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EPIGRAPH

Oh, let the sun beat down upon my face.

With stars to fill my dreams.

I am a traveler of both time and space.

To be where I have been.

Sit with elders of the gentle race.

This world has seldom seen.

Talk of days for which they sit and wait.

All will be revealed.

— Robert A. Plant
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ABSTRACT OF THE DISSERTATION

Enabling Non-Volatile Memory for Data-intensive Applications

by

Xiao Liu

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2021

Professor Jishen Zhao, Chair

The emerging Non-Volatile Memory (NVM) technologies are reforming the computer

architecture. NVM holds advantages includes a byte-addressable interface, low latency, high

capacity, and in-memory computing capability. However, data-intensive applications today

demand compound features rather than just better performance. For instance, big data applications

would require high availability and reliability. The neural network applications require scalability

and power efficiency. Despite all the advantages of NVM, simply attaching the NVM to the

memory hierarchy are unable to meet these demands. The decoupled reliability schemes among

NVM and other devices fail to provide sufficient reliability. The vulnerability against overheating

and hardware underutilization limit the performance and scalability of the in-memory computing

xvii



NVM.

Using the NVM for the data-intensive application requires redesign and customization. In

this thesis, we focus on discussing the architecture designs that enable NVM for data-intensive

applications. Our study includes two major types of data-intensive applications – big data

applications and neural network applications.

We first conduct a characteristic study against the persistent memory applications. Persis-

tent memory implements over the NVM-based main memory and guarantees crash consistency.

We explore the performance interaction across applications, persistent memory system software,

and hardware components. Based on our characterization results, we provide a set of implications

and recommendations for optimizing persistent memory designs.

Second, we propose Binary Star for the generic data-intensive applications, which co-

ordinates the reliability schemes and consistent cache writeback between 3D-stacked DRAM

last-level cache and NVM main memory to maintain the reliability of the memory hierarchy.

Binary Star significantly reduces the performance and storage overhead of consistent cache

writeback by coordinating it with NVM wear leveling.

For neural network applications, our first design explores the thermal effect over one

representative NVM – resistive memory (RRAM). We find heat-induced interference decreases

the computational accuracy in the RRAM-based neural network accelerator. We propose HR3AM,

a heat resilience design, which improves accuracy and optimizes the thermal distribution. Results

show that HR3AM improves classification accuracy and decreases both the maximum and average

chip temperatures.

Lastly, we present Mirage to improve parallelism and flexibility for pipeline-enabled

RRAM-based accelerators. Mirage is a hardware/software co-design that addresses the data

dependencies and inflexibility issues of existing accelerators. Our evaluation shows that Mirage

achieves low inference latency and high throughput compared to state-of-the-art RRAM-based

accelerators.
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Chapter 1

Introduction

The rapid growth of chip technology has innovated a variety of new applications over the

last decade. Data-intensive applications are almost everywhere: it covers the cloud backend of

mobile app services to the self-driving control of the autonomous vehicles. Many organizations

and individuals fulfill their jobs and render their services through data-intensive application over

the cloud-native hardware. The fast response, great scalability, and easy maintenance of the

modern applications have improved the productivity of various tasks.

Data-intensive applications demands reliability, scalability, and availability for the com-

puting system. Frist, because of the value of the data and importance of the service, users demands

high reliability for the data-intensive applications [5]. Such reliability include crash consistency

towards power failure, error correction against memory related errors, fast reboot against software

generated errors and undoing unintentional manipulation. Second, data-intensive application also

demands high scalability. As many services have millions of active the users, the load size of the

data-intensive applications can be massive. Scalability requires the application to provide same

Quality of service (QoS) to users under different load sizes. The QoS includes critical perfor-

mance metrics such as response time, tail latency, and maximum bandwidth. The Last but not

least, data-intensive application demands high availability. A available data-intensive application
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benefits both users and the administrator. The available application should be convenient and

usable for the user. The less expertise application required from the user, the wider range users

can use the application, the more availability it can provide for the users. For the administrator

perspective, a available application should simple enough and easy for them to maintenance,

upgrades and evaluation [6].

The emerging Non-Volatile Memory (NVM) could address these demands. Compared to

DRAM and SSD, NVM has its unique performance characteristics. The byte-addressable feature

and low access latency enable NVM to be an alternative for the main memory. The non-volatility

provided by the NVM makes the memory-level crash consistency possible, which is also known

as “persistent memory”. These performance characteristics are vastly different from either fast,

low capacity, and volatile SRAM and DRAM, or the slow, high capacity, and non-volatile SSD

and disk. The nature of NVM leads to different reliability characteristics. Unlike existing storage

media, NVMs use two states of non-silicon-based material to store a binary digit. Because of

its features, the NVM is free of many silicon-based errors on the DRAM and SSD. With better

reliability, NVM is also projected to scale below 10nm easier than the DRAM [7]. NVM also

provides in-memory computing ability. The in-memory computing NVM is able to conduct

computations for the neural network. The in-memory computing provides massive parallelism

utilizing capacity of the NVM. It also reduces the data movement between memory and processors

and achieves better energy efficiency.

With the arrival of 3DXpoint [8], the wide use NVM could be expected in many com-

putational systems within a few years. The system level supports for NVM are fairly sufficient.

There are extension to the instruction sets [9], file systems [10, 11, 12, 13, 14], programming

models [15, 16, 17, 18], compiler [19, 20], and etc. With these designs, the deployment of NVM

can be as convenient as the the deployment of DRAM and SSD.

Despite all the advantages of NVM, enabling NVM for the data-intensive applications is

non-trivial. The data-intensive application requires resilience against system crash and errors,
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which are not supported with plain NVM. The persistent memory application demands memory-

supported crash consistency. To support that, it requires the modification to the memory controller

to support writeback reordering and forced writeback, and software support on operating system

and programming models. Generic big data applications require strong resilience against memory

errors. When attaching NVM to the current system, it requires coordination among the reliability

schemes among NVM and other type of devices to achieve high reliability. The in-memory

computing NVM enabled neural network applications also requires customized designs to achieve

high performance and reliability. The solutions in traditional memory hierarchy are not applicable

to the in-memory architecture. This novel architecture also suffers from issues in the reliability

(e.g., thermal-related and endurance-related) and performance (e.g., underutilization), which

requires re-evalution of the issues and correlated design.

1.1 Thesis Statement

Based on our analysis towards characteristics of the NVM and demands of the data-

intensive applications, our thesis statement is: utilizing the novel NVM, the customized ar-

chitecture designs can provide desired features with sufficient performance, for various

modern applications. In this thesis, we discuss two major types of data-intensive applications:

big data applications and neural network applications. Due to the uniqueness of each type of

applications, there is not an unified NVM-based design that benefits both of them. However, all

the designs of the thesis follow the same principle: the design is aware of the characteristics of

the NVM, and redesigns the existing architecture such that the system benefits from the NVM.

1.1.1 Enabling NVM for Big Data Applications

Because of the similarity to the DRAM, applications can use NVM as a part of the

main memory to cache data to the lower level storage. We first look into the crash consistency
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applications – persistent memory applications. Persistent memory application requires data

consistency against system failure at anytime. We first conduct characteristics study against

the persistent memory applications. In this study, we analyze the performance and hardware

behaviors of persistent memory systems by running various storage workloads with a variety

of configurations (e.g., read/write intensity, file size, and number of threads) on traditional and

persistent memory file systems. To examine the performance impact of persistent memory systems

and workload configurations, we profile the statistics of a variety of software events and hardware

performance counters available in modern processors. As a result, we find the implications and

recommendations that might benefit persistent memory designs.

Then we consider more general applications – big data applications. These applications

require large amount of memory but also desire resilience against errors in the memory system.

We propose Binary Star, a coordinated memory hierarchy reliability scheme with NVM-based

main memory for these applications. Binary Star consists of 1) coordinated reliability mechanisms

between 3D DRAM LLC and NVM, and 2) NVM wear leveling with consistent cache writeback.

The key insight of our design is that traditional memory hierarchy designs typically strive to

separately optimize the reliability of LLCs and main memory with decoupled reliability schemes,

yet coordinating reliability schemes across the LLC and main memory enhances the reliability of

the overall memory hierarchy, while at the same time reducing unnecessary ECC, multiversioning,

and ordering control overheads that degrade performance. We show that Binary Star provides

benefits across various types of workloads, including in-memory databases, in-memory key-value

stores, online transaction processing, data mining, scientific computation, image processing, and

video encoding.

1.1.2 Enabling NVM for Neural Network Applications

Applications can also use NVM as the media for the novel PIM architecture. The

PIM architecture avoids unnecessary data movement between CPU and memory, and parallels
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operations in the memory, which is a good fit the neural network applications. Under the PIM

architecture, NVM is used as the computational media. We specifically look into the resistive

RAM (RRAM) based PIM architecture. RRAM-based PIM has been widely used in accelerating

neural network (NN) applications.

We first look into the thermal issue of RRAM-based accelerators. We discover that the

thermal issue potentially reduces the inference accuracy of neural networks, such that the accuracy

loss can be as high as 90%. We introduce a novel heat resilient design HR3AM for the RRAM

crossbar. HR3AM solves the issue from two aspects: adapting weights to the reduced conductance

and optimizing chip thermal distribution. Therefore we correspondingly propose two mechanisms

in HR3AM from these two aspects. The first mechanism bitwidth downgrading aims to improve

accuracy. It adapts weights to the decreased conductance range by reducing bitwidth per RRAM

cell. The second mechanism tile pairing aims to tackle the thermal issue. It optimizes the chip

thermal status by matching hot spot tiles with idle tiles.

Lastly, we look into the underutilization in the RRAM-based accelerators. We discovered

the data dependency induced pipeline stalls, and inflexible hardware assignment in pipeline

design of the RRAM-based accelerators. These two issues lead the underutilization of the

accelerator, which can causes up to 50% idle time during the execution. To resolve these issues,

we introduce Mirage, a RRAM-based accelerator that provides 1) high parallelism by resolving

the data dependency due to shared data in duplicate kernels, and 2) high flexibility by enabling

automatic hardware assignment for general DNN applications. Mirage consists of two primary

designs: Finer-grained Parallel RRAM Architecture (FPRA) and Auto Assignment (AA), to deal

with issues raised by the shared data and hardware assignment, respectively. FPRA is based on

the insight that the proper arrangement of the duplicate kernels and unified data buffering of

input and output data can resolve the data dependency caused by shared data. FPRA introduces

kernel-batching to group the computation of the duplicate kernels of the same layer, and data

sharing aware memory to uniformly manage the input and output data of duplicate kernels. AA

5



utilizes the network parameters and accelerator hardware configurations to automatically generate

a hardware assignment. AA follows two rules that we observed from the DNN models: 1) layers

at the front need to have same or higher level of parallelism of the layers deeper in the network

, and 2) consecutive layers with same level of parallelism suffer from the least amount of stall

brought by data dependency. With the greedy strategy that follows these rules, AA searches for

the best assignment for all the layers under the available hardware.

1.2 Thesis Outline

The thesis is organized as follows: Chapter 2 discusses the background of NVM, modern

applications, and exiting architecture designs for NVM. Chapter 3 presents our study over

characteristics of the persistent memory. Chapter 4 introduces the design and evaluation of

the Binary Star. Binary Star is a coordinated memory hierarchy reliability scheme built on the

NVM-based heterogeneous memory. Chapter 5 presents the design and evaluation of the HR3AM.

HR3AM is heat resilient design for the RRAM-based accelerator. Chapter 6 introduces the

design and evaluation of the Mirage. Mirage is a software/hardware co-design that provides high

parallelism and high flexibility for the RRAM-based accelerator. Chapter 7 summarizes the thesis

and discusses the potential future research inspired by this thesis.

Acknowledgements

This chapter contains material from “Persistent Memory Workload Characterization: A

Hardware Perspective.”, by Xiao Liu, Bhaskar Jupudi, Pankaj Mehra, and Jishen Zhao, which

appears in the Proceedings of the 2019 IEEE International Symposium on Workload Characteri-

zation (IISWC 2019). The dissertation author is the primary investigator and first author of this

paper.

6



This chapter contains material from “Binary Star: Coordinated Reliability in Heteroge-

neous Memory Systems for High Performance and Scalability.”, by Xiao Liu, David Roberts,

Rachata Ausavarungnirun, Onur Mutlu, and Jishen Zhao, which appears in the Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 52). The

dissertation author is the primary investigator and first author of this paper.

This chapter contains material from “HR3AM: A Heat Resilient Design for RRAM-based

Neuromorphic Computing.”, by Xiao Liu, Minxuan Zhou, Tajana S. Rosing, and Jishen Zhao,

which appears in the Proceedings of the 2019 IEEE/ACM International Symposium on Low

Power Electronics and Design (ISLPED 2019). The dissertation author is the primary investigator

and first author of this paper.

This chapter contains material from “Mirage: A Highly Paralleled And Flexible RRAM

Accelerator.”, by Xiao Liu, Minxuan Zhou, Rachata Ausavarungnirun, Sean Eilert, Ameen Akel,

Tajana S. Rosing, Vijaykrishnan Narayanan, and Jishen Zhao, which is submitted for publication.

The dissertation author is the primary investigator and first author of this paper.

7



Chapter 2

Background and Motivation

In this chapter, we discuss the background and motivation of the dissertation. Section 2.1

provides an overview of the hardware technologies of the NVM. Section 2.2 provides an intro-

duction of the data-intensive applications. Section 2.3 discusses the NVM DIMM and persistent

memory – a crash consistent architecture based on NVM. Section 2.4 introduces the architecture

of the RRAM based NN accelerator, which uses NVM as the in-memory computing media.

2.1 The Hardware of Non-Volatile Memory

Three representative NVMs are phase change memory (PCM), spin-transfer torque mag-

netic memory (STT-RAM), and resistive memory (RRAM). Despite that different types of NVMs

bases on different underlying physics, all the NVMs use high resistance state and low resistance

state and use electrical stimulus to switch between the two states [21].

Typical PCM uses Ge2Sb2Te5 (GST) chalcogenide, which obtains the crystalline state

and the amorphous state. The crystalline state has a low resistance, while the amorphous state

has a high resistance. To set a PCM storage element as the amorphous state, the controller uses a

short current pulse to heat the chalcogenide to 650°C and freezes rapidly [22]. To set the element

to the crystalline state, the controller uses a long current pulse to heat the chalcogenide in the
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same way but cools down slowly [22]. PCM is the most popular NVM technology because of the

advantages on scalability, cell size, read latency, and write power efficiency [23, 7]. The industry

has actively engaged in the development of PCM and proposed many prototypes [24, 25, 26]. It

is believed that the 3D-Xpoint is a type of the PCM [27].

STT-RAM uses magnetic tunnel junction. The structure of STT-RAM has two layers:

a free layer and a reference layer [28]. The reference layer has a fixed magnetic orientation,

while the free layer’s magnetic orientation decides the resistance of the unit. When both layers

have the same orientation, the unit is at low resistance. When they have opposite orientations,

the unit is at high resistance. When manipulating the resistance, the transistor release a large

current to alternate the magnetic orientation of the free layer [29]. STT-RAM has one of the best

read/write latency and endurance among NVMs. However, large cell sizes limit the capacity

of STT-RAM [21]. These features make STT-RAM a desired replacement to the SRAM or

embedded DRAM [30, 31].

The RRAM, or memristor, shares some similarities with PCM. RRAM uses two metal

layers and an oxide layer in between. The state of RRAM depends on the formation and rupture

of the oxide layer. The state of RRAM can be changed by an external voltage. A positive voltage

change sets the RRAM as the high resistance, and a negative voltage sets the RRAM as the low

resistance [32]. Similar to the PCM, RRAM also has a low access latency, small cell size, and

low write energy [21].

All three types of NVMs are able to form one transistor one resistor (1T1R) structure,

where the transistor is silicon and the resistor is NVM cell. The 1T1R structure can scale and form

an array. Similar to the DRAM array, the controller uses the word line to select a line from NVM

array. Two vertical lines, source line and bit line, are used for read and write operations [21]. The

1T1R array forms the basic structure of the NVM chip, which can be integrated into an NVM

DIMM (details in Section 2.3).

PCM and RRAM can also compose the “crossbar” architecture, which can be used for
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in-memory computing. The crossbar architecture uses the one selector and one resistor (1S1R)

structure. Because the 1S1R structure is smaller than the 1T1R structure, the crossbar array

is able to achieve higher density [33]. In-memory computing architecture commonly uses the

structure of the crossbar array. We provide details of the in-memory computing NVM architecture

in Section 2.4.

2.2 Data-intensive Applications

The data-intensive applications arise with the rapid growth in cloud computing today.

The data-intensive applications cover a wide range of scenarios: backend of web and mobile

services, shared services platforms, machine learning applications, IoT applications, etc. The

data-intensive applications intensively evolve in transferring, generation, and processing the

data. The data-intensive applications are the essential part of many core services. Data-intensive

applications require strong scalability, reliability, and availability [34]. The scalability guarantees

the services are accessible to millions of users around the world. The reliability guarantees that

any threat to the services (e.g., cyber-attack, power loss, and system errors) would not harm the

availability of the service. The availability provides usability to the users and maintainability to

the administrators. In this thesis, we focus on discussing the two most popular applications: big

data applications, and neural network applications.

2.2.1 Big Data Applications

Big data applications are the applications that are frequently accessing and manipulating

a large volume of data. Typical big data applications are data mining, cloud computing, and

streaming applications [35, 36]. Big data applications store the data with databases and file

systems and use caches and buffer to accelerate data access. The big data application processes

the data with the batched or streaming form. The key factors of big data applications are the
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complexity and size of the data. Therefore, the memory hierarchy is decisive to the performance

of the data-intensive applications.

Big data applications are in demand for larger memory capacity [37]. With the rapid

growth on the scale of the applications, the system needs to keep increasing the capacity of the

memory to ensure the performance and quality of the service of the application. We have seen

the exponent growth in the amount of the data during the past two decades [38, 35] Applications,

such as cloud computing and scientific computing, demand frequent access to terabytes or even

petabytes of data [39]. Attaching more block-level devices can satisfy the data’s capacity but

cannot provide the same level of performance to the application. The big data applications

demand the scalable storage hierarchy: the capacity, latency, and bandwidth on all levels of the

storage hierarchy need to match the data sizes.

In addition to the memory capacity, big data applications are also in demand for reliability

against errors. As the main memory-related error dominates the computing system [2, 40, 41],

these errors could potentially corrupt data, interrupt or completely halt the processing, and invalid

the generated results. For these applications, NVM can certainly provide much a larger main

memory capacity compared to the slow scaling DRAM. Nevertheless, providing reliability with

low overhead would require a better understanding of architecture.

Persistent memory applications. Certain big data applications require strong consis-

tency of data, such that it has to satisfy the ACID (Atomicity, Consistency, Isolation, Durability)

features. The NVM provided memory-level crash consistency that guarantees the ACID, also

known as “persistent memory”. Persistent memory applications with strong consistency are able

to survive system crashes at any time. The persistent memory applications can be implemented

with persistent memory libraries [42]. Persistent memory applications can also be block devices

and databases applications but applied to persistent memory file system [43, 44, 45, 46, 47]. Due

to the fast speed of NVM, the persistent memory applications obtain crash consistency with less

overhead compared to the applications that use lower level storage. Compared to regular applica-
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tions, the persistent memory applications frequently accessing the memory and use fence and

flush instructions to force ordering of the data writeback. We provide a discussion of persistent

memory designs in Section 2.3.

2.2.2 Neural Network Applications

The deep neural network (DNN) has made significant progress in prediction accuracy

over the last decade. The evolution of DNN broadens the use of neural network to artificial

intelligence, pattern recognition, image classification, and natural language processing. The DNN

also booms the research in the various area of self-driving, face recognition, recommendation

system, image processing, and more.

One preventative DNN is the convolutional neural networks (CNN). CNNs are widely

used in image and pattern recognition. When CNN is used for image recognition, the input

is the pixels of the image on all the channels. The output is a vector that the value on each

dimension represents the probabilistic values of the input identified as the object represented by

that dimension. The intermediate data between layers during the processing is also referred to as

the feature map. CNN uses four major types of layers: convolutional layer, pooling layer, ReLU

(rectified linear unit) layer, and fully connected layer.

The convolutional layers are the majority of the layers in the CNN. The convolutional

layer uses a set of kernels, which are small matrices, to conduct convolution with the input feature

map [48]. Three hyperparameters decide how to process the entire image. The depth decides the

number of neurons in the depth dimension that are active. The stride decides how many pixels

kernel moves at a time. The padding decides whether the padding should be zero and the spatial

size of the padding. The computation of the convolutional layer is essentially multiplication and

summation, which take up most computations in CNN processing.

The pooling layer is the layer that conducts non-linear downsampling. The purpose of

using pooling layer is to reduce the size of the feature map, such that the amount of data and
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computation is reduced. Therefore, the pooling layer controls the overfitting of the network model.

Maxpooling is commonly used in CNN, which generates the highest value from the input. The

typical pooling layer is behind the convolutional layer, and in front of the ReLU layer.

The ReLU layer uses the activation function to remove all the negative values. Typical

ReLU layer uses tanh and sigmoid functions. The ReLU layer helps linearize the behavior of

the model, which is easier to be optimized [49]. Because the ReLU layer prevents vanishing

gradients problem, it is critical to the learning process of the DNN.

The fully connected layers in the CNN are the same as fully usually connect to the very

end of the CNN. In the fully connected layers, neurons are connected to all the activations of the

previous layer. The computation of activation in the fully connected layer is matrix multiplication

and addition to the bias offset.

2.3 NVM DIMM and Persistent Memory

Deploying NVM over the DIMM is a common use of the NVM. With NVM DIMM,

NVM can be accessed through the memory bus and form hybrid or heterogeneous memory with

the DRAM. The high bandwidth and low latency of the memory bus match up with the NVM

performance. JEDEC released NVDIMM-P standard recently, which supports persistent memory

and interconnections with DDR4 or DDR5 DRAM [50]. Intel’s Optane DC Persistent Memory

Module (referred to as 3D-Xpoint DIMM) is an NVM DIMM based on 3D-Xpoint technology.

The 3D-Xpoint DIMM can operated under two modes: Memory mode and App Direct mode. The

memory mode uses 3D-Xpoint DIMM as the main memory and DRAM DIMM on the same

channel as the cache to the 3D-Xpoint DIMM. The app direct mode allows bypass the DRAM

DIMM and direct access to the 3D-Xpoint.

Recent studies provide a complete characterization against the 3D-Xpoint DIMM per-

formance [51, 52, 53]. A single 3D-Xpoint DIMM is able to provide 2.3 GB/s read bandwidth
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and 6.6 GB/s write bandwidth at maximum. The read latency of 3D-Xpoint DIMM ranges from

169 ns to 305 ns. The latency of flush instructions ranges from 62 ns to 90 ns. The actual write

latency is immeasurable due to the existence of an internal buffer [53].

The reliability of the NVM DIMM is promising. Memory errors can be classified into

soft errors and hard errors. The soft errors dominate the memory errors on many systems [2].

Most NVM technologies experience fewer soft errors than the DRAM [54, 55]. The hard errors

in NVM are mostly related to the limited endurance. The life cycle of NVM at least 104× longer

than the NAND SSD [22, 56]. Products include 3D-Xpoint DIMM have equipped wear-leveling

and over-provisioning to combat hard errors [51].

While the NVM provides non-volatility, “persistent memory” provides data persistence.

Due to the volatile cache, persistent memory design guarantees the data to reach the NVM in the

correct order. Various architectural designs have been proposed to support persistent memory

in academia [31, 57, 58, 59]. The Intel extends the x86 and adds clwb and fence instructions to

support persistent memory [9]. Intel recently supports Asynchronous DRAM Refresh (ADR)

feature in the recent Xeon processor [60]. The ADR guarantees that all the data reaches 3D-Xpoint

DIMM will be flushed into NVM during the power loss.

Two mainstream persistent memory system support solutions are the programming li-

braries and file systems. Even though the users can directly apply flush and fence instructions, the

engineering effort to transform a non-persistent memory application to persistent memory applica-

tion is painstaking. Both programming library and file system ease the use of persistent memory.

The various persistent memory programming libraries proposed [15, 61, 62, 63, 18]. When using

the library, users declare a memory space as the persistent region similar to the standard memory

allocation. The libraries manage and allocate the pool of persistent memory space. The libraries

also conduct garbage collections to avoid memory space leakage and fragmentation. The user

can access the persistent region with provided persistent access API or atomic section to specify

memory accesses to be persistent. When using the libraries, all the cache flushes and memory
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barriers are added to the persistent memory accesses of the application automatically. To ensure

data consistency, the libraries generally maintain a log that keeps track of all the modifications to

the persistent region. Each time system restarts, the system uses the log to verify all the ongoing

modifications to the region and guarantees the data is not corrupted.

The file system supported persistent memory requires less programming effort than the

libraries [64, 11, 65, 12, 13, 66, 14]. Because the traditional file system is designed for non-

volatile block devices, many features such as journaling already guarantee data persistence. The

persistent memory file system has three major differences compared to the block device file

system. First, persistent memory file system supports direct access (DAX), which the NVM

access to bypass the page cache. The performance gap between DRAM and NVM is much less

compared to the gap between NVM and SSD. Bypassing the page cache brings a significant

increase in the performance [67]. Second, persistent memory file system allows access to NVM

through load and store with memory-mapped (mmap) DAX mode. When the NVM is mapped to

the memory space under DAX mode, applications can direct access NVM with load and store, and

bypass all the system caches. This feature can benefit certain applications when all the overhead

of system caches are removed. Third, the persistent memory uses 8-byte atomicity. This finer

granularity provides more flexibility and higher performance for the garbage collection.

2.3.1 Motivation: Lack of Reliability Support in NVM DIMM

Many features of the NVM DIMM fit with the demands of big data applications. The non-

volatility and reliability provide resilience against errors. The capacity and performance provides

scalability for increased data volume. However, we find two desired research opportunities with

the current reliability supports for big data applications.

First, there lacks profiling of persistent memory applications from the hardware per-

spective. Existing studies of persistent memory applications profiling are from the software

perspective, which only provides insights based on operations throughput, the latency of software
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requests, and counters of software events [68, 69, 51]. The profiling related to hardware compo-

nents, including cache hierarchy, TLB, memory controllers, and buffers, are missing. Because

persistent memory application uses forced cache writebacks and memory fences to reorder the

data writeback, many behaviors of these hardware components is different from when system

dealing with non-persistent memory applications. The hardware perspective-based profiling is

critical to the performance of the persistent memory application.

Second, existing design can provide the capacity demanded by the big data application,

but not the reliability. The lack of coordination between reliability schemes between NVM and

other devices leads to compromised reliability. The existing reliability scheme, such as error

correction code, only prevents the errors within each device. However, the memory errors increase

significantly as the technology node scales down [1, 37]. To prevent an increased amount of

errors, the overhead of reliability schemes is non-negligible [70, 71, 72]. The decoupled reliability

schemes ignore the feature of the memory hierarchy that certain errors could be corrected with data

copies on the other devices. As a result, such decoupled reliability schemes lead to performance

overhead and compromised reliability for the big data application.

2.4 RRAM-based NN Accelerators

Several RRAM-based architectural designs for accelerating DNN have been proposed re-

cently [73, 74, 75, 76, 77, 78]. The most significant difference between RRAM-based accelerator

and generic computation units or CMOS-based DNN accelerators is that the RRAM-based accel-

erators conduct computation within RRAM cells using analog signals. RRAM-based accelerators

use memristors to form a crossbar structure to perform multiply-accumulate operations within

RRAM itself.

Accelerator architecture. As Figure 2.1 (a) shows, the memristors are placed in a grid

such that they are horizontally connected by the word lines and vertically connected by the bit lines.
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Figure 2.1: Overview of RRAM-based DNN accelerator.

For each memristor, the output current on the word line is the product of memristor conductance

and input voltage on the bit line (Kirchoff’s Law). The currents from all the memristors connected

with the same word line are summed up. Hence, the input voltages vector V1×n is able to conduct

matrix multiplication with the memristors conductance matrix Gn×m to get the output currents

vector I1×m, i.e., I1×m = V1×n×Gn×m. The size of an RRAM crossbar array is limited by the

device yield, device variability, and array parasitics [79]. The size of RRAM crossbar array can

vary from 12×12 [80] to 500×661 [81].

Crossbar arrays require auxiliary hardware components to perform matrix multiplication

(as shown in Figure 2.1 (b)). First, it requires digital to analog converters (DACs) and analog to

17



digital converters (ADCs) because the calculation is in analog form. The analog signal is only

used within crossbar arrays, while the digital signal is used everywhere else. Second, data buffers

are also required to store input and output data temporarily. Typically, input buffers and output

buffers are separated. Third, the shift-and-add (S+A) unit is required to combine the results of

multiple crossbar arrays. Since a single memristor can only represent a finite number of bits,

the matrix multiplication of high precision numbers (e.g., 32-bit integer) must spread its high

and low bits across several crossbar arrays [74]. The shift-and-add (S+A) unit shifts the output

according to the bits location of the input, and adds it to the outputs generated by other crossbar

arrays. Designs such as [77] propose to conduct analog summation to reduce the overhead from

the intensive A/D conversions. These crossbar arrays, along with shared components, form a

multiply accumulator (MAC).

To process a neural network, a MAC has additional components to deal with non-matrix-

multiplication operations in the network (as shown in Figure 2.1 (c)). First, a pooling unit

is required to perform pooling operations for the pooling layers. Second, activation units are

required to perform activation functions for the activation layers. Such units include sigmoid,

ReLU, tanh, etc., are used based on the type of the neural networks. Thrid, embedded DRAM

(eDRAM) stores and transfers data for the MACs. A buffer connects all the MACs and the

data cache for data forwarding. All the MACs, including the pooling unit, activation units and

eDRAM, form a tile.

As shown in Figure 2.1 (d), a tile is the highest-level computational component of an

RRAM-based accelerator. Tiles are interconnected with routers to form a 2D mesh-connected

network-on-chip (NoC). Tiles use routers to forward input and output data to each other. The chip

controller is in charge of pre-processing and I/O operations, which connects to the NoC through

the router.

Inference using RRAM-based accelerators. When processing a DNN inference, the

crossbar arrays process the convolutional and fully connected layers while the pooling units
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process the pooling layers [75, 74]. The RRAM-based accelerator processes the convolutional

layer in the weight stationary form [82] by assigning weights of the kernel as the conductance

of the crossbar array (i.e., Gn×m on Figure 2.1 (a)). The three-dimensional kernel flattens to a

single dimension which fits into a column of the crossbar array. The output on the bit line directly

corresponds to the output of the convolution. Weights of a kernel can be stored over the different

columns of a crossbar array. Considering the limitations on the size of the crossbar array and the

bitwidth of RRAM cells, all the weights of the same kernel are usually spread across multiple

crossbar arrays (i.e., a column of crossbar arrays shown in Figure 2.1 (b)).

When performing a convolution in the weight stationary form, the accelerator feeds input

from the feature map (i.e., V1×n in Figure 2.1 (a)) using the size of the kernel and stride size

while keeps the kernel weights in the fixed crossbar arrays. When the kernel is mapped to several

different arrays, the final outputs are summed using the intermediate outputs generated by these

arrays (i.e., S+A on the Figure 2.1 (b)).

2.4.1 Motivation: Missing Features Demanded by the Neural Network Ap-

plications

Despite the advantages of the RRAM-based NN accelerator, there are two major missing

demands with the existing architecture.

First, existing RRAM hardware lacks resilience against interference. The hardware of

RRAM faces interference from thermal, crosstalk, and write disturbance [21, 83, 84]. These

interferences could impact the accuracy of the crossbar multiplication. However, there lacks a

quantification of the impact on the accuracy of the neural networks from interferences during the

runtime of RRAM-based neural network. Therefore, the corresponding countermeasures have not

been proposed as well.

Second, the pipeline design in the existing RRAM architecture is incomplete. For instance,

the data forwarding of how feature map data is shared and distributed among kernels belong to
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the same layer is unidentified. The data forwarding is critical and can cause pipeline idles when

the computation and data transfer are incompatible. The usability of the existing accelerator is

also missing. There lacks an approach to assignment the hardware to each layer in the network.

For the regular users who have no knowledge of the architecture details, handling the hardware

assignment is impractical and can lead to underutilization of the hardware.

Acknowledgments

This chapter contains material from “Mirage: A Highly Paralleled And Flexible RRAM

Accelerator.”, by Xiao Liu, Minxuan Zhou, Rachata Ausavarungnirun, Sean Eilert, Ameen Akel,

Tajana S. Rosing, Vijaykrishnan Narayanan, and Jishen Zhao, which is submitted for publication.

The dissertation author is the primary investigator and first author of this paper.

20



Chapter 3

Persistent Memory Workload

Characterization: A Hardware Perspective

Deploying byte-addressable NVMs on memory bus enables a new data storage con-

cept, called “persistent memory” [85]. Representative NVMs include spin-transfer torque

RAM [86], phase-change memory [87], resistive RAM [88], battery-backed DRAM [89, 90], and

3D XPoint™memory that is announced by Intel and Micron [8, 91]) – They combine the benefits

of both worlds: the byte-addressability and fast load/store interface of memory with the data

recoverability of storage. As such, NVM allows applications to directly load and store data in

the main memory. Due to this game-changing feature, NVMs are poised to radically improve

data manipulation performance and energy efficiency. NVMs also motivates a new concept –

persistent memory, which guarantees that data is recoverable (consistent and durable) through

power outages and system crashes; persisting data through slow storage I/O interface is no longer

required.

Traditional computer systems manage data persistence by software mechanisms of file

systems and databases [92, 93]. Yet main memory access is manipulated by both virtual memory

software and hardware control units, such as CPU caches, buffers, and memory controllers. As
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such, to fully exploit the potential of persistent memory, it is beneficial to design system software

and applications with exposure to hardware details.

However, most previous persistent memory systems are motivated and evaluated by

software-based performance profiling and characterization [68, 69, 11, 67]. These profiling

schemes provide system performance implications in terms of operation throughput, software

request latency, and software events (e.g., context switches, system calls, and thread migrations).

But they treat hardware components, such as CPU cache hierarchy, TLBs, memory controllers,

and buffers, as a black box. As a result, very little information about hardware components is

available for persistent memory software or software/hardware coordinated designs.

In this work, we intend to provide implications on optimizing persistent memory system

designs from a hardware perspective. We analyze the performance and hardware behaviors of

persistent memory systems by running various storage workloads with a variety of configurations

(e.g., read/write intensity, file size, and number of threads) on traditional and persistent memory

file systems. To examine the performance impact of various persistent memory system and

workload configurations, we profile the statistics of a variety of software events and hardware per-

formance counters available in modern processors. As a result, we find the following implications

and recommendations that might benefit persistent memory software designs.

• We identify that persistent memory system performance is more closely correlated to the

configurations and behaviors of several particular hardware components, such as last-level

cache (LLC) access and instruction and data translation look-aside buffers (TLBs), than others.

As such, persistent memory system designers may prioritize the optimizations on the access to

the hardware components with larger correlation than others.

• We show that persistent memory system designs perform differently when running different

types and configurations of applications on top. Performance varies significantly across read-

and write-intensive workloads, due to the latency gap between DRAM and NVM devices,

along with the asymmetrical read and write latency of NVMs.
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• We show that the recently-introduced direct access (DAX) support in Linux essentially en-

hances file systems to the performance benefit of persistent memory. But the current design

can be susceptible for the limitations on flexibility and performance offered to applications.

• Whereas NVM devices do not require row buffers (a set of sense amplifiers and latches

that temporarily store data values) as DRAM does, buffers, if present on NVM chips, can

significantly mitigate the performance penalty of long latency, low bandwidth, and asymmetric

read/write latency in NVM access. As such, system software and applications with high

memory access locality can exploit such buffers to optimize system performance.

• We demonstrate that data atomicity support, such as journaling, imposes considerable perfor-

mance overhead even with the latest persistent memory file system optimization mechanisms.

To further optimize performance, persistent memory systems can adapt to the different levels

of atomicity based on the application’s requirement.

3.1 Background and Motivation

3.1.1 Background on Persistent Memory Systems

Modern computer systems decouple fast data access and data persistence by adopting

separate main memory (DRAM) and storage (disks and flash) components. This decades-long

model is being enriched by a new tier of memory, “persistent memory”, which offers a single-level,

flat data storage model by incorporating the persistence property of storage and the fast load/store

access of memory [94, 95, 96, 97]. Persistent memory can be implemented by attaching byte-

addressable NVMs – such as spin-transfer torque RAM [98], phase-change memory [87], resistive

RAM [88], battery-backed DRAM [89], and 3D XPoint™memory [8] – directly to the processor-

memory bus. As the appearance of NVMs on the market in 2019 [91], persistent memory can

radically change the landscape of software and hardware design in the future computer systems.

As a hybrid of memory and storage, persistent memory systems need to maintain data
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persistence (crash consistency) [85] – just like storage systems – to ensure that data is recoverable

in the the face of impending system crashes or power outages. Data persistence support can be

implemented at various memory system components, such as libraries [61, 99], in-memory data

structures [100, 101], operating systems [95], file systems [64, 67, 102, 11, 103, 104], database

systems [105, 106], and microarchitectures [31, 107, 108, 57, 109, 110].

Among these, persistent memory file systems are promising solutions due to their ease

of use by application programmers and legacy application codes [64, 67, 11, 103, 104]. With

minor or no modifications, various applications can directly execute on top of persistent memory

file systems without being aware of the difference between persistent memory and traditional

disk-based storage devices. To offer optimal application performance, persistent memory file

systems need to be carefully designed to fully exploit the characteristics of memory and storage

systems incorporated with NVM devices [68].

3.1.2 The Need for Understanding Hardware Behavior

Most recent persistent memory file system designs are motivated and evaluated by pure

software performance profiling and characterizations [11, 104, 61]. The profiling can provide

many insights in the system operation. But it remains unclear how well the system designs

along with the applications running can utilize the underlying hardware components in computer

systems. For instance, traditional disk-based file system designs focus on optimizing the data

transfers between main memory and storage components, mainly managed by software mecha-

nisms. However, by attaching to the processor-memory bus, persistent memory systems need to

maintain data transfers between CPU caches and main memory; such most components in this

cache-memory hierarchy are managed by hardware. Memory access heavily relies on various

hardware components, such as CPU caching, buffering, address translation, memory controllers

and interfaces, and memory device architecture. Without understanding the behavior of these

components, persistent memory file system designs can fall sub-optimal. In this work, we expose
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a large room for future persistent memory design, once we take into account the detailed hardware

behaviors.

3.1.3 Row Buffer in Memory Devices and Its Impact on NVM Emulation

Row Buffer in Memory Devices. Memory (either DRAM or NVM) is physically orga-

nized as two-dimensional arrays (rows and columns) of bitcells. With DRAM, each read or write

access requires buffering of an entire row in the array in a row buffer structure (a set of sense

amplifiers and latches that temporarily store data values). The typical size of a DRAM row buffer

can be up to 8KB [111]. Accessing row buffer has a much shorter latency than memory array,

whereas a miss in the row buffer needs to be serviced by multiple steps: writing the buffered row

back to memory array, reading the new row to be accessed from the memory array into the row

buffer, and then perform the access. As a result, DRAM accesses with high locality – consecutive

accesses to the same row (i.e., hit in the row buffer with “open” row policy [112]) – can lead to

much better access performance than those miss in the row buffer. Based on our industrial collab-

orator’s exploration, NVM devices may not require row buffers due to their discrepant cell device

and sensing mechanisms compared to DRAM. But several memory microarchitecture studies

indicate that small buffers in NVM (e.g., 4Kb) – where multiple adjacent columns share one sense

amplifier by a multiplexer – can significantly improve memory access performance [113, 114],

given that NVMs typically impose much longer access latency and lower bandwidth than DRAM.

As such, we investigate the performance impact of buffers on NVM devices in persistent memory

systems and demonstrate the substantial benefits of employing them.

Impact on NVM Emulation. As NVM devices are yet to be available on the market.

Most previous persistent memory studies emulate NVM using DRAM [94, 115]. However, the

impact of the buffers on NVM devices is not fully considered. For example, PMEP [94] collects

an average memory access latency – which is a mix of row-buffer hits and misses – and then
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multiplies it by a ratio of NVM/DRAM latency [94]. Yet hits in the buffers on NVM chips can

effectively close the latency gap between DRAM and NVM access. Naı̈vely treating all persistent

memory access with NVM latency penalty can guide persistent memory file system designers to

consider NVM’s long read and write latency in an over-pessimistic manner. To examine such

impact, we take into account the impact of buffer in NVM devices in our studies. In particular, we

distinguish the memory access latency of buffer hits and misses, and then only apply the NVM

long read/write latency penalty to those buffer misses.

3.2 Methodology

To investigate representative file systems and storage workloads, we chose one popular

traditional file system, two latest persistent memory file system implementations, and exercised

them with six widely-used storage benchmarks running on a workstation configured with an

emulated NVM.

26



3.2.1 System Platforms

To perform our measurements, we use a workstation configured with Intel Xeon E5-2620

v3 processor (Figure 3.1). The processor contains six 2.4GHz two-way multithreaded cores. Each

core has the private 32KB 8-way set associative L1 data and instruction caches, and a private

256KB 8-way set associative L2 caches. All the cores share a 15MB 20-way set associative

last-level cache (LLC). To access hardware performance counters, we use Linux perf utility [116]

to profile various hardware counter (and also software events) as listed in Table 3.1. We run each

workload multiple times, calculated the mean and the standard deviation of each software and

hardware counter event.

The workstation runs Ubuntu 14.04.6 operating system LTS distribution; we upgrade the

kernel to 4.4.0 version. The workstation has four DDR4-2133 RDIMMs. We emulate 12GB of

NVM on DRAM with various read and write latencies1. To configure the NVM partition, we

use memmap GRUB (boot loader) parameter to mark the specific 12GB range of DRAM as the

persistent memory partition mounted as pmem0. We further ensured that other operating system

functions do not use the persistent memory partition. We update the new boot loader configuration

and recompiled the kernel by enabling the parameters that support DAX and NV-DIMM.

3.2.2 File Systems

Our evaluation includes three file systems. Two of them are variants of ext4, and the last

is a state-of-the-art persistent memory file system2.

Ext4. Ext4 [93] is a popular file system used in Linux. Ext4 is an extent-based file

system with reduced metadata overhead. Ext4 employs journaling to guarantee the persistence

of both data and metadata updates. It supports three modes, which provides different levels of

1We also employed 128GB memory to study some of our workloads. However, the shape of the results is
consistent with the two different memory sizes. Therefore, we only show our results with 12GB emulated NVM.

2We do not show analysis of Intel persistent memory file system (PMFS), because it is no longer being main-
tained [10].
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Table 3.1: Profiled software and hardware events. (S) represents software events. The rest are
hardware counter events.

Cache L1 data cache loads, L1 data cache load
Events misses, L1 data cache stores, L1 data cache

store misses, L1 data cache prefetches,
L1 data cache prefetch misses, L1 instruction
cache loads, L1 instruction cache load misses,

L1 instruction cache prefetches,
L1 instruction cache prefetch misses,

LLC loads, LLC load misses, LLC stores,
LLC store misses, LLC prefetch misses

TLB dTLB loads, dTLB load misses, dTLB stores,
Events dTLB store misses, dTLB prefetches, dTLB

prefetch misses, iTLB loads, iTLB load misses

Other Page faults (S), context switches (S), CPU
Events migrations (S), branch loads, branch load misses

atomicity for data and metadata. 1) Data-writeback mode does not perform any data journaling.

This mode is intended for optimizing performance, and it fails to recover the data across system

crashes. 2) Data-ordered mode only records metadata in the journal. This mode provides decent

performance (lower than data-writeback mode), yet it has the advantages to replay the journal and

check for any inconsistencies. 3) Data-journal mode writes both metadata and data into the

journal. This mode ensures data to be recoverable by taking notable performance degradation.

Ext4-DAX. Latest persistent memory file systems can bypass the page cache allocated

in DRAM and directly access NVM via loads/stores by using a technique called Direct Access

(DAX) [90]. DAX maps storage components directly into userspace. DAX handles page faults as

exceptions and directly copies the pages from NVM to DRAM main memory. Currently, several

traditional file systems, including XFS, ext4, and Btrfs, can be configured to use DAX mode.

This work focuses on ext4. We leave the investigation of the other two file systems (XFS and

Btrfs) as future work. Note that ext4-DAX uses journaling to persist metadata updates only; it

does not support file content journaling. To ensure a fair comparison between ext4 and ext4-DAX,

we configure both in data-ordered mode, where only metadata is journaled.
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Table 3.2: Storage workloads descriptions.

Name Thread
Count

File
Count

Total Size
(GB)

Behavior

Fileserver (Filebench) 50 10k 5.7 Emulates the basic file access pat-
tern.

Webproxy (Filebench) 100 10k 10 Emulates a webproxy server.

Varmail (Filebench) 16 1000 10 Emulates the access pattern of a sim-
ple mail server.

File compression
& decompression.

1 2 4.6
Conducts zip and unzip operations
over a folder.

FFSB 20 110 11 Emulates multi-thread application
access to many small size files under
the same folder.

Bonnie 1 1 5 Performs a pre-defined set of tests
on a single file.

NOVA. NOn-Volatile memory Accelerated log-structured file system (NOVA) is one

of the latest persistent memory file systems [11]. It adopts three optimizations for persistent

memory. First, NOVA is a log-structured file system (LFS), which naturally logs the data updates.

Therefore, it only journals metadata to ensure data persistence. The journal process only records

the directory’s log tail pointer and new inode’s valid bit. Second, NOVA provides optimizations

for garbage collection. NOVA contains two types of garbage collections: fast and thorough

garbage collections. Fast garbage collection reclaims a page if it is entirely dead. Thorough

garbage collection reclaims two pages by transferring data to a new page , if they both have more

than 50% spaces. Third, NOVA uses a red-black tree as the free list to improve allocation and

deallocation speed. The tree provides effective merging and fast deallocation.

3.2.3 Persistent Memory Workloads

Table 3.2 includes all the workloads for the experiments. They includes three workloads

from filebench suite [43], two microbenchmarks – FFSB [117] and Bonnie [45]. Before each
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experiment, we exercise the DRAM and persistent memory partitions by writing, appending, and

deleting files of various sizes. We also experiment with various file sizes in each workload.

Filebench. Filebench [43] is a benchmark suite designed for evaluating file systems. It

can generate various workloads to emulate a variety of real-world applications. We generated

three different workloads, include fileserver, webproxy, and varmail, to emulate the typical file

system access patterns of the file, web proxy, and email servers.

• Fileserver emulates the basic file server access pattern, including a sequence of creates, deletes,

appends, reads, writes, and metadata operations, which is performed by multiple “user” threads.

• Webproxy emulates a plain webproxy server. We employ 100 threads to perform a mix of create,

append, read, and delete operations on 10,000 files with an average size of 1MB. This workload

is characterized by fairly flat namespace hierarchy with a directory width of 1,000,000, i.e.,

all files are deployed in a large directory. The workload has 100 threads with a 5:1 read/write

ratio.

• Varmail emulates the access pattern of a mail server. The operations of this workload include

create-append-synchronization, read-append-synchronization, reads, and deletes. We configure

a directory with a width of one million. It stores 1000 files with a median file size of 100MB.

This workload has 16 threads. The read/write ratio is 1.

File Compression and Decompression. We employ zip, and unzip to investigate the

performance of file compression and decompression in persistent memory systems. The zip

operation compresses the archives, while the unzip operation extracts the archives. We use them

to compress and decompress two MPEG-4 files; each has a size of 2.3GB.

FFSB. The Flexible File System Benchmark (FFSB) [117] generates customizable work-

loads to measure file system performance. It employs pthreads to support multiple groups of

threads that can access multiple files simultaneously. We use it to generate a set of workloads that

perform a mix of reads, writes, re-writes and appends operations. We set up various read/write

ratios and random access pattern throughout the experiment. We employ 20 threads to perform
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Figure 3.2: Throughput of FFSB on four systems. The x-axis represents the read to write ratio.
The y-axis represents the throughput.

random read and write operations on 110 files, the size of a single file is 100MB.

Bonnie. Bonnie64 [45] measures file system performance by invoking putc() and

getc() macro operations to file systems. In addition, it can create four child processes that

execute 4000 seek operations to random locations in the file. 10% of the seek operations may

change the block that they conduct read and re-write. Our experiments perform putc() and

getc(), and random seek operations in a total size of 5GB files. putc() imitates write operation

while getc() imitates read operation.

3.3 The Impact of Write Intensity

To investigate the impact of storage workloads’ data access behavior on persistent memory

performance, we evaluate the throughput of FFSB and Bonnie by varying their write intensity.

The two workloads provide us with the flexibility of configuring read/write ratio during their

execution.

3.3.1 Impact of Write Intensity on System Performance

Figure 3.2 shows transaction throughput of FFSB configured with various read/write

ratios ranging from from 100% read (R=100%, W=0) to 100% writes (R=0, W=100%). Because
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the throughput deviation is within 5% across multiple runs, we only show an average throughput

in Figure 3.2. In addition to ext4, ext4-DAX, and NOVA, we also study ext4 with direct IO reads

and writes by enabling o direct flag [118] (later represented by ext4-o direct). O direct has

been introduced to Linux since kernel version 2.4.10. It attempts to minimize I/O caching and fits

the situation when the application has self-caching [118]. Like the DAX, o direct bypasses the

page cache to exploit the byte-addressability of NVMs. However, the limitation of using o direct

flag with an open system call is that workloads must issue IO operations with the size as the

multiples of 512 byte [118]. We make the following major observations from our results.

First, the overall throughput decreases as write intensity increases. For the write request,

the file system takes several operations, includes reserve space, rearrange existing data, and

commit new data. These operations typically take a longer time to process than the read request

operations. As Figure 3.2 shows, the throughputs of all the file systems decrease as the write

intensity increases. However, different file systems show a vastly different downtrend.

Second, system throughput with NOVA decreases much faster than with the other file sys-

tems, when the write intensity increases. NOVA performs the best with read-intensive workloads

(2.1× throughput of ext4 and 1.5× throughput of ext4-DAX, when the workload only issues

read requests). But ext4-o direct performs the best with write-intensive workloads (in particular,

NOVA only achieves 27% of ext4-o direct throughput and 39% of ext4-DAX throughput, when

the workload only issues write requests). As discussed in Section 3.2, ext4-DAX does not support

data journaling mode. Therefore, we configure all ext4 variations with metadata journaling only;

data is directly updated in place. Therefore, the principal cause of this drop is that NOVA supports

atomicity of both data and metadata, whereas ext4 variants only ensure metadata atomicity.

NOVA handles a write request in the following way: 1) allocate new data blocks, 2) copy

user data, 3) append to the log, 4) update the radix tree, 5) free old blocks by invoking the garbage

collector. This results in a substantial performance drop of NOVA when compared to other file

systems (which do an in-place update of the data) for write-intensive workloads. Moreover, due
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to FFSB’s preallocation, all the write operations in the FFSB benchmark are rewritten to blocks.

As a result, NOVA is inferior to ext4-DAX for the write-intensive workloads.

To further investigate the journaling overhead, we experiment the write-intensive workload

on ext4 under data-journal mode. This has the same level of write protection as NOVA. By

doing it, throughput decreases to 23.6% of ext4 with metadata journaling. It is about 60% of

NOVA throughput. Because ext4-DAX with data journaling mode is still under development,

we assume that it will decrease similarly to ext4. Therefore, we estimate throughput by linear

decreasing. Results show throughput of ext4-DAX with data journaling could be around 180% to

89% of NOVA’s. Even under the same degree of write atomicity, ext4-DAX still has equivalent or

better performance than NOVA on the write-intensive workload.

Third, DAX feature provides considerable performance benefits for NVM file systems. As

Figure 3.2 shows, ext4-DAX performs 2× of ext4 across all the workload configurations. DAX

bypasses the page cache, which is a buffer allocated in DRAM. Such buffering can improve

the performance of slow block-based storage. Due to NVM’s properties: no seek overhead and

DRAM comparable latency, page cache is nothing but an unnecessary copy of the data in the

hybrid memory system. To bypass the page caches, DAX directly maps the NVM device to the

userspace. For read-intensive workloads, the performance of ext4-DAX is 3× of ext4 performance.

While for write-intensive workloads, it is 1.3×. Because we use DRAM as emulated NVM, DAX

could show more benefits over the actual NVM device because of the longer write latency.

Finally, the throughput trend of ext4-o direct is the most stable. Throughput difference

between the 100% write configuration and the 100% read configuration is only 28%, while ext4,

ext4-DAX, and NOVA have 78%, 62%, NOVA’s 82.7%, respectively. Ext4-o direct also performs

the best among write-intensive configurations (write ratio above 50%). DAX is theoretically

superior to o direct, because of it is intentionally optimized for NVM. However, our results show

the opposite way. A possible reason is, that workloads can achieve direct loads and stores to the

storage when using mmap with DAX. Without mmap, DAX still requires a copy between memory
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and pmem0. Currently, in the FFSB workload, there is no support to perform memory-mapped file

IO. So we use the default setting, and the results show o direct perform better. The combination

of mmap and DAX could provide the most benefit for NVM file systems.

Furthermore, we use fio[44] benchmark that adopts mmap to investigate DAX and

o direct. However, the performance results of both modes are similar. We leave the further

evaluation of DAX with mmap as the future work.

3.3.2 Bonnie Results

Figure 3.3 shows the results of Bonnie64 workload. We configure the write-to-read ratio

as 1:1 throughout the experiments. We show the results of six metrics: putc() throughput,

block writes, block create change rewrite, getc() throughput, efficient block reads, and effective

random seek rate. All the metrics results are normalized to the results on the ext4-DAX mounted

system.

We make two observations from the result. First, we can conclude that NOVA read

fast because of the effective random seek rate, not the block read speed. NOVA has the best

random seek rate, about 2.5× of the ext4 and 1.8× of the ext4-DAX. While the block read speeds

between NOVA and ext4-DAX are similar. Second, NOVA has a faster block write speed while
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ext4-DAX has better block create and rewrite speed. NOVA block write speed is 2.1× of the

ext4-DAX’s. While the ext4-DAX block create speed is 1.2× of the NOVA’s. As we previously

discussed, NOVA pays the data journaling overhead while ext4-DAX does not. Even though

NOVA has a bigger advantage on write than ext4-DAX on the rewrite, Bonnie conducts rewrites

more than writes and appends. Therefore, NOVA and ext4-DAX have similar putc() throughputs

(difference within 7%).

3.4 The Impact of NVM Access Locality

In this section, we examine the performance impact of adopting hardware buffers in NVM

components in persistent memory systems. As discussed in Section 3.1.3, hit on the row buffer

could be a critical factor for the latency model. Row buffer is the cache for memory rows in

DRAM. In the future NVM, there will be a similar structure. We name it “buffer” in this work.

Like row buffer in the DRAM, the buffer acts as a cache to the NVM rows. The NVM’s buffer

could be different from the row buffer in DRAM because of different write powers [22, 119].

Therefore we conduct a study to explore the impact of the buffer size on the performance. Besides,

we also discuss the impact of the buffer hit rate on the performance.

3.4.1 Buffer Hit Rate

We present the result of a sensitivity study of buffer hit rate in Figure 3.4. We estimate the

performance based on NVM architecture in [22]. The result includes two baselines: DRAM and

classic NVM. The classic NVM ignores the existence of buffer. We study the buffer hit rate from

50% to 90%; the row buffer size is set to 2Kb across the experiment.

We get the following observations from the results. First, the system throughput increases

rapidly as the buffer hit rate increases. Each time the hit rate increase 10%, NOVA throughput

increases 1.9% while ext4 and ext4-DAX throughput increase 1.4%. Second, NVM with 90%
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Figure 3.4: Filebench throughputs under various memory models. The y-axis represents the
throughput. The x-axis represents memory models, which include DRAM, classic NVM with
no buffer, and NVM with buffer hit rates under 50% to 90%.

hit rate has a minor performance difference to the DRAM performance. We discover that the

performance difference between DRAM and 90% buffer-hit NVM is within 2% among all the file

systems. Certain types of workloads can achieve 90% hit rates. For example, the stream read

and write workload could have a decent buffer hit rate. We conduct the following estimation of

buffer hit rate. We assume the memory access granularity is the cache size (64B). A single row

buffer misses every time the workload accesses the subsequent buffer size data when accessing a

continuous address space. Therefore, when the file size is much larger than the buffer size, the

buffer hit rate is close to 96.9%.

We conduct a further investigation with zip workload, a typical stream application, to

show that 90% hit rates are ordinary on real workloads. We employ Pin [120] to measure the

row buffer locality for the workload. We use Pin measured page locality to estimate the buffer

hit rate because of the similarity between page size and buffer size. The result shows that buffer

locality is above 98% across three file systems. The variance between different systems is less

than 0.01%. We can expect that the performance difference between NVM and DRAM-based
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Figure 3.5: Filebench throughputs of DRAM and NVMs with different row buffer sizes. The
workload has 60% sequential read operations.
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Figure 3.6: Filebench throughputs of DRAM and NVMs with different row buffer sizes. The
workload has 80% sequential read operations.

systems is insignificant when running these workloads.

3.4.2 Buffer Size

We present result of a sensitivity study of buffer size in Figure 3.5 and Figure 3.6. We use

the same performance model from the buffer hit rate study. We evaluate the buffer size from 256b

to 4Kb. Our evaluation uses two different workload sequential read ratios: 60% (Figure 3.5) and

80% (Figure 3.6). We observe two findings from the result. First, the throughput increases with
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the row buffer size. When buffer size increases, random memory accesses have a higher chance

of hitting the address range within a buffer size. Therefore, the buffer hit rate increases with the

buffer size. The increased buffer hit rate reduced the memory access cycles and results in high

throughput.

Second, the shrunk row buffer size could potentially hurt NVM performance in the future.

Under both 60% and 80% sequential read tests, the throughput drops 2% when the buffer size

shrinks 50%. For the future NVM, buffer size might be 1/2 or 1/8 of regular row buffer size in

DRAM [22], which could lead to 2%–8% performance loss. The future designs for the NVM

buffer could explore the eviction and prefetch strategies to compensate for this performance loss.

3.5 Microarchitecture Analysis
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Figure 3.7: Correlation between workload performance and five hardware counter statistics.
The x-axis represents different metrics. The y-axis represents the correlation coefficient between
the throughput and the metric.

Furthermore, we examine the relationship between persistent memory system performance

and various hardware and software event counters. Our experiments across six workloads identify

that four hardware counter and one software events are most closely correlated to persistent

memory system throughput. Figure 3.7 plots the statistical correlation between throughput and

these five metrics across six benchmarks. x-axis represents each benchmark and y-axis is the

correlation coefficient between throughput and each metric. These metrics are usually considered
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the primary source of performance overhead. We make the following observations based on the

abnormality of the results.

First, dTLB miss rate shows a high negative correlation with the throughput among all

the benchmarks. This indicates that the address cache miss contributes more to the performance

overhead than the data cache miss. Increase the size of the TLB cache could provide performance

gain for the persistent memory system. Second, the page fault rate is least correlated to the

performance. As the Figure 3.7 shows, the correlation between page fault and throughput varies

drastically among different workloads. In this work, higher page faults do not necessarily lead to

bad performance. The reason for this behavior is that all the page faults collected by perf are

reported as minor page faults in the DAX featured file systems. DAX handles page fault as an

exception. Because the NVM has the same level of latency as DRAM, the system does not suffer

from much overhead as it does in conventional systems.

Last, LLC load and store miss show an insignificant correlation to the performance.

However, this relates to the limitation of the perf tool. In the current system, all the misses on the

LLC visit DRAM because the main memory is a pure DRAM. However, LLC miss could access

NVM in hybrid main memory. Even though we partition DRAM to simulate hybrid memory in

the current system, the perf tool cannot distinguish the LLC leads to NVM access or DRAM

access. Therefore, the perf tool measured LLC miss rate is not equal to the NVM access. The

perf tool should be extended to support profiling for the specific type of memory.

Based on these observations, we make the following suggestions. For the persistent file

system design, we suggest dTLB miss rate be another guideline besides throughput for the design

of the persistent memory file system. We also suggest page fault can be ignored, especially for

the DAX supported file systems. We suggest an extension to the existing tools to support the

hybrid memory for the hardware metrics profiling tools. This extension categorizes the DRAM

and NVM access generated hardware metrics.
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3.6 Implications on Persistent Memory System Design

Based on our observations, we provide the following implications and recommendations

for persistent memory system design for reaping the full potential of this new data storage

component.

First, persistent memory system performance highly depends on workload data access

patterns. In our study, no file system always wins across various workloads and configurations.

Different workloads have disparate read/write intensity, data access frequency, and data access

granularity. Due to the latency gap between DRAM and NVM devices, along with the asymmetri-

cal read and write latency of NVMs, system performance can vary significantly across read- and

write-intensive workloads. For example, as shown in Section 3.3.1, the performance of all file sys-

tems decreases as workload write intensity increases, but the decreasing rate varies; therefore, the

persistent memory file system design with the best performance also changes. Recommendation:

Persistent memory system design needs to be aware of the type and configuration (especially

memory access patterns) of applications running on top of it.

Second, DAX substantially enhances file systems to leverage the performance benefit

of persistent memory, yet may not be the only option. Our results show that file systems with

DAX (ext4-DAX and NOVA) provides much better performance than traditional ext4 file system

by bypassing the page cache. However, current DAX design has several limitations. 1) DAX

needs to be configured as a global parameter of file systems, regardless of the workload running

on top of it. This can significantly reduce the flexibility of the file systems. 2) As shown in

Section 3.3.1, DAX does not always out-perform the interfaces and mechanisms already existing

in traditional system design; extensive tuning on system software and applications can be required

to exploit the performance benefit of DAX best. Furthermore, DAX may not be the only option

for supporting persistent memory in legacy file systems. For example, Linux interface o direct

(enabling direct IO reads and writes) also allows workload’s data access to bypass the page
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cache, whereas is not susceptible to the two limitations that DAX has. This interface can be

triggered by the workload. It also provides comparable or even better performance than DAX

as we demonstrate. Note that enabling direct IO was not recommended in traditional systems,

because it would disable all the optimization mechanisms. However, this can change in the

emerging persistent memory systems with discrepant characteristics than traditional systems.

Recommendations: Persistent memory system design needs to provide a flexible interface for

workloads to enable/disable DAX. The performance and flexibility of DAX design can also

benefit from the automatic tuning of system configurations.

Third, journaling or logging on data ensures data atomicity, but imposes substantial

performance overhead even with the latest persistent memory system optimization. As shown

in Section 3.2.2, the performance of ext4 data-ordered mode is faster than data-journal

mode, whereas the latter enforces data atomicity so allows better data recoverability. Even

the latest developed persistent memory file systems, e.g., NOVA, can suffer from considerable

performance overhead by enforcing the atomicity and consistency of data. Recommendation: As

different applications may have different data reliability and recoverability requirement, persistent

memory system performance can benefit from providing the options of multiple levels of atomicity

guarantees. That way, persistent memory systems can achieve high performance with sufficient

data reliability.

Fourth, persistent memory system performance is highly correlated to the configuration

and behavior of a small number of hardware components. As shown in Section 3.5, across various

workloads, persistent memory system performance is always closely related to the configuration

and behavior of certain hardware components, such as last-level cache (LLC) and instruction/data

TLB accesses. The rationale behind is that these hardware components are the most closely

coupled with memory access among the components in the processor. Recommendation: In

order to fully optimize persistent memory performance, system designers may want to spend

most of their effort on optimizing the access to these highly correlated hardware components
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instead of others.

Fifth, Buffers on NVM devices can substantially impact persistent memory system perfor-

mance and the accuracy of NVM emulation. Whereas NVM devices do not require row buffers

as DRAM does, the performance of persistent memory systems can substantially benefit from

adopting buffers on NVM devices. Such buffer can significantly mitigate the performance penalty

of the long latency, low bandwidth, and asymmetric read/write latency in NVM access. Besides,

NVM emulation that ignores the buffers can affect the accuracy of the results and conclusions

on NVM access performance. Recommendations: NVM hardware design can improve system

performance by incorporating a buffer on NVM devices. System software and application design

can leverage such buffers by exploiting the locality in data access at the granularity of the buffer

size. To accurately emulating NVM access, NVM modeling and emulation tools need to be

developed in a way that is aware of such buffers.

3.7 Conclusion

In this dissertation, we study the performance and hardware behavior of persistent memory

systems by characterizing various workloads. We conduct experiments over three file systems

using nine benchmarks. We provide several implications based on our observations in our

experiments. First, persistent memory system performance is closely related to hardware behavior.

Based on our results, a small number of hardware counter statistics have strong correlations with

performance throughput. Second, systems that support atomic updates of data for persistent

memory have more performance overhead. For example, ext4 when mounted in data-journal

mode, the throughput is much lower when compared to other modes. Future file system design of

NVM can provide a cache-bypass interface for the workload, thereby leveraging the underlying

NVM. It is evident from our results that ext4-DAX outperformed ext4 in terms of performance

for all the workloads. Third, buffers on NVM chips can act as a critical factor to enhance NVM
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performance. In contrast to current NVM modeling techniques, considering buffer hit rate results

in reduced overhead. These insights provide meaningful details for optimizing persistent memory

system software and hardware designs.
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Chapter 4

Binary Star: Coordinated Reliability in

Heterogeneous Memory Systems for High

Performance and Scalability

Modern cloud servers adopt increasingly larger main memory and last-level caches (LLC)

to accommodate the large working set of various in-memory computing [121, 122], big-data

analytics [123, 124], deep learning [125], and server virtualization [123] applications. The

memory capacity demand requires further process technology scaling of traditional DRAMs,

e.g., to sub-20nm technology nodes [126, 1]. Yet, such aggressive technology scaling imposes

substantial challenges in maintaining reliable and high-performance memory system operation

due to two main reasons. First, resilience schemes to maintain memory reliability can impose

high-performance overhead in future memory systems. Future sub-20nm DRAMs require stronger

resilience techniques, such as in-DRAM error correction codes (IECC) [70, 71, 72, 1, 4, 127]

and rank-level error correction codes (RECC) [128, 129, 130], compared to current commodity

DRAMs. Figure 4.1 shows that such error correction code (ECC) schemes impose significant

performance overhead to the memory hierarchy that employs sub-20nm DRAM as main memory.

44



Second, even with strong resilience schemes, future memory systems do not appear to be as

reliable as the state-of-the-art. In fact, due to increased bit error rates (BERs), even when we

combine RECC and IECC, sub-20nm-DRAM-based memory systems with 3D-stacked DRAM

LLC can have lower reliability than a 28nm-DRAM-based memory system that employs only

RECC [1], as seen in Figure 4.1 (when comparing the triangle and the circle).
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Figure 4.1: Reliability and throughput of various LLC and main memory hierarchy configu-
rations normalized to 28nm DRAM with RECC. We define “reliability” as the reciprocal of
device failures in time (FIT) [1, 2], i.e., 1/FIT. Reliability data is based on a recent study [1].

To address the DRAM technology scaling challenges, next-generation servers will adopt

various new memory technologies. For example, Intel’s next-generation Xeon servers and

Lenovo’s ThinkSystem SD650 servers support Optane DC PM [131, 132], which demonstrates

the practical use of large-capacity NVMs in servers. Intel’s Knights Landing Xeon Phi server

processors integrate up to 16GB multi-channel DRAM (MCDRAM) [133], which is a type of

3D-stacked DRAM,1 used as the LLC. 3D DRAM and NVM promise much larger capacity than

commodity SRAM-based caches and DRAM-based main memory, respectively.

However, reliability and performance issues remain. For example, compared with a 28nm

DRAM (represented by the circle in Figure 4.1), a sub-20nm DRAM (the cross in the figure) has

both worse performance and reliability. When 3D DRAM LLC is used, the sub-20nm 3D-DRAM-

1We use 3D DRAM and 3D-stacked DRAM interchangeably in this dissertation.
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cached DRAM (represented by the triangle in Figure 4.1) outperforms the sub-20nm DRAM (the

cross in the figure), but suffers from degraded reliability. We make similar observations when we

compare the 28nm 3D-DRAM-cached DRAM (the diamond in Figure 4.1) and the 28nm DRAM

(the circle in the figure).

Most NVM technologies are less vulnerable to soft errors than DRAM [54, 55]. However,

many of these technologies have much lower endurance compared to DRAM [22, 56]. As a result,

most NVM-based main memory needs to adopt hard error protection techniques, imposing both

performance and storage overheads compared to DRAM-based main memory [3, 134, 56]. NVM

also enables persistent memory techniques [110, 135], which allows data structures stored in

NVM to be recovered after system failures. However, the performance of persistent memory

systems is degraded by the high performance and storage overheads of multiversioning and

write-order control mechanisms (e.g., cache flushes and memory barriers) [136, 135, 61].

Our goal in this work is to achieve both high reliability and high performance, when we

scale the capacity of LLC and main memory using new 3D DRAM and NVM technologies. To

achieve our goal, we propose Binary Star,2 a coordinated memory hierarchy reliability scheme,

which consists of 1) coordinated reliability mechanisms between 3D DRAM LLC and NVM

(Section 4.2.1), and 2) NVM wear leveling with consistent cache writeback (Section 4.2.2).

The key insight of our design is that traditional memory hierarchy designs typically strive

to separately optimize the reliability of LLCs and main memory with decoupled reliability

schemes, yet coordinating reliability schemes across the LLC and main memory enhances the

reliability of the overall memory hierarchy, while at the same time reducing unnecessary ECC,

multiversioning, and ordering control overheads that degrade performance. As illustrated in

Figure 4.1, Binary Star (represented by a double star) achieves much better reliability than state-

of-the-art resilience schemes with various LLC and main memory configurations. Even with a

2A “binary star” is a star system consisting of two stars orbiting around their common barycenter. Our coordinated
memory hierarchy reliability design appears like a star system that consists of two “stars” – a 3D DRAM LLC and
an NVM main memory.
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slower PCM as the main memory, Binary Star’s performance is comparable to the combination of

28nm DRAM main memory and 3D DRAM LLC. We show that Binary Star provides benefits

across various types of workloads, including in-memory databases, in-memory key-value stores,

online transaction processing, data mining, scientific computation, image processing, and video

encoding (Section 4.5).

This dissertation makes the following key contributions:

• We identify the inefficiency of traditional reliability schemes that are decoupled and uncoordi-

nated across the memory hierarchy (i.e., between the LLC and main memory).

• We propose “Binary Star”, the first coordinated reliability scheme across 3D DRAM LLC

and NVM main memory. Our design leverages consistent cache writeback in NVM to recover

errors in 3D DRAM LLC. The LLC requires only error detection to perform consistent cache

writeback. This significantly reduces the performance and storage overhead of consistent cache

writeback.

• We develop a new technique that coordinates our consistent cache writeback technique with

NVM wear leveling to reduce the performance, storage, and hardware implementation over-

heads of memory reliability schemes.

• We develop a set of new software-hardware cooperative mechanisms to enable our design.

Binary Star is transparent to the applications and thus requires no application code modification.

4.1 Background and Motivation

Existing memory hierarchy designs typically strive to optimize the reliability of individual

components (either caches or main memory) in the memory hierarchy [126, 127, 1]. These designs

lead to decoupled and uncoordinated reliability across different memory hierarchy levels. As a

result, existing designs suffer from high performance overhead and high hardware implementation

cost. In this section, we motivate our coordinated reliability mechanism by first discussing
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the inefficiency of existing reliability schemes for DRAM in Section 4.1.1, 3D DRAM LLC in

Section 4.1.2, and NVM in Section 4.1.3. Then, we illustrate issues with decoupled, uncoordinated

reliability schemes in Section 4.1.4.

4.1.1 DRAM Main Memory

DRAM has been used as the major technology for implementing main memory. However,

DRAM scaling to sub-20nm technology nodes introduces substantial reliability challenges [1,

126, 137, 138].

DRAM errors. DRAM errors can be roughly classified into transient errors and hard

errors. Transient errors are caused by alpha particles and cosmic rays [139], as well as retention

time fluctuations [140, 141, 71, 72, 142]. These transient errors are less likely to repeat and can

be avoided after rewriting the corresponding erroneous bits. Hard errors are caused by physical

defects or failures [129, 143, 2]. These hard errors repeatedly occur in the same memory cells

due to permanent faults.

Challenges with process scaling. Process technology scaling can compromise DRAM re-

liability. Randomly distributed single-cell failure (SCF) is the primary source of device failures [2].

The frequency of SCF increases as DRAM cell size reduces, because as smaller transistors and

capacitors are more vulnerable to process variation and manufacturing imperfections [141, 1].

Redundant rows and columns can be used to fix SCFs and keep DRAM device yield high [1].

Recent studies show that in-DRAM ECC (IECC), which integrates ECC engines inside the

DRAM device, is a promising method to address DRAM reliability issues [144, 70, 1]. However,

IECC leads to significant storage overhead in DRAM chips [4, 70, 127, 1]. Furthermore, IECC

needs to be combined with RECC [1], to achieve reliability close to commodity DRAM [2],

imposing substantial performance overhead (See Section 4.5).
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4.1.2 3D DRAM Last Level Cache

Using large 3D DRAM as an LLC can accommodate the increasing working set size

of server applications and reduce the performance overhead of capacity scaling. However, the

Through Silicon Vias (TSVs) connecting the layers of 3D DRAM can increase the BER by

introducing additional defects [145]. Previous studies adopt two-level error correction/detection

schemes to improve 3D DRAM reliability [146, 147, 148, 149]. However, these usually require

heavy hardware modifications and significant storage overhead.

4.1.3 NVM Main Memory

To tackle the scalability issues with DRAM technologies, NVM (e.g., PCM [22, 87],

STT-RAM [150, 98], and RRAM [88]) introduces a new tier in the memory hierarchy, due to its

promising scalable density and cost potential [151, 152, 153]. Many data center server software

and hardware suppliers are adopting NVMs in their next-generation designs. Examples include

Intel’s Optane DC PM [131], Microsoft’s storage class memory support in Windows OS and

in-memory databases [154, 155], Red Hat’s persistent memory support in the Linux kernel [156],

and Mellanox’s persistent memory support over the network fabric [157].

NVM errors. Similar to DRAM, NVM is also susceptible to transient and hard errors.

However, the sources of these errors are different from DRAM. Alpha particles and cosmic rays

are less of an issue with NVM. Instead, NVM transient errors are largely caused by resistance

drift [55]. In fact, resistance drift can dominate bit errors in MLC NVMs (e.g., MLC PCM [54]).

Resistance drift is a less critical issue with SLC NVMs, as it can be addressed by infrequent

scrubbing (e.g., every several seconds) [54, 55]. NVM hard errors are often caused by limited

endurance. For example, PCM cells can wear out after 107-109 write cycles [22, 158]. Certain

NVM technologies, such as certain types of PCM, may have much lower transient BER compared

to DRAM before the cells wear out [159, 158].
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Figure 4.2: (a) Multiple reliability mechanisms for a cache line across LLC and main memory.
(b) Fraction of clean LLC lines during application execution. We collected data for ten seconds
after the benchmark finishes the warm up stage.

To mitigate transient and hard errors, previous works propose techniques to reduce

MLC NVM BER at low performance and storage overheads [160, 55, 54]. SLC NVM main

memory can be effectively protected using existing ECC mechanisms, as done in state-of-the-art

DRAM [159, 55]. In addition to ECC, scrubbing can be used to address NVM transient errors

(resistance drift) [54, 55]. To mitigate hard errors caused by endurance issues, previous studies

adopt wear leveling [22, 119, 161], which scatters NVM accesses across the whole device to

ensure that all bits in the device wear out in a balanced manner. Hard errors (bits that are

already worn out) can be remapped [3, 134], which disables the faulty bits, redirecting accesses

to alternative physical locations in the memory.

4.1.4 Issues with Decoupled Reliability

A modern system that employs a large 3D DRAM as LLC and a high-capacity NVM as

main memory typically utilizes two separate uncoordinated reliability schemes for DRAM and

NVM [146, 162, 3, 134]. The key issue with such decoupled reliability across the LLC and main
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memory is redundant protection across the memory hierarchy: the same piece of data can be

repeatedly (and unnecessarily) protected multiple times. Figure 4.2 (a) shows an example. A

clean cache line-A is protected by ECCs in both 3D DRAM LLC and main memory (represented

by Ac and Am, respectively). In fact, as shown in Figure 4.2 (b) (our methodology, system, and

workload configurations are described in Section 4.4), a large portion of the 3D DRAM LLC

lines are clean throughout execution time (after warm-up) with an identical copy sitting in main

memory, and both copies are protected with ECCs. In this case, carefully enforcing the reliability

of only one of the data copies is sufficient. For instance, without ECC in LLC, we can simply

invalidate a clean LLC line Ac in case it has a transient error; the error will be naturally recovered

by servicing a cache miss to A with an ECC-protected copy Am from main memory. As such, the

LLC only needs to detect whether or not Ac has an error. However, it is challenging to fully exploit

the coordination between cache and main memory. For example, what if cache line Ac is dirty?

Once Ac has errors, we lose the new value of that cache line because the copy in memory (Am)

does not have the up-to-date value. Even if Ac is not dirty, Ac with Am can lead to inconsistent

data structures in the program: Ac may belong to a data structure comprising multiple cache lines.

If we load the old value Am to recover the LLC line, the data structure will become inconsistent:

the old value of Am will be inconsistent with new values of other dirty LLC lines that belong

to the same data structure. Section 4.2 discusses our solution to the reliability and consistency

problems of both clean and dirty LLC lines.

While there are several prior works that handle some SRAM cache and DRAM main

memory reliability issues together [163, 164, 165], these are not desirable for the combination

of 3D DRAM and NVM. On the one hand, these works are hard to scale to the 3D DRAM size.

On the other hand, because these designs require frequently clearing dirty cache lines [163, 165]

or off-loading SRAM cache ECC to the main memory [164, 165], these mechanisms further

consume NVM’s short endurance and low bandwidth.

Instead of coordinating the reliability schemes of caches and main memory, persistent
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memory designs enhance the reliability of the main memory when a system completely loses

data in caches due to a system crash or power failure [31, 166]. Persistent memory allows data in

NVM to be accessed via load/store instructions like traditional main memory, yet recoverable

across system reboots [64, 96]. As shown in Figure 4.2 (a), persistent memory systems typically

maintain an additional copy of data (e.g., Ap that can be a log entry or a checkpoint), which

is used to recover original data (Am) in NVM main memory if needed after a system crash.

This process can be done through controlled data versioning (e.g., by logging [61] or shadow

paging [64]), or via write-ordering (e.g., by cache flushes and memory barriers [64]). However,

relying on persistent memory mechanisms for error recovery purposes has at least two major

disadvantages: first, all these techniques require code modifications, which require significant

software engineering effort [108]; second, applications with no persistence requirements suffer

from substantial performance and storage overheads in main memory access [108, 135, 61].

In summary, we need to address the overhead and scalability issues with (i) the decoupled

reliability schemes across caches and main memory in state-of-the-art memory systems that

combine 3D DRAM and NVM, and (ii) the challenges of exploiting persistent memory techniques

in order to efficiently maintain the reliability of memory hierarchy. Our goal in this work is to

design a comprehensive coordinated memory hierarchy reliability scheme that is efficient and

effective for memory hierarchies that combine multiple technologies.

4.2 Binary Star Design

To address the aforementioned reliability challenges, we propose Binary Star. Binary Star

1) coordinates reliability schemes across 3D DRAM LLC and NVM main memory, and 2) uses

an efficient hardware-based 3D DRAM LLC error correction and a software-based error recovery

mechanism.

3D DRAM LLC and NVM technologies allow the memory hierarchy to continue to scale
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in a cost-efficient manner. Figure 4.3 shows our basic architectural configuration. We assume

that higher-level caches are SRAM. The LLC in the processor is a 3D DRAM. We use SLC

PCM, which is a well-understood NVM technology, as a representative for NVM main memory

to make our design and evaluation concrete. Our design principles can be applied to various

NVM technologies. In this section, we describe our design principles and mechanisms, using

Figure 4.4 to illustrate them. We leave the description of the implementation of our mechanisms

to Section 4.3.
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L1 Cache

Shared SRAM Caches

On-chip 3D-stacked DRAM LLC (Gigabytes)

Off-chip NVM Main Memory 

(Hundreds of Gigabytes ~ Terabytes)

On-chip Components Off-chip Components

…

…

Core

L1 Cache

Core

L1 Cache

Figure 4.3: Basic architecture configuration.

4.2.1 Coordinated Reliability Scheme

Our coordinated reliability scheme strives to optimize the reliability of the 3D DRAM

LLC and NVM hierarchy as a whole, instead of separately optimizing the reliability of individual

components at different hierarchy levels, at low performance and storage cost. Our scheme is

enabled by the following key observation:

Observation 1: Errors in the LLC can be corrected by consistent data copies in NVM
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inconsistent data block.

main memory.

The data stored in the LLC is a subset of the data in main memory. Therefore, as long

as the main memory maintains a consistent data copy at a known point in time, errors in the

corresponding LLC line can be corrected (or ignored) using the consistent data copy in memory.

This observation makes error correction codes in the LLC unnecessary. Instead, Binary Star
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coordinates 3D DRAM LLC and NVM reliability in the following manner: the LLC adopts only

cyclic redundancy check (CRC) codes [167] to ensure errors can be detected; NVM maintains

consistent data copies that can be used to correct (or avoid) the detected errors in the LLC. While

it is straightforward to implement CRC in the LLC, maintaining consistent data in NVM for error

recovery purposes is complicated for two reasons. First, storing and updating multiple versions of

data can incur significant storage and performance overhead [31, 108]. Second, LLC writebacks

can corrupt consistent versions of data in NVM: For example, a data structure update that spans

multiple cache lines can result in multiple dirty cache lines; yet only one or several of the dirty

cache lines may be written back to NVM main memory at a given time, leaving the state of the

data structure in main memory inconsistent.

We need to avoid such inconsistency of data in NVM main memory, in order to use

the main memory contents to correct errors that happen in LLC lines. To this end, we propose

periodic forced writeback and consistent cache writeback (depicted in Figure 4.4 (a) and (b),

respectively).

Periodic forced writeback. During the execution of an application, portions of updated

data might remain in the dirty cache lines, causing inconsistent data to be present in the NVM.

Because dirty cache lines contain all the most recent updates, Binary Star periodically forces

the writeback of dirty cache lines from all cache levels into the NVM main memory (e.g., cache

lines a and b in Figure 4.4 (a)). These written-back data along with previously written-back dirty

cache lines (e.g, cache line c in the figure.) generate a set of consistent data, i.e., a checkpoint

of data, in the NVM by ensuring that all updates to data are propagated to the NVM. When

taking the checkpoint, Binary Star marks all updated NVM blocks as consistent (i.e., the striped

squares in Figure 4.4 (a) turn into solid squares after the checkpoint is taken). To recover to

this consistent checkpointed state in the presence of LLC errors, Binary Star maintains a single

checkpoint and saves the state of an affected process to ensure that the process is able to recover

to the point immediately after the periodic forced writeback. The checkpointed consistent data in
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NVM stays intact in NVM until the end of the next forced writeback period. This checkpointed

consistent data in NVM can be used to recover from LLC errors detected by the CRC between

two consecutive forced writeback periods. In our evaluation, we perform detailed sensitivity

studies (Section 4.5.3) and demonstrate that 30 minutes is the best periodic forced writeback

interval for the Binary Star system with our benchmarks.

Consistent cache writeback. To maintain consistency of the checkpointed data between

two forced writeback periods, we propose a consistent cache writeback mechanism as shown

in Figure 4.4 (b). This mechanism redirects natural LLC writebacks to NVM locations that are

different from the locations of the checkpointed data, so that checkpointed data stays consistent.

Application Transparency. Maintaining data consistency through persistent memory

typically requires support for (i) a programming interface (e.g., transactional interface), (ii) multi-

versioning (e.g., logging or copy-on-write), and (iii) write-order control (e.g., cache flushes and

memory barriers). These can impose non-trivial performance and implementation overheads on

top of a traditional memory hierarchy [136, 31]. Furthermore, persistent memory systems need to

redirect data upon each persistent data commit [136, 110, 61]. Our design does not impose large

overheads due to three major reasons. First, the granularity of our consistent cache writeback

mechanism is only one cache line. Therefore, we do not require a transactional interface to the

application to determine the commit granularity. Second, our consistent cache writeback mecha-

nism is used to update the application’s working data, rather than the checkpointed consistent

data. Therefore, we do not need to enforce write-order control of consistent cache writeback.

Finally, our design only needs to ensure that natural LLC writebacks do not overwrite the original,

i.e., checkpointed copy of consistent data, which is reserved to be used to correct errors in LLC.

As such, we do not redirect each natural LLC writeback to a new NVM location. Rather, in

our technique, the LLC writebacks to the same data block can repeatedly overwrite the same

NVM block3 that is outside of the checkpointed consistent data. As shown in Figure 4.4 (b),

3A block is the minimal granularity of remapping and data consistency ensured in the NVM in our design. The
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the up-to-date version (e.g., cache lines a′′ and b) in NVM is visible to applications, while the

checkpointed consistent version (e.g., the original data a) is hidden from applications.

4.2.2 Coordinating Wear Leveling and Consistent Cache Writeback

Our consistent cache writeback mechanism requires redirecting a natural LLC writeback

to an NVM location that is different from the location of the checkpointed data. However, doing

so with a traditional memory system design would introduce extra effort to (i) maintain address

remapping with metadata and free data block management and (ii) manage alternative memory

regions to store redirected natural LLC writebacks. These can impose substantial performance

and NVM storage overheads. Instead of explicitly maintaining data consistency for each cache

writeback, Binary Star leverages the remapping techniques that are already employed by existing

NVM wear leveling mechanisms. Our method redirects the natural LLC writebacks to memory

locations different from the checkpointed data locations during consistent cache writeback. We

make the following key observation:

Observation 2: NVM wear leveling naturally redirects and maintains the remapping of

data updates to alternative memory locations.

Note that it is difficult to leverage NVM wear leveling with regular persistent data commits

on a system with persistent memory. To provide crash consistency, persistent memory systems

typically require each data commit to be redirected to a new location, e.g., a new log entry [61],

a newly allocated shadow copy [64], a new checkpoint [108], or a new version managed by

hardware [31, 108]. However, NVM wear leveling redirects data updates only when the original

physical memory location is repeatedly overwritten for a given number of times [119]. Therefore,

the remapping of data typically happens infrequently. If we would like to exploit wear leveling

to provide consistency in persistent memory, wear leveling needs to be synchronized with each

persistent data commit. This likely imposes a substantial performance overhead because it leads

block size is larger than a cache line and depends on the granularity of wear leveling mechanism used.
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to prohibitively frequent data remapping and metadata updates.

In contrast, Binary Star’s consistent cache writeback mechanism can effectively take

advantage of existing NVM wear leveling mechanisms. During the interval between two con-

secutive occurrences of periodic forced writeback, Binary Star’s consistent cache writeback

mechanism needs to redirect NVM updates of each data block only once. After the first update

to the consistent data block is redirected due to a natural LLC writeback (e.g., the update of

cache line a′, which is overwritten by the later update a′′, as shown in Figure 4.4 (b)), subsequent

natural LLC writebacks of the same data block can repeatedly overwrite the same redirected data

location (e.g., the updated version a′′, as shown in Figure 4.4 (b)). Therefore, Binary Star does

not need to synchronize wear leveling with each consistent cache writeback. Instead, Binary Star

must trigger one single extra data remapping via the wear leveling mechanism at only the first

update to a consistent data block; wear leveling can operate as is during the rest of the execution.

By coordinating wear leveling with consistent data writeback, Binary Star enables better

utilization of wear leveling. Traditional NVM wear leveling remaps data of frequently accessed

NVM blocks to infrequently accessed blocks [119], without being explicitly aware of the con-

sistency of data. Our design exploits this remapping capability by exposing data consistency

to the wear leveling, such that we can guarantee data consistency by using the data remapping

capability of wear leveling (as illustrated in Figure 4.4 (b)). In particular, we coordinate NVM

wear leveling with our consistent cache writeback mechanism in the following manner:

• Binary Star-triggered wear leveling: When the memory controller receives an LLC writeback

(either a natural LLC writeback or a periodic forced writeback) to a checkpointed consistent

data block, Binary Star actively triggers wear leveling to remap the LLC writeback to another

NVM block. Such remapped updates, along with the original blocks in the current checkpointed

consistent data, form the next checkpoint of consistent data. As a result, Binary Star ensures

that the current version of the checkpointed consistent data block remains intact.

• Natural wear leveling: During the rest of the time, wear leveling can operate as is. Note that
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Binary Star does not prevent natural wear leveling from remapping the checkpointed consistent

data blocks. In case a checkpointed consistent data block is remapped, Binary Star simply

updates the metadata to reflect the new location of the block (Section 4.3).

• NVM updates without remapping: NVM wear leveling is performed periodically [119]. During

the interval when wear leveling is not performed, natural LLC writebacks to the blocks outside

of the checkpointed consistent data blocks can directly overwrite the same location.

4.2.3 3D DRAM LLC Error Correction and Error Recovery

Our 3D DRAM LLC uses CRC codes that can only detect errors. Binary Star recovers

from them using the copies of cache lines that are in the NVM main memory. Based on our

coordinated reliability scheme, there can be two types of data copies in NVM for a given block:

1) the checkpointed consistent copy, which is generated by periodic forced writeback and which

contains the consistent data, and 2) the latest updated copy that is managed by Binary Star-

triggered wear leveling. Once CRC detects an error in a given 3D DRAM LLC cache line during

an access to the 3D DRAM LLC, Binary Star performs error correction and recovery via the

following steps that we also illustrate in Figure 4.4 (c): First, the LLC controller reads the dirty

bit of the erroneous cache line.

If the LLC line is clean, Binary Star performs error correction in hardware as follows:

1) the LLC controller invalidates the cache line, 2) the corresponding LLC access turns into an

LLC miss, which is serviced as a natural LLC miss without any hardware modifications. The

LLC miss generates an access to the corresponding most recently updated data block in the NVM.

The corresponding data block could reside in either the checkpointed consistent data block or the

remapped data block.

If the LLC line is dirty, Binary Star determines that it is an uncorrectable error. If such an

error is detected, Binary Star triggers error recovery through the system software by 1) reverting

the memory state to the checkpointed consistent version of application data, and 2) rolling back
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Figure 4.5: An example of running an application on Binary Star.

the application to execute from the checkpoint.

4.2.4 Putting it All Together: An Example

With these design components, we demonstrate a simple example to show the detailed

operation of Binary Star when running an unmodified application. Figure 4.5 depicts an example

of four cases ( a to d ) that a running application may encounter when our proposed mechanisms

are employed. These four cases are software and hardware operations that conduct consistent

cache writeback ( a ) and periodic forced writeback ( b ) during normal execution, as well as

handling of correctable errors ( c ) and handling of uncorrectable errors ( d ), when an error is

detected.

• Binary Star hardware conducts consistent cache writeback during normal application execution

( a ). Consistent cache writeback is transparent and asynchronous to the application. When

the LLC has to evict a cache line, the memory controller identifies if the cache line belongs

to a consistent block ( 1 ). The cache line is directly written into NVM if it belongs to an

inconsistent block, otherwise the wear leveling remaps the consistent block to a new block and

writes the cache line into it ( 2 ). Section 4.3.2 provides the details.
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• Binary Star daemon conducts periodic forced writeback during normal execution ( b ). The

daemon stalls the application ( 1 ), saves the process state, and executes the Binary Star cache

line writeback (bclwb) instruction, which enables the memory controller to write back all

dirty cache lines to main memory without invalidation and mark the corresponding NVM data

blocks as consistent ( 2 ). This procedure creates a new checkpoint and invalidates the previous

one. The daemon resumes application execution once the periodic forced writeback finishes

( 3 ).

• A correctable error ( c ), i.e., an error in a clean LLC line, is transparent to the software.

Hardware detects and corrects these errors: memory controller detects the error using CRC

( 1 ), reads the dirty bit and identifies that this is a correctable error ( 2 ), invalidates the LLC

line ( 3 ), and issues a cache miss to retrieve the correct copy of the cache line from NVM ( 4 ).

• An uncorrectable error, i.e., an error in a dirty LLC line, requires software and hardware

operations to recover the LLC line ( d ). LLC controller detects the error using CRC ( 1 ),

reads the dirty bit and identifies that this is an uncorrectable error ( 2 ), and sends a signal

to the Binary Star daemon ( 3 ). The daemon stalls the application and triggers the rollback

procedure ( 4 ). The daemon uses the Binary Star data reset (drst) instruction to reclaim the

previously checkpointed consistent data blocks (i.e., the checkpoint) in NVM ( 5 ). The whole

procedure rolls the memory hierarchy back to the consistent checkpointed state and resumes

normal application execution ( 6 ).

4.3 Implementation

This section discusses our Binary Star implementation, including modifications we make

to the 3D DRAM LLC, the memory controller and the system software.
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4.3.1 3D DRAM LLC Modification

We replace the ECC in 3D DRAM LLC with a 32-bit CRC (CRC-32) [167] for each 64B

LLC line. This design allows Binary Star to detect up to eight-bit errors as well as a portion of

nine or more bit errors, and all burst errors up to 32 bits long [167]. Binary Star also modifies

the finite state machine in the LLC controller to support the steps required to handle LLC error

detection, correction, and rollback as listed in Section 4.2.3.

4.3.2 Memory Controller Modifications

Binary Star modifies the state-of-the-art area- and performance-efficient Segment Swap

design [119] for NVM wear leveling. Segment Swap counts the number of writes to each segment,

and periodically swaps a hot segment with a cold segment.4

Modifications to the wear leveling mechanism. To coordinate the NVM wear leveling

mechanism with our consistent cache writeback mechanism, we modify Segment Swap [119]

design as shown in Figure 4.6. In the original design, the mapping table maps a “virtual” segment

to a “physical” segment. In our design, we maintain a set of metadata with each segment that

includes 1) a consistent bit that indicates whether the segment belongs to the consistent checkpoint,

2) a free bit that indicates whether the segment is free, and 3) a segment number that identifies the

segment that stores the corresponding checkpointed consistent data. The metadata is stored in a

reserved NVM space similar to previous works [119, 161]. During periodic forced writeback, the

memory controller uses the segment numbers to release each segment belonging to the previous

checkpointed consistent data (e.g., segment A 1 in Figure 4.6) by resetting the free bit and

adding them to the free list. After all dirty cache lines are written back, the memory controller

also marks the current inconsistent segment as consistent (segment A’ 2 ) and deletes the stored

segment number. During consistent cache writeback, NVM wear leveling performs remapping

4Segment is the granularity of wear leveling. In Binary Star, we set the segment size to be one Mbyte, similarly
to the original design [119].
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by selecting a free segment, copying data from the consistent segment (segment B 3 ) to it, and

marking it as an inconsistent segment (segment B’ 4 ).

Modification to NVM write control. We modify the memory controller’s wear leveling

control logic to enable our consistent cache writeback mechanism (Section 4.2.2). When the

memory controller performs a cache writeback, the wear leveling control logic reads the consistent

bit in the metadata space of NVM to determine the consistency state of a segment that the cache

line belongs to. If the cache line belongs to an inconsistent segment, the controller directly writes

data into NVM. If the cache line belongs to a consistent segment, the segment is remapped via the

wear leveling mechanism. In this case, the controller selects a free segment from the free list. The

free list keeps track of all the free segments’ numbers and is stored in the memory controller. The

writeback data, along with the original data in the old segment, is moved to the new free segment.

The memory controller also changes the entry in the mapping table to the new segment [119].

New instructions. To coordinate between the memory controller and the system software,

we add two instructions to 1) support periodic forced writeback, and 2) retrieve and roll back to

checkpointed consistent data.

The first instruction is called the Binary Star cache line writeback instruction (bclwb).

Binary Star leverages the bclwb instruction to write back all dirty cache lines. Similar to an

existing cache line writeback instruction (clwb) [166], bclwb allows Binary Star to write back
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each dirty cache line to NVM without invalidating the cache line. The bclwb instruction not

only performs the same cache line writeback functionality as clwb, but also triggers the memory

controller to modify wear leveling metadata to guarantee consistency. During the execution of

a bclwb instruction, after data writeback, the memory controller marks the current segment as

consistent. The memory controller also tracks the old segment with the segment number, frees it

by setting the free bit, and adding it to the free list.

The second instruction is called the Binary Star data reset instruction (drst) and is used to

retrieve checkpointed consistent data. drst has only one operand: memory address. drst is used

for handling error-triggered rollback. When the memory controller receives a drst command, the

memory controller checks the consistent bit of the associated segment’s memory address to see

whether or not the segment is consistent. The memory controller does nothing if the segment

is consistent. Otherwise, the memory controller finds the corresponding consistent segment

using the stored consistent segment number. The memory controller then invalidates the current

segment by setting the free bit, and adding the segment number to the free list.

Reducing latency by controlling NVM writebacks. Because the latency of Binary Star-

triggered wear leveling can degrade the performance of a latency-critical application, Binary Star

provides two optional optimizations. First, when the NVM bus is idle, Binary Star allows the

memory controller to issue preemptive consistent cache writeback to remap a consistent segment

in advance. Second, when read requests are delayed by the writebacks, Binary Star allows the

memory controller to postpone LLC writebacks, which has been shown to provide performance

benefits in a previous study [168].

NVM over-provisioning. NVM preserves a certain amount of physical space specifically

for wear leveling purposes [169]. Over-provisioned space guarantees that wear leveling can

always find a free segment when the logical space is full. To ensure that Binary Star-triggered

wear leveling always finds a free segment, this over-provisioned space has to be large enough

to provide a sufficient number of free segments. Our experiments (Section 4.2.2) show that
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10% extra space for over-provisioning is sufficient to accommodate a 30-minute periodic forced

writeback interval with all of our benchmarks.

4.3.3 System Software Modifications

We implement software support as part of the operating system to leverage the hardware

support.

Binary Star daemon. We develop a Binary Star daemon, which is in charge of periodic

forced writeback and rollback. Because the periodic forced writeback and rollback are infrequent

operations, we assume a single daemon can manage all processes on a Binary Star enabled

machine. Figure 4.7 shows the state machine of the daemon. Binary Star daemon can be

implemented as a kernel loadable module.
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Figure 4.7: State machine of the Binary Star software daemon.

The Binary Star daemon operates in normal mode until either 1) the periodic forced

writeback interval is reached, or 2) a memory error signal is received. To determine if the periodic

forced writeback interval is reached, we use a simple timer, which consumes minimal CPU

resources ( 1 ). When the timer reaches a pre-defined time interval, the daemon sends interrupt

signals to stall all the running processes and starts the periodic forced writeback procedure.

The periodic forced writeback procedure consists of five steps. First, the daemon sends
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an interrupt to each of the executing processes and stalls them ( 2 ). Second, a copy of each

process control block (PCB) is flushed into the memory, so that the process can be restored ( 3 ).

Each PCB contains process-related state, such as process ID, stack, and page table. Instead of

introducing extra implementation cost, Binary Star leverages the PCB state to rollback a process

to the previously written-back checkpoint in the same way as existing designs [170]. Third, the

daemon flushes all the dirty caches lines (including SRAM and 3D DRAM caches) to the memory,

by using the bclwb instruction ( 4 ). Fourth, when all cache line writebacks are completed, the

daemon resumes all the stalled processes ( 5 ).

The second key task of the Binary Star daemon is to manage error-triggered rollback.

When the daemon receives an unrecoverable memory error signal from the memory controller, it

starts the rollback procedure. First, the daemon sends an interrupt to stall all executing processes

( 6 ). Second, the daemon identifies the error-affected processes, inspects page tables of each

process and identifies the process that triggered the error ( 7 ). Third, the daemon retrieves all the

PCB data, such that the affected processes’ PCBs are rolled back to the checkpointed PCBs ( 8 ).

Fourth, the daemon retrieves the data of all error-affected processes ( 9 ). The daemon rolls back

memory data by retrieving the old page table from the PCB and using the drst instruction to fetch

previously checkpointed consistent data. The daemon also employs drst to free all the remapped

inconsistent segments to avoid memory leakage. Finally, the daemon resumes the execution of all

the processes ( 5 ).

4.3.4 Binary Star Overheads

Overhead in 3D DRAM Cache. The CRC-32 code requires 32 bits per 64-byte cache

line, i.e., 6.25% storage overhead, which is 50% lower than the storage overhead of traditional

ECC. The area and performance overheads of CRC encoding and decoding engines are similar to

the existing ECC encoding and decoding engines.

Overhead in NVM. Our modification to NVM wear leveling requires three bytes per
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segment. With a 512GB NVM and a 1MB segment size, this introduces 0.0003% storage overhead.

The free segment list takes 1.1875MB additional space at most. Because NVM typically over-

provisions its capacity by roughly 10% to support wear leveling [169], our design reuses the

over-provisioning space and, as such, avoids additional storage overhead.

Software overhead. For software support, Binary Star only requires a loadable module

to the operating system. An application requires no modification to utilize Binary Star.

Overhead of periodic forced writeback and uncorrectable error-triggered rollback.

We test periodic forced writeback and rollback using several workloads on an emulated NVM.

Typically, the periodic forced writeback takes 50µs to 3.6 seconds. Because Binary Star rollback

reuses data hidden by wear leveling and avoids large amounts of data movement, the rollback takes

only dozens of microseconds. The Binary Star daemon has negligible performance impact on the

operating system and applications because of the low frequency of periodic forced writeback and

the very small likelihood of error-triggered rollback (See Section 4.5.3).

4.4 Experimental Methodology

We evaluate both the performance and reliability of Binary Star by comparing it with four

baseline memory configurations: 1) DRAM memory with 3D DRAM LLC (3D DRAM+DRAM),

2) DRAM memory without 3D DRAM LLC (DRAM), 3) PCM as main memory with 3D DRAM

LLC (3D DRAM+PCM), and 4) PCM as main memory without 3D DRAM LLC (PCM).

For all four memory configurations, we use various state-of-the-art ECC mechanisms,

which we describe below. With DRAM, we evaluate both 28nm and sub-20nm process technolo-

gies. We use Failures In Time (FIT) as our main reliability metric.

Performance simulation. We evaluate the performance of Binary Star modifications

using McSimA+ [171], which is a Pin-based [120] cycle-level multi-core simulator. Our in-

frastructure models the row buffer as well as row buffer hits and row buffer misses. We use
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the FR-FCFS memory scheduling policy [172, 173] for Binary Star and all our baselines. We

configure the simulator to model a multi-core out-of-order processor with 3D DRAM LLC and

NVM DIMM (for Binary Star) as described in Table 4.1. The higher-level L1 and L2 caches are

SRAM-based. We model the 3D DRAM LLC based on the HMC 2.1 specification [174]. We

use PCM timing parameters [22] in our basic configuration for the NVM DIMM. We adopt the

state-of-the-art NVM error protection design [3] in our evaluations.

Reliability simulation and modeling. We evaluate the reliability of our design using a

combination of reliability simulation and theoretical calculation. We employ FaultSim [175], a

configurable memory resilience simulator, to compare the reliability and storage overhead of

various memory technologies and reliability schemes.

To evaluate the error correction and recovery ability of Binary Star, we calculate the

device failure rates using a method proposed in previous work [1]. A device failure occurs when

one or more erroneous bits within any 64-bit line of a ×8 device are uncorrectable after the

corresponding ECC or correction/recovery mechanisms are applied. We calculate the device

failure rate based on the error correction/recovery capability (the number of bits that can be

corrected) of each mechanism given the number and distribution of single cell errors [1]. We

assume that single cell errors are randomly distributed. We omit column, row, and connection

faults for the same reasons discussed in previous studies [1]. We only consider errors that are

found after device shipment time [1]. We evaluate various reliability schemes, including no-ECC,

RECC only [130], combined RECC (rank-level ECC) and IECC (in-DRAM ECC) [1], combined

Chipkill and IECC [1, 4], and Binary Star (which combines CRC-32 and our error correction

and recovery techniques described in Section 4.3). For both reliability simulation and theoretical

analysis, we adopt PCM and sub-20nm DRAM device reliability parameters published in previous

works [159, 1, 175, 2]. We implement 3D DRAM Chipkill with multiple DRAM cubes. For a

fair comparison, we use multiple DRAM cubes across all the reliability experiments. However,

we note that Binary Star is applicable to both single-cube and multiple-cube 3D DRAM. Because
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Table 4.1: Evaluated processor and memory configurations.

Processor
Cores 4 cores, 3.2 GHz, 2 threads/core, 22nm
IL1 Cache 32KB per core, 8-way, 64B cache lines, 1.6ns latency
DL1 Cache 32KB per core, 8-way, 64B cache lines, 1.6ns latency
L2 Cache 32MB shared, 16-way, 64B cache lines, 4.4ns latency
LLC 3D DRAM, 16 GB, CRC-32 (for Binary Star),

tCAS-tRCD-tRP: 8-8-8, tRAS-tRC: 26-34 [146, 174]

Main Memory
DRAM 512 GB DDR4-2133 timing, 2 128-bit channels,

ECC schemes: non-ECC, RECC [130], combined RECC
and IECC [1], combined Chipkill and IECC [1, 4]

PCM 512 GB and 52GB over-provisioning space, 36ns row-buffer hit, 100/300ns
read/write row-buffer conflict [22], 2 channels, 128 bits per channel, Single
error correction, double error detection (SECDED) + NVM remap [3]

3D DRAM does not have ranks, RECC on 3D DRAM is the same as ECC on a single-cube as in

various previous works [176, 147].

Benchmarks. We evaluate our design with various data-intensive workloads. Redis [177]

and Memcached [178] are in-memory key-value store systems widely used in web applications.

Our Redis benchmark has one million keys in total and simulates the case when Redis is used as

an LRU cache; Our Memcached benchmark has 100K ops (read/write), with 5% write/update

operations. TPC-C [179] is a popular on-line transaction processing (OLTP) benchmark; we

run 400K transactions, mix of reads and updates (40%). YCSB [180] is an open-source spec-

ification and program suite for evaluating retrieval and maintenance capabilities of computer

programs; we run eight million transactions, randomly performing inserts, updates, reads, and

scans. MySQL [46] is one of the most widely used relational database management systems

(RDBMSs), which is typically used in online transaction processing; we use a table of 10 million

tuples and conduct complex OLTP operations (using sysbench [181]), including point, range,

update, delete, and insert queries. We exercise these server workloads using four clients and scale

the memory footprint. We also evaluate Binary Star with several memory-intensive benchmarks
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from the PARSEC 3.0 benchmark suite [182], including facesim, freqmine, fluidanimate, vips, and

x264. We configure the dataset to be the same as the capacity of our main memory configuration

(512GB) on all the benchmarks.

We evaluate application performance using instruction throughput (instructions per cy-

cle) for PARSEC 3.0 [182] benchmarks and operational throughput (the number of executed

application-level operations, e.g., inserting or deleting data structure nodes, per second, not

including logging) for all other benchmarks.

4.5 Results

This section presents the results of our Binary Star evaluation. Section 4.5.1 shows

Binary Star improves reliability over various error correction baselines. Section 4.5.2 shows the

performance of Binary Star compared to multiple memory configurations. Section 4.5.3 presents

a study of the impact of Binary Star’s periodic forced writeback interval on various metrics.

4.5.1 Reliability

Figure 4.8 shows the projected 3D DRAM device failure rates of different resilience

schemes as the single cell bit error rate varies from 10−14 to 10−4. The x-axis represents the bit

error rate (BER) of a single cell and the y-axis is the corresponding device failure rate. We make

three major observations. First, for sub-20nm DRAM with 10−5 single cell bit error rate [1],

Binary Star reduces the device failure rate by 1012 times compared to IECC with Chipkill [1]

and by 1016 times compared to IECC with RECC [1]. Second, even when the sub-20nm single

cell error rate is lower (i.e., 10−6), Binary Star still provides better reliability than other schemes:

Binary Star reduces the device failure rate by 1016 times compared to IECC with Chipkill, and

by 1022 times compared to IECC with RECC. These results indicate that Binary Star is effective

for technologies that exhibit lower error rates than those projected in [1]. Third, compared to the
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commonly-employed RECC DRAM, Binary Star greatly lowers the device failure rate on both

28nm and sub-20nm technology nodes (i.e., at 10−10 and 10−15 single cell BERs). We conclude

that Binary Star provides strong error protection on 3D DRAM LLCs, regardless of technology

node and single cell error rate.
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Figure 4.8: Device failure rates of 3D DRAM for traditional RECC [3], RECC with IECC [1],
Binary Star, and Chipkill with IECC [1, 4] vs. single cell bit error rate. Vertical lines represent
3D DRAM technology nodes (28nm and sub-20nm).5

Table 4.2 summarizes the FIT and storage cost of five state-of-the-art baselines and Binary

Star. We show results when the device single cell BER is 10−6 (left) and 10−5 (right). We

make three observations. First, Binary Star provides a clear advantage against all state-of-the-art

baselines. Compared to IECC+Chipkill, which is the best IECC based scheme, Binary Star

reduces FIT by 14.4×. Compared to the IECC+RECC protected sub-20nm DRAM system,

Binary Star reduces FIT by 29.7×. Second, compared to the NVM based main memory system

that uses RECC 3D DRAM cache and PCM, Binary Star experiences 58.5% fewer failures. Third,

Binary Star incurs lower space overhead compared to all other state-of-the-art designs, with only

6.25% additional space in 3D DRAM and only 12.79% additional space in PCM, respectively.

We conclude that Binary Star is the most efficient reliability mechanism for hybrid emerging
5The sub-20nm single bit error rate is based on [1]. The single cell error rates of future sub-20nm products can

vary and depend on the specific technologies.
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technologies of 3D DRAM cache and NVM main memory.

Table 4.2: Comparison of the evaluated resilience schemes.

System FIT Storage cost
DRAM

LLC
Main

memory

No-ECC [2] 28nm DRAM 44032-66150 N/A 0%
RECC [183] 28nm DRAM 8806-13230 N/A 12.5%
IECC+RECC [1]
sub-20nm 3D DRAM + DRAM 78211-117912 18.75% 18.75%

IECC+Chipkill [1, 4]
sub-20nm 3D DRAM + DRAM 37949-59518 18.75% 18.75%

RECC [183, 3]
sub-20nm 3D DRAM + PCM 6352-9963 12.5% 12.79%

Binary Star
sub-20nm 3D DRAM + PCM 2637-3968 6.25% 12.79%

4.5.2 Performance

Figure 4.9 shows the performance of three baseline memory configurations, all of which

have no ECC, and Binary Star normalized to the baseline with 3D DRAM cache and DRAM

main memory.6 We make two observations based on this data. First, Binary Star’s performance is

very close to the baseline with 3D DRAM. Binary Star performs within 0.2% of a baseline with

3D DRAM and PCM Binary Star also performs within 1% of the performance of the baseline

with 3D DRAM cache and DRAM main memory. Second, we observe that using 3D DRAM as

the LLC to PCM main memory improves performance by 10% over the PCM-only baseline. We

observe that the performance improvements are significant on workloads that exhibit high LLC

locality (e.g., memcached, facesim, vips and x264). In summary, we find that Binary Star provides

6We include the CRC encoding and decoding performance overheads based on [1]. We normalize the throughput
of each configuration to the throughput of 3D DRAM LLC with DRAM. We find that the error detection and recovery
overheads are negligible compared to the CRC encoding and decoding overheads, because errors happen rarely (See
Section 4.5.1).
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comparable performance to the baseline with 3D DRAM cache and DRAM main memory but at

significantly higher reliability.

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.6

0.7

0.8

0.9

1
DRAM PCM 3D DRAM+PCM Binary Star

Figure 4.9: System performance of different memory configurations with no ECC and Binary
Star. We normalize the throughput of each configuration to the throughput of 3D DRAM LLC
with DRAM.

Effect of NVM wear-out. To understand the effect of NVM wear-out-induced latency

on performance, Figure 4.10 provides the performance of each workload with different NVM

access latencies. In this experiment, we vary the latency of PCM to 0.5×, 1×, 2× and 4× of

the default PCM latency provided in Table 4.1. All throughput values are normalized to the

highest performance memory configuration (3D DRAM+DRAM). As Figure 4.10 shows, Binary

Star retains 99% of the performance of the baseline with a 0.5× PCM latency and its average
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Figure 4.10: Performance of Binary Star normalized to the performance of the 3D DRAM
+DRAM configuration, as PCM latency is varied as a multiple of its value in Table 4.1.
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performance degradation is only 3% with a 2× PCM access latency. In the unrealistic case where

the PCM access latency is quadrupled (4×), the average performance degradation of Binary Star

is only 5% lower than the baseline.

4.5.3 Impact of the Periodic Forced Writeback Interval

Binary Star’s periodic forced writeback interval is critical to throughput, number of

rollbacks triggered by uncorrectable errors, NVM lifetime, and capacity.

Throughput. Figure 4.11 (a) shows the normalized system throughput of different

workloads for six different periodic forced writeback intervals, ranging from one second to one

hour. We normalize the throughput of each workload to the throughput of the same workload under

the 3D DRAM LLC with DRAM configuration. We make two observations. First, throughput

decreases when the interval decreases. As the periodic forced writeback interval decreases, both

periodic forced writeback and consistent cache writeback happen more often and occupy more

NVM bandwidth, leading to reduction in throughput. Second, the periodic forced writeback

interval impacts the efficiency of consistent cache writeback. As the interval decreases, the locality

of NVM access reduces such that Binary Star-triggered wear leveling happens more frequently.

Therefore, Binary Star triggered wear leveling overlaps much less with endurance-triggered wear

leveling, leading to throughput loss.

Rollback Triggered by Uncorrectable Errors. Figure 4.11 (b) shows the rollback rate

for six different intervals. Rollback is triggered by uncorrectable errors that occur when accessing

dirty cache lines in 3D DRAM. As such, the results also reflect the error rate on dirty cache

lines. As the forced writeback interval decreases, dirty cache lines remain in LLC for less time.

Therefore, the possibility of uncorrectable-error-triggered rollback reduces. When the interval

decreases to one second, the likelihood of error-triggered rollback is < 10−11. However, the

throughput loss is too much in this case, as shown in in Figure 4.11 (a). At a 1800-second
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Figure 4.11: Effect of varying the periodic forced writeback interval on (a) throughput, (b)
probability of rollbacks (i.e., error rate on a dirty line), and (c) NVM writes.

(30-minute) periodic forced writeback interval, the rollback rate is 10−9, which is close to the

error rate of current DRAM without ECC.

Endurance. Figure 4.11 (c) shows the normalized number of NVM writes for six different

periodic forced writeback intervals, normalized to the NVM writes in the 3D DRAM+PCM

baseline for each benchmark. We make three observations. First, the number of writes increases

drastically to 17.2× of the PCM-only baseline when the interval is only one second. Such a short

interval leads to a low likelihood of rollback, but can cause up to 94% faster NVM wear-out

due to the larger number of writes. Second, when the interval gets larger, the number of NVM

writes gradually becomes close to that in the 3D DRAM+PCM baseline. Third, the increase in
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the interval length has diminishing benefit. We find that increasing the interval from 30 minutes

to one hour only leads to a 10% reduction in the number of NVM writes, but forces applications

to roll back consistent data from earlier in the past (up to one hour instead of up to 30 minutes)

when an uncorrectable error happens, leading to high re-execution overheads.

Lifetime impact of coordinated wear leveling. We use the same methodology as pre-

vious work [160] to evaluate the NVM lifetime impact of our design. We determine the end of

NVM lifetime as the time when NVM capacity drops below 90% of the original capacity (i.e.,

when the over-provisioned space is saturated). We make two observations when the periodic

forced writeback interval is 30 minutes (1800 seconds). First, Binary Star triggers 20% additional

NVM writes, compared to the 3D DRAM+PCM configuration (Figure 4.11 (c)). This leads to an

8.4% NVM lifetime reduction compared with the baseline wear leveling mechanism [119]. As

the baseline wear leveling mechanism already offers 10× NVM lifetime improvement on native

NVM without wear leveling [119], our design provides 9.2× better lifetime than native NVM,

and our coordinated wear leveling mechanism has minimal impact on NVM lifetime. Second,

using 3D DRAM as LLC significantly prolongs the lifetime, because it reduces writes to NVM

by 90.1% in the NVM baseline and 87.8% in Binary Star, respectively.

Capacity. One disadvantage of consistent cache writeback on NVM is that Binary Star

gradually consumes more space over time because the consistent cache writeback triggered block

remapping consumes free blocks and holds consistent blocks. To free up space for incoming

remapping operations, periodic forced writeback releases space for previous checkpointed consis-

tent data (as discussed in Section 4.3.2). For the above experiments, we guarantee that all the

workloads have sufficient memory space while keeping 10% of the NVM space for wear leveling.

Overall, the periodic forced writeback interval length causes a trade off between perfor-

mance, reliability, NVM endurance and the effective NVM capacity. In this work, we choose

30 minutes (1800s) as the interval, such that periodic forced writeback only incurs less than 1%

average throughput loss, with only a 10−9 chance of rollback and 5 to 7.5 FIT per GB of NVM.
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4.6 Conclusion

We propose Binary Star, the first coordinated memory hierarchy reliability scheme that

achieves both high reliability and high performance with a 3D DRAM last-level cache and

nonvolatile main memory. Binary Star coordinates 1) the reliability mechanisms between the

last-level cache and main memory, leveraging consistent cache writeback and periodic forced

writeback to the main memory to allow the elimination of ECC in the last-level cache, and 2) the

wear leveling scheme in main memory with consistent cache writeback to significantly reduce the

performance and storage overhead of consistent cache writeback. As a result, we can eliminate

the error correction codes in the last-level cache, while achieving higher reliability than using

costly sophisticated ECC mechanisms. Our work rethinks the reliability support in the memory

hierarchy in light of the next-generation computing systems that may adopt two key new memory

technologies, i.e., 3D DRAM caches and byte-addressable nonvolatile memories. We hopefully

provide a critical step in reaping the full reliability advantages of these emerging technologies

beyond simply replacing the existing memory technologies.
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Chapter 5

HR3AM: A Heat Resilient Design for

RRAM-based Neuromorphic Computing

Neuromorphic computing has attracted increasing attentions today because the applicable

scenarios of the neural network continue to expand. Convolutional neural networks (CNNs) are

widely adopted because of their high prediction accuracy. As network sizes grow, general-purpose

hardware platforms, such as CPU and GPU, are insufficient for delivering decent performance and

power-efficiency for neuromorphic computing applications. There have been a wide variety of

neuromorphic computing accelerators, which utilize fast and power-efficient emerging technology

to accelerate large-scale CNNs.

Resistive RAM (RRAM), or memristor, have been widely investigated to serve as a

CNN accelerator [74]. RRAM can form a crossbar array to perform matrix multiplication

by exploiting analog characteristics of RRAM cells. Matrix multiplications are the majority

of operations in convolution. Optimizing matrix multiplications is essential to improving the

performance of CNN. In a RRAM based CNN accelerator, weights of the matrix are programmed

into the conductance of each RRAM cell in each crossbar. The input data is converted to analog

signals and transferred to crossbar bitlines. The output data is generated and converted to digital

78



signals on wordlines. Matrix multiplication achieves higher speed and parallelism on RRAM

crossbars than conventional hardware [184]. RRAM crossbars also have cost and energy efficiency

advantages [74].

However, the thermal issue of RRAM crossbars potentially reduces the inference accuracy

of neural networks. Prior work discovered RRAM conductance is sensitive to temperature [185].

RRAM ON state conductance (GON) and OFF state conductance (GOFF ) varies as the temperature

changes. The conductance range [GOFF ,GON ] sharply declines on the hot cells. This variation

drastically decreases weight precision when it is represented in the form of conductance. When

the chip continuously operates, the accumulated heat affects more RRAM cells. This causes

many weights to be misrepresented during inference. Eventually, neural networks suffer from

loss of accuracy. Our experiments show that the accuracy loss at high temperature can be as high

as 90%.

A few research paid attention to the problem. Most existing works focus on handling

device defects and variations in RRAM crossbars [186, 187, 188]. However, because these

schemes are based on permanent errors from process variation, they do not dynamically adjust to

the defected cells. Temperature aware row adjustment (TARA) [189] proposed a heat resilient

design but suffers from several major drawbacks. TARA still needs to be aware of the exact

weights and adjusts row order based on each weight’s magnitude, which is not scalable with

large scale networks. Besides, TARA provides no optimization over thermal issue. As network

size expands, the thermal issue gets worse and row adjustment becomes less effective. In this

dissertation, we introduce a novel heat resilient design HR3AM for the RRAM crossbar. HR3AM

solves the issue from two aspects: adapting weights to the reduced conductance and optimizing

chip thermal distribution. Therefore we correspondingly propose two mechanisms in HR3AM

from these two aspects. The first mechanism bitwidth downgrading aims to improve accuracy. It

adapts weights to the decreased conductance range by reducing bitwidth per RRAM cell. The

second mechanism tile pairing aims to tackle the thermal issue. It optimizes the chip thermal
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status by matching hot spot tiles with idle tiles. The contributions of this dissertation include:

• We evaluate the impact of heat on the inference accuracy of several large scale neural

networks. Our results show the inference accuracy of several distinguished CNNs drop to

less than 10% of theoretical accuracy.

• We propose HR3AM, which contains two mechanisms: bitwidth downgrading and tile

pairing to improve inference accuracy and tackle the thermal issue, respectively. Bitwidth

downgrading increases the accuracy of weights represented in conductance. Tile pairing

releases the heat on hot spot tiles.

• We evaluated HR3AM with four state-of-the-art CNN models. The results show our design

guarantees 87.8% of the theoretical inference accuracy. Our design also shows a 6.2K

decrease on maximum temperature and a 6K decrease on average temperature for the entire

chip.

5.1 Background and Motivation

5.1.1 Neural Network Data Mapping on RRAM crossbar

The neural network consists of various types of layers. Most of layers in a deep neural

networks are convolutional layers (e.g. 13 out of 16 in VGG16), which conduct a large number of

matrix multiplications. Utilizing RRAM crossbar through matrix multiplications in the neural

network can increase parallelism and decrease latency. Encoding a weight value into the RRAM

crossbar requires conversion between the value and the cell conductance, which follows the

formula [184], where α = Gmax−Gmin
wmax−wmin

and β = Gmax−α∗wmax:

G = α∗W +β (5.1)
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α linearly scales weights to match range of conductance and β adds the offset to remove negative

values in weights. The precision of weights is limited by the bitwidth of RRAM cells. Single cell

only achieves at most seven bits accuracy [190]. To achieve higher precision, each weight can be

programmed into multiple RRAM cells [74].

Each layer of the neural network is serialized. Therefore we can only perform parallel

operations within the single neural network layer. Each layer of the neural network should

be mapped to a group of RRAM tiles [74]. Because tiles belonging to the different layers are

independent, layers can form a pipeline to achieve better throughput [74]. The pipelined RRAM

crossbar chip processes multiple inputs concurrently with different layers.

5.1.2 Thermal Issues in RRAM Accelerator

RRAM cells originally obtain ON and OFF states. Each RRAM cell can represent

multiple bits by setting an intermediate state that has the conductance between ON and OFF

states [184]. Each status has its unique conductance range that does not overlap with others.

However, temperature changes has a significant impact on the RRAM conductance between OFF

and ON states [191]. Increased temperature leads to a narrower range of conductance.
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Figure 5.1: Temperature impact on (a) RRAM cell conductance and (b) CNN applications
relative inference accuracy.

Figure 5.1(a) depicts this effect on OFF and ON conductance (GOFF and GON). The
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ON state has a weak metallic-like characteristic [191] such that GON significantly drops as the

temperature rises. While GOFF increases with temperature because of increased current [191].

The conductance range [GOFF ,GON ] drops by 50% when the temperature rises from 300K to

400K. The conductance range starts to drop sharply after 330K, which is a common operational

temperature for many chips. We observe the asymmetry of conductance variation: GON drops

rapidly while the GOFF increases slowly.

The shifting conductance leads to weight misrepresentation of the neural network. The

weight conversion (Equation 5.1) between weights and RRAM conductance is based on ideal

condition at room temperature. When the temperature changes, certain weight values fall into

unavailable conductance range, the weight conversion maps these weight values to the nearest

available conductance. These weight values are misrepresented and share conductance with

others. We modeled the effect and tested on several large scale neural networks [192, 193].

Figure 5.1(b) shows the relative reference accuracy of four neural networks under 300K to 400K.

To get relative accuracy, we normalize the ReRAM generated accuracy to the software generated

accuracy. We assume entire chip is effected by the same temperature. The accuracy drops as

the temperature raises. Despite minor variance between different network models, the inference

accuracy of all experiments eventually drop below 10% at 400K.
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Figure 5.2: Temperature distribution of a single RRAM chip when running VGG16, Incep-
tionV3 and ResNet50.

When pipelining multiple CNN applications, each application runs in different layers

during runtime. Because different CNN layers have various sizes, the amount of data and matrix
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multiplication operations conducted by different neural network layers varies. When each layer

is bonded to certain groups of tiles on the chip, power consumption varies between tiles and

dynamically change with time, which may cause a non-uniform thermal distribution on RRAM

chip. We generate the steady state temperature distributions of entire RRAM chip with three CNN

models (VGG16, InceptionV3, ResNet50) conducting inference for 10000 ImageNet [194] figures.

As Figure 5.2 shows, the temperature difference can be as high as 17.16K. The distribution also

shows several distinctive hot spots. Design-time mechanisms are not sufficient to solve such

dynamic issues. Furthermore, identifying hot spot tiles and mitigating heat on hot spot tiles

could optimize the thermal status. In the next section, we propose two mechanisms, one can

dynamically mitigate the negative impact of overheating, and the other can reduce hotspots on the

RRAM chip.

5.2 HR3AM Design

5.2.1 HR3AM Overview
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Figure 5.3: Overview of HR3AM structure.

To handle thermal issue imposed inference accuracy loss, we propose HR3AM, a heat

resilient design for RRAM based CNN accelerators. Figure 5.3 shows an overview of HR3AM.

When running CNN applications, HR3AM monitors the dynamic thermal distribution of the

83



RRAM chip. We adopt the temperature sensor design in commercial processors [195], which

provides temperature detection of each crossbar unit. HR3AM provides two heat resilient meth-

ods, heat-resilient weight adjustment and dynamic thermal management, to optimize inference

accuracy and temperature distribution respectively. For heat-resilient weight adjustment, we

introduce a mechanism, called bitwidth downgrading, to dynamically change the bitwidth of

RRAM cells. Downgrading bitwidth of hot RRAM cells would trade the precision of influenced

weights for mis-representation of weights caused by conductance range reduction. For dynamic

thermal management, we propose the tile pairing to move a portion of operations in hot tiles to

pre-allocated idle tiles. Hence, the power consumption of hot tiles would be reduced to release

heat. The following of this section discusses details of these two methods.

5.2.2 Heat-resilient Weight Adjustment

Bitwidth Downgrading. As we discussed in Section 5.1.2, the major cause of accuracy

decline is the conductance range drop when temperature rises. Our evaluation shows CNN

applications have 0.9% inference accuracy loss on average for every 1K increase on temperature.

To accommodate the shifting conductance range, we modify β and α of Equation 5.1. Based

on the observation that GOFF changes much less than GON , we can get Gnew
OFF ≈ Gold

OFF . When

temperature rises, the new formula can be calculated with a new coefficient γ:

Gnew = γ∗ (α∗W +β) (5.2)

where γ≈ Gnew
ON

Gold
ON

. However, the RRAM conductance range, which is divided into multiple levels to

represent all the bits states, are non-adjustable. The conductance shrinkage causes the weight value

mapped to a high conductance to be misrepresented as a lower conductance. Instead of directly

using these misrepresented values, we propose to downgrade the bitwidth such that converted

weight can be properly mapped into available conductance range. Bitwidth downgrading acts as γ
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in Equation 5.2. When both weight W and parameter β shift right N bits, the mechanism changes

the conversion equation to: Gnew = 1/2N ∗ (α∗W +β), where N represents the number of shifted

bits.

Our design also accommodates the multiplication result produced by adjusting weights to

ensure output correctness. We directly shift N bits back on the result using existing shift-and-add

units. The new formula for output voltage when the bitwidth downgrading effects is as follow:

VO =V T
I ∗Gnew ∗RS ∗2N = (V T

I ∗RS ∗Gold/2N)∗2N . The disadvantage of this mechanism is the

loss of weight accuracy. However, bitwidth downgrading uniformly and linearly changes weights.

Therefore the ratios between different synapses’ weights are unchanged such that calculations

using bitwidth downgrading provide better accuracy than those using misrepresented values. As

we show in Section 5.3, bitwidth downgrading causes much less inference accuracy loss than that

of temperature induced conductance changes.

Hardware Support. Figure 5.4 presents the hardware design for bitwidth downgrading.

We add a temperature register, a comparator, a downgrade bit for each crossbar array and a control

circuit. The temperature register stores the most recent sensed temperature of the crossbar array.

The comparator checks if the current temperature of the crossbar array exceeds the threshold.

The control signal from comparator updates the downgrade bit to notify the crossbar to conduct

bitwdith downgrading. The weight encoding hardware reprograms weights to the crossbar cells.

We slightly modify weight encoding logic such that the weights shift N bits left before encoding

when the downgrade bit is set. Therefore the encoded conductance is 1
2N of the original. The

adjustment on the output only requires minor modification on the shift-and-add unit. The control

signal from the downgrade bit forces the shift-and-add unit to shift N bits right, such that the

final result expands 2N times and matches with the output of no bitwidth downgrading. The

implementation cost consists of a temperature register, a comparator, a downgrade bit and its

control logic, and modification to the encoding logic to support bit shifting for each crossbar

array. These are either small size storage or simple logic circuits.
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Figure 5.4: Bitwidth downgrading hardware in the crossbar array.

Bitwidth downgrading procedure. Figure 5.5 presents the flowchart of the bitwidth

downgrading mechanism on a crossbar array. At step 1 , the comparator updates the downgrade

bit based on the current temperature. Step 2 checks if the status of the downgrade bit changes,

if it is unchanged the crossbar array directly starts multiplication by going to step 3b , while a

true state leads to step 3a (bitwidth downgrading/restoration). There are two cases in step 3a .

When the downgrade bit makes 0→ 1 change, the crossbar array recomputes conductance with

N bit shifted weights and encode them to RRAM cells. When the bit makes 1→ 0 change, the

crossbar array conducts weight restoration: it loads original weights and encodes them to RRAM

cells. Step 3b conducts matrix multiplication within the crossbar. Step 4 checks the downgrade

bit. A true state leads to step 5 , the crossbar array shifts N bits back on the output using the

shift-and-add unit. The final result is forwarded to tile buffer.
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Figure 5.5: Bitwidth downgrading operation flowchart.

The bitwidth downgrading mechanism only effects inside the crossbar array. It requires

neither the coordination between the crossbar array and the MAC, nor the coordination between

bitwidth downgraded crossbar arrays. The downgraded weights are generated temporarily and

avoid overwriting the original copy. We only shift one bit to match the shifted conductance

in the worst case (400K) as we observed in Section 5.1.2. Therefore, we set N=1 across the

entire design. We choose the temperature threshold of 330K because we observe a significantly

increased accuracy decline rate after 330K on Figure 5.1.
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5.2.3 Dynamic Thermal Management

Tile Pairing. As we demonstrate in Section 5.1.2, thermal distribution is not uniform on

the RRAM chip. Temporally reducing power consumption on the hot spot tiles may improve the

thermal status. However, conventional power saving techniques such as decreasing frequency

requires complicated design and significantly decreases performance. Therefore, we propose a

novel approach — tile pairing to match an overheated tile with an idle tile, while both paired tiles

are working at low power mode. In the low power mode, every other row in one crossbar array

is activated, such that only half of the cells on a crossbar array are functioning. Based on [74],

a low power mode tile only consumes 61.8% of the power of a full power mode tile. We pair

overheated units at the tile level. Because pairing at a finer granularity (MAC or crossbar array)

leads to overhead for tracking paired units.

We identify an overheated tile and a cooled-down tile with collected temperature statistics.

When 80% of the crossbar arrays within an unpaired tile reach the threshold, we identify the tile

as overheated. When the percentage of the overheated crossbar arrays in a paired tile drops below

40%, we identify the tile as cooled-down. A cooled-down tile unpairs with its paired tile. The

paired tile resumes as an idle tile.

Xbar array
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ADC

v0

VO

v1 v2N v2N+1
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Pairing

bit

0/1
Master/

Slave

Tile Tile Tile

Tile Tile Tile
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ADC
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ADC

Data path

Control path

Figure 5.6: Tile pairing (a) mechanism and (b) control logic.

88



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

M
N

IS
T

V
G

G
1

6

R
e

s
N

e
t5

0

In
c
e

p
ti
o
n

V
3

300 310 320 330 340 350 360

Temperature (K)

Base TARA HR3AM-BD HR3AM

R
e
la

ti
v

e
 a

c
c

u
ra

c
y

HR3AMHR3AM-BD

Figure 5.7: Inference accuracy of four neural network models.

Figure 5.6(a) demonstrates the paring mechanism. When an overheated tile pairs with

an idle tile, the hot tile is the master tile and the idle tile is the slave tile. Every crossbar array

in the master tile pairs with a crossbar array with same index in the slave tile. Both master

and slave tiles use half of their cells to produce the result. Two crossbar arrays use the same

weights G and same input VI . The master tile array uses even-index columns and the master tile

array uses odd-index columns. The master tile array produces output V m
O = {v0,v2...v2N} and the

slave tile array produces output V s
O = {v1,v3...v2N+1}. The final result is the union of the two

outputs:VO =V m
O ∩V s

O, which is constant with result generated from an unpaired crossbar.

To scatter a matrix multiplication to two tiles, we rearrange the data placement between

master and slave tiles. During pairing, the controller transfers the weight matrix from weight

memory of the master tile to the slave tile’s. During multiplication, the master and the slave tile

share the input data. The data stored in eDRAM vaults are transferred through routers. After

calculation, master tile combines outputs of two tiles.

Hardware Support. As Figure 5.6(b) shows, we put additional control logic for each

RRAM crossbar to support the low power mode. We add a paring bit and a master/salve bit to
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indicate the status of the tile. The crossbar array acts as normal when the pairing bit is disabled.

When the pairing bit is set, the hot tile is set as master with master/slave bit. The idle unit is

set as the slave with the same bit. On the master tile, the control logic only enables 2N index

columns, S&Hs and ADCs are disabled accordingly as well. The slave tile only enables 2N +1

index columns.

State-of-the-art RRAM architecture [74] does not support dynamic scheduling of tiles.

When the pipeline design allocates all the tiles to all the layers, certain tiles are idle during

inference but are still bonded to a network layer. Therefore, we reserve several tiles as idle tiles

and keep them from being assigned to any network layer. The reserved tiles potentially hurt chip

performance due to loss of parallelism. Our performance overhead evaluation in Section 5.3.4

shows throughput decreases only 2.1% on average.

5.3 Evaluation

5.3.1 Methodology

Our RRAM chip setup is based on a state-of-the-art architecture [74]. Our chip consists

of four layers of eDRAM and an RRAM layer. The chip operates at 1.2GHz. We build our

own RRAM based neural network accelerator simulator. Our simulator models the RRAM

conductance variation between 300K to 400K based on [185]. The simulator updates conductance

according to the temperature per 100ms at the crossbar array granularity. Our simulator obtains

chip temperatures dynamically from HotSpot [196]. The thermal characteristics of the HMC

architecture is obtained from previous work [197]. Our thermal simulation uses a single RRAM

cycle (100ns) as the time step as described in Section 5.2.1.

Our simulator coordinates with the Tensorflow framework [198] such that it evaluates

any Tensorflow based model on RRAM crossbars. We evaluate our design with a small scale

two-layer neural network for MNIST handwritten classification [199] and large scale neural
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networks (VGG16, ResNet50, and InceptionV3) for ImageNet [200] classification. We use a set

of 60000 cases for training and 10000 cases for inference in MNIST. For ImageNet classification

networks, we use pre-trained weights for convenience. We use 10000 pictures for inference

from Large Scale Visual Recognition Challenge [194]. We evaluate the inference accuracy with

top-five prediction results. We compare our design with two other baselines:

• No heat resilience (Base) implements a plain RRAM chip without any heat resilient design.

• Temperature-Aware Row Adjustment (TARA) implements prior work [189] proposed

scheme.

Our schemes include:

• HR3AM with Bitwidth Downgrading (HR3AM-BD) only implements proposed bitwidth

downgrading.

• HR3AM implements the both proposed bitwidth downgrading and tile pairing mechanisms.

5.3.2 Inference accuracy

Figure 5.7 shows the inference accuracy of four neural network models under various

ambient temperatures. We scale the ambient temperature from room temperature 300K to 360K,

where RRAM chip is significantly affected by the poor heat dissipation. We observe several

findings from the results. First, our design is resistant to the heat-induced temperature increase.

HR3AM-BP and HR3AM manage to respectively obtain at least 83.5% and 87.8% relative

accuracy among all the cases. Second, HR3AM has relatively stable accuracy. TARA’s accuracy

drops by 40.05% on average when the ambient temperature raises 60K. At the same time, the

inference accuracy of HR3AM-BP only drops 7.77%, and that of HR3AM only drops 4.82%.

Third, networks with larger scale and more layers obtain more benefits from HR3AM. VGG16,

ResNet50, and InceptionV3 have a larger improvement from other baselines to our schemes than

MNIST. The thermal issue is worse on these networks. These networks have complex structures

and process large input images, which lead to intensive data movement between tiles and eDRAM

91



and high power consumption. HR3AM provides further accuracy and thermal optimization for

these cases. Overall, we manage to improve inference accuracy by 4.8%–58% over the Base and

4.3%–41.8% over TARA.

5.3.3 Thermal status

VGG16 InceptionV3 ResNet50

Base

HR3AM

339.0

337.4

335.8

334.2

332.6

331.0

329.4

327.8

326.2

324.6

323.0

321.4

319.8

318.2

316.6

315.0

313.4

311.8

310.2

308.6

307.0

Figure 5.8: Comparison of thermal distributions of a RRAM chip when running three networks.
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We present the results of thermal status with three network models: VGG16, ResNet50,

and InceptionV3. Because TARA [189] does not optimize thermal status, we only compare our

design with the Base which has no thermal optimization. We reserve 10% tiles as idle tiles for

HR3AM.

Figure 5.8 presents the comparison between HR3AM and the Base on steady-state thermal

distribution. We have three observations. First, our design significantly reduces the hot spot

region. This indicates that our design manages to identify overheated tiles and mitigate heat for

these tiles. Second, idle tiles help mitigate heat and stay at a relatively low temperature. However,

these idle tiles form a cold spot. We can further optimize our design by wisely distributing idle

tiles across the chip. Lastly, the released heat on hot tiles also benefits the inference accuracy.

HR3AM has a smaller percentage of crossbar arrays that triggers bitwidth downgrading than that

of the Base, such that it brings a 2% improvement in inference accuracy compared to HR3AM-BP.

To show the effectiveness of HR3AM during chip operation, we measure the maximum

and average temperature every 10ms across all the crossbar arrays of the chip. We measure a

total of 100ms time during steady operational state. Figure 5.9 shows the maximum and average

temperatures during this time. Our design limits the maximum temperature below 336K and

average temperature below 327K. HR3AM manages to contribute a 6.2K decrease on maximum

temperature and a 6K decrease on average temperature.

5.3.4 Performance and energy

We adopt the performance and power model from [74] to estimate HR3AM. We normalize

the results of each network running on HR3AM to the same network running on the Base.

Figure 5.10(a) shows the 2.1% loss on normalized throughput. Both weight encoding in bitwidth

downgrading and reserving idle tiles in tile pairing cause the performance downgrading. The

weight encoding process typically delays the multiplication. However, it only happens when

the downgrade bit changes. In tile pairing, HR3AM reserves 10% of the tiles and therefore
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Figure 5.10: Normalized (a) throughput and (b) power consumption on HR3AM.

loses computational parallelism. However, because these tiles work under the low power mode,

Figure 5.10(b) shows a 7.7% average decrease on the normalized power.

5.4 Conclusion

In this work, we investigate how heat impacts inference accuracy of RRAM based

accelerator. Our evaluation shows network inference accuracy drops significantly when the

temperature increases. We propose HR3AM, a heat resilient design for RRAM based neural

network accelerators. HR3AM consists two mechanisms: bitwidth downgrading and tile pairing.

Bitwidth downgrading adjusts weights to the reduced RRAM conductance. Tile pairing matches

hot spot RRAM tiles with idle tiles. Compared to state-of-the-art prior work, HR3AM achieves

an accuracy improvement by up to 41.8% on four real world applications of CNN models. Our

thermal evaluation shows a 6.2K decrease on the maximum temperature and a 6K decrease on

average temperature.
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Chapter 6

Mirage: A Highly Paralleled And Flexible

RRAM Accelerator

The emergence of NVM provides an alternative for memory devices. One representative

NVM – Resistive RAM (RRAM), or memristor, enables not only data storage ability, but also

computation ability [201, 79]. This duality blurs the boundary between memory and computation

and is also referred to as processing-in-memory (PIM). PIM architecture may achieve higher

performance and better power efficiency, compared to the conventional storage-only memory

architecture [202, 203, 204].

The RRAM-based PIM architecture has been intensively explored to accelerate deep

neural network (DNN) applications in recent years [74, 75, 76]. Multiple RRAM cells form

an array structure called “crossbar”, which can conduct a multiply-accumulate operation in

a single cycle. This Single Instruction, Multiple Data (SIMD) design allows parallel matrix

multiplications and convolutions, which are the fundamental operations in various DNNs. For

instance, calculations in fully connected layers and convolutional layers in convolutional neural

networks (CNN) are essentially matrix multiplications and convolutions. Prior works demonstrate

SIMD architecture can achieve better performance compared to CMOS-based application-specific
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integrated circuits (ASIC) accelerators [74, 75, 76], and higher energy efficiency compared to

GPU [73, 76].

However, existing RRAM-based DNN accelerators lack several essential features and

compromise performance and flexibility. First, the data dependency resulting from shared data in

the existing pipeline design degrades the performance of the accelerator. Based on our analysis of

the pipeline that consists of both inter-layer and intra-layer parallelisms [76, 74], we discover that

the existing designs spend up to 50% of inference time on idle cycles because of the shared data

induced dependency. As we demonstrate in Section 6.1, data sharing between duplicate kernels

intensifies the data dependencies between different layers, which leads to significant pipeline

stalls during the execution. Our experimental results show that idle cycles caused by shared

data can take up to 50% of the single inference latency for certain network models. Second,

existing hardware assignments cannot fit with the pipeline design in the RRAM-based accelerator.

The pipeline design requires a mapping between the hardware resource to different layers in a

network. Each network needs to have a specific hardware mapping in order to execute on the

accelerator. However, this requires an approach to customize the hardware assignment to the

network layers automatically. On the one hand, the user-generated assignment could degrade the

performance provided by hardware parallelism. On the other hand, the existing automatically

generated assignments [78, 205, 206, 77] are not able to apply to the pipeline structure.

To address these issues, we introduce Mirage, an RRAM-based accelerator that provides

1) high parallelism by resolving the data dependency due to shared data in duplicate kernels, and

2) high flexibility by enabling automatic hardware assignment for general DNN applications.

Mirage consists of two primary designs: Finer-grained Parallel RRAM Architecture (FPRA) and

Auto Assignment (AA), to deal with issues raised by the shared data and hardware assignment,

respectively. FPRA is based on the insight that the proper arrangement of the duplicate kernels

and unified data buffering of input and output data can resolve the data dependency caused by

shared data. FPRA introduces kernel-batching to group the computation of the duplicate kernels
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of the same layer, and data sharing aware memory to uniformly manage the input and output data

of duplicate kernels. AA utilizes the network parameters and accelerator hardware configurations

to generate a hardware assignment automatically. AA follows two rules that we observed from

the DNN models: 1) layers at the front need to have the same or higher level of parallelism of the

layers deeper in the network1, and 2) consecutive layers with the same level of parallelism suffer

from the least amount of stall brought by data dependency. With the greedy strategy that follows

these rules, AA searches for the best assignment for all the layers under the available hardware.

This dissertation makes the following contributions:

• We discover that shared data induces data dependency, and evaluate the corresponding ineffi-

ciency in the pipeline design of the RRAM-based NN accelerators.

• We show that the manual assignment of layers to the crossbars leads to underutilization of the

hardware, while the existing automatic assignments are inefficient when the design is pipelined.

• We propose Mirage, a highly parallel and flexible RRAM-based NN accelerator. Mirage

consists of two main features: Finer-grained Parallel RRAM Architecture (FPRA) and Auto

Assignment (AA).

• We evaluate Mirage on eight image recognition DNN models. Our results show 2.0× speedup2

and 2.1× throughput increase against the state-of-art baseline.

6.1 Background & Motivation

Existing parallelisms in RRAM-based accelerator. Similar to the CMOS-based NN

accelerators [207, 208, 209, 210], RRAM-based accelerators possess intra-layer parallelism. In

the intra-layer parallelism, the computations of all the parameters of a kernel are concurrent. The

reason is that one crossbar array computes all the weights stored in RRAM cells concurrently

1For any layer in the network, “layers at the front” refers to the layers that are closer to the first layer, “layers
deeper in the network” refers to the layers that are further from the first layer.

2Speedup represents the speed up of a single inference latency.
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Figure 6.1: The throughput of four neural networks. Numbers are normalized to the theoretical
maximum throughput of the accelerator.

over a single cycle. RRAM-based accelerators obtain intra-layer parallelism through mapping the

kernel parameters to one or several crossbar arrays. RRAM-based accelerators can also duplicate

kernel parameters to different groups of crossbar arrays to further improve parallelism, such that

different parts of the input feature map are processed concurrently.

The pipeline design in the RRAM-based accelerators introduces inter-layer parallelism.

RRAM-based accelerators can deploy more computational units within the same chip area

because of the size advantage of the memristor. These additional computational units enable

the RRAM-based accelerator to process more matrix multiplications in parallel. Therefore, the

existing RRAM-based accelerators [74, 76] deploy all the network layers on an RRAM-based

accelerator at the same time. Doing that requires the accelerator to allocate tiles for each layer,

such that each layer becomes a pipeline stage of processing inference. A layer does not need to

wait until the previous layer output feature map is entirely generated. This pipeline design allows

each layer to start computation when the required input pixels are ready [74].

We estimate the theoretical maximum throughput of the RRAM-based accelerator (with

the configuration in Table 6.1) to be 6.5×103 GOP/s (e.g., Giga 16-bit operations per second) for

each tile. Figure 6.1 compares the theoretical throughput with the throughput of four RRAM-

accelerated neural networks executing on the simulator. Results show a significant performance

gap between theoretical throughput and simulated throughput. Based on our detailed analysis in

the following section, we find that most of the performance gap is the data dependency related

pipeline idleness.
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Figure 6.2: Shared data in a convolutional layer with four duplicate kernels.

6.1.1 Shared Data Induced Data Dependency

Shared data between duplicate kernels emerges when pipelining and kernel duplication

are applied simultaneously. In kernel duplication, the feature map is evenly divided by the

kernels. Different kernels compute different parts of the output feature map such that none of

the computation is repeated. However, when the kernel size is larger than 1×1, parts of the

input feature map overlap among the duplicate kernels. Figure 6.2 shows the data sharing of a

convolutional layer with four duplicate 2×2-sized kernels. We may partition the input feature

map differently. However, shared data still exists among duplicate kernels.

The shared data does not affect intra-layer parallelism by itself when all the input feature

maps are prepared at the start of computation. The pipeline naturally has the data dependencies

between consecutive layers. The shared data, however, further aggravates the data dependencies

because the shared data blocks multiple kernels in the subsequent layers. Figure 6.3 illustrates

an example of shared data induced data dependency in the first two convolutional layers in a

DNN model. These two layers both use a 2×2-sized kernel and both kernels are duplicated

twice. As the figure shows, all the output feature maps are divided into two halves. In each layer,

two duplicate kernels share the middle part of the pixels of the input feature maps. During the
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Figure 6.3: An example of data sharing in the first two layers of a DNN model.

computation, each kernel computes a single output pixel within a compute cycle. As starting at

the top left corner of its input, the kernel moves from left to right to perform computations. The

first layer has all its input feature maps ( a ) ready at the beginning. Therefore, none of the kernels

( b , c ) in layer 1 are blocked. In layer 2, kernel B ( f ) is blocked due to the missing input data

(output pixel 4 in the layer 1) ( d ). Kernel B needs to wait until the output pixel 4 from layer 1 is

computed. We may change the order of computation in layer 1 to force kernel A to compute the

shared data first. This, however, blocks the computation of kernel A ( e ) in layer 2. With more

duplicate kernels and deeper network layers, more shared data exists in the input feature map.

This aggravates the data dependency problem, inducing more idleness of the duplicate kernel.
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Figure 6.4: Single inference latency breakdown.

To quantify the inefficiency of the shared data induced data dependency, we simulate

a pipeline-enabled RRAM-based accelerator (configuration details in Section 6.4) and break

down the single inference latency, as shown in Figure 6.4. We break down the latency into five

categories: computation time of crossbar arrays, idle time resulting from shared data related

dependency, communication time (e.g., time for synchronization between tiles and MACs), data

movement time (e.g., timing for transferring input and output data), and others.

Due to the pipeline, crossbar arrays belonging to different layers have significantly

different cycles on each type of operation. We collect the cycles for each type of operation

and calculate the breakdown for all the crossbar arrays of each layer. We calculate the overall

breakdown with the geometric mean of each layer. We observe that the shared data induced

idleness forms a significant portion, contributing to nearly 50% of the overall latency. This

can be attributed to pending shared data blocking computations of multiple kernels. Therefore,

arranging the sequence of computations on shared data becomes critical to the performance of

pipeline-enabled RRAM accelerators.

6.1.2 Issues with Existing Hardware Assignments

The pipeline requires a dedicated assignment that maps each layer to different hard-

ware [74, 76]. To properly execute a network, the accelerator relies on the users’ experience
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Figure 6.5: Comparison between user assignment and adjusted assignment on (a) the number
of duplicate kernels in eight convolutional layers, and (b) inference speedup.

for the assignment. The user needs to estimate the required hardware resource of the network

and assigns hardware accordingly. To maximize the accelerator’s performance, the user also

needs to be aware of the pipeline and kernel duplication to fully explore the parallelism of the

accelerator. Prior works [78, 205] provide automatic hardware assignments of the network, but

do not distinguish the difference between pipeline and non-pipeline designs. To fully utilize

the performance of pipeline structure, the specific assignments for each layer still need to be

coordinated by the users. Requiring these architectural experiences is impractical for the regular

user, who expects to execute the network model on the accelerator, similar to GPUs or CPUs.

Poor user assignment can lead to underutilization of the hardware, as shown by the

example in Figure 6.5. We configure the RRAM-based accelerator to execute on a VGG-11 [192]

DNN model. We assume the hardware is sufficient for processing twice the amount of the network

parameters. An inexperienced user may simply duplicate kernels of each layer twice to improve

the parallelism. With the same hardware, an adjusted assignment reduces the kernel duplication

in the last two layers to adopt more duplication in the layers at the beginning. This adjustment

utilizes the hardware more efficiently. The front layers process larger feature maps, which benefits

more from having more kernels. Even without shared data induced idleness, with same number

of kernels, front layers take longer to process a feature map than the subsequent layers.
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Figure 6.5 (a) compares the number of duplicate kernels of eight convolutional layers

between the user assignment and the adjusted assignment. We simulate the performances of these

two assignments and compare the speedup in Figure 6.5 (b). Since an normal user is oblivious of

the intricacies of the data dependency induced in the pipeline and the required hardware resources

for each layer, the user assignment results in a significantly slower design than our adjusted

assignment.

Overall, pipeline designs in the RRAM-based accelerators suffer from shared data and

hardware assignment induced inefficiency. Some existing RRAM-based accelerators attempt to

provide flexibility and reconfigurability [78, 205] while ignoring the shared data and the pipeline

architecture. Other existing accelerators attempt to address both issues by abandoning the pipeline

design [206, 77]. However, these solutions underutilize the on-chip area of RRAM, which leads

to lower throughput Mirage tries to resolve these issues while supporting the pipeline design of

the accelerators.

6.2 Mirage

In this section, we introduce Mirage, an architectural design for the RRAM-based DNN

accelerator. The design of Mirage aims to provide high parallelism and flexibility for various

neural networks. As shown in Figure 6.6, the Mirage design has two major components: Finer-

grained Parallel RRAM Architecture (FPRA), and Auto Assignment (AA). FPRA improves the

parallelism of the RRAM architecture from two aspects: reducing shared data induced idleness in

the crossbar arrays, and decreasing the amount of data transferred between tiles. AA improves

the flexibility by automatically generating hardware assignment with high hardware utilization

and parallelism.
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Figure 6.6: The overview of the Mirage architecture.

6.2.1 Finer-grained Parallel RRAM Architecture (FPRA)

To alleviate the shared data induced data dependencies (described in Section 6.1.1)

in RRAM-based accelerators, we propose Finer-grained Parallel RRAM Architecture (FPRA).

FPRA aims to achieve higher parallelism with finer-grained coordination of data between different

kernels and different layers. As Figure 6.6 shows, FPRA is a tile-level design consisting of two

mechanisms: kernel batching and data sharing aware memory. The kernel batching groups

duplicate kernels and uniformly manages their data forwarding and computation. The data

sharing aware memory stores shared input/output data between all batched kernels and manages

data for all the kernels together to reduce unnecessary data duplication. We implement the kernel

batching in the tile controller and data sharing aware memory in the eDRAM of each tile (details

in Section 6.3.1).

Kernel batching. The shared data induced dependency exists because of the partitioned

input feature map for each kernel (Section 6.1.1). We observe that enforcing all the kernels of the
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same layer to simultaneously compute over continuous shared data, can eliminate the shared data

induced dependency and only keep the data dependency between layers. We refer this mechanism

as kernel batching. When all the layers in the network apply kernel batching, all the kernels

belonging to the same layer behave uniformly - either pending for input or computing output.

Kernel batching requires several rules to guarantee the computations follow the network

configuration without being repeated on different kernels. First, the kernel batching places all the

kernels together with one stride size as the minimal gap. The adjacent two kernels have to be

exactly one stride away. This makes sure the generated output data are continuous within each

computation iteration, while none of them are overlapped. Second, the duplicate kernels shift in

the same direction with the same gap between each computation. This makes sure the generated

output data between computation iterations are continuous. Third, the duplicate kernels shifts

may shift multiple strides between computations. Depending on how the kernels are batched and

the direction kernels are moving, each kernel may take multiple strides to avoid recomputating

the data.

Kernel A

Kernel B

Kernel C

Kernel D

Kernel A

Kernel B

Kernel C Kernel D

(a) (b)

Figure 6.7: Two kernel batching types: (a) linear batching, and (b) square batching.

We propose two types of kernel batching: linear batching and square batching. The linear

batching places all the kernels in a row (or a column). Figure 6.7 (a) shows an example of the

linear batching in a convolutional layer. The kernel size is 2×2×64, and the stride size is 1. The

same kernel is duplicated into four replicas in a row with indices A, B, C, and D. The batched
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kernels move in a vertical direction with a single stride gap. The linear batched kernels rely on

rectangular-shaped input to generate a one-line output. The square batching places the same

amount of kernels in consecutive rows and columns. Any two adjacent kernels still share only

one stride gap. Figure 6.7 (b) shows an example of the square batching. In this example, we use

the same kernel size and stride as the linear batching. The square batched kernels rely on the

square-shaped input to generate a square-shaped output.

Two types of kernel batching fit with different neural network layers and different amounts

of duplicate kernels. The squared batching fit with the convolutional layer connects to the pooling

layer. Because pooling layer relies on square-shaped input, if the squared batched kernels produce

exactly the same sized output data for every computation iteration, the idleness between the

convolutional layer and the pooling layer is minimized. However, the square batching requires

the kernel duplication number to be square, which may not be achievable due to the limitation of

available hardware. Hence, the linear batching is more feasible with any number of duplicate

kernels. Mirage uses linear batching and square batching simultaneously. The FPRA provides

both types of batching while AA decides which type is used based on available hardware and

topology of the neural network. We explore the performance impact of different strategies of

batching type in Section 6.5.2.

Data sharing aware memory. The kernel batching helps reduce the shared data induced

idleness in the pipeline. However, as the batched kernels share more data, the amount of input

data used by all the kernels is significantly increased. For example, in a convolutional layer with

64 64×64-sized input feature maps and four kernel replicas, using linear batching can increase

the amount of input data by 1.6× compared to no kernel batching. Because the duplicate kernel

is not aware of the shared data, the amount of data forwarding between layers can significantly

increase. The increased data movement exhausts the bandwidth of NoC, and leads to limited

performance increase (Section 6.5.1).

To solve the issue, we propose data sharing aware memory to efficiently forward data
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Figure 6.8: Data sharing aware memory in two layers of a DNN.

between layers, and dispatch data to duplicate kernels. The data sharing aware memory utilizes

the memory space provided by the eDRAM of each tile (Section 6.3.1). The data sharing aware

memory buffers a part of the input and output feature maps of the layer. As the Figure 6.8

shows, the feature maps data is transferred via inter-tile data synchronization through NoC. The

output data of four linearly batched kernels in layer i stores in the data sharing aware memory,

and transfer to the memory of layer i+1 together. The data sharing aware memory stores the

input feature map for all the kernels as an entirety. The memory dispatches the input data to

each kernel’s crossbar arrays. The dispatch only happens inside the tile (e.g., intra-tile data

synchronization), which costs no NoC bandwidth. This is because each kernel is loaded across

multiple crossbar arrays, where crossbar arrays belong to different tiles. In this example, the data

sharing aware memory dispatches data a – d to the kernel A’s crossbar arrays, c – f to the kernel

B’s crossbar arrays, e – h to the kernel C’s crossbar arrays, and g – j to the kernel D’s crossbar

arrays.

Data sharing aware memory also manages the execution of batched kernels. Since data

sharing is invisible to duplicate kernels, the memory utilizes intra-tile data synchronization to
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a shared input of a 2×3×64-sized window. The numbers indicate the steps and the red arrow
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start computation of each kernel. The data sharing aware memory keeps track of the kernel’s

location and progress, as the duplicate kernels metadata are stored inside the memory. This

provides corresponding input data for each layer upon receiving these data. As batched kernels

move with the same stride and direction, the data sharing aware memory uses the batched window

to uniformly keep track of the input and output data. Figure 6.9 shows an example of the batched

window shifting over the input and output shared memories. The movement of the batched

window guarantees that none of the output is missed or overlapped. In each step of the batched

window, the data sharing aware memory dispatches the data within the window to all the kernels.

When the computation is complete, the output data is sent to the shared memory. When all the

data within the output batched window is received, the tile forwards the data to the next layer.

The data will be released when the computation and forwarding are finished.

Data sharing aware memory benefits from kernel batching design as well. The batched

kernels always generate continuous output data, and consume input data continuously for compute.

The data sharing aware memory only needs to buffer the received data that are needed for current

and future computations. Once the computation completes, the input data no longer required can

be released. We evaluate that the size of eDRAM (e.g., 64KB in Table 6.1) is efficient for the

data sharing aware memory.
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6.2.2 Auto Assignment

Auto Assignment (AA) is a method to automate the allocation of hardware resource to

neural networks for the RRAM-based accelerator pipeline. AA engages at the configuration

stage before the network is loaded to the accelerator. As shown in Figure 6.10, AA takes in the

accelerator configurations and the network hyper parameters, to generate the hardware assignment

as well as an execution model that specifies the order of execution and data forwarding path.

Neural Network 

Hardware

Estimation

RRAM-based 

Accelerator

Hardware

Assignment
Execution Model

Figure 6.10: The work flow of the auto assignment.

AA consists of three steps. First, AA extracts key information from the accelerator

configurations and network hyperparameters, including the crossbar array size, the number of

crossbar arrays, the topology of the network, computation parameters of each layer (e.g., kernel

size and strides), etc.

Second, AA estimates the hardware resources (e.g., number of crossbar arrays) required

for each layer based on the network information. Using a greedy strategy-based Algorithm 1, AA

decides the intra-layer parallelism (e.g., number of duplicate kernels) for each layer.

Lastly, AA generates the hardware assignment and execution model based on the estimated

hardware resources. AA assigns each layer of the network to the specific hardware (e.g., indices

of tiles, MAC, and crossbar array) and produces an execution model for each layer’s hardware,
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which includes number of kernels, kernel sizes and locations, type of kernel batching, and adjacent

layers’ hardware indices. The execution model specifies the order of data to be processed by

assigned hardware and data forwarding between the hardware. The hardware assignment and

execution model are loaded to the accelerator during preconfiguration.

Searching intra-layer parallelism. To find the best inter- and intra-layer parallelisms

for the network, the AA first generates a baseline which only has a pipeline for the inter-layer

parallelism with no kernel duplication. The baseline is the minimal requirement for hardware

resource to execute the network. The extra hardware resource provided beyond the baseline can

duplicate kernels in certain layers. We use two rules to assign the number of kernels for each

layer:

• Rule 1: Layers at the front should have more or at least the same numbers of kernels of the

layers deeper in the network.

• Rule 2: The difference in the number of kernels between two consecutive layers should be

minimum.

Rule 1 is based on the observation that layers deeper in the network always rely on the output

from front layers. While in most DNNs, the feature map size on the x and y dimensions decreases

as the network propagates. When the kernel moves in x and y dimensions, it takes less or the

same computation iterations for the layers deeper in the network. Hence, having more kernels in

the layers deeper in the network does not increase the parallelism of the layer. Rule 2 is based

on the observation that two consecutive layers with the same amount of kernels have the least

amount of idleness with an exception for the layers connected with the pooling layer. Because

the pooling operation reduces the amount of data, the layer before pooling needs to have more

kernels to produce data.

Algorithm 1 and its flow chart (Figure 6.11) show how AA searches the best intra-layer

parallelism for all network layers, where φ represents the number of duplicate kernels in each

layer and R represents the hardware resource. The algorithm first generates a baseline ( 1 ) and
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Algorithm 1 Searching intra-layer parallelism.
Input: NN, available HW resource (Ravl)
Output: φ[N]

1: φ[:]=1 {Setup the baseline.}
2: φ′ = φ

3: repeat
4: φ = φ′

5: L = Generate Candidate lyrs. (φ′, NN) {L are the candidate lyrs indexes.}
6: while (Rreq > Ravl) and (L is not empty) do
7: φ′ = φ

8: l = Pick one lyr(L)
9: φ′[l] = φ′[l]×2

10: Rreq = Estimate(φ′) {Estimate baseline required HW.}
11: end while
12: until L is empty
13: return φ[N]
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Search for 
candidate layers

Increase kernels on 
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Figure 6.11: The flow chart of searching algorithm.

then adjusts its intra-layer parallelism. The algorithm selects candidate layers for increasing its

number of duplicate kernels ( 2 ). The requirement for the candidate layers is that increasing

numbers of duplicate kernels on these layers still follows the above two rules. The candidate

layers include the first layer and the layers with fewer kernels than the previous layer. The
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algorithm evaluates two layers connected by the pooling layer in a different way. The subsequent

layer becomes the candidate when the front layer has more than k× of kernels than the subsequent

layer, where k stands for size of pooling filter. The algorithm then selects one layer from the

candidate to increase its number of kernels ( 3 ). The algorithm uses a greedy strategy that always

picks the layers deeper in the network first. Because layers deeper in the network with a lower

level of intra-parallelism are the bottleneck of the pipeline, increasing kernels on these layers

provides higher parallelism than the layers in front. The algorithm evaluates the target number of

hardware resources for such increase ( 4 ). If the required duplicate kernels fit with the hardware,

the algorithm applies the update and starts the next iteration ( 5 ). If not, the algorithm chooses

other candidate layers and re-evaluates the required hardware ( 6 ). The algorithm terminates

when none of the candidate layers can be used to increase parallelism.

6.3 Mirage Implementation

6.3.1 The Implementation of FPRA

FPRA Tile Architecture. To support kernel batching and memory sharing, we design the

tile-level architecture for FPRA. Figure 6.12 shows the tile architecture of FPRA. This architecture

design consists of I/O buffer, shared memory, tile controller, and MACs.

The I/O buffer handles the data transfer between tiles. The buffer connects to the router to

handle communications with other tiles. The buffer uses two circular FIFO queues to send data

and receive data separately.

The shared memory stores input/output feature maps and kernel-related metadata. The

buffered input/output feature maps are stored separately and shared among all the MAC units.

Kernel-related metadata contains hardware assignment data and the execution model. Unlike

feature maps data, metadata are written into the memory during the accelerator’s pre-configuration,

and cannot be modified during the execution. Metadata is used by the tile controller to perform
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kernel batching and manage data sharing aware memory.

The tile controller manages the data forwarding between the rest of the components.

The preconfigured metadata provides the controller information on how MACs are assigned to

different kernels and how data is shared between MACs. As mentioned in Section 6.2.1, the

controller stores only part of the feature map to save memory space. The tile controller uses the

intra-tile data synchronization to not only transfer the data between shared memory and MACs,

but also manage the execution of MACs in the correct order.

Intra-tile data synchronization. As shown on Figure 6.13, the intra-tile data synchro-

nization consists of the following steps. At the beginning, MACs remain idle when the input

data within the batched window is still pending ( 1 ). When all the data in the batched window

is received, the tile controller notifies all the MACs, and forwards the corresponding data to the

MAC belonging to each kernel ( 2 ). The MACs start computation upon receiving their input data

( 3 ). When computation finishes, the output data is forwarded to the shared memory ( 4 ). Once

the output data within the output batched window is received, the tile controller sends data to

the other tiles (e.g., next layer’s tiles) through inter-tile data synchronization. To start the next

iteration of computation, the controller also shifts the batched windows for both output and input

( 5 ). The tile is reset to pending, and the input memory re-evaluates the accessibility of data
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Figure 6.13: State diagram of the intra-tile data synchronization.

within the batched window. All MACs resume to the idle state and wait for the input data ( 1 ).

6.3.2 Auto Assignment Tool Implementation

We implement AA as the auto assignment software tool deployed during the preconfigura-

tion step. The tool implements the three major functionalities described in Section 6.2.2.

The first functionality is the analysis of the neural network based on the user’s description

on the structure of the neural network in a standard NN format ONNX [211]. ONNX enables

neural network models implemented with PyTorch [212] or Tensorflow [198] to be analyzed by the

AA tool without any transformation. For the accelerator specification, the current implementation

directly uses the simulator hardware configuration. The AA tool estimates the required hardware

based on the amount of computation in the neural networks. The estimation calculates the required

number of MACs with the size for each layer’s kernel, the size of each crossbar array, and the

number of crossbar arrays in each MAC.

We implement the parallelism searching algorithm as described in Section 6.2.2. The time

complexity of the algorithm is O(N2log(K)), where N is the number of network layers, and K

is the amount of hardware resource (i.e., number of tiles). With the common network sizes and

hardware specifications, our AA tool executes within a few seconds.
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Lastly, the AA tool generates the hardware assignment and the execution model based

on the estimated hardware resources. The tool assigns the hardware (e.g., tile and MACs) to

each layer. The generated assignment is a list of entries consisting of the index of the hardware

component, its corresponding network layer index, the number of duplicate kernels, and the index

of each kernel. The execution model for each tile consists of the indices of layers for inter-layer

data synchronization, each MACs’ data for intra-tile data synchronization, and data sharing of

duplicate kernels. Our tool generates the assignment and execution model in the YAML format

files. The simulator imports these files to configure the accelerator.

6.4 Experimental Setup

Mirage simulation. We build our in-house cycle-accurate simulator for the RRAM-based

accelerator in Python. Our simulator implements the entire architecture of the RRAM-based

accelerator, and simulates computational and data movement operations in the level of crossbar

arrays. The simulator models the pipeline between layers, such that hardware belonging to each

layer has its own status (e.g., cycles and power) and uses message passing for data movements

and communication. We adopt and modify the high bandwidth memory (HBM) model in

Ramulator [213] to simulate the eDRAM. For the operations in the crossbar, we include the cycle

parameters of matrix multiplication, ADC and S+A based on [74, 214, 215, 216]. The latency of

basic operations are listed in Table 6.1.

To utilize existing DNN models from popular frameworks such as TensorFlow [198] and

PyTorch [212], the simulator uses the inference trace generated by the Glow compiler [217]. The

Glow compiler is able to process the ONNX [211] format file specified by the DNN models. We

modify the compiler to generates a trace of the network at the inference stage. The trace includes

the number of computation operations, input and output data sizes, the sequence of executions.

Baselines. We include two other baselines for our evaluation: pipeline enabled RRAM-
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based accelerator without kernel duplication (referred to as w/o kernel duplication in Sec-

tion 6.5), and pipeline enabled RRAM-based accelerator with kernel duplication. The imple-

mentation of these two baselines are based on the architecture described in [74, 76]. For the

kernel duplication-enabled baseline, because the primitive design does not specify the hardware

assignment for each network, the baseline uses AA generated hardware assignment for each

DNN and runs the corresponding DNN benchmark with the hardware (referred to as w/ kernel

duplication opt).

Benchmarks. We select eight representative DNN models for ImageNet classifica-

tion [200]. These networks include GoogleNet [125], MobileNet [218], ShuffleNet [219], Incep-

tionV3 [220], ResNet [193], and VGG [192]. We use the same topologies and hyperparameters

provided in the original publication. As Mirage and baselines only accelerate the inference

operation, we use the pre-trained weights in the torchvision package [221] for the experiments.

Because Mirage avoids any modification on the network models and the input data, results show

no compromise over the inference accuracies (both top-one and top-five) of the network.

Hardware configuration and power model. We configure the RRAM-based accelerator

using parameters in Table 6.1. The NoC uses mesh topology and minimal adaptive routing. For

the scalability evaluation, we scale the chip area by increasing the number of tiles and all related

NoC components. To minimize the communication cost, we lay out tiles to form a rectangle with

the minimal length to width ratio.

We use the statistics from [184] to model the power consumption of crossbar array. The

power and area of the tile controller are validated with System Verilog through Synopsys Design

Compiler and Synopsys 32nm PDK [222]. The ADC power and area are based on the the SAR

ADC model specified in [223, 224]. The DAC power and area are based on [225]. We use CACTI

tool [226] to model the rest of the on-chip components including eDRAM and buses under

32nm. We compare our models to the configurations from [73] and [74] to ensure the consistency.

The simulator computes the dynamic power based on the executed operations and the energy
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Table 6.1: Hardware configuration of the Mirage.

Component Parameter Spec. Power
Controller Frequency 1GHz 0.3mW
Tile Number 168 312mW

Shared eDRAM
Size 64KB
Bus-width 256b 17.66mW
Tread/Twrite 12ns

I/O buffer Size 256 entries
2 queues 5.3mW

MAC No. per tile 12 24mW

Crossbar array
No. per MAC 8
Size 128×128 2.4mW
Bit-width 2
Tmul/TADC/TS+A 1 cycle

Off-chip memory
DDR4

Size 16 GB
Read Bandwidth 61 GB/s
Write Bandwidth 47 GB/s

consumption for each operation. The static power is considered for data storage components

including eDRAM and buffers.

6.5 Evaluations

This section shows the evaluation results of Mirage in terms of performance (Section 6.5.1),

flexibility (Section 6.5.2), the power efficiency (Section 6.5.3).

6.5.1 Performance

Inference latency speedup. Figure 6.14 shows the speedup over the baseline w/o kernel

duplication of four configurations. Besides the Mirage configuration, we add the Mirage con-

figuration without data sharing aware memory (referred to as Mirage w/o data sharing aware

memory). We make three observations from the result. First, Mirage has the highest speedup

among four configurations. Mirage has a 3.5× speedup against the w/o kernel duplication and a
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Figure 6.15: Idle ratio of four configurations.

2.0× speedup against w/ kernel duplication on average. Second, Mirage obtains a higher speedup

on the networks with more layers. For instance, compared to the w/ kernel duplication, Mirage has

a 2.1× speedup on the VGG-19, and a 1.9× speedup on the VGG-16. We observe the same trend

on the ResNet that the speedup is higher on ResNet-50 than on ResNet-18. This indicates Mirage

brings more benefit with deeper networks, as they tend to have a more severe data dependency.

Third, data sharing aware memory is essential to the Mirage. Without data sharing aware memory,

Mirage only has 1.1× speedup to the w/ kernel duplication. As Figure 6.15 shows, the idleness of

batched kernels’ hardware does not show a significant reduction.

Execution idle ratio. Figure 6.15 shows the shared data induced idle ratio of two Mirage

configurations and two baselines. Because the idle cycle of crossbar arrays differ significantly

between layers, the calculation using the summation of idle cycles of all the crossbar arrays di-

minishes the idle time on the layers with minimal parallelism. Hence, we calculate the accelerator

idle ratio using the geometric mean of each layer’s idle ratio. The idle ratio of each layer is

the ratio of the idle cycles to its own execution cycles. We make two more observations from
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the result. First, Mirage achieves the lowest idle ratio among configurations. Mirage is able

decrease the shared data induced idleness by 3.5× compared to w/ kernel duplication. Second,

Mirage w/o data sharing aware memory suffers from high idle ratio. We discover that the kernel

batching increases the traffic to throttle the NoC bandwidth. This leads to both high idle ratio on

Figure 6.15 and low speedup on Figure 6.14.
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Figure 6.16: Comparison of throughputs of three configurations.

Throughput. Figure 6.16 shows the throughput of three configurations measured in

giga 16-bit operations per second (GOP/s). We normalize the result to the w/ kernel duplication

baseline. The result is generated with a 16-chip setup. We exclude the w/o kernel duplication

baseline, due to its underutilization of the hardware resource and significantly lower throughput.

We make two observations from the result. First, Mirage manages to achieve 2.1× increase

compared to w/ kernel duplication baseline. Second, data sharing aware memory is essential to

system throughput. Due to the throttled bandwidth, the Mirage w/o data sharing aware memory is

unable to achieve notable improvement in throughput.

6.5.2 Flexibility

AA-generated hardware assignments. To show the flexibility of Mirage, we list the

number of duplicate kernels along with the hardware utilization ratio in Table 6.2 for four different

VGG configurations. We configure the accelerator to have 16 chips for processing the network.

The hardware utilization ratio is the number of assigned crossbar arrays to the number of overall
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Table 6.2: Number of duplicate kernels for each layer, and hardware utilization in four VGG
configurations.

Model VGG-11 VGG-13 VGG-16 VGG-19
conv3-64 4096 2048 2048 2048
conv3-64 2048 2048 2048

conv3-128 512 512 512 512
conv3-128 256 256 256
conv3-256 128 64 64 64
conv3-256 64 32 32 32
conv3-256 32 16
conv3-256 16
conv3-512 16 8 4 2
conv3-512 8 8 2 2
conv3-512 2 1
conv3-512 1
conv3-512 2 2 1 1
conv3-512 1 2 1 1
conv3-512 1 1
conv3-512 1
Utilization 99.98% 99.18% 99.83% 99.81%

crossbar arrays. Based on the result, we make two observations. First, AA manages to adjust

hardware to different configurations of the same DNN model. With the same accelerator and

same type of neural network, the generated assignment can be different even with only changes

on a few layers. Adopting these changes can be a troublesome and error-prone task for the users.

The AA-generated assignment follows the two rules and achieves the best performance. Second,

the assignment achieves high hardware utilization for all the configurations. When a particular

layers’ desired hardware is unavailable, AA searches other candidate layers for the best second

choice. This minimizes the unused hardware on an accelerator when the network size varies. The

hardware utilization of Mirage is at 98.75% on average across all the benchmarked models.

Scaling the chip size. Figure 6.17 shows a sensitivity study of the chip size (from 1× to

the 32×) for Mirage and the w/ kernel duplication. Both speedup and throughput are normalized

to the w/ kernel duplication at 1× chip size. We make two observations. First, Mirage shows better

scalability for both speedup and throughput compared to the baseline with kernel duplication and

provides higher saturation point at a larger chip size. Second, Mirage has better scalability in
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Figure 6.17: Comparison of Mirage and w/ kernel duplication over (a) speedup, and (b)
throughput when the chip size scales from 1× to 32×.
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Figure 6.18: Speedup of three batching strategies with Mirage.

throughput than in speedup. The inter-layer parallelism benefits from FPRA to minimize the gap

between difference inferences.

Two types of kernel batching. Figure 6.18 shows the comparison of three strategies

for using two types of kernel batching. The all linear strategy utilizes linear batching on all the

layers. The square max strategy attempts to use square batching wherever possible. This strategy

batches the kernel to the maximum possible square, and places squares next to each other. For

example, for 2048 kernels, it batches them to two 32×32 square batches, and then places them

side by side. The pooling square strategy utilizes square batching on the layer before the pooling

layer whenever possible. This strategy first batches the kernels to the size of pooling filter, and

then linearly places batches side by side. For instance, for 32 kernels on a layer before 2×2

max-pooling, it batches them into eight 2×2-sized batches and linearly places them in a row.
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We observe that pooling square strategy achieves the best performance on average among three.

Despite the other two strategies showing a minor advantage in three models (e.g., Inception,

ResNet-18 and ResNet-50), the pooling square strategy has the highest speedup among most

workloads. Hence, Mirage uses the pooling square strategy by default. We only explored these

three strategies due to space limitation. Other strategies may further increase the performance of

Mirage.
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Figure 6.19: Power efficiency of three configurations.

6.5.3 Power Efficiency

Figure 6.19 shows the power efficiency result of Mirage and baseline. The power efficiency

is measured by giga 16-bit operations per second per watt (GOPS/W). We normalized the results

of two Mirage configurations to the w/ kernel duplication opt baseline. We make two observations

from the result. First, the Mirage without data sharing aware memory configuration only has a

24% increase compared to the baseline on the power efficiency. The kernel batching brings more

data movements between tiles. The heavy memory traffic delays the communication between

tiles. Second, the Mirage design manages to achieve 2.4× power efficiency of the baseline. With

kernel batching and data sharing aware memory, FPRA is able to reduce idleness during the

inference, which leads to more operations with a single unit of power.
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6.6 Conclusion

We propose Mirage, a flexible and highly parallel RRAM-based accelerator design.

Mirage consists of Finer-grained Parallel RRAM Architecture (FPRA) and Auto Assignment

(AA). FPRA applies the kernel batching and data sharing aware memory to reduce the data

sharing induced idle in the pipeline. FPRA’s kernel batching positions the kernel closer to each

other to reduce the data sharing induced data dependencies between kernels, while FPRA’s

data sharing aware memory efficiently manages data forwarding between layers and duplication

kernels. AA enables the execution of various sized networks on the RRAM-based accelerator

pipeline design. AA takes the topology and parameters of the DNN model and specifications

of the accelerator as input. It automatically generates a hardware assignment and execution

model for the accelerator. The assignment achieves high utilization of the hardware and provides

high performance. The evaluation shows Mirage achieves 2.0× speedup improvement and 2.1×

throughput increase compared to the state-of-the-art baseline. Mirage also achieves high power

efficiency and good scalability with chip size.
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Chapter 7

Conclusion

7.1 Summary of the Thesis

This thesis discusses the approaches to adopting NVM in computer architecture for

modern applications. We propose customized designs for the data-intensive and neural network

applications. For the data intensive applications, we first provide a characteristic study against the

persistent memory applications. Our study provides a comprehensive analysis of the performance

and hardware behavior of persistent memory applications. We also propose an error-resilient

design for the data intensive application using NVM-based main memory. We redesign the cache

writeback and NVM wear-leveling and coordinate them with the existing resilience schemes

to significantly improve the reliability of the memory hierarchy. We introduce thermal aware

chip management for the neural network applications to prevent the NVM-based NN accelerator

from accuracy loss. We redesign the data forwarding in the pipeline and enable automated

hardware assignment of the NVM-based NN accelerator to mitigate the data dependency caused

underutilization and lack of flexibility. We conduct evaluations to prove each of the proposed

designs in the dissertation to be efficient, reliable, and scalable for carrying the correlated modern

application.
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7.2 Future Works

The Binary Star design can be applied to shared memory in a distributed system. When the

shared memory receives updates from RDMA access, the NVM-based shared memory may treat

them in the same way as consistent cache writeback. The node that maintains the NVM-based

shared memory holds a consistent checkpoint. If errors happen within the memory of any other

node, it can recover with the data from the NVM-based shared memory.

The idea of coordinating reliability schemes among NVM and other devices can further

extend to the block devices. The reliability schemes among NVM and SSD may use a unified

logic-to-physical address translation to handle the wear-leveling of both devices together. Such

design needs to coordinate different block sizes and utilizes different endurance cycles of two

devices. The design would extend the reliability of the storage devices and further enhance the

entire memory hierarchy.

Aside from thermal-induced error, the NVM-based NN accelerator also needs prevention

against other sources of errors. The other sources of errors in NVM include row hammer [227],

diffusion of oxygen vacancies [228], devices yeild [229], and etc. These errors could potentially

harm the inference accuracy as the thermal issue. The mechanisms in the HR3AM may be

applicable as a countermeasure for other sources of errors as well.

Moreover, the NVM-related errors may cause different outcomes on other neural network

applications. Applications such as image generation based on generative adversarial network

(GAN) and robotics control based on reinforcement learning do not use accuracy for evaluation.

We can quantify the effect of NVM-related errors on these applications with different metrics.

We may propose customized countermeasure based on sources of the errors and characteristics of

the applications in the future.
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