virtual bitmap as a trig-

ger, we set the sampling factor such that at the thresh-

old the flow density is exactly 2. For this application,

if we have 210 bits, the standard deviation of our esti-

mate is at most 10% of the actual number of flows, no

matter how large N is. If we have 2,331, the standard

deviation is at most 3% of the actual number of flows,

and if we have 29,075 it is at most 1%. If we want the

virtual bitmap to have at most a certain error for flow

counts between N

min

and N

max

, we need to solve the

problem numerically by finding a �
min

< �

optimal

and

a �
max

> �

optimal

so that �
max

=�

min

= N

max

=N

min



r bigb=b improvement

2 3.1824 1.2069

3 5.3405 1.5187

4 9.1712 1.9603

5 16.0633 2.5745

6 28.5916 3.4216

7 51.5673 4.5862

8 93.9867 6.1856

9 172.7982 8.3832

10 319.9593 11.4046

11 596.0726 15.5644

12 1116.0278 21.2958

Table 2: The relation between the number of compo-

nents covered and the ratio of the bitmap sizes and the

improvement in steady state average error as compared

to the worst case

and �

min

and �

max

produce the same error. Once we

have these values, we can compute the sampling factor

and the number of bits.

SD[bn℄

n

/

1:44826

p

b

(6)

Multiresolution bitmap: For the multiresolution

bitmap, we have to ensure that the average error of the

component doesn’t exceed the desired value as the flow

density increases from a certain �

max

to a �
max

, where

we know that �
max

=�

min

= k (k is the ratio between

the resolutions of neighboring components). Numerical

computations from Appendix D show that if the num-

ber of components is large enough k = 2 is always

the choice that results in the smallest memory consump-

tion. We also obtain the number of bits per compo-

nent b = 0:8687=A

2, the number of components need-

ed 
 = 2 + dlog

2

(N=(5:6742 b))e, �
max

= 3:2426

and the parameter we use to choose the base component

set

max

= 0:9609 � b. By assuming the last component

has b
last

= 2 � b bits, we obtain the total memory usage

reported in Table 1.

Adaptive bitmap: For brevity we omit the detailed

discussion of the configuration of the adaptive bitmap.

In Table 2 we report the costs and benefits of the adap-

tive bitmap. The first column lists the number of normal

components we replace with the large one. The next col-

umn lists the number of bits the large component needs

to have (compared to the number of bits of a normal com-

ponent) in order to insure that the adaptive bitmap never

has a worse average error than the original multiresolu-

Name No. of flows Length Encr.

(min/avg/max) (s)

MAG+ 93,437/98,424/105,814 4515 no

MAG 97,409/99,225/100,339 90 no

IND 13,746/14,349/14,936 90 yes

COS 5,157/5,497/5,784 90 yes

Table 3: The traces used for our measurements

tion bitmap. The third column lists the ratio between the

average error of multiresolution bitmap and the “sweet

spot” average error of the adaptive bitmap. The memory

usage reported in Table 1 is derived based on the obser-

vation that most of the memory of the adaptive bitmap

will be used by the “virtual bitmap” component.

5 Measurement results

We group our measurements into 4 sections corre-

sponding to the 4 important algorithms presented: vir-

tual bitmap, multiresolution bitmap, adaptive bitmap and

triggered bitmap. Part of the measurements are geared

towards checking the correctness of the predictions of

our theoretical analysis and part are geared toward com-

paring the performance of our algorithms with proba-

bilistic counting or other existing solutions.

For our experiments, we used 3 packet traces, an un-

encrypted one from CAIDA from an OC-48 backbone

link and two encrypted traces from the MOAT project

of NLANR from the connection points of two university

campuses to the Internet. The unencrypted trace is very

long; for some experiments we also used a 90 second

slice of the unencrypted trace as a fourth trace. We usu-

ally set the measurement interval to 5 seconds. We chose

5 seconds because it appears to be a plausible interval

someone would use when looking at the number of active

flows: it is larger than the round-trip times we can ex-

pect in the Internet and it is above the rate a slow modem

link sends packets. In all experiments we defined the

flows by source-destination IP address and port 5-tuples.

Table 3 gives a summary description of the traces we

used. All algorithms used equivalent CRC-based hash

functions with random generator functions.



5.1 Virtual bitmap

We postpone till Appendix C the measurements that

confirm the validity of Equation 3 and the conclusion

that the best average error for a virtual bitmap algorith-

m is achieved when the flow density is � = 2. Actually

Equation 3 proves to be conservative in the sense that ac-

tual errors are somewhat smaller than predicted by the

formula.

Our third set of measurements confirms our formula

for the accuracy of the virtual bitmap 6 and compares it to

probabilistic counting using the same amount of memo-

ry. We have three configurations, with different amounts

of memory, based on the error predicted by Equation 6:

with 210 bits (10% error, results in table 4), 2,331 bits

(3% error, results in table 5) and 20,975 bits (1% error,

results in table 6).

For each trace, we configure the virtual bitmap so

that the flow density is (on average) � = 2. For the

third configuration, we don’t use the virtual bitmap for

the traces IND and COS because they have much fewer

flows than the number of bits available, so we use direct

bitmap. Probabilistic counting is configured to handle

up to 100,000 flows. We use the following three config-

urations for probabilistic counting: nmap = 12 bitmaps

of L = 18 bits each, 167 bitmaps of 14 bits and 2,098

bitmaps of 10 bits each.

For each configuration we use 20 runs of both algo-

rithms, with different hash functions. In the tables we

report the accuracy (computed as the square root of the

average of the squares of the relative errors), and the

largest errors in both directions (most severe underes-

timation and the most severe overestimation) over the

18*20 measurement intervals considered. Note that in

all experiments the virtual bitmap is more accurate than

probabilistic counting. We explain the surprisingly bad

results of probabilistic counting on the COS trace using

20,975 bits by referring to the inaccuracy of this algorith-

m for small values.

5.2 Multiresolution bitmap

This set of experiments compares the average error

of the multiresolution bitmap and probabilistic counting.

A meaningful comparison is possible if we compare the

two algorithms over the whole range for the number of

flows. Since our traces have a pretty constant number

of flows, we decided to use a synthetic trace for this ex-

periment. We used the actual packet headers from the

MAG+ trace to generate a trace that has a different num-

ber of flows in each measurement interval: from 10 to

1,000,000 in increments of 10% with a jitter of 1% added

to avoid any possible effects of “synchronizations” with

certain series of numbers.

We performed experiments with multiresolution bit-

maps tuned to give an average error of 1%, 3% and

10% for up to 1,000,000 flows and probabilistic count-

ing configured for the same range with the same amount

of memory. We performed 400 runs for each configura-

tion of both algorithms with different hash functions.

Figures 7 to 9 show the results of the experiments. We

can see that in all three experiments, the average error of

the multiresolution bitmap is better then predicted, espe-

cially for small values. We explain the periodic “fluctua-

tions” of average error from table 7 by the variability of

average error of the components. The peaks correspond

to where components are least accurate and hand off to

each other. The peaks are more pronounced in this table

than the others because due to the small number of bits in

each component, it happens more often that not the best

component is used as a base for the estimation.

Probabilistic counting is worse than the multiresolu-

tion bitmap, especially for small values. We show in the

full version of the paper that the data collected by the

two algorithms is equivalent, so it might be surprising

that their accuracies are so different. We attribute the

big errors of probabilistic counting for low values to the

way it evaluates the collected data and the worse error

for higher values for the suboptimal dimensioning of the

algorithm (as recommended in [4]).

5.3 Adaptive bitmap

The experiments from this section compare adaptive

bitmap to virtual bitmap, multiresolution bitmap and

probabilistic counting on a three traces. The results are

presented in table 10. All of the algorithms were config-

ured to use 16 Kbits of memory. For each algorithm we

report the largest errors in both directions and the average

error based on 20 runs with different hash functions.

The algorithms were configured to give the best pos-

sible average error and work up to 100,000,000 flows.

For the adaptive bitmap we used as a base a multiresolu-

tion bitmap with an average error of 10% with k = 2,

b = 188, 
 = 19. The virtual bitmap component is

15; 208 bytes large and replaces 8 components of the



Trace Virtual Probabilistic

bitmap counting

(min/avg/max) (min/avg/max)

MAG -18.973/8.942/33.067% -47.365/21.4348/65.587%

IND -19.063/9.178/26.481% -47.696/24.807/100.391%

COS -20.011/8.909/28.041% -40.990/24.262/87.364%

Figure 4: Results with 210 bits (expected error 10%)

Trace Virtual Probabilistic

bitmap counting

(min/avg/max) (min/avg/max)

MAG -5.891/2.619/8.115% -15.513/5.894/19.055%

IND -6.321/2.468/7.514% -14.471/5.800/19.139%

COS -6.562/2.257/6.492% -16.182/5.363/15.727%

Figure 5: Results with 2331 bits (expected error 3%)

Trace Virtual Probabilistic

bitmap counting

(min/avg/max) (min/avg/max)

MAG -2.320/0.782/2.451% -4.872/1.636/4.569%

IND -1.652/0.575/1.505% -3.444/1.367/3.732%

COS -1.583/0.501/1.267% 7.666/12.919/16.973%

Figure 6: Results with 20975 bits (expected error 1%)

Trace Virtual Adaptive Multi-Resolution Probabilistic

bitmap bitmap bitmap counting

MAG+ -3.285/0.932/3.545% -3.297/0.943/3.583% -9.374/2.272/8.233% -10.533/2.840/11.494%

IND -1.692/0.639/1.778% -2.427/0.696/2.063% -7.597/2.070/5.023% -7.943/2.861/8.810%

COS -1.454/0.579/1.720% -1.735/0.623/1.726% -6.077/2.468/6.571% -6.050/2.464/6.463%

Figure 10: Comparison of algorithms using 16Kbits of memory
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Figure 7: Configured for an average error of 10%
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Figure 8: Configured for an average error of 3%
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Figure 9: Configured for an average error of 1%

multiresolution bitmap. For the adaptive bitmap we did

not include in our computations the first measurement in-

terval when the adaptive bitmap was not tuned to the traf-

fic. For the probabilistic counting we used nmap = 744

bitmaps of L = 22 bits each. We can see that adaptive

bitmap is roughly 2.5 times more accurate than proba-

bilistic counting. We were only able to achieve the same

error as this adaptive bitmap with a probabilistic count-

ing algorithm that used much more (128 Kbits) of mem-

ory. The major message here is that an adaptive bitmap

can achieve almost the same benefits of virtual bitmap

(e.g., ordinary of magnitude reduction in memory for

same accuracy) when the number of flows does not vary

dramatically, as seems common in networking applica-

tions.

We ran virtual bitmap in two configurations: the first

tuned to have the smallest possible error for the average

number of active flows and the second to have the smal-

lest possible error for the smallest and largest number

of active flows in the trace. Since the results were very

similar, we report only the first configuration in column

1. For the smaller traces we used direct bitmap because

in 16 Kbits, there were no benefits for virtual bitmap.

The multi-resolution bitmap configuration was k = 2,

b = 990 and 
 = 15. The expected accuracy is 3:069%.

We can see that the performance of the adaptive

bitmap is only slightly worse than that of the virtual

bitmap, even in the case of the two small traces where

the virtual bitmap is replaced by direct bitmap. The gain

in robustness more than compensates for this small loss

of accuracy. While the multi-resolution bitmap perform-

s better than predicted by our analysis and better than

probabilistic counting, it is still roughly 2.5 times less

accurate than the adaptive bitmap.

5.4 Triggered bitmap

So far, all our measurements have focused on one in-

stance of the counting problem. We have shown that

virtual bitmap and adaptive bit map can provide order

of magnitude improvements in the memory required for

counting compared to probabilistic counting, assuming

that the count range is known in advance or if the count

value is quasi-stationary. The reader may, however, have

two objections. First, our results so far do not indicate

how an actual application could benefit. Second, while a

memory reduction from 128 Kbits to 16 kbits is impres-

sive in a relative sense, we have not demonstrated that it

is important in an absolute sense because 128 Kbits of S-

RAM is easily available on-chip or in a processor cache.



Measurement Snort Prob. Triggered

interval count. bmp.

12 sec 1,846K 2,364K 472K

600 sec 52,107K 23,251K 5,828K

Table 4: The memory usage of various port scan detec-

tion algorithms (in Kbytes)

To remedy these two problems we describe experi-

ments that indicate benefits on a real port-scanning appli-

cation. At the same time, the reduction in memory is im-

portant in an absolute sense because we need to maintain

a large number (one per source) instances of the counting

problem.

We use a definition of a port scan equivalent to the

definition in the default Snort configuration: a source is

flagged as a port scanner if it has at least 4 connections in

a 12 second measurement interval. In the last experiment

we extend the measurement interval to 10 minutes to e-

valuate the algorithms against this more demanding defi-

nition. We ignore many of the details of the operation of

Snort (e.g. reliance on TCP flags to classify connections)

and concentrate on the core task of counting connections.

For the triggered bitmap we chose a configuration that

is convenient to implement on a 32-bit machine: a direct

bitmap of 4 bytes and a multiresolution bitmap with 11

components of 4 bytes each (except the last one which

is 8 bytes). The multiresolution bitmap is allocated after

8 bits are set in the direct bitmap. By our analysis the

multiresolution bitmap should ensure an average error of

at most 16.5% for up to 283,352 connections.

We compute memory usage of Snort based on the

number of sources and connections active during the

measurement interval. What we actually use is a not

an accurate model of the actual memory usage of Snort

(which uses inefficient structures such as multiple linked

lists) but the minimum that any implementation using the

naive algorithm would have to allocate: 8 bytes for the IP

address and a counter for each source and 9 bytes (des-

tination IP, source port, destination port, type) for the i-

dentifier of each active connection. We also compute the

memory usage of a solution directly applying probabilis-

tic counting with a configuration similar to our multires-

olution bitmap (48 bytes for the algorithm + 4 bytes for

the IP address for each source). Our triggered bitmap al-

gorithm consumes 8 bytes for each active source (the IP

address + the direct bitmap) plus the additional 48 bytes

for the sources that trigger the allocation of the multires-

olution bitmap.

We used two configurations, one with a 12 second pre-

fix and one with a 600 second prefix of the MAG trace.

For each configuration we performed 20 runs of with the

triggered bitmap algorithm, using different random hash

functions. The average of the error for flows that had at

least 4 connections was6 13.58%.

Also, our algorithm reported 84.28% of the sources

with 4 connections as reaching the threshold, 97.85% of

those with 5, and all (100%) of the sources that had at

least 9 connections. The memory usages for the two con-

figurations are reported in Table 4. In the table we report

the maximum of triggered bitmap over the 20 runs. We

can see that the triggered bitmap uses roughly 4 times

less memory with the first configuration. For the more

ambitious second configuration the gain increases to a

factor of 9. With both configurations triggered bitmap

used less memory that probabilistic counting.

What do these results mean to a security analyst?

Snort, of course, uses the classical measure of detect-

ing n connections with a maximum inter-event spacing

of t. By default, Snort uses values such as n=4, t=3. Our

technique uses significantly less memory at the expense

of possible undercounting. However, the probability of

undercounting decreases exponentially with the number

of events. For example, the probability is 97.85% at 5,

99.78% at 6, 99.97% at 7, etc. Using Snort’s timing re-

quirements, a fifth event must arrive within t = 3 second-

s of the fourth event if the scan continues. Thus, we will

detect a continuing scan with probability 97.85% within

3 seconds and 99.78% within 6 seconds. Note also that

port scans are usually the result of a brute-force network

exploration such as Nmap [5], or Code Red [7]. Such

tools frequently touch not just a handful of addresses,

but an entire block of contiguous addresses. Thus it is

reasonable to expect a scan to continue after 4 events.

Finally, note that because our algorithms use as much

as an order of magnitude less memory per source, they

also enable stealthy slow scans to be detected using the

same amount of memory that naive algorithms use for

fast scans. Because the memory required for each source

is greatly reduced with our algorithms, we can afford

to count more sources at a time. As a result, we can

avoid timing-out state as aggressively as Snort and keep

counting sources with longer inter-arrival times between

events. By doing so, we can detect more stealthy port

scans, a goal of many detection systems [10].

6This is an average over all sources. We did notice some “pecu-

liarities”: for sources that had 4,5 and 8 connections the average errors

were around 11%, for sources with 6 connections it was 18% while for

all others the averages were around 15%. We explain these as effects

of having such a small direct bitmap.



Setting Algorithm Application

General counting Multiresolution bitmap Tracking virus infections

Accuracy important only Virtual bitmap Triggers (e.g. for

over a narrow range detecting DoS attacks)

Count is probably in a Adaptive bitmap Measurement

narrow range (stationarity)

Small memory usage as Triggered bitmap Detecting port scans

long as count is small

Flows dynamically added Increment-decrement Scheduling

and deleted algorithms

Table 5: The family of bitmap counting algorithms: each algorithm is best suited for a different setting.

6 Conclusions

In this paper we show that, using a suitably general

definition of a flow, counting the number of active flows

is at the core of a wide variety of security and network-

ing applications such as detecting port scans and denial

of service attacks, tracking virus infections, calibrating

caching, etc. We provide a family of bitmap algorithms

solving the flow counting problem using extremely small

amounts of memory. Most of the algorithms can be im-

plemented at wire speeds (8 nsec per packet for OC-768)

using SRAM since they access at most one memory lo-

cation per packet, and can be implemented using simple

hardware (CRC based hash functions, multipliers, and

multiplexers). With the exception of direct and virtual

bitmap, the other algorithms are introduced for the first

time in this paper.

The best known algorithm for counting distinct val-

ues is probabilistic counting. Our algorithms need less

memory to produce results of the same accuracy. This

can translate into savings of scarce fast memory (SRAM)

for hardware implementations. It can also help systems

that use cheaper DRAM to allow them to scale to larger

instances of the problem.

In comparing head on with probabilistic counting, our

multiresolution algorithm works under the same assump-

tions and provides order of magnitude lower error when

the number of flows is small and is only slightly worse

for higher values. However, we believe our biggest con-

tribution is as follows. By exposing the simple build-

ing blocks and analysis behind multiresolution counting,

we have provided a family of customizable counting al-

gorithms (Table 5) that application designers can use to

reduce memory even further by exploiting application

characteristics.

Thus virtual bitmap is well suited for triggers such as

detecting DoS attacks, and uses 292 bytes to achieve an

error of 2.619% compared to 5,200 bytes for probabilis-

tic counting. Adaptive bitmap is suited to flow measure-

ment applications and exploits stationarity to require 8

times less memory than probabilistic counting on sam-

ple traces. Triggered bitmap is suited to running mul-

tiple instances of counting where many instances have

small count values (e.g., port scanning) requiring only

5.7 Mbytes on a 10 minute trace compared to the 51

Mbytes required by the naive algorithm and 23 Mbytes

required by probabilistic counting. Given that low-

memory counting appears to be useful in applications

beyond networking which have different characteristic-

s, we hope that the base algorithms in this paper will be

combined in other interesting ways in architecture, oper-

ating systems, and even databases.
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Figure 11: Hardware for selecting the bit to be set

A A hardware implementation for the

multiresolution bitmap

While the analysis of the statistical behavior of mul-

tiresolution bitmap can look complicated, its implemen-

tation is simple. It simplifies the hardware implementa-

tion if the size of the components and the ratio of the res-

olutions are powers of two. Thus for the bottom multires-

olution example in Figure 1 one can map the incoming

packets to the proper sub-interval by computing a 7-bit

hash function and using simple additional combinatorial

logic. If the first two bits of the hash are not “11”, the

first 3 bits decide which of the sub-intervals in the coars-

est component the packet maps to. Otherwise if the third

and fourth bit are not 11 (but the first two are), bits from

3 to 5 decide which sub-interval in the intermediate com-

ponent the packet maps to. If the first 4 bits are 1, bits

from 5 to 7 map the packet to the appropriate subinterval

in the finest component.

Figure 11 presents a possible hardware implementa-

tion for the logic circuit that computes the address of the

bit the current packet maps to. It is based on the ope-

rations described in the previous paragraph. The input

to the circuit is the 7 bit hash function Hash[0..6] that is

generated based on the flow ID of the packet. Its output

is a 5 bit address Addr[0..4] of the bit that will be set to 1.

The leftmost bit in the multiresolution bitmap of figure 1

has an address of 0 and the rightmost has an address of

19.

The “select resolution” block selects the componen-

t with the appropriate resolution based on the first 4 bits

of the hash. If the coarsest component is used, the output

Res[0,1] will have a value of 0 and if the finest compo-

nent is used its value will be 2. This block can be imple-

mented with few gates. The “X 6” block multiplies this

value by 6 because there are 6 bits in each componen-

t. Since this block performs multiplication with a con-

stant value, it can be implemented using an adder and a

shift register. The “Select offset” block selects which of

the bits within the hash to be used to find the offset Off-

set[0..2] of the bit within the component. In our case it



can be implemented with a 16:4 multiplexer. The final

adder adds together the base and the offset to obtain the

address of the bit.

B Analysis Details

We first show the derivation of Equation 3. Equation 1

shows us that bn = f(z) where f(x) = b ln(b=x).

We approximate SD[bn℄ �j f

0

(E[z℄)SD[z℄ j.

For the purpose of this analysis we assume that

the bits are set independently7 with probability

1�(1�1=b)

n

� 1�1=e

n=b. This gives us a binomial dis-

tribution for z. Based on our model, E[z℄ � b(1=e)

n=b

and SD[z℄ �

p

b(1=e)

n=b

(1� (1=e)

n=b

). Through cal-

culus we obtain f

0

(x) = �b=x. By substituting we get

SD[bn℄ � b=(b(1=e)

n=b

)

p

b(1=e)

n=b

(1� (1=e)

n=b

) =

e

n=b

p

b(1=e)

n=b

(1� (1=e)

n=b

) =

p

be

n=b

(1� (1=e)

n=b

) =

p

b(e

n=b

� 1). From

here Equation 3 is immediate.

For Equation 4 we start from SD[error

m

℄ =

p

n(1� �)=� =

p

n(1� b�=n)n=(b�) =

(n=

p

b�)

p

(1� b�=n) = n=(�

p

b)

p

�(1� b�=n)

and SD[error

z

℄ � n=(�

p

b)

p

e

�

� 1. We ob-

tain SD[bn℄ =

p

SD[error

z

℄

2

+ SD[error

m

℄

2

�

n=(�

p

b)

p

e

�

� 1 + �(1� n�=b) =

n=(�

p

b)

p

e

�

+ �� 1� (b=n)�

2. From here

Equation 4 is immediate.

For Equation 5, we focus on SD[bm℄ = �SD[error

z

℄.

Let m
1

be the number of flows that hash to the coarse

component and m

2

be the number of flows that hash

to the fine component. Since we use m = m

1

+ m

2

,

we have error

z

= error

z1

+ error

z2

and since the

collision errors for m
1

and m

2

are independent random

variables with an expectancy of 0, we have SD[bm℄ =

p

SD[
m

1

℄ + SD[
m

2

℄. By the multi-resolution bitmap

algorithm we know that E[m

1

℄ = (1 � 1=k)m and

E[m

2

℄ = (1=k)m.

We will approximate the standard deviations of the

collision errors error
z1

and error

z2

by their values in

the case where we knew exactly that m
1

= E[m

1

℄ and

m

2

= E[m

2

℄. By applying Equation 3 directly we ob-

7The bits are actually not set independently, even assuming a per-

fect hash function. If we define X

i

to be the indicator variable for

bit i being set, the correlation two such variables is 
orr(X
i

; X

j

) =

�

(1�2=b+1=b

2

)

n

�(1�2=b)

n

(1�1=b)

n

(1�(1�1=b)

n

)

> �1=(b � 1). Since the correlation

is close to 0 when b is large, we conjecture that our model does not

introduce significant errors.

tain SD[
m

1

℄ �

p

(1� 1=k)b(e

m

1

=((1�1=k)b)

� 1) and

SD[
m

2

℄ �

p

b(e

m

2

=b

� 1). By using � = m=b and

the formulae for the expected values of m
1

and m

2

we

can eliminate m

1

and m

2

from the formulae. We ob-

tain SD[
m

1

℄ �

p

(1� 1=k)b(e

�

� 1) and SD[
m

2

℄ �

p

b(e

�=k

� 1).

By substituting in the formula for the stan-

dard deviation of our estimate of m we obtain

SD[bm℄ �

p

(1� 1=k)b(e

�

� 1) + b(e

�=k

� 1) =

p

b((1� 1=k)(e

�

� 1) + e

�=k

� 1). From this

we obtain SD[error

z

℄ = 1=�SD[bm℄ =

n

p

((1� 1=k)(e

�

� 1) + e

�=k

� 1)=�

p

b. By combin-

ing this with SD[error

m

℄ = n=(�

p

b)

p

�(1� b�=n)

we obtain SD[bn℄ =

p

SD[error

z

℄

2

+ SD[error

m

℄

2

�

n

p

((1� 1=k)(e

�

� 1) + e

�=k

� 1 + �(1� b�=n))=�

p

b <

n

p

((1� 1=k)(e

�

� 1) + e

�=k

� 1 + �)=�

p

b. From

here Equation 5 is immediate.

While the independence assumption and the use of a

Taylor series approximation using derivatives is some-

what cavalier to say the least, the approximations work

very well in practice, as indicated by measurements we

show next.

C Verifying the analysis

The purpose of our first set of measurements is to ver-

ify how well Equation 3 predicts the accuracy of the di-

rect bitmap algorithm. For each measurement interval,

we compute the relative error of the estimator, and we

compute the square root of the average of the squares of

these over all the measurement intervals; we repeat the

experiment 10 times with 10 different hash functions. We

performed measurements for bitmaps sizes ranging from

0.25 times the number of flows to 10 times the number

of flows (the x axes are log scale).

Figures 12, 13 and 14 show our results for the 3 traces

we considered. In all these figures we also plotted the

values predicted by Equation 3. For all traces and all

sizes of the bitmaps, the formula predicts a larger er-

ror that what the actual experiments report. We can see

that as the size of the bitmap increases, the estimates are

much more accurate than predicted because the formula

asymptotically approaches 1=

p

n while the actual esti-

mate gets more accurate as the probability of two flows

hashing to the same bit decreases.

The purpose of our second set of measurements is to
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Figure 12: Effect of bitmap size (MAG)
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Figure 13: Effect of bitmap size (IND)
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Figure 14: Effect of bitmap size (COS)

verify what the best flow density is for our virtual bitmap

algorithm. For all three of the traces we used we per-

formed experiments with physical bitmap sizes 4, 20 and

100 times smaller than the number of flows (averaged

out over all measurement intervals). For each of these

bitmap sizes, we varied the flow densities 8 from 0.4 to

4 (we stopped at lower densities if there were any inter-

vals where all bits were set). For each configuration we

perform 100 runs with different hash functions. Figures

15 through 23 show our results. We can see that the low-

est error is usually close to a flow density of � = 2 and

for a flow density of 2, the actual error is below what

Equation 6 predicts (shown by the horizontal lines in the

plots).

D Taming the multi-resolution beast

The number of parameters in a multi-resolution

bitmap is quite large. We now discuss a simple strate-

gy to automatically set these parameters.

Assume for now that we know k. The compo-

nents of the multi-resolution bitmap have to be ac-

curate for any flow density between �

min

and �

max

.

The components are most inaccurate at the ends of

the ranges they cover. We can numerically compute

�

min

and �

max

by looking for the unique number � for

which max(error(�); error(�=k)) is minimized (using

Equation 5 for error(�)).

Once we have the flow densities at the ends of the

range, we can compute the size of the bitmap b that guar-

antees the accuracy A. Equation 4 applies to last compo-

nent and it gives larger errors than Equation 5 that applies

to the others. Therefore, unless we increase the number

of bits in the last component, its error will be unaccept-

ably large at �
min

.

For now we assume that we do not change the size of

the last component. The largest possible number of flows

N will dictate the number of components 
. The flow

density at component i will be �
i

= n=(k

i�1

b) � (k �

1)=k. The largest number of flows the multi-resolution

bitmap can reliably identify is the one reached when

component 
 � 1 reaches flow density �

max

. There-

fore N � (k � 1)=k b�

max

k


�2. From here we obtain


 = 2 + dlog

k

(N=(k=(k � 1) b�

max

))e.

8The flow density is the ratio between the average number of flows

and the number of bits in the virtual bitmap. Since the number of flows

in various measurement intervals varies around the average, the flow

density also varies.
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Figure 15: b=n/4 (MAG)
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Figure 16: b=n/20 (MAG)
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Figure 17: b=n/100 (MAG)

1 2 3 4

Flow density (flows/bit)

0

0.01

0.02

0.03

0.04

R
el

at
iv

e 
er

ro
r 

o
f 

es
ti

m
at

e

Measured error
Predicted lowest error

Effect of the flow density on accuracy

Figure 18: b=n/4 (IND)
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Figure 19: b=n/20 (IND)
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Figure 20: b=n/100 (IND)



1 2 3 4

Flow density (flows/bit)

0

0.01

0.02

0.03

0.04

0.05
R

el
at

iv
e 

er
ro

r 
o

f 
es

ti
m

at
e

Measured error
Predicted lowest error

Effect of the flow density on accuracy

Figure 21: b=n/4 (COS)
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Figure 22: b=n/20 (COS)
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Figure 23: b=n/100 (COS)

k �

min

�

max

k=(k � 1) b �A

2

k=(k � 1) b �A

2

(1� 1=k)=ln(k)

2 1.6213 3.2426 1.8643 1.344810

3 1.1888 3.5663 2.2623 1.372828

4 0.9540 3.8159 2.6595 1.438817

8 0.5621 4.4966 4.0987 1.724672

16 0.3278 5.2440 6.6287 2.241354

32 0.1881 6.0201 11.1480 3.116098

Figure 24: Comparison between some values of k

So far, we know how to configure and operate the

multi-resolution bitmap once we have k. Now we ad-

dress the problem of choosing the k that minimizes the

total amount of memory used. There is a tradeoff be-

tween the size of the bitmap and the number of bitmaps

and both are determined by k. With large k we need few

components to cover all possible values of n, but because

�

min

and �

max

are extreme, the accuracy at the bound-

aries is much worse than with the ideal density, therefore

we need large bitmaps. With a smaller k we need more

bitmaps, but they can be smaller since they will operate

close to the ideal density.

Given N and A, 
 varies with k roughly as 1=ln(k).

Since B � b
, we can use b=ln(k) (where b is computed

based on k) as an approximative indicator of the amount

of memory needed for bitmaps using k.

Table 24 shows numeric values of this indicator for

some values of k. The first column is the value of k,

the second and third are the �

min

and �

max

that have

the ratio k and require the smallest physical bitmap, the

next column shows how many times the corresponding

bitmap is larger than 1=A

2 and the last column shows

our indicator of the total memory needed by the virtual

bitmap. The table shows us that the best value for k is

2. Nearby values are also good, but as we go further,

our approximate indicator increases considerably, so it is

safe to assume that they will not result in configurations

requiring less memory.

There are two more details we need to consider before

giving our final algorithm for dimensioning the multi-

resolution bitmap. The first is that if the algorithm is

implemented in hardware, it simplifies the implementa-

tion if k and b are powers of two. The other is that we

can “stretch” the last component so that it can be used

too. We have to make sure that at the two ends of its

range the last component is accurate: the enlarged last

component has to be such that by applying Equation 4

we obtain an acceptable error when the flow density is

�

min

and respectively when the number of flows is N . If
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1 lowestMemorySoFar =1

2 for k = 2 to 16

3 b = d(k � 1)=k � errorCoeffi
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4 if hardware
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7 endif
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� 1) + bk=(k � 1)

14 �

low

= �

min

(k)

15 for lastb = bk=(k � 1) to bk=(k � 1) + b

16 if hardware and lastb is a not a power of 2

17 skip to next lastb

18 endif

19 �

high

= N=(lastb k


�2

)

20 if
p

(e

�

low

+ �

low

� 1)=(�

low

p

lastb) <= A and
p

(e

�

high

+ �

high

� 1)=(�

high

p

lastb) <= A

21 c=c-1

22 B = b(
� 1) + lastb

23 break loop

24 endif

25 endfor

26 if B < lowestMemorySoFar

27 (bestk; bestb; best
; lowestmemorysofar) = (k; b; 
; B)

28 endif

29 endfor

30 return (bestk; bestb; best
; lowestmemorysofar)

Figure 25: Algorithm for computing the best configuration for a multi-resolution bitmap

c / B

A / k b*k/(k-1) N=1,000,000 N=100,000,000 N=10,000,000,000

10% / 2 188 (256) 12 (12) / 1270 (1664) 19 (18) / 1928 (2432) 25 (25) / 2492 (3328)

10% / 3 228 8 / 1338 12 / 1946 16 / 2554

10% / 4 268 (512) 6 (6) / 1314 (2432) 10 (9) / 2118 (3584) 13 (13) / 2721 (5120)

10% / 8 416 (512) 5 (4) / 1876 (1856) 7 (7) / 2604 (3200) 9 (9) / 3332 (4096)

3% / 2 2072 (4096) 9 (8) / 10922 (18432) 15 (14) / 17138 (30720) 22 (21) / 24390 (45056)

3% / 3 2514 6 / 11458 10 / 18162 14 / 24866

3% / 4 2956 (4096) 5 (4) / 12363 (13312) 8 (8) / 19014 (25600) 11 (11) / 25665 (34816)

3% / 8 4560 (8192) 3 (3) / 12974 (22528) 6 (5) / 24944 (36864) 8 (8) / 32924 (58368)

1% / 2 18644 (32768) 6 (5) / 70315 (98304) 12 (11) / 126247 (196608) 19 (18) / 191501 (311296)

1% / 3 22626 4 / 72948 8 / 133284 12 / 193620

1% / 4 26596 (32768) 3 (3) / 71369 (81920) 6 (6) / 131210 (155648) 10 (10) / 210998 (253952)

1% / 8 40992 (65536) 2 (2) / 81090 (122880) 5 (4) / 188694 (237568) 7 (7) / 260430 (409600)

Figure 26: Configurations for the multi-resolution bitmap



we stretch the last component, we need to change line 18

in the algorithm for computing our estimate of the num-

ber of flows (shown in Figure 2)so that it uses the new

size of the last component instead of b.

Figure 25 gives the pseudocode of our algorithm for

computing the best configuration for the multi-resolution

bitmap. The algorithm simply tries all values of k from

2 to 16 (the outer loop from line 2 to 29) and returns

the configuration using the least amount of memory (line

30). The function errorCoefficient used in line 3 com-

putes the error coefficient that corresponds to k based on

Equation 5. It can look it up in a table similar to table 24.

Similarly on line 12 �

max

and on line 14 �

min

can

be looked up in a precomputed table. Lines 14 to 25

implement the “stretching” of the last component: we

assume we reduce the number of components 
 by one; if

we can find a size for the last component so that the total

amount of memory required is less than it was before

(ensured by the loop limit on line 15) and it is accurate

enough (the if on line 20), then we stretch it (lines 22 and

23).

Table 26 shows the configurations computed by our

algorithm that achieve an accuracy of 10%, 3% or 1%

for a number of flows up to 1,000,0000 , 100,000,000

or 10,000,000,000. For brevity we included only values

2,3,4 and 8 for k. The values in parenthesis correspond

to the hardware implementation. Not surprisingly, 2 is

almost always the best choice for k for the software im-

plementation. 9 For the hardware implementation k=2 is

often the best choice, but k=4 is better when its required

bitmap size for a given accuracy is closer to a power of 2

(e.g. for A=10% and A=1%).

Ignoring the small differences introduced by one

choice or another of k and stretching of the last com-

ponent we can give a formula that asymptotically de-

scribes the memory requirements of a multi-resolution

bitmap given the desired accuracy A and the maximum

number of flows N . We obtain this by assuming that

k = 2 is the best choice and assuming that the size

of the bitmap is not restricted to powers of 2. By sub-

stituting the proper values k = 2,b = 0:869=A

2 and


 = 2+dlog

2

(N=(6:485 b))e inB = b(
�1)+bk=(k�1)

we obtain:

B �

0:87

A

2

dlog

2

(N) + log

2

(A

2

) + 0:5e (7)

9For N=10,000,000,000 A=10% and for N=100,000,000 A=3%

k=3 is slightly better.

E Multi-resolution bitmap versus proba-

bilistic counting

Even though it might seem surprising at first, the data

collected by a multi-resolution bitmap with k = 2 and

no stretching of the last component is isomorphic to the

data collected by a probabilistic counting algorithm con-

figured in a certain way (assuming we have good hash

functions). The probability of the incoming packet to

hash to component i is 1=2

i for all components but the

last for which it is 1=2
�1. Each component but the last

has b bits.

The probability that the packet hashes to a given bit at

component i is 1=2i � 1=b = 1=(b � 2

i

) (this also holds

for the last component). Therefore, for each i from 1 to


� 1 we have b bits that have a probability of 1=(b � 2i)

of “catching” the incoming packet plus we have 2 � b

bits that have the probability 1=(b � 2




) of “catching” the

incoming packet. All incoming packets map to exactly

one bit.

Probabilistic counting of Flajolet and Martin uses

nmap bitmaps of size L. Each bitmap has a probabi-

lity of 1=nmap of “catching” a random database record.

Within each bitmap, bit i has a probability of 1=2

i of

catching the record. The last bit acts as a “catch-all” for

all numbers of consecutive zeroes of L or more in the

hash, so it has a probability of 1=2L�1 of catching the

packet. Overall for each i from 1 to L�2 we have nmap

bits that have a probability of 1=(nmap � 2

i

) of “catch-

ing” the record plus we have 2 � nmap bits that have a

probability of 1=(nmap�2

L�1

) of “catching” the record.

We can see in Figure 27 that when b = nmap and


 = L � 1 the two algorithms have the same number of

bits and the probability distribution of bits getting set is

the same. Therefore we conclude that the data collected

by the two algorithms is equivalent. What is the differ-

ence then? The most important difference is the way the

collected data is interpreted. As both analysis and ex-

periments show this leads to our algorithm being more

accurate when the number of flows is small. Another dif-

ference is that we have different rules for configuring the

algorithm which, as experiments show, result in some-

what more accurate estimates when the number of flows

is large.
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Figure 27: Probabilistic counting groups the bits hor-

izontally into bitmaps that contain bits with different

probabilities of being set, while multiresolution bitmaps

group bits vertically with bits with the same probability

of being set in the same component




