
UC San Diego
UC San Diego Previously Published Works

Title
Resonance of a flexible plate immersed in a von Kármán vortex street

Permalink
https://escholarship.org/uc/item/9gr594q7

Journal
Journal of Mechanical Science and Technology, 34(4)

ISSN
1011-8861

Authors
Hernández, Erika Sandoval
Llewellyn Smith, Stefan G
Cros, Anne

Publication Date
2020-04-01

DOI
10.1007/s12206-020-0307-0
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gr594q7
https://escholarship.org
http://www.cdlib.org/


  
 
 

 
1 

 
*Please do not edit the margin, space between the lines, and space between the letters in the template. 

 

Journal of Mechanical Science and Technology 00 (0) 2019 
 
Original Article 
DOI 10.1007/s12206-000-0000-
0 
 
 
Keywords: 
· Euler-Bernoulli beam 
· Flow-structure interaction 
· Resonance  
· Vortex street 
 
 
Correspondence to:  
Anne Cros 
anne.cros@academicos.udg.mx 
 
 
Citation: 

Sandoval Hernández, E., Llewellyn Smith, 
S. G., Cros, A. (2019) Resonance of a 
flexible plate immersed in a von Kármán 
street. Journal of Mechanical Science and 
Technology 00 (0) (2019) 0000~0000. 
http://doi.org/10.1007/s12206-000-0000-0 
 
 

Received please leave blank 

Revised  please leave blank 

Accepted please leave blank 

 
† Recommended by Editor  
please leave blank 
 

Resonance of a flexible plate immersed in 
a von Kármán vortex street  
Erika Sandoval Hernández1, Stefan G. Llewellyn Smith2,3 and Anne Cros4* 
1,4Physics Department CUCEI, Universidad de Guadalajara, Guadalajara, Jal. 44430, Mexico, 
2Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, La Jolla 
CA 92093-0411, USA, 3Scripps Institution of Oceanography, UCSD, La Jolla CA 92093-0230, USA 

Abstract  This work presents a theoretical and experimental study of a flexible plate im-
mersed in a von Kármán vortex street. The wake is generated in a water flow using a cylindri-
cal obstacle with a Reynolds number lower than 200. The vortices provoke oscillations of a 
flexible plate whose leading edge is clamped a few cylinder diameters downstream of the ob-
stacle. The oscillation amplitude of the free edge is examined experimentally as the plate 
length is varied with respect to the wavelength. The value of the peak of the amplitude and the 
phase shift between the forcing vortices and the plate deflection are consistent with theoretical 
predictions. These predictions use an Euler-Bernoulli model for the motion of the plate pro-
duced by the pressure difference over the plate due to the combined effect of the vortex street 
and the deflection of the plate. The ratio between the plate length and the wake wavelength for 
which resonance occurs is fixed by the condition that the natural frequency of the plate is equal 
to the vortex frequency. 

 
1. Introduction 

A flexible plate can spontaneously flutter when it is immersed in a steady, laminar flow with 
high enough velocity [1]. The corresponding aeroelastic instability arises from a competition 
between the stabilizing effect of the plate rigidity and destabilizing pressure fluctuations. How-
ever, a periodic flow with mean intensity much lower than the steady instability threshold can 
also induce periodic pressure fluctuations that are sufficient to induce oscillations of the plate. 
This is the case of an array of vortices shed periodically from an upstream obstacle, the von 
Kármán vortex street. 

Recent studies have shown that the energy of the vortices in a von Kármán street can be 
harvested using piezoelectric converters embedded in a flexible plate which vibrates because 
of the wake. One of the first experimental works [2] showed that the amplitude of the free trail-
ing edge is maximum when the oncoming vortex frequency has the same value as the natural 
frequency of the plate first mode, i.e. there is resonance. This result was confirmed by further 
studies [3, 4, 5].  

The vortex street energy can also be extracted by some fish when they swim downstream of 
an obstacle [6]. The swimming dynamics of the fish then completely changes as the fish sla-
loms in the oncoming vortices and activates only its anterior axial muscles [7]. Even a passive 
body can be propelled upstream, developing thrust and overcoming its own drag, as observed 
for a dead fish [8] and for an articulated fish-like system [9]. 

The influence of the governing parameters was studied by different authors [10] showing that, 
depending on the Reynolds number, the plate could flap in different ways: like a cantilever, with 
a combination of traveling waves, or quasi-periodically. This latter regime is promoted by higher 
chord-to-span ratio values thanks to the appearance of three-dimensional effects [11]. [12] 
established that a flag whose leading edge has a finite diameter could generate vortices which 
would induce ``forced flapping'' as soon as 𝑅𝑒 ≳ 100. Whereas several authors found that vor- 
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tices are shed when the plate is fixed to a cylinder axis [13], the 
numerical study of [14] showed that the ``vortex street mode'' 
develops only when the flag is placed further from the cylinder. 

Several theoretical studies have examined the mutual inter-
action between the vortex street and a flexible body immersed 
inside it. [2] described the traveling waves that develop in large 
flexible plates as a superposition of the first four modes ob-
served in flutter. They calculated each mode's amplitude by 
solving an Euler-Bernoulli equation governing the oscillations 
of the plate. [12] studied the influence of a flagpole subject to 
aeroelastic instability. These authors used the Bernoulli equa-
tion with a tension term and studied the solutions of the linear-
ized equation. They did not take into account the modification 
of the flow due to the plate oscillations, as done by [15], who 
estimated the pressure distribution on the edges of the plate 
from the velocity fields generated by a point vortex model tak-
ing into account the deflection of the plate. The present theo-
retical model is based on a corrected version of the work of 
[15] and [16] and adapted to our experimental conditions to 
describe the resonance that occurs in our system. The correct-
ed version does not use an incorrect decomposition of the 
problem into two sub-problems. 

Resonance is a phenomenon that occurs in different sys-
tems such as the parametric mechanical pendulum [17],  elec-
trical circuits [18], stationary waves in wind and string instru-
ments [19] and on the surface of a liquid [20]. For all these 
cases, the system parameters set the natural frequency 𝑓0. In 
the last two cases, the spatial size 𝑆 of the system allows to 
find a discrete number of resonant wavelengths ℓ𝑖; for exam-
ple 𝑆 = 𝑖ℓ𝑖/2, 𝑖 ∈ ℕ for Dirichlet boundary conditions in a one-
dimensional system. The wavelengths are then related to the 
temporal resonant frequencies 𝑓0𝑖  by the dispersion relation. 

The von Kármán vortex street generates a temporally as well 
as spatially periodic pattern with respective frequencies 𝑓 and 
𝜆. Although a number of studies of flexible plates oscillating 
inside a von Kármán street have reported a maximum ampli-
tude when the excitation and natural frequencies coincide, no 
work to date has specifically examined the influence of the 
spatial structure of the vortex street along the chord of the 
plate. In this experimental and theoretical work, the plate and 
the vortex street oscillate at the same frequency in any case. 
Instead, the plate chord is varied while the von Kármán street 
is left unchanged. The amplitude of the plate's trailing edge is 
obtained for different plate chords, and the phase shift between 
the vortices and the plate trailing edge is estimated. 

Section 2 describes the experimental setup and the method-
ology used to visualize both the vortices and the plate's deflect 
ion. The mathematical model of the interaction between the 
flexible structure and the von Kármán street is presented in 
Section 3. Section 4 discusses the results, while Section 5 
ends the paper with conclusions. 

 
2. Experiment  
The experiments are performed in a water channel with test 
section dimensions 0.10 × 0.10 × 1.00 𝑚3. The overall device 
is shown in Fig. 1. The water flow is generated by a pump con-
trolled by a variable-frequency drive. Before the test section, 
convergent and honeycomb panels enforce laminar flow. The 
von Kármán street is generated thanks to a cylindrical obstacle 

(diameter 𝐷 = 1.25 cm). The plate's leading edge is clamped 
to a thin vertical axis (diameter 0.3 mm) five diameters down-
stream of the cylinder to avoid suction effects. The characteris-
tics of the flexible plate are shown in Table 1. Its flexural rigidity 
𝐵 = 𝑌𝑒3

12(1−𝜈2)
 was determined from the plate’s natural frequency 

in air, where 𝑌 is the Young modulus, 𝑒 is the plate thickness 
and 𝜈 the Poisson coefficient. Fig. 2 shows the free extreme 
transverse displacement of 10.0 cm-long plate when it is re-
leased after an initial deflection. In the experiment, the plate's 
trailing edge is left free. The plate material has a density close 
to that of water and its elasticity is high enough to avoid nonlin-
ear high-amplitude motions, while at the same time it is flexible 
enough to be displaced by the vortices. Tin and copper elec-
trodes are placed upstream and downstream of the obstacle 
and the flexible plate, respectively, to generate white tin oxide 
which is advected by the flow [21]. Using this procedure the 
vortices appear as dark regions surrounded by clearer tin oxide 
lines as in Fig. 3. 
  A Nikon videocamera is placed above the system, allowing 
us to record the vortices and the flexible plate simultaneously. 
The frame size is 1080 × 1800 pixels with a resolution of 10 
pixels per millimeter. Videos were recorded over a period of 
300 s. A spatiotemporal diagram was then extracted, with ab-
scissa representing time and ordinate corresponding to the 
 

 
Fig. 1. Experimental setup. 
 
Table 1. Flexible plate characteristics. 

chord length  
2L (cm)  

span 
H (cm)  

mass per area unit 
𝜌𝑠  (g/m2)  

flexural rigidity 
B (N.m) 

(5.0 − 10.5) ± 0.1 2.0 ± 0.1 34 8.1 × 10−5 

Fig. 2. Free oscillations in air of the plate’s free end when the other end is 
clamped for 2𝐿 = 10.0 cm (left). Right: Fourier spectrum. 
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Fig. 3. Image of the flow near the flexible plate. The cylinder which gener-
ates the vortices is barely visible on the left-hand side of the picture. The 
vertical wire constrains the axis of the plate's leading edge. 
 

 
Fig. 4. Spatiotemporal diagrams for 2𝐿 = 8.0  cm (corresponding to 
2𝐿 𝜆⁄ = 1.07, where 𝜆 is the vortex street wavelength) performed at the 
trailing edge (a) and at the plate midpoint (c) with their respective Fourier 
spectra in (b) and (d). (e) Oscillations of the plate’s free end (black curve) 
and of its middle (blue curve). (f) Fourier spectrum of the oscillations of the 
free edge (performed over 300 s). The low frequency peak near 𝑓 = 0 
corresponds to a slight displacement of the plate’s free end mean position 
along the acquisition time.  
 
pixel values along a vertical line passing through the free edge 
of the plate. An example is shown in Fig. 4(a). The correspond-
ing Fourier spectrum performed along each line of the diagram 
is shown in Fig. 4(b). 

The spectrum allows us to determine the vortex frequency 
and to compare it to the plate's frequency of oscillation. The 
oscillations of the plate's free edge can also be extracted from 
the spatiotemporal diagram, as shown in Fig. 4(e). The oscilla-
tion of the middle-chord of the plate can be observed in the 
same figure in blue: it shows that all the points along the plate 
oscillate with the same phase. This observation is in agree-
ment with the results of [10]. From this plot, both the temporal 
frequency and the amplitude of the plate's oscillation can be 
determined. 

The experimental protocol is as follows. The longest 
(2𝐿/𝜆 = 1.4) flexible plate is clamped along its leading edge 
and immersed into the von Kármán street. After several 
minutes to allow transients to decay, the power supply is 
switched on to generate the tin oxide and a video is recorded 
over 5 minutes. Then the flexible plate is cut by 5 mm and the 
same process is repeated. It is important to note that the flow  

Fig. 5. Frequency of the plate's largest oscillations (black, empty circles) 
and of the vortices (red stars). Error bars denote a confidence level of 95%. 
Continuous line: Strouhal number predicted by [22]. 
 

Fig. 6. Side view of the vortices which shed parallel to the cylinder axis. The 
image height is approximately equal to 7 cm.  
 

velocity is left constant for all the experiments and equal to 1.2 
cm/s, so that the Reynolds number calculated from the obsta-
cle diameter 𝐷 is equal to 𝑅𝑒 = 148. 

As mentioned before, the tin oxide method allows us to visu-
alize the Kármán vortices and to compare the experimental 
characteristics of the wake with the literature. The experimental 
wavelength was found to be 𝜆 = 6𝐷, which is slightly greater 
than the values given by [23] and [24] of 4𝐷 and 5𝐷 respec-
tively. The frequencies of motion of the plate and of the vorti-
ces are deduced from the Fourier spectra of Fig. 4(b) and (d); 
their dependence on the plate chord is shown in Fig. 5, where 
𝑆𝑡 = 𝑓𝐷

𝑣
 is the classical Strouhal number calculated from the 

obstacle diameter. Both values are equal to the result of [22] 
for Re = 148 whereas a slight decrease is observed when the 
plate length is increased. Fig. 6 shows that the vortices can be 
considered parallel to the cylinder axis. 
 
3. Mathematical model 

We model a flexible plate immersed in a vortex street, as il-
lustrated in Fig. 7. A plate of chord 2𝐿 is immersed in a flow 
with background velocity 𝑈. A vortex street is present in the 
flow, characterized by its wavelength 𝜆, frequency 𝜔 = 2𝜋𝑓 
and the distance 𝑑 between the two vortex rows. Unlike in [2], 
the agreement between plate and vortex frequencies seen in 
Fig. 5 leads us to adapt the model of [15], in which only a sin-
gle frequency is considered, to our experimental conditions. 

In this model the origin (𝑥 = 0) is at the middle of the plate. 
The vortices have circulation ±Γ (where Γ < 0 for the classi-
cal vortex street) and induce on the centreline 𝑦 = 0 the ve-
locity components 
 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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Fig. 7. Illustration of the model. 
 
 

𝑢𝑚  =  𝑈 +
Γ
𝜆

;   𝑣𝑚(𝑥, 𝑡) =
2Γ
𝜆

𝑒−𝜋𝑑
𝜆 sin [2𝜋 (

𝑥 − 𝑈𝑐𝑡
𝜆

)]. 

 (1) 
Note that the horizontal velocity is steady and uniform in 𝑥. 

The translation velocity of the vortices 𝑈𝑐  is related to the fluid 
velocity 𝑈 by 

𝑈𝑐 =  𝑈 +
Γ

2𝜆
tanh (

𝜋𝑑
𝜆

) ~ 𝑈 +
Γ

2𝜆
                (2) 

 

where the final expression corresponds to the limit 𝜋𝑑/𝜆 ≫ 1, 
which is appropriate here. The angular frequency of the vorti-
ces' motion past a fixed point 𝜔 = 2𝜋𝑓 is related to their trans-
lation velocity 𝑈𝑐  and wavelength 𝜆 by 
 

𝜔 =
2𝜋𝑈𝑐

𝜆
.                                     (3) 

 

We define a non-dimensional frequency Ω by  
 

Ω =
𝜔𝐿
𝑢𝑚  

=
2𝜋𝑈𝑐

𝑢𝑚

𝐿
𝜆

                           (4) 

where 𝑢𝑚 is the fluid velocity on the plate given in Eq. (1). 
We now follow [16,15] and obtain a mathematical model for 

the oscillation of the plate in the flow. Taking the plate dis-
placement to be formally small, we linearize the problem. Then 
the solution is periodic with frequency 𝜔, so that we adopt 
complex notation with the real part understood. The total circu-
lation in the wake is periodic and advected downstream, so 
that 

Γ(𝑥, 𝑡) =  Γ0𝑒𝑖𝜔𝑡𝑒−𝑖𝜔(𝑥−𝐿)
𝑢𝑚                     (5) 

 

for 𝐿 <  𝑥 . We now use non-dimensional variables, scaling 
lengths by 𝐿 and time by 𝜆/𝑈𝑐. The transversal component of 
velocity on the plate becomes 𝑣𝑚(𝑥, 𝑡) = 𝑉𝑚(𝑥)𝑒𝑖𝜔𝑡 , and from 
Eq. (1), 

 

𝑉𝑚(𝑥) =  2𝑖
Γ/𝜆𝑈

1 + 1
2

(Γ/𝜆𝑈)
𝜆
𝐿

𝑒−2𝑖𝜋𝑥𝐿
𝜆 𝑒−𝜋𝑑

𝜆 = 𝑖𝑉0𝑒−2𝑖𝜋𝑥𝐿
𝜆 . 

  
The condition of no normal flow through the plate leads to a 

relationship between the circulation and transversal velocity: 
 

1
2𝜋

∫
𝐺(𝑥′)

(𝑥 − 𝑥′)

1

−1

 𝑑𝑥′ =  2𝑖𝜋 𝐻(𝑥) +
𝑢𝑚

𝑈𝑐

𝜆
𝐿

𝐻′(𝑥) 

                                         −𝑉𝑚(𝑥) − Γ0𝐸(𝑥)             (7)    
                                               for − 1 <  𝑥 <  1, 

where 𝐺(𝑥) is the vortex sheet strength and 
 

𝐸(𝑥) = −
𝑖Ω
2𝜋

∫ 𝑒−𝑖Ω(𝑥′−1)∞
1

𝑥 − 𝑥′ 𝑑𝑥′                       (8) 

 
is a known function representing the known circulation in the 
wake and 𝐻(𝑥) is the deflection of the plate. The function 
𝐺(𝑥) and Γ0 are unknown at this point. The equation (3.7) in 
[15] that corresponds to Eq. (7) above has 𝑈 rather than 𝑢𝑚 
in front of the 𝐻′ term, which is incorrect as the horizontal 
velocity on the plate is 𝑢𝑚 and not 𝑈. 

Evaluating the pressure on both sides of the body leads to 
a relation between 𝐺 and the pressure jump 𝑃: 

𝜕𝑥𝑃 =  2𝑖𝜋𝐺 +  
1 + Γ/𝜆𝑈

1 + 1
2

(Γ/𝜆𝑈)
𝜆
𝐿

𝜕𝑥𝐺.            (9) 

  
This equation can be integrated to give 

 

𝑃(𝑥) = 2𝑖𝜋 ∫ 𝐺(𝑥′)
𝑥

1
𝑑𝑥′ +

1 + Γ
𝜆𝑈

1 + 1
2

( Γ
𝜆𝑈

)

𝜆
𝐿

(𝐺(𝑥) + 𝑖ΩΓ0), 

(10) 
taking 𝑃  to vanish at the trailing edge and using 𝐺(1) =
−𝑖ΩΓ0. We define the two nondimensional numbers 𝑅1 and 𝑅2 
as 

𝑅1 =
𝜌𝑠

𝜌𝑓𝐿
;        𝑅2 =

𝐵
𝜌𝑓𝑈𝑐

2𝐿3  
𝜆2

𝐿2  ,              (11) 

  
𝜌𝑓 is the fluid density in 𝑘𝑔/𝑚3, 𝜌𝑠 the plate mass density per 
unit of area in 𝑘𝑔/𝑚2 and 𝐵 is the plate flexural rigidity. The 
plate deflection then satisfies 

 
−(2𝜋)2𝑅1 𝐻 +  𝑅2 𝐻𝑥𝑥𝑥𝑥  =  −𝑃,            (12) 

 
with boundary conditions  

 
𝐻(−1) = 𝐻0𝑒𝑖𝜙𝐻,               𝐻′(−1) = Θ𝑒𝑖𝜙𝜃,     

𝐻′′(1) = 𝐻′′′(1) = 0,                         (13) 
 

where 𝐻0 and Θ are the imposed amplitudes of the heaving 
and pitching motions at the leading edge respectively. Here 
𝐻0 = Θ = 0 since the plate is clamped. The deflection 𝐻 =
‖𝐻‖𝑒𝑖𝜙 is a complex quantity with a phase 𝜙 that vanishes 
when an upper vortex passes above the midpoint of the plate. 
   This is essentially the same problem as [15], who outlines a 
solution procedure that decomposes it into two sub-problems, 
one without body motion and the other with the vortex street as 
investigated in [16]. However, Eq. (3.9) in [15] governing the 
latter problem is incorrect, and the two sub-problems cannot be 
decoupled in the suggested fashion.  

(6) 
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   We solve the full system given above using a version of the 
numerical approach of §2 of [15], which is explained in more 
detail in §5 of [16]. The full procedure is given there and is 
applicable to the current problem; it is just the decomposition 
mentioned above that is incorrect. Briefly, the approach is to 
solve for 𝑉(𝑥) and 𝐻′′(𝑥) on the plate, along with Γ0 . The 
functions 𝑉(𝑥) and 𝐻′′(𝑥) are discretized using 𝑚 + 1 Che-
byshev-Lobatto nodes over the interval (−1,1), yielding a total 
of 2𝑚 + 3 unknowns. These are updated using an iterative 
approach. Given 𝐻′′(𝑥), the deflection 𝐻(𝑥)  is obtained by 
integration with the two boundary conditions at 𝑥 = −1. One 
can then compute 𝑉(𝑥) from Eq. (7). The 2𝑚 + 3 equations 
to be solved correspond to zeroing out the difference between 
the two discretized versions of 𝑉(𝑥) on the 𝑚 + 1 points, the 
plate Eq. (12) over the 𝑚 − 1 interior points, and the two free 
edge conditions for the plate at 𝑥 = 1 . This is done using 
Brouder's algorithm. [15] was followed to deal with the loga-
rithmic singularity of 𝐹(𝑥) near 𝑥 = 1, but this was not essen-
tial. 

The parameters used in the numerical algorithm are 
𝑅1 , 𝑅2 , Ω , 𝜆/𝐿  and 𝑉0.  These are not independent 
parameters in this problem. Dimensional considerations 
show that there are seven dimensional input quantities, 
𝐵 , 𝜌𝑠 , 𝜌𝑓 , 𝐿 , 𝐷 , 𝑈  and 𝜈  (we ignore three-
dimensional effects and hence 𝐻). Of the four resulting 
nondimensional parameters, three are set by the exper-
imental design: 𝑅1, 𝐿/𝐷 and Re =  𝑈𝐷/𝜈. The fourth 
parameter, 𝑅2, is defined in terms of further parameters as 
follows. The fluid problem depends only on Re, implying that 
𝜆/𝐷 =  𝑔𝜆(Re) , 𝑑

𝐷
=  𝑔𝑑(Re) and Γ/𝑈𝐷 =  𝑔Γ(Re) . The 

distance 𝑑/𝐷 and wavelength 𝜆/𝐷 are taken as the experi-
mentally-measured values 𝑑 = 3.6𝐷  and 𝜆 = 6𝐷 , while the 
circulation Γ = −𝜋𝑈𝐷 following [25]. We can now obtain 𝑈𝑐 , 
𝑅2 and 𝑢𝑚 from Eqs. (2), (11) and (1) respectively. Finally we 
obtain Ω and 𝑉0 from Eqs. (4) and (6). 
 
4. Results 

The amplitude of the motion of the free edge is shown in 
Fig. 8(a), together with the predictions of the theoretical model. 
The upper 𝑥-axis gives the ratio of the frequency of the fun-
damental mode of the plate in water, 𝑓𝑃, to the vortex frequen-
cy, 𝑓𝑉 . Note that the 𝑓𝑃  values vary from 0.11 Hz for the 
longest plate to 0.50 Hz for the shortest one. These values 
are lower than the natural frequencies in air (see Fig. 2) be-
cause of the added mass of water. It can be seen that, as in 
previous works, the amplitude is maximal for 𝑓𝑃/𝑓𝑣 ≅ 1. 
   The phase shift 𝜙  between the plate and the vortices 
crossing its midpoint is shown in Fig. 8(b). The phase was 
estimated from the correlation between the plate deflection, 
ℎ(𝐿, 𝑡), and a line of pixels extracted from the spatio-temporal 
diagrams performed at 𝑥 = 0 and 𝑦 ≅ 3  cm. Fig. 9 shows 
two examples of correlation functions. The downward-pointing 
peaks correspond to the clearest pixels indicating the absence 
of vortices. The midpoint and trailing edge lines of pixels are 
not exactly the same, despite the similarities of Fig. 4(a) and 
(c). This suggests that the motion of the vortices is being 
perturbed by the flow induced by the plate, an effect not 

included in the theoretical model. The theoretical phase in Fig. 
8(b) is shifted by 𝜋  in order to take into account the offset 
between the top and bottom row of vortices. Since the forcing 
vortices are distributed in space, the phase difference does not 
have a jump near the amplitude resonance. There is a gradual 
decrease in phase, seen in both theoretical and experimental 
results. 

 
Fig. 8. Amplitude of the oscillations of the plate's free edge (a) and phase 
difference between the plate and the vortices at the midpoint (b) as a func-
tion of its nondimensional length. Red solid curve: theoretical predictions; 
black curve with error bars and stars: experimental measurements. Error 
bars denote a confidence level of 95%. 

Fig. 9.Left plots: temporal evolution of the plate midpoint oscillation ℎ(𝐿, 𝑡) 
(black) and the intensity level of a line of the spatio-temporal diagram at 
𝑦 = 3  cm, 𝑥 = 0  (blue). Right: correlation functions between the two 
functions with the maximum (*). Top: 2𝐿/𝜆 = 0.87; bottom: 2𝐿/𝜆 = 1.27. 
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3. Conclusions 
The phenomenon of resonance between a flexible plate 
immersed in a von Kármán street and the oncoming 
vortices was investigated. Both the vortices and the 
plate deflection are visualized in a water channel for 
Re = 148. The leading edge of the plate is clamped 
downstream of the cylindrical obstacle which generates 
the vortex street. The forcing is both spatially and 
temporally periodic, and the influence of the ratio 2𝐿/𝜆 
between the plate chord and the wake wavelength is 
studied. A resonance occurs at a specific value of 2𝐿/𝜆 
corresponding to when the natural frequency of the plate 
in water corresponds to the vortex street frequency. The 
resonance was identified by maximum in the deflection 
amplitude of the plate’s free end. The phase response is 
more complicated and shows a gradual change across 
the resonance, presumably due to the internal degrees 
of freedom of the system. Both amplitude and phase 
results are in agreement with the theoretical model of an 
Euler-Bernoulli beam immersed inside a fluid containing 
an array of point vortex. The model developed by [15] 
was corrected by not using two decoupled sub-
problems. The plate motions are due to the pressure 
fluctuations over its two faces, which are generated by 
the vortex array and the deflection of the plate. As 
resonance appears to play an important role in the 
transition from drag to thrust [15], the force should 
change of sign for the range of parameters explored 
here, but this experimental measurement requires 
sensitive measurements and is beyond the scope of the 
present work. 
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Nomenclature--------------------------------------------------- 

2L    : plate length  
B     : plate flexural rigidity 
𝜌𝑠    : plate mass density 
U     : fluid velocity 
𝜌𝑓     : fluid density 
𝜆     : vortex wavelength 
d     : vortex row separation 
Γ     : vortex circulation 
𝑈𝐶     : vortex translation velocity 
𝑢𝑚    : longitudinal component of the fluid velocity on the plate 
𝑣𝑚    : transversal component of the fluid velocity on the plate 
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