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Epigenetic aging of semen is associated with inflammation
Junxi Fenga, Liudmilla Rubbia, Reza Kianianb, Jesse Nelson Millsb, Vadim Osadchiyb, John Tucker Sigalosb, 
Sriram Venkata Eleswarapub, and Matteo Pellegrinia

aMolecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA; bDivision of Andrology, Department 
of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

ABSTRACT
Male infertility has been a primary cause of global infertility, affecting 8–12% of couples world
wide. Previous studies have shown that semen quality decreases with advanced aging with an 
increased presence of inflammatory cells. In this study, we examined changes in the epigenome 
across a diverse cohort that includes both fertile and infertile men. We also compare the age- 
associated changes in semen to those observed in buccal swabs in order to characterize differ
ences in epigenetic aging across diverse tissues. We found that variations in the semen methy
lome associated with aging are linked to inflammatory genes. Many age-associated sites are 
demethylated with advanced aging and are associated with the activation of inflammatory path
ways. By contrast, we do not observe age-associated changes in inflammatory genes in buccal 
swab methylomes, which instead are characterized by changes to bivalent promoters. Our 
findings highlight the potential of epigenetic markers as indicators of male reproductive health.

ARTICLE HISTORY
Received 3 June 2024  
Revised 8 November 2024  
Accepted 19 November 2024  

KEYWORDS
Epigenetics; male infertility; 
aging; semen; sperm

Background

The analysis of semen is of interest for its rele
vance to male infertility and reduced fertility with 
age. Semen analysis, serum sex hormone evalua
tion, karyotyping, Y chromosome microdeletion 
assays, sperm DNA fragmentation testing, empiric 
medical therapy, surgical intervention, and assisted 
reproductive technology have become mainstays 
in the diagnosis and management of male factor 
infertility and age-associated reduced fertility. 
Despite improvements in the evaluation and treat
ment of infertility over the last few decades, the 
vexing challenge of unexplained male factor infer
tility persists in cases where routine semen analysis 
yields normal results [1]. Therefore, a more precise 
understanding of the etiologies of male factor 
infertility and a better understanding of age- 
related changes to semen is needed.

Male infertility is often marked by a decline in 
sperm quality, a concern that escalates with advanced 
aging [2]. In older males, germ cells become increas
ingly vulnerable to genetic mutations, a concept 

termed advanced paternal aging, conferring increased 
risk for psychiatric and developmental disorders, such 
as autism spectrum disorder (ASD), congenital heart 
disease, and attention deficit disorder [3–5]. The 
decline in sperm quality may be partly attributed to 
the presence of inflammatory cells in the semen [6–8]. 
As a result, there has been significant interest in study
ing the effect of molecular factors that impact sperm.

To better dissect human spermatogenesis and gain 
insights into the mechanisms of male infertility and 
age-associated changes in semen, novel multi-omic 
technologies at molecular resolution have been 
employed, including whole-genome bisulfite sequen
cing, single-cell RNA-seq, whole-exome sequencing, 
and transposase-accessible chromatin using sequen
cing [9]. Among these omic approaches, DNA methy
lation is one of the most extensively explored 
epigenetic modifications, although a deeper under
standing of the regulation of DNA methylation in 
the male germline may augment the clinical evalua
tion of male infertility. This epigenetic modification is 
characterized by the addition of methyl groups to the 

CONTACT Matteo Pellegrini matteope@gmail.com Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 
90095-7239, USA

Supplemental data for this article can be accessed online at https://doi.org/10.1080/15592294.2024.2436304

EPIGENETICS
2024, VOL. 19, NO. 1, 2436304
https://doi.org/10.1080/15592294.2024.2436304

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the 
Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/15592294.2024.2436304
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2024.2436304&domain=pdf&date_stamp=2024-12-05


C5 position of cytosine and occurs preferentially at 
cytosine-phosphate-guanine (CpG) dinucleotides. 
These CpG sites are typically concentrated in regions 
known as CpG islands and are found near gene pro
moter regions [10]. The methylation status of CpG 
islands plays a crucial role in modulating gene regula
tion: when the CpG sites within a gene promoter are 
unmethylated (hypomethylated), the DNA is more 
accessible to transcription factors that initiates tran
scription and thus promotes gene expression. In addi
tion to promoter regions, methylation status of 
enhancers can also affect gene expression. 
Specifically, active enhancers are partially demethy
lated, facilitating the protein binding that enhances 
the transcription of associated genes [11]. 
Additionally, different epigenetic ‘clock’ models have 
been developed to study the association between DNA 
methylation profiles and chronological age in most 
somatic tissues [12,13]. While epigenetic clock estima
tors showed remarkable predictive accuracy for deter
mining the epigenetic age of somatic tissues, their 
performance dropped significantly when applied to 
predict the epigenetic age of sperm [12]. The poor 
predictive power can be rationalized by the fact that 
the epigenome of germ cells is fundamentally different 
from the epigenome of somatic cells [14].

More recently, several epigenetic clocks for 
sperm have been developed to study the associa
tion between sperm epigenetic age and clinical 
factors such as semen parameters and pregnancy 
outcomes, as well as the discovery of differen
tially methylated sites (DMSs) [15–18]. Although 
studies have been conducted to elucidate age- 
related epigenetic alterations of human sperm 
cells and further develop age prediction models, 
comparatively less emphasis has been placed on 
investigating age-associated changes in semen. 
Several cell types compose semen, including leu
kocytes, germ cells, and epithelial cells [19]. The 
diversity of cell-type compositions in semen 
highlights the importance of accounting for 
their relative abundance when assessing age- 
associated changes [20,21].

In this study, we collected semen and buccal 
swabs from a cohort of 83 men. Conventional 
semen analysis and baseline health characteristics 
were obtained. The DNA methylation profiles were 
measured using targeted bisulfite sequencing of 

DNA samples collected from both sources. We 
first performed cell-type deconvolution analysis to 
measure the cell-type composition in semen and 
buccal swabs. To study the effect of multiple factors 
that could affect the epigenome, we built multifac
tor models to model the effect of age and different 
cell-type compositions on the DNA methylation 
profiles. Our findings indicate that inflammatory 
processes are associated with the aging of semen. 
Moreover, our findings suggest that DNA methyla
tion may eventually serve as a biomarker for eval
uating male reproductive health.

Materials and methods

Overview

We collected the semen and buccal swabs from 83 
male patients and performed targeted bisulfite- 
sequencing to obtain their DNA methylation pro
files. We then estimated the cell-type composition of 
the samples and constructed a multifactor model, 
incorporating DNA methylation data from both tis
sue types to explore how methylation patterns relate 
to patient age and cell composition (Figure 1a). 
Finally, we conducted Cistrome and GTEx analysis 
by filtering for statistically significant methylation 
sites from the model (see Results).

Study population and biospecimen collection

With institutional review board approval (IRB #
21–000714), we prospectively recruited males aged 
≥18 years who presented to an academic reproduc
tive urology clinic from July 2022 through 
June 2023. Recruited participants sought consulta
tion either for an initial fertility evaluation or for 
vasectomy consultation after biological paternity. 
All participants provided written informed con
sent for collection of clinical data and biospeci
mens. Participants were excluded if there was 
a recent history of acute illness. Semen specimens 
were collected following 2–7 days of abstinence. 
Contemporaneous buccal swabs were obtained 
from each participant. All specimens were 
obtained prior to any procedural or pharmacologic 
intervention for fertility. For DNA methylation 
analysis, a swab was taken from each well-mixed 
semen specimen. Buccal and semen swabs were 

2 J. FENG ET AL.



stored at −80°C until processing for DNA methy
lation analysis.

Semen analysis

Conventional quantitative semen analysis was per
formed according to World Health Organization 

5th Edition criteria using a calibrated SQA-Vision 
Automated Semen Analyzer (Medical Electronic 
Systems, Encino, CA). Samples demonstrating oli
gozoospermia or azoospermia were independently 
evaluated using high-powered microscopy. Semen 
volume, concentration, total motility, strict mor
phology (Kruger), and pH are reported.

Figure 1. Schematic overview and data distribution of the samples.
(a) Schematic overview of the study. (b) Age distribution of the collected samples and the dots below indicate individuals with 
abnormal sperm quality. Red dots represent individuals with abnormal sperm morphology, blue dots represent individuals with 
abnormal sperm concentration, and yellow ones represent individuals with abnormal sperm motility. (c) Bar plot that shows the 
distribution of semen characteristics: semen volume (mL), sperm concentration (M/mL), sperm motility (%), and sperm morphology 
(% by Kruger strict criteria). 
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Targeted bisulfite sequencing (TBS-seq)

Buccal swabs and semen samples were incubated 
overnight at 50°C before DNA extraction. DNA 
was extracted using reagents from DNA Genotek 
(Stittsville, Ontario, Canada). Targeted bisulfite 
sequencing (TBS-seq) was applied to characterize 
the methylomes of 83 samples. The details of the 
protocol have been previously described [22]. In 
summary, 500 ng of extracted DNA were used for 
TBS-seq library preparation. The DNA was frag
mented, followed by end repair, dA-tailing, and 
adapter ligation using the NEBNext Ultra II 
Library Prep Kit with custom pre-methylated 
adapters from IDT. Pools of 16 purified libraries 
were hybridized to the biotinylated probes accord
ing to the manufacturer’s protocol. Captured DNA 
was treated with bisulfite prior to PCR amplifica
tion using KAPA HiFi Uracil+ (Roche) with the 
following conditions: 2 min at 98°C; 14 cycles of 
98°C for 20 sec, 60°C for 30 sec, 72°C for 30 sec; 
72°C for 5 min; hold at 4°C. Library QC was 
performed using the High-Sensitivity D1000 
Assay on a 2200 Agilent TapeStation. Pools of 96 
libraries were sequenced on a NovaSeq6000 (S1 
lane) as paired-end 150 bases.

The probes used in the capture can be found in 
Supplementary File 1. They contain regions iden
tified as having significant associations with multi
ple traits, including age in EWAS studies.

Methylation matrix assembly

We aligned the bisulfite sequencing data using 
BSBolt (v1.5.0) [23]. First, the GRCh38 human 
reference genome was indexed with the BSBolt 
Index command and the FASTQ files were aligned 
to the reference genome using the BSBolt Align 
command. Post-alignment processing including 
PCR duplicate removal was performed using 
SAMtools (v1.15) [24]. Next, the BSBolt 
CallMethylation command was used to generate 
CGmap files before the methylation matrix aggre
gation. We only kept methylation sites above 
a minimum read depth coverage of 40, which 
resulted in a methylation matrix with 72,000 
CpG sites and 83 samples. Finally, we imputed 
the matrix with the BSBolt Impute command to 
fill in the missing values using the k-Nearest 

Neighbors (kNN) method. The methylation 
matrices for both the semen and buccal swab 
samples were constructed in a similar manner.

Cell-type deconvolution

Human semen is composed of a variety of cell 
types, including sperm, leukocytes, and epithelial 
cells [25]. Variations in cell-type abundance have 
a significant impact on DNA methylation levels. 
Therefore, it is critical to account for cell-type 
effects when performing DNA methylation analy
sis [20]. We used CELLFi, a reference-based tool 
that applies a non-negative least-squares regres
sion model, to estimate the fraction of each refer
ence cell type (https://github.com/dmontoya09/ 
CEllFi_v01). We used whole-genome bisulfite 
sequencing (WGBS) data of healthy human tissues 
from [26] for the cell-type reference methylome. 
In total, we used WGBS data from blood 
T lymphocytes (including naive T cells [n = 3] 
and CD8+/CD4+ effector/central memory T cells 
[n = 11]), blood granulocytes (n = 3), and prostate 
epithelium (n = 4). In addition, we used WGBS 
data of sperm (n = 3) from [27]. We also filtered 
the entire reference methylome data based on the 
sites from our targeted bisulfite sequencing probes 
(72000 CpG sites). The fraction of each cell type in 
each semen sample was estimated by CELLFi using 
the default parameters.

The same cell-type deconvolution technique was 
also applied to buccal samples. The cell-type refer
ence methylome also came from [26]. We used 
WGBS data from blood T lymphocytes (including 
naive T cells [n = 3], and CD8+/CD4+ effector/cen
tral memory T cells [n = 11]), blood B lymphocytes 
(including B cells [n = 3] and memory B cells [n =  
2]), blood granulocytes (n = 3), blood monocytes (n  
= 3), blood NK cells (n = 3), and prostate epithelium 
(n = 4). We observe that the WGBS data of prostate 
epithelium is similar to that of buccal epithelium, so 
for convenience we continued to use WGBS data of 
prostate epithelium as a reference.

Multivariate multiple regression model

To account for the effect of multiple factors on 
DNA methylation, we built a multivariate mul
tiple regression model, which we refer to as the 
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multifactor model. For an individual sample, we 
modeled its seminal DNA methylation level at 
a particular CpG site as a linear combination of 
the associated factors weighted by coefficients. 
We can formulate the relationship as follows:

Mobs ¼ X � β 

Here, Mobs represents the observed methylation 
matrix of individuals by CpG sites, Xrepresents 
the multifactor phenotype matrix of individuals 
by phenotypic factors, and β represents the coef
ficient matrix of phenotypic factors by CpG 
sites. Similar to a linear regression, the objective 
is to find the least squares solution with a set of 
coefficients that minimize the squared error. In 
this case, we applied the Moore-Penrose pseu
doinverse technique to find the solution. First, 
we estimated the coefficient matrix as 
¼ Xy �Mobs, where Xy is the Moore-Penrose 
pseudoinverse of X: Once the coefficient matrix 
was obtained, we computed the pseudoinverse 
again to predict the multifactor matrix as 

Xpred ¼ Mobs � βy, and predict the methylation 
matrix as Mpred ¼ X � β.

We preprocessed the factor matrix by removing 
correlated factors to avoid multicollinearity. The 
T-cell composition and granulocyte composition 
were highly correlated to the sperm abundance, 
and thus removed. The final model included three 
factors: sperm cell abundance, prostate epithelial cell 
composition, and age. All factors were scaled to 
a range of 0 to 1. A constant term was added to 
the multifactor matrix. In addition, a batch effect 
term was added to account for technical variability, 
since the samples were collected in two batches.

To avoid overfitting, we applied LOOCV by 
excluding one test sample in each iteration and 
training the model on the remaining samples. 
Within each iteration, we first estimated the coef
ficient matrix β using the formula described above 
(see Multivariate multiple regression model), and 
then predicted the multifactor matrix Xpred:Finally, 
we measured the Pearson correlation between 
Xpred and Xobs to evaluate the model performance.

A nearly identical procedure was applied to the 
DNA methylation analysis of buccal specimens, 
except that the final multifactor model included 

only a constant term, age, epithelial cell composi
tion, and batch effect term.

Methylation site selection

We defined three statistical ‘filters’ to select the 
significant CpG sites associated with each factor 
from the model. The first filter is High 
Correlation: we calculated the correlation between 
the predicted methylation matrix Mpredand the 
observed methylation matrix Mobs (see Multivariate 
multiple regression model), and only kept the sites 
with an absolute value of the correlation greater 
than or equal to 0.5. The second filter is Statistical 
Significance: we constructed a multiple linear 
regression model similar to the multifactor model, 
where the dependent variable was the methylation 
status, and the independent variables were the fac
tors and a constant term. The p-values from the 
multiple linear regression model were estimated 
and then adjusted for multiple hypothesis testing 
using the Benjamini Hochberg procedure. We kept 
the sites with p-values less than or equal to 0.05. The 
last filter is the Highest Coefficient: we restricted 
the methylation sites associated with a specific factor 
to be the ones with the highest absolute value of the 
coefficient among all factors in β.

After applying the filtering processes mentioned 
above, we chose the top 200 methylation sites 
based on the adjusted p-values for a particular 
factor. We examined the sign of the coefficient 
matrix β and further separated the sites into 
those with positive coefficients and those with 
negative coefficients. A negative correlation indi
cates the loss of DNA methylation, whereas 
a positive correlation means the gain of methyla
tion with increasing values of the factor. We per
formed the filtering procedure on the seminal and 
buccal swab multifactor models separately.

Cistrome and GTEx analysis

After selecting the significant sites associated with 
each factor, we analyzed the genomic coordinates 
of the significant sites using the Cistrome Data 
Browser (Cistrome DB) [28]. Similar samples 
from Cistrome DB were used to identify overlaps 
with the peak sets we defined, and transcription 
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factors with a significant binding overlap were 
returned. We also performed a functional enrich
ment analysis using Cistrome-GO [29]. The sig
nificant GO terms are summarized in the Results 
section. The top 50 genes ranked by adjusted RP 
score (i.e., proximity to promoters) from Cistrome 
were further analyzed using tissue-specific expres
sion data from GTEx [30] to identify the gene 
expression level across different tissues.

Results

Characterization of the semen methylome

Our study aims to explore the relationship 
between DNA methylation of semen and factors 
that drive changes in methylation including semen 
cell-type composition and chronological age. We 
collected semen and buccal swab samples from 83 
male patients. The semen was characterized based 
on sperm concentration, motility, and morphol
ogy. Around 88% of the samples came from men 
between ages 30 and 45 years old, 2% of the sam
ples are less than 30 years old, and 10% of the 
samples are greater than 45 years old; individuals 
with abnormal semen parameters were evenly dis
tributed across the sample age range, and the 
leukocyte count was measured as binary 
(Figure 1b). The body mass index and semen 
parameters for the study cohort are provided in 
Figure 1c and Table 1. The descriptive statistics of 
the infertile and vasectomy samples are also shown 
in Supplementary Figure S1A and Figure 1b.

We measured the DNA methylation of each 
sample using targeted bisulfite sequencing. This 
approach has certain advantages over the widely 
used DNA methylation arrays, reduced represen
tation bisulfite sequencing (RRBS) or whole- 
genome bisulfite sequencing (WGBS), as it allows 
for the selection of regions of interest in the 

genome and the generation of high coverage data 
to obtain accurate estimates of DNA methylation 
at those sites. By contrast, arrays have fixed probes, 
and RRBS of WGBS tend to generate lower cover
age datasets. The limitation of our approach is that 
the number of targets we select is limited com
pared to other methods, but our selection criteria 
allows us to enrich biologically interesting sites 
based on the mining of prior datasets. The probes 
we used in our targeted bisulfite sequencing assay 
were chosen from different sources: some were 
selected from the EWAS Atlas [31] and represent 
regions with significant EWAS hits across multiple 
studies; others were collected from epigenetic 
clocks, such as the Horvath [12], Hannum [13], 
GrimAge [32] and PhenoAge [33] clocks; and 
another set contained sites with cell-type-specific 
DNA methylation regions (see Supplementary File 
1 with list of probes). Our targeted panel leads to 
the generation of a methylation matrix of 72,000 
CpG sites across 83 individuals, with a minimum 
coverage of 40 and average coverage of 74.

Cell-type analysis of DNA methylation data

It is widely recognized that cell-type heterogene
ity can have a significant impact on DNA 
methylation levels. To account for cell-type het
erogeneity in semen, we considered four major 
cell types, including sperm cells, prostate epithe
lial cells, lymphoid cells, and an unknown frac
tion of cell types that we suspect to have 
characteristics of myeloid cells. For the buccal 
swab specimens, we included both epithelial and 
immune cells. We obtained the whole-genome 
bisulfite profiles of these cell types from [26] 
and [27]. We conducted cell-type deconvolution 
for the semen samples using a non-negative 
least-squares regression approach based on 

Table 1. Age, body mass index, and semen analysis parameters for the 
study cohort.

Mean ± S.D. Range

Age (y) 38.8 ± 6.4 27.0–61.5
Body mass index (BMI) 26.6 ± 6.0 18.7–61.6
Semen analysis
Semen volume (mL) 2.5 ± 1.3 0.1–7.5
Sperm concentration (M/mL) 63.9 ± 57.0 0–216.1
Total sperm motility (%) 46.3 ± 21.3 0–81
Strict morphology (%) 20.1 ± 16.7 0–80.8
Semen pH 8.2 ± 0.24 8.0–8.8
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CpG methylation calls (Figure 2). Not surpris
ingly, the deconvolution results suggest an 
inverse relationship between sperm cell abun
dance and the other cell types. Given that the 
cell-type compositions are estimated from DNA 
and that sperm cells are haploid while the other 
types of cells are diploid, our estimates do not 
directly measure the fraction of cells. 
Nonetheless, we identified two azoospermia 
samples that had zero sperm percentages and 
displayed a significant proportion of an 
unknown cell type with myeloid characteristics. 
These individuals have an impairment of sperm 
production with unidentified etiology.

Identification of factors that influence DNA 
methylation in semen

To jointly characterize multiple factors that influence 
DNA methylation in semen we used multivariate 
multiple regression. Semen DNA methylation was 
used to train a multifactor model incorporating 
a constant term, a batch effect term, age, sperm cell 
composition, and prostate epithelial cell composition. 
The lymphoid cell composition and other cell-type 
composition were highly correlated among 

themselves and with the sperm cell composition, 
hence these were removed to include only the two 
aforementioned cell types (Supplementary Figure 
S2A). We solve the model using the pseudoinverse 
method. Specifically, we first estimated the coefficient 
matrix as ¼ Xy �Mobs, where Xy is the Moore- 
Penrose pseudoinverse of the multifactor phenotype 
matrix X: Once the coefficient matrix was obtained, 
we computed the pseudoinverse again to predict the 
multifactor phenotype matrix as Xpred ¼ Mobs � βy, 
and predict the methylation matrix as Mpred ¼ X � β. 
We correlated the predicted values of age, prostate 
epithelial cell composition, and sperm cell composi
tion with their actual values and found that all three 
factors have statistically significant correlations 
between their predicted and actual values (p < 0.05 
and R ≥ 0.4) (Figure 3). Not surprisingly, the sperm 
cell composition of the samples inferred from decon
volution is well predicted by our model with 
a correlation coefficient of 0.953. The age prediction 
shows a moderate correlation coefficient of 0.47. 
Predictions on all three factors by our model show 
statistically significant results with very low p-values, 
indicating that the correlations observed are highly 
unlikely to be due to chance.

Figure 2. Cell-type composition of semen.
Heatmap of cell-type composition for semen samples. The cell-type composition is computed using CELLFi. Semen analysis 
parameters of interest were sperm concentration, motility, and morphology. Two azoospermia samples displayed a significant 
proportion of an unknown cell type with myeloid characteristics. 
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Analysis of factor-associated methylation 
sites

In order to identify the DNA methylation sites that 
are most associated with the factors in our model, 
three filters were defined. First, we filtered for sites 
whose methylation level was highly correlated with 
the predicted methylation level Mpred generated from 
the multifactor model. Next, we selected methylation 
sites from the multivariate multiple linear regression 
model that had statistically significant coefficients. 
Third, we retained only methylation sites that had 
the highest absolute correlation coefficient among all 
factors from the coefficient matrix β. Finally, if there 
were more than 200 sites that met these criteria we 
chose the top 200 sites with the lowest adjusted 
p-values. To further analyze the factor-specific CpG 
sites, we divided the sites into positive and negative 
groups based on the sign of the coefficient in the 
multifactor model. Further details of the site selec
tion procedure are described in the Methods section.

When we analyzed the selected sites associated 
with age in the seminal multifactor model, we 
found 83 methylation sites that had negative coeffi
cients, which indicates the loss of methylation at 
these sites during aging. For sperm cell composition, 
we identified 48 sites with positive coefficients and 
the remaining 152 sites with negative coefficients. 
We analyzed the two groups of sites separately. For 
simplicity in naming, we will refer to the sites with 
negative coefficients for sperm cell composition as 

‘negative sperm sites,’ and vice versa for the positive 
sites. We acknowledge that mature sperm cells are 
transcriptionally silent and do not actively transcribe 
genes during their final stages, yet we hypothesize 
that the epigenetic landscape, including DNA 
methylation and histone modifications, is estab
lished earlier in sperm development. This early set
ting of the epigenome may serve as a regulatory 
mechanism that persists into maturity, influencing 
sperm function and contributing to developmental 
processes after fertilization. As such, we believe that 
the methylation patterns we observe in sperm cells 
reflect these earlier epigenetic events, which may 
have significant biological relevance even after tran
scription has ceased.

We used Cistrome to identify transcription fac
tors associated with the significant sites. Cistrome 
identifies enriched transcription factor (TF) bind
ing sites within a set of input regions, allowing 
identification of potential regulators of methyla
tion sites. The genomic coordinates of the factor- 
associated sites were input as peak sets to the 
Cistrome Data Browser (Cistrome DB). ChIP seq 
datasets from Cistrome DB were overlapped with 
the peak sets we defined, and transcription factors 
with a significant binding overlap were returned. 
Functional enrichment analysis was also per
formed using Cistrome-GO, and the significant 
Gene Ontology (GO) terms from cellular compo
nents, molecular functions, and biological pro
cesses were identified.

Figure 3. Multifactor model built on seminal DNA profile.
Correlation between the predicted value of factors (age, prostate epithelial cell composition of semen, sperm abundance of semen) 
against the true value of factors. The predictions were calculated using the multifactor model. MAE stands for the mean absolute 
error. 
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For the positive sperm sites, the top three transcrip
tion factors were NELFA, BRD4, and TAL1 (Figure 4a). 
NELFA is part of the NELF protein complex and 
negatively regulates RNA polymerase II transcription 
elongation [34]. BRD4 is a kinase that phosphorylates 
RNA polymerase II and regulates transcription [35], 
and TAL1 is involved in multiple cellular processes 
including myeloid cell differentiation and positive reg
ulation of cellular component organization [36]. The 
significant GO terms from molecular functions include 
cytokine activity, cytokine receptor binding, and che
mokine activity. The significant GO terms from biolo
gical processes include immune response, defense 
response, and cytokine-mediated signaling pathway 
(Supplementary Table S1–2).

Among the negative sperm sites, the top three asso
ciated factors were LRWD1, POLR3D, and PR 
(Figure 4a). LRWD1 plays a major role in organization 
of heterochromatin structure in the somatic cells and is 
widely observed in human testis [37], which is also 
shown in Figure 4b. POLR3D is involved in RNA 
polymerase III transcription processes, and is associated 
with cell growth and proliferation [38]. The progester
one receptor (PR) gene is reported to cause male infer
tility [39]. The significant GO terms from cellular 
components include chylomicron and very-low- 
density lipoprotein particles. The significant GO terms 
from molecular functions include adenosine deaminase 
activity, receptor serine/threonine kinase binding, and 
deaminase activity (Supplementary Table S3–5).

For the negative age sites, the top three associated 
factors are associarted with POLR2A, ZNF768, and 
NR3C1 (Figure 4c). POLR2A is another RNA poly
merase that is responsible for the transcription of 
a large fraction of protein-coding genes [40]. 
ZNF768 is a transcription factor [41] and the 
NR3C1 gene encodes glucocorticoid receptors and 
is found to regulate testicular functions [42]. The 
significant GO terms from cellular components 
include inflammasome complex, chylomicron, and 
cytoplasmic region. The significant GO terms from 
molecular functions include tau protein binding. The 
significant GO terms from biological processes 
include negative regulation of viral entry into the 
host cell, regulation of viral entry into the host cell, 
and cytokine-mediated signaling pathway 
(Supplementary Table S6–8).

To investigate the functional relevance of genes 
located near significant methylation sites, we 

examined their tissue-level expression using GTEx, 
a public database that enables querying gene 
expression levels across various human tissues. We 
chose the top 50 genes associated with negative age 
sites, positive sperm sites, and negative sperm sites. 
The genes are ranked by adjusted RP score calcu
lated on Cistrome-GO, which measures the proxi
mity to promoters. We then identified their gene 
expression level across different tissues. Among the 
genes associated with negative age sites, we 
observed expression across a broad range of 
human tissues. In particular, the genes that encode 
for interferon-induced transmembrane protein 1 
(IFITM1), IFITM2, and IFITM3 were found to be 
specifically expressed in whole blood and EBV 
transformed lymphocytes (Figure 5a). In terms of 
the negative sperm sites, we noticed the high 
expression level of genes including testis-specific 
serine kinase 6 (TSSK6) and adenosine deaminase 
domain containing 1 (ADAD1), which were most 
highly expressed in human testis (Figure 5b).

Identification of factors that influence DNA 
methylation in buccal swabs

DNA methylation in human buccal swabs has been 
shown to be a strong predictor of chronological age 
[43]. In this study, we sought to compare age- 
associated changes in buccal swabs and semen. 
We identified potential overlaps and differences 
between the significantly age-associated methyla
tion sites in buccal swabs and semen to characterize 
common and divergent mechanisms of aging. To 
accomplish this goal, we performed a similar ana
lysis for the buccal DNA methylation as for the 
semen methylation, which were collected from the 
same set of individuals. We developed a multifactor 
model for the buccal methylation sites. The buccal 
multifactor model was constructed using a similar 
approach to the semen multifactor model, exclud
ing factors with high correlations (Supplementary 
Figure S2B). The buccal multifactor model incorpo
rates a constant term, a batch effect term, and two 
phenotypic factors: age and epithelial cell composi
tion. Both phenotypic factors exhibited statistical 
significance (p < 0.05) and strong correlation coeffi
cients (R ≥ 0.6) when regressing the predicted 
values against the actual values (Figure 6).
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Figure 4. Transcription factors of methylation sites associated with sperm and age from the seminal multifactor model (generated 
from Cistrome).
(a) Methylation sites associated with sperm from the multifactor model are divided into negative and positive groups based on their 
correlation with sperm cell composition. Each group of methylation sites is analyzed on Cistrome. Top ranking transcription factors 
associated with negative and positive sperm are shown in the plots. (b) LRWD1 expression level in TPM across human tissues. (c) Top 
ranking transcription factors associated with age are shown in the plot. 
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We applied the same filtering procedure used 
in the semen multifactor model to select signifi
cant buccal methylation sites (see Method). We 
specifically analyzed the selected sites associated 
with age in the buccal multifactor model. We 
found 190 methylation sites associated with age 
with positive coefficients and 10 sites with 

negative coefficients. We analyzed the two groups 
of sites separately. For simplicity in naming, we 
will refer to the sites in the negative group asso
ciated with age as ‘negative age sites,’ and so on.

We used Cistrome to conduct the analysis of the 
significant sites. For the negative age sites, the top 
three transcription factors were MED1, SPI1, and 

Figure 5. Gene expression in different tissue types (generated from GTEx).
(a) Gene expression associated with negative age methylation sites in the seminal multifactor model. (b) Gene expression associated 
with negative sperm methylation sites in the seminal multifactor model. 

EPIGENETICS 11



EZH2 (Figure 7a). Among other functions the med
iator complex subunit 1 (MED1) is also involved in 
promoting oral mucosal wound healing and acts as 
a master regulator of epithelial cell fate [44,45]. The 
SPI1 gene encodes transcription factors that activate 
gene expression during myeloid and B-lymphoid 
cell development [46], and EZH2 is crucial for the 
maintenance of epithelial cell barrier integrity and 
an active participant that shapes the aging epigen
ome [47,48]. As for positive age sites, the top three 
transcription factors are associated with RNF2, 
JARID2, and REST (Figure 7b). The RNF2 and 
JARID2 genes are involved in transcriptional 

repression of genes involved in development and 
cell proliferation [49,50], and REST is a gene silen
cing transcription factor that is widely expressed 
during embryogenesis, and represses neural genes 
in non-neural tissues [51].

Histone modification analysis

We also examined histone modification patterns of 
negative age sites from semen and buccal swabs 
using Cistrome DB to identify key differences in 
epigenetic regulation between semen and buccal 
swabs. H3K27me3 is ranked as the top histone 

Figure 6. Multi-factor model built on buccal DNA profile.
Predicted vs. actual values of each variable in the multi-factor model for age, and epithelial cell composition. 

Figure 7. Transcription factors of methylation sites associated with sites from the buccal swab multi-factor model (generated from 
Cistrome).
(a) Methylation sites associated with age from the buccal swab multi-factor model are divided into negative and positive groups 
based on their Pearson correlation with age. Each group of methylation sites is analyzed on Cistrome. Top ranking transcription 
factors associated with negative age are shown in the plots. (b) Top ranking transcription factors associated with positive age are 
shown in the plot. 
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modification for both semen and buccal swabs. 
Previous studies have shown that H3K27me3 is 
involved in silencing gene expression during 
embryonic stem cell differentiation [52,53]. We 
observe a distinct pattern of modification between 
the semen and buccal swabs specifically on 
H3K36me3 (Figure 8a,b). H3K36me3 is associated 
with regions that are transcribed, such as the gene 
bodies [54,55]. By contrast, the buccal swab sites 
contain H3K4me3, suggesting they are promoter 
sites. Since they contain both H3K27me3 and 
H3K4me3, they are likely enriched for bivalent 
promoters that repress genes in stem cells that 
are activated in a tissue-specific manner.

Discussion

Our aims were to explore the influence of factors 
that impact DNA methylation in semen and to 
measure age-associated changes in the seminal 
methylomes. To this end, we first performed cell- 
type deconvolution analysis to determine the cell- 
type composition of semen. We estimated the 
abundance of spermatozoa, myeloid cells, lym
phoid cells, and epithelial cells. Not surprisingly, 
we found that the presence of greater sperm DNA 
in semen is associated with lower immune cell 
composition. Several of the samples we profiled 
had been determined to have azoospermia, and 
we observed that these were indeed predicted to 
have very low sperm abundance, confirming our 
deconvolution methodology. The main compo
nents of semen in the azoospermia samples appear 
to have myeloid characteristics, which might be 
caused by the infiltration of neutrophils or mono
cytes in the semen.

Next, we asked if there were other factors than 
cell composition that were associated with DNA 
methylation levels. To answer this question, we 
developed a multifactor model that accounted for 
age, cell composition along with batch and con
stant terms. Finally, we asked which CpG sites 
were associated with each factor.

We found that the CpG sites that had 
a significant negative coefficient for sperm concen
trations were strongly associated with the tran
scription factor LRWD1, a widely expressed 
protein in human testes. Due to the inverse 

relationship between DNA methylation and gene 
expression at promoters, the fact that the coeffi
cient is negative suggests that these sites are asso
ciated with higher expression of proximal genes as 
sperm concentration increases. It is known that 
the expression level of LRWD1 is itself also regu
lated by the methylation status of the LRWD1 
promoter, and is related to the modulation of 
spermatogenesis, sperm motility, and vitality [37]. 
Our results suggest that semen samples with 
higher sperm concentration are demethylated at 
LRWD1 binding sites compared to samples with 
low sperm concentration. In support of this 
notion, we find that about one-third of the genes 
that are closest to CpG sites with significant nega
tive coefficients for sperm concentration are spe
cifically expressed in testis. Some of the most 
highly expressed genes in human testis include 
TSSK6 and ADAD1, based on data from GTEx. 
In particular, testis-specific serine/threonine 
kinase (TSSK6) is known to regulate cell prolifera
tion, and testis-specific adenosine deaminases 
(ADAD1 and ADAD2) play critical roles in germ 
cell differentiation [56,57].

Finally, we asked whether the genes with sig
nificant negative coefficients for sperm concentra
tion were enriched for specific functions. We 
found that the enriched molecular functions 
include adenosine deaminase activity, and receptor 
serine/threonine kinase binding. Deaminase activ
ity has been reported to affect the erasure of DNA 
methylation in mammalian primordial germ cells 
[58]. These results may indicate that the negative 
sperm sites identified by our multifactor model are 
associated with the maturation of sperm cells and 
potentially embryonic development.

We next investigated the age-associated changes 
in the DNA methylation of semen. We focused on 
the sites that had significant coefficients for age in 
our multifactor models, and found that these coef
ficients were predominantly negative, suggesting 
that the associated genes likely increase their 
expression with age. We found that the transcrip
tion factor binding that is enriched at these sites is 
NR3C1. The NR3C1 gene encodes the glucocorti
coid receptor that is expressed in peritubular 
smooth muscle-like cells in adult testis, and is 
involved in sperm transport. Elevated glucocorti
coid levels are linked to conditions such as 
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Cushing syndrome and hormonal disruption, 
which can ultimately impair testicular functions 
and suppress male fertility [42,59–61]. Another 
enriched transcription factor is the vitamin 
D receptor (VDR). VDR is present in sperm and 
plays an important role in the maturation of 
human spermatozoa [62,63]. Finally, we found 
that genes closest to sites with significant negative 
coefficients for age included IFITM1, IFITM2, and 
IFITM3, which are interferon response genes that 
are activated following viral infections, such as the 

hepatitis C virus [64]. This result suggests that 
aging causes the loss of methylation in certain 
CpG sites that are associated with inflammatory 
responses, indicating an age-associated increase in 
the inflammatory state of semen.

To capture the DNA methylation pattern differ
ence between germ cells and somatic cells along 
with aging, we performed a similar analysis on 
buccal swabs. We found that CpG sites with sig
nificant negative coefficients for age were asso
ciated with the transcription factor MED1, which 

Figure 8. Histone modification associated with sites in semen and buccal swabs.
(a) Top ranking histone modifications are generated from Cistrome based on methylation sites that are associated negatively with 
age in seminal multi-factor models. (b) Similarly, top ranking histone modifications are generated from Cistrome based on 
methylation sites that are associated negatively with age in the buccal swab multi-factor model. 
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plays a role in facilitating oral wound healing and 
regulates epithelial cell fate. Other transcription 
factors including SPI1 and EZH2 are also related 
to the regulation of epithelial cells and epigenomic 
aging. We found no overlap between the transcrip
tion factors identified in semen and buccal swabs. 
Similarly, there was no overlap between significant 
CpG sites associated with age in these two sample 
types (Supplementary Figure S3). Overall, our 
DNA methylation-based analysis suggests that 
aging biomarkers differ between semen and buccal 
swabs, reflecting a broader distinction between 
germ cells and somatic cells.

We recognize that the small sample size of only 
83 samples is a limitation in this study. However, by 
analyzing the seminal DNA methylation of a cohort 
with different semen parameters can still provide 
valuable clinical insights into semen DNA methyla
tion and epigenetic aging. Second, the reference 
profiles used in the cell-type deconvolution process 
may introduce bias, potentially overlooking certain 
cell types present in semen. Nonetheless, the use of 
well-established reference profiles available ensures 
that the most relevant and well-characterized cell 
types are accounted for, providing a reasonable 
approximation of the cell composition in semen.

In conclusion, we constructed a comprehensive 
model of DNA methylation in semen and buccal 
swabs that accounts for cell-type composition along 
with phenotypic factors. The computational method 
allows us to distinguish the methylation pattern of 
somatic cells and germline cells, providing key 
insights into sperm cell maturation and activity. By 
examining the significant CpG sites, we found a link 
between aging and increased inflammation in 
semen. As men age, demethylation at specific sites 
is associated with an increase in inflammatory gene 
expression, possibly causing sperm dysfunction and 
male infertility. In light of our findings, we believe 
that DNA methylation may offer new insights into 
the complex mechanisms of male infertility. 
Furthermore, we anticipate that such insights can 
be applied in clinical settings, potentially serving as 
reliable indicators of sperm fertility parameters and 
predictors of male infertility. This, in turn, could 
advance diagnostic procedures, providing clinicians 
with more accurate tools to assess and address male 
reproductive challenges.
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