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ABSTRACT OF THE DISSERTATION

Mathematical Models of Blood Clot Deformation and Post-Translational Regulation of
Enzymes in Metabolic Networks

by

Samuel Britton

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2020

Dr. Mark Alber, Chairperson

Mathematical models are widely utilized to suggest and test physical and biological

hypotheses for which no experimental validation is available at this time. This thesis contains

three sections describing several different novel physics based mathematical models in which

novel biological hypotheses are proposed and validated.

First, we develop a 3D mathematical model of a fibrin network, a material which

determines the deformability and integrity of blood clots. The fiber network is simulated

using Langevin dynamics, with each elastic fiber modelled using nonlinear springs. Compu-

tational implementation utilizes Nvidia GPUs. We use the model to test a novel structural

mechanism of fibrin clots’ response to external loads. This mechanism is based on neglected

cohesive pairwise interactions between individual fibers in fibrin networks. The contribution

of the fiber-fiber cohesion to the elasticity of fibrin networks is characterized in analysis of

model simulations by evaluating changes in individual fiber stiffness, length, and alignment

of fibers, as well as connectivity and density of the entire network.

Next, the model is extended to include a sub-model of filopodia of platelet cells
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which incorporates mechanical forces exerted by filopodia on individual fibrin fibers, and ad-

herence of platelets to one another. Model simulations show how a hypothesized mechanism

based on platelets sensing fiber stiffness and thereby adapting their behavior is fundamental

for the formation of the distinct contraction phases observed in experiments. Moreover, we

quantify how different levels of filopodia strength in response to different stiffness alters clot

stability.

Last, a statistical thermodynamic and metabolic control theory framework using

hybrid optimization-reinforcement learning (RL) is used to predict the post-translational

regulation of enzymes in metabolic pathways. We utilize a non-linear least squares opti-

mization approach to obtain a steady state. The problem of regulation is posed as a Markov

decision process and the optimization routine is directly incorporated into a RL environ-

ment. The model is used to investigate the hypothesis that regulation is driven by the need

to maintain the solvent capacity in the cell. Predictions suggest novel general principles:

(1) regulation itself causes reactions to be much further from equilibrium instead of the as-

sumption that non-equilibrium reactions are targets for regulation; (2) regulation is used to

maintain concentrations of both immediate and downstream product concentrations rather

than to maintain a specific energy charge; and (3) minimal regulation needed to maintain

metabolite levels at physiological concentrations also results in a maximal obtainable energy

production rate.
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Chapter 1

Introduction

1.1 Overview

In recent years, there has been a rapid increase in data of variable type and spatial

scale. New approaches based on techniques such as multiscale modelling (MSM), optimiza-

tion or physics-based models, have been effective tools in incorporating different ranges of

spatial data as well as utilizing important biological aspects of the modelled system. By in-

corporating different types of experimental multiscale data, models can generate more precise

predictions. This process of data incorporation followed by model prediction is frequently

maintained through a constant iterative process between computational and experimental

scientists and has become a powerful investigative tool in helping better understand complex

biological systems. The focus of this thesis is on two systems: blood clotting and metabolism.

Each system combines significant challenges in applied mathematics approaches, computa-

tional methods, systems biology modeling and understanding of biological processes.

In Chapters 2 and 3 mechanical spatio-temporal dynamics of biogels are studied.
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Two mechanical models are presented that are utilized to quantify specific mechanisms of

blood clot contraction, namely the role of fiber-fiber cohesion and the filopodia-fiber response

that drives platelet aggregation. Blood clots are biological structures that form as a result

of a complex series of chemical reactions known as the coagulation cascade. The coagulation

cascade is usually initiated by an injury to a blood vessel inducing the release of coagulation

factors in the bloodstream. These factors activate platelets present in the plasma, thereby

changing their mechanical and adhesive properties. The change in platelet adhesion is

characterized by a transition from discoidal shape to star shaped configuration, along with

the formation of numerous protrusions called filopodia extending from the main body of the

platelets. Platelets then start to merge, forming aggregates that assume the role of nucleation

sites for the polymerization of fibrinogen converting into fibrin fibers [191, 208, 92]. The

process eventually leads to the formation of a fully formed thrombus (blood clot) at the site

of the vessel injury, the role of which is to prevent internal bleeding and promote healing of

the damaged epithelium. The MSM approaches presented here combine representations of

different properties and components including the properties of platelets and fibrin fibers,

and the mechanical forces exerted by the platelets due to their activation. Each model

presents novel insights into the biological system that would not, at this current time, be

experimentally possible.

Even so, MSM is generally a computationally expensive approach and is unable to

incorporate all relevant or new data without additional model features. Furthermore, with

the plethora of usable data (e.g. imaging), metabolomics, proteomics and transcriptomics

data it has been very difficult to integrate this data into multi-scale mechanistic models in
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ways that elucidate the underlying biological processes. Models also tend to be specific or

tailored towards a single organism or experimental setup, thereby increasing model precision

but consequently reducing model re-usability and theoretical predictive power. For these

reasons, many have turned to machine learning (ML) approaches to supplement MSM meth-

ods. ML, however, has frequently been relegated to a preprocessing step, as in the case of

image analysis, PCA, or clustering algorithms, or used as a standalone method which ignores

nearly all physical and biological knowledge that was present in the mechanical model. Indi-

vidually, each modelling approach (physics-based MSM vs ML) can be applied to a relatively

narrow range of problems. A challenging problem in the mathematical biology community

is to combine the theoretical strengths of physics-based modeling methods with the flexibil-

ity and power of new ML techniques. Instead of using MSM methods and ML as separate

approaches, ML methods should be used in conjunction with physics-based methods to form

a hybrid approach. This hybrid approach combines the strengths for physics-based and ML

in separate model components (see, for details [3, 153]).

In Chapter 4, one of the first hybrid models combining optimization and ML is

presented. The model is applied to study metabolism in order to predict enzyme regulation

necessary to control metabolite concentrations as well as understand novel theoretical im-

plications related to regulation. Metabolism is the process by which cells dissipate available

energy. In order to do this, cells produce and utilize a myriad of metabolites for move-

ment, growth, and survival. The biological mechanism for the necessary conversion from

one type of metabolite to another is catalyzed by a collection of proteins called enzymes.

This collection of enzyme catalyzed reactions comprise what is known as a chemical reaction
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network. In order to produce and reduce metabolite concentrations as well as respond to

changes in the environment, cells have developed the ability to regulate specific enzymes

for this directed purpose. However, experimental measurement or computational inference

of the enzyme regulation needed in a metabolic pathway is difficult and costly to perform.

Consequently, regulation is known only for well-studied reactions of central metabolism in

various model organisms. Here, a reinforcement learning based approach coupled to an op-

timization routine is presented in order to form a hybrid optimization-RL model (Chapter

4). The optimization component includes the theoretical knowledge and thermodynamics

from the chemical reaction network while the RL component provides the ability to learn

regulation policies that match physiological levels of metabolites while minimizing the heat

loss and maximizing free energy.

The methods presented here are one the first attempts in combining two rich fields

of MSM and ML that have previously been fragmented. In the following sections, the nec-

essary modelling background and previous approaches for discrete network models (Section

1.2.1), single cell models (Section 1.2.2, chemical reaction network models (Section 1.2.3)

and reinforcement learning techniques (Section 1.2.4) are described. Detailed mechanical

models of fibrin network and platelets are presented in Chapters 2 and 3. The hybrid

optimization-RL model is described in Chapter 4. The work presented here is utilized to

construct a hybrid ML-MSM environment where the ML predictions iteratively inform de-

velopment and calibration of large-scale mechanistic models. The MSM model allows for an

accurate representation of the biological system, while the ML model offers the ability to

adapt to different data types and produce predictions based on model simulations.
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1.2 Modelling Background

1.2.1 Network Models

Several theoretical and computational frameworks have been recently developed

for modeling fibrin structural mechanics at different spatial scales ranging from molecular

to macroscale [9, 104, 181, 109, 164, 215, 103, 43, 36, 155, 91, 213, 182, 154]. At the molec-

ular scale, fibrin mechanics is defined by the properties of monomeric fibrin, an elementary

structural unit that shares structural and mechanical similarity with fibrinogen, a blood

plasma protein, converted enzymatically to monomeric fibrin [134]. To model the dynamics

of human fibrin(ogen) undergoing forced elongation, molecular dynamics (MD) simulations

were used to characterize the α-to-β transition in α-helical coiled-coil connectors of the fibrin

molecule, revealing distinct elastic, plastic, and non-linear regimes in force-extension pro-

files [222]. Zhmurov et al. [221] used a model to elucidate structural mechanisms of forced

elongation of fibrin molecules based on stepwise unfolding of γ nodules concomitant with

partial stretching and contraction of α-helical connectors.

In order to explain the strain-stiffening behavior of stretched fibrin networks, two

conceptually different types of models of cross-linked filamentous networks were previously

developed and applied [86]. The first type assumed the existence of semiflexible filaments

that undergo thermal fluctuations [182, 125]. One entropic approach used the Worm-Like-

Chain (WLC) to model the force-strain profiles of fibrin fibers under stretching, with fitting

parameters obtained in atomic force microscopy experiments [74, 76]. The second type

modeled filaments as elastic rods that can bend and stretch but do not exhibit thermal fluc-

tuations [47, 145, 32]. Both types of models were capable of capturing the strain-stiffening
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behavior of fibrin networks, but gave different predictions for the degree and onset of stiff-

ening, suggesting that further studies are required to develop these entropic and athermal

models to the mechanical properties of fibrin hydrogels [86].

At the macroscale fibrin network level, discrete and continuous modeling approaches

have been used to account for elastic responses of fibrin networks to external tensile and

shear deformations inducing stiffening [86, 193, 88] as well as to suggest mechanisms of

softening-stiffening behavior of compressed fibrin networks [91, 115, 194, 192]. Several con-

tinuous models of fibrin networks, including a three-chain model [77], an eight-chain model

[80], and an isotropic network model [182], were used to predict the force-strain response of

stretched fibrin clots [21]. All these models were shown to correctly reproduce fibrin network

behavior under tension in the linear regime. However, at large strains, the results signifi-

cantly deviated from experimental data [21]. All three models simulated isotropic networks

and assumed affine network deformations. Meanwhile, biological networks such as those

formed by fibrin are frequently anisotropic and their deformation is non-affine [211].

More recently, a phase transition method has been used to predict the shear vis-

coelastic response of compressed networks, which revealed a remarkable softening-stiffening

behavior due to bent fibers and network densification [91]. Several discrete models have been

developed to consider the formation of connections between individual fibers. One of such

models, based on a bead-spring representation of individual fibers, was used to determine

fibrin network elastic modulus for different network structures [88]. A similar model was

developed to study how network connectivity affects the mechanical properties and struc-

tural integrity of tissue [175]. This model was simplified to construct a minimal 2D lattice
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model that was used to show that fiber-fiber interactions could influence clot stiffness in

compressed fibrin networks [195]. However, the extent to which such interactions contribute

to overall clot stiffness has not been quantified.

Another model, based on the beam theory approach and network geometries ob-

tained using a random walk algorithm, was recently developed to study the behavior of lay-

ered biomaterials such as electrospun polymeric scaffolds with a particular focus on studying

orientation and bending properties of the fibers as well as their initial intersections within

one layer and the immediately adjacent layers [32, 42, 31],. Additionally, continuous models

have also been developed to efficiently simulate deformation of 2D layered materials at a

mesoscale [220, 212]. Both types of models were used to investigate how the structure of

electrospun single 2D scaffolds affect their macroscopic mechanical properties. Authors suc-

cessfully simulated multiple layers and found limited difference between monolayered and

multilayered biomaterials under in-plane load [32]. While both approaches are novel and

important for studying layered materials, these types of models are not designed to capture

the impact of fiber cohesion on the dynamical changes of the 3D structure of fibrin networks

under stretching [91, 88].

To summarize, most existing models do not consider bending of individual fibers or

physical contacts between them, which can significantly alter the mechanical response of the

entire fibrin network. These components are included in the novel Cohesive Fibrin-Fibrin

Crisscrossing Model (CFFCM) described in Chapter 2 and used to study and quantify the

contribution of fiber cohesion to local and global strain stiffening.

7



1.2.2 Individual Cell Models

The stability and mechanisms of clot contraction in hemostasis and thrombosis

are underappreciated and under studied despite their importance. This is partly due to

the lack of methodology to quantitatively assess the mechanical and structural basis of this

complex multiscale process. This research is meant to motivate insights into fundamental

aspects of cell biology, including cell motility and interaction of cells with extracellular matrix

(ECM), as well as into translational and clinical medicine in relation to blood clotting and

its disorders leading to heart attack, stroke, and venous thromboembolism. After an injury

occurs, a blood clot is formed which is followed by wound healing. The fundamental aspects

of the clot formation are the fibrin structure, a viscoelastic proteinaceous polymer that

determines the deformability and integrity of clots, and the interaction of activated platelets

with the forming fibrin network. Essentially, the fibrin network facilitates platelet’s ability to

control changes in its environment. Platelets collectively change the shape and structure of

the clot by coordinating how they pull on individual fibers. Once attached, platelets undergo

contraction that causes shrinkage and stability of the blood clot. This work focuses on two

primary areas: the features of fibrin that are mechanically responsible for clot stability, and

how the behavior of platelets in a dynamic environment affects overall clot contraction.

Most detailed modelling approaches do not incorporate impact from individual

cells within the clot structure. In order to include the mechanical properties of single cells,

several models have been developed to investigate various aspects of thrombus contraction,

including platelet aggregation in viscous flow [61], forces exerted by platelets spreading on

a substrate [66], and remodelling of ECM due to filipodial forces [127]. Individual platelet
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cells have been modeled in high resolution under activated conditions [89], under fluid flow

[187], and with adhesion to the blood vessel wall structure [210].

On a larger scale, dissipative particle dynamics (DPD) models have been developed

to account for recruitment of inactive platelets by activated platelets in viscous shear flow

[61]. Similarly an understanding of blood flow when mediated by platelet transport through

small blood vessels was gained by modelling multiple platelets [214]. Recently, modelling

efforts have been made towards coupling high resolution platelets with elastic networks to

quantify how contraction induces large scale stress and how the resulting stiffness of the

surrounding network or stimulates cell invasion [127, 65]. A similar modelling approach

utilized large networks to include myosin II motors that traversed along actin filaments

[126]. Continuous modelling approaches have also been utilized to understand the dynamics

of cells interacting with ECM, revealing unexpected regimes in myosin aggregation [143].

A different approach utilized perturbation theory to study actin treadmilling, an essential

mechanism for contraction [143].

Previous models, while investigating important components of blood clot contrac-

tion, do not provide a detailed fibrin structure with multiple cells. For this reason, the

restructuring of the clot due to the presence of multiple platelets within the fibrin network

is not well understood. In the model presented in Chapter 3, the forces exerted by individ-

ual filopodia in addition to the spatial distribution of platelets, the number of filopodia per

platelet, and the reaction of individual platelets to different substrate stiffness within the clot

are considered. This provides a detailed model where macroscopic properties emerge due to

the local alterations in individual platelets. Specifically, the formation of platelet aggregates
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are measured along with, the restructuring of the fibrin network, and the colocalization of

fibrin on the surface of the individual platelets.

1.2.3 Chemical Reaction Network Models

Chemical reaction networks are commonly modelled using mass action kinetics or

flux based methods. Any reaction network can be described in general by Z reactions and

M metabolites, where a single enzymatic reaction from some molecular species A to another

species B at forward and reverse rates k1 and k−1 can be written as:

νA,1nA

k1−−⇀↽−−
k−1

νB,1nB. (1.1)

Here vA and vB represent the unsigned stoichiometric coefficients that maintain mass bal-

ance. According to the law of mass action, the flux through the reaction is defined as

Jnet = k1n
vA
A −k−1n

vB
B . Systems of reactions are frequently solved through time using ODE

methods until a steady state is reached, i.e. dnA
dt = −k1nA + k−1nB is small. This approach

has several issues in formulating the ODEs since the values of the rate constants are not

known [41]. Even when rate constants are known, they can vary several orders of magnitude

across species [174]. For this reason, flux-based methods have been popularized. In this

formulation, the time derivative for the vector of metabolic species, n, is written as follows:

dn
dt = SJ , where SJ represents the multiplication between the stoichiometric matrix S and

vector J [101, 70, 73]. The method known as flux balance analysis (FBA) [147], has been

widely used to calculate the flow of metabolites by representing individual reactions in ma-

trix format via stoichiometry, constraining fluxes, and subsequently calculating the largest

possible flux via linear programming given SJ = 0.0. In essence,the net flux is determined
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by Kirchhoff’s flux law in conjunction with an optimization criteria. This is related to mass

and energy consevevation as shown in Qian et al. [158]. Since the metabolic networks that

are used in FBA are represented by genome scale models [49], and these models have been

extensively developed over the last 20 years [48, 52, 54, 53, 163, 141, 189], FBA has grown

in popularity [114]. Even more, its usability in the form of available packages in MATLAB

and Python programming languages has made it the primary choice for many modellers

[110, 166, 170, 95, 84].

Even so, flux-based methods are not able to produce statistically satisfactory in-

formation regarding metabolite concentrations, the direction of reactions, or the energy

requirements of the pathway [101, 70, 73]. While Beard et al. [12] developed a method

to relate forward and reverse flux to the free energy for a reaction at steady state, there

is still a pressing need for quantitative metabolimics data and experimental measurement

of thermochemical properties of the pathways. These are necessary for FBA to accurately

identify reactions which limit flux and produce realistic values of chemical potentials without

assuming non-equilibrium reactions are reversible [45, 139].

Another methodology for modeling chemical reaction networks makes use of dis-

crete state based, continuous time Markov processes. While not as popular as FBA, this

approach is still widely utilized [225, 172, 131, 161, 216]. Here, states of a Markov process

are simulated, where states consist of counts of molecular species along with some partition

function or master equation. This provides a rigorous mathematical framework in which the

relations between closed systems, detailed balance, and microscopic reversal can be studied

[196, 159]. However, open systems and nonequilibrium steady states (NESS) are of primary
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modeling interest since life occurs away from equilibrium [157]. In this setting as well, the

use of Markov models enables detailed calculations of system variables, such as the joint

density function of metabolite concentrations [71]. Some have utilized this method to study

nonequilibrium steady states, and have succeeded in simulating larger pathways [190].

More recently, Cannon et al. [30], developed a method similar to FBA wherein

the law of mass action is reformulated as a maximum entropy problem, and consequently

the time derivative can be written as follows: dn
dt = SJ = S(KQ− −K−Q), where K is the

ratio of the rate constants, Q is the reaction quotient. This implies that KQ− and K−Q

are the thermodynamic odds of forward and reverse reactions, respectively. Given enough

fixed metabolites, a similar minimization problem can be posed as in FBA, but instead of

altering fluxes, metabolite concentrations can be directly perturbed, which in turn alters the

reaction quotient. This method is further developed in several recent works [29, 19]. While

allowing for direct computation of metabolite concentrations, these methods also are able to

make use of a wealth of metabolic control analysis [39, 13] (MCA) techniques to understand

reaction control. MCA is a technique which measures the control imposed by a metabolic

network on the flux through each reaction [169, 162, 85, 55, 59, 87, 69]. Additionally, rate

constants for the maximum entropy solution can then be determined algebraically, and non-

maximum entropy solutions can then be found by sampling rate constants randomly around

the maximum entropy solution [30].

1.2.4 Reinforcement Learning

Reinforcement learning is frequently posed as a midpoint between supervised and

unsupervised learning. While supervised learning provides inference from labelled data to
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via classification or regression, unsupervised learning provides infer patterns from unlabeled

data. At the heart of each learning task are function approximators such as linear represen-

tations, support vector machines [40], decision trees, and neural networks [171, 108]. These

approximations provide the necessary flexibility to represent high-dimensional data sets or

fit complex underlying patterns. Reinforcement learning (RL), however, is unlike both other

types of learning in that it trains an agent to learn good or optimal behavior with respect to

some environmental queue. For this reason, RL has gained enormous attention, especially

when applied to systems where the number of decisions needed is practically countless for

machine purposes. While more brute force tree search methods can be used by combining

massive parallelism with alpha-beta pruning, as in the chess program Deep Blue [25], RL

methods perform well with much less computational resources.

Learning from sequential decision making with some type of feedback from the

environment in the form of rewards was first formalized by Bellman [16], but has inspired

many others. The RL method utilizes the formalism of a Markov decision process [15], which

is commonly represented as a tuple {S,A, P,R}, where S represents the set of possible states,

A represents the set of possible actions, P represents the transitional probabilities between

states, and R represents the reward function or environmental feedback. Many people,

including Sutton [186] and Barto [11] continued developing these ideas in his work that

provides the backbone for many algorithms behind recent advancements and fundamentals

[185].

The most basic form of learning is performed by iteratively updating a policy

function, π : S → A, using environmental feedback [185, 200]. A policy returns the action,
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or probability distribution of actions that should be taken given that the agent is in some

state. This is done by associating some value with respect to each state. For example, a

state, st can be given value by the infinite horizon formulation:
∑∞

k=0Eπ[γkrt+k|st], which

is the expected diminishing return to be received under the current policy, π, with γ ∈ [0, 1]

being the discount factor. Each reward, rt = R(st−1, a, st), represents the feedback from

moving into state st from st−1 after taking some action a. Policies can be learned directly

[185] or indirectly as in temporal difference algorithms [183, 186] or Q-learning [199]. Each

method makes use of the fundamental recursive property, first understood by Bellman [14].

Frequently, the dimension of the state or action space requires flexible function

approximators [108]. If the transitional probabilities, P , are known, then many multiple

versions of bootstrapping algorithms such as n-step SARSA [184, 167] can be used to learn

optimal policies via value function iteration. Q learning [199] was recently popularized

because it does not require knowledge of transitional probabilities, nor does it need to

learn them through a model. It side-steps this important feature and thereby led to many

techniques such as actor-critic [97], deep Q-learning [133], double Q-learning [67], and dueling

network architecture [171]. These techniques, and many more, have been applied to perform

tasks such as optimize sepsis treatment [96], play the game of Go [177, 178], perform complex

robotics tasks [146], optimize control of power grids [5], and many others games [133]. This

is in part due to the success of the algorithms as well as their usability via packages such as

Tensorflow [1] and PyTorch [150].
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Chapter 2

A Multiscale Model of Fibrin Fibers

2.1 Introduction

2.1.1 Biological Relevance and Importance of Fibrin Mechanics

Fibrin is an end product of blood clotting and a proteinaceous polymeric compo-

nent of intra- or extravascular blood clots that form at the sites of injury. Fibrin provides

jelly-like blood clots with elasticity that is important for their biological functions. As

a major component of extracellular matrix (ECM), it also participates in various cellular

processes, including adhesion, migration, proliferation and differentiation, wound healing,

angiogenesis, inflammation, and others. Formation of the fibrin gel in blood vessels in vivo is

one of the key events halting bleeding (hemostasis) and impairing blood flow by obstructive

pathological blood clots (thrombosis) [205]. The mechanical response of fibrin to stresses

generated by blood flow, deformations of the pulsating vessel wall, during platelet-driven clot

contraction, diaphragmatic excursions, and gut motility determine the course and outcomes
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of thrombotic and hemostatic disorders, such as heart attack and ischemic stroke. In addi-

tion, fibrin is also employed in biomedicine as a versatile biomaterial of unique mechanical

properties utilized in a variety of clinical and laboratory applications, including hemostatic

fibrin sealants and scaffolds for tissue engineering [119]. Despite the vital clinical implica-

tions of the biomechanics of fibrin, both as the skeleton of blood clots and thrombi and as

a widely used biomaterial, the structural mechanisms underlying the mechanical properties

of fibrin remain largely unknown.

2.1.2 Multiscale Fibrin Mechanical Properties and their Structural Basis

Fibrin is a hydrogel built of a biopolymer that self-assembles to form porous 3D fila-

mentous networks with mechanical properties substantially different from synthetic polymers

[78, 135]. The mechanical responses of fibrin gels to shear, tensile, and compressive loads are

known to exhibit a highly nonlinear response known as strain-stiffening [21, 207, 122, 93].

This bulk nonlinear behavior has a number of structural mechanisms at various spatial

levels spanning six orders of magnitude, including molecular unfolding, interactions within

and between individual fibers, spatial rearrangement of the filamentous network, and other

mechanisms that are not fully understood [120].

3D fibrin networks consist of branched fibrin fibers resulting from self-assembly

of fibrin monomers and oligomers further stabilized via intermolecular covalent isopeptide

bonds. Formation of these bonds (fibrin crosslinking) is catalyzed by an active transglutam-

inase that circulates in the blood as an inactive proenzyme named clotting factor XIII; the

active form of factor XIII is designated factor XIIIa. Following elongation of fibrin oligomers,

they undergo lateral aggregation mediated, in part, by long unstructured polypeptide “arms”
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named αC-regions. The αC-regions comprise 400-residue-long C-terminal portions of the α-

chains extending from fibrin molecules and connecting fibrin oligomers (protofibrils) within

a fiber. Multiple highly flexible αC-regions stretched between protofibrils can interact with

each other to form αC-polymers followed by covalent crosslinking by factor XIIIa, mak-

ing the αC-polymers stable and contributing to the elastic properties of fibrin. The entire

cross-linked fibrin clots or individual fibers are known to show extremely large extensibil-

ity, quadrupling their length before breaking [21, 93]. Mechanical properties of individual

fibrin fibers were probed experimentally by atomic force microscopy (AFM) [122, 121] and

optical trapping [38], revealing the elastic moduli to be 1.7 and 14.5 MPa for uncross-

linked and factor XIIIa cross-linked fibers, respectively. Studies of tensile properties of

whole fibrin clots and individual fibers at large deformation revealed the molecular unfold-

ing of fibrin molecules, suggesting the molecular mechanism of fibrin extreme extensibility

[21, 122, 74, 156].

The forced molecular unfolding in fibrin(ogen) has been demonstrated and analyzed

both experimentally and computationally [21, 22, 117, 62, 222, 118]. Forced elongations of

several regions of the fibrin molecule have been shown to be a potential source of fibrin’s ex-

tensibility, namely unfolding of the γ chain nodules [62], extension of the α-helical coiled-coil

connectors [22, 117, 62, 222, 118], and unraveling of the unstructured αC-polymers within a

fiber [37, 9, 50, 75]. Micromechanical properties of individual fibrin fibers were shown to de-

termine the macroscopic characteristics of the fibrin network. In particular, the high strain

of single fibers was shown to affect the overall strength of the network [121, 74, 9]. Even

though aspects of the tension behavior of fibrin networks has been studied in detail, it is still
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not clear how microscopic structural characteristics, such as fiber connectivity, alignment,

and fiber-fiber cohesion impact the mechanical response of the entire network, and how

stress propagation within the network is affected by changes in its structural organization.

2.1.3 Synopsis

Newly formed oblique cohesive pairwise interactions (crisscrossing) between fibers

were found to play a role in the viscoelastic response of compressed fibrin networks [93, 88].

Moreover, increased fiber-fiber cohesion is hypothesized to contribute to the mechanical

response of fibrin gels under tensile load. In this work, this hypothesis is tested and proven by

using a combination of experiments and model simulations obtained with a newly developed

and calibrated three-dimensional (3D) computational nonlinear model of a fibrin network.

Using 3D confocal microscopy of stretched fibrin gels, the fiber-fiber crisscrossing

at relatively low strains, which provided a basis for including these structural features in

a model for the mechanical response of fibrin to stretching deformations are visualized di-

rectly. The main novel feature of the model introduced here is that it considers cohesive

pairwise interactions between fibrin fibers, physically calibrated mechanical bending and

stretching properties of individual fibers, as well as describes structural properties of the

entire fibrin network, including fiber connectivity, fiber and node density, and fiber align-

ment. The model is used to quantify the mechanical effects of fiber-fiber cohesion on the

stress-strain response of the fibrin network, as well as spatial redistribution of the internal

stress and network structural changes after the external tensile load is imposed on the net-

work. Model-based simulations of fiber alignment and densification, as well as computed

stress-strain relations for stretched fibrin clots, are shown to be in good agreement with
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experimental data. Altogether, the results obtained demonstrate that increasing fiber-fiber

cohesion provides an important structural mechanism of fibrin clot stiffening in response to

tensile load as it increases the fibrin network connectivity and enhances the distribution of

stresses through the network.

2.2 Methods

2.2.1 Confocal Microscopy and 3D Reconstruction of Stretched Fibrin

Networks

2.2.2 Formation and Stretching of Fibrin Clots

Fibrin clots were prepared from pooled human citrated platelet-poor-plasma (PPP)

by mixing with CaCl2 (26 mM final concentration) and thrombin (0.3 U/mL final concen-

tration, Sigma-Aldrich, USA). To visualize fibrin in a fluorescence microscope, Alexa-Fluor

488-labeled human fibrinogen (Molecular Probes, Grand Island, NY) was added to plasma

samples (0.08 mg/mL final concentration). Plasma clots were formed for 2 hours at 37◦C in

4×60mm cylindrical plastic tube with its internal surface pre-coated with 4% (v/v) Triton

X-100 in phosphate-buffered saline (PBS) to prevent adhesion of fibrin fibers to the walls.

The clots were slipped out of the tubes into 1× PBS and cut by a surgical knife into 30

mm-long pieces that were held in the grips of a home-built stretching device and extended

in uniaxial tension to different extents. The clots in the stretched state were fixed by im-

mersing them for 20 minutes into 2% glutaraldehyde dissolved in PBS, rinsing them three

times with PBS, and cutting them into 4mm × 4mm pieces used for imaging.
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2.2.3 Confocal Microscopy and 3D Reconstruction Methods

Samples of fixed fluorescently labeled fibrin clots (non-deformed or stretched) were

applied to a coverslip and imaged in the middle, away from the clamped ends of the clot

using a Zeiss LSM880 laser confocal microscope with Plan Apo 40× (NA1.2) water immersion

objective lens to acquire a series of high-resolution 212.5 µm × 212.5 µm × 20 µm z-stack

images using the Airyscan mode. The distance between z-stack planes was 0.2 µm. An

Argonne laser with a 488-nm wavelength was used for fluorescent imaging. 3D structures of

fibrin clots were reconstructed from confocal microscopy z-stack images and analyzed using

Imaris software.

2.2.4 Model Description

In this work general bead and spring modeling approach is utilized to simulate

single fibrin fibers, a method commonly used to model a single polymer or a system of

polymers [109, 43, 90]. Specifically, a previously developed model [88] is extended by intro-

ducing interactions between individual fibers to represent fiber-fiber cohesion and potential

fiber bending to study their biomechanical impacts on the fibrin network under stretching

(Figure 2.1A). Though fibrin is a viscoelastic polymer, the elastic component is generally

about an order of magnitude higher than the viscous component, although the viscous com-

ponent increases at higher rates of deformation. In simulations and with parametrization of

fibrin mechanics at quasi-static rates, the viscous properties or plasticity of fibrin networks

were not addressed. Each fiber in a network is represented as an elastic segment between two

nodes (branch points) containing a series of sub-nodes connected by springs. The network
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branch points are referred to as main nodes while using the term sub-nodes to indicate the

nodes dividing the interior of a fiber (Figure 2.1B). Furthermore the mass of the individual

fibrin fiber is assumed to be lumped together at the main and sub-nodes in the model.

The sub-nodes along a single fiber are placed equidistant to each other in order to

represent a uniform distribution of mass and physical properties of the fiber. Moreover, a

fixed spacing of sub-nodes serves to equally distribute possible fiber-fiber cohesion sites and

points of fiber bending (see 2.1B). Deformation is slowly applied to the network in order

to keep the network at a quasi-equilibrium state. This state is achieved when the maximal

normalized node speed is less than the width of a single fibrin fiber. A more detailed

description of the quasi-equilibrium state is described in Appendix A. The dynamics of the

fibrin network is formulated in terms of Langevin equations for each ith node of the network

as follows,

miẍi = Fi − ηẋi + FBi , (2.1)

where Fi is the deterministic force, ηẋi is the viscous dampening force, and FBi is the

Brownian force satisfying the Fluctuation-Dissipation Theorem [100]. The inertial term is

neglected and the system (2.1) is discretized using a Forward Euler scheme,

xn+1
i = xni +

dt

η
Fni + Fn,Bi , (2.2)

where the superscripts n and n + 1 refer to the vector quantitates for the ith node at

subsequent time points n and n+1 and dt is the time step. η represents the drag coefficient.

A detailed description of the model forces, coefficients, and calibration is continued in Section

A.2.2 of Appendix A.
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Figure 2.1: Schematics of in silico fibrin clot stretching experiment and description of the in-
dividual fibrin fiber model. (A) Representative image of a three-dimensional fibrin network
used in simulations. Black arrows show the direction of applied force. Zoomed section shows
the detailed fibers. (B) Spatial discretization of a single fiber using 6 interior sub-nodes con-
nected by WLC springs. i and j are the main nodes of the fiber. Zoomed section illustrates
bending springs in a fiber using angular springs between nodes (including non-rotating both
main and sub-nodes). (C) Representation of two fibers and a cohesive interaction between
them.
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2.2.5 Statistical Analysis

Statistical analysis of experimental data was performed using GraphPad 7 software.

Statistical significance between groups of samples was determined using Mann-Whitney

U-test with a 95% confidence level. Results are presented as mean±standard deviation,

unless otherwise indicated. 90 nodes of three independent donors were analyzed for network

connectivity quantification.

In model simulations, statistical analysis was done by performing 5-10 simulations

on independently generated fibrin networks. For model validation, Section 2.3.2, 10 simu-

lations were performed while 5 simulations were used for model prediction statistics in the

remainder of the chapter. 3-degree polynomial curves are used to fit the stress-strain data

in Figures 2.3A, 2.4A, and 2.6A by performing a non-linear least squares optimization from

the Python library SciPy [144]. The shaded error bars are calculated using the standard

deviations in each polynomial coefficient given by σi =
√
covii where covii is the diagonal

element of the estimate covariance matrix of the optimized values of the estimated coeffi-

cients. In Figures 2.5 and A.3, for each independent simulation, averages of node types for

different levels of network strain are calculated. At each point of network strain, the mean

and standard deviation are calculated from the resulting 5 average values. The error bars

represent a single standard deviation from the mean.

23



2.3 Results

2.3.1 Fiber Cohesion and Bending in Stretched Fibrin Network

A 3D reconstruction of a hydrated fibrin network obtained using confocal mi-

croscopy revealed that non-deformed fibrin is an isotropic network of branched fibers, typ-

ically with three fibers joined at each branch point (Figure 2.2A), as observed in previous

studies [88, 10]. To observe structural alterations of fibrin networks upon application of

a unidirectional tensile load, a cylindrical fibrin clot prepared as described in Methods is

stretched to 20% strain and imaged the altered fibrin network structure using high-resolution

fluorescence confocal microscopy. Subsequent 3D reconstruction of the stretched fibrin net-

work structure revealed several specific structural changes (Figure 2.2B). First, most fibers

were oriented in the direction of network stretching, which is consistent with earlier obser-

vations [21, 207, 86, 58]. Second, some individual fibrin fibers were crisscrossed and formed

cohesive contacts that were revealed by areas of increased fluorescence intensity (Figure

2.2B, yellow circles). The spots with increased fluorescence intensity confirmed that these

fibers formed physical contacts between each other and not projected in separate planes.

There were usually four fibers radiating from each of the crisscrossing points, in-

dicating that formation of the cohesive contacts results in an increase of the number of

4-degree nodes in the network. The angles of crisscrossing were variable but most of them

deviated from 90◦; therefore, these inter-fiber contacts were mostly oblique. Further quan-

tification of the reconstructed non-deformed and stretched three-dimensional fibrin networks

revealed that stretching by 20% increased significantly the fraction of crisscrossing points

(4-degree nodes) and nodes with connectivity degrees higher than 4 by a factor of 2.3 and 10
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respectively, while the fraction of regular branching points (3-degree nodes) decreased by a

factor of 1.3 (Figure 2.2C). Decrease of the fraction of regular branching points with strain

can be both due to increase of crisscrossing points as well as due to interaction of 3-degree

nodes with individual fibers or network nodes leading to increase of the fraction of nodes

with connectivity degree higher than 4. It was also found that the density of fibers increased

5-fold upon stretching at 20% strain (Figure 2.2D), implying that the pores between fibers

were smaller and fibers became closer to each other. Finally, in the stretched clots (unlike

what is observed in the non-stretched networks) a fraction of bent fibers (indicated by white

arrows in Figure 2.2B) existed, suggesting the possibility of non-affine deformations of the

fibrin network upon stretching [211, 206]. The latter points out the fact that application

of theoretical modeling approaches which assume an affine origin of network deformations

might not be valid in certain conclusions.

To the best of our knowledge, this is the first time that fiber-fiber cohesion and

bending were directly visualized in fibrin networks under unidirectional external tensile

load. These observations provide an experimental basis for a hypothesis that fiber-fiber

cohesive crisscrossing may contribute to the mechanical response of the network. To test

this hypothesis, a novel multi-scale fibrin network model is used to computationally test the

impact of fibrin fiber’s cohesive crisscrossing on the mechanical behavior of stretched fibrin

networks.
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Figure 2.2: Visualization and quantitative structural analysis of non-deformed and stretched
fibrin clots. (A) Reconstructed confocal microscopy-based 3D image of a fluorescently la-
beled non-deformed isotropic fibrin network. (B) Fibrin network stretched to a 20% strain
in the y-direction. Fiber branch points are shown by yellow squares in (A) and fiber-fiber
cohesion points are indicated by yellow circles in (B). Bent fibers are indicated by white
arrows. (C,D) Quantification shows a node connectivity degree (C) and node density (D) in
non-deformed fibrin clots and in the same clots stretched to a 20% strain (90 nodes analyzed
in each fibrin clot prepared from 3 independent donors). The results in (C) and (D) are
presented as M± SEM. A two-tailed Mann-Whitney U test, *P < 0.05.
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2.3.2 Model Validation

To validate the computational model, mechanical and structural responses of a

high density fibrin network (30 fibers/µm3) are simulated by slowly applying a unidirec-

tional stretching load and compared the response with experimental results [21]. The model

was calibrated by fitting spring parameters and network structural features to microscopic

experimental data as shown in Section A.2 of Appendix A. In Figure 2.3, a comparison

between model simulation results and macroscopic experimental data is presented. Com-

parison between experiment and simulation shows that simulation results fall within or near

the range of experimentally observed network behavior in several different data fields. Sim-

ulations were performed by applying a linearly increasing external force to the opposite ends

of a three-dimensional cubic fibrin network with volume 1000 µm3. The mechanical model

correctly reproduces the linear and nonlinear parts of the stress-strain response curve mea-

sured in the experiments and here shown as blue dots (Figure 2.3A). As the strain increases

from zero to 100%, the stress increases linearly, which is followed by a non-linear 545%

increase in stress up to 0.236±0.063 MPa at 220% strain (Figure 2.3A).

To quantify changes in fibrin fiber orientation, average fibrin fiber alignment was

calculated as cos(2θi), where θi is the smallest angle between the ith fiber and the axis

to which the force is applied. An angle of θ = 0.0 occurs when the fiber is parallel to

the direction of applied force with a resulting value of cos(2θ) = 1.0. Similarly, an angle

of θ = π/2 occurs when the fiber is perpendicular to the direction of applied force. The

perpendicular alignment results in a value of cos(2θ) = −1.0. For fibers with no preferred

alignment, the value of cos(2θ) will take a value between 1.0 and −1.0 respectively. The
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Figure 2.3: Mechanical and structural changes of fibrin networks under uniaxial stretching.
(A) Characterization of the mechanical and structural changes in the fibrin network in
terms of the unidirectional tensile stress-strain response (M± SD, n=10). (B) Average fiber
alignment in the central 50% region of the network. (C) Percent of the stretched fibrin clot
cross-section area covered by fibers. The solid line shows the nonlinear model simulation
results, circles are experimental data [21].
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average orientation over all fibers in a randomly generated network, cos(2θ), will be near

0.0. As the network is stretched, the fibers re-orient and the average orientation increase,

but remains less than 1.0. In figures, the average alignment is referred to as Ω. Model

simulations reveal a monotonic increase of the average fiber alignment with the increase

of strain providing very good agreement with the experimentally measured orientation of

fibrin fibers in stretched clots [93] (Figure 2.3B). The average alignment calculated from

simulations is shown by dark lines while the experimental data mean and standard deviations

are shown by blue dots and blue intervals respectively.

To find the percentile of the area covered by individual fibers, the middle cross-

section area, Sc, of the clot is considered, and the relative area of fibers’ cross section is

calculated as Sf = nfsf , where nf is the total number of fibers in the cross-section, and

sf = πd2
f is the fiber cross-section area. The calculated experimental percentage of the

area covered by fibers from five different experiments are shown by blue dots, while the

simulation average is shown by black solid line (Figure 2.3C). The simulations correctly

predict the increase of the relative area covered by fibers, αf = Sf/Sc, revealing a 4-fold

increment in αf at 220% strain (Figure 2.3C).

2.3.3 Fiber-Fiber Cohesion as a Mechanism of Network Stiffening

To assess the effect of fiber-fiber interaction on fibrin network mechanics, the stress-

strain response curve was calculated for 5 different networks stretched up to 300% strain

in the presence and absence of fiber-fiber cohesion. In Section 2.3.2, a high density (30

fibers/µm3) simulated fibrin network was used. However, experimental work has shown

wide ranges for fibrin density [21, 93]. Therefore, a different fibrin network density of 5
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fiber/µm3 is utilized to evaluate the impact of fiber cohesion on the mechanical response

of the network to stretching loads. The stress-strain relation, σ(Γ) consisted of a linear

portion for Γ < 1 and a non-linear stiffening regime for Γ > 1 (Figure 2.4A). In contrast, in

the absence of fiber-fiber cohesion, the stress-strain curve did not reveal stiffening and the

tension in the network was 5 times lower than in the network with cohesive fibrin fibers at

a maximum strain of 300%.

To evaluate the effect of cohesion on the strain of individual fibers within the

networks, the fiber strain distribution for the two types of networks were calculated (Figure

2.4B). The fiber strain distribution of non-cohesive fibers revealed a distinct peak at 0.1

strain, with the fiber strain ranging from -0.5 to 2, where negative strain value corresponds

to fiber compression. In cohesive networks, the peak of fiber strain shifted to 0.17 strain,

and the number of fibers with strain greater than 100% increased more than 4-fold. Thus,

the cohesion of fibers resulted in dramatic changes in the fiber strain distribution, leading

to an increase in the strain of individual fibers in the network.

The change in stress distribution is due to network remodeling at the microscale.

To quantify the change in network structure, differences in node degree were calculated as

the networks were stretched. 3, 4, and greater than 4-degree nodes were counted for different

network strains. Figure 2.5 shows a decrease by 1/3 in 3-degree nodes and a corresponding

2-fold and a 7-fold increase in 4 and >4-degree nodes, respectively, which is shown to be in

a good agreement with the experimental data presented in Figure 2.22C.
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Figure 2.4: Impact of fiber-fiber cohesion on the tensile stress-strain response and fiber
strain distribution in stretched fibrin clots. (A) Tensile stress-strain responses (M ± SD,
n=5) for fibrin networks of cohesive and non-cohesive fibers of density 5 fiber/µm3. (B)
Corresponding strain distributions of individual fibers at the fibrin network strain Γ = 3.
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Figure 2.5: Strain-dependence of the node connectivity for fibrin networks with cohesive
fibers. The fiber density ρf = 5 fibers/µm3. Dotted, dashed and solid lines in the columns
correspond to the network connectivity degrees of 3, 4, and > 4, respectively.

2.3.4 Impact of Fibrin Network Density on Stretched Fibrin Clot Me-

chanics

Tensile deformation of a fibrin clot has been shown to result in a strain-dependent

increase of network compaction manifesting as rising fiber and node density (Figure 2.22D).

Fiber-fiber cohesion is correlated with network density such that high density increases the

chance of fiber-fiber cohesion while low density decreases the chance of fiber-fiber cohesion.

To quantify exactly how changes of the fibrin clot density impact clot mechanical

response to unidirectional stretching, the stress-strain curves were calculated for simulations

for different clot densities (1-15 fiber/µm3) for strains from 0 to 250% (Figure 2.6). Increase

in fibrin network density from 1 to 15 fiber/µm3 results in a significant 25-fold increase in

the network stress at the maximal network strain of 250%. Denser networks of 15 fiber/µm3

32



demonstrated a distinct transition from a linear to a nonlinear regime at a network strain of

1.5. In contrast, sparse networks of low densities (< 5 fiber/µm3) did not reveal stiffening

behavior.

Analysis of fiber strain distributions revealed that there were more fibers at high

strain (γ > 1.0) in the networks of higher density, i.e. the mechanism of fiber cohesion

is coupled to fiber density. As the network density increased from 1 to 15 fiber/µm3, the

percent of high strained fibers (γ > 1.0) increased by 200%, while the percent of low-strained

fibers (0 < γ < 0.8) dropped by 15%. Thus, an increase in fibrin network density results

in stiffening of the fibrin clot under tensile load accompanied by an increase in local strains

within the clot.

2.3.5 Fiber Cohesion Increases Fiber Alignment in Stretched Fibrin Clots

As fibrin networks are stretched, individual fibers begin to align along the axis of

applied stress. When force is applied to fibers at the edge of the clot, they immediately align

with other neighboring fibers over the clot volume. Because fiber-fiber cohesion increases

the connectivity of the stretched network (Figure 2.5) it triggers quicker and more efficient

propagation of fiber alignment than that observed in non-cohesive networks. To evaluate

the effect of fiber cohesion on fiber alignment upon stretching of fibrin clots, the spatial

distribution of fiber orientation is analyzed in cohesive and non-cohesive networks under-

going stretching deformations for low (1 fiber/µm3) and intermediate (5 fibers/µm3) fiber

densities. First, the average fiber alignment in the central 50% region of clots stretched to

300% strain in the presence of fiber cohesion was found to increased by 22% and 43% when
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Figure 2.6: Fibrin clot mechanical response and fiber strain probability distributions for
different fiber densities. (A) Tensile stress-strain responses (M ± SD, n = 5) for fibrin
networks of different fiber densities, ρf . The inset image shows the stress on a logarithmic
scale. (B) Individual fiber strain distributions for the network strain Γ = 2.
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compared to non-cohesive networks with fiber densities of 1, and 5 fibers/µm3, respectively

(Figure A.4 A, B). Furthermore, in higher density networks of 15 fibers/µm3 the average

alignment increased by 57% at 250% strain. Next, cohesion was observed to induce a more

uniform spatial alignment of fibers. In the presence of cohesion, fibers in the central portion

of the clot (20% of the clot length) were found to be 45% more aligned in the direction of

stretching than fibers in clots without cohesion at a concentration of 1 fiber/µm3 clot at

300% strain. Moreover, in the cohesive networks with higher fiber densities of 5 fibers/µm3,

the same estimates yielded larger spatial increase in average fiber alignment of over 200%

(Figure 2.7).

Taken together, these simulation results suggest that cohesion of fibrin fibers en-

hances their alignment in clots undergoing stretching, which positively correlates with the

increase of the initial clot density.

2.4 Discussion

Fibrin is a hydrogel with unique mechanical properties that determine behavior

of blood clots and thrombi in the highly dynamic intra- and extravascular environment.

In addition to the pathophysiological implications of fibrin clots, the rapidly developing

field of bioengineering uses fibrin gels as a versatile biomaterial with tunable mechanical

properties. Despite the great increase in our knowledge regarding the mechanics of fibrin,

much about the structural mechanisms of fibrin’s viscoelasticity remains unknown. In this

chapter, a combined experimental and computational approach was utilized to further study

the structural mechanics of fibrin networks. This approach analyses experimental structural
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Figure 2.7: Impact of cohesive fiber-fiber interactions on fiber network alignment. Joint dis-
tributions for network alignment and network strain are shown for cohesive and non-cohesive
networks at 300% strain for fiber density 1/µm3 (A, B) and 5/µm3 (C, D). Simulated net-
works are shown alongside the joint density distribution to illustrate the corresponding
location of aligned fibers. The Y-axis represents the scaled position along the length of the
fiber network, z∗ = z/z0. z0 is the original clot length and z ranges over the current network
length from bottom (z = 0) to top (z = 3z0). Greyscale at each point corresponds to the
relative number of fibers oriented along the direction of the strain.
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data extracted from fiber networks and uses it for calibration of a novel computational

model based on basic physical principles that incorporates fiber-fiber cohesion during tensile

deformation of fibrin networks.

Mechanical properties of fibrin have been studied across multiple spatial scales and

under various types of deformation, including stretching, compression, and shear pressure

[182, 194, 192]. One of the most general mechanical properties of fibrin is a non-linear

mechanical response known as strain-stiffening behavior which has been explored extensively

but still does not have a comprehensive structural explanation.

Although the structural basis for fibrin mechanics has been analyzed at various

spatial scales, from the sub-molecular up to macroscopic levels, the mechanical behavior of

the whole fibrin gel is governed largely by the properties of single fibers and their ensembles

[120]. Stiffening of individual fibers plays a crucial role in the large scale elastic response

of the entire network by equitably distributing the strain through the network [121, 76].

Another important mechanism of strain-stiffening is the reorganization of the network ar-

chitecture [76, 204]. This architectural reformation includes fiber densification and bundling

[21], but other structural alterations have been proposed, such as the natural inclination of

fibers to adhere to one another [195, 102].

In this chapter, a novel stiffening mechanism based on fiber-fiber cohesion in

stretched fibrin networks is successfully tested. First, high-resolution optical microscopy

are performed that followed structural changes of stretched fibrin networks at the level of

individual fibers. In addition to the well-known fiber alignments along the direction of

strain, the observed structural alterations included the formation of fiber-fiber cohesive con-
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tacts named fiber crisscrossing and fiber densification (Figure 2.2). One consequence of the

crisscrossing was shortening of fibrin fibers and their partial bending. Similar structural

changes were revealed earlier in compressed fibrin networks. They were much more pro-

nounced and their contribution to the non-linear mechanical response was straightforward

[93]. However, such fiber-fiber cohesion has never been associated with tensile deformations

of fibrin networks and the role of this structural mechanism has never been evaluated.

To establish mechanistic and quantitative relationships between the fiber-fiber co-

hesion and elasticity of individual fibers and bulk fibrin gel, a novel computational model

was developed and calibrated based on comparing simulation results with the experimentally

obtained stress-strain profile, alignment, and density data. (The structure of the novel bio-

logically calibrated model and its distinction from previous modeling approaches for studying

fibrin mechanics are summarized in Section 2.2.4.)

New experimental data presented in this work (Figure 2.2) suggests that fiber

cohesion also correlates with clot stretching in addition to fiber alignment and densification.

The computational model simulations were used to test the hypothesis that cohesion provides

a novel mechanism for fiber alignment and densification. To ensure that this behavior was

due to fiber cohesion, the simulated network node connectivity was quantified and shown to

vary as a function of network density and strain (Figure 2.5 and A.3). Specifically, as network

density increased from 1 to 15 fibers/µm3, a more rapid increase in nodes with connectivity

degrees > 4 (Figure A.3C) was shown to be associated with a more rapid increase in average

alignment (A.4A-B) and densification (A.4C-D). Using the model, the following structural

and mechanical relationships are established that could not be explored experimentally at
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this time. (i) Fiber cohesion is shown to induce strain-stiffening in fibrin networks (3.3).

This is supported by simulations in the absence of cohesive fiber-fiber interactions, which

did not reveal stiffening of the networks and failed to predict the experimental data (Figure

2.4). (ii) Fiber cohesion is shown to alter the network structure (3.3). Since this has not yet

been quantified in experiments, network alterations are predicted and quantified in terms

of node degree (Figure 2.5). (iii) Networks experience more alterations in the presence of

high fiber density (3.4). This adds to more rapid network stiffening (Figure 2.6), which is

associated with increased fiber alignment (Figure 2.7). (iv) The change in fiber alignment

due to a change in fiber density is predicted (3.5). This mechanism is further validated

in Appendix A by showing that fiber strain is distributed more equitably throughout the

network (Figure A.5).

Notice that these experiments and model have some objective limitations. It is not

feasible at this time to experimentally study fibrin clots in which fiber-fiber crisscrossing is

selectively prevented. Therefore, the impact of fiber cohesion has been confirmed by using a

computational model. Although these simulations were done in the overdamped regime using

one-way coupling with fluid, the model permits a two-way coupling extension for network-

fluid interactions. Such two-way coupling may be important for modeling large compressive

deformations of blood clots which are not considered here and are beyond the scope of the

current study. The model can be also extended in the future to account for other types of

network deformations including twisting behavior of fibers. These limitations do not affect

the main conclusions of the chapter and these results clearly show that newly formed cohesive

fiber-fiber interactions make an important contribution to the mechanical response of fibrin
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networks under stretching deformation. Remarkably, model simulations incorporating fiber-

fiber cohesion correctly describe the general behavior of real fibrin clots under unidirectional

tension [93], including the stress-strain response as well as fiber orientation and fiber density

changes. This suggests that fiber-fiber cohesive bond formation is an important mechanism

contributing to fibrin clot stiffening and alignment.

Although the molecular mechanism of fiber-fiber cohesive bond formation is not

known, various covalent and non-covalent bonds might form between fibers in contact. Co-

valent binding can be potentially mediated by isopeptide bonds formed by factor XIII as

the fibers are brought in contact. However, a recent study [102] showed that blocking factor

XIII by an inhibitor did not change the interaction force between fibrin fibers suggesting a

non-covalent interaction between the fibers in contact, probably mediated by αC-regions,

which allow for interactions between fibrin protofibrils and fibers. Vos et al. [195] esti-

mated the force between two interacting fibers to be 760 pN, strong enough to maintain

junction integrity, which supports the modeling assumption that fibers brought in contact

form irreversible bonds perhaps originating from multiple non-covalent interactions.
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Chapter 3

A Model of Platelet Mediated Clot

Contraction

3.1 Introduction

3.1.1 Biological Relevance

Blood clots are complex biological structures that are initiated by injuries to blood

vessels. They form as a result of the coagulation cascade which involves fibrinogen, thrombin,

platelets, and coagulant factors (e.g. factor XIIIa), and. The structure of a clot is composed

of fibrin network, platelets, red blood cells, and plasma. Clot contraction, mediated by

activated platelets [191], is essential for proper wound healing and restoration of blood flow

in an injured blood vessel [208]. Complications in the contraction process directly affect

the healing of the injured vessel and the stability of the clot which result in complications

such as heart attacks, strokes, and deep vein thrombosis (DVT). Even so, the interdepen-
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dence between clot contraction and individual platelet activation is not well understood.

In particular, individual platelet filopodia dynamics are fundamental to understanding clot

contraction in addition to a multitude of other biological processes, including tissue healing

and development [209, 180, 219, 218, 98], phagocytosis [176], and cancer development [160].

Despite these implications, a quantitative study of the emergent properties of aggregates of

platelets has not been performed.

3.1.2 Importance of Multiscale Modeling of Blood Clot Deformation and

Contraction

Many characteristic features of blood clots cannot be measured experimentally

at this time. For example, platelet activation involves the formation of filopodia for each

platelet, the attachment to other nearby platelets and fibrin, the retraction and resulting

forces of such filopodia, and the reaction to the substrate stiffness [34, 24] of individual

platelets [105]. In order to investigate these features independently, a multiscale computa-

tional approach is needed. Modelling approaches offer the ability to study each component

contributing to the thrombus structure separately and quantify the resulting impact on the

clot contraction.

This work aims to provide insight in how platelets control the clot contraction

environment and influence the overall dynamics of the process through alterations in the

mechanical forces exerted by their filopodia. In particular, a computational approach is

employed in which platelet activation can be directly controlled by altering the platelets:

number of filopodia, magnitude of force exerted, and reaction to fiber stiffness. This allows

for quantification of the roles of different platelet activation scenarios and comparison of the
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emergent properties of the clot such as platelet aggregation and the rate of clot contraction.

3.1.3 Synopsis

The hypothesis that platelet mechanosensing of substrate stiffness in addition to

filopodia heterogeneity contributes to increased fibrin colocalization, clot stability and dis-

tinct contraction phases is investigated. This hypothesis is tested using a computational

model that includes multiple platelets and their dynamic interaction with a detailed fibrin

network. The model is validated using data from previous in vitro experimental results [92].

The effects of different levels of activation in platelets have been difficult or impos-

sible to study in experiments due to the many interdependent factors controlled by the acti-

vation phenomenon. The computational model presented here implements each component

as a separate submodel, allowing for the analysis of the interdependence between platelet

activation and quantitative contraction dynamics. Specifically, how changes in platelet acti-

vation, expressed through the number of filopodia, level of filopodia force, and the manner

in which platelets respond to fibrin strain are investigated. The ability of platelets to in-

dividually, and collectively, form well-defined contraction phases observed experimentally is

quantified.
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3.2 Methods

3.2.1 Formation of Fibrin Networks Mixed with Platelets

3.2.2 Platelet-rich Plasma

Blood was drawn by venipuncture from healthy volunteers not taking aspirin or

other medications affecting platelet function for at least 10 days. Informed consent was

obtained in accordance with a protocol approved by the University of Pennsylvania Insti-

tutional Review Board. Platelet-rich plasma (PRP) was prepared from whole blood drawn

into 3.8% trisodium citrate (9 : 1v/v). To obtain PRP, the blood treated with citrate was

centrifuged at 210×g at 25◦C for 15 minutes. The supernatant plasma containing platelets

was transferred to another sterile tube.

3.2.3 Formation of PRP-clots

To label fibrin and platelets, PRP samples were preincubated with Alexa-594 la-

beled human fibrinogen and calcein for 10 min at 37◦C. To induce clotting, PRP samples

were recalcified with CaCl2 (29 mM final concentration) and mixed with thrombin (1U/mL,

final concentration). A sample was immediately applied on a microscopic glass surface of a

PELCO cell culture dish inside the environmental chamber of a confocal microscope. The

glass surface was precoated with 4%(v/v) TritonX-100 to prevent attachment of fibrin to

glass.
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3.2.4 3D Image Reconstruction of Confocal Microscopy Images

Platelet-rich-plasma clots were imaged using Zeiss LSM710 scanning confocal mi-

croscope with Plan Apo x40 (NA1.2) water immersion lens to acquire serial 35 mm-thick

z-stack images of the clots during the course of contraction (40 min). The distance between

slices of the z-stack images was 0.8 mm; each image was taken at 1024 x 1024 pixels res-

olution. Fluorescently labeled fibrin and platelets were excited using 594-nm wavelength

helium-neon and 488-nm wavelength argon laser beams.

3.2.5 Image Analysis of Platelet Filopodia

The number of filopodia generated by individual platelets has been manually mea-

sured in the acquired confocal microscopy z-stacks of contracting PRP clots. To calculate

the number of filopodia, each picture was divided into 50 square domains of 10 micron-thick

z-stacks [173], and the number of filopodia for individual platelets was counted.

Experimentally derived filopodia counts averages over 4 experiments containing an

average of 100 platelets are presented below. Resulting distributions (Figure 3.1) are shown

in light gray and are fitted with a lognormal distribution (µ=1.85, σ=0.27). Simulated

platelet filopodia counts are calculated by sampling the lognormal distribution. Averaged

simulated platelet filopodia counts are shown in dark grey (Figure 3.1). The filopodia

distribution obtained from this experimental data is used in the model to determine the

number of filopodia for each single platelet in a simulated clot.
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Figure 3.1: Probability density function of platelet filopodia counts for simulated (n=10)
and experimentally (n=4) obtained platelet-fibrin meshworks.

3.3 Model Description

Here a coupling of the 3D model of fibrin network described in Chapter 2 with a

sub-model of individual platelets pulling on individual fibers through individual filopodia is

described. The fibrin network is represented by a mass and spring modeling approach which

represents fiber stretching, bending, and fiber-fiber cohesive components (Figure 3.2B-C).

The platelet sub-model describes pulling, adhesion, and exclusion forces applied

to the center of mass of each platelet (Figure 3.2A). Each platelet interacts with other

platelets and fibrin fibers in several different ways. First, platelets exert pulling forces

on other platelets and fiber nodes in the environment through filopodia. When an object

(platelet or fibrin nodes) in the environment is near to the platelet surface, adhesion force

is applied. Finally, a volume exclusion force ensures the platelets and environment do not

overlap in the space they occupy. Platelets and fibrin dynamics are described in terms of

46



Figure 3.2: Schematics of in silico platelet contraction simulation and depiction of fibrin
fiber model. (A) Left. Fibrin network (blue lines) and platelets (gray spheres). Right.
Zones of influence of platelet forces: interaction zone (light gray), adhesive zone (gray);
volume exclusion (dark gray). (B) Single fibrin fiber divided in subsections governed by
Worm-Like-Chain springs and bending springs. (C) Formation of cohesive bond between
sufficiently close fibers.

47



the following Langevin equations. Namely, motion of the center of mass of the ith platelet

is described by the following stochastic ordinary differential equation:

mp,iẍp,i = Fp,i − ηpẋp,i + FBp,i, (3.1)

where Fp,i is the deterministic force applied to the ith platelet, ηpẋp,i is the viscous damping

force, and FBp,i is the Brownian force due to thermal fluctuation [100]. As in Chapter 2

an overdamped regime is assumed due to the low Reynolds number. The inertial term is

therefore neglected and the system (3.1) is discretized in time using a Forward Euler scheme:

xn+1
p,i = xnp,i +

dt

ηp
Fnp,i + Fn,Bp,i , (3.2)

where the superscripts n and n+ 1 refer to the vector quantities at time steps n and n+ 1

for the ith platelet and dt is the time step. ηp represents the drag coefficient for a platelet

with fixed volume in plasma. Application of the Stokes estimation, ηp = 6πµrp results in

the value ηp = 85.2 nN.s.m−1. Similarly, the fiber nodes follow the same discretization as

in Chapter 2:

mf,iẍf,i = Ff,i − ηf ẋf,i + FBf,i. (3.3)

Assuming fibers maintain a diameter of 100nm, the value of ηf is 3.77 nN.s.m−1. The

Brownian force in three dimensions is calculated using the Einstein relation between the

diffusion coefficient in a medium and the temperature [132]. Because the mean squared

displacement of a particle following Brownian dynamics is known to be 〈x〉 = 6kBT
η dt over

a single time step, the random force on an individual platelet is calculated as:

Fn,Bp,i = ξi

√
6kBT

ηp
dt, (3.4)
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where ξi is sampled from a standard normal distribution. Random force are calculated

similarly for fiber nodes but utilize the drag term, ηf .

For each platelet, the deterministic force, Fp,i, is generated by (1) pulling forces

from filopodia, (2) adhesive forces and (3) volume exclusion forces. The total force can be

calculated using the negative gradient of the energy, Fp,i = −∇EPLTi , where EPLTi is the

energy associated to the ith platelet and is separated into three parts,

EPLTi = EFILi + EADHi + EEXCi , (3.5)

with EFILi , EADHi , and EEXCi representing the filopodia, adhesion, and volume exclusion

energies. The explicit formulation of each energy is written as follows:

EFILi = Fp
1

2
x2, (3.6)

EADHi = F0
1

2
x2, (3.7)

EEXCi = ε(
σ12

x12
− 2

σ6

x6
), (3.8)

where x = xi − xj is the distance between the ith platelet and the jth platelet/fiber, σ =

2
21/6

frrp, and ε = F 2
0 . The calibration and choices of parameters are described in Section

A.2.3.

3.3.1 Filopodia Contractile Forces

Each individual platelet is modeled as a spherical volume with multiple filopodia

of length rfil by which it exerts pulling forces on the fibrin network (Figure 3.3). Individual

filopodia are modelled as forces exerted from the platelet center of mass onto fibers in the

environment. Unless, otherwise stated, the number of filopodia for each simulated platelet
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Figure 3.3: Schematic of individual platelet interacting with fibrin fibers in the clot environ-
ment. Different forces (red arrows) are applied to fibers depending on the varying distance
from the platelet center of mass. Fibers are pulled towards the platelet at a force, Fp, in the
interaction zone (light gray). Adhesion force, F0, is applied to fibers on the platelet surface
(gray), and a Lennard-Jones force, FLJ , is used for volume exclusion (dark gray). Individual
filopodia, modelled as forces, act by pulling fibers in the environment outside the platelet
volume but within the range of the filopodia, rfil (light grey annulus). Once a fiber is pulled
within the platelet volume of radius rp, the fiber is held on the surface by an adhesive force,
F0 (grey zone annulus). Fibers are held out of the central platelet volume (dark grey circle)
using a Lennard-Jones potential.

is extracted from the simulated distribution described in Section 3.2.5 (see also Figure 3.2).

Force is applied from the ith platelet at a given position, xp,i, to other jth platelets and/or

fibers in the environment at position xj in the same transversal direction observed in Kim

et al [92]. Typical applied force directions are shown as red arrows (Figure 3.3). Nearby

platelets and fibers with respective radii rp = 1.13 µm and rf = 0.5 µm are pulled with a

magnitude, Fp, if the ith platelet has an unused filopodia and the jth platelet/fiber is within

range, i.e. the distance d = ||xp,i − xj ||22, is such that 2rp < d < rfil in the case that the

jth point represents the center of mass of a platelet, or rp + rf < d < rfil when the jth

point represents a fiber node. Model simulations were performed for different magnitudes of
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pulling force, Fp, and under assumptions of its dependence on the fiber strain being constant

or provided by different functions. Specifically, the average strain of the fiber being pulled,

γ̄, was incorporated into the magnitude of force via linear (Section A.2.3), constant, and

discontinuous step function. The step function is based on evidence in Qui et al. [160] where

the magnitude of forces exerted by platelets on the environment were observed to triple after

the stiffness of the substrate is increased. Given an initial magnitude of force, F0, the strain

dependent magnitude pulling force can be expressed as follows:

Fp =


F0, γ̄ < γth

3F0, γ̄ ≥ γth,
(3.9)

where γth represents the fibrin stiffness threshold. As the ith platelet approaches the jth

platelet/fiber, the distance can decrease such that d < rp + rf or d < 2rp respectively. In

this case, a surface adhesion force (Section 3.3.2) is applied to the jth platelet/fiber. The

filopodia belonging to the ith platelet is then free to pull on a platelet or fiber that is already

connected to the jth platelet/fiber, simulating the hand-to-hand pulling previously observed

[94]. If no such platelet or fiber exists, the filopodia is left free to connect with other platelets

and fibers whose distance is less than rfil from the center of mass of the ith platelet.

3.3.2 Platelet Surface Adhesion and Volume-exclusion

During clot contraction, each platelet pulls fibers towards its center of mass and

subsequently attaches the fibers to the adhesive surface. To model adhesion, a fraction of

the platelet radius, fr = 0.9, is denoted as an adhesive zone wherein a force, F0, directed

towards the platelet center of mass at location xp,i is continually applied to all other platelet

centers of mass and fibers at points xj such that the distance, d, is within the adhesive zone,
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i.e. 2rpfr < d < 2rp or frrp + rf/2 < d < rp + rf/2 for platelets and fibers, respectively.

The adhesion annulus is shown in dark gray (Figure 3.3). The magnitude of force applied

to the fiber or platelet at location xj is F0. Once d < 2rpfr for platelets or d < frrp + rf/2

for fibers, a volume exclusion force is applied in the opposite direction to the adhesive force,

namely xp,i − xj . The volume is illustrated by the dark circle (Figure 3.3A). The exclusion

is implemented using a standard Lennard-Jones potential based force FLJ = ε(σ
12

x13
− σ6

x7
),

where x = xp,i − xj .

3.4 Discussion

Individual platelet activation first results in change in the number of filopodia oc-

curring on the cell surface [107] which later determines the size of platelet aggregates, and

the force exerted on the surrounding fibrin network by individual platelets. Platelets have

been observed to dynamically respond to variations in the clot microenvironment, such as

alterations in substrate stiffness and locally applied forces [160, 105, 136]. While individual

cellular reactions may vary, general consensus reveals a correlation between increased sub-

strate stiffness and increased expression of integrin αIIbβ3, platelet spreading and contractile

force [160]. Here, several different responses of platelets due to changes in the stiffness of the

surrounding environment are tested. The model will be validated using several different met-

rics and making comparison to experimental data from Kim et al [92]. The metrics utilized

are platelet-colocalized fibrin, fp, fibrin densification, fd, and change in fibrin densification,

∆fd. When applicable, the superscript t is used to denote time in each metric.

To quantify the amount of platelet colocalized fibrin at time t, the amount of fibrin
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volume within distance rp for each individual platelet position, xp,i. Since the diameter of

a fiber is assumed to be 0.1 µm, the volume of an individual fiber segment of length 0.3

µm is Vf = 0.3 · πr2
f . Therefore, the amount of platelet compacted fibrin is determined

by calculating f tp = {
∑

j Vf |dist(xp,i, xf,j) < rp, for some i}, where i and j range over all

platelet and fiber indices, respectively. Similarly, the fibrin density is calculated by denoting

a central cubic region within the clot of side length 10 µm, denoted σ. The fibrin density

at a given time is then given by f td = {
∑

j Vf |xf,j ∈ σ}.

This model will be utilized to perform large scale simulations of clot contraction

and perform predictive measurements not possible with current experiments. Specifically,

this model allows the ability to simulate the affect of anti-platelet drugs thereby informing

future drug design and wound healing techniques. Individual clots can be simulated ac-

cording to parameters drawn from diseased patients so that quantification of stability can

inform immediate patient risk based on clot composition. Finally, this model allows the

translation of the current knowledge regarding individual platelets to larger communities. It

is a continuous challenge to begin with the current knowledge of processes occurring within

individual cells and translate that knowledge to complex communities.
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Chapter 4

Reinforcement Learning Based

Prediction of Enzyme Regulation

4.1 Introduction

While our understanding of regulation of transcription and post-transcriptional

processes has blossomed in the past 25 years due to advances in high-throughput experi-

mental technologies such as RNA expression, ChIP-Seq, and mass spectrometry-based pro-

teomics, our understanding of post-translational regulation has advanced [39, 63, 165, 123],

but not as rapidly or as far.

Recent breakthroughs include work in which mass spectrometry and NMR mea-

sured metabolite and protein levels, along with fluxes modeled from 13C isotope labeling

were used with Michaelis-Menten kinetics to determine whether the predicted reaction fluxes

matched fluxes modeled from isotope labeling data [63]. The correlation between predicted
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fluxes were evaluated with and without regulation. If the match was better with regulation,

then regulation was assumed. The work was a tour de force in that chemostat studies were

used to carefully measure both absolute and relative metabolomics data while at the same

time cover as much of the proteome as possible. In addition, Michaelis-Menten kinetic mod-

els addressed multiple levels of regulation. The payoff was not only predictions of which

enzymes might be regulated, but also inferences about the regulating molecule.

In addressing possible scalability (or at least cost of experimentation) in the previ-

ously mentioned study, a similarly sophisticated informatics approach was used to develop a

model of small molecule regulatory networks from curated databases of enzymes, integrate

the regulatory network with a metabolic model of E. coli, and distill information on how

substrates and inhibitors contribute to metabolic flux regulation [165]. Interestingly, this

work did not find support for the common notion that reactions which are furthest from

equilibrium are those that are most likely regulated.

Fifty years ago it was postulated that the purpose of post-translational regulation

in metabolism is to either maintain a balance of the energy charge of the adenylate pool

[7], or to control solvent properties [8]. Solvent properties have long been recognized as

important determinants of cellular activity and function. Atkinson recognized that the

maintenance of physiological concentrations of metabolites may well be the most pressing

problem of metabolic control [8]. Metabolite concentrations are exponential functions of the

standard chemical potentials but only a linear function of the rate constants. Consequently,

metabolite concentrations are less a function of the reaction kinetics and primarily a function

of a molecule’s standard chemical potential, which varies over a small range across species
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because solution conditions inside a cell also vary over a small range. Interestingly, the

set of enzymes which are post-translationally regulated is relatively well-conserved across

species as well [165], despite the fact that the rate constants for the same enzymes can vary

dramatically [81].

In addition to metabolite concentrations per se, solvent capacity in the cell has

recently focused on molecular crowding [224, 223] and the impairment of diffusion [149]. As

a cell approaches equilibrium, the cell’s cytoplasm can become glassy such that diffusion is

limited. At the same time, control of metabolites through regulation of enzyme activities

is no longer effective near equilibrium [85]. The equilibrium constant K for a reaction is

the ratio of the exponent of the standard chemical potentials. Consequently, metabolite

concentrations may potentially approach values determined by their standard chemical po-

tentials in solution, which can be quite large for highly charged metabolites like fructose

1,6-bisphosphate and acetyl-coenzyme A. Not only will metabolite levels rise, but also less

water will be produced by metabolism inside the cell. In E. coli, up to 50% of the bulk water

is produced by metabolism [99]. Even away from equilibrium, cells clearly must regulate

metabolite levels to prevent high concentrations that would be detrimental to diffusional

processes necessary for life.

Here, the hypothesis that the post-translational regulation of enzymes is at least

in part driven by the need to maintain the solvent capacity in the cell is investigated.

Evaluation of this hypothesis is performed by comparing experimental metabolomics data

with steady state concentrations predicted computationally from equations for reformulated

mass action kinetics. Using quantitative metabolomics data as well as physical and biolog-
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ical principles, metabolic control analysis and alternatively reinforcement learning are used

to predict the control of activity required to bring metabolite levels down to observed val-

ues. Consequently, the machine learning results confirm that an optimal control policy can

be formulated which directly achieves minimal regulation by efficiently reducing excessive

metabolite concentrations.

The predictions agree with known regulation of central metabolism in model or-

ganisms. Moreover, these results show that regulated enzymes have free energies of reaction

further away from equilibrium precisely because of the regulation, turning common wisdom

about enzyme regulation upside-down. Instead of highly non-equilibrium reactions being

the targets for regulation in metabolic pathways [112, 137], regulation results in reactions

being much further from equilibrium than non-regulated reactions. Being further away from

equilibrium than other reactions is an effect, not a cause, of regulation.

4.2 Methods

4.2.1 Convex Optimization Approach for obtaining Metabolic Steady

State.

For a reversible chemical reaction, the reaction is described by the chemical equa-

tion,

νA,1nA + νB,1nB

k1−−⇀↽−−
k−1

νC,1nC + νD,1nD, (4.1)

where A,B,C,D represents the molecular species, the concentrations are given by ni, i =

{A,B,C,D}, and νi,j represent the unsigned stoichiometric coefficients for each molecular

species i in the forward and reverse reactions j = {1,−1}.
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The law of mass action may be formulated in terms of chemical kinetics or ther-

modynamics. With respect to chemical kinetics, the law of mass action is expressed by the

rate or net flux, Jnet,1, of the reaction where the forward and reverse rates are proportional

to the respective reactants,

Jnet,1 = k1n
νA,1

A n
νB,1

B − k−1n
νC,1

C n
νD,1

D . (4.2)

In this formulation, k1 and k−1 represent the rate constants of the forward and the reverse

reaction, respectively. On the other hand, the thermodynamic expression of the reaction

utilizes the change in free energy, G, with respect to the extent of a reaction, ξ. The

ratio of the respective reactants and products are combined to form the reaction affinity,

A1 = ∂G/∂ξ1, such that,

eA1/RgT = K1
n
νA,1

A n
νB,1

B

n
νC,1

C n
νD,1

D

= K1Q
−1
1 ,

(4.3)

where K1 = k1/k−1 is the equilibrium constant and Q1 is the reaction quotient. Also, the

analogous equation for the reverse reaction is the reciprocal,

eA−1/RgT = K−1
n
νC,1

C n
νD,1

D

n
νA,1

A n
νB,1

B

= e−A1/RgT .

(4.4)

Note that Eqn. (4.2) is a purely kinetic description of the law of mass action, while Eqns.

(4.3) and (4.4) are purely thermodynamic expressions. This results from the fact that the

latter equations do not contain any information on the time dependence of the reaction.

These formulations, however, are not mutually exclusive. Time dependence and thermody-

namics can both be described in a single equation by factoring the opposing rate from each
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term of Eqn. (4.2),

Jnet,1 = k−1nC
νC,1nD

νD,1

(
k1nA

νA,1nB
νB,1

k−1nCνC,1nDνD,1

)
− k1nA

νA,1nB
νB,1

(
k−1nC

νC,1nD
νD,1

k1nAνA,1nBνB,1

)
= k−1nC

νC,1nD
νD,1

(
K1Q

−1
1

)
− k1nA

νA,1nB
νB,1

(
K−1Q

−1
−1

)
,

(4.5)

where K1 and K−1 are the equilibrium constants and Q1 and Q−1 are the reaction quotients

for reaction 1 and -1, respectively. Eqn. (4.5) is the Marcelin-de Donder equation [44, 30],

which describes the forward and reverse reactions as being functions of the time independent

odds of the reaction and the rate of change of the odds.

Given a metabolic model with Z reactions, M metabolic species, and N total

particles, the flux through each reaction is formulated using Eqn. (4.5). In this work, the

largest values of Z and M in a pathway are 29 and 47 respectively. If the rate of change

of the odds are assumed to be equal and independent of concentrations, then the coupled

reactions occur on the same time scale. Under these assumptions, the resulting equation for

the jth reaction is the Marcelin equation [128],

Jnet,j = cj

(
KjQ

−1
j

)
− cj

(
K−jQ

−1
−j

)
, (4.6)

where cj represents the time dependence of the reaction odds. Because the exponential

family of distributions are always log-concave when counts are greater than or equal to zero,

the energy surface on which the reactions occur is convex. This is achieved by expressing

the reactions as functions of the reaction affinities via Eqns. (4.3) and (4.4),

Jnet,j = cj

(
eAj/RgT

)
− cj

(
e−Aj/RgT

)
. (4.7)

A vector of Z reaction fluxes J = [J1, ..., JZ ]T can be determined from the M by Z stoi-

chiometric matrix S and the M chemical potentials. The stoichiometric matrix consists of
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elements γi,j , which are the signed stoichiometric coefficients for chemical species j in reac-

tion i. The time dependence of the vector of counts n = [n1, ..., nM ]T of chemical species

is,

dn

dt
= SJ

= S(KQ− −K−Q),

(4.8)

where SJ is the matrix multiplication between S and J , KQ− = [K1Q
−1
1 , ...,KZQ

−1
Z ]

T is the

vector of thermodynamic odds for the forward reactions, and K−Q = [K−1
1 Q1, ...,K

−1
Z QZ ]

T

is the vector of thermodynamic odds for the reverse reactions. Without any constraints

applied, Eqn. (4.8) will converge to an equilibrium solution, whether the equation is

solved using ordinary differential equations or optimization methods. To obtain a non-

equilibrium steady state, non-equilibrium boundary conditions must be applied. In this

case, the non-equilibrium boundary conditions consist of boundary metabolite values rep-

resenting the reactants and products of the overall chemical process that are held fixed.

If there are MV variable species and MB = M −MV boundary (fixed) species such that

n = [n1, ..., nMV
, nMV +1, ..., nM ]T , then the stoichiometric matrix will contain a non-singular

submatrix and Eqn. (4.8) will have unique solutions only if MV ≤ Z. The vector of counts

n can be split into subvectors nV = [n1, ..., nMV
]T and nB = [nMV +1, ..., nM ]T such that

n = [nTV n
T
B]
T . Likewise, the stoichiometric matrix can also be split along the rows repre-

senting metabolites to separate the entries for the variable metabolites from those for the

boundary metabolites such that S = [STV S
T
B]
T where SV is an MV by Z matrix and SB is
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MB by Z. The time dependence of each of the chemical species is given by,

dn

dt
=

dnV
dt

dnB
dt

 =

SV
SB

 (KQ− −K−Q). (4.9)

The optimization problem is to find nV satisfying,

∣∣∣∣SV (KQ− −K−Q)
∣∣∣∣2

2
= 0.0, (4.10)

subject to the MB boundary conditions. The optimization is carried out with a nonlinear

least-squares approach using the Levenberg-Marquardt method [113, 130], and solves for

the concentrations of the chemical species which makes up the reaction quotient, Q. When

SV (KQ− − K−Q) = 0.0, the optimization has found a kinetic steady state as well as a

thermodynamically balanced state such that the net thermodynamic driving forces on all

the reactions are equal for linear pathways, or for branched pathways, the net thermody-

namic driving forces are proportional to the stoichiometry. If one is only interested in the

thermodynamic properties, fluxes and concentrations at steady state, then there is no need

to solve for the rate constants. Otherwise, rate constants can be back-calculated and used to

solve for the non-equilibrium transient trajectories, for example, Eqn. (4.2). For example,

setting j = 1, Eqn. (4.5) can be solved for k±1 as follows:

k1 =
J1,net

nA(1−K−1Q
−1
−1)

and

k−1 =
K1

k1
.

(4.11)

The kinetically accessible energy surface is not necessarily convex because of the introduction

of the rate constants – each reaction now has its own time dependence.

The predicted concentrations from the optimization follow the multinomial Boltz-

mann distribution in which the concentration of each species is proportional to its standard
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chemical potential, µ◦i , adjusted for aqueous solution at pH 7.0,

ni ∝ e−µ
◦
i /kBT , (4.12)

subject to the constraints of the reaction stoichiometries and the non-equilibrium boundary

conditions. The boundary conditions consist of fixed concentrations of environmental nu-

trients such as glucose and waste products such as CO2, as well as some cofactors. Because

the concentrations are distributed as a function of their standard chemical potentials in

aqueous solution, the concentrations of highly hydrophilic charged species may be orders of

magnitude above physiological values. For instance, concentrations of ATP or acetyl CoA

may be on the order of ten molar or more. Such high concentrations would make the cy-

toplasm highly viscous such that diffusion would be slowed down significantly, and cellular

activity would come to a halt. However, as will be shown, the concentrations can be brought

into alignment with physiological values using enzyme activities determined from Metabolic

Control Analysis [55, 169].

4.2.2 Metabolic Regulation: A Metabolic Control Theory Approach

Regulation is applied to reactions by changing the scalar valued activity of the

jth enzyme, αj ∈ [0.0, 1.0], where activity values of 0.0 and 1.0 represent complete reac-

tion regulation and no enzyme regulation, respectively. The activity for each reaction j is

represented by a multiplier to the net reaction flux Jj such that,

Jj = αj(KjQ
−1
j −K−jQ

−1
−j ), (4.13)
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and likewise,

dn

dt
=

dnV
dt

dnB
dt

 =

SV
SB

 [α ◦ (KQ− −K−Q)
]
, (4.14)

where ◦ represents the Hadamard element-wise product. Since any reaction may be regu-

lated, the state of the system can be described by the activity vector, α, steady state fluxes,

J , and steady state metabolite concentrations n. Because the latter two state variables can

be determined from a fixed set of activities via the optimization routine, system states can

be defined simply by the activity vector α instead of the tuple (α, J, n).

In Metabolic Control Analysis (MCA), the sensitivity of a concentration ni to the

activity αj of enzyme j is defined as the concentration control coefficient,

Cni,j =
∂ log ni
∂ logαj

. (4.15)

Concentration control coefficients can be used to determine how much to reduce the activities

of an enzyme to bring the predicted concentrations into alignment with physiological values

observed from experimental metabolomics assays. The detailed calculation is described in

Appendix B. If concentrations ni for a metabolite i have not been measured, then target

values are assumed to be 1.0 millimolar, which ensures that concentrations stay reasonable

even for metabolites whose concentrations have not been measured. When predicted values

exceed the measured or target values, regulation is applied to reactions by changing the

scalar valued activity of the jth enzyme, αj .

Which reaction to regulate is determined from examining the concentration control

coefficients with regard to the metabolites whose concentrations are higher than is observed

in experiment. The set of such metabolites is denoted as M ′ = {i|ñi > ni}. An activ-
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ity is then selected to be reduced based on the influence that the activity has on these

concentrations,

Cnj =
∑
i∈M ′

max
(
Cni,j , 0.0

)
. (4.16)

Because activities are reduced from initial values of 1.0 (full activity), only Cni,j > 0.0 are

considered in the sum so that reduction in activity correlates with reduction in concentration.

A component cost function, Li, is defined as the division of the predicted concentrations or

counts to the measured concentrations or counts, Li = log(ñi/ni). In order to determine

the point where steady state metabolite levels are ‘in caliber’, a stopping criteria function

is utilized which returns a positive scalar if any Li > 0.0 and returns zero once Li ≤ 0.0 for

all i. The cost function is defined as follows:

L =
M∑
i=1

max(Li, 0.0). (4.17)

The maximum of Li or zero is used because the model only predicts metabolite populations

that are free in solution, but the experimentally measured concentrations are in principle

those that are both enzyme-bound and free in solution. Thus, concentrations from predic-

tions are assumed to be ‘in caliber’ with experimental data if the predicted concentrations

are less than or equal to experimentally measured concentrations (Li ≤ 0.0).

In practice, the activity that reduces the cost function, L, the greatest amount

is chosen for regulation and is again determined using MCA. In MCA, the concentration

control coefficient for metabolite i due to control by reaction j is defined by Eqn. (4.15).

Consequently, the change in concentration or counts due to a change in activity of reaction

j is,

dñi = C ñi,j
dαj
αj

ñi. (4.18)
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For metabolite i with predicted concentration ñi and a target concentration of ni, the

estimated change in the costs, ∆Li,j , of metabolite due to a change in activity αj of reaction

j is:

∆Li,j = log
ñi (αj)

ni
− log

ñi (αj − dαj)
ni

= log
ñi (αj)

ni
− log

ñi (αj)− dñi (αj , dαj))

ni

= log
ñi (αj)

ñi (αj)− dñi (αj , dαj))

= − log
ñi (αj)− dñi (αj , dαj))

ñi (αj)

= − log

(
1− dñi (αj , dαj))

ñi (αj)

)
= − log

(
1− C ñi,j

dαj
αj

)
.

(4.19)

The change in total costs over all metabolites due to a change in activity of reaction j

is calculated by summing over metabolites that are out of ‘caliber’ with respect to the

experimentally observed concentrations. The total cost is calculated as follows:

∆Lj =
∑
i∈M

∆Li,j

= −
∑
i∈M

log

(
1− C ñi,j

dαj
αj

)
,

(4.20)

where M represents the set of reactions able to be regulated or controlled. Finally, the

question of which enzymes should be allowed to be control points must be addressed. Two

approaches were taken with MCA: an unrestricted control approach in which any enzyme

could be a regulator for any metabolite, and a restricted approach in which only enzymes

whose immediate products exceeded the target values could be considered as a regulator.

The latter is referred to as a local-control approach (MCA Local) since an enzyme’s im-

mediate products (and possibly other metabolites) are being controlled. Regulation is then
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applied at the reaction maximizing,

arg max
j∈{1,...,Z}

(∆Lj) . (4.21)

Once a reaction j is chosen, the activity αj is changed by an appropriate amount (Appendix

B). When all metabolite values are brought into agreement with experimental observations,

rate constants can be determined, if desired, using Eqn. (4.11). Alternately, the influence

of the activities can directly be incorporated into the rate constants. For example, given

j = 1, the resulting rate constant is,

k1 = c
J1,net

α1nA(1−K−1Q
−1
−1)

. (4.22)

However, there is an important conceptual difference between solving mass action rate laws

with parameters based on the approach provided by Eqn. (4.11) compared to Eqn. (4.22).

While the former assumes regulation is needed to bring concentrations under control, the

latter assumes no regulation is needed and control is hardwired into rate constants. The

advantages of the former are two-fold: (1) under different nutrient conditions, enzyme ac-

tivities can be altered to control metabolite concentrations; and (2) enzyme activities are

adjusted away from the maximal entropy distribution only enough to bring concentrations

into alignment with observed values, resulting in a more favorable total free energy of the

system. A lower total free energy also would reduce the cost of replicating of metabolism.

The actual balance between these two approaches will likely be a middle ground between

the reliance on activity coefficients as opposed to rate constants. It is unlikely that enzymes

can evolve such that the ideal rate constants, i.e. those implied by Eqn. 4.11, are possible

for every reaction. Instead, rate constant values will be limited by constraints due to the

physics of the catalytic process.

66



4.2.3 Exploring Regulation: A Reinforcement Learning Approach

The MCA method for bringing the predicted concentrations in alignment with

observed concentrations is a deterministic approach based on an assumption that metabolite

concentrations depend linearly on the enzyme activities. It is feasible that the assumption of

linearity used in the MCA analysis (Appendix B) results in sub-optimal regulation. Optimal

regulation has been hypothesized, based on empirical data, as regulation that maintains a

high energy charge, defined in terms of ATP, ADP and AMP [7]. A less ad hoc definition

of optimal regulation would be the maximization of the entropy production rate, which has

also long been hypothesized as an objective of biological systems [124, 142]. Neither of these

concepts are addressed in the MCA approaches discussed above. For steady state systems,

the entropy production rate (EPR) is the negative of the free energy dissipation rate [29, 57],

EPR = −dG
dt

= RgT

Z∑
j

αj

[
rj logKjQ

−1
j − r−j logKjQ

−1
j

]
. (4.23)

Given a goal of maximizing the EPR, it is not clear which MCA protocol above, if either,

would maximize the entropy production rate. On one hand, the unrestricted MCA method

uses less regulation and therefore often results in higher reaction fluxes, which would increase

the EPR (Eqn. (4.23)). On the other hand, entropy is maximized when the value of the

argument of the logarithms are distributed as uniformly as possible, which is the opposite of

what occurs when a minimal set of enzymes are chosen to be regulated. In order to explore

the regulation space more completely to investigate these issues, a machine learning method

that avoids the linearity assumption by directly testing multiple future states is utilized and

is directly rewarded for maximizing the EPR.

A Reinforcement Learning (RL) framework can be used to address decision prob-
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lems that are otherwise combinatorially intractable. Even a small metabolic network may

have on the order of 20-50 reactions. To explore the state space fully using the deterministic

MCA approach, on the order of 100-500 decisions need to be made as to which reaction

to regulate depending on the state of the system. The search space is then approximately

between 20100 and 50500, a number much too large to tackle by an exhaustive search or

Monte Carlo approach.

The RL method (Figure 4.1) formulates the problem of regulation in terms of a

Markov decision process [15], which is commonly represented as a tuple {S,A, P,R}, where

S represents the set of possible states (enzyme activities for each reaction), A represents

the set of possible actions (reactions to regulate), P represents the transitional probabilities

between states, and R represents the reward function. Reinforcement learning is utilized

to obtain an optimal regulation scheme by learning from delayed environmental feedback

[185, 200]. Figure 4.1 illustrates how reactions are chosen using a policy function which

returns the reaction to be regulated (action) given the current enzyme activities (state).

Learning is performed by iteratively updating the state value function using environmental

feedback (rewards) from solving the optimization routine.

In this framework, optimal regulation of a metabolic network requires that the

EPR be maximized while satisfying a stopping criteria: L = 0.0. A diverse set of reaction

regulation schemes represented by enzyme activity values, {α1, ..., αZ}, satisfy the stopping

criteria, but each scheme results in a different EPR (Fig. 4.3C-4.5C, grey dots). Thus, a

hybrid optimization-RL approach to iteratively searches for the best regulation scheme. (A

hybrid simulation-RL approach can also be used.) States correspond to the value of enzyme
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activities while actions correspond to regulating a specified reaction. Therefore, the state

space, S, is defined as the subset of RZ using range of each enzyme activity, [0.0, 1.0]Z , and

the action space as the set of reactions, A = {1, 2, ..., Z}. A subset of S where learning

terminates is denoted as, ST = {s ∈ S|L(s) = 0.0}.

Because regulating the jth enzyme results in a deterministic step-size, ∆αj , the

resulting state is given by the following set of enzyme activities: {α1, ..., αj −∆αj , ..., αZ}.

The goal of Reinforcement Learning is to learn an optimal policy, π∗ : S → A, which results

in a regulation scheme that maximize some defined notion of rewards, R : S × A× S → R.

In other words, learning the optimal policy corresponds to learning the regulation scheme

for the chemical reaction network that results in the largest reward.

Each reaction that is regulated results in a scalar valued reward, or feedback,

from the environment based on an action/regulation (Figure 4.1) that indirectly defines

optimal regulation schemes. Each regulation decision alters the steady state metabolite

concentrations, which are obtained from optimization or simulation of Eqn. (4.14), and

used to calculate rewards using a loss function, Λ, specified by

Λ = log(
M∑
i

ñi
ni

). (4.24)

The formulation of Λ emphasizes regulation of reactions that affect metabolites which are

furthest from being in caliber with experimental measurements.

The environmental feedback, or reward function, R, is constructed as follows:

R
(
s, a, s′

)
=


Λ(s)−Λ(s′)

η , L (s′) 6= 0.0

EPR (s′) + Λ(s)−Λ(s′)
η , L (s′) = 0.0.

(4.25)

Intermediate rewards are calculated by the reduction in Λ scaled by a positive factor η.
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Once a terminal state is found, the final reward consists of the final change in the scaled

loss function as well as the entropy production rate calculated at the final state, EPR(s′) +

Λ(s)−Λ(s′)
η . Thus, the agent aims to both increase the value of EPR(s) for st ∈ ST while

satisfying the constraint L = 0.0 and regulating as many reactions as is necessary.

Learning is conducted by iteratively updating the current policy function, π : S →

A, that determines the agent behavior. The policy function determines which reaction j ∈ Z

should be regulated based on the current enzyme activities, {α1, ..., αZ} ∈ S. Here, an n-step

SARSA algorithm [167] is utilized to perform fitted value function iteration. An optimal

policy is therefore learned by iteratively updating the value function, V : S → R, which is

defined as the expected rewards to be received by following a fixed policy from a specified

state, V π(st) = Eπ[rt:t+n|st]. In an n-step algorithm, the value function is meant to predict

the discounted reward, rt:t+n, for n future steps. The n-step reward experienced by the

agent is defined as rt:t+n = rt + γrt+1 + ...+ γn−1rt+n−1 + γnV (st+n), where γ ∈ [0.0, 1.0] is

the discount factor. Each reward, rt = R(st−1, a, st), represents the feedback from moving

into state st from st−1 after taking some action a. The first n steps represent the rewards

experienced, while the term V (st+n) represents the future rewards. Once a terminal state

is less than n steps away, the n-step reward is truncated to the appropriate length.

Learning the value function implicitly improves the policy. The relation between

the value of a state and the policy is given by an ε-greedy policy, which is defined as:

π (s) =


arg max

a∈A
(R (s, a, s′) + γV (s′)) , ξ ≥ ε

random choice, ξ < ε,

(4.26)

where ξ is a uniform random number between 0.0 and 1.0. As the value function is better

estimated, the policy determines reactions to regulate that lead to the greatest cumulative
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reward. Exploration is imposed by randomly choosing reactions to regulate, allowing the

policy to escape local minima. As the agent learns, ε is slowly annealed to reduce exploration

and fluctuations in the value function. During each training episode, the initial state is

s = {1.0, ..., 1.0}, such that all enzyme activities are unregulated. Trajectories through state

space are stopped when the stopping criteria L = 0.0 is satisfied. This condition requires

that all reactions have cost function values at or below zero before the reinforcement learning

ends and the predictions are in caliber with the experimental values.

Finally, the state value function is estimated by using a neural network imple-

mented in PyTorch [150] with a single hidden layer and hyperbolic tangent activation func-

tions. Updates to the value function are performed by optimizing the neural network using

stochastic gradient descent. This is done by backpropagating the squared loss between the

predicted value and the n-step reward, [V (st)− rt:t+n]2.

4.2.4 Model Training

Prediction of network regulation was performed using a trained neural network

to estimate the value function. Network weights were adjusted using stochastic gradient

descent with a learning rate, lr ∈ {10−4, 10−5, 10−6}. Each algorithm learned and generated

data using an ε-greedy policy with initial ε = 0.5 or 0.2 depending on the size of the pathway.

ε was annealed by dividing by a factor of two every 25 learning episodes.

For each pathway, 10 agents are trained for each different value of n ∈ {2, 4, ..., 12}

and each learning rate. The resulting average of 10 RL runs for the glycolysis-PPP-TCA

pathway (Figure S1) show the mean reward for the 350 training episodes. Optimal regulation
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Figure 4.1: Schematic of in silico framework for learning regulation (grey box) with coupled
simulation or optimization routine controlling environmental feedback. Initial framework
input (green box) consists of target metabolite concentrations from experimental data. The
output (red box) consists of a learned optimal enzyme regulation scheme necessary to reach
the target concentrations. Learning is performed by repeatedly testing different regulation
schemes and updating the value function, V , that returns a scalar value for a given set of
enzyme activities. Enzyme activities, represented as states, are chosen for regulation by
performing actions that are determined by a policy function. A given policy is determined
by V . The new steady state metabolite concentrations resulting from applied regulation
are determined by an optimization routine. Alterations in metabolite concentrations are a
direct result of moving into a state s′ from a state s after taking action a, i.e. performing
regulation. These dynamic changes are used to define a reward function, R, that determines
environmental feedback. Rewards are used to direct the agent as it explores and learns a
policy that predicts optimal enzyme regulation.

is prescribed by analyzing the agent with the largest cumulative reward averaged over the

last 50 terminal states.

4.2.5 Data

The metabolomics data used in this study was from E. coli studies by Bennett, et

al. [17], and Park, et al [148]. Briefly, E. coli cells were grown in isotope-labeled media and

then extracted in organic solvent containing unlabeled internal standards in known concen-

trations. Metabolites were extracted in cold solvent and analyzed using chromatography-MS,
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and concentrations relative to the known standard concentrations were obtained using peak

ratios of the labeled samples to unlabeled standards.

If no experimental data is available, the analysis is carried out using estimates of

metabolite concentrations (Appendix B). For this purpose, an estimate of 0.1 mM for each

metabolite that is variable is used. For fixed metabolites that form the boundary conditions,

specific values are required that induce appropriate non-equilibrium boundary conditions.

Standard free energies of reaction were calculated using eQuilibrator and the eQui-

librator API [56]. eQuilibrator uses well-curated gold standard data on the thermodynamics

of reactions from the National Institute of Standards and Technology [60], which is the basis

for subsequently adjusting reference free energies for pH and ionic strength. For reactions for

which experimental data are not available, free energies are estimated using reliable reaction

comparison methods [140] or electronic structure calculations [82].

4.3 Results

We solve the prediction problem of which enzyme to regulate by a novel combina-

tion of methods from statistical thermodynamics, control theory and reinforcement learning

(RL). The initial step is to determine steady state concentrations without applying regula-

tion by using numerical optimization of the respective ordinary differential equations on a

convex energy surface. The convex energy surface for metabolic dynamics is obtained by

assuming that the time dependence is the same for all reactions in the Marcelin-de Don-

der dynamical force equation for mass action kinetics [30]. Due to the assumption that

the reactions all occur on the same time scale, the thermodynamic odds of each reaction
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(Methods, Eqn. (4.3)) are similar in value in upper glycolysis, lower glycolysis and the TCA

cycle, though varying by a factor of two due to stoichiometry. Such a configuration results

in at least a local maximum of the reaction path entropy [46, 27]. Figure 4.2 shows the

resulting steady state reaction fluxes and reaction free energies for the glycolysis-PPP-TCA

cycle under high NAD/NADH and low NADP/NADPH conditions.

If there are no constraints, the configuration also results in a higher entropy dis-

tribution of metabolites. However, the metabolites will be constrained to be away from the

equilibrium distribution if there are non-equilibrium boundary conditions. Since the initially

predicted concentrations will then be proportional to their Boltzmann probabilities, the ini-

tially predicted concentrations may be exceedingly high [8] compared to experimentally

observed values from isotope-labeled, mass spectrometry measurements [17, 148]. However,

these high concentrations allow for highly effective inference of regulation to control the con-

centrations. The predicted concentrations, ñi, are brought into alignment with experimental

observations, ni, by applying regulation. Regulation is determined using either a Metabolic

Control Analysis (MCA) approach, or a hybrid optimization-reinforcement learning (RL)

approach (Methods). In both cases, regulation is applied in the form of an activity coeffi-

cient, αj , that scales the reaction flux for reaction j, where αj = 1.0 indicates no regulation

while αj = 0.0 indicates complete regulation.

In the two MCA based methods that were developed, reactions are regulated based

on the sensitivity of the predicted concentrations to the activity coefficient that modulates

each reaction, which is carried out by a specific enzyme. The sensitivity of the ith metabolite

with concentration ni (observed or predicted) to the activity, αj , of enzyme j, is described
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by the concentration control coefficient, Cni,j . When using predicted concentrations, ñi,

the notation C ñi,j is utilized to specify the concentration control coefficient for predicted

metabolite concentrations. A loss function defined as the logarithm of the division of the

predicted concentrations or counts is used to the measured concentrations or counts, Li =

log(ñi/ni). The change in the loss function due to a change in the activity of reaction j is

∆Li,j = log ñi − log (ñi −∆ñi(∆αj)) . (4.27)

The reaction j selected for regulation is the one whose change in activity results in the largest

change in the loss functions of all metabolites whose predicted concentrations exceed the

experimentally observed concentrations, as determined by ∆Lj =
∑

i ∆Li,j . Regulation is

considered complete when predicted metabolite concentrations are brought into agreement

with experimental measurements.

The three different regulation approaches are compared by statistically character-

izing the rate of energy flow across the reactions. The rate that energy is produced in

metabolism has long been known to be one of the most significant factors in metabolic

regulation [7]. The sum of the rate of free energy generated across all reactions is the free

energy dissipation rate, or equivalently the negative of the entropy production rate. The

free energy of the jth reaction at steady state is ∆Gj = −RgT log(KjQ
−1
j ), where Rg is

the gas constant, and T is the temperature, Kj is the equilibrium constant and Qj is the

reaction quotient. The free energy dissipation rate is defined as the rate at which free energy

is dissipated [29, 57],

dG

dt
= −RgT

Z∑
j

αj [rj logKjQ
−1
j − r−j logKjQ

−1
j ]. (4.28)
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In the maximum path entropy formulation (Section 4.2, Eqn. (4.6)), the rate rj is pro-

portional to the thermodynamic driving force on the reaction, KjQ
−1
j . The free energy

change for a reaction j can be broken down into two components, an energy change,

∆Ej = −RgT logKj , and a configurational entropy change, T∆Sj = RgT logQj [27]. As

the reactions occur, the system moves towards equilibrium, decreasing the reactants and

increasing the products, which results in a change in the configurational entropy due to

changes in the reaction quotients. In a steady state or pseudo-steady state system, the

steady state is replenished by additional nutrients such that the reaction quotients, Qj , re-

turn to their steady state values. Replenishing the steady state, however, requires work.

Since the net entropy change in a pseudo-steady state system must be zero, the measure of

work available for processes other than maintaining the steady state, such as replication, is,

dE

dt
= −RgT

Z∑
j

αj [rj logKj − r−j logKj ]. (4.29)

Both dG/dt and dE/dt (the energy dissipation rate) are important metrics of the rate of

work produced by metabolism. When regulating reactions, a biological system must find a

balance between a free energy dissipation rate that extracts energy from the environment

as quickly as possible and a low rate of entropy change to maintain the pseudo-steady state.

In principle, any individual or species in a pseudo-steady state that maximizes the rate of

usable work, dE/dt, will outcompete those with lower rates of net work and will be the

organism selected by nature.

Three different versions of E. coli central metabolism are evaluated under four

different nutrient conditions. The three different versions of metabolism were (1) gluconeo-

genesis, (2) glycolysis and the TCA cycle, and (3) glycolysis, the pentose phosphate pathway
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(PPP) and the TCA cycle (glycolysis-PPP-TCA). Metabolite concentration data used in the

analysis were from E. coli in exponential growth with glucose as the carbon source [17, 148].

As an alternative to experimentally measured metabolite concentrations, rough estimates of

concentrations can be used as well that give qualitatively similar results (see Appendix B).

In all cases, the predicted regulation matched known regulation points in central metabolism

or were adjacent to known regulation points.

Below, changes in the largest network, glycolysis-PPP-TCA, are discussed under

two identical nutrient conditions except for the NADP/NADPH ratio, which is held fixed

but at different values throughout each analysis. In condition 1, the NAD/NADH ratio is

high (31.3) and the NADP/NADPH ratio is low (0.02), which favors flux through upper

glycolysis rather than PPP. In condition 2, the NADP/NADPH ratio is also high such that

NADP/NADPH = NAD/NADH = 31.3 [17]. The latter condition favors increased flux

through PPP. Analyses of gluconeogenesis and glycolysis and the TCA cycle are included

in the Appendix A (Figures B.2 and B.3). In all conditions, regulation that is found by the

reinforcement learning method is compared with that found by deterministic methods using

only MCA.

4.3.1 High NAD/NADH require regulation of metabolite levels in gly-

colysis

Prediction of enzyme activities using MCA methods are deterministic. Given the

conditions for fixed metabolites in which the NAD/NADP ratio is high and the NADP/NADPH

ratio is low, flux is favored through upper glycolysis over PPP, and the local MCA method

predicts (Figure 4.3A, red ‘plus’) that five reactions in glycolysis are regulated due to the en-
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zymes hexose kinase (HEX1), phosphofructokinase (PFK), glyceraldehyde-3-phosphate de-

hydrogenase (GAPD), phosphoglycerate kinase (PGK), and pyruvate dehydrogenase (PDH),

while one enzyme in PPP is regulated, phosphogluconolactonase (PGL), near the beginning

of the pathway. It is known that regulation of PPP occurs one enzyme up from PGL at

glucose 6-phosphate dehydrogenase (G6PDH) instead. But the metabolite that is over pro-

duced and is predicted to have high concentration without regulation is phosphogluconate,

the product of the PGL reaction. In practice, PGL may be a hard reaction to allosterically

regulate since it is a unimolecular ring opening reaction that may be catalyzed significantly

by binding alone [28].

78



Figure 4.2: Initial steady state properties before any regulation is applied in the form of
reduced activity coefficients for glycolysis-PPP-TCA cycle with high NAD/NADH and low
NADP/NADPH conditions. The steady state is determined by maximizing the reaction path
entropy such that the net thermodynamic driving force on each reaction is proportioned ac-
cording to the governing equation for metabolite kinetics, Eqn. (4.10). (A) Unregulated
reaction fluxes. (B) Unregulated reaction free energies. Reduction of activity coefficients
to values less than 1.0 reduces both the steady state fluxes and the reaction free ener-
gies (Fig. 4.3-4.5). Abbreviations: HEX1, Hexokinase; PGI, phosphoglucose isomerase;
PFK, phosphofructokinase; FBA, Fructose bisphosphatase; TPI, Triosephosphate isomerase;
GAPD, Glyceraldehyde 3-phosphate dehydrogenase; PGK, Phosphoglycerate kinase; PGM,
phosphoglycerate mutase; ENO, Enolase; PYK, Pyruvate kinase; PYRt2m, pyruvate trans-
porter; PDH, Pyruvate dehydrogenase; CSM, Citrate Synthase; ACONT, Aconitase; ICDH,
Isocitrate dehydrogenase; AKDG, a-ketoglutarate dehydrogenase; SUCOAS, Succinyl-CoA
synthetase; SUCD, Succinate dehydrogenase; FUM, Fumarase; MDH, Malate dehydroge-
nase; GOGAT, Glutamine oxoglutarate aminotransferase.
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The RL and unrestricted MCA methods both predict the same minimal regulation

at HEX1 and GAPD to achieve the same goal of maintaining the predicted concentrations

at or below the experimentally observed values. The RL method, however, additionally

regulates PGK, pyruvate kinase (PYK), the pyruvate mitochondrial transporter (PYRt2m)

and PDH to obtain a similar energy dissipation rate. As shown in Figure 4.3A, four of

these enzymes were also regulated in the local MCA method. The difference is that HEX1

and GAPD are more extensively regulated in the RL and the unrestricted MCA methods.

Despite these differences in regulation, each regulated enzyme with the exception of the

pyruvate transporter are known sites of regulation (known sites of regulation are highlighted

in bold). Regulation of the pyruvate transporter was only predicted in the stochastic RL

approach. It is likely that this regulation should be assigned to PYK or PDH as it was in

the deterministic MCA approach.
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Figure 4.3: Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and low
NADP/NADPH conditions. (A) Predicted enzyme activities at terminal states are cal-
culated using Metabolic Control Analysis, shown as red ‘plus’s and green ‘X’s, respectively.
Results are compared to those found using a RL approach (black square).(B) Reaction free
energy changes are no longer equally distributed across subpathways (Fig. 4.2, upper glycol-
ysis, PPP, lower glycolysis, TCA cycle) but instead free energies are further from equilibrium
at reactions where regulation is applied. (C) Free energy and energy dissipation rates. Grey
dots represent the population of terminal states found while training the RL agent. Abbre-
viations: G6PDH, Glucose 6-phosphate dehydrogenase; PGL, Phosphogluconolactonase;
GND, phosphogluconate dehydrogenase; RPI, Ribose 5-phosphate isomerase; RPE, Ribose
5-phosphate epimerase; TKT1, Transketolase 1; TALA, Transaldolase; TKT2, Transketolase
2. Note: previously used abbreviations are presented in Figure 4.2
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As shown in Figure 4.3B, whenever regulation is applied in the form of reducing

the activity coefficient, the free energy of the reaction becomes more favorable compared to

reactions in the same pathway (e.g., compare to the consistency of free energy changes in

upper glycolysis, PPP, lower glycolysis and TCA cycle in Fig 4.2). Reducing the activity of

an enzyme in a non-equilibrium setting will cause the reactants to increase in concentration

and the products to decrease in concentration, resulting in reaction free energies being

further away from equilibrium. Despite the different sites of regulation and the difference

in reaction free energies for the three methods, the free energy and energy dissipation rates

are similar and are the most favorable rates found (Figure 4.3C).

4.3.2 High NAD/NADH & High NADP/NADPH require additional reg-

ulation in PPP

In the second set of conditions, the NADP/NADPH ratio is also high, which in

principle favors more flux through PPP. The resulting regulation is similar to the first

conditions in which NADP/NADPH is low with a few exceptions (Figure 4.4A and 4.4B).

The local MCA method additionally regulated G6PDH, the entry point into the PPP as

well as transketolase (TKT), while the RL method no longer regulated PYK and regulated

the pyruvate mitochondrial transporter (PYRt2m) rather than PDH. The latter is likely

incorrect, but the fact that the method was trying to regulate pyruvate concentrations

suggests that PYK might be the true target of regulation. Like the local MCA method, the

RL method also regulated HEX1, GAPD and PGK.

In contrast, the unrestricted MCA method regulated the same reactions as in the

low NADP/NADPH conditions, HEX1 and GAPD. The regulation under a high NADP/NADPH
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ratio is similar to the conditions in which NADP/NADPH is low primarily because increas-

ing the NADP/NADPH ratio alone is insufficient to drive much flux through PPP. Because

of less total regulation, the unrestricted MCA and RL methods result in significantly higher

energy dissipation rates than the local MCA method and are thus likely to be more optimal

regulation schemes.

4.3.3 Regulation of PFK Maximizes Flux Through PPP

Increased flux can be channeled through the PPP if PFK activity is regulated to a

greater extent or is turned off completely. Then significant flux flows through PPP instead

of upper glycolysis and does so in a cyclical manner. There is experimental support for this

as well. In Neurospora crassa, glycolysis and the PPP are circadianly regulated, with the

PPP being regulated 180 degrees out of phase with upper glycolysis. In the extreme case

when PFK activity is turned off in the model, then the cyclical operation of the PPP is such

that three carbons are lost from each glucose molecule as CO2 before all the carbon reaches

lower glycolysis as glyceraldehyde 3-phosphate.

In the case when PFK activity is set to zero, all methods apply regulation to HEX1.

This is enough for the unrestricted MCA and RL methods to bring concentrations to within

the observed experimental range, and both methods result in maximal energy dissipation

rates (Figure 4.5). In contrast, the local MCA method additionally requires regulation

in PPP at G6PDH, PGL and TKT. But even in this case, the local MCA method fails to

completely bring sedoheptulose 7-phosphate into the range of the experimental observations.

In attempting to control sedoheptulose 7-phosphate, the applied regulation is extensive
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Figure 4.4: Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and high
NADP/NADPH conditions. (A) Predicted enzyme activities at terminal states are cal-
culated using Metabolic Control Analysis, shown as red ‘plus’s and green ‘X’s, respectively.
Results are compared to those found using a RL approach (black square). (B) Reaction free
energies. (C) Free energy and energy dissipation rates. Grey dots represent the population
of terminal states found while training the RL agent.

enough such that the net flux through glycolysis, the pentose phosphate pathway and the

TCA cycle approaches zero. Thus, the local MCA method fails to obtain control. In several

cases involving the local MCA method, the concentration of sedoheptulose 7-phosphate

and sometimes 6-phospho D-gluconate become uncontrollable resulting in concentrations
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higher than what is observed experimentally. The reason for this is that the respective

reactions producing these compounds approach equilibrium; it is known that when a reaction

approaches equilibrium, the concentrations of the products are no longer controllable [85].

In these cases, the reactions and their metabolites are effectively uncoupled from

the non-equilibrium reactions. Lack of control may result in the respective metabolites reach-

ing high concentrations in the cytoplasm, and the cytoplasm consequently becoming glassy

and diffusion limited. Experiments support this principle. Recent reports provide evidence

that active metabolism promotes cytoplasmic fluidization while inactive metabolism results

in a glass-like cytoplasm with limited diffusion in both bacteria [149, 99] and eukaryotes

[68].

However, it is not clear that the failure to maintain control when using the local

MCAmethod reflects poorly on the concept of modularity whereby enzymes use local control.

The failure to obtain control of sedoheptulose 7-phosphate can also be due to the incomplete

nature of the model of metabolism used here. It may be that in a more extensive model of

metabolism, such as the inclusion of purine and pyrimidine biosynthesis pathways branching

off of D-ribose 5-phosphate, control of sedoheptulose 7-phosphate by the local MCA method

may be possible. This possibility is presented because Transketolase (TKT), the enzyme

producing sedoheptulose 7-phosphate is a key post-translational regulation point into purine

synthesis [168].
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Figure 4.5: Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and high
NADP/NADPH conditions and PFK activity set to zero. (A) Predicted enzyme activi-
ties at terminal states are calculated using Metabolic Control Analysis, shown as red ‘plus’s
and green ‘X’s, respectively. Results are compared to those found using a RL approach
(black square). (B) Reaction free energies. (C) Free energy and energy dissipation rates.
Grey dots represent the population of terminal states found while training the RL agent.
The local MCA method results in zero flux (Appendix B Table B.1) and is therefore not
shown.

4.3.4 Regulation Increases Reaction Free Energies

In all cases of regulation, whenever a reaction is regulated significantly, the reaction

free energy is significantly different from the neighboring reactions which are not regulated,
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as shown in Figures 4.3B, 4.4B, and 4.5B. It is the act of regulating each reaction that causes

the respective reactants to build up and products to become relatively depleted, which causes

the free energy change of the reaction to increase in magnitude. This observation has wide

support in the literature [112, 137], but the cause has been misinterpreted as being such

that reactions are selected for regulation because they are far from equilibrium, rather than

reactions being far from equilibrium because they are regulated.

The reasoning for assuming that highly non-equilibrium reactions are selected for

regulation has to do with the established principle that biological systems activate metabo-

lites for reactivity by covalently attaching high potential groups such as coenzyme A and

phosphates. These reactions will then have much higher standard free energies of reaction

than they would otherwise.

However, the use of such activators as phosphoryl groups and coenzyme A to drive

a reaction will not just result in the respective reaction being further from equilibrium,

but all reactions in the pathway will be further from equilibrium because increased product

formation of the activated reaction will result in increased reactant concentration for the

next reaction, and so forth, as the effect propagates down the pathway until a steady state

is reached. As a result of the highly non-equilibrium nature of reactions in the pathway,

many reaction products may be produced in biologically unreasonable concentrations. This

problem is solved by reducing the activity of either the enzyme catalyzing the reaction or

upstream enzymes that have control of the flow of material into the pathway. The reactions

that have the most control can be determined using concentration control coefficients and

thermodynamics.
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4.4 Discussion

All predicted schemes discussed above enforce regulation on enzymes that are

known to be regulation sites. Nine of these 11 enzymes are known to be sites of post-

translational regulation in glycolysis and the pentose phosphate pathway, either allosteri-

cally or through chemical modification (Table 4.1): hexokinase, phospho-fructokinase, glyc-

eraldehyde phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, pyruvate

dehydrogenase, glucose 6-phosphate dehydrogenase, transketolase, and pyruvate carboxy-

lase (Appendix B). Only the pyruvate mitochondrial transporter (PYRt2m) and phos-

phogluconolactonase (PGL) are not known to be regulated. The regulation assigned to the

pyruvate transporter was done stochastically by the reinforcement learning and likely should

be assigned to PYK or PDH, as it was the deterministic MCA approaches. PGL presumably

would be hard to control since it catalyzes a highly favorable ring opening which may only

require desolvation in the enzyme active site. It is worth noting the enzymes that are known

to be regulated but were not indicated as being regulated in this study. Foremost among

these is fructose bisphosphatase (FBA), an enzyme that is well-known to be regulated in

gluconeogenesis. Under the limited number of conditions used in the study of gluconeoge-

nesis herein, levels of fructose 6-phosphate or other downstream products never rose high

enough to require regulation. Likewise, the products of enolase, phosphoglucose isomerase,

PEP carboxykinase, glucose 6-phosphatase never rose to the level that these needed to be

regulated, but it would be reasonable to expect that the respective enzymes may need to be

controlled under conditions that were not tested here.

Of the 11 enzymes predicted to be regulated, outsized roles were played by the
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branch points of each of the pathways, as quantified by the influence of the enzyme ac-

tivity coefficients, Cnj , on the respective reactants or products (Table 4.1). The summary

concentration control coefficient reports the total influence of the activity of the enzyme on

all metabolites exceeding the experimentally observed values. The Cnj values reported in

Table 4.1 are consistent with recent experimental measurements on the effect of changes in

expression levels of glycolytic enzymes on the concentrations of the same metabolites [188].

Hexokinase, the entry point into the model and entry point into upper glycolysis

and the pentose phosphate pathway, had the largest role with Cnj = 12.4, meaning that hex-

okinase effectively had 100% control over 12.4 reactions. It is worth noting that both the RL

and unrestricted MCA methods achieved successful control by consistently regulating hex-

okinase, which is again consistent with recent experimental observations of glycolysis [188].

In the experimental studies, increased expression of hexokinase lead to increases in down

stream phosphorylated compounds, including fructose 1,6-bisphosphate, sedoheptulose 7-

phosphate, sedoheptulose 1,7-bisphosphate, and 6-phosphogluconate, just as predicted here.

Not surprisingly, increased levels of these metabolites due to increased hexokinase expres-

sion were correlated with a decrease of glycolytic rate, as one would expect if cytoplasmic

solubility were adversely affected.

Likewise, glucose 6-phosphate dehydrogenase, the entry point into the PPP, had

effectively 100% influence over 16.8 reactions, although this value is only seen this high

when the phosphofructokinase activity is set to 0.0 such that the PPP acts cyclically and

three circuits around the cycle are made for each glucose metabolized. Likewise, for lower

glycolysis the main control point, glyceraldehyde 3-phosphate dehydrogenase, is the entry
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into the pathway which is also where upper glycolysis and PPP converge. No regulation was

needed for the TCA cycle under the conditions studied.

While the predictions align well with known sites of post-translational regulation,

the predictions offer no information on whether the regulation would be due to allosteric

interactions or chemical modification as might be inferred from more complex and expen-

sive approaches that utilize (and require) absolute metabolite concentrations, fluxes inferred

from isotope labeling studies, MS proteomics analyses and detailed kinetic models that in-

clude explicit enzyme binding, catalysis and product release [63]. The regulation predictions

provided here, however, were done purely in silico with the optional use of absolute metabo-

lite concentrations, if available. Although the regulatory effector can’t yet be inferred from

this approach, it would seem reasonable to assume that control of metabolite concentrations

would be due to allosteric regulation since allosteric interactions work on a faster time scale

than post-translational modifications. It is likely that post-translational modifications act

to redirect flux when either degradation of enzyme would be too slow, or when degradation

and later resynthesis of the enzyme would be too costly [179], which is not the scenario

addressed here.

Both MCA approaches were based only on adjusting the activities of enzymes that

would have the most influence on reducing concentrations to physiological values. Only the

RL approach rewards regulation schemes for maximizing the entropy production rate (Eqn.

(4.23)). Even though the RL and MCA methods have different aims, both maximized the

energy dissipation rate, dE/dt, a principle alluded to by Lotka [124]. Furthermore, while the

unrestricted MCA approach and the RL performed similarly, the local MCA approach did
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not always find a solution, which could reflect the incompleteness of the metabolic network

that is modeled, or may simply indicate that modular regulation to this degree is insufficient.

In addition, in at least one case the local MCA approach did not produce solutions with the

highest energy dissipation rates. However, the set of enzymes predicted by the local MCA

approach covers many more of the enzymes known to be classically regulated, as shown in

Table 4.1.

Consequently, we have shown how post-translational regulation results in the emer-

gence of the general principle of maximal, entropy production rate for metabolism, and we

can now also include the principle of maximization of the energy production rate, dE/dt,

for pseudo-steady state phenotypes. When these principles are used to make predictions,

each prediction must also take into account the physicochemical constraints on the system,

such as the inherent constraints on the maximal rates of enzymes and thermodynamic costs

and benefits, not simply metabolite solubilities [179]. These additional physicochemical con-

straints can explain the observed upper limit to free energy dissipation in microbial systems

[138].

The observation of an upper limit to free energy dissipation is related to the concept

of maintaining the adenylate energy charge ratio. The adenylate energy charge rule widely

found in textbooks was defined in terms of concentrations as [(ATP) + 0.5 (ADP)]/ [(ATP)

+ (ADP) + (AMP)]. It was proposed that biological systems maintain values of the energy

charge between 0.75 and 0.90. There are now many known exceptions to this proposed

rule that it can no longer be regarded as a rule but as an emergent property, just as the

maximization of energy production rates is an emergent property due to natural selection.
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The simulation-based predictions of enzyme activities presented in this work ad-

vance both the practice and theory of biology. The ability to predict from simulation or

infer the free energy changes and control coefficients (in addition to fluxes) for each reaction

allows the use of control theory and learning to analyze and explore the operations of the

cell. In synthetic biology the development of cell lines often requires additional circuits and

can result in unforeseen consequences or lower cell growth rates. Simulation of cells with

engineered or deleted circuits will allow prediction of the effects in place of difficult trial and

error in experiments.

Finally, it is important to understand the principles behind post-translational regu-

lation because regulation of metabolism is precisely what controls a cell’s energetic behavior.

From bacterial growth and reproduction, to developing cells or even halting the growth of

cancer cells, regulation plays the central role. Learning how cells regulate and control them-

selves is essential for designing new organisms that have an intended purpose (synthetic

biology), developing new strategies to target and control microbial and metabolic diseases

(medicine), and understanding design principles of biology (fundamental science). Cur-

rently no other experimental or computational approach has been shown to identify points

of regulation in metabolism in a rapid manner.
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Enzyme Pathway Cñ
j Prediction Method Evidence

HEX1 Upper glycolysis 12.4 RL, L-MCA, MCA [112]

PFK Upper glycolysis 4.6 L-MCA [112, 137]

GAPD Lower glycolysis 4.6 RL, L-MCA, MCA [137, 2]

PGK Lower glycolysis 3.8 RL, L-MCA [137, 106]

PYK Lower glycolysis 1.7 RL [203, 202, 201]

PYRt2m Lower glycolysis 1.1 RL –

PDH Lower glycolysis 0.6 RL, L-MCA [72]

G6PDH Pentose phosphate 16.8 RL, L-MCA [197]

PGL Pentose phosphate 16.0 L-MCA –

TKT Pentose phosphate 5.0 L-MCA [168]

PC Gluconeogenesis 3.7 RL, L-MCA, MCA [83]

Modeled and known to be regulated but not observed

PGM Lower glycolysis 3.0 – [64]

FBP Gluconeogenesis 0.1 – [112, 137]

Table 4.1: The set of enzymes found to be regulated in all analyses along with the as-
sociated pathway, the concentration control coefficient, C ñj , of the reaction summed over
all metabolites before any regulation is applied, the method predicting the regulation and
the experimental evidence from the literature for predicted regulation. Abbreviations are
the same as in Figure 2. PC is pyruvate carboxylase and is observed to be regulated in
gluconeogenesis (Appendix B Table B.4).
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Chapter 5

Conclusions

Modern biology raises unique challenges and questions that cannot be addressed

by experiments alone. Multiscale modelling and machine learning have proven to be worthy

supplements to experimental approaches. This is especially true when models are combined

with experiments in order to computationally generate, test, explain, and validate novel

biological hypotheses. The novel mathematical modelling approaches presented here have

many important biological applications such as the study of deformation and contraction of

blood clots, cancer invasion, HIV virus budding, bacterial behavior, and early development

of animal tissues. In addition, this work has brought together different fields of applied and

computational mathematics and data science in addition to answering exciting questions in

biology from a mathematical modeling perspective.

The nascent cohesive crisscrossing of fibers in stretched fibrin networks described in

Chapter 2, comprise a novel structural mechanism that, in combination with other structural

rearrangements, underlies stiffening of fibrin gels upon tensile deformation. Notice that the
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newly described mechanism involves two spatial levels of fibrin mechanics, namely the non-

linear elasticity of individual fibrin fibers as well as bulk strain-stiffening of the entire fibrin

gel.

One of the most likely physiological conditions where fiber-fiber cohesion may play a

role in determining fibrin elasticity is clot deformation under hydrodynamic blood flow. The

analysis of the network orientation in clots formed in vitro under different flow conditions

revealed that fibrin fibers orientations were not random. Instead, fibers were found to be

aligned in the direction of the shear stress [58, 26] and their alignment is associated with an

increased number of fiber-fiber contacts and cohesive interactions. Such networks must be

more resistant to stretching deformations in the direction of alignment as the initial degree

of alignment increases, suggesting that the mechanical response and structural stability

of a blood clot are greatly affected by the flow shear. In other words, clot breakage and

formation of thrombotic emboli in the regions of the circulation system with high shear,

can be mechanically regulated due to increased stiffness of the aligned fibrin clots. The

newly developed model and the extension including platelet cells detailed in Chapter 3 can

be further applied to other types of network deformations such as shear and compression,

emphasizing its universality and applicability to mechanics of natural biopolymers and for

designing biomaterials in tissue engineering. Moreover, this modelling framework allows for

the ability to computationally test the necessary inhibitors and/or activators in platelets to

prevent hyperactivity and clotting complications that cause life-threatening conditions, such

as ischemic stroke, or pulmonary embolism. These predictions could directly impact future

drug design, wound healing techniques, and immediate patient risk based on the analysis of
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clot composition.

The findings described in Chapters 2 and 3 can be extended to other hydrogels

with filamentous scaffolds such as collagen, fibronectin, actin, and others that may undergo

interfilamentous interaction upon deformations as well as contribute to our understanding

of how single cells influences cell-ECM behavior.

While multiscale models, as presented in Chapters 2 and 3, can also make use of

machine learning techniques at different spatial scales, hybrid multiscale models informed

by machine learning are still rare. At this point, machine learning is frequently applied to

biological systems without utilizing approaches from physics and mathematics. Chapter 4

introduces a hybrid RL framework that incorporates a thermodynamic description of the

system into the environment and reward function. This is a new methodology where the

machine learning predictions iteratively inform large-scale mechanistic or multiscale models.

This type of approach is necessary because multiscale problems require both experimental

data and theoretical description of biological mechanisms at different spatial scales. While

understanding regulation itself is essential for organism function, disease identification and

basic biological processes, the model flexibility allows for many extensions. Specifically, the

direct incorporation of physical principles as well as mathematical methods from theory of

optimization and control theory into the RL framework allows for an accurate representation

of the biological system and yields novel biological insights.

In the future, regulation determined by machine learning analysis of metabolism

could be applied to mechanical models in several contexts such as bacteria chemotactic mo-

tion, platelet contraction, and many others. This will contribute to predictive understanding
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for the metabolism in single cells interacting with their environment. More importantly, this

an important first step in extending predictive understanding of specific biological processes

occurring within individual cells to communities of cells.
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Appendix A

Appendix - Model Descriptions from

Chapters 2 & 3

A.1 Model Description

Points in the simulation follow the Langevin equations for each node i,

miẍi = Fi − ηẋi + FBi , (A.1)

where Fi is the deterministic force, ηẋi is the dampening term. Because the network is in a

fluid environment with a low flow Reynolds number (<< 1), we incorporate the term xi to

account for interaction between the network and the fluid using the Stokes force estimation.

Because the network is at a quasi-equilibrium state, we neglect the inertial term, mixi, and

discretize Eqn. (A.1) in time using a forward Euler scheme:

xn+1
i = xni +

dt

η
Fni + Fn,Bi . (A.2)
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Here, the superscripts n and n+1 refer to the vector quantities for the ith node at subsequent

time points n and n+1 and dt is the time step. The drag coefficient, η, is calculated as follows.

Using the Stokes force on a particle of radius r, η can be estimated by the relation η = 6πµr

[35]. Therefore, assuming the following blood viscosity µ = 0.004 Pa.s and r = 0.05 µm, the

related value of is 3.77 nN.s.m−1. The choice of r is based on the assumed fiber diameter

of 100nm.

The deterministic forces, Fi, acting on each main node or sub-node of the network

can be segregated into (1) forces applied externally to the network which generate (2) in-

dividual fiber elastic forces and (3) bending forces as a response. The deterministic force

is calculated in the form of the negative gradient of the energy, Fi = −∇Ei, where Ei is

the energy associated with each node or sub-node (Eqn. (A.3)). Each fiber in the system is

modeled as a nonlinear spring using a generalized Worm-Like-Chain (WLC) model.

We justify this assumption of modeling fibrin fibers using stiff springs by following

the previously developed theory [74, 23]. The theory claims that the structural origin of

overall fibrin fiber mechanical behavior is a result of the microscopic constituents, namely

stretching of unstructured αC-polymers. The generalized WLC estimates the macroscopic

force response of fibers by combining the effects of thousands of unstructured polypeptide

chains in series and parallel that are present in the fiber [74, 23].

To account for bending deformations of individual fibers, bending springs are then

introduced at each triplet of nodes. We, therefore, define the energy of the ith node as

follows:

Ei = EEXTi + EWLC
i + EBENDi , (A.3)
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with EEXTi , EWLC
i , and EBENDi representing the external, WLC, and bending energies,

respectively. The energies can be explicitly written as follows [74, 51]:

EWLC
i =

∑
j

NkBTC

4P

3x2 − 2x3

1− x
, x =

xi − xj
C

, (A.4)

EBENDi =
∑
n∈S(i)

kb
2

(θjik − θ0)2, (A.5)

where kB is the Boltzmann constant, T is the absolute temperature, C and P are the scaled

persistence and contour lengths, x is the strain between the ith and jth node [74]. Scaling

the model is done by setting N as the number of fibrin monomers in parallel, and C as the

normalized contour length representing the number of fibrin monomers in series following

Houser et al [74]. The sum is taken over the neighboring j nodes connected to the ith node.

For bending energy, the sum is taken over all triplets, S(i), including node i. jik represents

the current angle between node j, k, and i, where (j, i, k) ∈ S(i), and 0 represents the

preferred angle. kb represents the spring constant.

Stretching of a fiber segment corresponds to change in EWLC
i due to change in x

of a WLC model (Eqn. (A.4)). Bending is modeled by using bending springs added to any

node with two or more neighbors and characterized by a preferred angle 0. If nodes move,

causing a deviation from their original angle, then a change in energy occurs in EBENDi due

to a change in j (Eqn. (A.5)). Figure 2.1 shows an example of a fibrin network (A) about

to be pulled by both ends in addition to individual fiber segmentation (Figure 2.1B). The

black arrows in (A) show the direction of force applied to the network.

A single fiber between nodes i and j is subdivided using three internal segments

between newly introduced sub-nodes (Figure 2.1B). The bending springs connecting nodes

in the dotted box indicated in Figure 2.1B are shown in Figure 2.1C. The energy of each
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bending spring is due to the three main or sub-nodes involved. θmjk represents the bending

spring between nodes m, j, and k.

A.2 Modeling Network Structure and Model Calibration

A.2.1 Initial Network Generation

Computer generation of the initial fibrin network structure is done by producing a

random graph with structural properties extracted from confocal microscopy images of fibrin

clots [93]. The matched structural properties, taken from experiments, include network

connectivity, fiber length, and fiber density [93, 21].

The details of the network generation algorithm are described in detail in Section

A.3.2. Main nodes (branch points) of the fibrin network are uniformly distributed in a cubic

domain according to a prescribed fiber density and fibers are stochastically formed between

main nodes according to the rules of the algorithm. This stochastic method accurately

generates networks of any size over 10 µm3, shape, or density with the error less than 5%.

The error calculation is explained in detail in Section A.3.3.

Fiber lengths and network connectivity in a typical simulated network are com-

pared in Figure A.1 with those in experimentally derived fibrin clots with the density of

1 fiber/µm3. Two data sets demonstrate close agreement between simulated networks and

experimental data.
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Figure A.1: Length and degree distributions. (A) Fiber length and (B) Network connectivity
distributions, P (L) and P (D), for the simulated and experimentally obtained fibrin networks
[93] are shown for the fiber density = 1/µm3.
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A.2.2 Calibration of the Single Fiber Sub-Model

To incorporate fiber-fiber interaction and maintain volume exclusion between fibers,

sub-nodes are placed along the length of each fiber at short intervals. The sub-nodes, as

well as main-nodes, interact with each another if the distance between them is less than

a fiber diameter. Specifically, a new spring is placed between the two interacting nodes.

This interaction simulates two properties. First, fibers are not able to occupy the same lo-

cation since the newly formed spring prevents them from moving into each other’s volume.

Second, fibers interact with one another in a cohesive manner since the new WLC spring

between two nodes prevents separation of the interacting fibers. Distance between each pair

of adjacent sub-nodes along a fiber is assumed to be 0.3 µm. If the distance between sub-

nodes is larger than 0.3 µm, fibers can pass through one another because the fiber thickness

is smaller than the sub-node space. Conversely, decreasing the distance between adjacent

sub-nodes increases the overall node count in the simulated network and the computational

cost of each simulation. Therefore, the distance of 0.3 µm was chosen as a midpoint to

maintain computationally tractable simulations while satisfying the physical constraint of

fiber volume exclusion. Conversely, decreasing the distance between adjacent sub-nodes in-

creases the overall node count in the simulated network and the computational cost of each

simulation. Therefore, the distance of 0.3 µm was chosen as a midpoint to maintain com-

putationally tractable simulations while satisfying the physical constraint of fiber volume

exclusion. Additionally, we performed simulations of fibers under stretching with different

numbers of the sub-nodes (with distances between sub-nodes being both smaller and larger

than 0.3 µm). We performed simulations using sub-node distances of 0.1-0.5 µm for fiber
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densities of 1, 5, and 15 fibers/µm3. The 5-fold variation in sub-node spacing resulting in

a near 2.16, 2.35, and 2.56 fold change in stiffness for the respective fiber densities (Figure

A.6).

Elastic properties of the fibers were calibrated as follows. The general WLC mod-

eling approach is used in this paper to simulate the dynamic extension of individual fibrin

fibers. Such an approach has been previously shown to provide an adequate analytical

expression for modeling the single fibrin fiber mechanics [76]. Using the experimental stress-

strain curves for a single fibrin fiber obtained using atomic force microscopy (AFM) [74],

the response of an individual fiber to applied stretching force was simulated by fitting the

AFM data to the extended WLC-based model.

Values of two parameters, persistence length, and contour length multiplier, in

the WLC model were determined by using a recursive least-squares algorithm: persistence

length and contour length multiplier [217]. Both the experimental data and resulting fitting

curve for a single fiber are shown in Figure A.2.

Table A.1 lists ranges of parameter values that were calculated under the assump-

tion that the temperature is fixed at 300 Kelvin and 200-1100 monomers can fit in the

cross-sectional area of a fiber with a diameter 0.1 µm based on an estimated diameter of 3-7

nm for a single monomer [74].

To model fiber bending and cohesion, we add bending springs between sub-nodes

to all fibers (see Figure 2.1B). A bending spring is placed at every node triplet (see Figure

2.1C). The force applied to each sub-node in the triplet is calculated using bending spring

potential (Eqn. (A.5)). The spring constant is calculated using the relation Bs = EI, in
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Figure A.2: Model calibration using single fibrin fiber force-strain response curve. Symbols
indicate experimental data for a single fiber measured using an atomic force microscope
AFM [74]. The black line shows the model fit (Eqn. (A.4)).

which E is Young’s modulus, extracted from the WLC fit and I, the moment of inertia

for a circle, is calculated using the assumption that all fiber diameters are 100 nm. This

calculation yields Bs = 2.252 10−3nNµm2. The same bending constant is utilized at both

fiber branch points and along individual fibers due to the similar strength of the two [102].

A.2.3 Calibration of the Single Platelet Sub-Model

Various properties of individual platelets are calibrated using experimental results

(Table A.2). The minimal and maximal force range (2.1-29 nN) was chosen based on the

lower and upper values of the range of forces measured experimentally [116, 217, 79, 33].

Platelet responses to substrate (fiber) stiffness were incorporated since platelets are known

to exert higher forces on stiffer substrates [211, 105]. Several different responses were tested,
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Parameter Value

Monomers Per Fiber, Nm 200-1100

Monomer Persistence Length, Lp 0.005-1.074

Absolute Temperature, T 300

Normalized Contour Length Multiplier, C 2.350

Table A.1: Fibrin network model simulation parameters.

ranging from a step function (Section 3.3.1), a constant function and linear function. The

linear force response was formulated as a function of the average strain, γ̄, of the individual

fiber being pulled by a filopodia:

F = F0 +
γ̄(Fmax − F0)

C
. (A.6)

In Eqn. A.6, F0 represents the minimum force exerted by the platelet and Fmax represents

the force exerted when the fiber strain is equal to the contour length factor, C. The choice of

linear response is dependent on the average fiber strain so that when γ̄ = 0 we have F = F0,

but when γ̄ = C we have F = Fmax. Parameters values are listed in Table A.2.

Each filopodia primarily consists of actin and myosin. Actin forms a network

distributed in the interior of the platelet that extends up to the membrane to the initial

point of each filopodia where myosin is then recruited and stimulates the formation and

subsequent elongation of filopodia. Myosin is the motor inducing extension and retraction of

the filopodia. Since myosin is independently accumulated at the location of each filopodium

[198, 4, 129, 6], the force exerted by each filopodium is assumed to be independent of the
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Parameter Value

Platelet Radius, rp 1.13 µm [151]

Platelets Number of Filopodia, nfil 2-10 [111, 152]

Platelet Range, rfil 2.18 [92]

Platelet Minimum Force, F0 2.1 [116, 217, 79, 33]

Platelet Maximum Force, Fmax 29 [116, 217, 79, 33]

Platelet Volume Fraction, Vp 8.0e-4 per µm3 [18]

Table A.2: Platelet model simulation parameters.

that exerted by other filopodium.

A.2.4 Modeling Fiber-Fiber Cohesion

Formation of cohesive bonds between fibrin fibers has been previously observed

in compressed fibrin clots [93]. As the compression strain increased, the density of the

fibrin network increased, the fibers got close to each other, crisscrossed and conglutinated

causing a dramatic mechanical reinforcement of the entire clot. Experimental data indicate

that stretching of fibrin clots result in fiber-fiber cohesion due to progressive fibrin network

densification observed in scanning and transmission electron microscopy images in both

lateral and transverse cross-sections of the clots [21], suggesting that the distance between

fibrin fibers decreases with the clot strain. Although the molecular mechanism of bond

formation between crisscrossed fibers is unknown, the likely mechanisms are electrostatic

fibrin-fibrin interactions at lower strains and hydrophobic interactions at higher strains due
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to exposure of core residues during the forced unfolding of protein [21]. To model interactions

between fibers brought in oblique contact, it is assumed that a cohesive linking is established

between the nodes of two neighboring fibers with achievement of a minimal distance. This

formed link is assumed to be permanent, which is in agreement with recent experiments

[102], and it is characterized by the same set of WLC parameters used for the main and

sub-nodes of individual fibers.

The model representation of the fiber-fiber link formation consists of several stages.

At each timestep, the distance between disconnected fiber nodes is compared. If the distance

between these nodes is less than the fiber diameter of 0.1 µm, a flexible link is established

between the nodes to represent a fiber-fiber cohesive bond.

A.2.5 Calculation of the Fibrin Network Stress-Strain Response

To quantify individual fibrin fiber strain, we made use of the initial discretization

of fibers. Once the network is generated, individual fibers are divided into small segments

by placing sub-nodes along the fiber. For each fiber, the strain is calculated as the average

strain over all segments that comprise the fiber. The resulting strain of a fiber, fi, is then:

sfi = 1
N

∑N
k=1

lkc−lk0
lk0

, where N is the number of segments comprising the fiber, lkc and lk0 are

the current and original length of the kth segment in the ith fiber.

To quantify the stress-strain response of a simulated fibrin network, the external

tensile force is applied in a step-wise manner with increments of 0.25 nN at the top and

bottom 20% of network nodes at the boundaries of the network (see Figure 2.1A). The sub-

sequent force increment is applied only when the entire network relaxation state is reached.

The network relaxation state is found by calculating the maximum network node velocity
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defined as vm = max
|xn+1

i −xni |
dt , where the maximum is taken over all network nodes. Since

the mean squared displacement of a Brownian particle over a single time step is known to

be < x2 >= kBT
η dt, we define the maximal displacement as B = φi

√
kBT
η dt, where φi is

the standard normal sample drawn for node i on the current iteration. The system is in a

relaxed state when the maximal velocity is low, i.e. vmdt < B + δ, where δ is an order of

magnitude smaller than the diameter of a single fibrin fiber: 0.01 µm.

A.3 Network Generation Algorithm

First, the domain size is set and the fiber density ρf is chosen. Next, a distribution

Y is chosen for the fiber connectivity and it is used to calculate the total number of nodes,

N . Last, a length distribution X and maximum fiber length L are specified. Each node

ni is given an associated density, ρi, by counting the number of nodes nj with distances

satisfying condition: dist(ni, nj) < L. In this work, experimentally derived distributions of

Y and X were utilized [93].

A.3.1 Node Generation Procedure

Nodes ni are then ordered in accordance with the decrease in ρf . Than each node

is given a preferred degree dpi from sampling Y . Nodes with the higher ρf are given a higher

preferred degree while nodes with the lower neighbor density are given a lower preferred

degree. A node is considered in need of a neighbor if its current degree dci is such that

dpi > dci .
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A.3.2 Fiber Generation Procedure

Next, a fixed fiber density parameter 0.0 < E < 1.0 is chosen which represents the

percentage of the total number of fibers from the distribution Y that will be created. Setting

E = 1.0 results in dpi = dci for all i and without any error in node degree or fiber density. In

the network generation algorithm, we set E = 0.96, resulting in a less than 5% error in the

node degree and fiber density. Namely, fibers will be created until E
∑

i d
p
i <

∑
i d
c
i according

to the following algorithm. Node ni with d
p
i > dci is chosen at random to start a fiber. An

end node must then be chosen to complete the fiber. All points nj with di = dist(ni, nj) < L

are weighted with weight X(di). Next, a single sample s is drawn from X. The node nj

satisfying |X(di) − s| is chosen to end the fiber if the fiber between ni and nj has not yet

been established. If the fiber has already been established, we set X(di) = 0 and choose

a new sample s∗ from X, resulting in a new end point for the fiber beginning at ni. If no

node can be found, a new random starting node ni is chosen again from the nodes such

that dpi > dci . This process of creating fibers continues until the desired density of fibers is

reached. Choosing fibers in this manner serves to approximate the target distributions for

experimental fiber length and node degree.

A.3.3 Network generation error reduction

To increase the accuracy, nodes are perturbed randomly within the domain. A

random move serves to slightly change the associated fiber lengths. To determine fiber length

error, a sample is drawn representing each fiber from the experimental distribution. Samples

are binned with width (= 0.1) and errors are determined by comparing the frequency in each
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bin. Using this method, a node perturbation is accepted if the new fiber lengths lowers the

fiber length error. If the fiber alignment distribution Z is prescribed, a condition is added

so that a node perturbation must also either decrease the alignment error or maintain a 5%

error threshold. Fiber alignment is calculated using the same error method with bins of size

10 degrees. The process continues until both the fiber length and alignment distributions

are below 5% error.

A.4 Computational Implementation

The code for this work was implemented in CUDA using the Thrust parallel algo-

rithms library and C++. MATLAB was used to generate initial network structures. Post

processing and visualization was performed with a Python statistical visualization library,

Seaborn. Code for each project is available. † ∗

A.5 Supplementary Figure Descriptions

Figure A.3 below quantifies the change in node degree (3, 4, > 4) for different fiber

densities (ρf = 1, 5, 15). Each node degree type is calculated at various values of the network

strain (Γ = 0.1, 1.0, 2.0, 2.5). At lower fiber densities, ρf = 1, 5, the fraction of 3-degree

nodes decrease as 4 and > 4 degree nodes increase. The reason for this behavior is the new

bonds forming between fibers that add 4 and > 4 degree nodes. However, at high density,

ρf = 15, a sharp decrease is seen in 4-degree nodes. This occurs when > 4 degree nodes

†https://github.com/sambritton/Fibrin_Network
∗https://github.com/sambritton/Fibrin_Platelet_Cmake
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are created from 4-degree nodes, thereby lowering the fraction of 4-degree nodes. Because

of the large number of interacting fibers necessary to convert 4 to higher degree nodes, the

behavior only emerges at high density.

Figure A.4 quantifies the change in average fiber alignment and densification as

networks are stretched under strain from 0.1 to 3.0. Initial range of the fiber densities range

is as follows: (ρf = 1, 5, 15). Figure A.5 shows the joint distribution of fiber strain and

rescaled network position in cohesive and non-cohesive networks for fiber densities 1/µm3

and 5/µm3. Figure A.6 variations in stress-strain profiles for different sub-node spacing, δ.

Several fiber densities (ρf = 1, 5, 15) are tested to measure sensitivity of the model due to

the spacing parameter.
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Figure A.3: Connection between node degree and network strain. Average density of 3-
degree (A), 4-degree (B) and higher degree (C) nodes are plotted at different network strains:
Γ = 0.1− 2.5. Fiber density, ρf , varies from 1 to 15 fibers/ µm3.
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Figure A.4: Comparison between fiber alignment and densification, with and without fiber-
fiber cohesive interactions. The average alignment of fibers in the middle 50% of fibrin
networks for cohesive (A) and non-cohesive (B) fibers at different fiber densities, ρf . Volume
fraction occupied by fibers, αf , inside the central 6 µm of the network for cohesive (C) and
non-cohesive (D) fibers for the same densities, ρf .
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Figure A.5: Connection between cohesion and strain. Individual fiber strain and normalized
network strain joint distributions are shown for cohesive and non-cohesive networks at 300%
strain for fiber density 1/µm3 and 5/µm3. The Y-axis represents the scaled position along
the length of the fiber network, z∗ = z/z0. z0 is the original clot length and z ranges over
the current network length from bottom (z = 0) to top (z = 3z0). Grey scale at each point
corresponds to the relative number of fibers at a given strain along the direction of network
strain.
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Figure A.6: Stress-strain curves for different sub-node spacing, δ, at varying fiber density,
ρf . Network density varies from between 1 (A), 5 (B), and 15 (C) fibers/µm3.
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Appendix B

Appendix - Model Description from

Chapter 4

B.1 Model Training

Reinforcement learning agents are trained by iteratively learning the value function

of each state, st. The value at a state represents the expected reward to be achieved from

following the current policy: V (st) = E[rt:t+n|st]. At each state with t ≥ n the squared error

between the value of the state, V (st), and the experienced rewards, rt:t+n, is back-propagated

to calculate appropriate changes in the neural network weights. As agents explore different

possible regulation schemes, rewards are accumulated and averaged over each episode of

training. Average rewards per episode are shown over the 350 training episodes for the

gluconeogenesis and glycolysis-TCA pathways (Figure SB.1A) as well as the glycolysis-PPP-

TCA pathway for each of the environmental conditions (Figure SB.1B).
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Figure B.1: Cumulative normalized rewards averaged over 10 RL runs for the hyper-
parameters (n, lr) which resulted in the maximal reward.

B.2 Calculating Concentration control Coefficients

Enzyme activities begin from a value of 1.0, i.e. the enzyme is unregulated. The

current value of the activity is adjusted using Metabolic Control Analysis (MCA) [13].

In MCA, the concentration control coefficient is found by first computing the M by M

symmetric linear stability matrix, An∗ , given by,

An∗

ij = n∗j

Z∑
k=1

Sik
∂Jk
∂nj
|n=n∗. (B.1)
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Here n∗i is the current concentration of metabolite i, S is the stoichiometric matrix and J

is the vector of reaction fluxes. The concentration control coefficient for metabolite i due to

reaction j is then,

Cni,j =
∂ log ni
∂ logαj

=
αj
n∗i

∆ni
∆αj

= −(BS)ijJj ,

(B.2)

where B = A−1. Note that the calculation of Cni,j assumes metabolite concentrations depend

linearly on enzyme activities. This assumption can be used to isolate the change in activity,

j, needed to make a change in the product concentration ni:

∆αj = αj
∆ni
n∗i

(
−

Z∑
k=1

BikSkjJj

)
. (B.3)

In practice, when Cni,j >> 0.0 the assumption of a small change ni used in MCA is no longer

valid and instead the current activity j is instead updated using αj,new = αj,current/5. As

the cost function L (Section 4.2 Eqn. (4.17)) approaches zero, then Eqn. (B.3) can be

applied.

B.3 Analysis of Gluconeogenesis Pathway

The gluconeogenesis pathway is analyzed at low NAD/NADH ratio (0.02). The

pathway has two known regulation sites fructose 1,6-bisphosphatase (FBP) and pyruvate

carboxylase (PC). While both can be utilized to bring steady state metabolite concentrations

into agreement with experimentally observed values, regulation of pyruvate carboxylase

results in a larger energy dissipation rate (dE/dt). Regulation of alternative enzymes results
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in lower flux through the pathway and less energy available for use. Optimal predicted

enzyme activities are in agreement for each method (Figure SB.2A). Table B.4 lists the

complete reaction activity, flux and free energy for each respective prediction method.

Figure B.2: Gluconeogenesis cycle predictions with low NAD/NADH initial conditions.
Predicted enzyme activities (A) and free energy (B) at terminal states are calculated using
concentration control theory, shown as red ‘plus’s and green ‘X’s, respectively. Results are
compared to those found using a RL approach (black square). Grey dots (C) represent the
population of terminal states found while training the RL agent.
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B.4 Analysis of Glycolysis-TCA Pathway

The glycolysis-TCA pathway is a subset of the larger glycolysis-PPP-TCA pathway

discussed in Chapter 4 which includes the pentose phosphate pathway (PPP). Reducing the

number of reactions limits the possible regulation schemes. When utilizing the same initial

metabolite concentrations as the larger pathway when appropriate, i.e. high NAD/NADH

(31.3), the regulation schemes for various methods show closer agreement. Both HEX1 and

GAPD are regulated by every method as in the glycolysis-PPP-TCA pathway. The local

MCA method, however, regulates PFK, PGK, and PDH, while the RL method additionally

regulates PGI. Both methods regulate more reactions than the unrestriced MCA method

and therefore result in a lower energy dissipation rate. Table B.5 lists the complete reaction

activity, flux and free energy for each respective prediction method.

B.5 Analysis of Pathways with Proxy Data

When no metabolomics data is available, the methods presented here are still

able to perform accurate predictive measurements in terms of enzyme regulation, steady-

state metabolite concentrations and reaction flux. Instead of utilizing known metabolomics

data measurements, we instead assume the target values of previously measured variable

metabolites are fixed at 0.1 mM. Predictive learning is performed for the glycolysis-TCA

cycle (Figure B.4) and glycolysis-PPP-TCA pathway under the same three initial conditions

(Figures B.5, B.6 and B.7). In all initial conditions, for both pathways, the unrestricted MCA

method maintains the same regulation of enzymes GAPD and HEX1. Variations occur only
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Figure B.3: Glycolysis-TCA cycle predictions with high NAD/NADH initial conditions.
Predicted enzyme activities (A) and free energy (B) at terminal states are calculated using
concentration control theory, shown as red ‘plus’s and green ‘X’s, respectively. Results are
compared to those found using a RL approach (black square). Grey dots (C) represent the
population of terminal states found while training the RL agent.

in the amount of regulation applied to the respective reactions. The other two methods

show more variation. In the glycolysis-TCA cycle, the local MCA method regulates PYK

in addition to the reactions previously regulated, while the RL method predicts additional

regulation to PFK and PGM (Figure B.4).
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The glycolysis-PPP-TCA pathway, on the other hand, shows more variation. Specif-

ically, in the high NAD/NADH and low NADP/NADPH ratio initial condition, the local

MCA regulates PYK in addition to the reactions previously regulated. The RL method

predicts increased regulation to PGI and PGM but no longer regulates PDH (Figure B.5).

Under the high NAD/NADH and high NADP/NADPH ratio initial conditions, both the lo-

cal MCA and RL methods predict regulation schemes with additional reduction in activity

of PYK. The RL additionally regulates G6PDH, while neither method regulates TKT1 or

PYRt2m (Figure B.6). Only slight alterations are observed in enzyme activity when PFK

has zero activity (Figure B.7).
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Figure B.4: Glycolysis-TCA cycle predictions with high NAD/NADH initial conditions
without experimental metabolomics data. Predicted enzyme activities (A) and free energy
(B) at terminal states are calculated using concentration control theory, shown as red ‘plus’s
and green ‘X’s, respectively. Results are compared to those found using a RL approach (black
square). Grey dots (C) represent the population of terminal states found while training the
RL agent.
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Figure B.5: Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and low
NADP/NADPH conditions without experimental metabolomics data. (A) Predicted en-
zyme activities at terminal states are calculated using Metabolic Control Analysis, shown
as red ‘plus’s and green ‘X’s, respectively. Results are compared to those found using a RL
approach (black square). (B) Reaction free energies. (C) Free energy and energy dissipation
rates. Grey dots represent the population of terminal states found while training the RL
agent.
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Figure B.6: Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and high
NADP/NADPH conditions without experimental metabolomics data. (A) Predicted en-
zyme activities at terminal states are calculated using Metabolic Control Analysis, shown
as red ‘plus’s and green ‘X’s, respectively. Results are compared to those found using a RL
approach (black square). (B) Reaction free energies. (C) Free energy and energy dissipation
rates. Grey dots represent the population of terminal states found while training the RL
agent.
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Figure B.7: Glycolysis-PPP-TCA cycle predictions with high NAD/NADH and high
NADP/NADPH conditions and PFK activity set to zero without experimental metabolomics
data. (A) Predicted enzyme activities at terminal states are calculated using Metabolic Con-
trol Analysis, shown as red ‘plus’s and green ‘X’s, respectively. Results are compared to
those found using a RL approach (black square). (B) Reaction free energies. (C) Free energy
and energy dissipation rates. Grey dots represent the population of terminal states found
while training the RL agent. The local MCA method results in zero flux as in the case when
experimental data is utilized and is therefore not shown.
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B.6 Computational Implementation

The code for this work was implemented in Python using the Multiprocessing

package for parallelism. Neural networks were implemented using PyTorch [150]. Jupyter

notebooks for each respective pathway are available.∗

B.7 Tables

Data for steady-state flux, reaction free energy, and enzyme activities at final

predicted values is presented for the gluconeogenesis, glycolysis-TCA, and glycolysis-PPP-

TCA pathways for various methods of prediction (MCA-Local, MCA, RL).

∗https://github.com/sambritton/Max_Entropy_Python

146



N
A

D
/N

A
D

H
//

N
A

D
P

/N
A

D
P

H
R

at
io

H
ig

h/
/L

ow
H

ig
h/

/H
ig

h
H

ig
h/

/H
ig

h
no

P
F
K

M
et

ho
d

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

G
ly

co
ly

si
s

H
E

X
1

6.
34

E
+

00
6.

25
E

+
00

6.
28

E
+

00
6.

27
E

+
00

8.
23

E
+

00
8.

22
E

+
00

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
P

G
I

6.
34

E
+

00
7.

05
E

+
00

7.
21

E
+

00
6.

19
E

+
00

-2
.8

0E
+

0
-2

.4
0E

+
00

-1
.1

5E
-0

2
-2

.4
4E

+
01

-2
.4

4E
+

01
P

F
K

6.
34

E
+

00
6.

52
E

+
00

6.
59

E
+

00
6.

24
E

+
00

4.
56

E
+

00
4.

68
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0.
00

E
+

00
F
B

A
6.

34
E

+
00

6.
52

E
+

00
6.

59
E

+
00

6.
24

E
+

00
4.

56
E

+
00

4.
68

E
+

00
1.

05
E

-1
4

-3
.8

0E
-1

5
-3

.8
0E

-1
5

T
P

I
6.

34
E

+
00

6.
52

E
+

00
6.

59
E

+
00

6.
24

E
+

00
4.

56
E

+
00

4.
68

E
+

00
-7

.8
0E

-1
6

6.
22

E
-1

5
-7

.8
0E

-1
6

G
A

P
D

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
P

G
K

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
P

G
M

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
E

N
O

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
P

Y
K

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
P

Y
R

t2
m

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
P

D
H

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01

P
P

P
G

6P
D

H
2.

56
E

-1
4

-7
.9

8E
-0

1
-9

.3
0E

-0
1

8.
09

E
-0

2
1.

10
E

+
01

1.
06

E
+

01
1.

73
E

-0
2

3.
66

E
+

01
3.

66
E

+
01

P
G

L
5.

27
E

-3
3

-7
.9

8E
-0

1
-9

.3
0E

-0
1

8.
09

E
-0

2
1.

10
E

+
01

1.
06

E
+

01
1.

73
E

-0
2

3.
66

E
+

01
3.

66
E

+
01

G
N

D
3.

18
E

-1
4

-7
.9

8E
-0

1
-9

.3
0E

-0
1

8.
09

E
-0

2
1.

10
E

+
01

1.
06

E
+

01
1.

73
E

-0
2

3.
66

E
+

01
3.

66
E

+
01

R
P

I
8.

10
E

-1
5

-2
.6

6E
-0

1
-3

.1
0E

-0
1

2.
70

E
-0

2
3.

68
E

+
00

3.
54

E
+

00
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

R
P

E
1.

42
E

-1
4

-5
.3

2E
-0

1
-6

.2
0E

-0
1

5.
39

E
-0

2
7.

36
E

+
00

7.
08

E
+

00
1.

15
E

-0
2

2.
44

E
+

01
2.

44
E

+
01

T
K

T
1

4.
88

E
-1

5
-2

.6
6E

-0
1

-3
.1

0E
-0

1
2.

70
E

-0
2

3.
68

E
+

00
3.

54
E

+
00

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
T
A

L
A

9.
77

E
-1

5
-2

.6
6E

-0
1

-3
.1

0E
-0

1
2.

70
E

-0
2

3.
68

E
+

00
3.

54
E

+
00

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
T

K
T

2
1.

07
E

-1
4

-2
.6

6E
-0

1
-3

.1
0E

-0
1

2.
70

E
-0

2
3.

68
E

+
00

3.
54

E
+

00
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

T
C

A
C

SM
1.

27
E

+
01

1.
28

E
+

01
1.

29
E

+
01

1.
25

E
+

01
1.

28
E

+
01

1.
29

E
+

01
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

A
C

O
N

T
1.

27
E

+
01

1.
28

E
+

01
1.

29
E

+
01

1.
25

E
+

01
1.

28
E

+
01

1.
29

E
+

01
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

IC
D

H
1.

27
E

+
01

1.
28

E
+

01
1.

29
E

+
01

1.
25

E
+

01
1.

28
E

+
01

1.
29

E
+

01
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

A
K

G
D

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
SU

C
O

A
S

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
SU

C
D

1.
27

E
+

01
1.

28
E

+
01

1.
29

E
+

01
1.

25
E

+
01

1.
28

E
+

01
1.

29
E

+
01

5.
76

E
-0

3
1.

22
E

+
01

1.
22

E
+

01
F
U

M
1.

27
E

+
01

1.
28

E
+

01
1.

29
E

+
01

1.
25

E
+

01
1.

28
E

+
01

1.
29

E
+

01
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

M
D

H
1.

27
E

+
01

1.
28

E
+

01
1.

29
E

+
01

1.
25

E
+

01
1.

28
E

+
01

1.
29

E
+

01
5.

76
E

-0
3

1.
22

E
+

01
1.

22
E

+
01

G
O

G
A
T

6.
99

E
-1

5
6.

99
E

-1
5

-1
.1

0E
-1

6
-1

.1
0E

-1
6

-1
.1

0E
-1

6
-1

.1
0E

-1
6

-1
.1

0E
-1

6
-1

.1
0E

-1
6

-1
.1

0E
-1

6

T
ab

le
B
.1
:
R
ea
ct
io
n
flu

xe
s
at

pr
ed
ic
te
d
en

zy
m
e
ac
ti
vi
ti
es

fr
om

M
C
A
-lo

ca
l,
M
C
A
,a

nd
R
L
m
et
ho

ds
fo
r
th
e
gl
yc
ol
ys
is
-P

P
P
-T

C
A

pa
th
w
ay

un
de
r
di
ffe

re
nt

bo
un

da
ry

co
nd

it
io
ns
.

147



N
A

D
/N

A
D

H
//

N
A

D
P

/N
A

D
P

H
R

at
io

H
ig

h/
/L

ow
H

ig
h/

/H
ig

h
H

ig
h/

/H
ig

h
no

P
F
K

M
et

ho
d

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

G
ly

co
ly

si
s

H
E

X
1

-8
.3

2E
+

00
-1

.6
3E

+
01

-1
.7

9E
+

01
-8

.3
1E

+
00

-1
.8

2E
+

01
-2

.0
0E

+
01

-8
.2

3E
+

00
-2

.2
8E

+
01

-2
.2

8E
+

01
P

G
I

-1
.8

7E
+

00
-1

.9
7E

+
00

-1
.9

9E
+

00
-1

.8
5E

+
00

1.
14

E
+

00
1.

01
E

+
00

5.
76

E
-0

3
3.

19
E

+
00

3.
19

E
+

00
P

F
K

-5
.8

6E
+

00
-1

.9
0E

+
00

-1
.9

1E
+

00
-5

.8
5E

+
00

-1
.5

6E
+

00
-1

.5
9E

+
00

-1
.4

1E
+

02
-5

.4
9E

+
01

-5
.4

9E
+

01
F
B

A
-1

.8
7E

+
00

-1
.9

0E
+

00
-1

.9
1E

+
00

-1
.8

6E
+

00
-1

.5
6E

+
00

-1
.5

9E
+

00
-5

.3
0E

-1
5

1.
78

E
-1

5
1.

78
E

-1
5

T
P

I
-1

.8
7E

+
00

-1
.9

0E
+

00
-1

.9
1E

+
00

-1
.8

6E
+

00
-1

.5
6E

+
00

-1
.5

9E
+

00
3.

33
E

-1
6

-3
.1

0E
-1

5
3.

33
E

-1
6

G
A

P
D

-4
.9

9E
+

00
-2

.7
1E

+
01

-1
.0

4E
+

01
-5

.2
0E

+
00

-2
.8

2E
+

01
-1

.3
3E

+
01

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
P

G
K

-4
.3

2E
+

00
-2

.5
5E

+
00

-9
.9

2E
+

00
-4

.3
1E

+
00

-2
.5

5E
+

00
-1

.2
8E

+
01

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
P

G
M

-2
.5

5E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
E

N
O

-2
.5

5E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
P

Y
K

-2
.5

5E
+

00
-2

.5
5E

+
00

-5
.9

0E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
P

Y
R

t2
m

-2
.5

5E
+

00
-2

.5
5E

+
00

-7
.0

2E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-6

.1
3E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
P

D
H

-2
.5

1E
+

01
-2

.5
5E

+
00

-3
.2

3E
+

00
-2

.5
1E

+
01

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00

P
P

P
G

6P
D

H
-1

.3
0E

-1
4

3.
89

E
-0

1
4.

50
E

-0
1

-7
.0

8E
+

00
-2

.4
1E

+
00

-2
.3

7E
+

00
-7

.1
0E

+
00

-3
.6

0E
+

00
-3

.6
0E

+
00

P
G

L
-3

.8
4E

-0
1

3.
89

E
-0

1
4.

50
E

-0
1

-7
.5

3E
+

00
-2

.4
1E

+
00

-2
.3

7E
+

00
-4

.2
0E

+
00

-3
.6

0E
+

00
-3

.6
0E

+
00

G
N

D
-1

.6
0E

-1
4

3.
89

E
-0

1
4.

50
E

-0
1

-4
.0

4E
-0

2
-2

.4
1E

+
00

-2
.3

7E
+

00
-8

.6
4E

-0
3

-3
.6

0E
+

00
-3

.6
0E

+
00

R
P

I
-4

.0
0E

-1
5

1.
33

E
-0

1
1.

54
E

-0
1

-1
.3

5E
-0

2
-1

.3
7E

+
00

-1
.3

4E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

R
P

E
-7

.1
0E

-1
5

2.
63

E
-0

1
3.

05
E

-0
1

-2
.7

0E
-0

2
-2

.0
1E

+
00

-1
.9

8E
+

00
-5

.7
6E

-0
3

-3
.1

9E
+

00
-3

.1
9E

+
00

T
K

T
1

-2
.4

0E
-1

5
1.

33
E

-0
1

1.
54

E
-0

1
-1

.9
8E

+
00

-1
.3

7E
+

00
-1

.3
4E

+
00

-7
.3

4E
+

01
-2

.5
1E

+
00

-2
.5

1E
+

00
T
A

L
A

-4
.9

0E
-1

5
1.

33
E

-0
1

1.
54

E
-0

1
-1

.3
5E

-0
2

-1
.3

7E
+

00
-1

.3
4E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
T

K
T

2
-5

.3
0E

-1
5

1.
33

E
-0

1
1.

54
E

-0
1

-1
.3

5E
-0

2
-1

.3
7E

+
00

-1
.3

4E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

T
C

A
C

SM
-2

.5
5E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.5

3E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

A
C

O
N

T
-2

.5
5E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.5

3E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

IC
D

H
-2

.5
5E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.5

3E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

A
K

G
D

-2
.5

5E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
SU

C
O

A
S

-2
.5

5E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
SU

C
D

-2
.5

5E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.5
3E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.8

8E
-0

3
-2

.5
1E

+
00

-2
.5

1E
+

00
F
U

M
-2

.5
5E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.5

3E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

M
D

H
-2

.5
5E

+
00

-2
.5

5E
+

00
-2

.5
6E

+
00

-2
.5

3E
+

00
-2

.5
5E

+
00

-2
.5

6E
+

00
-2

.8
8E

-0
3

-2
.5

1E
+

00
-2

.5
1E

+
00

G
O

G
A
T

-3
.6

0E
-1

5
-3

.6
0E

-1
5

1.
11

E
-1

6
1.

11
E

-1
6

1.
11

E
-1

6
1.

11
E

-1
6

1.
11

E
-1

6
1.

11
E

-1
6

1.
11

E
-1

6

T
ab

le
B
.2
:
R
ea
ct
io
n
fr
ee

en
er
gy

at
pr
ed
ic
te
d
en

zy
m
e
ac
ti
vi
ti
es

fr
om

M
C
A
-lo

ca
l,
M
C
A
,a

nd
R
L
m
et
ho

ds
fo
r
th
e
gl
yc
ol
ys
is
-P

P
P
-

T
C
A

pa
th
w
ay

un
de
r
di
ffe

re
nt

bo
un

da
ry

co
nd

it
io
ns
.

148



N
A

D
/N

A
D

H
//

N
A

D
P

/N
A

D
P

H
R

at
io

H
ig

h/
/L

ow
H

ig
h/

/H
ig

h
H

ig
h/

/H
ig

h
no

P
F
K

M
et

ho
d

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

G
ly

co
ly

si
s

H
E

X
1

1.
55

E
-0

3
5.

02
E

-0
7

1.
05

E
-0

7
1.

55
E

-0
3

1.
55

E
-0

3
1.

77
E

-0
8

1.
23

E
-0

6
1.

52
E

-0
9

1.
52

E
-0

9
P

F
K

1.
80

E
-0

2
1.

00
E

+
00

1.
00

E
+

00
1.

80
E

-0
2

1.
00

E
+

00
1.

00
E

+
00

0.
00

E
+

00
0.

00
E

+
00

0.
00

E
+

00
G

A
P

D
8.

59
E

-0
2

2.
19

E
-1

1
4.

06
E

-0
4

6.
87

E
-0

2
7.

17
E

-1
2

2.
23

E
-0

5
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

P
G

K
1.

68
E

-0
1

1.
00

E
+

00
6.

34
E

-0
4

1.
68

E
-0

1
1.

00
E

+
00

3.
48

E
-0

5
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

P
Y

K
1.

00
E

+
00

1.
00

E
+

00
3.

52
E

-0
2

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

P
Y

R
t2

m
1.

00
E

+
00

1.
00

E
+

00
1.

15
E

-0
2

1.
00

E
+

00
1.

00
E

+
00

2.
81

E
-0

2
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

P
D

H
1.

63
E

-1
0

1.
00

E
+

00
5.

12
E

-0
1

1.
63

E
-1

0
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

P
P

P
G

6P
D

H
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

6.
81

E
-0

5
1.

00
E

+
00

1.
00

E
+

00
1.

43
E

-0
5

1.
00

E
+

00
1.

00
E

+
00

P
G

L
5.

36
E

-3
3

1.
00

E
+

00
1.

00
E

+
00

4.
36

E
-0

5
1.

00
E

+
00

1.
00

E
+

00
2.

60
E

-0
4

1.
00

E
+

00
1.

00
E

+
00

T
K

T
1

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
3.

78
E

-0
3

1.
00

E
+

00
1.

00
E

+
00

7.
72

E
-3

5
1.

00
E

+
00

1.
00

E
+

00

T
ab

le
B
.3
:
P
re
di
ct
ed

en
zy
m
e
ac
ti
vi
ti
es

fr
om

M
C
A
-lo

ca
l,
M
C
A
,
an

d
R
L

m
et
ho

ds
fo
r
th
e
gl
yc
ol
ys
is
-P

P
P
-T

C
A

pa
th
w
ay

un
de

r
di
ffe

re
nt

bo
un

da
ry

co
nd

it
io
ns
.
U
nl
is
te
d
re
ac
ti
on

s
ar
e
un

re
gu

la
te
d.

149



A
ct

iv
it
y

F
lu

x
E

ne
rg

y

M
et

ho
d

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

G
lu

co
ne

og
en

es
is

G
6P

as
e

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
6.

33
E

-0
1

6.
33

E
-0

1
6.

33
E

-0
1

-3
.1

1E
-0

1
-3

.1
1E

-0
1

-3
.1

1E
-0

1
P

G
I

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
6.

33
E

-0
1

6.
33

E
-0

1
6.

33
E

-0
1

-3
.1

1E
-0

1
-3

.1
1E

-0
1

-3
.1

1E
-0

1
F
B

P
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

6.
33

E
-0

1
6.

33
E

-0
1

6.
33

E
-0

1
-3

.1
1E

-0
1

-3
.1

1E
-0

1
-3

.1
1E

-0
1

F
B

A
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

6.
33

E
-0

1
6.

33
E

-0
1

6.
33

E
-0

1
-3

.1
1E

-0
1

-3
.1

1E
-0

1
-3

.1
1E

-0
1

G
A

P
D

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

27
E

+
00

1.
27

E
+

00
1.

27
E

+
00

-5
.9

7E
-0

1
-5

.9
7E

-0
1

-5
.9

7E
-0

1
P

G
K

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

27
E

+
00

1.
27

E
+

00
1.

27
E

+
00

-5
.9

7E
-0

1
-5

.9
7E

-0
1

-5
.9

7E
-0

1
P

G
M

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

27
E

+
00

1.
27

E
+

00
1.

27
E

+
00

-5
.9

7E
-0

1
-5

.9
7E

-0
1

-5
.9

7E
-0

1
E

N
O

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

27
E

+
00

1.
27

E
+

00
1.

27
E

+
00

-5
.9

7E
-0

1
-5

.9
7E

-0
1

-5
.9

7E
-0

1
P

E
P

C
K

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

27
E

+
00

1.
27

E
+

00
1.

27
E

+
00

-5
.9

7E
-0

1
-5

.9
7E

-0
1

-5
.9

7E
-0

1
P

C
9.

90
E

-0
4

9.
90

E
-0

4
9.

90
E

-0
4

1.
27

E
+

00
1.

27
E

+
00

1.
26

E
+

00
-7

.1
5E

+
00

-7
.1

5E
+

00
-7

.1
5E

+
00

T
ab

le
B
.4
:
P
re
di
ct
ed

en
zy
m
e
ac
ti
vi
ti
es
,
flu

xe
s,

an
d
fr
ee

en
er
gy

fo
r
gl
uc

on
eo
ge
ne

si
s
pa

th
w
ay

fr
om

M
C
A
-lo

ca
l,
M
C
A
,
an

d
R
L

m
et
ho

ds
.

150



A
ct

iv
it
y

F
lu

x
E

ne
rg

y

M
et

ho
d

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

M
C

A
L
oc

al
M

C
A

R
L

G
ly

co
ly

si
s

H
E

X
1

1.
55

E
-0

3
3.

48
E

-0
5

6.
81

E
-0

5
6.

42
E

+
00

6.
45

E
+

00
6.

41
E

+
00

-8
.3

3E
+

00
-1

.2
1E

+
01

-1
.1

5E
+

01
P

G
I

1.
00

E
+

00
1.

00
E

+
00

6.
87

E
-0

2
6.

42
E

+
00

6.
45

E
+

00
6.

41
E

+
00

-1
.8

8E
+

00
-1

.8
9E

+
00

-4
.5

4E
+

00
P

F
K

1.
80

E
-0

2
1.

00
E

+
00

1.
00

E
+

00
6.

42
E

+
00

6.
45

E
+

00
6.

41
E

+
00

-5
.8

8E
+

00
-1

.8
9E

+
00

-1
.8

8E
+

00
F
B

A
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

6.
42

E
+

00
6.

45
E

+
00

6.
41

E
+

00
-1

.8
8E

+
00

-1
.8

9E
+

00
-1

.8
8E

+
00

T
P

I
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

6.
42

E
+

00
6.

45
E

+
00

6.
41

E
+

00
-1

.8
8E

+
00

-1
.8

9E
+

00
-1

.8
8E

+
00

G
A

P
D

8.
59

E
-0

2
2.

94
E

-1
2

7.
17

E
-1

2
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-5
.0

1E
+

00
-2

.9
1E

+
01

-2
.8

2E
+

01
P

G
K

1.
68

E
-0

1
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-4
.3

4E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
P

G
M

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
E

N
O

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
P

Y
K

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
P

Y
R

t2
m

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
P

D
H

2.
04

E
-1

0
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.4

9E
+

01
-2

.5
6E

+
00

-2
.5

6E
+

00

T
C

A
C

SM
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
28

E
+

01
1.

29
E

+
01

1.
28

E
+

01
-2

.5
6E

+
00

-2
.5

6E
+

00
-2

.5
6E

+
00

A
C

O
N

T
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
28

E
+

01
1.

29
E

+
01

1.
28

E
+

01
-2

.5
6E

+
00

-2
.5

6E
+

00
-2

.5
6E

+
00

IC
D

H
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
28

E
+

01
1.

29
E

+
01

1.
28

E
+

01
-2

.5
6E

+
00

-2
.5

6E
+

00
-2

.5
6E

+
00

A
K

G
D

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
SU

C
O

A
S

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
SU

C
D

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
1.

28
E

+
01

1.
29

E
+

01
1.

28
E

+
01

-2
.5

6E
+

00
-2

.5
6E

+
00

-2
.5

6E
+

00
F
U

M
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
28

E
+

01
1.

29
E

+
01

1.
28

E
+

01
-2

.5
6E

+
00

-2
.5

6E
+

00
-2

.5
6E

+
00

M
D

H
1.

00
E

+
00

1.
00

E
+

00
1.

00
E

+
00

1.
28

E
+

01
1.

29
E

+
01

1.
28

E
+

01
-2

.5
6E

+
00

-2
.5

6E
+

00
-2

.5
6E

+
00

G
O

G
A
T

1.
00

E
+

00
1.

00
E

+
00

1.
00

E
+

00
-1

.1
0E

-1
6

-1
.1

0E
-1

6
-1

.1
0E

-1
6

1.
11

E
-1

6
1.

11
E

-1
6

1.
11

E
-1

6

T
ab

le
B
.5
:
P
re
di
ct
ed

en
zy
m
e
ac
ti
vi
ti
es
,
flu

xe
s,

an
d
fr
ee

en
er
gy

fo
r
gl
yc
ol
ys
is
-T

C
A

pa
th
w
ay

fr
om

M
C
A
-lo

ca
l,
M
C
A
,
an

d
R
L

m
et
ho

ds
.

151




