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Abstract

Statistical methods for causal inference from sequentially collected data and sequential decision
making

by

Aurélien Florent Bibaut

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

In my dissertation, I consider the type of statistical experiment commonly referred to as adap-
tive trials, in which the experimenter interacts with an individual or a set of individuals, and,
sequentially, over time steps t = 1, . . . , T , observes a vector of measurements L1(t) on the indi-
vidual or individuals, then assigns treatment vectorA(t), and then observes a post-treatment vector
of measurements L2(t). In an adaptive trial, the experimenter can update the treatment distribution
at t based on previous observations.

This very general formulation covers many common settings such as dynamic treatment regimes,
the stochastic contextual bandit model, the Markov Decision Process model in reinforcement learn-
ing. I consider two related types of learning tasks: causal inference from data collected under an
adaptive trial, and sequential decision making with the objective of either maximizing the sample
efficiency for an estimation task, or of minimizing some form of cumulative regret.

My primary concerns are to develop statistical methods and algorithms that use statistical mod-
els that assume no more than is known from domain knowledge (and therefore are nonparametric),
and that are as sample efficient as possible.
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Chapter 1

Introduction
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Throughout the course of my doctoral studies, the main focus of my research has been to de-
velop methods and theory for causal inference from sequentially collected data, and for the related
task of sequential decision making, under the constraint that the statistical models these rely on
should only encode what we do know about nature. Causal inference from sequentially collected
data and sequential causal inference are two narrowly connected tasks. Indeed, a widely used prin-
ciple in sequential decision making algorithms is to estimate from the available data, the expected
return (or upper or lower bounds on the expected return) of decision rules before carrying them out.
Some of the learning problems I consider in my dissertation are off-policy evaluation in reinforce-
ment learning, sequential decision making under the contextual bandit framework, nonparametric
estimation from sequentially collected data, and inference and sequential testing in adaptive trials
under network and temporal dependence.

Intended applications of the methods I developed include clinical trials, personalized medicine,
public health decision making in the context of infectious diseases, ads placement and recom-
mender systems.

From a technical point of view, the constraint that the statistical models should not make more
assumptions than is known from domain knowledge implies in practice the statistical models I
use are nonparametric. As a result, my work is heavily grounded in nonparametric statistics,
and related techniques such as empirical process theory. Due to the sequential nature of the data
collection in the problems I consider, other technical foundations of my work include martingale
theory, and the theory of weakly dependent sequences of random variables, and in particular results
on empirical processes induced by martignales or weakly dependent random variables. Whenever
possible, I tried to provide efficient substitution estimators of the statistical parameters of interest,
and therefore relied on semiparametric theory, efficiency theory and Targeted Learning theory [Van
Der Laan and Rubin, 2006, van der Laan and Rose, 2011, 2018].

I organize this introduction chapter as follows. In section 1.1, I present a general formulation
of sequential decision problems, or equivalently, of adaptive trials — the type of statistical ex-
periment that these are equivalent to. In section 1.2, I present various settings, including dynamic
treatment regimes, the stochastic contextual bandit model, and the Markov Decision Process model
for reinforcement learning. In section 1.3, I detail various applications of my methodological and
theoretical work. In section 1.4 I present the general orientation of my research goals, an in partic-
ular in which directions I strove to advance the state of the art. In particular, I formally characterize
the requirements that ideal estimators for causal inference from sequentially collected data and se-
quential decision making algorithms should satisfy. Finally, in section 1.5, I give an overview of
the chapters of my dissertation, and detail how they contribute to furthering the state of the art in
the directions I outline in section 1.4.

1.1 General problem formulation
Data. The settings I consider in the various chapters of this dissertation are all special cases of
the following general formulation. Suppose that an agent (or experimenter) interacts with nature
(also referred to as the environment) over a succession of steps t = 1, 2, . . .. At each step t,
the agent observes a of vector L1(t) of variables, taking values in a set L1, which reflects the
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state of the environment, assigns a treatment vector (or action) A(t) to the environment, and then
observes a vector L2(t) of post-treatment variables taking values in a set L2. I assume that a time
point specific outcome Y (t) (or reward) can be defined for each t as a function of L2(t), that is
Y (t) = fY (t)(L2(t)) for some known function fY (t). I denote O(t) := (L1(t), A(t), L2(t)) the
observations collected in round t, and Ō(t) = (O(1), . . . , O(t)) the data collected up till time
t. I suppose that A(t) takes values in a set A which I will refer to as the action set. I denote
O := L1 ×A× L2 the domain of the observations O(t), for t = 1, 2, . . .. The domain of Ō(T ) is
then the Cartesian product OT := O × . . .×O︸ ︷︷ ︸

T times

.

Design. I suppose that at each time step t, the agent has access to Ō(t − 1), and can adapt its
rule for choosing A(t) in response to the past. I denote gt the treatment rule or policy that the
agent follows in choosing A(t). I view gt as the conditional distribution of A(t) given Ō(t − 1),
the data collected in previous rounds, and L̄1(t) the pre-treatment variables vector. That is, for any
t, A(t) | Ō(t − 1), L1(t) ∼ gt(· | Ō(t − 1), L1(t)). I also refer to gt as the design at time t, as
it determines the way how data is collected at time t. I say that gt is an adaptive design as the
experimenter adjusts the distribution the the treatment based on the available data.

Adaptive trials. I refer to the statistical experiment that generates the data sequence (Ō(t))t≥1

as a sequential adaptive trial.

Components of the data-generating distribution. I suppose that the true data-generating distri-
bution P T

0 admits a density w.r.t. some a known measure µT on OT . I denote pT0 := dP T
0 /dµ

T the
density of P T

0 w.r.t. µT . For any probability P T distribution over OT that is absolutely continuous
w.r.t. µT , I denote pT := dP T/dµT its density w.r.t. µT .

From the chain rule, any such density pT can be factored as

P T (Ō(T )) :=
T∏
t=1

q1,t(L1(t) | Ō(t− 1))

×
T∏
t=1

gt(A(t) | Ō(t− 1), L1(t))

×
T∏
t=1

q2,t(L2(t) | A(t), L1(t), Ō(t− 1)).

Denoting q1,1:T :=
∏T

t=1 q1,t, q2,1:T :=
∏T

t=1 q2,t, q1:T = q1,1:T q2,1:T , and g1:T =
∏T

t=1 gt, p
T can

be written as pT = q1:Tg1:T . The factor g1:T is the collection of treatment rules or designs carried
out by the experimenter along the trial. I refer to it as the controlled part of the data-generating
density. The factor q1:T represents the dynamics of the environment, in response in particular to
previous states and to the treatment history. It is a fact of nature, and is a priori unknown to the
experimenter. I refer to it as the uncontrolled component of the data-generating density.
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Causal model, causal targets and causal identifiability. I assume that the process generat-
ing the data Ō(T ) can be represented as a Nonparametric Structural Equation Model (NPSEM).
That is, I assume that there exists a collection of deterministic functions (fL1(t), fA(t), fL2(t) : t =
1, . . . , T ), and a collection U(T ) = (UL1(t), UA(t), UL2(t)) of exogenous random variables such
that, for every t,

L1(t) =fL1(t)(Ō(t− 1), UL1(t)),

A(t) =fA(t)(Ō(t− 1), L1(t), UA(t)),

L2(t) =fL2(t)(Ō(t− 1), L1(t), A(t), UL2(t)),

where I set by convention Ō(0) to be a known constant. Consider now a counterfactual scenario
in which I replace the treatment nodes in the above set of equations by a collection counterfactual
interventions (g∗t : t ∈ [T ]). In this counterfactual scenario, I would observe data Ō∗(T ) :=
(L∗1(t), A∗(t), L∗2(t) : t ∈ [T ]), which would obey the following set of equations:

L∗1(t) =fL1(t)(Ō
∗(t− 1), UL1(t)),

A∗(t) ∼g∗t (A(t) | Ō∗(t− 1), L∗1(t)),

L∗2(t) =fL2(t)(Ō
∗(t− 1), L∗1(t), A∗(t), UL2(t)).

I use the notation P T
F for any generic distribution over the domain of the full data, that is of the

couple (Ō(T ), U(T )), under the observed collection of treatment rules g = (gt : t ∈ [T ]), and
P ∗,TF any generic distribution of the full data (Ō∗(T ), U(T )) under the counterfactual intervention.
I refer to the distribution of Ō∗(T ) as the post-intervention distribution. I denote it P ∗,T . I denote
P T

0,F the true full data-generating distribution, P ∗,T0,F the corresponding distribution of the full data
under the counterfactual intervention, and P ∗,T0 the true post-intervention distribution. Throughout
my dissertation, I use the subscript “0” to indicate that I am referring to the true data-generating
distribution or features thereof.

I define causal parameters as features of the post-intervention distribution, that is causal param-
eters can be written as ΨF (P ∗,T ) for some mapping ΨF . Under identifiability assumptions, which
I state next, I can identify these causal parameters from P T , the true distribution of the observed
data. I now state the identifiability assumptions:

Assumption 1.1 (Sequential randomization). For any t ≥ 1, and τ > t A(t) ⊥⊥ O(τ), O∗(τ) |
Ō(t− 1), L1(t).

Assumption 1.2 (Positivity). For any t ≥ 1, and any a ∈ A, and any l1(t), ō(t − 1) that has
positive likelihood under pT0 ,

gt(A(t) | l1(t), ō(t− 1)) > 0.

Under assumptions 1.1 and 1.2, the post-intervention distribution equals the G-computation
formula P T

g∗ , defined as follows:

dP T
g∗

dµT
(ō(T )) :=

T∏
t=1

q1,t(l1(t) | ō(t− 1))
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×
T∏
t=1

g∗t (A(t) | Ō(t− 1), l1(t))

×
T∏
t=1

q2,t(l2(t) | ō(t− 1), q(t), l1(t)).

Since the factors q1,t and q2,t are known if one knows P T , then the G-computation formula P T
g∗ ,

and thus the post intervention distribution P ∗,T it equals, can be obtained from P T . As a result,
under these assumptions, for any causal parameter of the form ΨF (P ∗,T ), there exists a mapping
Ψ such that ΨF (P ∗,T ) = Ψ(P T

g∗). Since we consider sequential trials in which treatment decisions
at t are based on the observed past L1(t), Ō(t − 1), assumption 1.1 is always satisfied. I will also
assume that assumption 1.2 is satisfied in the rest of this introduction chapter.

Examples of causal parameters of interest include the mean outcome at T , or the sum of out-
comes across all time points in [T ], that one would observe if the experimenter had carried out
interventions g∗1, . . . , g

∗
T , which are respectively defined as

ΨF,T (P ∗,T ) := EP ∗,T [Y ∗(T )] and ΨF,1:T (P ∗,T ) := EP ∗,T

[
T∑
t=1

Y ∗(t)

]
,

and which equal the following parameters of the observed data distribution:

ΨT (P T ) := EPT
g∗

[Y (T )] and Ψ1:T (P T ) := EPT
g∗

[
T∑
t=1

Y (t)

]
.

Oracle designs. In various chapters of this dissertation I consider sequential adaptive designs
that learn an oracle design, defined as a parameter of the uncontrolled component q1:T of the data-
generating density. For this parameter to be univocally defined and learnable, I require that q1:T

exhibit a repeated factor indexed by a parameter θ independent of T . A situation in which this is
the case is for example when,

q2,t(l2(t) | ō(t− 1), q(t), l1(t)) = q2(l2(t) | q(t), l1(t)).

for some conditional density q2 independent of t, and therefore common across time points. In
this situation, the aforementioned requirement holds with θ := q2. An oracle design can then be
written as g(θ). In the adaptive designs I consider, gt is an estimator of g(θ) computed from the
vector Ō(t− 1) of past observations.

Objective pursued by the experimenter. Different oracle designs are appropriate for different
objectives. One goal the experimenter may pursue is to choose the sequence of designs g1, . . . , gT
so as to maximize mean cumulative outcomes of the form EPT [

∑T
t=1 Y (t)] over a fixed number of

steps, or the asymptotic mean outcome, that is limt→∞EPT [Y (t)]. In that case, a sensible choice
of g(θ) is the optimal treatment rule gopt(θ), or optimal policy, provided it is defined. Another
reasonable choice of designs is a mixture distributions of the form gε(θ) = (1− ε)gopt(θ) + εgunif ,
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where gunif is the uniform distribution over the action set A, and where ε ∈ (0, 1) represents an
exploration rate. Another objective is to maximize the sample efficiency for a certain statistical
parameter Ψ(θ) of the data-generating distribution, that is learning the design g(θ) that would
minimize the variance of a certain class of estimators of Ψ(θ) if the experimenter had carried it out
from the beginning of the experiment.

1.2 Settings covered by the general problem formulation
We consider various particular cases of the general formulation from the previous section. These
particular cases correspond to various causal models, that is sets of distributions P T

F over the do-
main of the full data (Ō(T ), U(T )) that we believe to contain the true full data distribution P T

0,F .
These causal models induce corresponding statistical models, that is sets of distributions P T over
the observed data domain OT , which we therefore believe to contain the true data-generating dis-
tribution P T

0 . In each of the following setting, we denote MT
F the causal model, and MT the

statistical model.

1.2.1 Stochastic contextual bandit
Conditional independence assumptions, and homogeneity assumptions. The i.i.d. stochastic
contextual bandit setting is a particular case of the setting I describe above, where I let (L1(t))t≥1

be an i.i.d. sequence of contexts, A(t) be the action at time t, and I let L2(t) = Y (t) be the
reward at time t. In the stochastic contextual bandit setting, for every t, Y (t) depends on the past
Ō(t − 1), L1(t), A(t) only through L1(t) and A(t), and the conditional distribution of Y (t) given
A(t) and L1(t) is the same for every t, that is, there exists a certain marginal density q1 and a
certain conditional density q2, both independent of t, such that, for every t ≥ 1,

q1,t(l1(t) | ō(t− 1)) = q1(l1(t)),

and q2,t(y(t) | ō(t− 1), l1(t), q(t)) = q2(y(t) | l1(t), q(t)).

Optimal treatment rules, policies and policy class, and CB algorithm. As a result of theses
conditional independence properties, the optimal action at each time point t depends only on the
latest context L1(t). Denoting q̄2(a, l1) := Eq2 [Y (t) | A(t) = a, L1(t) = l1], the outcome regres-
sion function under q1, the optimal treatment rule at each time step is the mapping dq2 that maps
any context l1 to the action that would give the highest expected outcome given the context l1, that
is

dq2(l1) = arg max
a∈A

q̄2(a, l1),

where ties are broken arbitrarily. In the contextual bandit setting, I find it convenient to view the
design at time t, or policy at time t as an Ō(t− 1)-measurable density probability distribution over
A conditional on L1(t), that is

A(t) | L1(t) ∼ gt(· | L1(t)),
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where gt = g̃t(Ō(t−1)) for some deterministic g̃t which maps the treatment history to a class G of
conditional distributions. I refer to the class G as the policy class. The policy class G may or may
not contain the optimal treatment rule dq2 . In the former case, I say that the so-called realizability
assumption is satisfied.

The deterministic sequence (g̃t)t≥1 of mappings from trial history to stochastic treatment rules
or policies fully specifies the contextual bandit algorithm. I will simply equate the two concepts
and refer to g̃ := (g̃t)t≥1 as the algorithm.

Distribution of the data induced by a CB algorithm, value of a policy, regret. We recall
that we denoteMT the statistical model specified by the aforementioned restrictions on the data-
generating distribution.

Any distribution P T of Ō(T ) in MT is fully specified by the triple (q1, g̃1:T , q2), as we have
that its density w.r.t. µT satisfies:

pT (Ō(T )) =
T∏
t=1

q1(L1(t))× g̃t(Ō(t− 1))(A(t) | L1(t))× q2(L2(t) | A(t), L1(t)).

I then write the expectation operator under P T as Eq1,g̃1:T ,q2 . For any fixed g, I let Pq1,g,q2 be the
distribution over L1 × A × L2 defined by Pq1,g,q2 := q1gq2, and I let Eq1,g,q2 be the expectation
operator under Pq1,g,q2 . Let (L1, A, Y ) ∼ Pq1,g,q2 . The value of a policy g under q := (q1, q2) is
defined as

Vq(g) := Eq1,g,q2 [Y ],

The instantaneous regret under q of a fixed policy g w.r.t. policy class G is defined as

regq(g,G) := sup
g′∈G
Vq(g′)− Vq(g),

and the cumulative regret at T under q of algorithm g̃ is defined as

Regq,T (g,G) := T sup
g′∈G
Vq(g′)− Eq1,g̃1:T ,q2

[
T∑
t=1

Y (t)

]
.

Learning goals. I consider two types of learning goals under the stochastic CB framework.
The first one is the cumulative regret minimization goal. The corresponding question asks,

given a policy class G, and maximum time point (or horizon) T , how to devise an algorithm g̃ that
makes Regq,T as small as possible.

The second learning goal is the question of how, given a known stochastic treatment rule g∗,
to perform inference for the value Vq(g∗) of g∗. The statistical parameter Vq(g∗) has a causal
interpretation as the mean counterfactual outcome we would observe if the experimenter carried
out stochastic intervention g∗.
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1.2.2 Dynamic treatment regimes.
Independence assumptions. The DTR literature considers data sets consisting of a certain num-
ber N of independent and identically distributed draws Ō(T, 1), . . . , Ō(T,N), where, for each
i ∈ [N ], Ō(T, i) is a longitudinal data structure over T time points, of the form

Ō(T, i) := (L1(1, i), A(1, i), L1(1, i), . . . , L1(T, i), A(T ), L2(T, i)).

Oftentimes in practical applications, each of these draws correspond to observations collected on
an individual that I follow along T time steps. I refer to Ō(T, i) as the trajectory of individual i. For
any t ≥ 1, and X ∈ {L1, A, L2, O, Ō}, I let X(t) := (X(t, i) : i ∈ [N ]). I use the notation OT,N

for Ō(T ), so as to make explicit in the notation the number of individuals, and I write P T,N instead
of P T for the distribution of OT,N This setting a special case of the general setting described in
section 1.1, where due to the independence between trajectories, pT can be further factorized as
follows:

pT (ō(T )) = pT,N(oT,N) =
T∏
t=1

N∏
i=1

q1,t(l1(t, i) | ō(t− 1, i))

×
T∏
t=1

N∏
i=1

gt(a(t, i) | l1(t, i), ō(t− 1, i))

×
T∏
t=1

N∏
i=1

q2,t(a(t, i) | l1(t, i), ō(t− 1, i)).

Observe that the above factorization makes no assumption on the dependence structure within a
trajectory, which can be arbitrary.

Design adaptivity. This formulation of the DTR setting allows for the treatment decision A(t, i)
for individual i at time point t to depend on Ō(t− 1, i), L1(t, i), that is the past of i up till L1(t, i).
Note also that the conditional distributions g1, . . . , gT are known in advance, and need to be the
same across individuals.

As a result, this formulation limits the design adaptivity in several ways. First, it doesn’t allow
for the design at t to pool across trajectories the available information to inform the treatment rule
at t. It also excludes the setting where the trajectories are observed one after the other – say j is
observed after i if j > i – and the treatment rules of trajectory j uses information from trajectory
i.

Learning goals. Parameters of interest include

ΨT (P T ) := EPT
g∗

[Y (T )] and Ψ1:T (P T ) := EPT
g∗

[
T∑
t=1

Y (t)

]
,

which equal the following causal parameters: the mean counterfactual outcome at T under g∗, and
the mean counterfactual sum of outcomes across time points, under g∗. A common learning goal
is to perform inference for these statistical parameters.
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1.2.3 Reinforcement learning in the MDP framework.
Dependence structure under the Markov Decision Process model. In reinforcement learning,
it is standard to assume that the agent interacts with a system consisting of a unit, or a collection of
units indexed by i = 1, . . . , N , where the trajectory of the unit along the experiment is modelled
by a Markov Decision Process.

The homogeneous MDP model in the case of a single unit. In the case of a single unit, the
trajectory of the system over T time steps is a data structure of the form Ō(T ) as defined in section
1.1, where L1(t) is the state of the unit at the beginning of round t, A(t) is the action or treatment
assigned by the agent at time t, and L2(t) is the reward at time t collected by the agent. Saying
that the trajectory of the unit is an MDP means that for any t, the condition distribution of the
reward L2(t) and of the next state L2(t+ 1) given Ō(t− 1), L1(t), A(t) depends only on L1(t) and
A(t). The MDP is said to be homogeneous if these conditional distributions are identical across
time points. For any distribution P T over OT that is absolutely continuous w.r.t. µT , its density
pT := dP T/dµT factorizes as

pT (ō(T )) :=
T∏
t=1

q1(l1(t) | l1(t− 1), a(t− 1))gt(a(t) | ō(t− 1), l1(t))q2(l2(t) | a(t)),

for some conditional distributions q1 and q2 that do not depend on t. Note that this model does not
place restrictions on the dependence of A(t) on the past.

Concurrent homogeneous MDPs in the case of several units. Consider the situation where
the agent interacts with N units at the same time. For every i = 1, . . . , N , I denote Ō(T, i) the
trajectory of unit i over T time steps. As in the previous subsection, for anyX ∈ {L1, A, L2, O, Ō},
I let X(t) := (X(t, i) : i ∈ [N ]). I dentote OT,N := Ō(T ) and P T,N := P T so as to make explicit
the number of units N .

A natural modelling assumption is to assume that the trajectory of each unit is an homogeneous
MDP, and that at every t ≥ 1, the reward L2(t, i) collected from unit i and the next state L1(t+1, i)
of unit i depends on the past of the trial Ō(t−1), L1(t), A(t) only through the the latest stateL1(t, i)
and the latest treatment A(t, i) assigned to unit i. These modelling assumptions are equivalent to
the following data-generating density factorization

pT,N(oT,N) = pT (ō(T )) =
N∏
t=1

N∏
i=1

q1,t(l1(t, i) | l1(t− 1, i), a(t− 1, i))

×
T∏
t=1

gt(a(t) | ō(t− 1), l̄1(t))

×
T∏
t=1

N∏
i=1

q2,t(l2(t, i) | l1(t, i), a(t, i)).
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Observe that the above described model for concurrent MDPs lets the treatment decision vector
A(t) depend on the past of the entire trial. As a result, this introduces dependence between the
trajectories Ō(T, 1), . . . , Ō(T,N).

A further modelling assumption is to impose that the treatment decision at time t for individual
i only depends on the past of individual i, and that the conditional distribution of A(t, i) given the
past of i is the same for every i. The model thus described is the set of distributions P T,N over the
domain of ŌT,N such that the the data-generating density pT,N := pT := dP T/dµT factorizes as

pT,N(oT,N) := pT (ō(T )) =
N∏
t=1

N∏
i=1

q1,t(l1(t, i) | l1(t− 1, i), a(t− 1, i))

×
N∏
t=1

N∏
i=1

gt(a(t, i) | ō(t− 1, i), l̄1(t, i))

×
T∏
t=1

N∏
i=1

q2,t(l2(t, i) | l1(t, i), a(t, i)).

In this case, treatment trajectories of distinct units are independent and identically distributed.
Observe that this model is a particular case of the DTR model presented in the previous subsection.

Optimal policies and regret. I now discuss the notions of optimal policies and regret in the case
of a single MDP.

Optimal greedy policy. Since the reward L2(t) only depends on the past through L1(t) and
A(t), the treatment rule at t that maximizes the expectation of the next outcome L2(t) is a mapping
that takes only L1(t) as input, and is defined as

dinst
q2

(l1(t)) := arg max
a∈A

Eq2 [L2(t) | A(t) = a, L1(t) = l1(t)].

Optimal sequence of policies for finite horizon. Carrying out dinst
q2

at every time step might
not be the strategy that maximizes the reward, since it may be that the action that has the largest
instantaneous payoff makes the system transition to states from which it is subsequently harder to
obtain good payoffs. The set of treatment rules (dq,t : t ∈ [T ]) that would maximize the expected
cumulative reward

∑T
t=1 L2(t) is defined recursively as follows. Let

dq,T (l1(T )) := arg max
a∈A

Eq2 [L2(T ) | A(T ) = a, L1(T ) = l1(T )] ,

and Vq,T (l1(T )) :=Eq2,dq,T [L2(T ) | L1(T ) = l1(T )]

=Eq2 [L2(T ) | L1(T ) = l1(T ), A(T ) = dq2,T (l1(T ))] .

and, for any t < T ,

dq,t(l1(t)) = arg max
a∈A

{Eq2 [L2(t) | A(t) = a, L1(t) = l1(t)]
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+ γ Eq1 [Vq,t+1(L1(t+ 1)) | L1(t) = l1(t), A(t) = a]} ,

and Vq,t(l1(t)) :=Eq,dq,t:T

[
T∑
s=t

L2(s) | L1(t) = l1(t)

]
.

In the MDP setting, I call policy a conditional density (l1, a) 7→ gt(a | l1). An adaptive design
scheme or reinforcement learning algorithm is specified by a deterministic sequence g̃t such that,
for any t, g̃t maps the past Ō(t − 1) to a policy. For a given fixed sequence g = (gt : t ∈ [T ]) of
policies, I define the value of g as

Vq(g) := Eq,g1:T

[
T∑
t=1

L2(t)

]
,

Similarly, for a reinforcement learning algorithm, I define the value of this algorithm as

Vq(g) := Eq,g̃1:T ,q2

[
T∑
t=1

L2(t)

]
.

Given a certain policy class G, I define the regret of a fixed sequence g or of an algorithm g̃ as,
respectively,

Regq,T (g,G) := sup
g′=(g′1,...,g

′
T )∈GT

Vq(g′)− Vq(g),

and Regq,T (g̃,G) := sup
g′=(g′1,...,g

′
T )∈GT

Vq(g′)− Eq1,g̃1:T ,q2

[
T∑
t=1

L2(t)

]
.

Optimal policy in the discounted infinite horizon setting. The agent might also want to
maximize the expected sum of the total discounted reward over an infinite horizon, defined as∑∞

t=1 γ
tL2(t), with γ ∈ (0, 1). In this case, it can be shown that the optimal intervention to carry

out at each time point is identical across time points, and is given by

dq,γ(l1) := arg max
a∈A

q̄q(a, l1),

where q̄q is the so-called action value function and is defined as the solution of the Bellman equa-
tion:

q̄q(a, l1) =Eq2 [L2(1) | A(1) = a, L1(1) = l1]

+ Eq1

[
max
a∈A

q̄q(a, L1(2)) | A(1) = a, L1(1) = l1

]
.

In this latter setting, since the optimal policy is the same across time points, it makes sense to
define the value of a single policy g (as opposed to of a sequence of policies g = (gt : t ∈ [T ])):

Vq,γ(g) := Eq,g

[
∞∑
t=1

γtL2(t)

]
,
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where Ed,g is the expectation under P T defined by

dP T/dµT (o(T )) :=
T∏
t=1

q1(l1(t) | l1(t− 1), a(t− 1))g(a(t) | l1(t))q2(l2(t) | a(t), l1(t)).

The regret of a fixed policy g is then defined as

Regq,γ(g,G) := sup
g′∈G
Vq,γ(g′)− Vq,γ(g),

and the regret of an algorithm (g̃t : t ≥ 1) is defined as

Regq,γ(g̃,G) := sup
g′∈G
Vq,γ(g′)− Eq,g̃

[
∞∑
t=1

γtL2(t)

]
.

Learning goals. A common learning goal is to perform inference for the mean outcome under
a sequence of counterfactual stochastic treatment rules g∗ = (g∗t : t ∈ [T ]) or g∗ = (g∗t : t ≥ 1),
from passive data collected from an already finished trial, in which the treatment rules might have
been adaptive. A related goal is to learn the optimal treatment rule from the same type of passive
data. These goals are called off-policy evaluation (and inference) and off-policy policy learning in
reinforcement learning.

Another goal is to learn and implement the optimal policy sequentially, by executing a certain
algorithm g̃, so as to maximize the total expected discounted reward Eq,g̃[

∑
t=1 L2(t)], or given a

certain policy class G, minimize the regret with respect to this policy class.

1.2.4 Time series of networks
Statistical model. I now present a statistical model of an adaptive trial over T time points with
N units, where network dependence is allowed between units. As in the previous subsections, I
denote the observed data set OT,N , and its distribution P T,N . I assume that there exists a collection
of deterministic functions {cL1(t,i), cL2(t,i) : t ∈ [T ], i ∈ [N ]}, where, for every t and i, cL1(t,i) and
cL2(t,i) map Ō(t− 1), and (Ō(t− 1), L1(t), A(t)) into a set C ⊂ Rd, for some d ≥ 1, such that the
data-generating density pT,N := pT := dP T/dµT can be written as

pT,N(oT,N) =
T∏
t=1

N∏
i=1

q1(l1(t, i) | cl1(t,i)(ō(t− 1)))

×
T∏
t=1

gt(a(t) | ō(t− 1), l1(t))

×
T∏
t=1

N∏
i=1

q2(l2(t, i) | cl2(t,i)(ō(t− 1), l1(t), a(t))).

Let CL1(t, i) := cL1(t,i)(Ō(t − 1)) and CL2(t, i) := cL2(t,i)(Ō(t − 1), L1(t), A(t)). Following
existing terminology, I refer to CL1(t, i), and CL2(t, i) as the “contexts” for L1(t, i) and L2(t, i).



13

Learning goals. As in the previous subsection, one learning goal is to perform inference for
the mean outcome at a certain time point, or cumulative mean outcome, from already collected
data. Another learning goal is to sequentially learn and carry out a sequence of policies so as to
maximize a cumulative mean outcome, or a mean final outcome.

1.3 Applications

1.3.1 Clinical trials.
Although adaptive designs are not the standard practice yet in clinical trials Bhatt and Mehta
[2016], abundant literature exists on the subject and the theory is fully mature (see e.g. van der
Laan [2008]).

In a trial aimed at conducting inference for the average treatment effect (ATE) of a certain drug,
an adaptive design can learn the optimal oracle design, that is the one that maximizes efficiency for
the statistical parameter of interest, in such a way that the asymptotic variance of an estimator of
the ATE is the same as it would be had the optimal design been carried out since the beginning of
the trial. van der Laan [2008] provides a comprehensive methodological framework for adaptive
clinical trials.

When there is only one treatment node and one health outcome, and that patients are received
sequentially, the observations collected the t-th are a triple (L1(t), A(t), Y (t)), where L1(t) is the
set of covariates, A(t) is the treament received and L2(t) is the health outcome. When patients
can be assumed to be i.i.d., the adaptive trial is an instance of the stochastic contextual bandit
framework outlined above.

In practice, it is more common to consider group sequential adaptive designs, in which the
outcomes of an entire batch of patient is observed before enrolling and assigning treatment to a
new batch.

1.3.2 Mobile health and precision medicine
In mobile health applications [Steinhubl et al., 2013, Malvey and Slovensky, 2014, Istepanian and
Woodward, 2017, Istepanian and Al-Anzi, 2018], data are collected on patients at a high frequency
by some connected measuring devices, and treatments are assigned algorithmically based on these
measurements, the observed response of the patient to past treatments, and potentially the history
of other patients.

In mobile health, one goal is to adaptively learn and implement the intervention that maximizes
the outcome at each time point.

One instance of application of mobile health is Just-In-Time Adaptive Interventions (JITAI) in
which at each time point, the default action is to not intervene, unless the value of the patient’s
measurement vector makes it appear that it is especially worth it to do so [Spruijt-Metz and Nilsen,
2014]. One example is exercise encouragement systems, in which the patient receives a notification
on their phone encouraging them to exercise, at the time when they are most likely to be receptive.
The notification is triggered when the patient is likely to be most receptive or when it might be
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most beneficial to exercise (for example when it has been a long time since the last time the patient
exercised).

In a mobile health application, if there is a reason to believe that the patient’s measurement
vectors are i.i.d. and that the at every time point depends only on the latest treatment and mea-
surement vector, and that this dependence follows the same law across time points, an appropriate
model for the adaptive trial is the stochastic contextual bandit model. I refer the reader to Tewari
and Murphy [2017] for more details on the application of contextual bandits to mobile health.

In many settings, it is not realistic to assume such independence properties, and the trajectory
of the patient might be better modelled by either an MDP, or a time series of the type presented in
subsection 1.2.4, or by an unrestricted DTR model. In the latter case, one will need several patients
to learn the optimal treatment rule, while in the former two cases, it is possible to learn it from one
single patient’s trajectory.

1.3.3 Online ads placement and online recommender systems

The ad selection problem or item recommendation problem in web applications can be modelled
as follows. The web platform sequentially receives user sessions indexed by t = 1, 2, . . .. At each
session, the platform first observes a vector L1(t) of characteristics of the user and of the session,
then chooses an action A(t) and then observes an outcome. In an ads setting, a natural outcome is
whether the user clicked on the ad that was presented to them.

1.3.4 Sequential trial for public health policy evaluation in an infectious dis-
ease setting

Consider the hypothetical situation where the experimenter follows the N inhabitants of a city
over successive time steps t = 1, 2, . . ., and where she cares about learning and evaluating public
health interventions to limit the spread of an infectious disease. For example, at each time t, the
experimenter or decision maker can choose to force individuals to stay at home for a certain period
of time, or vaccinate individuals depending on some characteristics such as age, occupation and
health history. Natural outcomes of interest include the infection status, and the mortality status.
Using the notation presented earlier, I denote L1(t, i) a vector of measurements characterizing the
state of individual i at time t, A(t, i) the intervention assigned to i at t, and L2(t, i) the outcome
for i at t.

Since individuals are interconnected through contagion effects, their trajectories are not inde-
pendent, and therefore there is only one independent trajectory to learn from, the one of the entire
city. If domain knowledge justifies assuming that L1(t, i) and L2(t, i) depends on the past through
finite dimensional summary vectors, and that this dependence is identical across individuals and
time points, then the model presented in subsection 1.2.4 is appropriate. As we show in chap-
ter [causal inference from a single time series of connected units], under this model, and under
additional assumptions, the effective sample size at time point T of the trial is N × T .
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1.4 Research goals
The overarching goal of my research efforts is to design methods for causal inference from se-
quentially collected data and sequential decision making that rely only on models encoding the
available domain knowledge. This is in contrast with methods that make parametric assumptions
on unknown components of the data-generating distribution.

For such methods to have practical utility, they must satisfy a certain number of requirements.
In the next subsections, I present the formal requirements that ideal estimators for causal inference
problems and sequential decision making algorithms should satisfy. I distinguish the requirements
that apply to off-policy inference and the ones that pertain to sequential decision making. As
pointed out at the beginning of the chapter, these two tasks are narrowly connected, and as a result
there is some interplay between the requirements that apply to either task.

1.4.1 Formal requirements for causal estimators

Statistical model for q. We believe that statistical models on the unknown and uncontrolled part
q of the data-generating distribution should only encode what we know from domain knowledge.
In some applications, such domain knowledge might tell us that the individual trajectories are
independent, in some other we might in addition be founded to assume that successive observations
of the same trajectory exhibit further conditional independence. While domain knowledge might
justify conditional independence assumptions, or homogeneity assumptions (that is that a factor of
the likelihood is constant across time points and or individuals), it seems rather implausible in most
settings that it would justify assuming a parametric model for components of the likelihood. This
is why we believe that, while the models we should be working with can impose restrictions on the
dependence structure, and can impose repeated factors in the factorization of the likelihood, these
factors should be modelled nonparametrically. To make things more concrete, take for instance the
case of the single trajectory MDP model presented in subsection 1.2.3. This model assumes that
under the data-generating distribution P T , the likelihood of a trajectory Ō(T ) over T time steps
factorizes as

pT (Ō(T )) =
T∏
t=1

q1(L1(t) | L1(t− 1), A(t− 1))

×
T∏
t=1

gt(A(t) | Ō(t− 1), L1(t))

×
T∏
t=1

q2(L2(t) | L1(t), A(t)), (1.1)

but makes no further assumption on the factors q1 and q2, that is these are assumed to be modelled
fully nonparametrically, or in more formal terms, to belong to saturated nonparametric models
Mq1 andMq2 . Let me now formally define the notion of a saturated nonparametric model. Take
for example the modelMq1 . We say thatMq1 is a saturated nonparametric model of conditional
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distributions of L1(t) given A(t−1) and L1(t−1), if, for any q1 ∈Mq1 , the tangent space ofMq1

at q1 is equal to the Hilbert space{
(l1, a, l

′
1) 7→ s(l1, a, l

′
1) : ∀l1, a

∫
s2(l1, a, l

′
1)q(l′1 | a, l1)dl′1 <∞

and
∫
s(l1, a, l

′
1)q(l′1 | a, l1)dl′1 = 0

}
.

As a result, a more complete description of the model MT for MDPs over T time steps is: the
set of distributions that factorize as in (1.1), where q1 and q2 vary freely over the nonparametric
saturated modelsMq1 andMq2 .

Estimators of a given parameter Ψ(q) often rely on intermediate estimators of infinite dimen-
sional components η1(q), . . . , ηp(q) of q, which are often referred to as nuisance parameters. Con-
sider the nuisance parameter η1(q), and suppose for example that it is a d-variate real valued
function. The saturated models Mq1 and Mq2 induce a nonparametric model for Mη1(q). Ex-
isting nonparametric estimators of d-variate real valued functions usually learn functions in and
have convergence guarantees over nonparametric classes of functions that are subsets of the model
Mη1(q) induced by the saturated model for q. Some of these nonparametric classes, or the union
of a collection of such nonparametric classes can form a realistic modelM′

η1(q) for the nuisance
parameter η1(q), even if M′

η1(q) is a subset of the fully saturated model Mη1(q). As a result, we
will find it satisfactory enough to assume that the nuisance parameter η1(q) belongs to such a non-
parametric modelM′

q1
∈ Mq1 , even though, as we further discuss in the next paragraph, we will

be content with semiparametric efficiency of estimators with respect to the larger modelMη1(q).

Semiparametric efficiency for estimators of pathwise differentiable parameters. Semipara-
metric efficiency theory tells us that, given a model M, and a parameter Ψ : M → R satis-
fying a certain regularity condition, namely pathwise differentiablity at P w.r.t. M, all “non-
pathological”1 estimators, must have asymptotic variance at least as large as a certain quantity,
the semiparametric efficiency bound for Ψ at P w.r.t. M, which I denote EB(Ψ,M, P ). The
semiparametric efficiency bound is also referred to as the generalized Cramer-Rao lower bound.
Under the model M, an ideal estimator of Ψ(P ) should have asymototic variance equal to the
semiparametric efficieny bound. Semiparametric efficient estimators have been an intense areas
of research for many years. Early contributions include the one-step estimator and the estimating
equation methodology. The targeted minimum loss estimation frameworks allows to derive a lo-
cally semiparametric efficient estimator for any pathwise differentiable target parameter. Observe
that the generalized Cramer-Rao lower bound is an instance dependent bound (that is bound that
depends on the actual data-generating distribution, as opposed to minimax lower bouds, which cor-
responds to a worst-case distribution not necessarily equal to P . Instance dependent lower bounds
are generally less pessimistic than minimax bounds).

Robustness. Given statistical model M, an ideal estimator of a pathwise differentiable target
parameter Ψ : M → R should inherit the robustness properties of the canonical gradient of Ψ

1more rigorously, all estimators of Ψ(P ) that are regular at P w.r.t.M
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w.r.t.M.

Coverage of confidence intervals. An ideal estimator of a pathwise differentiable target param-
eter should come with confidence intervals that should be at least asymptotically valid, and ideally
valid in finite samples too.

Substitution estimators. We say that an estimator Ψ̂ of a parameter Ψ :M→ R is a substitution
estimator of Ψ(P0) if it can be written as Ψ(P̂n) where P̂n is an estimator of the components of the
likelihood Ψ depends on. A substitution estimator respects the bounds of the paremeter space. For
example, an substitution estimator of a probability always lies in [0, 1].

Oracle efficient model selection for estimation of non-pathwise differentiable target param-
eters. Oftentimes, infinite dimensional parameters η(q) such as optimal treatment rules or out-
come models are non-pathwise differentiable. Various criteria can be applied to assess whether an
estimator of such a parameter is satisfactory or not. Let me first review some candidate criteria,
before presenting the one we find most satisfactory.

If one commits to a certain statistical modelMη for η(q), a first candidate criterion would be
mimimax optimality. A minimax optimal estimator overMη achieve, up to log n factors, where n is
the sample size, the mimimax estimation rate overMη. However, we find that minimax optimality
over a fixedMη isn’t an entirely satisfactory notion for several reasons. Firstly, for it to be realistic
thatMη contains the true parameter, one might have to consider a very large nonparametric model
Mη. Minimax rates over such large models can be very slow. An instance of such a very large
model over which the minimax estimation rate is very slow is the class of d-variates functions that
are 1-time continuously differentiable. The corresponding minimax estimation rate is n−1/(d+1).

Nevertheless, it might turn out that η(q) lies in a small submodelMη ofMη over which the
minimax estimation rate is much faster. In our example whereMη is the class of 1-time contin-
uously differentiable d-variate functions, it might turn out that η(q) is actually β times continu-
ously differentiable, with β > 1. The minimax rate over this latter smaller class of functions is
n−β/(d+1). In this case, given a collection of submodelsMJ,η ⊂ . . . ⊂ M1,η = Mη, we would
like to have a model selection procedure that outputs an estimator with guaranteed rate of con-
vergence matching, up to log n factors, the minimax rate of the smallest submodel η(q) belongs
to. An alternative approach to realistic modelling of η(q) is, instead of assuming a collection of
nested models, to assume that η(q) belongs to the union of a finite collection of not necessarily
nested models M1, . . . ,MJ . In this case, similarly to the nested case, it would be desirable to
have a model selection procedure that outputs an estimator with guaranteed rate of convergence
within a log n factor of fastest minimax rate among the models of this collection that contain η(q).
An model selection procedure that achieves this requirement is called minimax adaptive. Model
selection literature has proposed several such procedures, such as for example Lepski’s method in
the case of nested models.

Still, we don’t find minimax adaptivity to be an entirely satisfactory criterion for estimators of
non-pathwise differentiable target parameters. The reason is that given a collection of estimators
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η̂1, . . . , η̂J that are consistent over models Mη,1, . . . ,Mη,J , respectively, the estimator that per-
forms best at a certain data-generating distribution P T might not be the one that corresponds to the
model with best minimax rates among the models that contain η(q).

The discussion presented so far in this paragraph suggests two things. Firstly, that it is best to
work with a model selection combining several estimators or several models, rather than commit-
ting to a certain model ahead of time. Secondly, that we would rather have this procedure return the
estimator that works best under the actual data-generating distribution, as opposed to a minimax
adaptive procedure. A notion that formalizes this latter requirement is that of oracle optimality,
which applies to a procedure selecting among a collection of estimators. I present this notion next.

Consider a collection η̂1,n, . . . , η̂J,n of estimators of η(q), and let η′ 7→ `(η′, η(P )) be a loss,
where I use the notation η′ for a generic element of the parameter space. Consider a model selection
procedure that returns the index ĵn of an estimator. We say that the model selection procedure is
oracle efficient if, for any ε > 0,

EPT
[
`(η̂ĵT ,T , η(q))

]
≤ (1 + ε) min

j∈[J ]
EPT [`(η̂j,T , η(q))] +R(ε, P T , T ),

where R(ε, P T , T ) is an error term that is negligible in front of the first term of the right-hand
side above. As opposed to a minimax adaptive model selection procedure, an oracle efficient
model selection procedure achieves the rate of the estimator that performs best at the actual P
that generated the data. In that sense it is an instance-dependent guarantee. Note that an oracle
efficient ensemble learning procedure that combines minimax efficient estimators over a collection
of classes of models is minimax adaptive.

1.4.2 Requirements for sequential decision making algorithms
I distinguish two goals: pure learning goals, in which the objective is to maximize the statistical
efficiency for a certain parameter such as the ATE, or identify the best treatment arm as fast as
possible, and regret minimization goals, in which the objective is to obtain as high a cumulative or
final outcome as possible.

Pure learning goals.

Equivalence with the oracle design. Suppose that the goal of the experimenter is to conduct
inference for a certain pathwise differentiable parameter Ψ(Q0) of the uncontrolled component
of the data-generating distribution. A natural parameter of interest is the average treatment effect
in the case of a binary treatment. If we knew Q0 from the onset, we could carry out from the
beginning the oracle design g(Q0) := (gt(Q0) : t ∈ [T ]) that minimizes the efficiency bound for
Ψ(Q0) w.r.t. MT at P T

0 . An adaptive design is a sequence (ĝt : t ∈ [T ]), where the design ĝt at
time t is fitted from the available data Ō(t− 1) up till the previous time point. An optimal adaptive
design is such that the asymptotic efficiency bound under that design is the same as that under the
oracle optimal design g(Q0). We then say that such an adaptive design is asymptotically equivalent
with the oracle design. van der Laan [2008] demonstrates the construction and analysis of adaptive
designs that are asymptotically equivalent with the oracle design.
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Best arm or best treatment rule identification. Considering a finite collection of treatment
arms A := {1, . . . , K} or a finite collection of treatment rules g1, . . . , gJ , a potential learning
goal is to identify as quickly as possible, under a certain fixed confidence level the one that would
yield the highest immediate, cumulative, or final outcome. An ideal design is one that, when
combined with appropriate estimators of the value of each arm or of each stochastic treatment rule,
allows to identify the best one as quickly as possible. There is abundant literature on the best arm
identification problem in the bandit setting [Even-Dar et al., 2006, Gabillon et al., 2011, 2012,
Kaufmann et al., 2016].

Regret minimization goals.

Nonparametric policy class. For essentially the same reasons as invoked in the previous sub-
section, an ideal sequential decision making procedure should learn policies in a nonparametric
policy class, or perform some form of ensemble learning over a collection of nonparametric policy
classes.

Minimax optimality. An ideal algorithm would be minimax optimal in regret w.r.t. its policy
class. A minimax optimal algorithm achieves regret rate equal, up to log T factors, equal to the
minimax regret rate over the policy class in which it learns its policies.

Instance dependent optimality. An ideal algorithm would have regret rate provably matching
that of an instance dependent lower bound, that is a bound that depends on q.

Adaptivity. As it a priori unclear which nonparametric policy class contains the optimal treat-
ment rule dQ, an ideal regret minimization algorithm should be able to perform ensemble learning
or model selection over a collection of algorithms each operating over a different policy class. As
in the passive data setting, I distinguish two types of guarantees for model selection procedures:
minimax adaptivity and oracle efficiency. First let me introduce the model selection setting. Con-
sider a collection Π1, . . . ,ΠJ of policy classes such that at least one contains the optimal treatment
rule dQ, and let g̃1, . . . , g̃J algorithms that achieve the minimax regret rate w.r.t. Π1, . . . ,ΠJ , re-
spectively. Consider a model selection procedure, that at each t, computes from Ō(t−1) the index
ĵt of one of the algorithms, and let g̃ be the algorithm that assigns at t the action proposed by
algorithm g̃ Note that the policy that any of the base algorithms propose at t depends on how the
algorithms share data. They can operate separately, in which case each algorithms uses only the
data at the rounds it was chosen, or on the contrary share between them all of the available data. I
discuss this in more detail in chapter [model selection chapter]

Minimax adaptivity. I say that the model selection procedure is said minimax adaptive if
it achieves regret rate equal (up to log factors) to that of the fastest minimax rate among policies
classes that contain dQ.
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Oracle efficiency. The model selection procedure is oracle efficient if, for any ε > 0,

Eg̃,q

[
T∑
t=1

−Y (t)

]
≤ (1 + ε) min

j∈[J ]
Eg̃j ,q

[
T∑
t=1

−Y (t)

]
+R(ε, q, T )

where R(ε, q, T ) is an excess risk term that is negligible in front of the first term of the right-hand
side as T →∞.

1.5 Contributions
Although there still do not exist algorithms and estimators that provably meet all of the require-
ments presented in the previous section, my contributions bring the state of the art closer to meeting
some of these. Here is a quick summary of the different chapters of my dissertation, and a descrip-
tion of how each of them contributes in the directions outlined above.

Chapter 1: Regularized Targeted Maximum Likelihood Estimation for Off-Policy Evaluation
in Reinforcement Learning. In this chapter, we consider the Off-Policy Evaluation problem in
reinforcement learning. While we worked under the assumption that the data were i.i.d. trajectories
of a Markov Decision Process, we worked under the larger model that allows the state and reward
at one time point to depend on the entire past, that is we worked under the DTR model. The
parameter of interest is Ψ(P ) = Eq,g∗

[∑T
t=1 Y (t)

]
, that is the cumulative reward under the G-

computation formula distribution P T
g∗ , which equals the mean outcome under counterfactual policy

g∗. Theoretical contributions include the derivation of a representation of the EIF of Ψ w.r.t. the
DTR model, and the derivation of a Targeted Maximum Likelihood Estimator for Ψ based on this
EIF. We came up with several regularizations of the TML estimator so as reduce variance of the
estimator, as the cost of added bias. We combined regularized estimators with a bootstrap version
of the so-called MAGIC ensemble learning procedure (cite Thomas and Brunskill). While the
unregularized estimator and the ensemble estimator are efficient w.r.t. a larger model than the
MDP model we know to contain the data generating distribution, our methodology significantly
outperformed the state of the art at the time in experiments (at the time, semiparametric estimators
of Ψ in the RL literature were not yet efficient w.r.t. the MDP model, but rather were efficient w.r.t.
the DTR model).

Chapter 2: Fast rates for empirical risk minimizers over cadlag functions with bounded
Hardy-Krause variation. The class of d-variate cadlag functions with bounded sectional varia-
tion norm has received attention from researchers recently as it is a nonparametric class which can
be used as a realistic statistical model in many settings and over which the rate of convergence of
empirical risk minimizers can be shown to have mild dependence on the dimension. In this chap-
ter, we give the first characterization of this class of functions. This allows us to show that under
common losses used in regression settings, the rate of convergence of empirical risk minimizers
over this class is O(n−1/3(log n)2d−1). These guarantees hold for i.i.d. data. We extend them to
dependent data in subsequent chapters.
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Chapter 3: Generalized Policy Elimination: an efficient algorithm for nonparametric con-
textual bandits. In this chapter, we make progress towards making contextual bandit algorithms
available for nonparametric policy classes, in the non-realizable case. This paper is a generalization
of the papers Dudik et al. [2011] and also to some extent of Agarwal et al. [2014] to nonparametric
policy classes. The algorithm we propose achieves the minimax regret up to log factors over poli-
cies classes with integrable sup norm entropy, and is efficient in the sense that it requires only a
polynomial number of calls to some optimization oracles. It is the first such efficient algorithm that
achieves regret optimality for what we referred to as “actual” nonparametric classes, that is classes
with polynomial entropy, as opposed to classes with logarithmic entropy, such as VC classes.

Chapter 4: Nonparametric learning from sequentially collected data. In this chapter, we
consider nonparametric learning of infinite dimensional components of q from sequentially col-
lected data. We give high probability bounds on the excess risk of empirical risk minimizers
fitted from such data. We then propose an extended version of the Super Learner for sequential
cross-validation, which eliminates the need for some hard-to-check assumptions from the original
sequential Super Learner article [Benkeser et al., 2018].

Chapter 5: Model selection for contextual bandits. In this paper, we present a method for
model selection in the contextual bandit setting. Our procedure achieves minimax adaptivity for
the rate in T of the regret (we treat other parameter of the problems such as the number of arms or
the dimension of the contexts as constants), if the base algorithms are themselves minimax optimal.

Chapter 6. Sequential causal inference in a single world of connected units. In this chapter,
we consider adaptive trials involving a set of N individuals we follow along T time steps. We
allow for network dependence between individuals. We work under the time series of networks
model presented in subsection 1.2.4. We give inference guarantees estimators of causal effects
under adaptive desings under network dependence, and guarantees for adaptive stopping rules.
Theoretical contributions include maximal inequalities and equicontinuity results for empirical
processes induced by dependent data under mixing conditions. As a corollary of the maximal
inequality, we provide guarantees for empirical risk minimizers under mixing conditions.

Chapter 7. Sufficient and insufficient conditions for the stochastic convergence of Cesaro
means. Cesaro means of random variables arise naturally in several statistical problems that have
a sequential aspect. For instance, the second order remainder term in the analysis of online one-
step estimators is a Cesaro mean of products of differences between nuisance estimators and their
targets. We provide sufficient conditions for the stochastic convergence of such Cesaro means, and
we show that convergence in probability of the terms of the mean in not in general a sufficient
condition.
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In this chapter, we study the problem of Off-Policy Evaluation (OPE) in Reinforcement Learn-
ing. The goal of OPE is to estimate, given data collected under a certain known policy, the value of
a counterfactual policy, that is the mean cumulative (discounted) reward one would obtain under
that counterfactual policy.

In the Reinforcement Learning literature, it is customary to assume that the trajectories of the
system are observations of a Markov Decision Process (see subsection 1.2.3 in the introduction
chapter). In this chapter, we consider the efficient influence function and efficient estimators of the
value of a policy with respect to a larger model, namely the Dynamic Treatment Model presented in
subsection 1.2.2. We give a representation of the EIF and of these estimators under the assumption
that the data-generating distribution belongs to a MDP model. Whereas such representations had
been given before our article was published [Jiang and Li, 2015, Thomas and Brunskill, 2016],
our article was the first one to give a rigorous derivation of the representation of the EIF of this
parameter w.r.t. the DTR model, under the MDP model assumptions. A concurrent [van der Laan
et al., 2018] and a subsequent article [Kallus and Uehara, 2019] give the EIF w.r.t. the MDP model.

The other main contribution of this work is to propose a Targeted Maximum Likelihood Es-
timator (TMLE) of the value of counterfactual policy, regularized versions of this TMLE and an
ensembling procedure to combine regularized TMLEs. The ensembling procedure is a variant of
the MAGIC procedure introduced by Thomas and Brunskill [2016]. Our simulations demonstrate
that our estimator dominates the state-of-the art at the time of publication in terms mean squared
error, across various RL environments.

2.1 Introduction
Off-policy evaluation (OPE) is an increasingly important problem in reinforcement learning. Works
on OPE address the pressing issue of evaluating the performance of a novel policy in a setting
where actual enforcement might be too costly, infeasible, or even hazardous. This situation arises
in many fields, including medicine, finance, advertising, and education, to name a few Murphy
et al. [2001], Petersen et al. [2014], Theocharous et al. [2015], Hoiles and Van Der Schaar [2016].
The OPE problem can be treated as a counterfactual quantity estimation problem, as we inquire
about the mean reward we would have accrued, had we, contrary to fact, implemented the policy
πe at the time of data-collection. Estimating and inferring such counterfactual quantities is a well
studied problem in statistical causal inference, and has led to many methodological developments.
One of the things we aim to do in this work is to further earlier efforts Dudik et al. [2011] in
bridging the gap between the reinforcement learning and causal inference fields.

There are roughly two predominant classes of approaches to off-policy value evaluation in
RL Jiang and Li [2015]. The first is the direct method (DM), analogous to the G-computation
procedure in causal inference Robins et al. [1999, 2000]. The direct method first fits a model of
the system’s dynamics and then uses the learned fit in order to estimate the mean reward of the
target policy (evaluation policy). The estimators produced by this approach usually exhibit low
variance, but suffer from high bias when the model fit is misspecified or the sample size is small
relative to the complexity of the function class of the model Mannor et al. [2007]. The second
major avenue for off-policy value evaluation is importance sampling methods, also termed inverse
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propensity score methods in statistical causal inference Rosenbaum and Rubin [1983]. Importance
sampling (IS) attempts to correct the mismatch between the distributions produced by the behavior
and target policies Precup et al. [2000], Precup [2000]. IS estimators are unbiased under mild
conditions, but their variance tends to be large when the evaluation and behavior policies differ
significantly Farajtabar et al. [2018], and grows exponentially with the horizon, rendering them
Farajtabar et al. [2018] impractical for many RL settings. A third class of estimators, Doubly
Robust (DR) estimators, obtained by combining a DM estimator and an IS estimator, are becoming
standard in OPE Farajtabar et al. [2018], Jiang and Li [2015], Thomas and Brunskill [2016]. These
originate from the statistics literature Robins et al. [1994], Robins and Rotnitzky [1995], Bang and
Robins [2005], van der Laan and Rubin [2006], van der Laan and Rose [2011, 2018], and were
introduced in the RL literature by Dudik et al. [2011]. Combining a DM and an IS estimator under
the form of a DR estimator leads to lower bias than DM alone, and lower variance than IS alone.

Our contribution to OPE in RL is multifold. First we adapt a doubly robust estimator from
statistical causal inference, the Longitudinal Targeted Maximum Likelihood Estimator (LTMLE)
to the OPE in RL setting. We show that our adapted estimator converges at rate OP (1/

√
n) to the

true policy value. Deriving the LTMLE requires us to identify a mathematical object known in
semiparametric statistics as the efficient influence function (EIF) of the estimand (policy value). To
the best of our knowledge, this article is the first one to explicitly derive the EIF of the policy value
for the OPE problem in RL. Knowledge of the EIF allows us to prove that both our estimator (the
LTMLE) and recently proposed DR estimators [Jiang and Li, 2015, Thomas and Brunskill, 2016]
are optimal in the sense that they achieve the generalized Cramer-Rao lower bound.

Second, we introduce an idea from statistics to make better use of the data than prior OPE works
[Jiang and Li, 2015, Thomas and Brunskill, 2016]. We noticed that most OPE papers, at least in
theory, use sample splitting: theQ-function is fitted on a split of the data, while the DR estimator is
obtained by evaluating the fitted Q-function on another split. We propose a cross-validation-based
technique that allows to essentially average the Q-function over the entire sample, leading to a
constant-factor gain in risk.

Finally, and most importantly for practice, we propose several regularization techniques for
the LTMLE estimators, out of which some, but not all, apply to other DR estimators. Using
the MAGIC ensemble method from Thomas and Brunskill [2016], we construct an estimator that
combines various regularized LTMLEs. We call our estimator RLTMLE (TMLE for RL). Our
experiments demonstrate that RLTMLE outperforms all considered competing off-policy methods,
uniformly across multiple RL environments and levels of model misspecification.

2.2 Statistical Formulation of the Problem

2.2.1 Markov Decision Process

Consider a Markov Decision Process (MDP) defined as a tuple (S,A,R, P1, P, γ), where S and
A are the state and action spaces, and γ ∈ (0, 1] is a discount factor. A trajectory H is a suc-
cession of states St, actions At and rewards Rt, observed from t = 1 to the horizon t = T :
H = (S1, A1, R1, ..., ST , AT , RT ). For all (s, a, r, s′) ∈ S ×A×R×S, P (s′, r|s, a) is the proba-
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bility of collecting reward r and transitioning to state s′, conditional on starting in state s and taking
action a, and P1(s) is the probability that the initial is s. A policy π is a sequence of conditional
distributions (π1, π2, ...) that stochastically map a state to an action: for all t, At|St ∼ πt.

Suppose we are given n i.i.d. T -step trajectories of the MDP, D = (H1, ..., Hn), collected
under the behavior policy πb = (πb,1, ...., πb,T ). We assume all trajectories have the same initial
state s1, allowing for the data-generating mechanism to be fully characterized by (P, πb).

2.2.2 Estimation Target

The goal of OPE is to estimate the average cumulative discounted reward we would have obtained
by carrying out the target policy πe instead of policy πb. That is, we want to estimate the following
counterfactual quantity:

V πe
1 (s1) := EP,πe

[
T∑
t=1

γtRt|S1 = s1

]
. (2.1)

Consider the following common assumption from the causal inference literature.

Assumption 2.1 (Absolute continuity). For all s, a ∈ S ×A, if πb(a|s) = 0, then πe(a|s) = 0 too.

Under assumption 2.1 and the Markov assumption of the MDP model, V πe
1 (s1) can be written

as an expectation under the data-generating mechanism (P, πb):

V πe
1 (s1) = EP,πb

[
T∏
t=1

πe,t(At|St)
πb,t(At|St)

T∑
t=1

γtRt

∣∣∣∣S1 = s1

]
. (2.2)

For t = 1, ..., T , define R̄t:T :=
∑T

τ=t γ
τ−tRτ as the total reward from step t to step T . For all

1 ≤ t1 ≤ t2 ≤ T , define ρt1:t2 :=
∏t2

τ=t1
πe,τ (Aτ |Sτ )/πb,τ (Aτ |Sτ ). For all t = 1, ..., T , we will use

the shortcut notation ρt := ρ1:t. We use the convention that ρ0 = 0. Denote R̄(i)
t:T , ρ(i)

t , ρ(i)
t1:t2 the

corresponding quantities for a sample trajectory Hi. Consistently with (2.1) and (2.2), we define,
for any t = 1, ..., T , and s ∈ S, the value function (or reward-to-go) from time point t and state s,
as

V πe
t (s) : = EP,πe [R̄t:T |St = s]

= EP,πb
[
ρt:T R̄t:T |St = s

]
.

For every t = 1, ..., T , s ∈ S, a ∈ A, we further define the action-value function from time step t
as

Qπe
t (s, a) := EP,πe

[
R̄t:T |St = s, At = a

]
= EP,πb

[
ρt:T R̄t:T |St = s, At = a

]
.
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2.3 An existing state-of-the art approach
Our method can be seen as building upon and improving on Thomas and Brunskill [2016]. We
believe it helps understanding our contribution to first briefly describe their estimators. For a
detailed review of OPE methods, we refer the interested reader to the vast and excellent literature
on the topic Precup et al. [2000], Thomas [2015], Jiang and Li [2015], Farajtabar et al. [2018].

2.3.1 Weighted Doubly Robust Estimator
Jiang and Li [2015] were the first authors to propose a doubly robust estimator for off-policy
evaluation in the MDP setting. Thomas and Brunskill [2016] propose a stabilized version of the DR
estimator of Jiang and Li [2015], termed Weighted Doubly Robust (WDR) estimator, which they
obtain by replacing the importance sampling weights by stabilized importance sampling weights.
The stabilized importance sampling weight for observation i at time step t is defined as w(i)

t =

ρ
(i)
t /
∑n

i=1 ρ
(i)
t . The WDR estimator is thus defined as

WDR :=
n∑
i=1

{
1

n
V πe

1 (S
(i)
1 )

+
T∑
t=1

γtw
(i)
t

[
R

(i)
t −Qπe

t (S
(i)
t , A

(i)
t ) + γV πe

t+1(S
(i)
t+1)

]}
. (2.3)

2.3.2 MAGIC
While WDR has low bias and converges at rate OP (1/

√
n) to the truth, its reliance on importance

weights can make it highly variable. As a result, in some settings, especially if model misspecifica-
tion is not too strong, DM estimators can beat WDR Thomas and Brunskill [2016]. This motivates
the construction of an estimator that interpolates between DM and WDR, so as to benefit from the
best of both worlds. Thomas and Brunskill [2016] propose the partial importance sampling esti-
mators, which correspond to essentially cutting off the sum in (2.3) the terms with index t ≥ j for
some 0 ≤ j ≤ T . Formally, they define their partial importance sampling estimator as the average
gj :=

∑n
i=1 g

(i)
j of the so-called off-policy j-step return, that they define, for each trajectory i, as

g
(j)
i :=

j∑
t=1

γtwitR
(i)
t︸ ︷︷ ︸

a

+ γj+1wijV
πe
j+1(Sij+1)︸ ︷︷ ︸
b

−
j∑
t=1

γt[witQ
πe
t (S

(i)
t , A

(i)
t )− wit−1V

πe
t (S

(i)
t )]︸ ︷︷ ︸

c

,

Note that g0 is equal to the DM estimator. Note that the last component, (c), represents the com-
bined control variate for the importance sampling (a) and model based term (b). Hence, as j
increases, we expect bias to decrease, at the expense of an increase in variance.
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Thomas and Brunskill [2016]’s final estimator is a convex combination of the partial impor-
tance sampling estimators gj . Ideally, we would like this convex combination to minimize mean
squared error (MSE), that is we would like to use as estimator (x∗)>g, with g = (g0, ..., gT ), where

x∗ = arg min
0≤x≤1∑T
j=0 xj=1

MSE(x>g, V πe
1 )

= arg min
0≤x≤1∑T
j=0 xj=1

{
Bias2(x>g, V πe

1 )

+ Var(x>g)

}
.

As we do not have access to the true variance and bias, Thomas and Brunskill [2016] propose to
use as estimator x̂>g, where x̂ is a minimizer, over the convex weights simplex, of an estimate of
the MSE. The covariance matrix of g, which we will denote Ωn, can be estimated as the empirical
covariance matrix Ω̂n of the g(i)’s. Bias estimation is a more involved. For each j = 1, ..., T ,
Thomas and Brunskill [2016] estimate the bias of the partial importance sampling estimator gj by
its distance to a δ-confidence interval for gT obtained by bootstrapping it, for some δ ∈ (0, 1).
They named the resulting ensemble estimator MAGIC, standing for model and guided importance
sampling combining. For further details, we refer the reader to the very clear presentation of their
algorithm by Thomas and Brunskill [2016].

2.4 Longitudinal TMLE for MDPs

2.4.1 High level description

Our proposed estimator extends the longitudinal Targeted Maximum Likelihood Estimation method-
ology, initially developed in the statistics causal inference literature, to the MDP setting [van der
Laan and Rubin, 2006, van der Laan and Gruber, 2011, van der Laan and Rose, 2011, 2018]. In
order to build intuition on our estimator, we start with a high-level description. Targeted Maxi-
mum Likelihood Estimation is a general framework that allows to construct efficient nonparamet-
ric estimators of low-dimensional characteristics of the data-generating distribution, given machine
learning based estimators of high-dimensional characteristics. Let us illustrate on an example what
these low-dimensional and high-dimensional characteristics can be. Suppose we want to estimate
an average treatment effect (ATE), and that we have pre-treatment covariates X , a treatment
T and an outcome Y , with (X,T, Y ) ∼ P . In this situation, the low-dimensional characteristic
is the ATE EP [EP [Y |T = 1, X] − EP [Y |T = 0, X]], while the high-dimensional characteristics
of P are the outcome regression function x, a 7→ EP [Y |A = a,X = x] and the propensity score
function x 7→ EP [T |X = x].
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2.4.2 Simplified sample-splitting based algorithm

In the following sections we present a simplified version of the algorithm that constructs our Lon-
gitudinal Targeted Maximum Likelihood Estimator. The full-blown version of the algorithm is
presented in the appendix, with the corresponding theoretical justifications.

Suppose we are provided with n i.i.d. trajectories, D = (H1, ..., Hn). Make two splits of
the sample: for some 0 < p < 1, let D(0) = (H1, ..., H(1−p)n) and D(1) = (H(1−p)n+1, ..., Hn).
Use D(0) to fit estimators Q̂πe

1 , · · · , Q̂πe
T of the action value functions Qπe

1 , · · · , Qπe
T We will call

Q̂πe
1 , · · · , Q̂πe

T the initial estimators. Such estimators can be obtained for instance by fitting a model
of the dynamics of the MDP, or by SARSA, among other methods Sutton and Barto [1998]. Esti-
mators fitted in such a way tend to exhibit low variance but often suffer from misspecification bias.
As mentioned in section 2.3, doubly-robust estimators take such initial estimators as input, and
evaluate on D(1) and then average a certain function of them to produce an unbiased estimator of
V πe

1 (s1). These doubly-robust estimators rely on the addition of terms weighted by the importance
sampling (IS) ratios ρ(i)

i:t , i = 1, · · · , n, t = 1, · · · , n. The TMLE methodology takes another route:
for each t, it defines, on top of the initial estimator fit, a parametric model, which we will call a
second-stage parametric model Q̂πe

t , and achieves bias reduction by fitting this parametric model
by maximum likelihood, on the sample split D(1).

2.4.3 Formal presentation of the simplified algorithm

To formally describe our algorithm, it suffices to define the second-stage parametric models and
describe the loss used for the fit. For all x ∈ R, we define σ(x) = 1/(1 + e−x) as the lo-
gistic function, and we denote σ−1 its inverse. Observe that bounding the range of rewards
where ∀t, Rt ∈ [rmin, rmax], implies that ∀t and ∀(s, a) ∈ S × A, Qt(s, a) ∈ [−∆t,∆t] with
∆t :=

∑T
τ=t γ

τ−t max(rmax, |rmin|). We further denote Q̃πe
t (s, a) := (Q̂πe

t + ∆t)/(2∆t) as the
normalized initial estimator. In addition, ∀δ ∈ (0, 1/2) and ∀(s, a), we define the following thresh-
olded version of Q̃πe

t :

Q̃πe,δ
t (s, a) :=


1− δ if Q̃πe

t (s, a) > 1− δ,
Q̃πe
t (s, a) if Q̃πe

t (s, a) ∈ [δ, 1− δ],
δ if Q̃πe

t (s, a) < δ.

For all ε ∈ R, we can now define the normalized version of our second-stage parametric model as:

Q̃πe,δ
t (ε)(s, a) := σ(σ−1(Q̃πe,δ

t (s, a)) + ε).

Finally, we denote Q̂πe,δ
t (ε) = 2∆t(Q̃

πe,δ
t (ε)− 1/2) as the rescaled version of Q̃πe,δ

t (ε).

The normalization, thresholding and rescaling steps in the definition of the parametric second-
stage model ensure that (1) Q̃πe,δ

t (ε) ∈ [δ, 1 − δ] ⊂ (0, 1) for all ε, and that (2) Q̂πe,δ
t (ε) always

stays in the allowed range of rewards [−∆t,∆t]. The definition of Q̃πe,δ
t (ε) as a logistic transform

of ε that lies in (0, 1) makes the fitting of ε possible through maximum likelihood for a logistic
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likelihood. For t = T , since Qπe
T (s, a) = EP,πb [ρ1:TRT |ST = s, AT = a], it is natural to consider

the log likelihood,

Rδ
n,T (ε) =

1

n

n∑
i=1

ρ
(i)
1:T

(
Ũ

(i)
T log(Q̃πe,δ

T (ε)(S
(i)
T , A

(i)
T ))

+ (1− Ũ (i)
T ) log(1− Q̃πe,δ

T (ε)(S
(i)
T , A

(i)
T ))

)
, (2.4)

where Ũ (i)
T := (R

(i)
T +∆T )/(2∆T ) is the normalized reward at time T . Normalization of the reward

is necessary since we are using logistic regression to optimize ε, and to keep the definition of Ũ (i)
T

and Q̃πe,δ
T (s, a) consistent. The thresholding step that defines Q̃δ

t (s, a) prevents the log likelihood
from taking on non-finite values. In order to make the bias introduced by thresholding vanish as
the sample size grows, we use a vanishing sequence δn ↓ 0 of thresholding values.

Let εn,T be the minimizer over R of the log likelihood Rδ
n,t for step T . We fit the second-

stage models for t = T − 1, ..., 1 by backward recursion, a procedure which we describe in more
detail in this paragraph. Start with observing that for all t = 1, ..., T , and for all (s, a) ∈ S × A,
Qπe
t (s, a) = Eπb [ρ1:t(Rt + γV πe

t+1(St+1))|St = s, At = a]. This motivates defining, as outcome of
the rescaled logistic regression model for time step t, the normalized reward-to-go:

Ũ
(i)
t,n := (R

(i)
t + γV̂ πe

t+1(εn,t+1)(S
(i)
t+1) + ∆t)/(2∆t).

Define V̂ πe
t (ε) as the value function corresponding to the action-value function Q̂πe,δn

t (ε), that is,
for all s ∈ S, set V̂ πe

t (ε)(s) =
∑

a′∈A πe(a
′|s)Q̂πe,δn(ε)(s, a′). We define the second-stage model

log likelihood for each t = T − 1, ..., 1 as

Rδ
t,n(ε) =

1

n

n∑
i=1

ρ
(i)
1:t

(
Ũ

(i)
t log(Q̃πe,δ

t (ε)(S
(i)
t , A

(i)
t ))

+ (1− Ũ (i)
t ) log(1− Q̃πe,δ

t (ε)(S
(i)
t , A

(i)
t ))

)
. (2.5)

The fact that the outcome in the second-stage logistic model at time step t depends on the second-
stage model fit at time step t + 1 is why we have to proceed backwards in time. This is why we
say this procedure is a backward recursion.

Finally, once all of the T second-stage models have been fitted, we define the LTMLE estimator
of V πe

1 (s1) as follows:

V̂ πe,LTMLE
1 (s1) := V̂ πe

1 (εn,1)(s1).

This idea of backward recursion we just exposed was initially introduced in Bang and Robins
[2005]. They called it sequential regression.

We present the pseudo-code of the procedure as Algorithm 2.1.
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Algorithm 2.1 Longitudinal TMLE for MDPs

Input: Logged data split D(1), target policy πe, initial estimators Q̂πe
1 , ..., Q̂

πe
T , discount factor

γ.
Set ∆T = 0 and V̂ πe

T+1 = 0.
for t = T to 1 do

Set ∆t = maxt,i |Rt|+ γ∆t.
Set Ũt = (Rt + γV̂ πe

t+1 + ∆t)/2∆t.
Set Q̃πe,δn

t = threshold(δn, (Q̂
πe
t + ∆t)/2∆t).

Compute εn,t = arg minεRδn
n,t(ε).

Set Q̂πe,δn
t = 2∆t(Q̃

πe,δn
t − 0.5).

Set, for all s ∈ S,
V̂ πe
t (s) =

∑
a′∈A

πe(a
′|s)Q̂πe,δn

t (s, a′).

end for
return V̂ πe

1 (εn,1)(s1).

2.4.4 Guarantees and benefits
It might at first appear surprising that fitting the second-stage models, which amounts to simply
fitting the intercept of a logistic regression model, suffices to fully remove the bias. We nevertheless
prove that it does so in theorem 2.1 under mild assumptions. Theorem 2.1 requires assumption 2.1
stated in section 2.2 and assumptions 2-4 stated below.

Assumption 2.2. For all t = 1, ...., T , rt ∈ [rmin, rmax] almost surely.

Assumption 2.3. For all t = 1, ..., T , the initial estimator Q̂πe
t,n converges in probability to some

limit Qt,∞ : S ×A → R, that is ‖Q̂πe
t,n −Qt,∞‖P,2 = oP (1).

Assumption 2.4. For all t = 1, ..., T , let Qt,∞ be the limit as defined in Assumption 2.3. Assume
there exists a (small) positive constant η ∈ (0, 1/2) such that ∀t and ∀(s, a) ∈ S×A, Qt,∞(s, a) ∈
[η, 1− η].

Assumption 2.5. Suppose there exists a finite positive constant M such that ∀t, ρ1:t ≤ M almost
surely.

We can now state our main theoretical result, for the algorithm presented in section 2.4.3.

Theorem 2.1. Suppose assumptions 2.2, 2.3, 2.4, and 2.5 hold. Then the LTMLE estimator has
bias o(1/

√
n), that is

EP,πb [V̂
πe,LTMLE

1 (s1)]− V πe
1 (s1) = o(1/

√
n).

In addition, the LTMLE estimator converges in probability at rate
√
n, that is

V̂ πe,LTMLE
1 (s1)− V πe

1 (s1) = OP (1/
√
n).
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With a little extra work, we can also characterize the asymptotic distribution and the asymptotic
variance of the LTMLE estimator. In particular, we show in the appendix that, provided that Q̂πe

is consistent, our estimator attains the generalized Cramer-Rao bound and is therefore locally effi-
cient. We also argue that it is asymptotically equivalent with the doubly robust estimator Thomas
and Brunskill [2016], Jiang and Li [2015].

2.5 RLTMLE
In this section, we (1) present regularizations that can be applied to the LTMLE estimator, and (2)
describe our “final estimator”, which we call RLTMLE (standing for LTMLE for RL), and which
consists of a convex combination of regularized LTMLE estimators. The weights in the RLTMLE
convex combination are obtained following a variant of the ensembling procedure of the MAGIC
estimator.

2.5.1 Regularization and base estimators
We present three regularization techniques that allow to stabilize the variance of the LTMLE esti-
mator. The first two have a clear WDR analogue, while the third one only applies to LTMLE.

1. Weights softening. For α ∈ [0, 1], x ∈ Rd, define
soften(x, α) := (xαk/

∑d
l=1 x

α
l : k = 1, ..., d). The LTMLE algorithm corresponding

to softening level α is obtained by replacing, in the second-stage log likelihoods (2.4) and
(2.5), the IS ratios (ρ

(i)
1:t : i = 1, ..., n) by soften((ρ

(i)
1:t : i = 1, ..., n), α). The same

operation can be applied as well to the importance weights of the WDR estimator.

2. Partial horizon. The LTMLE with partial horizon τ < T is obtained by setting to zero the
coefficients εn,τ1 , ..., εn,T before fitting the other second-stage coefficients. This enforces that
the importance sampling ratios ρ1:t for t ≥ j have no impact on the estimator. The WDR
equivalent is to use the τ -step return gτ .

3. Penalization. The penalized LTMLE is obtained by adding a penalty λ|εn,t| for some λ ≥ 0
to the the log-likelihoods (2.4) and (2.5) of the second-stage models.

The three regularizations can be applied simultaneously. A regularized LTMLE estimator can
therefore be indexed by a triple (α, τ, λ), where α, τ and λ denote the level of softening, the partial
horizon, and the level of likelihood penalization.

2.5.2 Ensemble estimator
Our final estimator is an ensemble of a pool of regularized LTMLE estimators, which we will
denote g1, ..., gK , that correspond to a sequence of triples (α1, τ1, λ1), ..., (αK , τK , λK) of regular-
ization levels. We set gK to be the unregularized LTMLE, that is we set (αK , τK , λK) = (1, T, 0).
We ensemble the regularized LTMLE estimators g1, ..., gK by taking a convex combination of them
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that minimizes an estimate of MSE. The ensembling step closely follows that of the MAGIC pro-
cedure. We propose two variants of it, which we call RLTMLE 1 and RLTMLE 2, differing in how
we estimate the covariance matrix Ωn (defined in section 2.3) of base estimators g1, ..., gK .

RLTMLE 1. In this variant of RLTMLE, covariance estimation relies on the following prop-
erty of the LTMLE estimator. As we show in the appendix, the difference between a regularized
LTMLE estimator with regularization parameters (α, τ, λ), and its asymptotic limit is given by
n−1

∑n
i=1 EIF(Q̂, α, τ, λ)(Hi)+oP (n−1/2), where EIF is the efficient influence function, presented

in the appendix, whose expression is given by

EIF(Q̂πe , α, λ, τ)(h)

=
T∑
t=1

γtρt ×
(
rt + γV̂ πe

t+1(εn,t+1)(st+1)

− Q̂πe
t (εn,t)(st, at)

)
,

where, for all t, εn,t is the maximizer of the regularized version of the log-likelihood (2.5), that is
expression (2.5) where ρt is replaced with soften(ρt, α) and penalized by λ|ε|. Denote EIFk(h) =
EIF(Q̂, αk, λk, τk)(h), the EIF corresponding to estimator gk. We use as estimate of the covariance
matrix Ωn the empirical covariance matrix Ω̂n of (EIF1(H), ...,EIFK(H)).

RLTMLE 2. In this variant of RLTMLE, an estimate of the covariance matrix Ωn of the base
estimators g = (g1, ..., gK) is obtained by computing bootstrapped values g(1), ..., g(B), of g, for a
large enough number of bootstrap samples B, and computing the empirical covariance Ω̂n matrix
of g(1), ..., g(B).

Bias estimation. We follow closely Thomas and Brunskill [2016] for bias estimation. For
k = 1, ..., K, denote bn,k the bias of estimator gK , and bn := (bn,1, ..., bn,K). Denote CI(α)
the α-percentile bootstrap confidence interval for the LTMLE estimator. In both RLTMLE 1 and
RLTMLE 2, for each k = 1, ..., K, estimate the bias bn,k with b̂n,k := dist(gk,CI(α)). Denote
b̂n := (b̂n,1, ..., b̂n,K).

Because of space limitation, we only give a pseudo-code description of RLTMLE 2, which is
our most performant algorithm, as we will see in the next section.

2.6 Experiments
In this section, we demonstrate the effectiveness of RLTMLE by comparing it with other state-
of-the-art methods used for OPE problem in various RL benchmark environments. We used three
main domains, with detailed description of each allocated to the Appendix. We implement the same
behavior and evaluation policies as in previous work Thomas and Brunskill [2016], Farajtabar et al.
[2018].
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Algorithm 2.2 RLTMLE 2

Input: Logged data split D(1), target policy πe, initial estimator Q̂πe := (Q̂πe
1 , ..., Q̂

πe
T ), dis-

count factor γ, triples of regularization levels (α1, τ1, λ1), ..., (αK , τK , λK), number of bootstrap
samples B.
for b = 1 to B do

Sample with replacement from D(1) a bootstrap sample D∗,(b).
for k = 1 to K do

Compute g(b)
k by running algorithm 2.1 with inputs D∗,(b), Q̂πe , πe, γ, using regularizations

levels (αk, τk, λk).
end for

end for
for k = 1 to K do

Compute gk by running algorithm 2.1 with inputsD(1), Q̂πe , πe, γ, using regularizations levels
(αk, τk, λk).
for l = 1 to K do

Ω̂k,l ← n−1
∑B

b=1 g
(b)
k g

(b)
l −

(
n−1

∑B
b=1 g

(b)
k

)(
n−1

∑B
b=1 g

(b)
l

)
.

end for
CI(α)←

[
percentile({g(b)

k : b}, α), percentile({g(b)
k : b}, 1− α)

]
.

b̂n,k ← distance(gk,CI(α)).
end for

x̂← arg min
0≤x≤1
x>1=1

1

n
x>Ω̂nx+ (x>b̂n)2.

return x̂>g.

1. ModelFail: a partially observable, deterministic domain with T = 3. Here the approximate
model is incorrect, even asymptotically, due to three of the four states appearing identical to
the agent.

2. ModelWin: a stochastic MDP with T = 10, where the approximate model can perfectly
represent the MDP.

3. GridWorld: a 4 × 4 grid used for evaluating OPE methods, with an episode ending at
T = 100 or when a final state (s16) is reached.

We omit benefits of RLTMLE over IS, PDIS (per-decision IS), WIS (weighted IS), CWPDIS
(consistent weighted per-decision IS) and DR (doubly robust) estimators due to the extensive em-
pirical studies performed by Thomas and Brunskill Thomas and Brunskill [2016]. Instead, we
compare our estimator to WDR and MAGIC, as they demonstrate improved performance over all
simulations in benchmark RL environments considered Thomas and Brunskill [2016].

In evaluating our estimator, we also explore how various degree of model misspecification and
sample size can affect the performance of considered methods. We start with small amount of
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Figure 2.1: Empirical results for three different environments and varying level of model mis-
specification. (a) GridWorld MSE across varying sample size n = (100, 200, 500, 1000) and bias
equivalent to b0 = 0.005×Normal(0, 1) over 71 trials; (b) ModelFail MSE across varying sample
size n = (100, 200, 500, 1000) and bias equivalent to b0 = 0.005 × Normal(0, 1) over 71 trials;
(c) ModelWin MSE across varying sample size n = (100, 500, 1000, 5000, 10000) and bias equiv-
alent to b0 = 0.005× Normal(0, 1) over 63 trials; (d) ModelWin MSE across varying sample size
n = (100, 500, 1000, 5000, 10000) and bias equivalent to b0 = 0.05× Normal(0, 1) over 63 trials.

bias, b0 = 0.005∗Normal(0, 1), where most estimators should do well. Consequently, we increase
model misspecification to b0 = 0.05 ∗ Normal(0, 1) at the same sample size, and consider the
performance of all estimators. In addition, we test sensitivity to the number of episodes in D with
n = {100, 200, 500, 1000) for GridWorld and ModelFail, and n = {100, 500, 1000, 5000, 10000)
for ModelWin.

In addition, we consider the benefits of adding few regularization techniques as opposed to
all three described in subsection 2.5.1. In particular, we concentrate on RLTMLE with only
weight softening and partial LTMLE (RLTMLE 1) as opposed to using penalized LTMLE as well
(RLTMLE 2). The goal of these experiments was to demonstrate the improved performance of our
estimator when fully exploiting all the variance reduction techniques in a clever way. The MSE
across varying sample size and model misspecification for GridWorld, ModelFail and ModelWin
can be found in Figure 2.1. We can see that RLTMLE 2 outperforms all other estimators for all RL
environments and varying levels of model misspecification.

Finally, we compare WDR and LTMLE base estimators augmented with various regulariza-
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Figure 2.2: Comparison of WDR and LTMLE base estimators across various regularization meth-
ods in ModelWin at low (b0 = 0.005× Normal(0, 1)) and high (b0 = 0.05× Normal(0, 1)) model
misspecification. Regularized base estimators include ps LTMLE (partial, softened LTMLE), ps
WDR (partial, softened WDR), psp LTMLE (partial, softened, penalized LTMLE), s LTMLE (soft-
ened LTMLE) and WDR (no regularization). The x-axis indicates the id of the kth estimator, cor-
responding to (αk, λk, τk). (a) ModelWin MSE for sample size n = 1000 and low bias over 315
trials; (b) ModelWin MSE for sample size n = 1000 and high bias over 315 trials.

tion methods before the ensemble step in Figure 2.2. In particular, for ModelWin, we look at
the MSE of V̂ πe,j

1 (εn,1)(s1) and gk for each k, where the kth estimator corresponds to regular-
ization (αk, λk, τk). Regularized base estimators considered include ps LTMLE (partial, softened
LTMLE), ps WDR (partial, softened WDR), psp LTMLE (partial, softened, penalized LTMLE), s
LTMLE (softened LTMLE) and WDR (no regularization). We note the vast improvement of WDR
just by adding weight softening across all base estimators, evident for both low and high model
misspecification setting. For the low bias environment of ModelWin, psp LTMLE (RLTMLE 2)
uniformly outperforms all competitors for all k. High bias setting loses to s LTMLE for low k, but
still outperforms majority of the time, including having the best ensemble MSE. While uniform
win over all k is not necessary, we note that this behavior stems from the fact that for k < 3,
(αk, λk, τk) used had very small τk and αk. As such, with no strong debiasing effect of LTMLE,
minimizing variance becomes more effective with respect to minimizing MSE.

2.7 Conclusion

The contributions we make in this chapter are essentially two fold. Firstly, we derive the EIF of the
value of a counterfactual policy, w.r.t. the DTR model, and we provide a representation of under
the MDP model. We use this representation to derive the TMLE of the value of a counterfactual
policy.

Secondly, we propose several regularized versions of this the TMLE. We combine them through
a variant of the MAGIC [Thomas and Brunskill, 2016] ensemble learning procedure, in which
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unlike in the original version, we use the bootstrap to estimate the covariance matrix of the library
of regularized estimators.

Our simulations show that the resulting estimator outperforms the existing methods at the time
of publication of the original article, in particular the estimator proposed by Thomas and Brunskill
[2016].

Other works [van der Laan et al., 2018], Kallus and Uehara [2019] (subsequent to the original
article this chapter is based upon) investigate the efficient influence curve of the OPE target in RL
w.r.t. the MDP model. Since this model is strictly contained in the DTR model, the efficiency
bound is smaller. Furthermore, they show that the variance of the efficiency bound for the horizon
T MDP model scales as T−1, therefore allowing

√
T asymptotic normality from a single trajectory.

Note that the efficient influence function in the MDP model isn’t double robust. van der Laan and
Malenica [2018] have introduced an alternative target parameter for which it is possible to obtain
robust estimators in the MDP model and

√
T asymptotic normality. While this latter parameter has

a clear interpretation, it might not be satisfactory for practitioners inquiring about the usual OPE
target. It might be worthwhile for future work to investigate the impact on empirical performance
of the loss of robustness due to working with the EIF in the MDP model as compared to using
the estimators proposed in the present chapter. We expect that the comparison would certainly
be nuanced, with the present estimators doing better in situation with relatively short horizons,
high number of i.i.d. trajectories and high outcome model misspecification, while locally efficient
estimators in the MDP model will certainly do best in the opposite situation.

We further discuss efficient estimators in the MDP model in chapter 7.
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2.A Appendix organization
This appendix is organized as follows. In section 2.B, we prove theorem 2.1, which characterizes
the statistical properties of the simplified algorithm presented in the main text of the article. Al-
though we have also derived a more advanced and efficient version of the LTMLE estimator, which
we introduce in section 2.D of this appendix, we choose to present the simplified version first, so
as to convey the key ideas of the theoretical analysis without burdening our reader with too many
technicalities.
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In section B, we derive the EIF of the policy value, a necessary preliminary to establishing the
semiparametric efficiency of DR estimators.

In section 2.D, we present a more advanced version of the LTMLE estimator, which makes
better use of the data. This results in a constant factor speed-up of the convergence rate. This more
advanced algorithm also relies on sample splitting, but fits each second stage model using the full
sample, insteasd of just using a split of the full sample.

Note on notation. So as to lighten notation, we will drop the πe superscript.

2.B Theoretical analysis of the simplified sample splitting based
algorithm

In this section, we walk our reader through the theoretical analysis for the algorithm derived in
section 2.4.3. We outline the steps of the proof in the proof sketch below. We then state the four
main lemmas on which our proof relies, and then present the formal proof.

Proof sketch. The first fact underpinning our proof is that for any of candidate action-value Q′ =
(Q′1, ..., Q

′
T ) and corresponding value functions V ′ = (V ′1 , ..., V

′
T ), the difference between the

candidate and the true value function at time point t = 1 can be decomposed as follows:

V ′1(s1)− V (s1) = −
∫
D(Q′)(h)dP πb(h), (2.6)

where D(Q′)(h) =
∑T

t=1 Dt(Q
′)(h), with Dt(Q

′)(h) = ρ1:t(h)(rt + γV ′t+1(st+1) − Q′t(st, at)).
This is formally stated in lemma 2.1 below. For non-random functions Q′ and V ′ note that the
RHS of (2.6) is equal to −EP,πb [D(Q′)].

The second fact our proof relies on is that the estimators Q̂(εn) resulting from the fitting of the
parametric second stages verify the following equation:

1

n

n∑
i=1

D(Q̂(εn))(Hi) = 0. (2.7)

This is formally stated in lemma 2.2 below. The argument in the proof of lemma 2.2 can be simply
summarized as follows. For each t, Dt(Q̂(εn,t)) is the score function of the log likelihood of the
second-stage logistic model for time point t.

The third fact we use in our proof is that εn converges in probability to some limit ε∞. Heuristi-
cally, the reason why this is the case is that, due to the convergence of Q̂n toQ∞, the log likelihoods
of the second stage models converge to a limit, which in turns implies that their arg min εn converge
to the arg min of their limit. We make this rigorous in lemma 2.3 below.

Using the first two facts stated above, we obtain, by adding up equations (2.6) and (2.7), that
the difference between our estimator V̂ LTMLE

1 (εn)(s1) and the truth V1(s1) is

V̂ LTMLE
1 (εn)(s1)− V1(s1)
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=
1

n

n∑
i=1

D(Q̂(εn))(Hi)−
∫
D(Q̂(εn))(h)dP πb(h).

Using the third fact stated above, that εn converges to some ε∞, motivates rewriting the above
display as

V̂ LTMLE
1 (εn)(s1)− V1(s1)

=
1

n

n∑
i=1

D(Q̂(ε∞))(Hi)−
∫
D(Q̂(ε∞))(h)dP πb(h)

+
1

n

n∑
i=1

D(Q̂(εn))(Hi)−D(Q̂(ε∞))(Hi)

−
∫
D(Q̂(ε∞))(h)−D(Q̂(εn))(h)dP πb(h). (2.8)

Denote T the sample split on which the initial estimators are fitted. Since h 7→ D(Q̂(ε∞))(h) is a
non-random function conditional on T ,∫
D(Q̂(ε∞))(h)dP πb(h) = EP,πb [D(Q̂(ε∞))|T ]. Therefore, applying the Central Limit theorem

conditional on T gives us that the first line of the RHS in the above display is asymptotically nor-
mally distributed and is of order OP (1/

√
n). As we will show in the formal proof, this also holds

after marginilazing w.r.t. T .
The term formed by the second and third lines in the RHS of the above display can be shown

to be oP (1/
√
n). This is formally stated in lemma ?? below.

The following lemma gives a useful decomposition of the difference between any candidate
state-value function V ′1 and the true state-value function V1.

Lemma 2.1 (First order expansion). Consider Q′ = (Q′1, ..., Q
′
T ) a candidate vector of action-

value functions S × A → R for polict πe, and let V ′ = (V ′1 , ..., V
′
T ) the corresponding vector of

state-value functions under πe, that is, for all t, s ∈ S, V ′t (s) =
∑

a′∈A πe(a
′|s)Q′t(s, a′). Denote

Q = (Q1, ..., QT ) and V = (V1, ..., VT ) the true action-value and state value functions under
πe. For all t, for all h ∈ H, denote ρ′1:t(h) an importance sampling ratio for time point t and
trajectory h, not necessarily equal to the true importance sampling ratio. Denote ρ = (ρ1, ..., ρT )
and ρ′ = (ρ′1, ..., ρ

′
T ). We have that

V ′1(s1)− V1(s1) =−
∫
D(ρ′, Q′)(h)dP πb(h)

−
∫
Rem(ρ, ρ′, Q,Q′)(h)dP πb(h),

where

D(ρ′, Q′)(h) =
T∑
t=1

Dt(ρ
′, Q′)(h)
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and

Rem(ρ, ρ′, Q,Q′)(h) =
T∑
t=1

Remt(ρ, ρ
′, Q,Q′)(h)

with

Dt(ρ
′, Q′)(h) = γt−1ρ′1:t(h)

(
rt + γV ′t+1(st+1)

−Q′t(st, at)
)
,

and

Remt(ρ, ρ
′, Q,Q′)(h)

= γt−1
(
ρ1:t(h)− ρ′1:t(h)

)(
Qt(st, at)−Q′t(st, at)

+ (Vt+1(st+1)− V ′t+1(st+1))
)
.

From the expression in the RHS of the above display, it is immediately clear that

Remt(ρ, ρ
′, Q,Q′)(h) = 0

if ρ = ρ′ or Q = Q′.

The lemma below shows that the maximum likelihood fits εn,t of the second-stage parametric
models solve a certain equation, termed score equation in statistics.

Lemma 2.2 (Score equation). Consider the simplified LTMLE algorithm described in section
2.4.3. For each t = 1, ..., T , the maximum likelihood fit εn,t satisfies

n∑
i=1

Dt(ρ1:t, Q̂(εn,t))(Hi) = 0.

The following lemma shows that the vector εn = (εn,1, ..., εn,T ) of the maximum likelihood fits
of the second stage models converges in probability to a limit.

Lemma 2.3 (Convergence of εn). Make assumptions 2.2, 2.3, 2.4 and 2.5. Then, there exists
ε∞ ∈ RT such that

εn − ε∞ = oP (1).

The following lemma allows to bound the last two lines of the RHS in (2.8) from the proof
sketch above.

Lemma 2.4 (Equicontinuity). Denote, for all h ∈ H, ε ∈ R, Q′ and ρ′

gε(Q
′, ρ′)(h) = D(Q′(ε), ρ′)(h),
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where Q′ and ρ′ are possibly random. Suppose H1, ..., Hn are i.i.d. trajectories drawn from P πb .
Suppose further that H1, ..., Hn are independent from the potentially random functions Q′ and ρ′.
Suppose ε′n

P−→ ε′∞ for some ε′∞. Then

1

n

n∑
i=1

gε′n(Q′, ρ′)(Hi)−
∫
gε′n(Q′, ρ′)(h)dP πb(h)

− 1

n

n∑
i=1

gε′∞(Q′, ρ′)(Hi)−
∫
gε′∞(Q′, ρ′)(h)dP πb(h)

= oP

(
1√
n

)
.

We now present the formal proof of theorem 2.1.

Proof. From lemma 2.1,

V̂ TMLE
1 (s1)− V1(s1) = −P πbD(Q̂n(εn), ρ).

Since from lemma 2.2 we have Pn(D(Q̂n(εn), ρ) = 0, we can add this latter identity to the above
display, which yields

V̂ TMLE
1 (s1)− V1(s1)

=(Pn − P πb)D(Q̂n(εn), ρ)

=(Pn − P πb)D(Q∞(ε∞), ρ)

+ (Pn − P πb)(D(Q∞(ε∞), ρ)−D(Q̂n(εn), ρ)). (2.9)

From the Central Limit theorem applied conditionally on T ,
√
n((Pn − P πb)D(Q∞(ε∞), ρ))

d−→ N (0, σ2(Q∞(ε∞)),

with

σ2(Q∞(ε∞)) := V arPπb (D(Q∞(ε∞), ρ)).

Using dominated convergence on the c.d.f. on the LHS,
√
n((Pn − P πb)D(Q∞(ε∞), ρ))

d−→ N (0, σ2(Q∞(ε∞))

also holds true unconditionally. As proven in section B, the variance of the D(Q∞(ε∞), ρ) is the
efficient variance from the Cramer-Rao lower bound, provided Q∞(ε∞) = Q, that is provided
the initial estimator’s model is correctly specified. This is the notion of local efficiency from
semiparametric statistics Robins and Rotnitzky [1995], van der Laan and Rubin [2006].
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From lemmas 2.3 and 2.4, the line (2.9) is oP (1/
√
n).

Therefore, we have that
√
n(V̂ TMLE

1 (s1)− V1(s1))
d−→ N (0, σ2(Q∞(ε∞)),

and that

EPπb
[
V̂ TMLE

1 (s1)− V1(s1)
]

= o(1/
√
n).

2.B.1 Proof of lemma 2.1
Proof. Let H ∼ P πe . If Q′, V ′ are random functions, further suppose, without loss of generality,
that H is independent of Q′ and V ′. Denote G a σ-field such that Q′, V ′ are G-measurable.

Step 1. Observe that

P πbD(Q′, ρ′) = P πbD(Q′, ρ) + P pib(D(Q′, ρ′)−D(Q′, ρ)).

Step 2: First order term. Observe that

P πbD(Q′, ρ) = EPπb [D(Q′, ρ)(H)|G].

For all t ≥ 1, ..., T , denote Ft the σ-field induced by S1, A1, R1, ..., St, At, Rt. Observe that

EPπb [Dt(Q
′, ρ)(H)|St, At,Ft−1,G]

= γt−1EPπb [ρ1:t(Rt + γV ′t+1(St+1)

−Q′t(St, At))|St, At,Ft−1,G]

= γt−1ρ1:tEP [Rt + γVt+1(St+1)

−Q′t(St, At)|St, At,G]

+ γtρ1:tEP [(V ′t+1(St+1)− Vt+1(St+1))|St, At,G].

Recall that by definition of Q, we have that EP [Rt + γVt+1(St+1)|St, At] = Qt(St, At). Inserting
this in the last line of the above display yields

EPπb [Dt(Q
′, ρ)(H)|St, At,Ft−1,G] =

γt−1ρ1:t(Qt(St, At)−Q′t(St, At))
+ γtρ1:tEP [V ′t+1(St+1)− Vt+1(St+1)|St, At,G]. (2.10)

We take the expectation conditional on St, Ft−1, G of the first term in the right-hand side of the
above display:

EPπb [γ
t−1ρ1:t(Qt(St, At)−Q′t(St, At))|St,Ft−1,G]
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= γt−1ρ1:t−1EP,πb [ρt(Qt(St, At)−Q′t(St, At)|St,G]

= γt−1ρ1:t−1EP,πe [(Qt(St, At)−Q′t(St, At)|St,G]

= γt−1ρ1:t−1(Vt(St)− V ′t (St)). (2.11)

The second equality above uses that, for all G-measurable function f ,

EP,πb [ρtf(St, At)|St,G] = EP,πe [f(St, At)|St,G].

The third equality follows from the relationship between the value function and the action value
function.

Using the law of iterated expectations, and identities (2.10) and (2.11) yields

EP,πb [Dt(Q
′, ρ)(H)|G]

= EP,πb [EP,πb [Dt(Q
′, ρ)(H)|St, At,Ft−1,G]|G]

= EP,πb [γ
t−1ρ1:t(Qt(St, At)−Q′t(St, At))|G]

+ EP,πb [γ
tρ1:tEP [V ′t+1(St+1)− Vt+1(St+1)|St, At,G]|G]

= EP,πb [EP,πb [γ
t−1ρ1:t(Qt(St, At)

−Q′t(St, At))|St,Ft−1,G]|G]

+ EP,πb [γ
tρ1:t(V

′
t+1(St+1)− Vt+1(St+1))|G]

= EP,πb [γ
t−1ρ1:t−1(Vt(St)− V ′t (St))|G]

+ EP,πb [γ
tρ1:t(V

′
t+1(St+1)− Vt+1(St+1))|G]

Using the above expression in the definition of D(Q′, V ′) yields

EP,πb [D(Q′, ρ)(H)|G]

=
T∑
t=1

EP,πb [γ
tρ1:t(V

′
t+1(St+1)− V ′t+1(St+1))

− γt−1ρ1:t−1(V ′t (St)− Vt(St))|G]

=EP,πb [γ
Tρ1:T+1(V ′T+1(ST+1)− VT+1(ST+1))

− ρ1:0(V ′1(s1)− V1(s1))|G]

=− (V ′1(s1)− V1(s1)),

where we have used that by convention V ′T+1(ST+1) = VT+1(ST+1) = 0 and ρ1:0 = 1.

Step 3: remainder term. We similarly show that P πb(D′(Q′, ρ) − D(Q′, ρ)) = Remt(Q,Q
′,

ρ, ρ′).

2.B.2 Proof of lemma 2.2
We present a proof sketch in this subsection. The complete formal proof is presented in the case
of the full algorithm in section B.
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Proof sketch. The result essentially follows from the following two facts:

• The score of the logistic likelihood of the second stage model for time point t is PnDt(Q̂, ρ),

• A maximum likelihood fit solves the empirical score equation.

2.B.3 Proof of lemma 2.3
We present a proof sketch in this subsection. The complete formal proof is presented in the case
of the full algorithm in section B.

Proof sketch. The convergence of Q̂ toQ∞ implies the pointwise convergence of the log likelihood
risk Rn,t to some asymptotic risk R∞,t. The fact that Q∞,t ∈ [δ, 1 − δ] ⊂ (0, 1) (in other words,
that Q∞,t is bounded away from 0 and 1) implies that the asymptotic log likelihood risk R∞,t is
strongly convex. This implies it has a unique minimizer ε∞,t. We then show in the formal proof that
since Rn,t are a sequence of convex functions that converge pointwise in probability to a strongly
convex function minimized by ε∞,t, the sequence of their minimizers εn,t converges in probability
to ε∞,t

2.B.4 Proof of lemma 2.4
The proof of lemma 2.4 relies on the following three technical lemmas. Recall the following
definition: for all Q′ ρ′, h ∈ H, ε ∈ R,

gε(Q
′, ρ′)(h) = D(Q′(ε), ρ′)(h).

Lemma 2.5. Assume that 0 ≤ ρ′1:t(H) ≤ M almost surely for all t = 1, ..., T . Make assumption
2.2 on the range of the rewards. Then for all ε ∈ RT ,

‖gε(Q′, ρ′)‖L∞(Pπb ) ≤ 3MT,

and for all ε1, ε2 ∈ RT

‖gε1(Q′, ρ′)− gε2(Q′, ρ′)‖L∞(Pπb ) ≤ 2MT‖ε1 − ε2‖∞.

For any ε0 ∈ R, and any ξ > 0, define the class of functions

G(Q′, ρ′)(ε0, ξ)

:= {gε(Q′, ρ′)− gε0(Q′, ρ′) : ‖ε− ε0‖∞ ≤ ξ}.

The next lemma characterizes covering numbers of this class of functions. Covering numbers are
a measure of geometric complexity whose definition we recall here (we reproduce the definition
2.1.6. from van der Vaart and Wellner [1996]).
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Definition 2.1 (Covering number). The covering number N(ε,F , ‖ · ‖) is the minimal number of
balls {g : ‖f − g‖ ≤ ε} of radius ε needed to cover the set F .

Lemma 2.6. For any α > 0, for any probability distribution Λ onH,

N(α,L2(Λ),G(ε0, ξ)) ≤
(

2ξL

α

)T
,

with L = 2MT.

Proof. Consider the set {(
ε0,1 + i1

α

L
, ..., ε0,T + iT

α

L

)
: ∀t = 1, ...T, it ∈ Z ∩

[
−ξL
α
,
ξL

α

]}
.

Observe that for any fε := gε(Q
′, ρ′) − gε0(Q

′, ρ′) ∈ G(Q′, ρ′)(ε0, ξ), there exists an fε′ :=
gε′(Q

′, ρ′) − gε0(Q
′, ρ′) in the set above such that ‖ε − ε′‖∞ ≤ α/L. From the second claim

in lemma 2.5, for all h ∈ H, |fε′(h) − fε(h)| ≤ α. Therefore, for any probability distribution Λ
overH,

‖fε′ − fε‖L2(Λ) =

(∫
(fε′(h)− fε(h))2dΛ(h)

)1/2

≤α.

Therefore the set defined above is an α-cover of G(ε0, ξ)) for the norm L2(Λ). Since this set has at
most (2εL/α)T elements, this proves that

N(α,L2(Λ),G(ε0, ξ)) ≤
(

2ξL

α

)T
.

The covering numbers characterized in lemma 2.6 are the basis for another measure of geo-
metric complexity of a class of function, the uniform entropy integral, whose definition we recall
below (see also van der Vaart and Wellner [1996]).

Definition 2.2 (Uniform entropy integral). Consider a class of functions X → R. Let F : X → R
be an envelope function for F , that is a function such that for all x ∈ X , |f(x)| ≤ F (x). The
uniform entropy integral of F , w.r.t. the envelope function F and L2 norm is defined, for all β > 0
as

JF (β,F , L2)

:=

∫ β

0

sup
Λ

√
log(1 +N(α‖F‖Λ,2, L2(Λ),F)dα,

where the supremum is over all discrete probability distributions on X .
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The following lemma characterizes the uniform entropy integral of G(ε0, ξ).

Lemma 2.7. Let β > 0. Denote L = 2MT . The function Fξ : h 7→ Lξ is an envelope function
for G(ε0, ξ). The uniform entropy integral of G(ε0, ξ) w.r.t. the envelope function Fξ and for the L2

norm is upper bounded as follows:

JFξ(β,G(ε0, ξ), L2) = O
(
Tβ
√

log(1/β)
)
.

Proof. For every probability distribution Λ onH, ‖Fξ‖Λ,2 = Lξ. From lemma 2.6,

N(α‖Fξ‖2,Λ, L2(Λ),G(ε0, ξ)) ≤ (2/α)T .

Therefore,

JFξ(β,G(ε0, ξ), L2) ≤
∫ β

0

√
log(1 + (2/α)T )dα

=O
(
Tβ
√

log(1/β)
)
,

where the second equality above follows from an integration by parts.

Finally, we prove the lemma 2.4. The proof relies on a classical result in empirical process
theory. We first introduce the relevant definitions and the relevant result before stating the proof of
our lemma.

Definition 2.3 (Empirical process and empirical process notation). Consider X ,Σ, P ′) a probabil-
ity space and let X1, ..., Xn be n i.i.d. draws from P ′. Let F be a class of functions X → R. For
all f ∈ F , define the so-called “empirical process notation”

P ′f :=

∫
f(h)dP ′(h).

Denote Pn := n−1
∑n

i=1 δXi the empirical probability distribution associated to the sample X1, ...,
Xn. Observe that using the empirical process notation defined above, we have that Pnf =
n−1

∑n
i=1 f(Xi). The stochastic process

{(Pn − P ′)f : f ∈ F}

is termed the empirical process associated to P ′ and n indexed by F .

We restate here the classical empirical process result van der Vaart and Wellner [1996] we will
use to prove lemma 2.4. (This is lemma 2.14.1 in van der Vaart and Wellner [1996], for p = 1 in
their notation.)

Lemma 2.8 (Pollard’s maximal inequality, vdV-Wellner 1996 2.14.1). Consider X ,Σ, P ′) a prob-
ability space and let X1, ..., Xn be n i.i.d. draws from P ′. Let F be a class of functions X → R.
Let F be a class of functions X → R with envelope function F . Then

EP ′ [sup
f∈F

√
n|(Pn − P ′)f |] . JF (1,F , L2)‖F‖L2(P ′).
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We now have all the ingredients to prove lemma 2.4.

Proof of lemma 2.4. Recasting the claim of lemma 2.1 in terms of empirical process notation, we
want to show that

√
n(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′)) = oP (1).

Let κ > 0, γ ∈ (0, 1/2). Define, for all ξ > 0, the following two events:

E1(ξ) := {‖εn − ε∞‖∞ ≤ ξ}

and

E2(ξ) :={
sup
ε

‖ε−ε∞‖∞≤ξ

√
n|(Pn − P πb)(gε(Q

′, ρ′)− gε∞(Q′, ρ′))|

≤ κ

}
.

The function Fξ : h 7→ ξL is an envelope function for G(ε0, ξ). By Markov’s inequality and lemma
2.8 applied with the uniform entropy integral bound given in lemma 2.7, we have that

1− P πb [E2(ξ)]

=P πb
[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≥ κ

]
≤κ−1EPπb

[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))|

]
≤κ−1JF (1,G(ε0, ξ), L2)‖Fξ‖2,Λ

≤Kκ−1ξL,

for some constant K. Set ξ = κγ/(2KL). Then, from the above display P πb [E2(κγ/(2KL))] ≥
1− γ/2.

Besides, since εn
P−→ ε∞, there exists n0 such that for all n ≥ n0,

P πb [E1(κγ/(2KL))] ≥ 1 − γ/2. Observe that if E1(κγ/(2KL)) ∩ E2(κγ/(2KL)) is realized,
then

√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≤ κ.

Using a union bound, we have that, for all n ≥ n0,

P πb
[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≤ κ

]
≥1− (1− P πb [E1(κγ/(2KL))])

− (1− P πb [E2(κγ/(2KL))])

≥1− γ.
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Recapitulating the above, we have proven that for all κ > 0, γ ∈ (0, 1/2), there exists n0 such that
for all n ≥ n0,

P πb
[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≤ κ

]
≥1− γ.

In other words, we have thus proven that
√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| = oP (1).

which concludes the proof.

2.C Efficiency and efficient influence function derivation
In this section we show that our estimator is optimal in a certain sense. Specifically, we show that it
is locally semiparametric efficient. We will introduce our reader to the notions from semiparametric
statistics necessary to understand and prove semiparametric efficiency of an estimator.

In particular we will introduce the concept of efficient influence function (EIF). Deriving the
EIF is the cornerstone of the efficiency analysis. It is also key to the construction of the estima-
tor: in semiparametric statistics, looking for the EIF is typically the starting point for building an
efficient estimator.

Deriving the EIF in the general MDP setting is one of the main contributions of this work.
Note that the presentation of the notions of semiparametric inference is heavily drawn from

?, and entails no novel contribution of our part. We wrote it so as to make this appendix a self-
contained document for the reader non-familiar with semiparametric statistics.

2.C.1 Introducing notions of optimality from semiparametric statistics
The notions of optimality we are about to introduce are relative to both the estimand and the
statistical model. The statistical model M is the set of probability distributions we believe to
contain the true data-generating mechanism, which we will denote P0. We will typically denote P
an arbitrary element ofM. The larger the model, the more realistic it is that it contains the truth,
but also the larger is the variance of estimators over this model.

The first notion of optimality we introduce is the notion of efficiency [cite Kosorok]. An estima-
tor is efficient at P , if, were the true data-generating mechanism to be P , it would have the lowest
variance among a certain class of estimators, namely the class of estimators that are regular at P
w.r.tM. We define formally the notion of a regular estimator at P w.r.t. M below. The concepts
of regularity, efficiency and semiparametric efficiency that we are about to introduce are defined
relative to P and toM, but they really only involveM through its geometry in a neighborohood
around P . Even more so, these notions only involveM through its so-called tangent space at P ,
which we will denote TM(P ).

We now proceed to stating the formal definitions. In all of this section, we will assume for
simplicity that all probability distributions are dominated by the same measure µ. Definitions will
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be stated accordingly, but our reader should be aware that some of them can be extended to the
case where there is not a single dominating measure µ.

Definition 2.4 (Statistical model). A statistical modelM is a collection of probability distributions
{P ∈M} on a sample space X .

Usually, we suppose that the true data-generating mechanism, that we will denote P0 in this
section, belongs to the statistical model.

In the reinforcement learning setting of this article, the statistical model is a collection of prob-
ability distributions over the space of trajectoriesH. Any probability distribution P overH can be
factored as follows:

P =
T∏
t=1

Q̃t

T∏
t=1

πt ≡ Q̃π,

with Q̃ ≡
∏T

t=1 Q̃t and π ≡
∏T

t=1 πt, and where Q̃t is the conditional distribution ofRt, St+1 given
St, At and πt is the conditional distribution of At given St. Since we know the logging policy, our
statistical model supposes that for any of its elements P , π is equal to the known value of the
logging policy. We therefore write our statistical model as indexed by the known value of the
logging policy:

M(π) ={
P =

T∏
t=1

Q̃t

T∏
t=1

πt : ∀t = 1, ..., T, Q̃t ∈MQ,t

}
=
{
P = Q̃π : Q̃ ∈MQ

}
,

withMQ = MQ,1 × ... ×MQ,T . We suppose that the model is fully nonparametric, that is for
every t,MQ,t is equal to the set of all conditional probability distributions PRt,St+1|St,At .

Definition 2.5 (Estimand / target parameter). The target parameter mapping, which we denote Ψ,
is a map defined on the statistical modelM, with values either in Rd for a certain d, or in some
function space. The estimand or target parameter is this map evaluated at the data-generating
distribution: Ψ(P0).

In the setting of this article, for every probability distribution P = Q̃π over H, the target
parameter mapping at P is defined as Ψ(P ) = EP ′≡Q̃πe [

∑T
t=1 γ

tRt]. Note that this expression
doesn’t depend on π, so we can write Ψ(P ) = Ψ̃(Q̃) for a mapping Ψ̃ thus defined.

Definition 2.6 (Estimator). For any sample size n, an estimator Ψ̂n is a mapping of the sample
spaceHn to the space of the target parameter/estimand.

Definition 2.7 (One-dimensional submodel). A one-dimensional submodel of M that passes
through P in 0 is a subset of M of the form {Pε : ε ∈ [−η, η]}, for some η > 0, such that
Pε=0 = P .
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Definition 2.8 (Score of a one-dimensional parametric model). The score in ε0, for any ε0, of a one-
dimensional parametric model {Pε : ε} is the derivative of the log-likelihood w.r.t. ε, evaluated at
ε0. Denoting it s, the score is the function defined, for all x in the sample space X ,

s(x) =
d log(dPε/dµ)(x)

dε

∣∣∣∣
ε=ε0

.

Definition 2.9 (Tangent space). The tangent space of a statistical modelM at P , which we denote
TM(P ) is the linear closure of the set of score functions of all of the one-dimensional submodels
ofM that pass through P . Formally,

TM(P ) = Span(S(M, P )),

with

S(M, P ) ≡{
d log(dPε/dµ)

dε

∣∣∣∣
ε=0

:{Pε : ε} 1-dim. submodel ofM,

Pε=0 = P

}
.

Definition 2.10 (Regularity). Suppose the data-generating distribution is P , for some P ∈M. An
estimator is regular at P w.r.t. M if, for any one dimensional submodel {Pε : ε} ofM such that
Pε=0 = P , the asymptotic distribution of

√
n(Ψ̂n −Ψ(Pε=1/

√
n))

is the same as the asymptotic distribution of
√
n(Ψ̂n −Ψ(P )).

It is the understanding of the authors of this article that non-regular estimators at P correspond
either to pathological estimators or pathological P ’s.

Definition 2.11 (Efficiency). An estimator is a locally efficient estimator of Ψ(P ) at P w.r.t.M if
it has smallest asymptotic variance among all regular estimators of Ψ(P ) at P w.r.t.M.

Definition 2.12 (Generalized Cramer-Rao lower bound). Consider a one-dimensional model {Pε :
ε} such that Pε=0 = P . From classical parametric statistics theory, an regular estimator Ψn of
Ψ(P ) w.r.t. {Pε : ε} has asymptotic variance greater than the Cramer-Rao lower bound vCR({Pε :
ε}):

lim
n→∞

nVarP (Ψ̂n) ≥ vCR({Pε : ε}) ≡

(
dΨ(Pε)
dε

∣∣
ε=0

)2

I(P )
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where I(P ) = EP

[
d2 log(dP/dµ)(X)

dε2

∣∣
ε=0

]
is the Fisher information of the model {Pε : ε} at ε = 0.

For a statistical modelM, the generalized Cramer-Rao lower bound vGCR for Ψ(P ) w.r.t.M,
is the sup of the Cramer-Rao lower bound over the parametric submodels ofM through P :

vGCR(M) ≡ sup
{Pε:ε}⊆M,Pε=0=P

vCR({Pε : ε}).

A parametric submodel whose Cramer-Rao lower bound is equal to the generalized Cramer-Rao
lower bound is called a least-favorable parametric submodel.

Definition 2.13 (Semiparametric efficiency). An estimator Ψ̂n is a locally semiparametric effi-
cient of Ψ(P ) w.r.t. M if it is consistent for Ψ(P ) and if its asymptotic variance is equal to the
generalized Cramer-Rao lower bound, that is if

lim
n→∞

nVarP (Ψ̂n) = vCGR(M).

If there exists a least-favorable parametric submodel, a semiparametric efficient estimator has the
same asymptotic variance as the last-favorable parametric submodel.

2.C.2 Proving that an estimator is semiparametric efficient
In this section, we present a sufficient condition for an estimator to be locally semiparametric
efficient. Checking this condition is a standard approach to proving that an estimator is locally
semiparametric efficient.

The condition requires a certain characteristic of the estimator, the influence function (IF), and
a certain characteristic of the estimand and the model, the efficient influence function (EIF) to
be defined and equal. The IF of an estimator is defined if the estimator satisfies the asymptotic
linearity property. The EIF at P w.r.t. M of the estimand Ψ(P ) is defined if the estimand is
pathwise differentiable at P w.r.t.M.

Definition 2.14 (Asymptotic linearity and IF). An estimator Ψ̂n : X n → R, based on i.i.d. sample
X1, ..., Xn, of a parameter Ψ(P ) is asympototically linear at P , with influence function D(P ) :
X → R if

Ψ̂n −Ψ(P ) =
1

n

n∑
i=1

D(P )(Xi) + oP (n−1/2).

Definition 2.15 (Pathwise differentiability, gradient, and EIF). The target parameter mapping/the
estimand Ψ is pathwise differentiable at P , w.r.t. M, if there exists a function D0(P ) ∈ L0

2(P ),
(where L0

2(P ) = {f ∈ L2(P ) : Pf = 0}), such that, for all parametric submodel {Pε : ε} ⊆ M,
with score function S at ε = 0 such that Pε=0 = P , we have that

dΨ(Pε)

dε

∣∣
ε=0

= P{D0(P )S}.

If it exists, D0(P ) is called a gradient of Ψ at P w.r.t. M. The efficient influence function of Ψ at
P w.r.t. M, also called canonical gradient is the unique gradient of Ψ at P w.r.t. M that belongs
to TM(P ).
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Proposition 2.1. The EIF is the projection on TM(P ), for the L2(P ) norm, of any gradient.

Proposition 2.2. Consider P ∈M Suppose Ψ̂n is a regular estimator of Ψ(P ) w.r.t.M, and that
it is asymptotically linear with influence function D(P ). Then Ψ is pathwise differentiable at P
w.r.t.M and D(P ) is a gradient of Ψ at P w.r.t.M.

Theorem 2.2. If a RAL estimator has IF the EIF of the target parameter at P , then it is locally
semiparametric efficient at P for the target parameter.

These results suggest the following strategy to find the efficient influence function of a target
parameter: find a RAL estimator of the target, observe that its IF is a gradient, obtain the EIF by
projecting the gradient onto the tangent space.

2.C.3 Explicit derivation of the EIF
Proof. We proceed in three steps.

Step 1: Finding a gradient. Denote Ψ(P ) ≡ V πe
1 (s1). Consider

Ψ̂0
n ≡

1

n

n∑
i=1

T∑
t=1

γtρ
(i)
1:tR

(i)
t .

Observe that

Ψ̂0
n −Ψ(P ) =

1

n

T∑
i=1

D0(P )(Hi),

where D0(P )(h) =
∑T

t=1 γ
tρ1:t(h)rt −Ψ(P ).

Therefore D0(P )(h) is the influence function of the estimator Ψ̂0
n at P . It is straightforward to

check that Ψ̂0
n is regular. Therefore, from proposition 2.2, Ψ is pathwise differentiable at P w.r.t.

our statistical modelM(π) and D0(P ) is a gradient of Ψ at P w.r.t.M(π)

Step 2: Identifying the tangent space. Since we assumed that distributions inM(π) are dom-
inated by a measure µ, every element P ∈ M(π) can be represented by its density w.r.t. µ,
which we will denote p: for every h ∈ H, denoting h̄t ≡ (s1, a1, r1, ..., st, at, rt) the history of the
trajectory up till time t, we have

p(h) =
dP

dµ
(h)

=
T∏
t=1

q̃t(st+1, rt|st, at, h̄t−1)
T∏
t=1

πb(at|st, ).
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Consider a one-dimensional submodel {Pε : ε} ⊆ M that passes through P in ε = 0. Then

d log pε(h)

dε

∣∣∣∣
ε=0

=
T∑
t=1

d log q̃t(st+1, rt|st, at, h̄t−1)

dε

∣∣∣∣
ε=0

.

Since, for any t, h 7→ d log q̃t(st+1,rt|st,at,h̄t−1)
dε

∣∣∣∣
ε=0

is a score function, it is in L0
2(PRt,St+1|St,At,H̄t−1

).

Therefore,

TM(π)(P ) ⊆
T∑
t=1

L0
2(PRt,St+1|St,At,H̄t−1

).

Conversely, for any (g1, ..., gT ) ∈ L0
2(PR1,S2|S1,A1)× ...×L0

2(PRT ,ST+1|ST ,AT ,H̄T−1
), for η > 0 small

enough

{Pε : dP/dε = pε, ε ∈ [η,−η]},

where pε is defined, for all h ∈ H as

pε(h) =
T∏
t=1

q̃t(st+1, rt|st, at)

× (1 + gt(st+1, rt, st, at))πb(at|st),

is a submodel ofM that passes through P at ε = 0. We have that, for all h ∈ H,

d log pε
dε

∣∣∣∣
ε=0

=
T∑
t=1

gt(st+1, rt, at, st, h̄t−1).

Since d log pε
dε

is in TM(π) by definition of TM(π), and that
∑T

t=1 gt is an arbitrary element of

T∑
t=1

L0
2(PRt,St+1|St,At,H̄t−1

),

this shows that
∑T

t=1 L
0
2(PRt,St+1|St,At) ⊆ TM(P ) and therefore that

TM(P ) =
T∑
t=1

L0
2(PRt,St+1|St,At,H̄t−1

)

It is straightforward to check that the sum is direct and orthogonal.
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Step 3: Projecting D0(P ) on the tangent space. From proposition 2.1, the EIF is given by

Π(D0(P )
∣∣TM(π)(P ))

=
T∑
t=1

Π(D0(P )
∣∣L0

2(PRt,St+1|St,At,H̄t−1
))

=
T∑
t=1

(
EP [D0(P )(H)|St+1, Rt, St, At, H̄t−1]

− EP [D0(P )(H)|St, At, H̄t−1]
)
.

Observing that the terms that are deterministic conditional on H̄t−1 cancel out, we have that

EP [D0(P )(H)|St+1, Rt, St, At, H̄t−1]

− EP [D0(P )(H)|St, At, H̄t−1]

=EP

[
T∑
τ=t

γτρ1:τRτ |St+1, Rt, St, At, H̄t−1

]

− EP

[
T∑
τ=t

γτρ1:τRτ |St, At, H̄t−1

]

=γtρ1:t

(
Rt

+ γEP

[
T∑
τ=t

γτ−tρt:τRτ

∣∣St+1, Rt, St, At, H̄t−1

])

− γtρ1:tEP

[
T∑
τ=t

γτ−tρt:τRτ

∣∣St, At, H̄t−1

]

=γtρ1:t

(
Rt + γV πe(St+1)−Qπe(St, At)

)
Conclusion. The right-hand side of the last line above is equal to D(P ) from section 2.B. Since,
as we see in the next section, our full-blown estimator has asymptotic variance equal to the variance
of D(P ) which we just shown to be the EIF, it is semiparemetric efficient.

2.D Cross-validated LTMLE
We now present the full-blown version of our algorithm. The key difference between simplified
version and the full-blown version is that the latter uses the entire dataset to fit the second-stage
models, as opposed to just a split of the dataset. (Using just a split of the dataset is what the
simplified algorithm does, along with other algorithms presented recently in the OPE literature.)
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The standard error in the simplified version scales as 1/
√
n′, where n′ is the size of the sample

split used to fit ε. With the full-blown algorithm, it scales as 1/
√
n, where n is the size of the entire

sample.

2.D.1 Algorithm description
Consider a sample H1, ..., Hn of n i.i.d. trajectories of the MDP. Observe that there is a one-to-
one relationship between the sample H1, ..., Hn and the empirical probability distribution Pn =
n−1

∑n
i=1 δHi . Therefore, we will refer to the sample and to Pn interchangeably. Let b1,n, ...,

bV,n be V vectors in {0, 1}n representing splits of the sample: under a given bv,n, the training set
is given by {i : bv,n(i) = 0} and the test set is given by {i : bv,n(i) = 1}. Let Bn a random
vector uniformly distributed on the set {bv,n : v = 1, ..., V }. Denote P 0

n,Bn
and P 1

n,Bn
the empirical

distributions of the training set and the test set, respectively, under sample split Bn. Suppose that,
for every t, we are given an estimator of Qπe

t , that is a mapping of any sample H ′1, ..., H
′
n, or

equivalently, of any probability distribution P ′n, to a model fit, which we will denote Q̂πe
t (P ′n).

In practice, Q̂πe
t (P ′n) can be the estimator of Qπe

t obtained under a model of the dynamics fitted
from trajectories H ′1, ..., H

′
n. Denote σ(x) = 1/(1 + e−x) the logistic function, and σ−1 its inverse.

Observe that under assumption 1, the range of R̄t:T , and therefore ofQπe
t and V πe

t is [−∆t,∆t] with
∆t :=

∑T
τ=t γ

τ−t. For all t, P ′n, define the scaled action-value function estimator as Q̃πe
t (P ′n) =

(Q̂πe(P ′n) + ∆t)/(2∆t). For δ ∈ (0, 1/2) and any Q̃′t : S ×A → R, define

Q̃′δt (st, at) := max(δ,min(1− δ, Q̃′(st, at)),

the thresholded version of Q̃′ is always at least δ away from 0 and 1. Let δn ↓ 0. For any t, P ′n,
introduce the perturbed scaled estimator

Q̃πe
t (P ′n)(ε) = σ(σ−1(Q̃πe,δn

t (P ′n)) + ε)

and let Q̂πe(P ′n)(ε) be defined by Q̃πe
t (P ′n)(ε) = (Q̂πe(P ′n)(ε) + ∆t)/(2∆t). The expression above

defines a logistic regression model with a fixed offset and parameterized by an intercept ε, such
that Q̂πe

t (P ′n)(0) = Q̂πe
t (P ′n). The TML estimate is obtained by sequentially fitting such logistic

models. Specifically, start at time point T and define the cross-validated risk

Rn,T (ε) =

EBnEP 1
n,Bn

[
ρ1:T

(
RT log

(
Q̃πe
T (P 0

n,Bn)(ε)(ST , AT )
)

+ (1−RT ) log
(
1− Q̃πe

T (P 0
n,Bn)(ε)(ST , AT )

))]
.

Denote εn,T the minimizer of Rn,T (ε). The other models are fitted by backward recursion. Sup-
pose that we have fitted εn,T , ..., εn,t+1. Define V̂ πe

t+1(P ′n)(ε)(s) :=
∑

a πe(a|s)Q̂
πe
t+1(P ′n)(ε)(s, a),

Ut,Bn = Rt + γV̂ πe
t+1(P 0

n,Bn
)(εn,t+1)(St+1) and Ũt,Bn = (Ut,Bn + ∆t)/(2∆t). Define the cross-

validated risk

Rn,t(ε) =
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EBnEP 1
n,Bn

[
ρ1:t

(
Ũt,Bn log

(
Q̃πe
t (P 0

n,Bn)(ε)(St, At)
)

+ (1− Ũt,Bn) log
(
1− Q̃πe

t (P 0
n,Bn)(ε)(St, At)

))]
.

The perturbation εn,t is defined as the minimizer of the above risk. The TML estimator of V πe
1 (s1)

is defined as

V̂ πe,TMLE
1 (s1) := EBnV̂

πe
1 (P 0

n,Bn)(ε1)(s1).

Theorem 2.3. Suppose assumptions 2.1, 2.2, 2.3, 2.4, 2.5 are satisfied. Then

EPπb [V̂
πe,TMLE(s1)− V πe

1 (s1)] = o(1/
√
n),

and
√
n
(
V̂ πe,TMLE(s1)− V πe

1 (s1) = OP (1/
√
n)
)

d−→ N (0, σ2(Q∞(ε∞, ρ)),

where, for all non-random Q′ and ρ′

σ2(Q′, ρ′) = V arPπb (D(Q′, ρ′)).

It has been established in earlier works Jiang and Li [2015] that the DR estimator with initial
estimator Q̂ also have asymptotic variance σ2(Q∞)/n, and that σ2(Q∞)/n is the efficient variance
from the Cramer-Rao lower bound, provided Q∞ = Q (that is provided the initial estimator Q̂ is
asymptotically consistent.). If the initial estimator Q̂ is consistent ε∞ = 0 and Q∞(ε∞) = Q∞ =
Q, therefore the DR estimator and the LTMLE have the same asymptotic distribution and they
achieve the Cramer-Rao lower bound.

2.D.2 Additional notation
For a given policy π and a transition probability P , denote P π the corresponding probability dis-
tribution over a trajectory with fixed inital state, that is, for all h = (s1, a1, r1, ..., sT , aT , rT ),

P πb(H = h) =
T∏
t=1

P (rt, st+1|st, at)π(at|st).

From now, we will denote Q′ := (Q′1, ..., Q
′
T ) an arbitrary action-value function, and let

V ′ = (V ′1 , ..., V
′
T ) be the corresponding value function under πe, that is for all t, st, V ′t (st) =∑

a′t
πe(a

′
t|st)Q′(st, a′t). We will also drop the πe subscript whenever possible and denote Qt :=

Qπe
t , the true action value function at time t, and similarly, we will denote Vt := V πe

t , the true value
function at time t. Denote Q = (Q1, ..., QT ) and V = (V1, ..., VT ).
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We introduce the following notation for the perturbed estimators: denote

Q̂∗t (P
0
n,Bn) :=Q̂πe

t (P 0
n,Bn)(εn,t),

Q̃∗t (P
0
n,Bn) :=Q̃πe

t (P 0
n,Bn)(εn,t),

V̂ ∗t (P 0
n,Bn)(·) =

∑
a′t

πe(a
′
t|·)Q̃∗t (P 0

n,Bn)(a′t|·).

Finally, define

Q̂∗(P 0
n,Bn) :=(Q̂∗1(P 0

n,Bn), ..., Q̂∗T (P 0
n,Bn)),

V̂ ∗(P 0
n,Bn) :=(V̂ ∗1 (P 0

n,Bn), ..., V̂ ∗T+1(P 0
n,Bn)).

2.D.3 The fits of the second-stage models solve a score equation
Lemma 2.9. The perturbed estimators Q̂∗, V̂ ∗ given by the LTMLE algorithm satisfy

EBnP
1
n,BnD

∗(Q̂∗(P 0
n,Bn), V̂ ∗(P 0

n,Bn)) = 0.

Proof. Defining ŨT,Bn := RT , we have that, for all t = 1, ..., T ,

lt,n(ε) = −EBnP 1
n,BnfBn(ε),

with

fBn(ε)(H) :=

ρ1:t(− Ũt,Bn log σ(aBn + ε)

− (1− Ũt,Bn) log(1− σ(aBn + ε))),

where aBn := σ−1(Q̃πe(P 0
n,Bn

)(St, At)). Using the expression of σ, we rewrite fBn(ε) as

fBn(ε)(H) =

ρ1:t(Ũt,Bn log(1 + e−aBn−ε)

+ (1− Ũt,Bn) log(1 + eaBn+ε)).

We take the derivative of fBn w.r.t. ε:

f ′Bn(ε)(H)

=ρ1:t

(
−Ũt,Bn

e−aBn−ε

1 + e−aBn−ε
+ (1− Ũt,Bn)

eaBn+ε

1 + eaBn+ε

)
=ρ1:t

(
−Ũt,Bn(1− σ(aBn + ε)) + (1− Ũt,Bn)σ(aBn + ε)

)
=ρ1:t

(
σ(aBn + ε)− Ũt,Bn

)
.
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Recalling the definitions of aBn , Ũt,Bn , and Q̃πe , we rewrite the above expression as

f ′Bn(ε)(H)

=ρ1:t

(
Q̃πe(P 0

n,Bn)(ε)(St, At)− Ũt,Bn
)

=(2∆t)
−1ρ1:t

(
Q̂πe
t (P 0

n,Bn)(ε)(St, At)

−Rt − γV̂ πe
t+1(P 0

n,Bn)(εt+1)(St+1)

)
Since εt verifies l′n,t(ε) = 0, we have that

EBnEP 1
n,Bn

[
ρ1:t

(
Rt + γV̂ πe

t+1(P 0
n,Bn)(εt+1)(St+1)

− Q̂πe
t (P 0

n,Bn)(εt)(St, At)

)]
= 0,

that is

EBnP
1
n,BnDt(Q̂

∗
t (P

0
n,Bn), V̂ ∗t (P 0

n,Bn)) = 0.

Summing over t yields the result.

2.D.4 Proof of convergence of the perturbations
Lemma 2.10. Define, for all x ∈ (0, 1), ε ∈ R,

φ1(ε, x) := log(σ(σ−1(x) + ε))

and φ2(ε, x) := log(1− σ(σ−1(x) + ε)).

It holds that, for all x ∈ (0, 1), ε ∈ R,

∂φ1

∂x
(ε, x) =

(
1

x
+

1

1− x

)
(1− σ(σ−1(x) + ε)),

and
∂φ2

∂x
(ε, x) =

(
1

x
+

1

1− x

)
σ(σ−1(x) + ε).

Therefore, if x ∈ [δ, 1− δ] for some δ ∈ (0, 1/2) we have that for all ε ∈ R,∣∣∣∣∂φ1

∂x
(ε, x)

∣∣∣∣ ≤ 2δ−1 and
∣∣∣∣∂φ2

∂x
(ε, x)

∣∣∣∣ ≤ 2δ−1.

Lemma 2.11. Consider φ1 and φ2 as in lemma 2.10 above, and suppose that x ∈ [δ, 1 − δ], for
some δ ∈ (0, 1/2). It holds that for all ε ∈ R

|φ1(ε, x)| ≤ log(1 + δ−1eε),

and |φ2(ε, x)| ≤ log(1 + δ−1eε).
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Lemma 2.12. Assume that for all h ∈ H, for all t = 1, .., T , 0 ≤ ρ1:t(h) ≤ M for some M > 0.
Assume that for all ‖Q̂t(P

′
n) − Q∞,t‖Pπb ,2 = oP (δn) for some δn ↓ 0. Assume that for all t =

1, ..., T , for all t, at ∈ S ×A, Q̃t,∞(st, at) ∈ [δ, 1− δ] for some δ ∈ (0, 1/2). Then, for all ε ∈ R,

Rn,t(ε)−R∞,t(ε) = oP (1).

Proof. Let ε ∈ R. We express the risk Rn,t as a cross-validated empirical mean of a loss, and the
riskR∞ as the population mean of a loss:

Rn,t(ε) =EBnP
1
n,Bnlt(Q̃

δn
t (P 0

n,Bn)(ε)),

andR∞,t(ε) =P πblt(Q̃∞,t(ε)),

where, for all Q̃′t : S ×A → (0, 1), for all h ∈ H

lt(Q̃
′
t)(h) :=

ρ1:t(h)

(
ũt,n,Bn log(Q̃′t(st, at))

+ (1− ũt,n,Bn) log(1− Q̃′t(st, at))
)
.

From there, we are going to proceed in three steps: in the first steps, we will first decompose
Rn,t(ε) − R∞,t(ε) in two terms An,t and Bn,t, that we will then each bound separately in the
second and third step.

Step 1: decomposition ofRn,t(ε)−R∞,t(ε). Observe that

Rn,t(ε)−R∞,t(ε) =An,t +Bn,t,

with

An,t =EBn(P 1
n,Bn − P

πb)lt(Q̃
δn
t (P 0

n,Bn)(ε)),

and

Bn,t =EBnP
πb
(
lt(Q̃

δn
t (P 0

n,Bn)(ε))− lt(Q̃∞,t(ε))
)
.

Step 2: bounding An,t. Let n0 = bnpc and n1 = n− n0. Denote H0
Bn,1

, ..., H0
Bn,n0

, the trajecto-
ries in the training set and H1

Bn,1
, ..., H1

Bn,n1
the trajectories in the test set corresponding to sample

split Bn.
Since Q̃δn

t ∈ [δn, 1− δn], lemma 2.11 shows that

| log(Q̃δn
t (ε)(H1

Bn,i))| ≤ log(1 + δ−1
n eε)

. log(1/δn),
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and

| log(1− Q̃δn
t (ε)(H1

Bn,i))| ≤ log(1 + δ−1
n eε)

. log(1/δn).

Recalling the expression of ln,t, the fact that by assumption, for every i = 1, ..., n1, ρ1:t(H
1
Bn,i

)

≤M almost surely, and the fact that Ũt,n,Bn(H1
Bn,i

) ∈ [0, 1], we can bound the loss as follows:

|lt(Q̃δn
t (P 0

n,Bn)(ε))(H1
Bn,i)| .M log(1/δn),

almost surely, for every i = 1, ..., n1. Conditional on H0
Bn,1

, ..., H0
Bn,n0

,
lt(Q̃

δn
t (P 0

n,Bn
)(ε))(H1

Bn,1
), ..., lt(Q̃

δn
t (P 0

n,Bn
)(ε))(H1

Bn,n1
) are i.i.d. random variables upper

bounded, up to a constant, by M log(1/δn). Therefore, by Hoeffding’s inequality, for every x > 0,

P [|(P 1
n,Bn − P

πb)lt(Q̃
δn
t (P 0

n,Bn)(ε))| > x]

≤2 exp

(
− nx2

2 log(1/δn)

)
.

Therefore,

(P 1
n,Bn − P

πb)lt(Q̃
δn
t (P 0

n,Bn)(ε))

=OP

(√
log(1/δn)

n

)
.

Since Bn takes finitely many values, and that log(1/δn) = o(n), the above display implies that

EBn(P 1
n,Bn − P

πb)lt(Q̃
δn
t (P 0

n,Bn)(ε)) = oP (1).

Step 3: bounding Bn,t. Since ρ1:t ≤M for every t almost surely under P πb , there exists a subset
H̄ of H such that H ∈ H̄ almost surely, and for all h ∈ H̄, ρ1:t(h) ≤ M for every t. As far as
integrals w.r.t. are concerned, P πb , it is enough to characterize the integrands on H̄. Let h be an
arbitrary element of H̄.

lt(Q̃
δn
t (P 0

n,Bn)(ε))− lt(Q̃∞,t(ε))

= ρ1:t(h)

{
ũt,n,Bn(h)

(
log(Q̃δn

t (P 0
n,Bn)(ε)(h))

− log(Q̃∞,t(ε)(h))

)
+ (1− ũt,n,Bn(h))

(
log(1− Q̃δn

t (P 0
n,Bn)(ε)(h))

− log(1− Q̃∞,t(ε)(h))

)}
. (2.12)
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From lemma 2.10 and the mean value theorem, for all n such that δn ≤ δ,∣∣ log(Q̃δn
t (P 0

n,Bn)(ε)(h))− log(Q̃∞,t(ε)(h))
∣∣

≤ 2δ−1
n

∣∣Q̃δn
t (P 0

n,Bn)(h)− Q̃∞,t(h))
∣∣

≤ 2δ−1
n

∣∣Q̃t(P
0
n,Bn)(h)− Q̃∞,t(h))

∣∣
≤ 2δ−1

n (2∆t)
−1
∣∣Q̂t(P

0
n,Bn)(h)−Q∞,t(h))

∣∣. (2.13)

The third line above follows from the fact that, for all x ∈ [0, 1], y ∈ [δ, 1 − δ], and n such that
δn ≤ δ, it holds that |max(δn,min(1− δn, x))− y| ≤ |x− y|. The same reasoning shows that∣∣ log(1− Q̃δn

t (P 0
n,Bn)(ε)(h))− log(1− Q̃∞,t(ε)(h))

∣∣
≤ 2δ−1

n (2∆t)
−1
∣∣Q̂t(P

0
n,Bn)(ε)(h)−Q∞,t(ε)(h))

∣∣. (2.14)

Taking the absolute value of (2.12), using the triangle inequality, the fact that 0 ≤ ρ1:t(h) ≤ M ,
that ũt,n,Bn(h) ∈ [0, 1] and the upper bounds (2.13) and (2.14) yields∣∣lt(Q̃δn

t (P 0
n,Bn)(ε))− lt(Q̃∞,t(ε))

∣∣
≤M2δ−1

n ∆−1
t

∣∣Q̂t(P
0
n,Bn)(h)−Q∞,t(h))

∣∣.
Therefore, using the triangle inequality and Cauchy-Schwartz, and the fact that Bn takes finitely
many values, ∣∣EBnP πb(lt(Q̃

δn
t (P 0

n,Bn)(ε))− lt(Q̃∞,t(ε)))
∣∣

≤M2δ−1
n ∆−1

t ‖Q̂t(P
0
n,Bn)−Q∞,t‖Pπb ,2.

Therefore, using the assumption that ‖Q̂t(P
0
n,Bn

)−Q∞,t‖Pπb ,2 = oP (δn), we have

EBnP
πb(lt(Q̃

δn
t (P 0

n,Bn)(ε))− lt(Q̃∞,t(ε))) = oP (1).

Therefore, putting together that An,t = oP (1) and Bn,t = oP (1) and the fact that Rn,t −
R∞,(ε) = An,t +Bn.t gives the desired result.

Lemma 2.13. Make the same assumptions as in lemma 2.12 above. Then

• R∞,t has a unique minimizer ε∞,t,

• εn,t − ε∞,t = oP (1).

Proof. Let η > 0 and κ > 0. The fact that Q∞,t ∈ [δ, 1 − δ], with δ ∈ (0, 1/2) implies that R∞,t
is m-strongly convex for some m > 0. Therefore Rn,t has a unique minimizer on R that we will
denote ε∞,t. Denoting ∆ := mη2/2, we have, from m-strong convexity, that

R∞,t(ε∞,t + η) ≥ R∞,t(ε∞,t) + ∆, (2.15)
andR∞,t(ε∞,t − η) ≥ R∞,t(ε∞,t) + ∆. (2.16)
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Consider the following event:

E :=

{
|Rn,t(ε)−R∞,t(ε)| ≤

∆

3
,

∀ε ∈ {ε∞, ε∞ − η, ε∞ + η}
}
.

From the pointwise convergence in probability ofRn,t, which is given to us by lemma 2.12 above,
there exists n0 such that for all n ≥ n0, P [E ] ≥ 1 − κ. Assume E holds. Then, from (2.15) and
(2.16), and the inequalities that define event E , we have that

Rn,t(ε∞ ± η) ≥ Rn,t(ε∞) +
∆

3
.

From convexity of Rn,t, the above display implies that for all ε such that |ε − ε∞,t| ≥ η, we have
that

Rn,t(ε) ≥ Rn,t(ε∞,t) +
∆

3
.

Since εn,t minimizes Rn,t, we must have Rn,t ≤ Rn,t(ε∞,t) < Rn,t(ε∞,t) + ∆/3. Therefore, if
E is realized, εn,t must lie in [ε∞,t − η, ε∞,t + η]. Since E is realized with probability 1 − κ, this
concludes the proof.

2.D.5 Proof of theorem 2
The proof relies on the following empirical process result.

Lemma 2.14. Consider Fη(P 0
n,Bn

) as defined in the previous section. Consider ηn = oP (1). Then

√
n sup
f∈Fηn (P 0

n,Bn
)

|(P 1
n,Bn − P

πb)f | = oP (1).

Proof. This is a direct corollary of lemma 2.4.

Proof of theorem 2. Recall that V̂ πe,TMLE
1 (s1) = EBnV̂ (P 0

n,Bn
)(εn,1)(s1). Therefore, from lemma

2.1,

V̂ πe,TMLE
1 (s1)− V πe(s1)

=− EBnP πbD(Q̂(P 0
n,Bn)(εn), V̂ (P 0

n,Bn)(εn)). (2.17)

Recall that from lemma 2.9,

V̂ πe,TMLE
1 (s1)− V πe(s1)

=EBnP
1
n,BnD(Q̂(P 0

n,Bn)(εn), V̂ (P 0
n,Bn)(εn)). (2.18)
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Summing (2.17) and (2.18) yields

V̂ πe,TMLE
1 (s1)− V πe(s1) =

EBn(P 1
n,Bn − P

πb)D(Q̂(P 0
n,Bn)(εn), V̂ (P 0

n,Bn)(εn)).

Using the notation fε introduced in the previous section, we can rewrite the above expression as

V̂ πe,TMLE
1 (s1)− V πe(s1)

= EBn(P 1
n,Bn − P

πb)fε∞(P 0
n,Bn)

+ EBn(P 1
n,Bn − P

πb)(fεn(P 0
n,Bn)− fε∞(P 0

n,Bn)).

By the central limit theorem for triangular arrays
√
n(P 1

n,Bn − P
πb)fε∞(P 0

n,Bn)

d−→ N (0, V ar(D(Q∞(ε∞), V∞(ε∞)(H))).

Therefore,
√
n(P 1

n,Bn
−P πb)fε∞(P 0

n,Bn
) = OP (n−1/2). The second term is the RHS of is oP (n−1/2)

by lemma 2.14. Since Bn takes values on a finite support, this implies that

V̂ πe,TMLE
1 (s1)− V πe(s1) = OP (n−1/2).

2.E Experiment Details
In this section, we provide full details of our experiments and utilized domains. In particular, we
provide detailed descriptions of discrete-state domains ModelWin, ModelFail and Gridworld.

2.E.1 ModelWin
The ModelWin environment was constructed in order to simulate situations in which the approxi-
mate model of the MDP will converge quickly to the truth. On the other hand, importance-sampling
based methods might suffer from high variance.

The ModelWin MDP consists of 3 states, and the agent always begins at state s1. At s1, the
agent stochastically picks between two actions, a1 and a2. Under action a1, the agent transitions
to s2 with probability 0.4 and s3 with probability 0.6. On the other hand, under action a2 the
agent does the opposite- it transitions to s2 and s3 with probability 0.6 and 0.4, respectively. Under
both actions, if the agent transitions to s2, it gets a positive reward of +1. Consequently s1 to s3

transitions are penalized with -1 reward. In states s3 and s2, both actions a1 and a2 will take the
agent back to s1 with probability 1 and no reward. The horizon is set to T = 20.

The considered behavior policy takes action a1 from s1 with probability 0.73, and action a2

with probability 0.27. The evaluation policy has the opposite behavior. Note that both the behavior
and evaluation policies select actions uniformly at random while in states s1 and s2.
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2.E.2 ModelFail
Unlike the ModelWin domain, the agent does not observe the true underlying states of the MDP in
ModelFail. The purpose of this domain is to test environments are not known perfectly, and where
the approximate model will fail to converge to the true MDP. ModelFail attempts to mimic partial
observability, common in real applications.

The actual MDP consists of 4 states, 3 states and a final absorbing state, however the agent is
not able to distinguish between them. The agent always starts at the same state, s1, where it has
two actions available. With actions a1 it transitions into the upper state (s2), whereas with action
a2 it goes to the lower state (s3). No matter which state the agent transitioned to, both s2 and s3

lead to the terminal absorbing state s4. However, s2 to s4 transition carries reward +1, whereas s3

to s4 leads to reward of -1. The horizon is T = 2.
The considered behavior policy takes action a1 with probability 0.88, and action a2 with prob-

ability 0.22. The evaluation policy has the opposite behavior.

2.E.3 Gridworld
The last discrete-state environment used is a 4 × 4 gridworld domain with 4 actions (up, down,
left, right) developed by Thomas [2015]. As emphasized by Thomas and Brunskill [2016], this is a
domain specifically developed for evaluation of OPE estimators. However, due to its deterministic
nature, it will favor model-based approaches.

The horizon for GridWorld is T = 100, after which the episode ends unless the terminal state
of s12 is reached before T . The reward is always -1, expect at states s8 where it is +1, s12 with +10,
and s6 where the agent is penalized with -10 reward.

We used two different polices for the gridworld, as described in Thomas [2015]. In particular,
policy π1 selects each of the 4 actions with equal probability regardless of the observation. Intu-
itively this policy takes a long time to reach the goal, and potentially often visits the state with
the maximum negative reward. In addition, we also considered the near-optimal+ policy π5, which
exemplifies a near-deterministic near-optimal policy that moves quickly to s8 with reward +1, with-
out visiting s6 with -10 reward. At s8 it chooses action down with high probability, collecting as
many positive rewards as possible until the time limit runs out. Once it eventually chooses the
right action, it moves almost deterministically to s12 where it collects its final reward and end the
episode.
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Chapter 3

Fast rates for empirical risk minimization
over càdlàg functions with bounded
sectional variation norm
AURÉLIEN BIBAUT, MARK VAN DER LAAN
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In this chapter, we refine existing guarantees for empirical risk minimizers over the nonpara-
metric function class of cadlag functions with bounded section variation norm (s.v.n., also referred
to as Hardy-Krause variation). At the time of release of the original preprint [Bibaut and van der
Laan, 2019], van der Laan [2016] had shown that that ERMs over this class of function had rate
of convergence in L2 norm o(n−1/4), and Fang et al. [2019] had shown that, in regression settings
under some restrictive conditions on the design, ERMs had L2 norm convergence rate Õ(n−1/3),
where n is the sample size. In this work, we show the Õ(n−1/3) under more general conditions
than Fang et al. [2019].

Getting faster than n−1/4 rates of convergence over realistic nonparametric models for inifinite
dimensional statistical parameters such as regression functions is a paramount importance in semi-
parametric estimation problems. Indeed in such problems, estimators minus their true target can
often be decomposed an empirical mean (or empirical process), which can be shown to converge
to its limit distribution at speed

√
n, plus a remainder term. The remainder term often involves

the product of the estimation error of two infinite dimensional parameters. When these errors are
oP (n−1/4), the remainder can be shown using Cauchy-Schwartz to be oP (n−1/2), and thus to be
negligible in front of the first empirical mean or empirical process term. This situation arises for
example in average treatment effect estimation from observational data, where the remainder term
involves the product of the estimation error for the propensity score and for the outcome model.

The key theoretical building block of this work is a new bound on the bracketing entropy of
the class of cadlag function with bounded s.v.n., which we obtain from a bound on the brack-
eting entropy on the class of multivariate cumulative distribution functions by Gao [2013]. We
show that the bracketing entropy of cadlag functions with s.v.n. no larger than a fixed constant is
O(ε−1 log(1/ε)2(d−1)), where ε is the L2 size of the brackets and d is the dimension of the domain.
This enables us to obtain rate of convergence in L2 norm for ERMs OP (n−1/3(log n)2(d−1)/3). Per-
haps surprisingly, the dependence on the dimension only applies to the logn factor, making these
estimators good candidates for high dimensional problems. Simulations studies, in particular that
of ? confirm that these estimators have very strong practical performance.

In this work, we derived statistical guarantees only in the i.i.d. setting. As we see in subsequent
chapters, the bracketing entropy bound can be reused in various dependent observations setting,
allowing us to get convergence guarantees in particular under martingale conditions and also for
weakly dependent data.

3.1 Introduction
Empirical risk minimization setting. We consider the empirical risk minimization setting over
classes of real-valued, d-variate functions. Suppose that O1, ..., On are i.i.d. random vectors with
common marginal distribution P0, and taking values in a set Θ. Suppose that O ⊆ [0, 1]d × Y , for
some integer d ≥ 1 and some set Y ⊆ R. Suppose that for all i, Oi = (Xi, Yi), where Xi ∈ [0, 1]d,
Yi ∈ Y . We suppose that P0 lies in a set of probability distributions over O that we denoteM,
and which we call the statistical model. Consider a mapping θ from the statistical model to a set Θ
of real-valued functions with domain [0, 1]d. We call Θ the parameter set. We want to estimate a
parameter θ0 of the data-generating distribution P0 defined by θ0 = θ(P0). Let L : Θ → RO be a
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loss mapping, that is for every θ ∈ Θ, L(θ) : O → R is a loss function corresponding to parameter
value θ. We suppose that L is a valid loss mapping for θ0 in the sense that

θ0 = arg min
θ∈Θ

P0L(θ).

Statistical model, sieve, and estimator We define our statistical model implicitly by making a
functional class assumption on the parameter set Θ. Specifically, we suppose that Θ is a subset
of the class Fd of càdlàg functions over [0, 1]d with bounded sectional variation norm [Gill et al.,
1995]. We define now the notion of sectional variation norm. Denote D([0, 1]d) the set of real-
value càdlàg functions with domain [0, 1]d. Consider a function f ∈ D([0, 1]d). For all subset
∅ 6= s ⊆ [d] and for all vector x ∈ [0, 1]d, define the vectors xs = (xj : j ∈ s), x−s = (xj : j /∈ s),
and the section fs of f as the mapping fs(xs) : xs 7→ f(xs, 0−s). The sectional variation norm of
f is defined as

‖f‖v ≡ |f(0)|+
∑
∅6=s⊆[d]

∫
|fs(dxs)|,

where [d] is a shorthand notation for {1, ..., d} and fs(dxs) is the signed measure generated by the
càdlàg function fs. Consider a sequence (Θn)n≥1 of subsets of Θ such that is non-decreasing for
the inclusion. For any n ≥ 1, we define our estimator θ̂n as the empirical risk minimizer over Θn,
that is

θ̂n = arg min
θ∈Θn

PnL(θ).

Rate of convergence results. Our main theoretical result states that the empirical risk minimizer
θ̂n converges to θ0 at least as fast as OP (n−1/3(log n)2(d−1)/3an), where an depends on the rate of
growth of Θn in terms of variation norm. The key to proving this result is a characterization of the
bracketing entropy of the class of càdlàg functions with bounded sectional variation norm. A rate
of convergence is then derived based on the famed “peeling” technique.

Tractable representation of the estimator. Fang et al. [2019] showed that if the parameter
space is itself a set of càdlàg functions with bounded sectional variation norm, then the empirical
risk minimizer θ̂n can be represented as a linear combination of a certain set of basis functions.
(The number of basis functions grows with n and is no larger than (ne/d)d). The empirical risk
minimization problem then reduces to a LASSO problem.

Related work and contributions. van der Laan [2016] considered empirical risk minimiza-
tion over sieves of Fd, under the general bounded loss setting, and showed that it achieves a
rate of convergence strictly faster than n−1/4 in loss-based dissimilarity. Fang et al. [2019] con-
sider nonparametric least-squares regression with Gaussian errors and a lattice design, over Fd,M
for a certain M > 0, and show that the least-squares estimator achieves rate of convergence



72

n−1/3(log n)C(d) for a certain constant C(d). In this article, we show that a similar rate of conver-
gence n−1/3(log n)2(d−1)/3 can be achieved under the general setting of empirical risk minimization
with unimodal Lipschitz losses (defined formally in section 3.3). We show that this setting covers
the case of nonparametric least-squares regression with a bounded dependent variable, and logistic
regression, under no assumption on the design. We also consider the nonparametric regression
with sub-exponential errors setting, and show that this n−1/3(log n)2(d−1)/3an rate is achieved by
the least-squares estimator over a certain sieve of the set of càdlàg functions with bounded sectional
variation norm.

3.2 Representation and entropy of the càdlàg functions with
bounded sectional variation norm

As recently recalled by van der Laan [2016], Gill et al. [1995] showed that any càdlàg function
on [0, 1]d with bounded sectional variation norm can be represented as a sum of (2d − 1) signed
measures of bounded variation. This readily implies that any such function can be written as a
sum of (2d − 1) differences of scaled cumulative distribution functions, as formally stated in the
following proposition.

Proposition 3.1. Consider f ∈ D([0, 1]d) such that ‖f‖v ≤ M , for some M ≥ 0. For all subset
s ⊆ [d], and for all vector x ∈ [0, 1]d, define the vector xs = (xj : j ∈ s). The function f can be
represented as follows: for all x ∈ [0, 1]d,

f(x) = f(0) + (M − |f(0)|)
∑
∅6=s⊆[d]

∫ xs

0

αs,1gs,1(dxs)− αs,2gs,2(dxs),

where gs,1 and gs,2 are cumulative distribution functions on the hypercube [0s, 1s], and α = (αs,i :

∅ 6= s ⊆ [d], i = 1, 2} ∈ ∆2d+1−2, where ∆2d+1−2 is the (2d+1 − 2)-standard simplex.

This and a recent result [Gao, 2013] on the bracketing entropy of distribution functions implies
that the class Fd,M of càdlàg functions over [0, 1]d with variation norm bounded by M has well-
controlled entropy, as formalized by the following proposition.

Proposition 3.2. Let d ≥ 2 and M > 0. Denote Fd,M the class of càdlàg functions on [0, 1]d with
sectional variation norm smaller than M . Suppose that P0 is such that, for all 1 ≤ r < ∞, for
all real-valued function f on [0, 1]d, ‖f‖P0,r ≤ c(r)‖f‖µ,r, for some c(r) > 0, and where µ is the
Lebesgue measure. Then for all 1 ≤ r < ∞ and all 0 < ε < 1, the bracketing entropy of Fd,M
with respect to the ‖ · ‖P0,r norm satisfies,

logN[](ε,Fd,M , ‖ · ‖P0,r) . C(r, d)Mε−1| log(ε/M)|2(d−1),

where C(r, d) is a constant that depends only on r and d. This implies the following bound on the
bracketing entropy integral of Fd,M with respect to the ‖ · ‖P0,r norm: for all 0 < δ < 1,

J[](δ,Fd,M , ‖ · ‖P0,r) .
√
C(r, d)

√
Mδ1/2| log(δ/M)|d−1.
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3.3 Rate of convergence under unimodal Lipschitz losses

In this section, we present an upper bound on the rate of convergence of θ̂n under a general class
of loss functions. Essentially, we require the loss to be unimodal and Lipschitz with respect to
the parameter, in a pointwise sense. We formally state below the assumptions of our result. Let
(an)n≥1 be a non-decreasing sequence of positive numbers, that can potentially diverge to∞.

Assumption 3.1 (Control of the variation norm of the sieve). Suppose that for all n ≥ 1,

Θn ⊆ {θ ∈ D([0, 1]d : ‖θ‖v ≤ an}.

Assumption 3.2 (Loss class). There exists some L̃ : R × Y → R such that, for any n, for any
θ ∈ Θn, and for any o = (x, y) ∈ [0, 1]d × Y ,

L(θ)(x, y) = L̃(θ(x), y).

Further assume that L̃ is such that, for any y, there is an uy such that u 7→ L̃(u, y) is

• non-increasing on (−∞, uy], and non-decreasing on [uy,∞),

• an-Lipschitz.

We will express the rate of convergence in terms of loss-based dissimilarity, which we define
now.

Definition 3.1 (Loss-based dissimilarity). Let n ≥ 1. Denote θn = arg minθ∈Θn P0L(θ). For
all θ ∈ Θn, we define the square of the loss-based dissimilarity d(θ, θ) between θ and θn as the
discrepancy

d2(θ, θn) = P0L(θ)− P0L(θn).

The third main assumption of our theorem requires the loss L to be smooth with respect to the
loss-based dissimilarity.

Assumption 3.3 (Smoothness). For every n, it holds that

sup
θ∈Θn

‖L(θ)− L(θn)‖P0,2 ≤ and(θ, θn).

We can now state our theorem.

Theorem 3.1. Consider Θn a sieve such that assumptions 3.1-3.3 hold for the sequence an consid-
ered here. Suppose that an = O(np) for some p > 0. Consider our estimator θ̂n, which, we recall,
is defined as the empirical risk minimizer over Θn, that is

θ̂n = arg min
θ∈Θn

PnL(θ).

Suppose that

θ0 ∈ Θ∞ ≡ {θ ∈ Θ : ∃n0 such that ∀n ≥ n0, θ ∈ Θn}.

Then, we have the following upper bound on the rate of convergence of θ̂n to θ0:

d(θ̂n, θ0) = OP (ann
−1/3(log n)2(d−1)/3).
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The reason why we consider a growing sieve Θn is to ensure we don’t have to know in advance
an upper bound on the variation norm of the losses. The rate an impacts the asymptotic rate
of convergence and finite sample performance. As the theorem makes clear, the slower we pick
an, the better the speed of convergence. However, for too slow an, θ0 might not be included in Θn

even for reasonable sample sizes. Note that, if there are reasons to believe that ‖θ0‖v ≤ A for some
A > 0, one can set an = A and then the rate of convergence will be OP (n−1/3(log n)2(d−1)/3).

3.4 Applications of theorem 3.1

3.4.1 Least-squares regression with bounded dependent variable

Consider ãn a non-decreasing sequence of positive numbers, that can potentially diverge to∞. Let
O1 = (X1, Y1), ..., (Xn, Yn) be i.i.d. copies of a random vector O = (X, Y ) with distribution P0.
Suppose that X takes values in [0, 1]d and Y takes values in Yn = [−ãn, ãn]. In the setting of least-
squares regression, one wants to estimate the regression function θ0 : x ∈ [0, 1]d 7→ EP0 [Y |X = x]
using the square loss L defined, for all θ ∈ Θ as L(θ) : (x, y) 7→ (y − θ(x))2. Let Θn = {θ ∈
D([0, 1]d) : ‖θ‖v ≤ ãn}. We consider the least-squares estimator θ̂n over Θn, defined as

θ̂n = arg min
θ∈Θn

PnL(θ).

Proposition 3.3 and proposition 3.4 below justify that assumptions 3.2 and 3.3 of theorem 3.1
are satisfied.

Proposition 3.3. Consider the setting of this subsection. We have, for all n ≥ 1, θ ∈ Θn, x ∈
[0, 1]d, and y ∈ Yn, that

L(θ)((x, y)) = L̃(θ(x), y)

where, L̃(u, y) = (y − u)2 for all u, y.
Furthermore, for all y ∈ Yn, the mapping u 7→ L̃(u, y) is

• non-increasing on (−∞, y] and non-decreasing on [y,∞),

• and 4ãn-Lipschitz on {θ(x) : θ ∈ Θn, x ∈ [0, 1]d}.

Proposition 3.4. Consider the setting of this subsection and recall the definition of the loss-based
dissimilarity (see definition 3.1). For all n ≥ 1, θ ∈ Θn, we have that

‖L(θ)− L(θ)n‖P0,2 ≤ 4ãndn(θ, θn).

Corollary 3.1. Set an = 4ãn. Then,

‖θ − θn‖P0,2 = OP (ann
−1/3(log n)2(d−1)/3).
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3.4.2 Logistic regression
Consider ãn a non-decreasing sequence of positive numbers that can potentially diverge to∞. Let
O1 = (X1, Y1), ..., On = (Xn, Yn) be i.i.d. copies of a random vector O = (X, Y ), where X takes
values in [0, 1]d and Y ∈ {0, 1}. Denote P0 the distribution of O. We want to estimate

θ0 : x 7→ log

(
EP0 [Y |X = x]

1− EP0 [Y |X = x]

)
,

the conditional log-odds function. Let L be the negative log likelihood loss, that is, for all θ ∈ Θ,
x ∈ [0, 1]d, y ∈ {0, 1}, L(θ)(x, y) = y log(1 + exp(−θ(x))) + (1− y) log(1 + exp(θ(x))). Denote
Θn = {θ ∈ D([0, 1]d) : ‖θ‖v ≤ ãn}. We denote θ̂n the empirical risk minimizer over Θn, that is

θ̂n = arg min
θ∈Θn

P0L(θ).

Propositions 3.5 and 3.6 below justify that assumptions 3.2 and 3.3 of theorem 3.1 are satisfied.

Proposition 3.5. Consider the setting of this subsection. We have, for all n ≥ 1, θ ∈ Θn, o =
(x, y) ∈ [0, 1]d × {0, 1}, that

L(θ)(o) = L̃(θ(x), y),

where, for all u, y,

L̃(u, y) = y log(1 + e−u) + (1− y) log(1 + eu).

Furthermore, for all y ∈ {0, 1}, the mapping u 7→ L̃(u, y) is

• non-increasing on R if y = 1,

• non-decreasing on R if y = 0,

• 1-Lipschitz on R.

Proposition 3.6. Consider the setting of this subsection, and recall the definition of the loss-based
dissimilarity. For all n ≥ 1, we have that

‖L(θ)− L(θn)‖P0,2 ≤ 2(1 + eãn)1/2dn(θ, θn).

Corollary 3.2. Set an = 2(1 + eãn)1/2. Then

dn(θ, θn) = OP (ann
−1/3(log n)2(d−1)/3),

and

‖θ − θn‖P0,2 = OP (a2
nn
−1/3(log n)2(d−1)/3).
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3.5 Least-squares regression with sub-exponential errors
In this section we consider a fairly general nonparametric regression setting, namely least-squares
regression over a sieve of càdlàg functions with bounded sectional variation norm, under the as-
sumption that the errors follow a subexponential distribution. Although this situation isn’t covered
by the hypothesis of theorem 3.1, our general bounded loss result, it is handled by fairly similar
arguments. This is a setting of interest in the literature (see e.g. section 3.4.3.2 of van der Vaart
and Wellner [1996]).

Suppose that we collect observations (X1, Y1), ..., (Xn, Yn), which are i.i.d. random variable
with common marginal distribution P0. Suppose that for all i, Xi ∈ X ≡ [0, 1]d, Yi ∈ Y ≡ R, and
that

Yi = θ0(Xi) + ei,

where θ0 ∈ Θ ≡ {θ ∈ D([0, 1]d) : ‖θ‖v < ∞}, and e1, ...en are i.i.d. errors that follow a sub-
exponential distribution with parameters (α, ν). Suppose that for all i, Xi and ei are independent.
Let an be a not-decreasing sequence of positive numbers that can diverge to ∞. Define, for all
n ≥ 1, Θn = {θ ∈ Θ : ‖θ‖v ≤ an}.

The following theorem characterizes the rate of convergence of our least-squares estimators,
which we explicitly define in the statement of the theorem.

Theorem 3.2. Consider the setting of this section. Suppose that θ0 ∈ Θ. Then, θ̂n, the least-
squares estimator over Θn, formally defined as

θ̂n = arg min
θ∈Θn

1

n

n∑
i=1

(Yi − θ(Xi))
2,

satisfies

‖θ̂n − θ0‖P0,2 = OP (((C̃(α, ν) + 3)an + ‖θ0‖∞)n−1/3(log n)2(d−1)/3).

where the constant C̃(α, ν) is defined in the appendix.

3.6 Discussion
In this chapter, we analyzed the bracketing entropy of the class of d-variate cadlag functions with
bounded sectional variation norm. We use this bound on the bracketing entropy to provide bounds
on the convergence rate in probability of empirical risk minimizers.

We studied in particular empirical risk minimizers corresponding to two losses: the square loss
and the logistic loss (under the condition that the underlying regression function lies away from
0 and 1). We showed in these two cases that the L2 norm of difference between the estimated
function and the truth converges at rate OP (n−1/3(log n)2(d−1)/3). This is especially meaningful
in practice as asymptotic linearity and efficiency of semiparametric estimators often relies on esti-
mating nuisance parameter at L2 norm rate oP (n−1/4).
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It is relatively straightforward extend the results of this chapter in several directions: firstly
giving high probability bounds instead of rates of convergence in probability, extending the results
to other common losses such as the hinge loss or the negative likelihood loss, studying the effect
of margin bounds. These are direct consequences of classical statistical learning theory results
on empirical risk minimization (see e.g Bartlett et al. [2006]). Another further extension of the
present work is to give guarantees for the cross-validated selection of the sectional variation norm
via the Super Learner. We do several of these extensions in subsequent chapters. In particular, we
provide high probability bounds under various losses for different types of non independent data
in chapters 5 and 7.
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Mark J. van der Laan. A generally efficient tmle. The International Journal of Biostatistics, 2016.

Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes. Springer,
1996.



78

3.A Proof of the bracketing entropy bound (proposition 3.2)
The proof of proposition 3.2 relies on the representation of càdlàg functions with bounded sectional
variation norm and on the the three results below. For all d ≥ 1, M > 0, denote

Fd,M = {f ∈ D([0, 1]d) : ‖f‖v ≤M}.

The first result characterizes the bracketing entropy of the set of d-dimensional cumulative
distribution functions.

Lemma 3.1 (Theorem 1.1 in Gao [2013]). Let Gd be the set of probability distributions on [0, 1]d.
For 1 ≤ r <∞ and d ≥ 2,

logN[](ε,Gd, ‖ · ‖µ,r) ≤ C ′(d, r)ε−1| log ε|2(d−1)

for some constant C ′(d, r) that only depends on d and r, and where µ is the Lebesgue measure on
[0, 1]d.

As an immediate corollary, the following result holds for bracketing numbers w.r.t. ‖ · ‖P0,2.

Corollary 3.3. Let 1 ≤ r <∞. Suppose there exists a constant c(r) such that ‖·‖P0,r ≤ c(r)‖·‖µ,r.
Then,

logN[](ε,Gd, ‖ · ‖P0,r) ≤ C̃(d, r)ε−1| log ε|2(d−1)

for some constant C̃(r, d) that only depends on r and d.

The next lemma will be useful to bound the bracketing entropy integral.

Lemma 3.2. For any d ≥ 0 and any 0 < δ ≤ 1, we have that∫ δ

0

ε−1/2(log(1/ε))d−1dε . δ1/2(log(1/δ))d−1.

Proof. The result is readily obtained by integration by parts.

We can now present the proof of proposition 3.2.

Proof. We will first upper bound the (ε, ‖ · ‖P0,r)-bracketing number for Fd,1. An upper bound on
the (ε, ‖ · ‖P0,r)-bracketing number for Fd,M will then be obtained at the end of the proof by means
of change of variable. Recall that any function in Fd,1 can be written as

f =
∑
s⊆[d]

αs,1gs,1 − αs,2gs,2,

with g∅,1 = g∅,2 = 1, and for all ∅ 6= s ⊆ [d], gs,1, gs,2 ∈ Gs, and α = (αs,i : s ⊆ [d], i = 1, 2) ∈
∆2d+1 , where ∆2d+1 is the 2d+1-standard simplex.
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Let ε > 0. Denote N(ε/2d+1,∆2d+1
, ‖ ·‖∞) the (ε/2d+1, ‖ ·‖∞)-covering number of ∆2d+1 . Let

{α(j) : j = 1, ..., N(ε/2d+1,∆2d+1

, ‖ · ‖∞)}

be an (ε/2d+1, ‖ ·‖∞)-covering of ∆2d+1 . For all s ⊆ [d], denote N[](ε,Gs, ‖ ·‖P0,r) the (ε, ‖ ·‖P0,r)-
bracketing number of Gs, and let

{(l(j)s , u(j)
s ) : j = 1, ..., N[](ε,Gs, ‖ · ‖P0,r)}

be an (ε, ‖ · ‖P,r)-bracketing of Gs.

Step 1: Construction of a bracket forFd,1. We now construct a bracket for f from the cover for
∆2d+1 and the bracketings for Gs, ∅ 6= s ⊆ [d], we just defined. By definition of an (ε/2d+1, ‖ ·‖∞)-
cover, there exists j0 ∈ {1, ..., N(ε/2d+1,∆2d+1

, ‖ · ‖P0,r)} such that ‖α − α(j0)‖∞ ≤ ε/2d+1.
Consider s ⊆ [d], i ∈ {1, 2}. By definition of an (ε, ‖·‖P0,r)-bracket exists js,i ∈ {1, ..., N[](ε,Gs, ‖·
‖P,r) such that

l(js,i)s ≤ gs,i ≤ u(js,i)
s .

This and the fact that

α
(j0)
s,i − ε/2d+1 ≤ αs,i ≤ α

(j0)
s,i + ε/2d+1,

will allow us to construct a bracket for αs,igs,i. Some care has to be taken due to the fact ljs,is can
be negative (as bracketing functions do not necessarily belong to the class they bracket). Observe
that, since αs,i ≥ 0, we have

αs,il
(js,i)
s ≤ αs,igs,i ≤ αs,iu

(js,i)
s .

Denoting (l
(js,i)
s )+ and (l

(js,i)
s )− the positive and negative part of l(js,i)s , we have that

(α
(j0)
s,i − ε/2d+1)(l(js,i)s )+ ≤ αs,il

+
s

and − (α
(j0)
s,i + ε/2d+1)(l(js,i)s )− ≤ −αs,il−s .

Therefore,

α
(j0)
s,i l

(js,i)
s − ε/2d+1|l(js,i)s | ≤ αs,il

(js,i)
s .

Since u(js,i)
s,i ≥ 0 (at it is above at least one cumulative distribution function from Gs), and α(j0)

s,i +

ε/2d+1 ≥ αs,i, we have that

αs,igs,i ≤ (α
(j0)
s,i + ε/2d+1)u(js,i)

s .

Therefore, we have shown that

α
(j0)
s,i l

(js,i)
s − ε/2d+1|l(js,i)s | ≤ αs,igs,i ≤ (α

(j0)
s,i + ε/2d+1)u(js,i)

s .
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Summing over s ⊂ {1, ..., d} and i = 1, 2, we have that

Λ1 − Γ2 ≤ f ≤ Γ1 − Λ2,

where, for i = 1, 2,

Λi =
∑
s⊆[d]

α
(j0)
s,i l

js,i
s − ε/2d+1|ljs,is |,

and Γi =
∑
s⊆[d]

(α
(j0)
s,i + ε/2d+1)ujs,is .

Step 2: Bounding the size of the brackets. For i = 1, 2,

0 ≤ Γi − Λi =
∑
s⊆[d]

α
(j0)
s,i (ujs,is − ljs,is ) + ε/2d+1(ujs,is + |ljs,is |).

Since, for every s ⊆ [d], i = 1, 2 u
js,i
s and ljs,is are at most ε-away in ‖·‖P,r norm from a cumulative

distribution function, we have that ‖ujs,is ‖P,r ≤ 1 + ε and ‖ljs,is ‖P,r ≤ 1 + ε. By definition, for all
s ⊆ [d], i = 1, 2, ‖ujs,is − ljs,is ‖P,r ≤ ε. Therefore, from the triangle inequality,

‖Γi − Λi‖P,r ≤ ε
∑
s∈⊆[d]

αs,i + ε(1 + ε).

Therefore, using the triangle inequality one more time,

‖Γ1 − Λ2 − (Λ1 − Γ2)‖P,r ≤ ε
∑
s⊆[d]

αs,1 + αs,2 + 2ε(1 + ε)

≤ 3ε+ 2ε2.

Since cumulative distribution functions have range [0, 1], brackets never need to be of size larger
than 1. Therefore, without loss of generality, we can assume that ε ≤ 1. Therefore, pursuing the
above display, we get

|Γ1 − Λ2 − (Λ1 − Γ2)‖P,r ≤ 5ε.

Step 3: Counting the brackets. Consider the set of brackets of the form (Γ1 − Λ2,Λ1 − Γ2),
where, for i = 1, 2,

Λi =
∑
s⊆[d]

α
(j0)
s,i l

js,i
s − ε/2d+1|ljs,is |,

and Γi =
∑
s⊆[d]

(α
(j0)
s,i + ε/2d+1)ujs,is ,
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where j0 ∈ {1, ..., N(ε/2d+1),∆2d+1
, ‖ · ‖∞)} and for any s, i js,i ∈ {1, ..., N[](ε,Gs, ‖ · ‖P0,r)}.

From step 1 and step 2, we know that this set of brackets is a (5ε, ‖ · ‖P0,r)-bracketing of F1. Its
cardinality is no larger than the cardinality of its index set. Therefore

N[](5ε,F1, ‖ · ‖P,r) ≤ N(ε/2d+1,∆2d+1

, ‖ · ‖∞)
∏
s⊆[d]

N[](ε,Gs, ‖ · ‖P0,r)
2.

The covering number of the simplex can be bounded (crudely) as follows:

N(ε/2d+1,∆2d+1

, ‖ · ‖∞) ≤
(

2d+1

ε

)d
therefore

logN(ε/2d+1,∆2d+1

, ‖ · ‖∞) ≤ d log(1/ε) + d(d+ 1) log 2.

From corollary 3.3,

logN[](ε,Gs, ‖ · ‖P0,r) ≤ C(r, d)ε−1| log ε|2(d−1).

Therefore,

logN[](5ε,F1, ‖ · ‖P0,r) ≤ C̃(r, d)2d+2ε−1| log ε|2(d−1) + d log(1/ε) + d(d+ 1) log 2

. C̃(r, d)2d+2ε−1| log ε|2(d−1).

Therefore, doing a change of variable, (and for a different constant absorbed in the . symbol),

logN[](ε,FM , ‖ · ‖P0,r) . C̃(r, d)2d+2Mε−1| log(ε/M)|2(d−1).

The wished claims hold for C(r, d) = 2d+2C̃(r, d).

3.B Proofs of theorem 3.1 and preliminary results

3.B.1 Overview and preliminary lemmas

The proof of the theorem relies on theorem 3.4.1 in van der Vaart and Wellner [1996], which gives
an upper bound on the rate of convergence of the estimator in terms of the “modulus of continuity”
of an empirical process indexed by a difference in loss functions. We bound this “modulus of
continuity” by using a maximal inequality for this empirical process. This maximal inequality is
expressed in terms of the bracketing entropy integrals of the class of functionLn = {L(θ)−L(θ)n :
θ ∈ Θn}. We link the bracketing entropy of Ln to the one of Θn through lemma 3.4.

We first restate here the theorem 3.4.1. in van der Vaart and Wellner [1996].
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Theorem 3.3 (Theorem 3.4.1 in van der Vaart and Wellner [1996]). For each n, let Mn and Mn

be stochastic processes indexed by a set Θ. Let θn ∈ Θ (possibly random) and 0 ≤ δn ≤ η be
arbitrary, and let θ 7→ dn(θ, θn) be an arbitrary map (possibly random) from Θ to [0,∞). Suppose
that, for every n and δn ≤ δ ≤ η,

sup
θ∈Θn

δ/2≤dn(θ,θn)≤δ

Mn(θ)−Mn(θn) ≤ −δ2,

E∗ sup
θ∈Θn

δ/2≤dn(θ,θn)≤δ

√
n[(Mn −Mn)(θ)− (Mn −Mn)(θn)]+ . φn(δ),

for functions φn such that δ 7→ φn(δ)/δα is decreasing on (δn, η) for some α < 2. Let rn . δ−1
n

satisfy

r2
nφn

(
1

rn

)
≤
√
n, for every n.

If the sequence θ̂n takes its values in Θn and satisfies

Mn(θ̂n) ≥Mn(θn)−OP (r−2
n )

and dn(θ, θn) converges to zero in outer probability, then rndn(θ̂n, θn) = O∗P (1). If the displayed
conditions are valid for η =∞, then the condition that θn is consistent is unnecessary.

The quantity φn(δ) is the so-called “modulus of continuity” of the centered process
√
n(Mn −

Mn) over Θn = Fn. Theorem 3.3 essentially teaches us that the rate of the modulus of continuity
gives us the (an upper bound on) the rate of convergence of the estimator.

We now restate the maximal inequality that we will use to bound the modulus of continuity.

Lemma 3.3 (Lemma 3.4.2 in van der Vaart and Wellner [1996]). Let F be a class of measurable
functions such that Pf 2 < δ2 and ‖f‖∞ ≤M for every f ∈ F . Then

E∗P sup
f∈F

√
n|(Pn − P )f | . J[](δ,F , L2(P ))

(
1 +

J[](δ,F , L2(P ))

δ2
√
n

M

)
.

Application of the above maximal inequality is what will allow us to bound the “modulus of
continuity”. The following lemma will be useful to upper bound the entropy integral of Ln =
{L(θ)− L(θn) : θ ∈ Θn} in terms of the entropy integral of Θn.

Lemma 3.4. Let F : R×W → R a mapping such that, for any w ∈ W , there exists aw ∈ R such
that a 7→ F (a, w) is

• non-increasing on (−∞, aw],

• non-decreasing on [aw,∞),
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• M -Lipschitz for some M that does not depend on w.

Let A a set of real-valued functions defined on a set V . Let

B = {(v, w) ∈ V ×W 7→ F (a(v), w) : a ∈ A}.

Let r ≥ 1, and let P a probability distribution over V ×W . Then, for any δ > 0,

N[](δ,B, ‖ · ‖P0,r) ≤ N[](δ/M,A, ‖ · ‖P0,r),

and

J[](δ,B, ‖ · ‖P0,r) ≤MJ[](δ/M,A, ‖ · ‖P0,r).

(Note that the above quantities might not be finite.)

We defer the proof of this lemma to subsection 3.B.3. The following lemma shows that the
variation norm dominates the supremum norm.

Lemma 3.5. For all f ∈ D([0, 1]d),

‖f‖∞ ≤ ‖f‖v.

3.B.2 Proof of theorem 3.1
We now present the proof of theorem 3.1.

Proof of theorem 3.1. The proof essentially consists of checking the assumptions of theorem 3.3
for a certain choice of Mn, Mn, dn and rn. Specifically, we set, for every θ ∈ Θn, and every n,

Mn(θ) = −PnL(θ),

Mn(θ) = −P0L(θ),

θn = arg min
θ∈Θn

P0L(θ),

d2
n(θ, θn) = P0L(θ)− P0L(θn),

rn = C(r, d)−1/3a−1
n n1/3(log n)−2(d−1)/3.

Further set η =∞ and δn = 0. From now, we proceed in three steps.

Step 1: Checking condition 3.3. By definition of Mn and by definition of the loss-based dis-
similarity, we directly have, for every θ ∈ Θn,

Mn(θ)−Mn(θn) = −P0(L(θ)− L(θn)) = −d2
n(θ, θn).

Therefore, condition 3.3 holds.
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Step 2: Bounding the modulus of continuity. We want to bound

EP0 sup
θ∈Θn

dn(θ,θn)≤δ

|(Mn −Mn)(θ)− (Mn −Mn)(θn)|

= EP0 sup
θ∈Θn

dn(θ,θn)≤δ

|(Pn − P0)(L(θ)− L(θn))|

= EP0 sup
g∈Gn(δ)

|(Pn − P0)g|, (3.1)

where

Gn(δ) = {L(θ)− L(θn) : θ ∈ Θn, dn(θ, θn) ≤ δ}.

We now further characterize the set Gn(δ). From assumption 3.3, for all θ ∈ Θn, ‖L(θ) −
L(θn)‖P0,2 ≤ andn(θ, θn). Therefore, denoting Ln = {L(θ) − L(θn) : θ ∈ Θn} and Ln(δ) =
{g ∈ L : ‖g‖P0,2 ≤ δ}, we have that Gn(δ) ⊆ Ln(anδ). We now turn to bounding in supremum
norm the class Ln. From assumption 3.2, for all θ ∈ Θn, ‖L(θ)−L(θn)‖∞ ≤ an‖θ− θn‖∞. From
the definition of Θn and lemma 3.5, we have that, for all θ ∈ Θn, ‖θ− θn‖∞ ≤ 2an, which implies
that ‖L(θ)−L(θn)‖∞ ≤ 2a2

n. Therefore, from (3.1) and the maximal inequality of lemma 3.3, we
have

EP0 sup
θ∈Θn

dn(θ,θn)≤δ

|(Mn −Mn)(θ)− (Mn −Mn)(θn)|

≤ EP0 sup
g∈Ln(anδ)

|(Pn − P0)g|

≤ φn(δ)√
n
,

with

φn(δ) ≡J[](anδ,Ln, ‖ · ‖P0,2)

(
1 +

J[](anδ,Ln, ‖ · ‖P0,2)

(anδ)2
√
n

2a2
n

)
.

Step 3: Checking the rate condition r2
nφn(1/rn) ≤

√
n. From lemma 3.4, and then from

proposition 3.2,

J[](anδ,Ln, ‖ · ‖P0,2) .anJ[](δ,Θn, L2(P0))

.anC(r, d)1/2a1/2
n δ1/2(log(an/δ))

d−1

.C(r, d)1/2a3/2
n δ1/2(log(an/δ))

d−1.

Recall that we set

rn = C(r, d)−1/3a−1
n n1/3(log n)−2(d−1)/3.
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Since we supposed that an = O(np) for some p > 0, we have that log(anrn) . log n. Therefore,

r2
nφn(1/rn)

.r2
nC(r, d)1/2a3/2

n r−1/2
n (log(anrn))d−1

(
1 +

C(r, d)1/2a
3/2
n r

−1/2
n (log(anrn))d−1

(an/rn)2
√
n

2a2
n

)

.C(r, d)1/2a3/2
n r3/2

n (log n)d−1

(
1 + 2

C(r, d)1/2a
3/2
n r

3/2
n (log n)d−1

√
n

)
.3
√
n.

3.B.3 Proof of technical lemmas 3.4 and 3.5
Proof of lemma 3.4. Let [l, u] an (ε, ‖ · ‖P,r)-bracket for A and let a ∈ A such that a ∈ [l, u].
Define, for all (v, w) ∈ V ×W ,

Λ(v, w) =

{
F (aw, w) if l(v) ≤ aw ≤ u(v),

F (l(v), w) ∧ F (u(v), w) otherwise,

and

Γ(v, w) = F (l(v), w) ∨ F (u(v), w).

We claim that (Λ,Γ) is an (Mε, ‖ · ‖P,r)-bracket for (u, v) 7→ F (a(v), w). We distinguish three
cases. Let (u, v) ∈ V ×W .

Case 1. Suppose that l(v) ≤ aw ≤ u(v). Then since a 7→ F (a, w) reaches its minimum in aw,
we have that Λ(v, w) = F (aw, w) ≤ F (a(v), w). If a(v) ∈ [aw, u(v)], then, as a 7→ F (a, w) is
non-decreasing on [aw,∞), we have that F (a(v), w) ≤ F (u(v), w). If a(v) ∈ [l(v), aw], then,
as a 7→ F (a, w) is non-increasing on (−∞, aw], F (a(v), w) ≤ F (l(v), w). Thus F (a(v), w) ≤
F (l(v), w) ∨ F (u(v), w) = Γ(v, w).

Observe that, under [aw ∈ [l(v), u(v)], we have that |l(v)−aw| ≤ |u(v)−l(v)| and |u(v)−aw| ≤
|u(v)− l(v)|. Therefore, if Γ(v, w) = F (u(v), w),

|Γ(v, w)− Λ(v, w)| = |F (u(v), w)− F (aw, w)| ≤M |u(v)− aw| ≤M |u(v)− l(v)|.

Case 2. Suppose that aw ≤ l(v) ≤ u(v). Then, as a 7→ F (a, v) is non-decreasing on [aw,∞),

Λ(u, v) = F (l(v), w) ≤ F (a(v), w) ≤ F (u(v), w) = Γ(u, v),

and |Γ(u, v)− Λ(u, v)| ≤M |u(v)− l(v)|.
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Case 3. Suppose that l(v) ≤ u(v) ≤ aw. Then, as a 7→ F (a, v) is non-increasing on (−∞, aw],

Λ(u, v) = F (u(v), w) ≤ F (a(v), w) ≤ F (l(v), w) = Γ(u, v),

and |Γ(u, v)− Λ(u, v)| ≤M |u(v)− l(v)|.
We have thus shown that, for all (v, w) ∈ V ×W ,

Λ(v, w) ≤ F (a(v), w) ≤ Γ(v, w),

and

Γ(v, w)− Λ(v, w)| ≤M |u(v)− l(v)|.

By integration of the above display, we have that

‖Γ− Λ‖P,r ≤M‖u− l‖P,r.

Therefore, we have shown that an (ε, ‖ · ‖P,r)-bracket for A induces an (Mε, ‖ · ‖P,r)-bracket for
B. Therefore, for all ε > 0,

N[](ε,B, ‖ · ‖P,r) ≤ N[](ε/M,A, ‖ · ‖P,r),

and, for all δ > 0,

J[](δ,B, ‖ · ‖P,r) ≤
∫ δ

0

√
logN[](ε/M,A, ‖ · ‖P,r)dε

≤M

∫ δ/M

0

√
logN[](ζ,A, ‖ · ‖P,r)dζ

= MJ[](δ/M,A, ‖ · ‖P,r).

Proof of lemma 3.5. Let x ∈ [0, 1]d. From the representation formula in proposition 3.1,

f(x) = f(0) +
∑
∅6=s⊆[d]

∫
[0s,xs]

f(dxs).

Therefore,

|f(x)| ≤ |f(0)|+
∑
∅6=s⊆[d]

∫
[0s,xs]

|f(dxs)|

≤ |f(0)|+
∑
∅6=s⊆[d]

∫
[0s,1s]

|f(dxs)|

= ‖f‖v.

By taking the sup with respect to x, we obtain the wished result.
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3.C Proof of propositions of section 3.4

3.C.1 Proof of results on least-squares with bounded dependent variable
Proof of proposition 3.3. Let y ∈ [−ãn, ãn]. It is clear that u 7→ L̃(u, y) = (y − u)2 is non-
increasing on (−∞, y] and non-decreasing on [y,∞).

We now turn to showing the Lipschitz property claim. Observe that

Un ≡ {θ(x) : θ ∈ Θn, x ∈ [0, 1]d} ⊆ [−ãn, ãn].

Let u1, u2 ∈ Un. We have that

|L̃(u1, y)− L̃(u2, y)| =|(y − u2)2 − (y − u1)2|
=|2y − u1 − u2||u2 − u1|
≤4ãn|u2 − u1|,

which is the wished claim.

The proof of proposition 3.4 requires the following lemma.

Lemma 3.6. Consider Θn, θn, θ0, and dn as defined in subsection 3.4.1. Then, for all θ ∈ Θ,

d2
n(θ, θn) = ‖θ − θ0‖2

P0,2
− ‖θ − θn‖2

P0,2
≥ ‖θ − θ0‖2

P0,2
.

Proof. It is straighforward to check that Θn is a closed convex set. Denote, for all θ1, θ2, 〈θ1, θ2〉 =
EP0 [θ1(X)θ2(X)]. Observe that, for all θ ∈ Θn, ‖θ‖2

P0,2
〈θ, θ〉. Let θ ∈ Θn. We have that

d2
n(θ, θn) =EP0 [(Y − θ(X))2]− EP0 [(Y − θn(X))2]

=EP0 [(Y − θ0(X))2] + EP0 [(θ0(X)− θ(X))2]

−
{
EP0 [(Y − θ0(X))2] + EP0 [(θ0(X)− θn(X))2]

}
=‖θ − θ0‖2

P0,2
− ‖θn − θ0‖2

P0,2
.

Therefore,

d2
n(θ, θn)− ‖θ − θn‖2

P0,2
=‖(θ − θn) + (θ − θn)‖2

P0,2
− ‖θn − θ0‖2

P0,2
− ‖θ − θ0‖2

P0,2

=− 2〈θ − θn, θ0 − θn〉
≥0.

The last line follows from the fact that θ ∈ Θn and that θn is the projection for the ‖ · ‖P0,2 of θ0

onto the closed convex set Θn.

We can now state the proof of proposition 3.4.

Proof of proposition 3.4. From proposition 3.3, for all o = (x, y) ∈ [0, 1]d× [−ãn, ãn], |L(θ)(o)−
L(θ)(o)| ≤ |θ(x)− θn(x)|. Therefore, by integration

‖L(θ)− L(θn)‖P0,2 ≤4ãn‖θ − θn‖P0,2

≤4ãndn(θ, θn),

where the last line follows from lemma 3.6.
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3.C.2 Proofs of the results on logistic regression
Proof of proposition 3.5. Let y ∈ {0, 1}. It is clear that u 7→ L̃(u, y) is non-increasing on R if
y = 1 and non-decreasing on R if y = 0. Let’s now turn to the Lipschitz property claim. For all
u ∈ R,

∂L̃

∂u
(u, y) =

1

1 + e−u
− y.

Therefore, for all u ∈ R, y ∈ {0, 1}, ∣∣∣∣∂L̃∂u (u, y)

∣∣∣∣ ≤ 1,

which implies that L̃ is 1-Lipschitz in its first argument.

Proof of proposition 3.6. For all x, denote η0(x) = EP0 [Y |X = x] = (1 + exp(−θ0(x))−1, and
ηn(x) = (1 + exp(−θn(x))−1. For all p ∈ [0, 1], q ∈ R, denote

fp(q) = p log(1 + e−q) + (1− p) log(1 + e−q).

Observe that, for all θ,

P0L(θ) = EP0 [fη0(X)(θ(X))]. (3.2)

For all p ∈ [0, 1], q ∈ R, we have that

f ′p(q) =
1

1 + e−q
− p,

and f ′′p (q) =
1

1 + e−q
×
(

1− 1

1 + e−q

)
≥1

2
×min

(
1

1 + e−q
,

1

1 + eq

)
.

Therefore, for p ∈ [0, 1] and q ∈ [ãn, ãn], we have that f ′′p (q) ≥ 2−1(1 + eãn)−1. From the above
display, we have that, for all x ∈ [0, 1]d,

fη0(x)(θ(x)− fη0(x)(θn(x)) ≥f ′η0(x)(θn(x))(θ(x)− θn(x)) +
1

4(1 + eãn)
(θ(x)− θn(x))2

=(ηn(x)− η0(x))(θ(x)− θn(x)) +
1

4(1 + eãn)
(θ(x)− θn(x))2.

Therefore, for any θ ∈ Θn, using (3.2),

d2
n(θ, θn) =P0L(θ)− P0L(θn)

≥EP0 [(ηn(X)− η0(X))(θ(X)− θn(X))] +
1

4(1 + eãn)
‖θ − θn‖2

P0,2
. (3.3)
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Let θ ∈ Θn. For all t, define θ̃(t) = θn+ t(θ−θn) and g(t) = P0L(θ̃(t)). Since θn and θ are in Θn

and that Θn is convex, for all t ∈ [0, 1], θ̃(t) ∈ Θn. Therefore, by definition of θn, for all t ∈ [0, 1],
g(t) ≥ g(0). Thus, by taking the limit of (g(t) − g(0))/t as t ↓ 0, we obtain that g′(0) ≥ 0. We
now calculate g′(0):

g′(0) =
d

dt

{
EP0

[
η0(X) log(1 + e−(θn(X)+t(θ(X)−θn(X))

+ (1− η0(X)) log(1 + eθn(X)+t(θ(X)−θn(X)))
]}∣∣∣∣

t=0

=EP0

[
− η0(X)

e−θn(X)

1 + e−θn(X)
(θ(X)− θn(X))

+ (1− η0(X))
eθn(X)

1 + eθn(X)
(θ(X)− θn(X))

]
=EP0 [{−η0(X)(1− ηn(X)) + (1− η0(X))ηn(X)}(θ(X)− θn(X))]

=EP0 [(ηn(X)− η0(X))(θ(X)− θn(X)],

which is equal to the first term in the right-hand side of (3.3). Therefore, as g′(0) ≥ 0,

d2
n(θ, θn) ≥ 1

4(1 + eãn)
‖θ − θn‖2

P0,2
.

From proposition3.5, for all o = (x, y) ∈ [0, 1]d × {0, 1}, |L(θ)(o)− L(θn)(o)| ≤ |θ(x)− θn(x)|,
therefore, by integration,

‖L(θ)− L(θn)‖P0,2 ≤ ‖θ − θn‖P0,2 ≤ 2(1 + eãn)−1/2dn(θ, θn).

3.D Proof of the rate theorem for least-squares regression with
sub-exponential errors

We first give an informal overview of the proof. We will proceed very similarly as in the case
of the proof of the rate theorem under bounded losses, that is we will first identify Mn, Mn, dn
that satisfy the hypothesis of theorem 3.3, and then we will bound the modulus of continuity of
Mn −Mn.

Observe that

θ̂n = arg min
θ∈Θn

1

n

n∑
i=1

(Yi − θ(Xi))
2

= arg min
θ∈Θn

1

n

n∑
i=1

(θ0(Xi)− θ(Xi) + ei)
2
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= arg max
θ∈Θn

1

n

n∑
i=1

2(θ(Xi)− θ0(Xi))ei − (θ(Xi)− θ0(Xi))
2.

This motivates setting

Mn(θ) =
1

n

n∑
i=1

2(θ − θ0)(Xi)ei − (θ − θ0)(Xi),

and, since EP0 [(θ − θ0)(Xi)ei] = 0,

Mn(θ) = −P0(θ − θ0)2,

and introducing the loss-based dissimilarity dn, defined, for all θ ∈ Θn, by

d2
n(θ, θn) = −(Mn(θ)−Mn(θn))2.

The main effort will then be to upper bound, for any δ > 0, the quantity

EP0 sup
θ∈Θn

dn(θ,θn)≤δ

|(Mn −Mn)(θ)− (Mn −Mn)(θn)|.

The proof relies on the following lemmas, whose proofs we defer to subsection 3.D.1.

Lemma 3.7. For all θ ∈ Θn,

‖θ − θn‖P0,2 ≤ dn(θ, θn).

For any θ ∈ Θn, we introduce the functions g1,n(θ) and g2,n(θ), where, for all (x, e)

g1,n(θ)(x, e) = (θ(x)− θn(x))e,

and

g2,n(θ) = (θ − θn)(2θ − θn − θ0).

We will consider the following two sets:

G1,n = {g1,n(θ) : θ ∈ Θn}
G2,n = {g2,n(θ) : θ ∈ Θn}.

We will use the following version of the so-called Bernstein norm, defined for any t > 0 and for
any function g : (x, e) 7→ g(x, e) as

‖g‖2
P0,B,t

= t−2Pφ(tg),

where φ(x) = ex − x − 1. As for all i, ei is sub-exponential with parameters (α, ν), |ei| is
sub-exponential with parameters (α′(α, ν), ν ′(α, ν)). We will shorten notations by denoting α′ =
α′(α, ν) and ν ′ = ν ′(α, ν). The following lemma characterizes the Bernstein norm of a certain
type of functions.
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Lemma 3.8. Let f : X → R such that ‖f‖∞ ≤ M . Suppose that M ≥ 1. Consider g1 : (x, e) 7→
f(x)e. Then, setting t = (αM)−1, we have

‖g1‖P0,B,t ≤ ‖f‖P0,2αMeν
2/(4α2).

Similarly, now consider g2 : (x, e) 7→ f(x)|e|. Setting t = (α′M)−1, we have

‖g2‖P0,B,t ≤ ‖f‖P0,2α
′Meν

′2/(4α′2).

This has the following immediate corollary for g1,n. In this following result as well as in the
rest of this section, we will denote tn = (2aα

′)−1.

Corollary 3.4. We have that for all θ ∈ Θn,

‖g1,n(θ)‖P0,B,tn ≤ Cn‖θ − θn‖P0,2,

where Cn = C̃(α, ν)an, with C̃(α, ν) = 2α′(α, ν)eν
′(α,ν)2/(4α′(α,ν)2).

The upcoming lemma relates the bracketing numbers in ‖ · ‖P0,B,tn norm of G1,n to the brack-
eting numbers of Θn in ‖ · ‖P0,2 norm.

Lemma 3.9. For any ε > 0,

N[](ε,G1,n, ‖ · ‖P0,B,tn) ≤ N[](C
−1
n ε,Θn, ‖ · ‖P0,2),

and the bracketing entropy integral of G1,n satisfies, for all δ > 0,

J[](δ,G1,n, ‖ · ‖P0,B,tn) ≤ CnJ[](C
−1
n δ,Θn, ‖ · ‖P0,2).

The upcoming lemma relates characterizes the ‖ · ‖P0,2 and the ‖ · ‖∞ norm of g2,n and the
bracketing numbers in ‖ · ‖P0,2 norm of G2,n.

Lemma 3.10. Consider g2,n defined above. For every θ ∈ Θn,

‖g2,n(θ)‖P0,2 ≤ (‖θ0‖∞ + 3an)‖θ − θn‖P0,2

‖g2,n(θ)‖∞ ≤ 2an(‖θ0‖∞ + 3an),

and, for all ε > 0,

N[](ε,G2,n, ‖ · ‖P0,2) ≤ N[]((‖θ0‖∞ + 3an)−1ε,Θn, ‖ · ‖P0,2),

and, for all δ > 0,

J[](δ,G2,n, ‖ · ‖P0,2) ≤ (‖θ0‖∞ + 3an)J[]((‖θ0‖−1
∞ + 3an)−1δ,Θn, ‖ · ‖P0,2).

In addition to lemma 3.3 (lemma 3.4.2 from van der Vaart and Wellner [1996]), we will use the
maximal inequality of lemma 3.4.3 from van der Vaart and Wellner [1996], which we restate here.

Lemma 3.11 (Lemma 3.4.3 in van der Vaart and Wellner [1996]). Let F be a class of measurable
functions such that ‖f‖P,B ≤ δ for every f ∈ F . Then

E∗P sup
f∈F
|
√
n(Pn − P0)f | ≤ J[](δ,F , ‖ · ‖P,B)

(
1 +

J[](δ,F , ‖ · ‖P,B)

δ2
√
n

)
.

We can now present the proof of theorem 3.2.

Proof. We will oragnize the proof in three steps
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Step 1: Checking that Mn, Mn, and dn satisfy the conditions of theorem 3.3.

• By definition of dn, for all θ ∈ Θn, Mn(θ)−Mn(θn) = −d2
n(θ, θn), therefore condition 3.3

is satisfied.

• By definition of θ̂n, Mn(θ̂n) ≥Mn(θn)−OP (r−2
n ).

We will apply the theorem with η =∞.

Step 2: Bounding the modulus of continuity. We have that

EP0 sup
θ∈Θn

dn(θ,θn)≤δ

|(Mn −Mn)(θ)− (Mn −Mn)(θn)|

=EP0 sup
θ∈Θn

dn(θ,θn)≤δ

∣∣∣∣ 2n
n∑
i=1

(θ(Xi)− θn(Xi))ei + (Pn − P0)((θ − θ0)2 − (θn − θ0)2)

∣∣∣∣
=2EP0 sup

θ∈Θn
dn(θ,θn)≤δ

|(Pn − P0)g1,n(θ)|+ EP0 sup
θ∈Θn

dn(θ,θn)≤δ

|(Pn − P0)g2,n(θ)|,

with g1,n and g2,n as defined above. From lemma 3.7, for any θ ∈ Θn, ‖θ− θn‖P0,2 ≤ d(θ, θn), and
from corollary 3.4 and lemma 3.10, that ‖θ − θn‖P0,2 ≤ δ implies that ‖g1,n(θ)‖P0,B,tn ≤ Cnδ and
(‖θ0‖∞ + 3an)δ. Therefore, the right-hand side of the above display is upper-bounded by

2EP0 sup
g∈G1,n

‖g‖P0,B,tn≤Cnδ

|(Pn − P0)g|+ EP0 sup
g∈G2,n

‖g‖P0,2≤(‖θ0‖P0,2+3an)δ

|(Pn − P0)g|,

where G1,n and G2,n are as defined above.
From lemma 3.3 and lemma 3.11, we can bound the above display by

J[](Cnδ,G1,n, ‖ · ‖P,B,tn)

(
1 +

J[](Cnδ,G1,n, ‖ · ‖P,B,tn)

C2
nδ

2
√
n

)
+ J[]((‖θ0‖∞ + 3an)δ,G2,n, ‖ · ‖P0,2)

×
(

1 +
J[]((‖θ0‖∞ + 3an)δ,G2,n, ‖ · ‖P0,2)2an(‖θ0‖∞ + 3an)

(‖θ0‖∞ + 3an)2δ2
√
n

)
≤(J[](Cnδ,G1,n, ‖ · ‖P,B,tn) + J[]((‖θ0‖∞ + 3an)δ,G2,n, ‖ · ‖P0,2))

×
(

1 +
J[](Cnδ,G1,n, ‖ · ‖P,B,tn)

C2
nδ

2
√
n

+
J[]((‖θ0‖∞ + 3an)δ,G2,n, ‖ · ‖P0,2)2an(‖θ0‖∞ + 3an)

(‖θ0‖∞ + 3an)2δ2
√
n

)
.

(3.4)

From lemma 3.9,

J[](Cnδ,G1,n, ‖ · ‖P,B,tn) ≤ CnJ[](δ,Θn, ‖ · ‖P0,2).
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Therefore,

J[](Cnδ,G1,n, ‖ · ‖P,B,tn)

C2
nδ

2
√
n

≤ C−1
n

J[](δ,Θn, ‖ · ‖P0,2)

δ2
√
n

.

From lemma 3.10,

J[]((‖θ0‖∞ + 3an)δ,G2,n, ‖ · ‖P0,2) ≤ (‖θ0‖P0,2 + 3an)J[](δ,Θn, ‖ · ‖P0,2).

Therefore,

J[]((‖θ0‖∞ + 3an)δ,G2,n, ‖ · ‖P0,2)2an(‖θ0‖∞ + 3an)

(‖θ0‖∞ + 3an)2δ2
√
n

≤ (‖θ0‖∞ + 3an)J[](δ,Θn, ‖ · ‖P0,2).

Therefore, we can bound (3.4) by

(Cn + 3an + ‖θ0‖∞)J[](δ,Θn, ‖ · ‖P0,2)

(
1 +

(C−1
n + 3an + ‖θ0‖∞)J[](δ,Θn, ‖ · ‖P0,2)

δ2
√
n

)
. φn(δ),

with

φn(δ) ≡((C̃(α, ν) + 3)an + ‖θ0‖∞)J[](δ,Θn, ‖ · ‖P0,2)

×
(

1 +
(C−1

n + 3an + ‖θ0‖∞)J[](δ,Θn, ‖ · ‖P0,2)

δ2
√
n

)
.

Step 3: Checking the rate condition. Recall that we set

rn = C(r, d)−1/3((C̃ + 3)an + ‖θ0‖∞)−1(log n)−2(d−1)/3n1/3.

Therefore,

r2
n((C̃ + 3)an + ‖θ0‖∞)J[](r

−1
n ,Θn, ‖ · ‖P0,2)

. r2
n((C̃ + 3)an + ‖θ0‖∞)C(r, d)1/2a1/2

n r−1/2
n (log(anrn))d−1

. r3/2
n ((C̃ + 3)an + ‖θ0‖∞)3/2C(r, d)1/2(log n)d−1

.
√
n,

where, we used in the third line above, that since an = O(np) for some p > 0, log(anrn) =
O(log n), and in the fourth line, we replaced rn with its expression. Therefore,

r2
nφ(1/rn) .

√
n,

which concludes the proof.
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3.D.1 Proofs of the technical lemmas
Proof of lemma 3.7. The proof follows easily from observing that Θn is convex and that θn is the
projection on Θn of θ0 for the ‖ · ‖P0,2 norm.

Proof of lemma 3.8. By definition of the Bernstein norm, and using the power series expansion of
φ, we have

‖g1‖2
P0,B,t

=t−2

∞∑
k=2

tk
P0(fkek)

k!

=t−2
∞∑
k=2

tk
P0(fk)P0e

k

k!

≤t−2‖f‖2
P0,2

∞∑
k=2

tkMk−2EP0 [e
k]

k!

≤t−2‖f‖2
P0,2

∞∑
k=2

tkMkEP0 [e
k]

k!

≤t−2‖f‖2
P0,2

EP0 [e
tMe]

≤t−2‖f‖2
P0,2

e
ν2

2α2 .

The second line in the above display follows from the fact that X and e are independent under P0.
The fourth line uses that M ≥ 1, which implies that Mk−2 ≤ Mk. The sixth line uses that e is
sub-exponential with parameters (α, ν). This proves the first claim.

The second claim follows by the exact same reasoning, by replacing e with |e| in the above

developments and using that for t = (α′M)−1, EP0 [e
tM |e|] ≤ e

ν′2
2α′2 .

Proof of lemma 3.9. . Let θ ∈ Θn Consider [l, u] an (ε, ‖ · ‖P0,2)-bracket for θ. By appropriately
thresholding l and u, we can ensure that l, u have values in [−an, an] while still preserving that
l ≤ θ ≤ u and ‖l − u‖P0,2 ≤ ε. For all x, e, we have that

Λ(x, e) ≤ (θ(x)− θn(x))e ≤ Γ(x, e),

where

Λ(x, e) = (l − θn)(x)e+ + (u− θn)(x)e−,

and

Γ(x, e) = (u− θn)(x)e+ + (l − θn)(x))e−.

For all x, e,

Γ(x, e)− Λ(x, e) = (u− l)(x)|e|.
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Set tn = (2anα
′). From lemma 3.8, ‖Γ− Λ‖P0,B,tn ≤ 2α′Meν

′(α,ν)2/(4α′(α,ν)2)ε.
We have just shown that an (ε, ‖·‖P0,2)-bracketing of Θn induces a (Cnε, ‖·‖P0,B,tn)-bracketing

of G1,n, which implies that

N[](ε,G1,n, ‖ · ‖P0,B,tn) ≤ N[](C
−1
n ε,Θn, ‖ · ‖P0,2).

Therefore, using the above bound on the bracketing number of G1,n, and doing a change of variable
in the integral, we obtain that

J[](δ,G1,n, ‖ · ‖P0,B,tn) =

∫ δ

0

√
logN[](ε,G1,n, ‖ · ‖P0,B,tn)dε

≤
∫ δ

0

√
logN[](C−1

n ε,Θn, ‖ · ‖P0,2)dε

≤Cn
∫ C−1

n δ

0

√
logN[](u,Θn, ‖ · ‖P0,2)du

≤CnJ[](C
−1
n δ,Θn, ‖ · ‖P0,2).

Proof of lemma 3.10. The first two claims are elementary.
We turn to the claim on the bracketing numbers. Let [l, u] be an (ε, ‖ · ‖P0,2)-bracketing of Θn.

Defining

Λ = u(2θ − θ0 − θn)+ − l(2θ − θ0 − θn)−

and Γ = l(2θ − θ0 − θn)+ − u(2θ − θ0 − θn)−,

we have that Λ ≤ (θ − θn)(2θ − θ0 − θn) ≤ Γ. Observe that

Γ− Λ = (u− l)|2θ − θ0 − θn|.

Therefore ‖Γ−Λ‖P0,2 ≤ ε(3an+‖θ0‖∞). This proves that an (ε, ‖·‖P0,2)-bracketing of Θn induces
an (ε(‖θ0‖∞+ 3an), ‖ · ‖P0,2)-bracketing of G2,n. From there, proceeding as in the proof of lemma
3.9 yields the claims on the bracketing number and the bracketing entropy integral.
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Chapter 4

Generalized Policy Elimination: an efficient
algorithm for Nonparametric Contextual
Bandits
AURÉLIEN BIBAUT, ANTOINE CHAMBAZ, MARK VAN DER LAAN
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In this chapter, we look into the problem of sequential decision making under the stochastic
contextual bandit setting presented in subsection 1.2.1. Consistently with our objective of avoiding
modelling assumptions not warranted by the available domain knowledge, we consider only non-
parametric policy classes. In this chapter, we make progress toward computationally efficient con-
textual bandit algorithms that achieve the minimax regret rate over nonparametric policy classes.

Specifically, we propose the Generalized Policy Elimination (GPE) algorithm, which is the
first to be regret optimal (up to logarithmic factors) for policy classes with integrable entropy,
while only making a polynomial (in time) number of calls to optimization oracles.

For classes with larger entropy, we show that the core techniques used to analyze GPE can be
used to design an ε-greedy algorithm with regret bound matching that of the best algorithms to
date.

At a technical level, the key enabler of our regret analysis is a novel maximal inequality for
importance sampling weighted martingale processes. On the computational side, we provide exam-
ples of nonparametric policy classes over which the relevant optimization oracles can be efficiently
implemented.

4.1 Introduction

In the contextual bandit (CB) feedback model, an agent (the learner) sequentially observes a vector
of covariates (the context), chooses an action among finitely many options, then receives a reward
associated to the context and the chosen action. A CB algorithm is a procedure carried out by the
learner, whose goal is to maximize the reward collected over time. Known as policies, functions
that map any context to an action or to a distribution over actions play a key role in the CB literature.
In particular, the performance of a CB algorithm is typically measured by the gap between the
collected reward and the reward that would have been collected had the best policy in a certain
class Π been exploited. This gap is the so-called regret against policy class Π. The class Π is
called the comparison class.

The CB framework applies naturally to settings such as online recommender systems, mobile
health and clinical trials, to name a few. Although the regret is defined relative to a given policy
class, the goal in most settings is arguably to maximize the (expected cumulative) reward in an
absolute sense. It is thus desirable to compete against large nonparametric policy classes, which
are more likely to contain a policy close to the best measurable policy.

The complexity of a nonparametric class of functions can be measured by its covering numbers.
The ε-covering number N(ε,F , Lr(P )) of a class F is the number of balls of radius ε > 0 in
Lr(P ) norm (r ≥ 1) needed to cover F . The ε-covering entropy is defined as logN(ε,F , Lr(P )).
Upper bounds on the covering entropy are well known for many classes of functions. For instance,
the ε-covering entropy of a p-dimensional parametric class is O(p log(1/ε)) for all r ≥ 1. In
contrast, the ε-covering entropy of the class {f : [0, 1]d → R : ∀x, y, |f (bαc)(x) − f (bαc)(y)| ≤
M‖x− y‖α−bαc}1of d-variate Hölder functions is O(ε−d/α) for r = ∞ (hence all r ≥ 1) [van der
Vaart and Wellner, 1996, Theorem 2.7.1]. Another popular measure of complexity is the Vapnik-

1bαc is the integer part; f (m) is the m-th derivative.
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Figure 4.1: Exponent in regret upper bound (up to logarithmic factors) as a function of the expo-
nent in the (supremum norm) covering entropy. FK is the theoretical upper bound of Foster and
Krishnamurthy [2018]. Full info is the bound achieved by Empirical Risk Minimizers under full
information feedback.

Chervonenkis (VC) dimension. Since the ε-covering entropy of a class of VC dimension V is
O(rV log(1/ε)) for all r ≥ 1 [van der Vaart and Wellner, 1996, Theorem 2.6.7], the complexity of
a class with finite VC dimension is essentially the same as that of a parametric class.

We will consider classes Π of policies with either a polynomial or a logarithmic covering
entropy, for which logN(ε,Π, Lr(P )) is either O(ε−p) for some p > 0 or O(log(1/ε)). The
former are much bigger than the latter.

Efficient CB algorithms competing against classes of functions with polynomial covering en-
tropy have been proposed [e.g. by Cesa-Bianchi et al., 2017, Foster and Krishnamurthy, 2018].
However, these algorithm are not regret-optimal in a minimax sense. In parallel, Dudik et al.
[2011], Agarwal et al. [2014] have proposed efficient algorithms which are regret-optimal for fi-
nite policy classes, or for policy classes with finite VC dimension. Thus there seems to be a gap: as
of today, no efficient algorithm has been proven to be regret-optimal for comparison classes with
polynomial entropy (or with infinite VC dimension). In this article, we partially bridge this gap.
We provide the first efficient algorithm to be regret-optimal (up to some logarithmic factors) for
comparison classes with integrable entropy (that is, logN(ε,Π, Lr(P )) = O(ε−p) for p ∈ (0, 1)).
Our main algorithm, that we name Generalized Policy Elimination (GPE) algorithm, is derived
from the Policy Elimination algorithm of Dudik et al. [2011].

4.1.1 Previous work

Many contributions have been made to the area of nonparametric contextual bandits. Among oth-
ers, one way to classify them is according to whether they rely on some version of the exponential
weights algorithm, on optimization oracles, or on a discretization of the covariates space.
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Exponential weights-based algorithms. The exponential weights algorithm has a long history
in adversarial online learning, dating back to the seminal articles of Vovk [1990] and Littlestone
and Warmuth [1994]. The Exp3 algorithm of Auer et al. [2002b] is the first instance of exponen-
tial weigthts for the adversarial multi-armed bandit problem. The Exp4 algorithm of Auer et al.
[2002a] extends it to the contextual bandit setting. Infinite policy classes can be handled by run-
ning a version of the Exp4 algorithm on an ε-cover of the policy class. While the Exp4 algorithm
enjoys optimal (in a minimax sense) regret guarantees, it requires maintaining a set of weights
over all elements of the cover, and is thus intractable for most nonparametric classes, because
their covering numbers typically grow exponentially in 1/ε. Cesa-Bianchi et al. [2017] proposed
the first cover-based efficient online learning algorithm. Their algorithm relies on a hierarchical
cover obtained by the celebrated chaining device of Dudley [1967]. It achieves the minimax regret
under the full information feedback model but not under the bandit feedback model, although it
yields rate improvements over past works for large nonparametric policy classes. Cesa-Bianchi
et al. [2017]’s regret bounds are expressed in terms of an entropy integral. An alternative approach
to nonparametric adversarial online learning is that of Chatterji et al. [2019], who proposed an
efficient exponential-weights algorithm for a reproducing kernel Hilbert-space (RKHS) compari-
son class. They characterized the regret in terms of the eigen-decay of the kernel. They obtained
optimal regret if the kernel has exponential eigen-decay.

Oracle efficient algorithms. The first oracle-based CB algorithm is the epoch-greedy algorithm
of Langford and Zhang [2008]. Epoch-greedy allows to turn any supervised learning algorithm into
a CB algorithm, making it practical and efficient (in terms of the number of calls to a supervised
classification subroutine). Its regret can be characterized in a straighforward manner as a function
of the sample complexity of the supervised learning algorithm, but is suboptimal. Dudik et al.
[2011] introduced RandomizedUCB, the first regret-optimal efficient CB algorithm. Agarwal et al.
[2014] improved on their work by requiring fewer calls to the oracle. [Foster et al., 2018a] pointed
out that the aforementioned algorithms rely on cost-sensitive classification oracles, which are in
general intractable (even though for some relatively natural classes there exist efficient algorithms).
Foster et al. [2018a] proposed regret-optimal, regression oracles-based algorithms, motivated by
the fact that regression oracles can in general be implement efficiently. Another way to make
tractable these oracles is, in the case of cost-sensitive classification oracles, to use surrogate losses,
as studied by Foster and Krishnamurthy [2018]. They gave regret upper bounds (see Figure ??)
and a nonconstructive proof of the existence of an algorithm that achieves them. They also pro-
posed an epoch greedy-style algorithm that achieves the best regret guarantees to date for entropy
logN(ε,Π) of order ε−p for some p > 2. The caveat of the surrogate loss-based approach is that
guarantees are either in terms of so-called margin-based regret, or can be expressed in terms of
the usual regret, but under the so-called realizability assumption. We refer the interested reader
to Foster and Krishnamurthy [2018] for further details.

Covariate space discretization-based algorithms. A third way to design nonparametric CB
algorithms consists in discretizing the context space into bins and running multi-armed bandit
algorithms in each bin. This approach was pioneered by Rigollet and Zeevi [2010] and extended
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by Perchet and Rigollet [2013]. They take a relatively different perspective from the previously
mentioned works, in the sense that the comparison class is defined in an implicit fashion: they
assume that the expected reward of each action is a smooth (Hölder) function of the context, and
they compete against the policy defined by the argmax over actions of the expected reward. Their
regret guarantees are optimal in a minimax sense.

4.1.2 Our contributions
Primary contribution. In this article, we introduce the Generalized Policy Elimination algo-
rithm, derived from the Policy Elimination algorithm of Dudik et al. [2011]. GPE is an oracle-
efficient algorithm, of which the regret can be bounded in terms of the metric entropy of the policy
class. In particular we show that if the entropy is integrable, then GPE has optimal regret, up to
logarithmic factors. The key enabler of our results is a new maximal inequality for martingale
processes (Theorem 4.5 in appendix 4.C), inspired by [van de Geer, 2000, van Handel, 2011].
Although our regret upper bounds for GPE are no longer optimal for policy classes with non-
integrable entropy, we show that we can use the same type of martingale process techniques to
design an ε-greedy type algorithm that matches the current best upper bounds.

Comparison to previous work. Earlier works on regret-optimal oracle-efficient algorithms
[Dudik et al., 2011, Agarwal et al., 2014, Foster et al., 2018a, for instance] have in common that
the regret analysis holds for a finite number of policies or for policy classes with finite VC dimen-
sion. GPE is the first oracle-efficient algorithm for which are proven regret optimality guarantees
against a truly nonparametric policy classes (that is, larger than VC).

Secondary contributions. In addition to the nonparametric extension of policy elimination and
analysis of ε-greedy in terms of (bracketing) entropy, we introduce several ideas that, to the best
of our knowledge, have not appeared so far in the literature. In particular, we demonstrate the
possibility of doing what we call direct policy optimization, that is of directly finding a maximizer
π̂ of π 7→ V̂(π) over Π where V̂(π) estimates the value V(π) of policy π. As far as we know, no
example has been given yet of a nonparametric class Π for which π̂ can be efficiently computed,
although some articles postulate the availability of π̂ [Luedtke and Chambaz, 2019, Athey and
Wager, 2017]. Here, we exhibit several rich classes for which direct policy optimization can be
efficiently implemented. Another secondary contribution is the first formal regret bounds for the
ε-greedy algorithm, which follows from the same type of arguments as in the analysis of GPE. We
were relatively surprised to see that unlike the epoch-greedy algorithm, the ε-greedy algorithm has
not been formally analyzed yet, to the best of our knowledge. This may be due to the fact that
doing so requires martingale process theory, which has only recently started to receive attention in
the CB literature.

4.1.3 Setting
For each m ≥ 1, denote [m]

.
= {1, . . . ,m}.
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At time t ≥ 1, the learner observes context Wt ∈ W
.
= [0, 1]d, chooses an action At ∈ [K],

K ≥ 2, and receives the outcome/reward Yt ∈ {0, 1}. We suppose that the contexts are i.i.d.
and the rewards are conditionally independent given actions and contexts, with fixed conditional
distributions across time points. We denoteOt the triple (Wt, At, Yt), and P the distribution2 of the
infinite sequenceO1, O2, . . . , Ot, . . . . Moreover, letOref .= (W ref , Aref , Y ref) be a random variable
such that W ref ∼ W1, Aref |W ref ∼ Unif([K]), Y ref |Aref ,W ref ∼ Y1|A1,W1. We denote Ft the
filtration induced by O1, . . . , Ot.

Generically denoted f or π, a policy is a mapping from W × [K] to R+ such that, for all
w ∈ W ,

∑
a∈[K] f(a, w) = 1. Thus, a policy can be viewed as mapping a context to a distribution

over actions. We say the learner is carrying out policy π at time t if, for all a ∈ [K], w ∈ W ,
P [At = a|Wt = w] = π(a, w). Owing to statistics terminology, we also call design the policy
carried out at a given time point. The value V(π) of π writes as

V(π)
.
= EP

∑
a∈[K]

EP [Y |A = a,W ]π(a|W )

 .
For any two policies f and g, we denote

V (g, f)
.
= EP

∑
a∈[K]

f(a|W )

g(a|W )

 . (4.1)

We call V (g, f) the importance sampling (IS) ratio of f and g. The IS ratio drives the variance of
IS estimators of V(f) had the data been collected under policy g.

4.2 Generalized Policy Elimination
Introduced by Dudik et al. [2011], the policy elimination algorithm relies on the following key
fact. Let gref be the uniform distribution over actions used as a reference design/policy:

∀(a, w) ∈ [K]×W , gref(a, w)
.
= K−1.

Proposition 4.1. Let δ > 0. For all compact and convex set F of policies, there exists a policy
g ∈ F such that

sup
f∈F

V (δgref + (1− δ)g, f) ≤ 2K. (4.2)

We refer to their article for a proof of this result. Proposition 4.1 has an important conse-
quence for exploration. Suppose that at time t we have a set of candidate policies Ft, and that
the designs g1, ..., gt satisfy (4.2) with Ft substituted for F . We can then estimate the value of

2P is partly a fact of nature, through the marginal distribution of context and the conditional distributions of reward
given context and action, and the result of the learner’s decisions.
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candidate policies with error uniformly small over Ft. This in turn has an important implication
for exploitation: we can eliminate from Ft all the policies that have value below some well-chosen
threshold, yielding a new policy set Ft+1, and choose the next exploration policy gt+1 in Ft+1.
This reasoning suggested to Dudik et al. [2011] their policy elimination algorithm: (1) initialize
the set of candidate policies to the entire policy class, (2) choose an exploration policy that ensures
small value estimation error uniformly over candidate policies, (3) eliminate low value policies, (4)
repeat steps (2) and (3). We present formally our version of the policy algorithm as algorithm 4.1
below.

In this section, we show that under an entropy condition, and if we have access to a certain
optimization oracle, our GPE algorithm is efficient and beats existing regret upper bounds in some
nonparametric settings. Our contribution here is chiefly to extend the regret analysis of Dudik et al.
[2011] to classes of functions characterized by their metric entropy in L∞(P ) norm. This requires
us to prove a new chaining-based maximal inequality for martingale processes (Theorem 4.6 in
appendix 4.C). On the computational side, our algorithm relies on having access to slightly more
powerful oracles than that of Dudik et al. [2011]. We present them in subsection 4.2.2 and give
several examples where these oracles can be implemented efficiently.

We now formally state our GPE algorithm. Consider a policy class F . For any policy f , any
o = (w, a, y) ∈ W × [K]× {0, 1}, define the policy loss and its IS-weighted counterpart

`(f)(o)
.
= f(a, w)(1− y),

`τ (f)(o)
.
=
gref(a, w)

gτ (a, w)
f(a, w)(1− y),

the corresponding risk R(f)
.
= E[`(f)(Oref)] = EP [`τ (f)(Oτ )] and its empirical counterpart

R̂t(f)
.
= t−1

∑t
τ=1 `τ (f)(Oτ ).

Algorithm 4.1 Generalized Policy Elimination

Inputs: policy class F , ε > 0, sequences (δt)t≥1, (xt)t≥1.
Initialize F1 as F .
for t ≥ 1 do

Find g̃t ∈ Ft such that, for all f ∈ Ft,

1

t− 1

t−1∑
τ=1

f(a|Wτ )

(δtgref + (1− δt)g̃t)(a|Wτ )
≤ 2K. (4.3)

Define gt = δtgref + (1− δt)g̃t.
Observe context Wt, sample action At ∼ gt(·|Wt), collect reward Yt.
Define Ft+1 as {

f ∈ Ft : R̂t(f) ≤ min
f∈Ft

R̂t(f) + xt

}
. (4.4)

end for
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4.2.1 Regret analysis
Our regret analysis relies on the following assumption.

Assumption 4.1 (Entropy condition). There exist c > 0, p > 0 such that, for all ε > 0,

logN(ε,F , L∞(P )) ≤ cε−p.

Defining Ft+1 ⊂ Ft as (4.4), the policy elimination step, consists in removing from Ft all the
policies that are known to be suboptimal with high probability. The threshold xt thus plays the role
of the width of a uniform-over-Ft confidence interval. Set ε > 0 arbitrarily. We will show that the
following choice of (δτ )τ≥1 and (xτ )τ≥1 ensures that the confidence intervals hold with probability
1− 6ε, uniformly both in time and over the successive Fτ ’s: for all τ ≥ 1, δτ

.
= τ−(1/2∧1/(2p)) and

xτ
.
= xτ (ε)

.
=
√
vτ (ε)

{
c1

τ
1
2
∧ 1

2p

+
c2 + c5

√
vτ (ε)√

τ
×

√
log

(
τ(τ + 1)

ε

)
+

1

τδτ

(
c3 + c7 log

(
τ(τ + 1)

ε

))}
— defined in appendix 4.D, vτ (ε) is a high probability upper bound on

sup
f∈Fτ

VarP (`τ (f)(Oτ )|Fτ−1).

It is constructed as follows. It can be shown that the conditional variance of `τ (f)(Oτ ) given Fτ−1

is driven by the expected IS ratio EP [
∑

a∈[K] f(a,W )/gτ (a,W )|Fτ−1]. Step 4.3 ensures that the
empirical mean over past observations of the IS ratio is no greater than 2K, uniformly over Fτ .
The gap (vτ (ε)− 2K) is a bound on the supremum over Fτ of the deviation between empirical IS
ratios and the true IS ratios.

We now state our regret theorem for algorithm 4.1. Let f ∗ .= arg minf∈F be the optimal policy
in F .

Theorem 4.1 (High probability regret bound for policy elimination). Consider algorithm 4.1. Sup-
pose that Assumption 5.1 is met. Then, with probability at least 1− 7ε, for all t ≥ 1,

t∑
τ=1

(V(f ∗)− Yτ )

≤

√
t log

(
1

ε

)
+ 2

t∑
τ=1

xτ (ε) +
t∑

τ=1

δτ

=

O
(√

t
(
log( t

ε
)
)3/2
)

if p ∈ (0, 1)

O
(
t
p−1/2
p
(
log( t

ε
)
)3/2
)

if p > 1
.

The proof of Theorem 4.1, presented in appendix 4.D, hinges on the three following facts.
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1. Controlling the supremum w.r.t. f ∈ Fτ of the empirical estimate of the IS ratio (see (4.3)
in the first step of the loop in algorithm 4.1) allows to control the supremum w.r.t. f of the
true IS ratio V (gτ , f).

2. With the specification of (xt)t≥1 and (δt)t≥1 sketched above we can guarantee that, with
probability at least 1− 3ε, f ∗ ∈ Ft ⊂ . . . ⊂ F1.

3. If f ∗ ∈ Ft then we can prove that, with probability at least 1− 5ε, for all τ ∈ [t],

R(g̃τ )−R(f ∗) ≤ 2xτ (ε).

This in turn yields a high probability bound on the cumulative regret of algorithm 4.1.

4.2.2 An efficient algorithm for the exploration policy search step
We show that the exploration policy search step can be performed in O(poly(t)) calls to two opti-
mization oracles that we define below. The explicit algorithm and proof of the claim are presented
in appendix 4.F.

Definition 4.1 (Linearly Constrained Least-Squares Oracle). We call Linearly Constrained Least-
Squares Oracle (LCLSO) over F a routine that, for any t ≥ 1, q ≥ 1, vector w ∈ RKt, sequence
of vectors W1, ...,Wt ∈ W , set of vectors u1, ..., uq ∈ RKt, and scalars b1, ..., bq, returns, if there
exists one, a solution to

min
f∈F

∑
a∈[K]
τ∈[t]

(w(a, τ)− f(a,Wτ ))
2 subject to

∀m ∈ [q],
∑
a∈[K]
τ∈[t]

um(a, τ)f(a,Wτ ) ≤ bτ .

Definition 4.2 (Linearly Constrained Cost-Sensitive Classification Oracle). We call Linearly Con-
strained Cost-Sensitive Classification Oracle (LCCSCO) over F a routine that, for any t ≥ 1,
q ≥ 1, vector C ∈ (R+)Kt, set of vectors W1, ...,Wt ∈ W , set of vectors u1, ..., uq ∈ RKt, and set
of scalars b1, ..., bq ∈ R returns, if there exists one, a solution to

min
f∈F

∑
a∈[K]
τ∈[t]

C(a, τ)f(a,Wτ ) subject to

∀m ∈ [q],
∑
a∈[K]
τ∈[t]

um(a, τ)f(a,Wτ ) ≤ bτ .

The following theorem is our main result on the computational tractability of the policy search
step.
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Theorem 4.2 (Computational cost of exploration policy search). For every t ≥ 1, exploration
policy search at time t can be performed in O((Kt)2 log t) calls to both LCLSO and LCCSCO.

The proof of Theorem 4.2 builds upon the analysis of Dudik et al. [2011]. Like them, we use
the famed ellipsoid algorithm as the core component. The general idea is as follows. We show that
the exploration policy search step (4.3) boils down to finding a point w ∈ RKt that belongs to a
certain convex set U , and to identifying a g̃t ∈ Ft such that

∑
a,τ (f(a,Wτ )− w(a, τ))2 ≤ ∆ for a

certain ∆ > 0. In section 4.F.1, we identify U and ∆. In section 4.F.2, we demonstrate how to find
a point in U with the ellipsoid algorithm.

4.3 Finite sample guarantees for ε-greedy
In this section, we give regret guarantees for two variants of the ε-greedy algorithm competing
against a policy class characterized by bracketing entropy, denoted thereon logN[ ], and defined
in the appendix3. Corresponding to two choices of an input argument φ, the two variants of al-
gorithm 4.2 differ in whether they optimize w.r.t. the policy either an estimate of its value or an
estimate of its hinge loss-based risk.

We formalize this as follows. We consider a class F0 of real-valued functions over W and
derive from it two classes F Id and Fhinge defined as

F Id .
=
{

(a, w) 7→ fa(w) : f1, . . . , fK ∈ F0,

∀w ∈ W , (f1(w), ..., fK(w)) ∈ ∆(K)
}
, (4.5)

where ∆(K) is the K-dimensional probability simplex, and

Fhinge .
=
{

(a, w) 7→ fa(w) : f1, . . . fK ∈ F0,

∀w ∈ W ,
∑

a∈[K]fa(w) = 0
}
. (4.6)

Let φId be the identity mapping and φhinge be the hinge mapping x 7→ max(0, 1 +x), both over
R. Following exisiting terminology [Foster and Krishnamurthy, 2018, for instance], an element of
F is called a regressor. Each regressor f is mapped to a policy π through a policy mapping, either
π̃Id if f ∈ F Id or π̃hinge if f ∈ Fhinge where, for all (a, w) ∈ [K]×W ,

π̃Id(f)(a, w) = f(a, w),

π̃hinge(f)(a, w) = 1{a = arg max
a′∈[K]

f(a′, w)}.

For φ set either to φId or φhinge, for any f : [K] × W → R, for every o = (w, a, y) ∈
W × [K]× {0, 1} and each τ ≥ 1, define

`φ(f)(o)
.
= φ(f(a, w))(1− y),

3It is known that logN(ε,F , Lr(P )) is smaller than logN[ ](2ε,F , Lr(P )) for all ε > 0.
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`φτ (f)
.
=
gref(a, w)

gτ (a, w)
φ(f(a, w))(1− y),

the corresponding φ-risk Rφ(f)
.
= E[`φ(f)(Oref)] = EP [`φτ (f)(Oτ )] and its empirical counterpart

R̂t(f)
.
= t−1

∑t
τ=1 `

φ
τ (f)(Oτ ). Finally, the risk of any policy π is defined as R(π)

.
= Rφ(π) with

φ = φId and the hinge-risk of any regressor f ∈ Fhinge is defined as Rhinge(f)
.
= Rφ(f) with

φ = φhinge.
We can now present the ε-greedy algorithm.

Algorithm 4.2 ε-greedy.

Input: convex surrogate φ, regressor class F , policy mapping π̃, sequence (δt)t≥1.
Initialize π̂0 as gref

for t ≥ 1 do
Define policy as mixture between gref and π̂t−1:

gt = δtgref + (1− δt)π̂t−1

Observe context Wt, sample action At ∼ gt(·|Wt), collect reward Yt.
Compute optimal empirical regressor

f̂t = arg min
f∈F

1

t

t∑
τ=1

`φτ (f)(Oτ ). (4.7)

Compute optimal policy estimator π̂t = π̃(f̂t).
end for

We consider two instantiations of the algorithm: one corresponding to (φId,F Id, π̃Id) and called
direct policy optimization, the other corresponding to (φhinge,Fhinge, π̃hinge) and called hinge-risk
optimization.

Regret decomposition. Denote π∗Π the optimal policy in Π
.
= π̃(F) and π∗ any4 optimal mea-

surable policy. The key idea in the regret analysis of the ε-greedy algorithm is the following
elementary decomposition (details in appendix 4.E):

Yt −R(π∗) = Yt − EP [Yt|Ft−1]︸ ︷︷ ︸
reward noise

+ δt(R(gref)−R(π∗))︸ ︷︷ ︸
exploration cost

+(1− δt) (R(π̂t−1)−R(π∗))︸ ︷︷ ︸
exploitation cost

. (4.8)

Control of the exploitation cost. In the direct policy optimization case, we can give exploitation
cost guarantees under no assumption other than an entropy condition on F . In the hinge-risk
optimization case, we need a so-called realizability assumption. Denote RK

=0
.
= {x ∈ RK :∑

a∈[K] xa = 0}.
4There may exist more than one.
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Assumption 4.2 (Hinge-realizability). Let

f ∗
.
= arg min

f :[K]×W→RK=0

Rhinge(f)

be the minimizer over all measurable regressors of the hinge-risk. We say that a regressor class
Fhinge satisfies the hinge-realizability assumption for the hinge-risk if f ∗ ∈ Fhinge.

Imported from the theory of classification calibration, Assumption 4.2 allows us to bound the
risk of a policy R(π̃hinge(f)) in terms of the hinge-risk of the regressor f . The proof relies on the
following result:

Lemma 4.1 (Hinge-calibration). Consider a regressor class Fhinge. Let

π∗ ∈ arg min
π:[K]×W→∆(K)

R(π)

be an optimal measurable policy. It holds that R(π∗) = R(π̃hinge(f ∗)) and, for all f ∈ Fhinge,

R(π̃hinge(f))−R(π∗) ≤ Rhinge(f)−Rhinge(f ∗).

We refer the reader to Bartlett et al. [2006], Ávila Pires and Szepesvári [2016] for proofs,
respectively when K = 2 and when K ≥ 2. Under Assumption 4.2, Lemma 4.1 teaches us that we
can bound the exploitation cost in terms of the excess hinge-riskRhinge(f)−minf ′∈Fhinge Rhinge(f ′),
a quantity that we can bound by standard arguments from the theory of empirical risk minimization.
The fondamental building block of our exploitation cost analysis is therefore the following finite
sample deviation bound for the empirical φ-risk minimizer.

Theorem 4.3 (φ-risk exponential deviation bound for the ε-greedy algorithm). Let φ and F be
either φId and F Id or φhinge and Fhinge. Suppose that g1, . . . , gt is a sequence of policies such that,
for all τ ∈ [t], gτ is Fτ−1-measurable. Suppose that there exist B, δ > 0 such that

sup
f1,f2∈F

sup
a∈[K],w∈W

|φ(f1(a, w))− φ(f2(a, w))| ≤ B,

min
τ∈[t]

g(Aτ ,Wτ ) ≥ δ a.s.

Define f ∗F
.
= arg minf∈F R

φ(f), the F-specific optimal regressor of the φ-risk, and let f̂t be the
empirical φ-risk minimizer (4.7). Then, for all x > 0 and α ∈ (0, B),

P

[
Rφ(f̂t)−Rφ(f ∗F) ≥ Ht

(
α, δ, B2K/δ,B

)
+ 160B

√
Kx/δt+ 3B/δtx

]
≤ 2e−x,

with Ht(α, δ, v, B)
.
= α + 160

√
v/t

×
∫ B

α/2

√
log(1 +N[ ](ε,F , L2(P ))dε+

3B

δt
log 2.
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As a direct corollary, we can express rates of convergence for the φ-risk in terms of the brack-
eting entropy rate.

Corollary 4.1. Suppose that log(1 +N[ ](ε,F , L2(P ))) = O(ε−p) for some p ∈ (0, 1). Then

Rφ(f̂t)−Rφ(f ∗F) = OP

(
(δt)−( 1

2
∧ 1
p)
)
.

Control of the regret. The cumulative reward noise
∑t

τ=1(Yτ−EP [Yτ |Fτ−1]) can be bounded by
the Azuma-Hoeffding inequality. From (4.16) and Corollary 4.1, δt controls the trade off between
the exploration and exploitation costs. We must therefore choose a δt that minimizes the total
of these two which, from the above, scales as O(δt + (tδt)

−( 1
2
∧ 1
p

)). The optimal choice is δt ∝
t−( 1

3
∧ 1
p+1

). The following theorem formalizes the regret guarantees under the form of a high-
probability bound.

Theorem 4.4 (High probability regret bound for ε-greedy.). Suppose that the bracketing entropy
of the regressor class F satisfies log(1 + N[ ](ε,F , L2(P )) = O(ε−p) for some p > 0. Set δt =

t−( 1
3
∨ p
p+1

) for all t ≥ 1. Suppose that

• either φ = φId, F is of the form F Id, π̃ = π̃Id,

• or φ = φhinge, F is of the form Fhinge, π̃ = π̃hinge, and F satisfies Assumption 4.2.

Then, with probability 1− ε,

t∑
τ=1

(V(π∗)− Yτ ) ≤
√
t log(2/ε) + t

p
p+1

√
log(2t(t+ 1)/ε).

4.4 Examples of policy classes

4.4.1 A nonparametric additive model

We say that a(ε) = Õ(b(ε)) if there exists c > 0 such that a(ε) = O(b(ε) logc(1/ε)). We present
a policy class that has entropy Õ(ε−1), and over which the two optimization oracles presented in
Definitions 4.1 and 4.2 reduce to linear programs. Let D([0, 1]) be the set of càdlàg functions and
let the variation norm ‖ · ‖v be given, for all h ∈ D([0, 1]), by

‖h‖v
.
= sup

m≥2
sup

x1,...,xm

m−1∑
i=1

|h(xi+1)− h(xi)|

where the right-hand side supremum is over the subdivisions of [0, 1], that is over {(x1, . . . , xm) :
0 ≤ x1 ≤ . . . ≤ xm ≤ 1}. Set C,M > 0 then introduce

H .
= {h ∈ D([0, 1]) : ‖h‖v ≤M}
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and the additive nonparametric additive model derived from it by setting F0
.
=

{
(a, w) 7→

d∑
l=1

αa,lhl(wl) : |αa,l| ≤ C, ha,l ∈ H
}
.

Let F = F Id derived from F0 as in (4.5).
The following lemma formally bounds the entropy of the policy class.

Lemma 4.2. There exists ε0 ∈ (0, 1) such that, for all ε ∈ (0, ε0),

logN[ ](ε,F , ‖ · ‖∞) ≤K logN[ ](ε,F0, ‖ · ‖∞)

≤Kc0ε
−1 log(1/ε).

for some c0 > 0 depending on (C, d,M).

We now state a result that shows that LCLSO and LCCSCO reduce to linear programs over F .
We first need to state a definition.

Definition 4.3 (Grid induced by a set of points). Consider d subdivisions of [0, 1] of the form

0 =w1,1 ≤ w1,2 ≤ . . . ≤ w1,q1 = 1,

...
0 =wd,1 ≤ w1,2 ≤ . . . ≤ wd,qd = 1.

The rectangular grid induced by these d subdivisions is the set of points (w1,i1 , w2,i2 , . . . , wi,id) with
i1 ∈ [q1], ..., id ∈ [qd]. We call a rectangular grid any rectangular grid induced by some set of d
subdivisions of [0, 1].

Consider a set of points w1, . . . , wn ∈ [0, 1]d. A minimal grid induced by w1, . . . wn is any rect-
angular grid that contains w1, . . . wn and that is of minimal cardinality. We denote by G(w1, . . . ,
wn) a minimal rectangular grid induced by w1, . . . wn chosen arbitrarily.

Lemma 4.3. Let w0 = 0, w1, . . . , wt ∈ [0, 1]d. For all l ∈ [d], let H̃l,t
.
= H̃l,t(w0,l, . . . , wt,l)

.
=

{
x 7→

t∑
τ=0

βτ1{x ≥ wτ,l} : βτ ∈ R,
t∑

τ=0

|βτ | ≤M
}

and F̃0,t
.
= {

(a, w) 7→
d∑
l=1

αa,lh̃a,l(wl) : |αa,l| ≤ B, h̃a,l ∈ Hl,t

}
.

Let (ua,τ )a∈[K],τ∈[t] be a vector in RKt. Let f̃ ∗ be a solution to the following optimization problem
(P2):

max
f̃∈F̃0,t

∑
a∈[K]

t∑
τ=1

ua,τ f̃(a,Wτ )
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s.t. ∀a ∈ [K], ∀w ∈ G(w0, . . . , wt), f̃(a, w) ≥ 0, (4.9)

∀w ∈ G(w0, . . . , wt),
∑
a∈[K]

f̃(a, w) = 1. (4.10)

Then, f̃ is a solution to the following optimization problem (P1):

max
f∈F0

∑
a∈[K]

t∑
τ=1

ua,τf(a,Wτ )

s.t. ∀a ∈ [K],∀w ∈ [0, 1]d, f(a, w) ≥ 0, (4.11)

∀w ∈ [0, 1]d,
∑
a∈[K]

f(a, w) = 1. (4.12)

4.4.2 Càdlàg policies with bounded sectional variation norm
The class of d-variate càdlàg functions with bounded sectional variation norm is a nonparametric
function class with bracketing entropy bounded by O(ε−1 log(1/ε)2(d−1)), over which empirical
risk minimization takes the form of a LASSO problem. It has received attention recently in the
nonparametric statistics literature [van der Laan, 2016, Fang et al., 2019, Bibaut and van der Laan,
2019]. Empirical risk minimizers over this class of functions have been termed Highly Adaptive
Lasso estimators by van der Laan [2016]. The experimental study of Benkeser and van der Laan
[2016] suggests that Highly Adaptive Lasso estimators are competitive against supervised learning
algorithms such as Gradient Boosting Machines and Random Forests.

Sectional variation norm. For a function f : [0, 1]d → R, and a non-empty subset s of [d],
we call the s-section of f and denote fs the restriction of f to {x ∈ [0, 1]d : ∀i ∈ s, xi = 0}.
The sectional variation norm (svn) is defined based on the notion of Vitali variation. Defining
the notion of Vitali variation in full generality requires introducing additional concepts. We thus
relegate the full definition to appendix 4.H, and present it in a particular case. The Vitali variation
of an m-times continuously differentiable function g : [0, 1]m → R is defined as

V (m)(g)
.
=

∫
[0,1]m

∣∣∣∣ ∂mg

∂x1 . . . ∂xm

∣∣∣∣.
For arbitrary real-valued càdlàg functions g on [0, 1]m (non necessarily m times continuously
differentiable), the Vitali variation V (m)(g) is defined in appendix 4.H. The svn of a function
f : [0, 1]d → R is defined as

‖f‖v
.
= |f(0)|+

∑
∅6=s⊂[d]

V (|s|)(fs),

that is the sum of its absolute value at the origin and the sum of the Vitali variation of its sections.
Let D([0, 1]d) be the class of càdlàg functions with domain [0, 1]d and, for some M > 0, let

F0
.
=
{
f ∈ D([0, 1]d) : ‖f‖v ≤M

}
(4.13)

be the class of càdlàg functions with svn smaller than M .
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Entropy bound. The following result is taken from [Bibaut and van der Laan, 2019].

Lemma 4.4. Consider F0 defined in (4.13). Let P be a probability distribution over [0, 1]d such
that ‖·‖P,2 ≤ c0‖·‖µ,2, with µ the Lebesgue measure and c0 > 0. Then there exist c1 > 0, ε0 ∈ (0, 1)
such that, for all ε ∈ (0, ε0) and all distributions P over [0, 1]d,

logN[ ](ε,F0, L2(P )) ≤ c1Mε−1 log(M/ε)2d−1.

Representation of ERM. We show that empirical risk minimization (ERM) reduces to linear
programming in both our direct policy and hinge-risk optimization settings.

Lemma 4.5 (Representation of the ERM in the direct policy optimization setting). Consider a
class of policies of the form F Id (4.5) derived from F0 (4.13). Let φ = φhinge. Suppose we have
observed (W1, A1, Y1), . . . , (Wt, At, Yt) and let W̃1, . . . , W̃m be the elements of G(W1, . . . ,Wt).

Let (βaj )a∈[K],j∈[m] be a solution to

min
β∈RKm

t∑
τ=1

∑
a∈[K]

{
1{Aτ = a}
gτ (Aτ ,Wτ )

(1− Yτ )

×
m∑
j=1

βaj 1{Wτ ≥ W̃j}
}

s.t. ∀l ∈ [m],
∑
a∈[K]

m∑
j=1

βaj 1{W̃l ≥ W̃j} = 1,

∀l ∈ [m],∀a ∈ [K],
m∑
j=1

βaj 1{W̃l ≥ W̃j} ≥ 0,

∀a ∈ [K],
m∑
j=1

|βaj | ≤M.

(4.14)

Then f : (a, w) 7→
∑m

j=1 β
a
j 1{w ≥ W̃j} is a solution to minf∈F Id

∑t
τ=1 `

φ
τ (f)(Oτ ).

We present a similar result for the hinge-risk setting in appendix 4.H. It is relatively easy to
prove with the same techniques that ERM over Fhinge also reduces to linear programming when
F0 is an RKHS.

4.5 Conclusion
In this chapter, we proposed and analyzed a polynomial time algorithm for sequential decision
making under the stochastic contextual bandit model. Our algorithm achieves the minimax (up
to log factors) regret rate w.r.t. nonparametric policy classes with integrable entropy. For larger
classes, the regret rate isn’t minimax optimal. We believe this is due to our proof techniques, and
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that it is doable to design polynomial time algorithms for classes with non-integrable entropy as
well. One notable feature of our setting is that we do not require the realizability assumption — a
setting sometimes called the policy setting.

In our view, the main contribution of this work is to show that it is possible to design and
analyze regret efficient polynomial time algorithms on what we call “real” nonparametric classes,
in the policy setting. Our proposed solution is far from fully satisfactory, for several reasons.
Firstly, as already mentioned, our algorithm isn’t regret optimal for large entropy classes. Secondly,
as mentioned in the introduction chapter, a practical contextual bandit algorithm should not rely
on knowing a priori the complexity of the policy class, rather it should data-adaptively learn it.
Finally, it would be desirable to improve the current work in the direction of more broadly tractable
optimization oracles. This latter question has been in particular studied in Foster et al. [2018b]
where the authors propose procedures relying on square loss regression oracles instead of in general
intractable cost-sensitive classification oracles.
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4.A Additional comparisons with previous articles
Comparison with Chatterji et al. [2019]. Their regret-optimality claim holds only against
RKHS classes for which the kernel has exponential eigendecay These are small classes: the corre-
sponding policy classes have entropy logN(ε) ≤ C log(1/ε)d, for some constant C > 0, which is
essentially a parametric complexity.

Comparison with the original Policy Elimination of Dudik. An essential difference is that the
Policy Elimination (PE) algorithm is not implementable, as it requires to optimize an expectation
with respect to the true distribution of contexts, which is unknown. In Dudik et al. [2011], the
authors present the Policy Elimination algorithm primarily so as to introduce their main ideas, and
then propose a substantially more complex algorithm inspired by PE, RandomizedUCB, which is
actually implementable.

Our Generalized Policy Elimination algorithm replaces the step in PE that optimizes w.r.t. a
true expectation with a step that optimizes w.r.t. an empirical expectation, which makes it imple-
mentable. Our implementable version of PE is an alternative to the rather complex Randomize-
dUCB. We however pay a price for this gained simplicity, as we have to rely on more powerful op-
timization oracles (our linearly constrained version of cost sensitive classification and least squares
oracles).

One seemingly minor difference (but key to the regret analysis) is that our algorithm comes
with different settings of the uniform exploration rate, and of the empirical regret threshold that
defines which policy to eliminate. In our work, these are dependent on the entropy of the policy
class.
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4.B Notation
Set arbitrarily n ≥ 1 and let φ be either φId or φhinge. We denote by Pn the empirical distribution
n−1

∑n
i=1 Dirac(Oi). For all measurable f : [K] ×W → R, we let `φ1:n(f) be the vector-valued

random function (`φ1(f), . . . , `φn(f)) over [K] × W . In order to alleviate notation, we introduce
the following empirical process theory-inspired notation. For any fixed, measurable function f :
[K]×W → R,

P`1:n(f)
.
=

1

n

n∑
i=1

EP

[
`φi (f)(Oi)|Fi−1

]
,

Pn`1:n(f)
.
=

1

n

n∑
i=1

`φi (f)(Oi),

(P − Pn)`1:n(f)
.
=

1

n

n∑
i=1

(
EP

[
`φi (f)(Oi)|Fi−1

]
− `φi (f)(Oi)

)
.

For a random measurable function f : [K] × W → R, we let P`1:n(f)
.
= P`1:n(f ′)|f ′=f , and

Pn`1:n(f ′)|f ′=f , (P − Pn)`1:n(f ′)|f ′=f .

4.C Maximal inequalities

4.C.1 The basic maximal inequality for IS-weighted martingale processes
Definition 4.4 (Bracketing entropy, van der Vaart and Wellner [1996]). Given two functions l, u :
X → R, the bracket [l, u] is the set of all functions f : X → R such that, for all x ∈ X ,
l(x) ≤ f(x) ≤ u(x). The bracketing number N[ ](ε,F , Lr(P )) is the number of brackets [l, u] such
that ‖l − u‖P,r ≤ ε needed to cover F .

The following proposition is a well-known result relating bracketing numbers and covering
numbers [van der Vaart and Wellner, 1996, for instance].

Proposition 4.2. For any probability distribution P , for all ε > 0, N(ε,F , Lr(P )) ≤ N[ ](2ε,F ,
Lr(P )) and N(ε,F , ‖ · ‖∞) ≤ N[ ](2ε,F , ‖ · ‖∞).

In the statement of Theorem 4.1, the high-probability regret bound for GPE, we used the cov-
ering numbers in uniform norm. The previous lemma allows us to carry out the analysis in terms
of bracketing numbers in uniform norm.

Theorem 4.5 (Maximal inequality for IS-weighted martingale processes). Consider the setting of
Section 4.3 in the main text. Specifically, suppose that for all i ≥ 1, Ai|Wi ∼ gi(·|Ai) where gi is
Fi−1-measurable. Let n ≥ 1, and f0 ∈ F . Suppose that

• there exists δ > 0 such that, for every i ∈ [n], gi(a, w) ≥ δ;
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• there exists B > 0 such that supf∈F supa,w∈[K]×W |φ(f(a, w))− φ(f0(a, w))| ≤ B;

• there exists v > 0 such that supf∈F V̄n(φ(f) − φ(f0)) ≤ v, where, for any pair (f, g) of
functions [K]×W → R+, V̄n(g)

.
= n−1

∑t
i=1 V (gi, f) (the definition of V (g, f) is given in

(4.1) in the main text).

Then, for all α ∈ [0, B],

P

[
sup
f∈F

Mn(f) ≥ Hn(α, δ, v, B) + 160

√
vx

n
+ 3

Bx

δn

]
≤ 2e−x,

where

Mn(f)
.
=

1

n

n∑
i=1

E
[
`φi (Oi)− `φi (f0)(Oi)|Fi−1

]
−
(
`φi (Oi)− `φi (f0)(Oi)

)
, (4.15)

and

Hn(α, δ, v, B)
.
= α + 160

√
v

n

∫ B

α/2

√
log(1 +N[ ](ε, φ(F), L2(P )))dε+ 3

B

δn
log 2.

Proof of theorem 4.5. The proof follows closely the proof of [Theorem A.4 in van Handel, 2011].

From a conditional expectation bound to a deviation bound. Let x > 0 and let A be the event

A
.
=

{
sup
f∈F

Mn(f) ≥ ψ(x)

}
,

with ψ(x)
.
= Hn(α, δ, v, B) +

√
vx/n+Bx/(δn). Observe that, for any x > 0,

ψ(x) ≤ EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]
.

Therefore, to prove the claim, it suffices to prove that

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]
≤ ψ

(
log

(
1 +

1

P [A]

))
,

as this would imply

Ψ(x) ≤ ψ

(
log

(
1 +

1

P [A]

))
≤ ψ

(
log

(
2

P [A]

))
,

which, as ψ is increasing, implies P [A] ≤ 2e−x, which is the wished claim.
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Setting up the notation. In this proof, we will denote

H
.
= {φ(f)− φ(f0) : f ∈ F} .

Observe that by assumptionH has diameter in ‖ · ‖∞ norm (and thus in L2(P ) norm) smaller than
B. For all j ≥ 0, let εj = B2−j , and let

Bj
.
= {(hj,ρ, hj,ρ) : ρ = 1, . . . , Nj}

be an εj-bracketing of H in L2(P ) norm. Further suppose that Bj is a minimal bracketing, that is
that Nj = N[ ](εj,H, L2(P )). For all j, h, let ρ(j, h) be the index of a bracket in Bj that contains
h, that is ρ(j, h) is such that

hj,ρ(j,f) ≤ h ≤ h
j,ρ(j,f)

.

For all h ∈ H, j ≥ 0, i ∈ [n] let

λj,h
.
= hj,ρ(j,h),

and

∆j,h
i

.
= (h− λj,h)(Ai,Wi).

Adaptive chaining. The core idea of the proof is a so-called adaptive chaining device: for any
h, and any i ∈ [n], we write

h(Ai,Wi) =h(Ai,Wi)− λτ
h
i ,h(Ai,Wi) ∨ λτ

h
i −1,h(Ai,Wi)

+ λτ
h
i ,h(Ai,Wi) ∨ λτ

h
i −1,h(Ai,Wi)− λτ

h
i −1,h(Ai,Wi)

+

τhi −1∑
j=1

λj,h(Ai,Wi) ∨ λj−1,h(Ai,Wi)

+ λ0,h(Ai,Wi),

for some τhi ≥ 0 that plays the role of the depth of the chain. We choose the depth τhi so as to
control the supremum norm of the links of the chain. Specifically, we let

τhi
.
= min

{
j ≥ 0 : ∆j,h

i > aj

}
∧ J,

for some J ≥ 1, and a decreasing positive sequence aj , which we will explicitly specify later in
the proof. The chaining decomposition in 4.C.2 can be rewritten as follows:

h(Ai,Wi) =λ0,h(Ai,Wi)

+
J∑
j=0

{
h(Ai,Wi)− λj,h ∨ λj−1,h(Ai,Wi)

}
1{τhi = j}
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+
J∑
j=1

{ (
λj,h(Ai,Wi) ∨ λj−1,h(Ai,Wi)− λj−1,h(Ai,Wi)

)
1{τhi = j)}

+
(
λj,h(Ai,Wi)− λj−1,h(Ai,Wi)

)
1{τhi > j}

}
Denote ahi

.
= λ0,h(Ai,Wi),

bj,hi
.
=
{
h(Ai,Wi)− λj,h ∨ λj−1,h(Ai,Wi)

}
1{τhi = j},

and

cj,hi
.
=
(
λj,h(Ai,Wi) ∨ λj−1,h(Ai,Wi)− λj−1,h(Ai,Wi)

)
1{τhi = j)}

+
(
λj,h(Ai,Wi)− λj−1,h(Ai,Wi)

)
1{τhi > j}.

Overloading the notation, we will denote, for every i ∈ [n] and function h : [K]×W → R,

`i(h)
.
=
h(Ai,Wi)(1− Yi)

gi(Ai,Wi)
.

From the linearity of `1, . . . , `n, we have that

(P − Pn)`1:n(h) = Ahn +
J∑
j=0

Bj,h
n +

J∑
j=1

Cj,h
n ,

with

Ahn
.
=

1

n

n∑
i=1

E[`i(a
h
i )|Fi−1]− `i(ahi ),

Bj,h
n

.
=

1

n

n∑
i=1

E[`i(b
j,h
i )|Fi−1]− `i(bj,hi ),

Cj,h
n

.
=

1

n

n∑
i=1

E[`i(c
j,h
i |Fi−1]− `i(cj,hi ).

The termsAhn, Bj,h
n and Cj,h

n can be intepreted as follows. For any given h and chain corresponding
to h:

• Ahn represents the root, at the coarsest level, of the chain,

• if the chain goes deeper than depth j, Cj,h
n is the link of the chain between depths j − 1 and

j,

• if the chain stops at depth j, Bj,h
n is the tip of the chain.

We control each term separately.
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Control of the roots. Observe that, for all i ∈ [n],

EP [`i(a
h
i )

2|Fi−1] =EP

[
λ0,h(Ai,Wi)

2

gi(Ai|Wi)2
(1− Yi)2|Fi−1

]

≤EP

∑
a∈[K]

(
λ0,h(a,Wi)− h(a,Wi) + h(a,Wi)

)2

gi(a,Wi)

∣∣∣∣Fi−1


≤2δ−1

EP
∑
a∈[K]

(
λ0,h(a,Wi)− h(a,Wi)

)2

∣∣∣∣Fi−1


+EP

∑
a∈[K]

h(a,Wi)
2

∣∣∣∣Fi−1


≤4Kδ−1ε20.

In the second line we have used that (1 − Yi) ∈ [0, 1]. As ‖λ0,h‖∞ ≤ B and infa,w gi(a, w) ≥ δ,
we have that

|`i(ahi )| ≤ Bδ−1.

Therefore, from lemma 4.6,

EA
P

[
sup
h∈H

Ahn

]
≤ 8ε0

√
K

δ
log

(
1 +

N0

P [A]

)
+

8

3

B

δn
log

(
1 +

N0

P [A]

)
.

Control of the tips. As λj,hi is a lower bracket, `i(b
j,h
i ) ≤ 0 and thus

EP

[
`i(b

j,h
i )|Fi−1

]
− `i(bj,hi )

≤EP
[
`i(b

j,h
i )|Fi−1

]
=EP

[
(h(Ai,Wi)− λj,h(Ai,Wi) ∨ λj,h(Ai,Wi)

gi(Ai,Wi)
(1− Yi)1{τhi = j}

∣∣∣∣Fi−1

]
≤EP

[
h(Ai,Wi)− λj,h(Ai,Wi) ∨ λj−1,h(Ai,Wi)

gi(Ai,Wi)
1{τhi = j}

∣∣∣∣Fi−1

]
≤EP

[
∆j,h
i 1{τhi = j}
gi(Ai,Wi)

∣∣∣∣Fi−1

]
.

We treat separately the case j < J and the case j = J . We first start with the case j < J . If
τhi = j, we must then have ∆j,h

i > aj , which implies that

E
[
`i(b

j,h
i )
∣∣Fi−1

]
− `i(bj,fi ) =EP

[
∆j,h
i 1{τhi = j}
gi(Ai,Wi)

∣∣∣∣Fi−1

]
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≤ 1

aj
E

[
(∆j,h

i )2

gi(Ai,Wi)

∣∣∣∣Fi−1

]

≤ 1

aj
E

∑
a∈[K]

(
h(a,Wi)− λj,h(a,Wi)

)2 ∣∣Fi−1


≤
Kε2j
aj

.

Therefore, for j < J ,

EA
P

[
sup
h∈F

Bj,f
n

]
≤
Kε2j
aj

.

Now consider the case j = J . We have that

BJ,h
n ≤

1

n

n∑
i=1

EP

[
∆J,h
i

∣∣Fi−1

]
=

n∑
i=1

EP

[
h(Ai,Wi)− λJ,h(Ai,Wi)

gi(Ai,Wi)

∣∣∣∣Fi−1

]

≤ 1

n

n∑
i=1

EP

∑
a∈[K]

h(a,Wi)− λJ,h(a,Wi)

∣∣∣∣Fi−1


≤ 1

n

√
n

 n∑
i=1

EP

∑
a∈[K]

h(a,Wi)− λJ,h(a,Wi)

2 ∣∣∣∣Fi−1

1/2

≤

K
n

n∑
i=1

EP

∑
a∈[K]

(h(a,Wi)− λJ,h(a,Wi))
2|Fi−1

1/2

≤KεJ .

Therefore,

EA
P

[
sup
h∈H

BJ,h
n

]
≤ KεJ .

Control of the links. Observe that λj,−λj−1,h = λj,h−h+h−λj−1,h. Using that λj,h ≤ h and
λj−1,h ≤ h the definitions of ∆j,h

i and ∆j−1,h yield

−∆j,h
i ≤ (λj,h − h)(Ai,Wi)1{τhi > j} ≤ 0,

and 0 ≤ (h− λj−1,h)(Ai,Wi)1{τhi ≥ j} ≤ ∆j−1,h
i .
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Therefore, recalling the definition of cj,hi , we have that

−∆j,h
i 1{τhi > j} ≤ cj,hi ≤ ∆j−1,h

i 1{τhi ≥ j}.

Applying `i to cj,hi amounts to multiplying it with a non-negative random variable. Therefore,

−`i(∆j,h
i 1{τhi > j} ≤ `i(c

j,h
i ≤) ≤ `i(∆

j,h
i 1{τ j,hi ≥ j}),

and then

|`i(cj,fi )| ≤ ∆j,f
i 1{τ fi > j} ∨∆j−1,f

i 1{τ fi ≥ j}.

From the definition of τ j,fi and the fact that (1− Yi) ∈ [0, 1], we have that

|`i(cj,fi )| ≤ aj ∨ aj−1.

Besides,

EP

[
`i(c

j,f
i )2|Fi−1

]
≤ 2

{
EP

[
`i(∆

j,f
i )2|Fi−1

]
+ EP

[
`i(∆

j−1,f
i )2|Fi−1

]}
.

We have that, for all j,

EP

[
`i(∆

j,h
i )2

∣∣∣∣Fi−1

]
=EP

[
(f(Ai,Wi)− λj,h(Ai,Wi))

2(1− Yi)2

g2
i (Ai,Wi)

∣∣∣∣Fi−1

]

≤EP

∑
a∈[K]

(f(a,Wi)− λj,h(a,Wi))
2

gi(a,Wi)

∣∣∣∣Fi−1


≤δ−1Kε2j .

Therefore, for all i, j,

EP

[
(`i(c

j,h
i ))2|Fi−1

]
≤ δ−1K(ε2j−1 + ε2j).

Observe that Cj,h
n depends on h only through ρ(0, h),. . . ,ρ(j, h). Therefore, as h varies over H,

Cj,h
n varies over a collection of at most

N̄j
.
=

j∏
k=0

Nk

random variables. Therefore, from lemma 4.6,

EA
P

[
sup
h∈H

Cj,h
n

]
≤ 4

√
2K(ε2j + ε2j−1)

δn
log

(
1 +

N̄j

P [A]

)
+

8

3

aj ∨ aj−1

δn
log

(
1 +

N̄j

P [A]

)
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End of the proof. Collecting the bounds on EA
P [suph∈HB

j,h
n ], EA

P [suph∈HB
j,h
n ] and

EA
P [suph∈HC

j,h
n ] yields

EA
P

[
sup
h∈H

(P − Pn)`1:n(h)

]
≤KεJ +

J−1∑
j=0

Kε2j
aj

+ 8

√
K

δn
log

(
1 +

N0

P [A]

)
+

8

3

B

δn
log

(
1 +

N0

P [A]

)

+
J∑
j=1

8

√
K

δn
log

(
1 +

N̄j

P [A]

)

+
J∑
j=1

8

3

aj−1

δn
log

(
1 +

N̄j

P [A]

)
.

Set

aj = εj

√
δn

K log(1 + N̄j/P [A])
.

Replacing aj in the previous display yields

EA
P

[
sup
f∈F

(P − Pn)`1:n(f)

]
≤KεJ +

8

3

B

δn
log

(
1 +

N0

P [A]

)

+ 20
J−1∑
j=0

εj

√
K

δn
log

(
1 +

N̄j+1

P [A]

)
.

Since (1 + N̄j/P [A]) ≤ (1 + 1/P [A])
∏j

k=0(1 +Nk), we have

J∑
j=1

εj−1

√
log

(
1 +

N̄j

P [A]

)
≤2

J∑
j=0

εj

√√√√log

(
1 +

1

P [A]

)
+

j∑
k=0

log(1 +Nk)

≤2

(
J∑
j=0

εj

)√
log

(
1 +

1

P [A]

)
+ 2

J∑
j=0

εj

j∑
k=0

√
log(1 +Nk)

We first look at the second term. We have that

J∑
j=0

εj

j∑
k=0

√
log(1 +Nk) =

J∑
k=0

√
log(1 +Nk)

J∑
j=k

2−j

≤2
J∑
k=j

2−k
√

log(1 +Nk)
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=4
J∑
k=0

(εk − εk+1)
√

log(1 +Nk)

≤4

∫ B

α/2

√
log(1 +N[ ](ε,F , L2(P )))dε.

Therefore, observing that
∑J

j=0 εj ≤ 2, and gathering the previous bounds yields that

EA
P

[
sup
h∈H

(P − Pn)`1:n(h)

]
≤KεJ + 160

√
K

δn

∫ B

α/2

√
log(1 +N[ ](u2,F , L∞(P ))du

+
8

3

B

δn
log
(
1 +N[ ](1,F , L∞(P ))

)
+ 160

√
K

δn

√
log

(
1 +

1

P [A]

)
+

8

3

B

δn
log

(
1 +

1

P [A]

)

≤Hn(v, δ, α) + 160

√
v

n

√
log

(
1 +

1

P [A]

)
+ 3

B

δn
log

(
1 +

1

P [A]

)
,

with

Hn(v, δ, α)
.
=Kα + 160

√
K

δn

∫ B

α/2

√
log(1 +N[ ](u2,F , L∞(P )))du

+ 3
B

δn
log
(
1 +N[ ](1,F , L∞(P ))

)
.

4.C.2 Maximal inequality for policy elimination
Theorem 4.6 (Maximal inequality under parameter-dependent IS ratio bound). Let F be a class
of functions A ×W → [0, 1]. Suppose that we are under the contextual bandit setting described
earlier, and that gi is the Fi−1-measurable design at time point i. Let, for any i ≥ 1, any f ∈ F ,

Vi(f)
.
= EP

∑
a∈[K]

f(a|W )

g(a|W )

 .
For any n ≥ 1, f ∈ F , denote

V̄n(f)
.
=

1

n

n∑
i=1

Vi(f).
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Let l be the direct policy optimization loss, and for all i, let `i be its importance-sampling weighted
counterpart for time point i, that is, for all f ∈ F , o = (w, a, y) ∈ O,

l(f)(o)
.
=
∑
a∈[K]

C(a,W )f(a,W )

and `i(f)(o)
.
=
f(a|w)

gi(a|w)
(1− y).

Suppose that there exists δ > 0 such, that for all a, w ∈ A×W and i ∈ [n], gi(a|w) ≥ δ.
Then, for all x > 0, v > 0, ε ∈ [0, 1]

P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f) ≥ Hn(v, δ, ε) + 37

√
vx

n
+ 3

x

δn

]
≤ 2e−x,

with

Hn(v, δ, ε)
.
=
√
vε+ 127

√
v

n

∫ 1

√
ε/2

√
log(1 +N[ ](u2,F , L∞(P )))du

+
3

δn
log
(
1 +N[ ](1,F , L∞(P ))

)
.

The proof of the preceding theorem relies on the following lemma, which is a direct corollary
of corollary A.8 in van Handel [2011].

Lemma 4.6 (Bernstein-like maximal inequality for finite sets). Let, for any i ∈ [n], j ∈ [N ], Xi,j

be an Fi-measurable random variable, and let, for any j ∈ [N ], M j
t
.
=
∑n

i=1Xi,j . Let for all
j ∈ [N ],

σ2
n,j

.
=

1

n

n∑
i=1

EP [X2
i,j|Fi−1].

Suppose that for all i ∈ [n], j ∈ [N ], |Xi,j| ≤ b a.s. for some b ≥ 0. Then, for any event A ∈ F ,

EA

[
max
j∈[N ]

1{σ2
n,j ≤ σ2}M j

t

]
≤ 4σ

√
log

(
1 +

N

P [A]

)
+

8

3
b log

(
1 +

N

P [A]

)
.

Proof of lemma 4.6. Observe that

2b2

n

n∑
i=1

E

[
φ

(
Xi

b

) ∣∣∣∣Fi−1

]
≤2b2

n

n∑
i=1

∑
k≥2

bk−2

bkk!
E[X2

i |Fi−1]

≤ 2

n

∑
k≥2

1

k!

n∑
i=1

E[X2
i |Fi−1]

≤2φ(1)σ2
n,j

≤2σ2
n,j.

The conclusion follows from corollary A.8 in van Handel [2011].

Proof of theorem 4.6. The proof follows closely the proof of theorem A.4 in van Handel [2011]
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From a conditional expectation bound to a deviation bound. Let x > 0 and let A be the event

A
.
=

{
sup
f∈F

1{V̄n(f≤v}(P − Pn)`1:n(f) ≥ ψ(x)

}
,

with

ψ(x) = Hn(v, δ, ε) + 37

√
vx

n
+ 3

x

δn

Observe that for any x > 0,

ψ(x) ≤ EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]
.

Therefore, to prove the claim, it suffices to prove that

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]
≤ ψ

(
log

(
1 +

1

P [A]

))
,

as this would imply

Ψ(x) ≤ ψ

(
log

(
1 +

1

P [A]

))
≤ ψ

(
log

(
2

P [A]

))
,

which, as ψ is increasing, implies P [A] ≤ 2e−x, which is the wished claim.

Setting up the notation. For all j ≥ 0, let εj = 2−j , and let

Bj
.
= {(f j,ρ, f j,ρ) : ρ = 1, . . . , Nj}

be an εj-bracketing of F in L∞(P ) norm. Further suppose that Bj is a minimal bracketing, that is
that Nj = N[ ](εj,F , L∞(P )). For all j, f , let ρ(j, f) be the index of a bracket of Bj that contains
f , that is ρ(j, f) is such that

f j,ρ(j,f) ≤ f ≤ f
j,ρ(j,f)

.

For all f ∈ F , j ≥ 0, i ∈ [n] let

λj,f
.
= f j,ρ(j,f),

and

∆j,f
i

.
= (f − λj,f )(Ai,Wi).
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Adaptive chaining. The core idea of the proof is a so-called adaptive chaining device: for any
f , and any i ∈ [n], we write

f(Ai,Wi) =f(Ai,Wi)− λτ
f
i ,f (Ai,Wi) ∨ λτ

f
i −1,f (Ai,Wi)

+ λτ
f
i ,f (Ai,Wi) ∨ λτ

f
i −1,f (Ai,Wi)− λτ

f
i −1,f (Ai,Wi)

+

τfi −1∑
j=1

λj,f (Ai,Wi) ∨ λj−1,f (Ai,Wi)

+ λ0,f (Ai,Wi),

for some τ fi ≥ 0 that plays the role of the depth of the chain. We choose the depth τ fi so as to
control the supremum norm of the links of the chain. Specifically, we let

τ fi
.
= min

{
j ≥ 0 :

∆j,f
i

gi(Ai,Wi)
> aj

}
∧ J,

for some J ≥ 1, and a decreasing positive sequence aj , which we will explicitly specify later in
the proof. The chaining decomposition in 4.C.2 can be rewritten as follows:

f(Ai,Wi) =λ0,f (Ai,Wi)

+
J∑
j=0

{
f(Ai,Wi)− λj,f ∨ λj−1,f (Ai,Wi)

}
1{τ fi = j}

+
J∑
j=1

{ (
λj,f (Ai,Wi) ∨ λj−1,f (Ai,Wi)− λj−1,f (Ai,Wi)

)
1{τ fi = j)}

+
(
λj,f (Ai,Wi)− λj−1,f (Ai,Wi)

)
1{τ fi > j}

}
Denote afi

.
= λ0,f (Ai,Wi),

bj,fi
.
=
{
f(Ai,Wi)− λj,f ∨ λj−1,f (Ai,Wi)

}
1{τ fi = j},

and

cj,fi
.
=
(
λj,f (Ai,Wi) ∨ λj−1,f (Ai,Wi)− λj−1,f (Ai,Wi)

)
1{τ fi = j)}

+
(
λj,f (Ai,Wi)− λj−1,f (Ai,Wi)

)
1{τ fi > j}.

From the linearity of `1, . . . , `n, we have that

(P − Pn)`1:n(f) = Afn +
J∑
j=0

Bj,f
n +

J∑
j=1

Cj,f
n ,
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with

Afn
.
=

1

n

n∑
i=1

E[`i(a
f
i )|Fi−1]− `i(afi ),

Bj,f
n

.
=

1

n

n∑
i=1

E[`i(b
j,f
i )|Fi−1]− `i(bj,fi ),

Cj,f
n

.
=

1

n

n∑
i=1

E[`i(c
j,f
i |Fi−1]− `i(cj,fi ).

The termsAfn,Bj,f
n and Cj,f

n can be intepreted as follows. For any given f and chain corresponding
to f :

• Afn represents the root, at the coarsest level, of the chain,

• if the chain goes deeper than depth j, Cj,f
n is the link of the chain between depths j − 1 and

j,

• if the chain stops at depth j, Bj,f
n is the tip of the chain.

We control each term separately.

Control of the roots. Observe that, for all i ∈ [n], |`i(afi )| ≤ δ−1 a.s., and that

EP [`i(a
f
i )

2|Fi−1] =EP

[
λ0,f (Ai,Wi)

2

gi(Ai|Wi)2
(1− Yi)2|Fi−1

]

≤EP

∑
a∈[K]

f(a,Wi)

gi(Ai|Wi)
|Fi−1


=Vi(f).

In the second line we have used that, λ0,f (Ai,Wi) ≤ f(Ai,Wi), that (1 − Yi) ∈ [0, 1], and that
f(a,Wi) ∈ [0, 1]. Therefore, from lemma 4.6,

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}Afn
]
≤ 4

√
v

n
log

(
1 +

N0

P [A]

)
+

8

3δn
log

(
1 +

N0

P [A]

)
.

Control of the tips. As `i(b
j,f
i ) ≤ 0, we have that

EP [`i(b
j,f
i )|Fi−1]− `i(bj,fi )

≤EP [`i(b
j,f
i )|Fi−1]

=EP

[
f(Ai,Wi)− λj,f (Ai,Wi) ∨ λj−1,f (Ai,Wi)

gi(Ai,Wi)
(1− Yi)1{τ fi = j}

∣∣∣∣Fi−1

]
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≤EP

[
∆j,f
i

gi(Ai,Wi)
1{τ fi = j}

∣∣∣∣Fi−1

]

We treat separately the case j < J and the case j = J . We first start with the case j < J . If
τ fi = j, we must then have ∆j,f

i /gi(Ai,Wi) > aj , which implies that

E
[
`i(b

j,f
i )
∣∣Fi−1

]
− `i(bj,fi ) ≤ 1

aj
E

[
(∆j,f

i )2

g2
i (Ai,Wi)

∣∣∣∣Fi−1

]

≤ 1

aj
E

∑
a∈[K]

f(a,Wi)

gi(a,Wi)
(f(a,Wi)− λj,f (a,Wi))

∣∣∣∣Fi−1


≤ 1

aj
Vi(f)εj.

The second line above follows from the fact that 0 ≤ f − λj,f ≤ f since 0 ≤ λj,f ≤ f . The third
line above follows from the fact that 0 ≤ (f − λj,f )(a,Wi) ≤ ‖f − λj,f‖∞ ≤ εj . Therefore, for
j < J ,

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}Bj,f
n

]
≤ 1

aj
vεj.

Now consider the case j = J . We have that

BJ,f
n ≤

1

n

n∑
i=1

EP

[
(f − λJ,f )(Ai,Wi)

gi(Ai,Wi)

∣∣∣∣Fi−1

]

≤ 1

n

√
n

(
n∑
i=1

EP

[
(f − λJ,f )2(Ai,Wi)

g2
i (Ai,Wi)

∣∣∣∣Fi−1

])1/2

≤

 1

n

n∑
i=1

EP

∑
a∈[K]

f(a,Wi)

gi(a|Wi)
(f(a,Wi)− λ(a,Wi))|Fi−1

1/2

≤

(
1

n

n∑
i=1

Vi(f)εJ

)1/2

≤
√
vεJ .

The second line follows from Cauchy-Schwartz and Jensen. The third line uses the same arguments
as in the case j < J treated before. Therefore,

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}BJ,f
n

]
≤
√
vεJ .
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Control of the links. Observe that λj,f − λj−1,f = λj,f − f + f − λj−1,f . Using that λj,f ≤ f
and λj−1,f ≤ f the definitions of ∆j,f

i and ∆j−1,f yields

−∆j,f
i ≤ (λj,f − f)(Ai,Wi)1{τ fi > j} ≤ 0,

and 0 ≤ (f − λj−1,f )(Ai,Wi)1{τ fi ≥ j} ≤ ∆j−1,f
i .

Therefore, recalling the definition of cj,fi , we have that

−∆j,f
i 1{τ fi > j} ≤ cj,fi ≤ ∆j−1,f

i 1{τ fi ≥ j}.

Applying `i to cj,fi amounts to multiplying it with a non-negative random variable. Therefore,

−`i(∆j,f
i 1{τ fi > j} ≤ `i(c

j,f
i ≤) ≤ `i(∆

j,f
i 1{τ j,fi ≥ j}),

and then

|`i(cj,fi )| ≤ ∆j,f
i 1{τ fi > j} ∨∆j−1,f

i 1{τ fi ≥ j}.

From the definition of τ j,fi and the fact that (1− Yi) ∈ [0, 1], we have that

|`i(cj,fi )| ≤ aj ∨ aj−1.

Besides,

EP

[
`i(c

j,f
i )2|Fi−1

]
≤ 2

{
EP

[
`i(∆

j,f
i )2|Fi−1

]
+ EP

[
`i(∆

j−1,f
i )2|Fi−1

]}
.

We have that, for all j,

EP

[
(`i(∆

j,f
i ))2|Fi−1

]
=EP

[
(f(Ai,Wi)− λj,f (Ai,Wi))

2

gi(Ai|Wi)2
(1− Yi)2

∣∣∣∣Fi−1

]

≤EP

∑
a∈[K]

f(a,Wi)

gi(a|Wi)
(f(a,Wi)− λj,f (a,Wi))

∣∣∣∣Fi−1


≤Vi(f)εj.

Therefore, for all i, j,

EP

[
(`i(c

j,f
i ))2|Fi−1

]
≤ Vi(f)(εj + εj−1).

Observe that Cj,f
n depends on f only through ρ(0, f),. . . ,ρ(j, f). Therefore, as f varies over F ,

Cj,f
n varies over a collection of at most

N̄j
.
=

j∏
k=0

Nk

random variables. Therefore, from lemma 4.6,

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}Cj,f
n

]
≤4

√
v(εj + εj−1)

n
log

(
1 +

N̄j

P [A]

)
+

8

3

aj ∨ aj−1

n
log

(
1 +

N̄j

P [A]

)
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End of the proof. Collecting the bounds on EA
P [supf∈F 1{V̄n(f) ≤ v}Bj,f

n ],
EA
P [supf∈F 1{V̄n(f) ≤ v}Bj,f

n ] and EA
P [supf∈F 1{V̄n(f) ≤ v}Cj,f

n ] yields

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]
≤
√
vεJ +

J−1∑
j=0

vεj

aj

+ 4

√
v

n
log

(
1 +

N0

P [A]

)
+

8

3δn
log

(
1 +

N0

P [A]

)

+
J∑
j=1

4

√
2εj−1v

n
log

(
1 +

N̄j

P [A]

)

+
J∑
j=1

8

3

aj−1

n
log

(
1 +

N̄j

P [A]

)
.

Set

aj =
3

8

√
nvεj

log(1 + N̄j+1/P [A])
.

Replacing aj in the previous display yields

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]
≤
√
vεJ +

8

3δn
log

(
1 +

N0

P [A]

)

+
J∑
j=0

(8 + 2
√

2)

√
vεj
n

log

(
1 +

N̄j

P [A]

)
.

Since (1 + N̄j/P [A]) ≤ (1 + 1/P [A])
∏j

k=0(1 +Nk), we have

J∑
j=0

√
εj log

(
1 +

N̄j

P [A]

)
≤

J∑
j=0

√
εj

√√√√log

(
1 +

1

P [A]

)
+

j∑
k=0

log(1 +Nk)

≤

(
J∑
j=0

√
εj

)√
log

(
1 +

1

P [A]

)
+

J∑
j=0

√
εj

j∑
k=0

√
log(1 +Nk)

We first look at the second term. We have that

J∑
j=0

√
εj

j∑
k=0

√
log(1 +Nk) =

J∑
k=0

√
log(1 +Nk)

J∑
j=k

(
√

2)−j

≤
√

2√
2− 1

J∑
k=0

(
√

2)−k
√

log(1 +Nk)
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=

( √
2√

2− 1

)2 J∑
k=0

(εk − εk+1)
√

log(1 +Nk).

Letting uk =
√
εk, we have that Nk = N[ ](u

2
k,F , L∞(P )) and thus

J∑
j=0

√
εj

j∑
k=0

√
log(1 +Nk) ≤

∫ u1

uJ+1

√
log(1 +N[ ](u2,F , L∞(P )))du.

Therefore, observing that
∑J

j=0

√
εj ≤

√
2/(
√

2 − 1), and gathering the previous bounds yields
that

EA
P

[
sup
f∈F

1{V̄n(f) ≤ v}(P − Pn)`1:n(f)

]

≤
√
vεJ + (8 + 2

√
2)

( √
2√

2− 1

)2√
v

n

∫ 1

√
εJ/2

√
log(1 +N[ ](u2,F , L∞(P ))du

+
8

3

1

δn
log
(
1 +N[ ](1,F , L∞(P ))

)
+

√
2√

2− 1
(8 + 2

√
2)

√
v

n

√
log

(
1 +

1

P [A]

)
+

8

3δn
log

(
1 +

1

P [A]

)

≤Hn(v, δ, εJ) + 37

√
v

n

√
log

(
1 +

1

P [A]

)
+

3

δn
log

(
1 +

1

P [A]

)
,

with

Hn(v, δ, ε)
.
=
√
vε+ 127

√
v

n

∫ 1

√
ε/2

√
log(1 +N[ ](u2,F , L∞(P )))du

+
3

δn
log
(
1 +N[ ](1,F , L∞(P ))

)
.

4.D Regret analysis of the policy evaluation algorithm

4.D.1 Definition of vτ and constants in the definition of xτ
For all δ > 0, v > 0, p > 0, τ ≥ 1, let

aτ (ε, δ, v, p)
.
=
√
v

{
c1(c, p)

τ
1
2
∧ 1

2p

+
c2√
τ

√
log

(
τ(τ + 1)

ε

)
+

1

δτ

(
c3 + c4 log

(
τ(τ + 1)

ε

))}
,
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with

c1(c, p)
.
=

{
127
√
c

1−p if p ∈ (0, 1)

1 + 127
√
c2
p−1
2

p−1
if p > 1,

c2 = 37, c3 = 3 log 2, and c4 = 3. For all δ > 0, v > 0, τ ≥ 1, let

bτ (ε, δ, v)
.
= c5

√
v

τ
log

(
τ(τ + 1)

ε

)
+
c6

δτ
log

(
τ(τ + 1)

ε

)
,

with c5 = c6 = 2. For all δ > 0, v > 0, τ ≥ 1, p > 0, let

xτ (ε, δ, v, p)
.
= 2(aτ (ε, δ, v, p) + bτ (ε, δ, v)).

For all δ > 0, τ ≥ 1, let

vτ (ε, δ)
.
= 2K + δ−1

{
c′1(c, p)

τ
1
2
∧ 1
p

+
32√
τ

√
log

(
τ(τ + 1)

ε

)
+

16 log 2

τ
+

16

τ
log

(
τ(τ + 1)

ε

)}
,

with

c′1(c, p)
.
=

{
64
√
c

1−p/2 if p ∈ (0, 2),

1 + 64×2p/2−1√c
p/2−1

if p > 1.

The quantity vτ from the main text is defined as vτ
.
= vτ (ε, δτ ).

We can now give the explicit definitions of the sequences (δt) and (xt). For all τ ≥ 1, let

δτ
.
= τ−( 1

2
∧ 1

2p) and xτ
.
= xτ (ε, δτ , vτ (ε, δτ ), p).

The constant c7 in the main text is defined as c7
.
= c4 + c6.

4.D.2 Proofs
Lemma 4.7 (Bound in the max IS ratio in terms of max empirical IS ratio). . Consider a class of
policies F as in the current section. Suppose that g : A ×W → [0, 1] is such that g is uniformly
lower bounded by some δ > 0, that is, for all a, w ∈ A×W , g(a, w) ≥ δ.

Suppose that assumption A1 holds. Then, for all ε > 0,

P

sup
f∈F

(P − Pn)

∑
a∈[K]

f(a|W )

g(a|W )

 ≥ vn(ε, δ)− 2K

 ≤ 2
ε

n(n+ 1)
.

The proof of lemma 4.7 relies on the following result, which is a slighlty modified version of
corollary 6.9 in Massart [2007]. The only differences are that



134

• we state it with lower bound of the entropy integral α/2 > 0, instead of 0, which makes
appear an approximation error term α,

• we state it for i.i.d. random variables instead of independent random variables, we set to 1
the value of ε in the original statement of the theorem.

Proposition 4.3. Let F be a class of functions f : X → R. Let X1, . . . , Xn be i.i.d. random
variables with domain X and common marginal distribution P . Suppose that there exists σ and b
such that, for all f ∈ F , for any k ≥ 2,

EP [|f(X)|k] ≤ k!

2
σ2bk−2.

Assume that for all ε > 0, there exists a set of brackets B(ε, b) covering F such that, for all bracket
[l, u] in B(ε, δ),

E[((u− l)(X))k] ≤ k!

2
ε2bk−2.

We call such a B(ε, δ) an (ε, b) bracketing of F , and we denoteN[ ](ε, bF) the minimal cardinality
of such an B(ε, b).

Then, for all α ∈ (0, σ), and for all x > 0,

P

[
sup
∈F

(P − Pn)f ≥ Hn(α, σ, b) + 10σ

√
x

n
+ 2bx

]
≤ e−x,

where

Hn(α, σ, b)
.
= α +

27√
n

∫ σ

α/2

√
logN[ ](ε, b,F)dε+

2(σ + b)

n
logN[ ](σ, b,F).

Proof of proposition 4.3. It suffices to choose J in the proof of corollary 6.9 in Massart [2007]
such that α/2 ≤ εJ < α, and not let it go to∞ at the end of the proof.

Proof of lemma 4.7. Let

H .
=

h : w 7→
∑
a∈[K]

f(a, w)

g(a, w)
: f ∈ F

 .

Observe that, for all h ∈ H, h(W )| ≤ δ−1, as g ≥ δ, and thus EP [h2(W )] ≤ δ−2. Observe that
an ε-bracketing of F in L2(P ) induces a (

√
Kεδ−1, b) bracketing of H in the sense of proposition

4.3. Therefore, from proposition 4.3

P

[
sup
f∈F

(P − Pn)f ≥ vn(ε, δ)− 2K

]
≤ ε

n(n+ 1)
.
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The following lemma shows that, with high probability, the policy elimination algorithm doesn’t
eliminate the optimal policy.

Lemma 4.8. Suppose that A1 holds. Suppose (xt(ε)) is as specified in subsection 4.2.1. Then, for
all t ≥ 1,

P [f ∗ ∈ F ] ≥ 1− 3ε.

Proof. Denote f̂τ
.
= arg minf∈Fτ R̂τ (f). We have that

R̂τ (f
∗)− R̂τ (f̂τ ) ≤R(f ∗)−R(f̂τ )

+ R̂τ (f
∗)−R(f ∗)

+R(f̂τ )− R̂τ (f̂τ )

≤R̂τ (f
∗)−R(f ∗)

+ sup
f∈Fτ

R(f)− R̂τ (f).

Define the event

E1,t
.
=

{
∀τ ∈ [t] : sup

f∈Fτ
V (gτ , f) ≤ vτ (ε, δτ )

}
,

where vτ (ε, δτ ) is defined in subsection 4.2.1. From lemma 4.7,

P [E1,t] ≥ 1− 2ε.

For all τ ∈ [t], define the event

E2,t
.
=

{
max
τ∈[t]

sup
f∈Fτ

R(f)− R̂τ (f) ≤ aτ (ε, δτ , vτ (ε, δτ ), p)

}
,

where aτ is defined in subsection 4.2.1. From theorem 4.6,

P [Ec2,t, E1,t] ≤ ε.

We now turn to controlling R̂τ (f
∗) − R(f ∗). So as to be able to obtain a high probability bound

scaling as
√
vτ (ε, δτ )/τ , we need f ∗ to be in Fτ . As we are about to show, if the desired bound

holds, that E1,t ∩ E2,t holds, and that f ∗ ∈ Fτ , them we will have that f ∗ ∈ Fτ+1. This motivates a
reasoning by induction.

Let, for all τ ∈ [t],

E3,τ
.
=
{
R̂τ (f

∗)−R(f ∗) ≤ bτ (ε, δτ , v(ε, δτ ))
}
,

where bτ is defined in subsection 4.2.1. We are going to show by induction that for all τ ∈ [t],

P
[
Ec3,t, E1,t, E2,t

]
≤

τ∑
s=1

ε

s(s+ 1)
.
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By convention, we let E3,0
.
= {f ∗ ∈ F}. and

∑0
s=1 1/(s(s + 1)) = 0. The induction claim thus

trivially holds at τ = 0. Consider τ ∈ [t]. Suppose that

P [Ec3,τ−1, E1,t, E2,t] ≤
τ−1∑
s=1

ε

s(s+ 1)
.

Observe that Eτ−1 ∩ E1,t ∩ E2,t implies f ∗ ∈ Fτ as we then have

R̂τ (f
∗)− R̂τ (f̂τ ) ≤aτ−1(ε, δτ−1, vτ−1(ε, δτ−1), p) + bτ−1(ε, δτ−1, vτ−1(ε, δτ−1))

<xτ−1(ε, δτ−1, vτ−1(ε, δτ−1)).

Using this fact, distinguishing the cases E3,τ−1 and Ec3,τ−1, and using the induction hypothesis yields

P [Ec3,τ , E1,t, E2,t] ≤P [Ec3,τ , E3,τ−1, E1,t, E2,t] + P [Ec3,τ−1, E1,t, E2,t]

≤P [Ec3,τ , f ∗ ∈ F , E2,t] +
τ−1∑
s=1

ε

s(s+ 1)
.

Observe that under {f ∗ ∈ Fτ} ∩ E2,t, we have that V (gτ , f
∗) ≤ vτ (ε, δτ ) and thus

E[(`τ (f
∗)(Oτ ))

2|Fτ−1] ≤ Kvτ (ε, δτ ).

Besides, |`τ (f ∗)(Oτ ) − E[`τ (f
∗)(Oτ )|Fτ−1] ≤ δ−1

τ . Therefore, from Bernstein’s inequality for
martingales

P [Ec3,τ , f ∗ ∈ F , E2,t] ≤
ε

τ(τ + 1)
.

Therefore,

P [Ec3,τ , E1,t, E2,t] ≤
τ∑
s=1

ε

s(s+ 1)
.

We have thus shown that, for all τ ∈ [t],

P [Ec3,τ , E1,t, E2,t] ≤
τ∑
s=1

ε

s(s+ 1)
.

Therefore,

P [E3,t, E1,t, E2,t] =P [E1,t, E2,t]− P [Ec3,t, E1,t, E2,t]

=P [E1,t]− P [E1,t, Ec2,t]− P [Ec3,t, E1,t, E2,t]

=1− P [Ec1,t]− P [E1,t, Ec2,t]− P [E1,t, E2,t, Ec3,t]
≥1− 4ε.
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The following lemma gives a bound on supf∈Fτ R(f)− R(f ∗) which holds uniformly in time
with high probability.

Lemma 4.9. Consider algorithm 4.1. Make assumption A1. Then, with probability 1 − 4ε, we
have that, for all τ ∈ [t],

sup
f∈Fτ

R(f)−R(f ∗) ≤ 2xτ .

Proof. Observe that, for all f ∈ F ,

R(f)−R(f ∗) =R̂τ (f)− R̂τ (f
∗)

+R(f)− R̂τ (f)

−R(f ∗)− R̂τ (f
∗))

≤R̂τ (f)− R̂τ (f̂τ )

+ sup
f∈Fτ

(R(f)− R̂t(f))

− (R(f ∗)− R̂t(f
∗))

≤xτ
+ sup

f∈Fτ
(R(f)− R̂t(f))

− (R(f ∗)− R̂t(f
∗)).

Define the events

E1,t
.
=

{
∀τ ∈ [t], sup

f∈Fτ
V (gτ , f) ≤ vτ (ε, δτ )

}
,

E2,t
.
= {f ∗ ∈ Ft} .

From lemma 4.8,

P [E1,t] ≥ 1− 4ε.

Under E1,t, we have that, for all f ∈ Fτ ,

E
[
(`τ (f)(Oτ ))

2|Fτ−1

]
≤ Kvτ (ε, δτ ).

Therefore, using also that |`τ (f)(Oτ )| ≤ δ−1
τ , theorem 4.6 gives us that, for all τ ∈ [t],

P

[
sup
f∈Fτ

R(f)− R̂τ (f) ≥ aτ (ε, vτ (ε, δτ ), δτ , p), E1,t

]
≤ ε

τ(τ + 1)
,

which, by a union bound gives us that

P
[
Ec3,t, E1,t

]
≤ ε,
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with

E3,t
.
=

{
∀τ ∈ [t], sup

f∈Fτ
R(f)− R̂τ (f) ≤ aτ (ε, vτ (ε, δτ ), δτ , p)

}
.

We now consider the term R̂τ (f)−R(f ∗). We have that

R̂τ (f
∗)−R(f ∗) =

1

t

t∑
τ=1

`τ (f
∗)(Oτ )− E[`τ (f

∗)(Oτ )|Fτ−1]

Under E1,t ∩ E2,t, each term in the sum satisfies

EP
[
(`τ (f

∗)(Oτ ))
2|Fτ−1

]
≤ Kvτ (ε, δτ )

and

|`τ (f ∗)(Oτ )− EP [`τ (f
∗)(Oτ )|Fτ−1] ≤ δ−1

τ .

Therefore, from Bernstein’s inequality and a union bound, letting

E4,t
.
=
{
∀τ ∈ [t], R̂τ (f

∗)−R(f ∗) ≤ bτ (δ, vτ (ε, δτ ), δτ )
}
,

we have that

P [Ec4,t, E1,t, E2,t] ≤ ε.

Observe that under E3,t ∩ E4,t it holds that

∀τ ∈ [t] sup
f∈Fτ

R(f)−R(f ∗) ≤ xτ .

Therefore, to conclude the proof, it suffices to bound P [E3,t, E4,t]. We have that

P [(E3,t ∩ E4,t)
c] ≤P [E1,t, E2,t, (E3,t ∩ E4,t)

c] + P [Ec1,t] + P [Ec2,t]
≤P [E1,t, E2,t, Ec3,t]

+ P [E1,t, E2,t, Ec4,t] + P [Ec1,t] + P [Ec2,t]
≤6ε,

which yields the wished claim.

We can now prove theorem 4.1.

Proof of theorem 4.1. Observe that

t∑
τ=1

V(f ∗)− Yτ =
t∑

τ=1

(1− Yτ )− EP [(1− Yτ )|Fτ−1]
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+
t∑

τ=1

EP [(1− Yτ )|Fτ−1]−R(f ∗).

Since (1− Yτ ) ∈ [0, 1], from Azuma-Hoeffding, we have that, with probability at least 1− ε,

t∑
τ=1

(1− Yτ )− EP [(1− Yτ )|Fτ−1] ≤

√
t log

(
1

ε

)
.

Observe that

EP [(1− Yτ )|Fτ−1] = R(gτ ) = δτR(gref ) + (1− δτ )R(g̃τ ),

where g̃τ ∈ Fτ . Therefore,

EP [(1− Yτ )|Fτ−1]−R(f ∗) ≤δτ (R(gref )−R(f ∗)) + (1− δτ )(R(g̃τ )−R(f ∗))

≤δτ + (R(g̃τ )−R(f ∗))

From lemma 4.9, with probability 1− 6ε, for all τ ∈ [t],

R(g̃τ )−R(f ∗) ≤ xτ .

Therefore, with probability at least 1− 7ε, we have the wished bound.

4.E Regret analysis of the ε-greedy algorithm

4.E.1 Regret decomposition
Using in particular the linearity of π 7→ R(π) and the definition of gt, we have that

Yt −R(π∗)

=Yt − E[Yt|Ft−1] + E[Yt|Ft−1]−R(π∗)

=Yt − E[Yt|Ft−1] +R(gt)−R(π∗)

=Yt − E[Yt|Ft−1]︸ ︷︷ ︸
reward noise

+ δt(R(gref )−R(π∗))︸ ︷︷ ︸
exploration cost

+ (1− δt) (R(π̂t−1)−R(π∗))︸ ︷︷ ︸
exploitation cost

. (4.16)

4.E.2 Proof of deviations inequalities
Proof of theorem 4.3. Observe that

Rφ(f̂t)−Rφ(f ∗F) =
1

t

t∑
τ=1

E [`τ (f)(Oτ )− `τ (f ∗F)(Oτ )|Fτ−1]
∣∣
f=f̂t



140

=
1

t

t∑
τ=1

`φτ (f̂t)(Oτ )− `φτ (f ∗F)(Oτ )

+Mt(f̂t)

with Mt(f) as defined in (4.15) and where we take f0 = f ∗F in the definition of Mt. Since f̂t is the
empirical φ-risk minimizer, line 4.E.2 is non-positive, and thus

Rφ(f̂t)−Rφ(f ∗F) ≤Mt(f̂t). (4.17)

Observe that, for all f ∈ F ,

|`φτ (f)− `φτ (f ∗F)| ≤ B

δ

and

EP

[(
(`φτ (f)(Oτ )− `φτ (f ∗F)(Oτ )

)2 ∣∣Fτ−1

]
=EP

[
(φ(f(Aτ ,Wτ )− φ(f ∗F(Aτ ,Wτ ))

2

gτ (Aτ ,Wτ )2
(1− Yτ )2

∣∣Fτ−1

]

≤E

∑
a∈[K]

(φ(f(a,Wτ )− φ(f ∗F(a,Wτ ))
2

gτ (a,Wτ )

∣∣Fτ−1


≤KB

2

δ
.

Therefore, using (4.17) and theorem 4.5, we have that

P

[
Rφ(f̂t)−Rφ(f ∗F) ≥ Ht

(
α, δ, B

√
K

δ
,B

)
+ 160B

√
Kx

δt
+ 3

Bx

δt

]
≤ 2e−x,

with

Ht(α, δ, v, B) = α + 160

√
v

t

∫ B

α/2

√
log(1 +N[ ](ε,F , L2(P )))dε+ 3

B

δt
log 2.

Proof of theorem 4. For any p ∈ (0, 2) ∪ (2,∞),∫ B

α/2

√
log(1 +N[ ](ε,F , L2(P ) ≤

√
c0

1− p/2

(
B1−p/2 −

(α
2

)1−p/2
)
.

We set

α =

{
0 for p ∈ (0, 2)

B2/p
(
K
δτ

) 1
p for p > 2.
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Then, we have

Hτ (α, δ, v, B) ≤

B
√

K
δτ

√
c0

1−p/2B
1−p/2 + 3B log 2

δτ
for p ∈ (0, 2),

B2/p
(
K
δτ

)1/p
(

1 +
√
c021/p2p/2−1

1−p/2

)
+ 3B

δτ
log 2 for p > 2.

Therefore, for

xτ (ε,K, δ, B, p)

.
=

B
√

K
δτ

( √
c0

1−p/2B
1−p/2 + 160

√
log(2/ε)

)
+ 3B

δτ
log(4/ε) if p ∈ (0, 2)

B2/p
(
K
δτ

)1/p
(

1 +
√
c02p/2−1

1−p/2

)
+B

√
K
δτ

log(2/ε) + 3B
δτ

log(4/ε) if p > 2.

Theorem 4.3 gives that

P
[
Rφ(f̂t)−Rφ(f ∗F) ≥ xτ (ε,K, δ, δ, B, p)

]
≤ ε.

Observe that
t∑

τ=1

V(π∗Π)− Yτ =
t∑

τ=1

V(π∗Π)− EP [Yτ |Fτ−1] +
t∑

τ=1

EP [Yτ |Fτ−1]

≤
t∑

τ=1

δτ (R(gref )−R(π∗Π)) + (1− δτ )R(π̃(f̂τ−1)−R(π∗Π)

+
t∑

τ=1

EP [Yτ |Fτ−1]− Yτ

≤
t∑

τ=1

δτ

+
t∑

τ=1

(
Rφ(f̂τ−1)−Rφ(f ∗F)

)
+

t∑
τ=1

EP [Yτ |Fτ−1].

By a union bound, with probability at least 1− ε/2,

t∑
τ=1

Rφ(f̂τ−1)−Rφ(f ∗F) ≤
t∑

τ=1

xτ

(
ε

τ(τ + 1)
, K, δ, B, p

)
.

By Azuma-Hoeffding, with probability at least 1− ε/2,

t∑
τ=1

EP [Yτ |Fτ−1]− Yτ ≤
√

2 log(2/ε).
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Therefore, with probability at least 1− ε,

t∑
τ=1

V(π∗Π)− Yτ ≤
t∑

τ=1

δτ + xτ

(
ε

2τ(τ + 1)
, K, δτ , B, p

)
.t

2
3
∨ p
p+1

√
log(t/ε).

4.F Results on efficient algorithm for policy search in GPE

4.F.1 Casting exploration policy search as a convex feasibility problem
For any M > 0, denote Pt(M) the following feasibility problem.

Find g̃t ∈ Ft such that
1

t− 1

∑
a∈[K]
τ∈[t−1]

f(a,Wτ )

δt/K + (1− δt)g̃t(a|Wτ )
≤M.

For all f ∈ Ft, let

wt,f
.
= (f(a,Wτ ) : a ∈ [K], τ ∈ [t]).

For any given f ∈ F , observe that

f ∈ Ft ⇐⇒ ∀τ ∈ [t− 1], R̂τ (f) ≤ min
f∈Fτ

R̂τ (f) + ετ
.
= bτ

⇐⇒ ∀τ ∈ [t− 1], u>t−1,τwt−1,f ≤ bτ , (4.18)

where

ut,τ
.
=

(
1{s ≤ τ}1{As = a}(1− Ys)

gτ (a|Ws)
: a ∈ [K], s ∈ [t]

)
.

Introduce the set

Ct
.
= {wf,t : f ∈ Ft},

which, by (4.18) can be rewritten as

Ct
.
= {wf,t : f ∈ Ft,∀τ ∈ [t], ut,fwf,t ≤ bτ}. (4.19)

Based on (4.18) and (4.19), we can thus rewrite Pt(M) as the following two-step problem.

1. Find w ∈ Ct such that ∀z ∈ Ct,
1

t− 1

∑
a∈[K],τ∈[t−1]

za,τ
δt/K + (1− δt)wa,τ

≤M.
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2. Find f ∈ Ft such that wf,t = w.

As F is convex, that functions in f have range in [0, 1], and that for all z ∈ RKt,

w 7→ 1

t− 1

∑
a∈[K]
τ∈[t]

za,τ
δt/K + (1− δt)wa,τ

is a convex mapping, the set

Dt(M)
.
= Ct ∩

w ∈ RKt : ∀z ∈ Ct,
1

t− 1

∑
a∈[K]
τ∈[t−1]

za,τ
δt/K + (1− δt)wa,τ

≤M


is a convex set. The following lemma ensures it is not empty.

Lemma 4.10. Let C be a compact convex subset of RK(t−1). Set arbitrary δ ∈ (0, 1) and w ∈ C.
Then

max
z∈C

1

t− 1

∑
a∈[K]
τ∈[t−1]

za,τ
δ/K + (1− δ)wa,τ

≤ 4

3
K.

As we will recall precisely in the next subsection, so as to be able to give gaurantees on the
number of iterations needed by the ellipsoid algorithm to find a point in a convex set, we need a
lower bound on the volume of the set. As we can make the volume of Dt arbitrarily small in some
cases, similarly to [Dudik et al., 2011], we will consider a slightly enlarged version of Dt whose
volume we can explicitly lower bound. The following lemma informs how to construct such an
enlarged set. Before stating the lemma, we introduce the following notation:

ht,δ
.
=

1

t

∑
a∈[K]
τ∈[t]

za,τ
δ/K + (1− δ)wa,τ

Lemma 4.11. Let w ∈ (R+)Kt, δ ∈ (0, 1), ∆ ∈ (0, δ/2). Then, for all u ∈ BKt(0, 1), z ∈ [0, 1]Kt,

|hδ,t(w + ∆u, z)− hδ,t(w, z)| ≤ ξt,δ(∆),

with ξt,δ(∆)
.
= 2∆δ−2

√
K/t.

For all ∆ > 0, let

Ct,∆ =
{
w ∈ RKt : d(w, Ct ≤ ∆

}
.

From the above lemma, if w ∈ Dt(M), every point w′ ∈ B(w,∆) satisfies

max
z∈Ct

ht,δ(w
′, z) ≤M + ξt,δ(∆).
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Therefore, provided Dt contains at least one point, say w, the set

Dt,∆
.
= {w ∈ Ct,∆ : ∀z ∈ Ct, ht,δ(w, z) ≤M + ξt,δ(∆)}

contains B(w,∆). Finally, suppose that w ∈ Dt,∆(M). Then, by definition of Dt,∆(M), there
exists a w′ ∈ Ct such that d(w′, w′) ≤ ∆, and thus by lemma 4.11,

max
z∈Ct

ht,δ(w, z) ≤M + 2ξt,δ(∆).

By lemma 4.10, we can pick M = 4K/3 while still ensuring that Dt(M) is non-empty. Them
setting ∆ such that ξt,δt(∆) = K/3, that is setting it to ∆t

.
= δ2

√
(t− 1)/K ensures that Dt,∆t

contains a ball od radius ∆t and that M + 2ξt,δt(∆t) ≤ 2K. Therefore, the exploration policy
search problem (4.3) is equivalent to the two-step process

1. Find w ∈ Dt,∆t

2. Find f ∈ F such that ‖wf,t − w‖2 ≤ ∆t.

4.F.2 Finding an element of U using the ellipsoid algorithm
Finding an element of a convex set of non-negligilble volume such as Dt,∆t(4K/3) can be per-
formed in polynomial time with the ellipsoid algorithm. The ellipsoid algorithm requires having
access to a separation oracle.

Definition 4.5 (Separation oracle). Let C ⊆ Rn, n ≥ 1 be a convex set. A separation oracle for
C is a routine that, for any w ∈ Rn outputs whether w ∈ C, and if w 6= C, returns an hyperplane
separating w and C.

We will not recall here the ellipsoid algorithm as it is standard, but we restate a know lemma
on its runtime.

Lemma 4.12 (Runtime of the ellipsoid algorithm). Let C be a convex set. Suppose we know an
R > 0 such that C ⊆ Bn(0, R), and that there exists a point w ∈ C and ∆ > 0 such that
B(w,∆) ⊆ C. Then the ellipsoid algorithm finds a point in C in no more than

O

(
n2 log

(
R

∆

))
calls to a separation oracle for C.

Therefore, to construct an efficient algorithm that finds the exploration policy at time t, we just
need to find how to implement a separation oracle for Dt,∆t . Observe that we can rewrite Dt,∆t as
the intersection of two convex sets:

Dt,∆t

.
= Ct,∆t ∩

{
w ∈ RKt : ∀z ∈ Ctht,δt(w, z) ≤

5

3
K

}
.

A separation oracle for Dt,∆t can thus be built from a separation oracle for Ct,∆ and a separation
oracle for {w ∈ RKt : ∀z ∈ Ctht,δt(w, z) ≤ 5K/3}.

The following lemma shows how to implement a separation oracle for Ct,∆ using one call to
LCLSO.
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Lemma 4.13 (Separation oracle for Ct). Let w ∈ CKt. Let

w̃
.
= arg min

w′∈Ct
‖w − w′‖.

If ‖w − w̃‖ ≤ ∆, then w ∈ Ct,∆. If not, then

H .
=
{
z ∈ RKt : 〈z − w,w − w̃〉 = 0

}
is an hyperplane that separates w from Ct,∆.

Proof. It suffices to show that ∀z ∈ H, d(z, Ct,∆) > 0, or equivalently that d(z, Ct) > ∆. Observe
that since w ∈ Ct,∆, we must have that d(w, Ct) > ∆. Therefore, it will be enough to show that

∀z ∈ H, d(z, Ct) ≥ d(w, Ct).

We first show that for all z̃ ∈ Ct, 〈z̃ − w̃, w − w̃〉 > 0. Then, for all λ ∈ (0, 1),

‖w − (λz̃ + (1− λ)w̃)‖2
2 =‖(w − w̃)− λ(z̃ − w̃)‖2

2

=‖w − w̃‖2
2 + λ2‖z − w̃‖2

2 − 2λ〈z̃ − w̃, w − w̃〉.

Therefore, for λ ∈ (0, 1) small enough,

‖w − (λz̃ + (1− λw̃)‖2
2 ≤ ‖w − w̃‖2

2.

Since, by convexity of Ct, λz̃ + (1− λ)w̃ ∈ Ct, this contradicts that w̃ is the projection of w on Ct.
Therefore, we must have that

〈z̃ − w̃, w − w̃〉 ≤ 0 (4.20)

for all z̃ ∈ Ct.
We can now use this property to show the wished claim. Let z ∈ H, and let z̃ ∈ Ct. We have

that

‖z − z̃‖2
2 =‖(z − w) + (w − w̃) + (w̃ − z̃)‖2

2

=‖z − w‖2
2 + ‖w − w̃‖2

2 + ‖w̃ − z̃‖2
2

+ 2 〈z − w,w − w̃〉︸ ︷︷ ︸
=0 by definition ofH

+ 2 〈w − w̃, w̃ − z̃〉︸ ︷︷ ︸
≥0 from (4.20)

+ 2 〈z − w, w̃ − z̃〉︸ ︷︷ ︸
≥−‖z−w‖‖w̃−z̃‖
by Cauchy-Schwartz

≥(‖z − w‖ − ‖w − w̃‖)2 + ‖w̃ − z̃‖2
2

≥d(w, Ct),

which concludes the proof.
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The next lemma shows how to implement a separation oracle for

Lt
.
=

{
w ∈ RKt : ∀z ∈ Ct, ht,δt(w, z) ≤

5

3
K

}
.

using one call to LCCSCO.

Lemma 4.14 (Separation oracle for Lt). Let w ∈ RKt. Let

z∗
.
= arg max

z∈Ct
ht,δt(w, z).

z∗ can be found in one call to LCCSCO. If ht,δt(w, z∗) ≤ 5K/3, then w ∈ Lt. If not, then w 6∈ Lt
and

H .
=
{
w′ : ht,δt(w, z

∗) + (∇wht)(w, z
∗)>(w′ − w) = 0

}
separates w and Lt.

We restate below for self-containdness lemma 10 from Dudik et al. [2011], which will be useful
in the rest of the section.

Lemma 4.15 (Lemma 10 in [Dudik et al., 2011]). For x ∈ Rn, let f(x) be a convex function of x,
and consider the convex set K defined by K = {x : f(x) ≤ 0}. Suppose we have a point y such
that f(y) > 0. Let∇f(y) be a subgradient of f at y. Then the hyperplane f(y)+∇f(y)>(x−y) =
0 separates y from K.

Proof. Observe that

ht,δt(w, z)
.
=

1

t− 1

∑
a∈[K]
τ∈[t−1]

ua,τza,τ ,

with

ua,τ
.
=

1

δt/K + (1− δt)wa,τ
≥ 0.

Therefore, arg maxz∈Ct ht,δ(w, z) = wt,f∗ , where

f ∗
.
= arg max

f∈F

1

t− 1

∑
a∈[K]
τ∈[t−1]

ua,τf(a,Wτ ) subject to ∀τ ∈ [t], R̂τ (f) ≤ max
f∈F

R̂τ (f) + ετ .

As

R̂τ (f) =
1

τ

∑
a∈[K]
s∈[τ ]

1{As = a}(1− Ys)
g(a|Ws)

f(a,Ws),
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the constraint R̂τ (f) ≤ maxf∈F R̂τ (f)+ετ . is a linear constraint, and therefore, f ∗ can be obtained
with one call to LCCSCO.

From lemma 4.15, if ht,δt(w, z∗)− 5K/3 > 0,

H .
=
{
w′ : ht,δt(w, z

∗) + (∇wht)(w, z
∗)>(w′ − w) = 0

}
separates w from {

w′ ∈ RKt : ht,δt(w
′, z∗)− 5

3
K ≤ 0

}
,

and thus from Lt, which concludes the proof.

4.G Proof of the results on the additive model policy class

4.G.1 Proof of lemma 4.2
The following result is the fundamental building block of the proof.

Lemma 4.16 (Bracketing entropy of univariate distribution functions). Let G the set of cumulative
distribution functions on [0, 1]. There exist c0 > 0, ε0 ∈ (0, 1) such that, for all ε ∈ (0, ε0),

logN[ ](ε,G, ‖ · ‖∞) ≤ c0ε
−1 log(1/ε).

We first state an intermediate result.

Lemma 4.17 (Bracketing entropy of linear combinations). LetH be a class of functions and let

F .
=

{
J∑
j=1

ajhj : a1, . . . , aJ ∈ [−B,B], h1, . . . , hJ ∈ H

}
.

Suppose that for all h ∈ H, ‖h‖∞ ≤M . Then, for all ε > 0,

logN[ ](ε,F , ‖ · ‖∞) ≤ J logN[ ]

( ε

2JB
,H, ‖ · ‖∞

)
+ J log

(
4JBM

ε

)
.

Proof of lemma 4.17. Let

B = {(lk, uk) : k ∈ [N ]}

be an ε bracketing in ‖ · ‖∞ norm of H. For all m, let αm = m(B/M)ε. For all f =
∑J

j=1 ajhj ,
there exist k1, . . . , kJ and m1, . . . ,mJ such that ∀j ∈ [J ],

lkj ≤ hj ≤ ukj ,
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and

αmj−1
≤ aj ≤ αmj .

Therefore,

Λ(k1, . . . , kJ ,m1, . . . ,mJ) ≤ f ≤ Υ(k1, . . . , kJ ,m1, . . . ,mJ),

with

Λ(k1, . . . , kJ ,m1, . . . ,mJ)
.
=

J∑
j=1

αmj−1(lij)
+ + αmj(lij)

−,

and Υ(k1, . . . , kJ ,m1, . . . ,mJ)
.
=

J∑
j=1

αmj−1(uij)
+ + αmj(uij)

−.

Therefore, we have that

|Υ(k1, . . . , kJ ,m1, . . . ,mJ)− Λ(k1, . . . , kJ ,m1, . . . ,mJ)|

=

∣∣∣∣ J∑
j=1

αmj−1(uij − lij) +
J∑
j=1

(αmj − αmj−1)((umj)
+ − (lmj)

−)

∣∣∣∣
≤JBε+

JBε

M
M

=2JBε.

Therefore,

N[ ](2JBε,F , ‖ · ‖∞) ≤ N[ ](ε,H, ‖ · ‖∞)×
(

2M

ε

)J
,

hence the claim.

We can now prove lemma 4.2

Proof of lemma 4.2. Let ε > 0. Let

B .
= {(`i, ui) : i ∈ [N ]} ,

be an ε-bracketing in ‖ · ‖∞ the set of distribution functions on [0, 1], which we will denote G. Let
h ∈ H. There exist a ∈ [−B,B], b ∈ [0, B], h1, h2 ∈ such that h = a + b(h1 − h2), and there
exists i1, i2 ∈ [N ] such that

li1 ≤ h1 ≤ ui1 and li2 ≤ h2 ≤ ui2 ,

and i3 ∈ [−1/ε, 1/ε] such that a ∈ [αi3−1, αi3 ] with

αi3
.
= i3Mε,
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and i4 ∈ [0, 1/ε] such that b ∈ [βi4−1, βi4 ] with

βi4
.
= i4Mε.

Therefore, we have that

Λ(i1, i2, i3, i4) ≤ h ≤ Υ(i1, i2, i3, i4),

with

Λ(i1, i2, i3, i4)
.
=αi3−1 + βi3−1(li1 − ui2)+ + βi3(li1 − ui2)−

and Υ(i1, i2, i3, i4)
.
=αi3 + βi3(ui1 − li2)+ + βi3−1(ui1 − li2)−.

Note that

0 ≤ Υ(i1, i2, i3, i4)− Λ(i1, i2, i3, i4) =αi3 − αi3−1

+ βi3−1(ui1 − li1 + ui2 − li2)
+ (βi3 − βi3−1)((ui1 − li2)+ − (li1 − ui2)−)

≤Mε+ 2Mε+Mε(ui1 − li2)+

≤4Mε.

Therefore,

B′ .= {(Λ(i1, i2, i3, i4),Υ(i1, i2, i3, i4)) : i1, i2 ∈ [N ], i3 ∈ [−1/ε, 1/ε], i4 ∈ [0, 1/ε]}

is an 4Mε-bracket in ‖ · ‖∞ norm ofH. Thus

N[ ](4Mε,H, ‖ · ‖∞) ≤2

ε
× 1

ε
×N[ ](ε,G, ‖ · ‖∞)2

That is

logN[ ](ε,H, ‖ · ‖∞) ≤2 log

(
8M2

ε2

)
+ 2 logN[ ]

( ε

4M
,G, ‖ · ‖∞

)
=2 log

(√
8M

ε

)
+ 2 logN[ ](ε,G, ‖ · ‖∞).

Therefore, from lemma 4.17 and lemma 4.16,

logN[ ](ε,F , ‖ · ‖∞) ≤J log

(
4JBM

ε

)
+ 2J log

(√
8MJBM

ε

)
+ 2J logN[ ]

( ε

2JB
,G, ‖ · ‖∞

)
≤(2Jc0 + 1)ε−1 log

(
4
√

8J(M ∨M2)(B ∨ 1)

ε

)
,

for all ε ∈ (0, 2JBε0).
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4.G.2 Proof of lemma 4.3

Proof of lemma 4.3. We decompose the proof in three steps. We will denote feas(P1) and feas(P2)
the feasible sets of P1 and P2.

Step 1: The feasible set of P2 is contained in the feasible set of P1. First, observe that for any
h : x 7→

∑t
τ=1 βτ1{x ≥ xτ}, ‖h‖v =

∑t
τ=0 |βτ |. Therefore, for every l, H̃l,t ⊆ H and thus

F̃t ⊆ F .
Second, observe that for any w ∈ [0, 1]d, there exists w̃ ∈ G(w0, . . . , wn) such that f̃(w) =

f̃(w̃). Therefore, if f̃ satisfies (4.9) and (4.10) at every (a, w) ∈ [K] × G(w0, . . . , wt), it satisfies
them everywhere. Therefore, this proves that the feasible set of P2 is contained in the feasible set
of P1.

Step 2: For any f in the feasible set of P1, there is an f̃ in the feasible set of P2 that
achieves the same value of the objective function. Let f : (a, w) 7→

∑d
l=1 αa,lha,l(wl) be

an element of the feasible set of P1. Observe that for all a, l, there exists h̃a,l of the form
h̃a,l : x 7→

∑t
τ=1 βa,l,τ1{x ≥ wτ,l} such that for all τ ∈ {0, . . . , t}, h̃a,l(wτ,l) = ha,l(wτ,l). As f

and f̃ coincide at every (a, w) ∈ [K]×G(w0, . . . , wn), constraints (4.11) and (4.12) are satisfied at
every (a, w) ∈ [K]×G(w0, . . . , wn), and f and f̃ achieve the same value of the objective function.
To prove that f̃ is in the feasible set of P2, it remains to show that the functions (h̃a,l)a∈[K],l∈[d] are
inHl,t, that is that for all a, l,

∑t
τ=0 |βa,l,τ | ≤M . We have that

t∑
τ=0

|βa,l,τ | =|h̃a,l(0)|+
t∑

τ=1

|h̃a,l(wτ,l)− h̃a,l(wτ,l)|

=|ha,l(0)|+
t∑

τ=1

|ha,l(wτ,l)− ha,l(wτ−1,l)|

≤|ha,l(0)|+
∑
m∈N

0≤x1≤...≤xm≤1

|ha,l(xm+1)− ha,l(xm)|

≤‖ha,l‖v
≤M.

Step 3: End of the proof. Let f ∗ be a solution to P1. Let f̃ ∗ be a function in the feasible set of
P2 such that f ∗ = f̃ ∗ on [K] × G(w0, . . . , wt). From step 2, such a function exists. The objective
function evaluated at f̃ ∗ is equal to the objective function evaluated at f ∗. Since, from step 1,
feas(P1) ⊆ feas(P2), and f ∗ is a maximizer over feas(P1), f̃ ∗ must be a maximizer over both P1

and P2.
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4.H Representation results for the ERM over cadlag functions
with bounded sectional variation norm

4.H.1 Empirical risk minimization in the hinge case
The following result shows that empirical risk minimization over Fhinge, with F0 the class of
cadlag functions with bounded sectional variation norm.

Lemma 4.18 (Representation of the ERM in the hinge case). Consider a class of policies of
the form Fhinge, as defined in (4.6), derived from F0, as defined in (4.13). Let φ = φhinge.
Suppose we have observed (W1, A1, Yt), . . . ,Wt, At, Yt) and let W̃1, . . . , W̃m be the elements of
G(W1, . . . ,Wt).

Let (βaj )a∈[K],j∈[m] be a solution to

min
β∈RKm

t∑
τ=1

∑
a∈[K]

{
1{Aτ = a}
gτ (Aτ ,Wτ )

(1− Yτ )

×max

(
0, 1 +

m∑
j=1

βaj 1{Wτ ≥ W̃j}

)}

s.t. ∀l ∈ [m],
∑
a∈[K]

m∑
j=1

βaj 1{W̃l ≥ W̃j} = 0,

∀a ∈ [K],
m∑
j=1

|βaj | ≤M.

Then f : (a, w) 7→
∑m

j=1 β
a
j 1{w ≥ W̃j} is a solution to minf∈FId

∑t
τ=1 `

φ
τ (f)(Oτ ).

4.H.2 Formal definition of the Vitali variation and the sectional variation
norm

We now present in full generality the definitions of the notions Vitali variation, Hardy-Krause
variation and sectional variation norm. This requires introducing some prelimiary definitions. This
section is heavily inspired from the excellent presentation of Fang et al. [2019], and we write it
instead of directly referring to their work mostly for self-containdness, and so as to ensure matching
notation.

Definition 4.6 (Rectangular split, rectangular partition and rectangular grid). For any d subvidi-
sions

0 = wk,1 ≤ wk,2 ≤ . . . ≤ wk,qk = 1, k = 1, . . . , d,

of [0, 1], let
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• P be the collection of all closed rectangles of the form [w1,i1 , w1,i1+1]× . . .× [wd,id , wd,id+1],

• P∗ be the collection of all open rectangles of the form [w1,i1 , w1,i1+1)× . . .× [wd,id , wd,id+1).

• G the collection of all points of the form (wi1 , . . . , wid).

Any collection of the form P is called a rectangular split of [0, 1]d, any collection of the form P∗ is
called a rectangular partition of [0, 1]d and any set of points of the form G is called a rectangular
grid on [0, 1]d.

Definition 4.7 (Minimum rectangular split, partition and grid). Let w1, . . . , wn be n points of
[0, 1]d. We call minimum rectangular split induced by w1, . . . , wn, and we denote P(w1, . . . , wn),
the rectangular split of minimum cardinality such that w1, . . . , wn are all corners of rectangles in
P(w1, . . . , wn). We define similarly the minimum rectangular parition induced by w1, . . . wn. We
denote it P∗(w1, . . . , wn). We define the minimum rectangular grid induced by w1, . . . , wn, which
we denote G(w1, . . . , wn), as the smallest cardinality rectangular grid that contains w1, . . . , wn.

Definition 4.8 (Section of a function). Let s ∈ [d], s 6= ∅, and consider f ∈ D([0, 1]d). We call the
s-section of f , and denote fs, the restriction of f to the set

{(w1, . . . , wd) ∈ [0, 1]d : ∀j ∈ s, wj = 0}.

Observe that the above set is a face of the cube [0, 1]d and that fs is a cadlag function with domain
[0, 1]|s|.

Definition 4.9 (Vitali variation). For any d ≥ 1 and any rectangleR of the form [w1,1, w2,1]× . . .×
[w1,d, w2,d] or [w1,1, w2,1)× . . .× [w1,d, w2,d), such that for all k = 1, . . . , d, wk,1 ≤ wk,2, let

∆(d)(f,R) =

J1∑
j1=0

. . .

Jd∑
jd=0

(−1)j1+...+jdf(w2,1 + j1(w1,1 − w2,1), . . . , w2,d + jd(w1,d − w2,d)),

where, for all k = 1, . . . , d, Jk = I(w2,d 6= w1,d). The quantity ∆(d)(f,R) is called the quasi
volume ascribed to R by f . The Vitali variation of f on [0, 1]d is defined as

V (d)(f, [0, 1]d) = sup
P

∑
R∈P

|∆(d)(f,R)|,

where the sup is over all the rectangular partitions of [0, 1]d.

Definition 4.10 (Hardy-Krause variation and sectional variation norm). The Hardy-Krause varia-
tion anchored at the origin of a function f ∈ D([0, 1]d) is defined as the sum of the Vitali variation
of its sections, that is it is defined as the quantity

VHK,0(f) =
∑
∅6=s⊆[d]

V (d)(fs, [0, 1]|s|).

The sectional variation norm of f is defined as follows:

‖f‖v = |f(0)|+ VHK,0(f).
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4.H.3 Proof of lemmas 4.5 and 4.18
The proof of lemmas 4.5 and 4.18 will easily follow from the following two results.

Lemma 4.19. Let f ∈ F0. Let x1, . . . , xn ∈ [0, 1]d. Denote x̃1, . . . , x̃m the elements of G(x1, . . . ,
xn). Let

F̃0(x1, . . . , xn)
.
=

{
x 7→

m∑
j=1

βj1{x ≥ x̃j} :
m∑
j=1

|βj| ≤M

}
.

Then

• F̃0(x1, . . . , xn) ⊆ F ,

• there exists f̃ ∈ F̃0(x1, . . . , xn) such that f̃ and f coincide on G(x1, . . . , xm) and ‖f̃‖v ≤
‖f‖v.

Lemma 4.20. Let f̃1, . . . , f̃q ∈ F̃0(x1, . . . , xn). Let α1, . . . , αq, β ∈ R. Consider the inequality
constraint

q∑
l=1

αlf̃l ≤ β.

The following are equivalent.

1. f̃1, . . . , f̃q satisfy the inequality constraint everywhere on [0, 1]d.

2. f̃1, . . . , f̃q satisfy the inequality constraint everywhere at every point of G(x1, . . . , xn).

We relegate the proofs of the two above lemmas further down in this section. We can now state
the proof of lemmas 4.5 and 4.18.

Proof of lemmas 4.5 and 4.18. The following arguments apply similarly to lemma 4.5 and lemma
4.18. We present the proof in the direct policy optimization case. We proceed in two steps.

Step 1: the feasible set of (4.14) contains a solution the ERM problem over F Id Let f be a
solution to

min
f∈FId

t∑
τ=1

`Idτ (f)(Oτ ). (4.21)

There exists f1, . . . , fK ∈ F0 such that ∀a ∈ [K], f(a, ·) = fa(·). From lemma 4.19, there exists
f̃1, . . . , f̃K that coincide with f1, . . . , fK on G(x1, . . . , xn). Then the function f̃ : (x, a) 7→ f̃a(x)
achieves the same value of the objective in (4.21) as f .

Since f̃1, . . . , f̃K coincide with f1, . . . , fK on G(x1, . . . , xn), they satisfy the same inequality
constraints as f1, . . . , fK (that is non-negativity, and summing up to 1) on G(x1, . . . , xn). From
lemma 4.20, f̃1, . . . , f̃K must satisfy these constraints everywhere.

That f̃1, . . . , f̃K are in F0, satisfy the positivity constraint, and sum to 1 everywhere, imply that
that f̃ defined above is in F Id.
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Step 2: The feasible set of (4.14) is included in F Id. This follows directly from lemmas 4.19
and 4.20.

Proof of lemma 4.19. Let f̃ be of the form x 7→
∑m

j=1 βj1{x ≥ x̃j} such that for every j ∈ [m],
f̃(x̃j) = f(x̃j). Let us show that ‖f̃‖v ≤ ‖f‖v ≤M . We have that

V (f, [0, 1]d) = sup
P

∑
R∈P

|∆(f,R)|

= sup
P ′=P∩P(x1,...,xn)
P rect. split

∑
R∈P

|∆(f,R)|

≥ sup
R∈P(x1,...,xn)

|∆(f,R)|

= sup
R∈P(x1,...,xn)

|∆(f̃ , R)|

=
∑

R∈P(x1,...,xn)

|∆(f̃ , R)|

=V (f̃ , [0, 1]d).

The second line in the above display follows from corollary 4.2. The third line follows from lemma
4.21. The fourth line follows from the fact that, as |∆(f,R)| only depends on f through its values
at the corners of R, which, for R in P(x1, . . . , xn), are points of G(x1, . . . , xn), at which f and f̃
coincide. The last line follows from corollary 4.3.

The above implies that M ≥ ‖f‖v ≥ ‖f̃‖v =
∑m

j=1 |βj|, where the last equality follows from
lemma 4.22.

We have thus shown that for every f ∈ F0, we can find an f̃ ∈ F̃0(x1, . . . , xn) that coincides
with G(x1, . . . , xn).

It remains to show that F̃0(x1, . . . , xn) ⊆ F0. It is clear that the elements of F̃0(x1, . . . , xn) are
cadlag. From lemma 4.22, the definition of F̃0(x1, . . . , xn) implies that its elements have sectional
variation norm smaller than M . Therefore, F̃0(x1, . . . , xn) ⊆ F0.

4.H.4 Technical lemmas on splits and Vitali variation
Effect on Vitali variation and absolute pseudo-volume of taking finer splits

The following lemma says that the sum over a split of the absolute pseudo-volume ascribed by f
increases as one refines the split.

Lemma 4.21. Let f : [0, 1]d → R. Let P1 and P2 be two rectangular splits of [0, 1]d. Define

P1 ∩ P2
.
= {R1 ∩R2 : R1 ∈ P1, R2 ∈ P2} .

It holds that ∑
R∈P1

|∆(d)(f,R)| ≤
∑

R′∈P1∩P2

|∆(f,R′)|.
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We relegate the proof at the end of this section. The following lemma has the following corol-
lary.

Corollary 4.2. For any function f : [0, 1]d → R and any rectangular split P0 of [0, 1]d, the Vitali
variation of f , which we recall is defined as V (d)(f)

.
= supP rect. split

∑
R∈P |∆(f,R)| can actually

be written as

V (d) = sup
P ′=P∩P0
P rect. split

∑
R∈P ′
|∆(f,R′)|.

Proof of corollary 4.2. Observe that the set of rectangular splits {P∩P0 : P rect. split} is included
in the set of all rectangular splits. Therefore,

sup
P ′=P∩P0
P ′ rect. split

∑
R∈P ′
|∆(f,R)| ≤

∑
Psplit

|∆(f,R)|.

Lemma 4.21 implies the converse inequality:

sup
P ′=P∩P0
P ′ rect. split

∑
R∈P ′
|∆(f,R)| ≥

∑
Psplit

|∆(f,R)|.

We therefore have the wished equality.

Vitali variation of piecewise constant functions

The following lemma characterizes the sum over a rectangular split of the absolute pseudo-volumes
of a function that is piecewise constant on the rectangles of that split.

Lemma 4.22. Let x1, . . . , xn ∈ [0, 1]d and let x̃1, . . . , x̃m be the elements of G(x1, . . . , xn). Con-
sider a function f of the form

f : x 7→
m∑
j=1

βj1{x ≥ xj},

It holds that

VHK,0(f) =
m∑
j=1

|βj|.

Corollary 4.3 (Vitali variation of rectangular piecewise constant function). Let x1, . . . , xn ∈
[0, 1]d, let x̃1, . . . , x̃m be the elements of G(x1, . . . , xm), and consider a function f of the form

f : x 7→
J∑
j=1

βj1{x ≥ x̃j}.
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Then

sup
P rect. split

|∆(f,R)| =
∑

R∈P(x1,...,xn)

|∆(f,R)|,

where P(x1, . . . , xn) is a minimal rectangular split induced by x1, . . . , xm.

Proof of lemma 4.21. Consider a rectangle R ∈ P(x1, . . . , xn). There exist k, l ∈ [m] such that
R = [x̃k, x̃l]. (Since P(x1, . . . , xn) is a minimal split, we must have x̃k < x̃l as otherwise the
corresponding minimum grid would have duplicate points and would therefore not be minimal).
Observe that

∆(f, [x̃k, x̃l]) =∆

(
m∑
j=1

βj1{· ≥ x̃j}, [x̃k, x̃l]

)

=βj

m∑
j=1

∆ (1{· ≥ x̃j}, [x̃k, x̃l]) ,

as the operator f ′ 7→ ∆(f ′, [x̃k, x̃l]) is linear. Let us calculate ∆(1{· ≥ x̃j}, [x̃k, x̃l]) for every
j ∈ [m]. We have that

∆(1{· ≥ x̃j}, [x̃k, x̃l])

=
∑

j1,...,jd∈{0,1}

(−1)j1+...+jd1 {x̃l,1 + j1(x̃k,1 − x̃l,1) ≥ x̃j,1, . . . , x̃l,d + jd(x̃k,d − x̃l,d) ≥ x̃j,d} .(4.22)

From there, we distinguish three cases.

Case 1: There exists i ∈ [d] such that x̃j,i > x̃l,i. Then, all terms in (4.22) are zero and thus
∆(1{· ≥ x̃j}, [x̃k, x̃l]) = 0.

Case 2: x̃j = x̃l. Then, only the term in (4.22) corresponding to j1 = . . . = jd = 0 is non-zero
and thus ∆(1{· ≥ x̃j}, [x̃k, x̃l]) = 1.

Case 3: x̃j ≤ x̃l and x̃j 6= x̃l. Then denote

I ={i ∈ [d] : x̃j,i = x̃l,i}
and Ic =[d]\I.

As x̃j 6= x̃l, Ic 6= ∅. Denote i1, . . . , iq the elements of Ic, where q = |Ic|. Then

∆(1{· ≥ w̃j}, [x̃k, x̃l])

=
∑

j1,...,jd∈{0,1}

(−1)j1+...+jd1 {x̃l1 + j1(x̃k,1 − x̃l,1) ≥ x̃j,1, . . . , x̃l,d + jd(x̃k,d − x̃l,d) ≥ x̃j,d}
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=
∑

j1,...jd∈{0,1}

(−1)j1+...+jd1{∀i ∈ I, ji = 0}

=
∑

ji1 ,...,jiq∈{0,1}

(−1)ji1+...+jiq

=
1∑

ji1=0

(−1)ji1
1∑

ji2=0

(−1)ji2 . . .
1∑

jiq=0

(−1)jiq

=0.

Therefore, we have shown that, for all j = 1, . . . ,m,

∆(1{· ≥ x̃j}, [x̃k, x̃l]) =

{
1 if x̃j = x̃k,

0 otherwise.

This implies that

|∆(f, [w̃k, w̃l]) = |βk|.

which concludes the proof.

Proof of corollary 4.3. From lemma 4.21,

sup
P split

∑
R∈P

|∆(f,R)| = sup
P ′=P∩P(x1,...,xn)
P ′rect. split

∑
R∈P ′

∑
R∈P ′
|∆(f,R)|.

Consider a split P ′ of the form P∩P(x1, . . . , xn). We can write the corresponding rectangular grid
as x̃1, . . . , x̃m, x̃m+1, . . . , xm′ where x̃1, . . . , x̃m are the points of G(x1, . . . , xn). We can rewrite f
as

f : x 7→
m∑
j=1

βj1{x ≥ x̃j},

with βm+1 = . . . = βm′ = 0. From lemma 4.22, we have that

∑
R∈P ′
|∆(f,R)| =

m′∑
j=1

|βj| =
m∑
j=1

|βj| =
∑

R∈P(x1,...,xn)

|∆(f,R)|.

Therefore

sup
P ′=P∩P(x1,...,xn)
P rect. split

∑
R∈P ′
|∆(f,R)| =

∑
R∈P(x1,...,xn)

|∆(f,R)|.
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In this chapter, we give guarantees on estimators of infinite dimensional parameters of the
uncontrolled part q of the data-generating distribution in a sequential trial. Our contributions are
two-fold.

First, we give high probability deviations bounds for empirical risk minimizers over nonpara-
metric function classes. We give applications to outcome model learning and policy learning in
the contextual bandit setting, and on sequential learning of the transition density in the Markov
Decision Process setting.

Second, we give new guarantees on the sequential Super Learner. Our new theorem improves
on the original theorem from Benkeser et al. [2018] by avoiding a condition that is hard to check.

5.1 Introduction

5.1.1 Data and statistical experiment

Suppose that an experimenter interacts with an environment along T time steps. At time step
t, the experimenter observes a vector of pre-treatment covariates L1(t) lying in a Euclidean set
L1 characterizing the state of the environmnet, then assigns treatment A(t) ∈ A := [K], for
some K ≥ 2, and then observes a vector of post-treatment covariates L2(t) ∈ L2. We denote
O(t) := (L1(t), A(t), L2(t)) the data observed at step t, and we let Ō(t) := (O(1), . . . , O(t)). We
adopt the convention that Ō(0) is a known constant, so that conditioning on it leaves unchanged a
probability distribution.

5.1.2 Statistical models

Denote P T
0 the true distribution of Ō(T ), and let MT the statistical model which we assume to

contain P T
0 . We denote P T a generic element ofMT . We suppose that there exists a dominating

measure µT such that every element P T admits a density w.r.t. µ. For any P T , we denote pT this
density. For any ō(T ) ∈ OT , any such density can be factored as

pT (ō(T )) =
T∏
t=1

q1(l1(t) | ō(t− 1))g̃t(a(t) | ō(t− 1), l1(t))q2(l2(t) | ō(t− 1), l1(t), a(t)).

We consider two statistical models: the stochastic contextual bandit model, and the Markov
Decision Process model, as defined in the introduction chapter. We recall these models below.

Stochastic contextual bandit. In the stochastic contextual bandit model, we assume that L1(1),
L1(2), . . . form an i.i.d. sequence of random variables that we refer to as contexts. For every t, we
assume that L2(t) is a reward that lies in [0, 1] and that depends on the past Ō(t − 1), L1(t), A(t)
only through L1(t), A(t). We suppose that the distribution of L2(t) given A(t), L1(t) is the same
for every t. As a result, for any distribution P T in the modelMT , the corresponding density can
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be factorized as

pT (ō(T )) =
T∏
t=1

q1(l1(t))g̃t(a(t) | ō(t− 1), l1(t))q2(l2(t) | l1(t), a(t)).

Under this model, the action at t that maximizes the expected reward depends only on l1(t). We
call a policy a conditional distribution (l1, a) ∈ L1 × A 7→ g(a | l1). We can write the likelihood
of the data Ō(T ) as follows:

pT (Ō(T )) =
T∏
t=1

q1(L1(t))gt(A(t) | L1(t))q2(L2(t) | L1(t), A(t)),

with gt(a(t) | l1(t)) := g̃t(a(t) | l1(t), Ō(t − 1)). Note that the policy gt is an Ō(t − 1) random
function, unlike g̃t, which is a fixed function.

Markov Decision Process. We let L2(t) = 0 for every t ≥ 1. The Markov Decision Process
model assumes that L1(t) depends on the past Ō(t − 1) only through the latest state L1(t − 1)
and the latest action A(t − 1), and that the conditional distribution of L1(t) given L1(t − 1) and
A(t− 1) is the same across time points. As a result, for any distribution P T in the modelMT , the
corresponding density pT can be factorized as

pT (ō(T )) =
T∏
t=1

q(l1(t) | l1(t− 1), a(t− 1))g̃t(a(t) | ō(t− 1), l1(t)).

Under the MDP model too, the action that maximizes the reward to go at t depends only on l1(t),
which motivates introduce the notion of policies defined as conditional distributions over A given
a value l1 ∈ L1 of the latest state. As in the CB setting, we can write the likelihood of Ō(t− 1) as

pT (Ō(T )) =
T∏
t=1

q1(L1(t) | L1(t− 1), A(t− 1))gt(A(t) | L1(t))q2(L2(t) | L1(t), A(t)),

with gt(a(t) | l1(t)) := g̃t(a(t) | l1(t), Ō(t− 1)). Here too gt is an O(t− 1) measurable object.

5.1.3 Target parameters
In the contextual bandit model, parameters of interest include the outcome model

(l1, a) 7→ Q̄(a, l1) := Eq2 [L2(t) | L1(t), A(t)] ,

and, given a policy class G, an optimal policy g∗ ∈ G, that is any element of arg maxV(q, g),
where V(q, g) is the value of g under q, as defined in the introduction chapter.

In the MDP setting, a parameter of interest is the conditional density q1. Note that if one knows
the true transition density q0,1, one can find an optimal policy, that is a policy that maximizes the
expected cumulative reward (or the expected cumulated discounted reward).
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5.2 High probability bounds for empirical risk minimizers
In this section, we give high probability bounds on the excess risk of empirical risk minimizers over
a nonparametric class under a bracketing entropy assumption. Let us first introduce the setting. Let
F be a class of functions O × R (or L1 × A × L1 → R). Let ` be a mapping such that, for any
f : O×R or any f : L1×A×L1 → R, `(f) is a functionO → R or L1×A×L1 → R. We will
interpret ` as a loss function. Let

Rt(f) := Eq1,gref ,q2
[
`(f)(O(t)) | Ō(t− 1)

]
and

R̄T (f) :=
1

T

T∑
t=1

Rt(f)

be the conditional population risk, and the average conditional population risk. Let `t be the
importance sampling weighted loss, defined for any f ∈ F as `t(f) := (gref/gt)`(f), and let

R̂T (f) :=
1

T

T∑
t=1

`t(f)(O(t)),

be the empirical (importance-sampling weighted) risk, where gref(a | l1) := K−1. We denote R0,t

and R̄0,T the corresponding risks under q0 := (q0,1, q0,2).
Let f1 ∈ F be a fixed function, and let f̂T be an empirical risk minimizer over F , that is a

function f ∈ F such that

R̂T (f̂T ) := inf
f∈F

R̂T (f).

For any f : O → R, let

σ2
T (f) :=

1

T

T∑
t=1

Eq1,gref ,q2
[
f(O(t))2 | Ō(t− 1)

]
.

It is straightforward to observe that σT is a norm. In the upcoming theorem, we give a high
probability bound on the population risk difference RT (f̂T ) − RT (f ∗) of of the empirical risk
minimizer. Our theorem relies on the following assumptions.

Assumption 5.1 (Entropy). There exists p > 0 such that

logN[ ](ε, `(F), σT ) . ε−p,

where `(F) := {`(f) : f ∈ F}.

The following assumption is a so-called variance bound. It is a common condition in the study
of ERMs.
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Assumption 5.2 (Variance bound). There exists α > 0 such that, for any f ∈ F ,

σ2
T (`(f)− `(f1)) . (RT (f)−RT (f1)))α .

The following last assumption is a bound on the importance sampling ratios gref/gt.

Assumption 5.3 (Importance sampling ratios bound). There exists δ > 0 such that

sup
t∈[T ]

‖gref/gt‖∞ ≤ δ−1

almost surely.

Assumption 5.4 (Radius of `(F)). There exists B > 0 and r0 > 0 such that

sup
f∈F
‖f‖∞ ≤ B and sup

f∈F
σT (f) ≤ r0.

Assumption 5.5 (Convexity). The class F is convex and the mapping ` is convex over F .

Theorem 5.1 (High probability bound for ERMs). Suppose that assumptions 5.1-5.5 hold. Then,
with probability at least 1− 2e−x,

RT (f̂T )−RT (f1) . (δT )−
1

2−α+pα/2 +
( x

δT

) 1
2−α

+
Bx

δT

if p ∈ (0, 2), and

RT (f̂T )−RT (f1) . (δT )−
1
p + r0

√
x

δT
+
Bx

δT

if p ¿ 2.

5.3 ERM for policy learning in the CB setting

5.3.1 Two approaches to policy learning
Policy learning objective. In the contextual bandit setting, one learning goal is to estimate an
optimal policy, that is a to find a policy g that maximizes the value V(q, g), as defined in the
introduction chapter, over a certain policy class G. Recall that

V(q, g) := Eq1

[
K∑
a=1

Q̄(a, L1)g(a | L1)

]
.

We define the risk of a policy g as its negative value:

R(q, g) := −V(q, g).

Let Oref := (Lref
1 , Aref , Lref

2 ) ∼ P ref where dP ref/dµ = q1grefq2. We introduce a loss ` such that
for any policy g, and any (l1, a, l2) `(f)(l1, a, l2) = − 1

gref(a|l1)
l2g(a | l1), and, for any t ≥ 1 let

`t(f) := (gref/gt)`(f). Observe that

R(q, g) = Eq1, gref , q2

[
`(f)(Oref)

]
= Eq1,gt,q2

[
`t(O(t)) | Ō(t− 1)

]
.
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Reduction to cost sensitive classification. The policy optimization problem in the contextual
bandit setting can be recast as a cost-sensitive classification problem in which l1 7→ g(· | l1) is a
classifier that maps a vector of predictors l1 to a probability distribution over labels 1, . . . , K, and
where −Q̄(a, l1) is the cost of predicting label a under l1. The connection between policy learning
and cost-sensitive classification has been made in numerous articles in the past (see e.g. Zhao et al.
[2012]). It is a useful connection as it allows in particular to reuse the theory of classification
calibration (see in particular Bartlett et al. [2006]).

We consider two approaches to policy learning.

Direct policy optimization. Let

R̂T (g) :=
1

T

T∑
t=1

`t(g)(O(t)),

the (importance sampling weighted) empirical risk of policy g. The first approach to policy learning
that we consider is to directly minimize w.r.t. g the empirical risk R̂T (g). We denote ĝT a minimizer
over the policy class G of R̂T . We refer to this approach as direct policy optimization. One major
caveat of this approach, is that for most natural policy classes, optimizing R̂T (g) is computationally
intractable. We give an example of a class over which it is tractable in chapter 4.

Optimizing a convex surrogate risk. In the second approach, we consider policies of the form

gf (a | l1) = 1{a = arg max f(a, l1)}

for functions living in a certain class F such that
∑K

a=1 f(a, l1) = 0 for every l1. We define a
convex surrogate loss as

`φ(f)(o) := −yφ(f(a, l1)),

where φ is a convex function. Common examples for φ include the hinge surrogate φhinge : x 7→
(1 + x)+ and the truncated square surrogate φtsq : x 7→ (1 + x)2

+. We define the importance
sampling φ-loss as `φt (f) := (gref/gt)`(f), and the φ-risk as

Rφ(q, f) := Eq1,gref ,q2
[
`φ(f)(Oref)

]
= Eq1,gt,q2

[
`t(f)(O(t)) | Ō(t− 1)

]
.

In the surrogate setting, we optimize the φ-risk w.r.t. f over F . We define the empirical φ-risk as

R̂T (f) :=
1

T

T∑
t=1

`(t)(O(t− 1)).

Let f̂T be an empirical φ-risk minimizer over F . Our fitted policy is then gf̂T . We define the excess

risk R(q, gf̂T )− infg R(q, g) and terms of the excess φ-risk Rφ(q, f̂T )− inff R
φ(q, f), where in the

first expression, the infimum is over measurable policies, and in the second over measurable func-
tions f : L1 × A → R such that

∑K
a=1 f(a, l1) = 0 for every l1. Classification calibration theory

allows us to bound the former in terms of the latter, under the so-called realizability assumption,
which we present next.
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Assumption 5.6 (Realizability). The function class F contains a minimizer of Rφ(q, f) over the
set of measurable functions f : L1 ×A → R such that

∑K
a=1 f(a, l1) = 0 for all l1 ∈ L1.

Obtaining guarantees on the excess risk. Consider either of the two approaches. In the surro-
gate setting, we denote ĝT = gf̂T so as to use the same notation for the fitted policy in both setting.
We care about obtaining guarantees on R(q, ĝT )− infg∈G R(q, g), the excess risk relative to policy
class G. Note that under the realizability assumption, the excess risk relative to G coincides with
the excess risk relative to all measurable policies.

In the direct policy optimization setting, we obtain guarantees directly by applying theorem
5.1.

In the surrogate setting, we obtain guarantees by first applying theorem 5.1 to bound the excess
φ-risk, and we then use classification calibration theory to bound the excess risk in terms of the
excess φ-risk.

5.3.2 Variance bounds
While guarantees can be obtained in the absence of a variance bound, that is when assumption 5.2
holds only for α = 0 (in which case the bound is vacuous, as the bound always hold for α = 0 if `,
or `φ is bounded over F), we can obtain tighter bounds in the presence of such a variance bound.
We consider two situations under which we can obtain a variance bound.

Variance bounds under non-zero modulus of convexity

The first situation only applies to the surrogate case, when the surrogate φ has non-zero modulus of
convexity. We restate below the definition from Bartlett et al. [2006] of the modulus of convexity
of a convex function.

Definition 5.1 (Modulus of convexity). Given a pseudo-metric d on a vector space S, and a convex
function f : S → R, the modulus of convexity of f is defined as a function δ : [0,∞) → [0,∞]
such that

δ(ε) = inf

{
f(x1) + f(x2)

2
− f

(
x1 + x2

2

)
: x1, x2 ∈ S, d(x1, x2) ≥ ε

}
.

The following lemma gives a variance bound that holds when the modulus of convexity is
quadratic.

Lemma 5.1 (Variance bound from modulus of convexity). Suppose that φ has modulus of con-
vexity δ such that δ(ε) & ε2. Let f ∗ be a population φ-risk minimizer, that is an element of
arg minf∈F R

φ(q, f) ∥∥`φ(f)− `φ(f ∗)
∥∥2

q1,gref ,q2
. R(q, f)−R(q, f ∗).

The proof of the above lemma is a straightforward extension to the cost-sensitive setting of
lemmas 15 and 16 in Bartlett et al. [2006].
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Variance bounds under Tsybakov noise assumption and realizability

In the direct policy optimization setting, and in the surrogate setting under surrogates that have zero
modulus of convexity, variance bounds can still be obtained under the conjuction of the realizability
assumption, and of the Tsybakov noise assumption, which we present next. We present it in the
case K = 2. Extensions to the case K > 2 exist, but deriving the corresponding variance bounds
appears to tedious. We leave it to future work. The version of the Tsybakov noise assumption that
we present is a generalization to the cost-sensitive classification setting. One instance of this CSC
Tysbakov noise assumption can be found in Zhao et al. [2012].

Assumption 5.7 (Tsybakov noise assumption). Let η : l1 7→ Q̄(2, l1)/(Q̄(1, l1) + Q̄(2, l2)). We
say that q satisfies the Tsybakov noise assumption if there exists ν > 0 such that

Prq [|2η(L1(1))− 1| ≥ t] . tν

for every t > 0.

The following lemma gives a variance bound under the Tsybakov noise assumption and the
realizability assumption.

Lemma 5.2 (Variance bounds under Tsybakov and realizability). Suppose that assumptions 5.6
and 5.7 hold. Then, for every f ∈ F . Let f ∗ be a population φ-risk minimizer, that is an element
of arg minf∈F R

φ(q, f). (Note that under since we are making the realizability assumption, f ∗

minimizes the φ-risk over measurable functions such that
∑K

a=1 f(a, l1) = 0 for all l1.). Let φ ∈
{φhinge, φId}, where φId : u 7→ u. Observe that the loss ` we use in the direct policy optimization
setting equals `φ

Id
.

We then have that, for any f ∈ F ,∥∥`φ(f)− `φ(f ∗)
∥∥2

q1,gref ,q2
.
(
Rφ(q, f)−Rφ(q, f ∗)

)α
,

with α := ν/(ν + 1).

The proof in the hinge case is a straightforward extension to the CSC setting of lemma 6.1
in Steinwart and Scovel [2007]. The proof in the case φ = φId can be found in various existing
articles such as Chambaz et al. [2017].

5.3.3 Classification calibration bounds
Let R∗(q) := infg R(q, g) and let R∗,φ inff R

∗,φ(q) := inff R
φ(q, f), where the suprema are over

measurable policies and measurable functions f : L1 × A → R such that
∑K

a=1 f(a, l1) = 0 for
all l1 ∈ L1. Under the realizability assumption and the Tsybakov noise assumption with exponent
ν (no Tsybakov noise assumption corresponds to ν = 0), a straightforward extension of theorem
10 in Bartlett et al. [2006] gives that, for every f

(R(q, gf )−R∗(q))αω
(
(R(q, gf )−R∗(q))1−α) . Rφ(q, f)−R∗,φ(q),

for some function ω : R → R that depends on φ. For φ = φtsq, ω(u) = u2, and for φ = φhinge,
ω(u) = u.
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5.3.4 Theorem statement

Theorem 5.2. Suppose that the entropy assumption (assumption 5.1), the importance sampling ra-
tio bound assumption (assumption 5.3), the convexity assumption (assumption 5.5), the assumption
on the radius of the loss class (assumption 5.4), and the Tsybakov noise assumption (assumption
5.7) hold. Let α := ν/(ν + 1). Suppose that φ ∈ {φId, φhinge, φtquad, }.

We consider various situations depending on φ, the values of the entropy exponent p and of the
Tsybakov noise exponent ν, and of whether the realizability assumption 5.6 holds.

Then table 5.1 gives the cases where an inequality of the type

Prq

[
R(q, ĝt)− inf

g∈G
R(q, g) & (Tδ)−β + x

]
. exp (−CTδ(xγ ∧ x)) ,

holds provide and explicit values for the exponents β and γ.

Table 5.1: Coefficients β and γ of the high probability bound on R(q, ĝt)− infg∈G R(q, g)

φ Realizability p β γ

Id
No

∈ (0, 2) 1
2

2

> 2 1
p

2

Yes
∈ (0, 2) 1

2−α+pα/2
2− α

> 2 1
p

2− α

hinge
No No consistency result

Yes
∈ (0, 2) 1

2−α+pα/2
2− α

> 2 1
p

2− α

tquad
No No consistency result

Yes
∈ (0, 2) 1

(2−α)(1+p/2)
2− α

> 2 1
p(2−α)

2− α

5.4 ERM for transition density learning in the MDP model
Since in our formulation of the MDP model we do not use the variables L2(t), we simplify notation
by using L(t) for L1(t) and q for q1.

Consider the negative log likelihood loss, defined for any q as

`(q)(l, a, l′) = − log q(l′ | a, l).



168

Under the MDP model, the population risk defined earlier can be written as

RT (q) :=
1

T

T∑
t=1

Eq [`(q)(L(t), A(t), L(t+ 1)) | O(t)]

and the empirical risk as

R̂T (q) :=
1

T

T∑
t=1

`(q)(L(t), A(t), L(t+ 1)).

Let q1 be a fixed element of Q, and let q̂T ∈ arg minq∈Q R̂T (q). Introduce the alternative loss
l̃, defined for any q as

l̃(q) = − log
q + q1

2q1

,

and let

R̃T (q) =
1

T

T∑
t=1

Eq [`(q)(L(t), A(t), L(t+ 1)) | O(t)]

and

̂̃
RT (q) =

1

T

T∑
t=1

gref

gt
(A(t) | L(t))l̃(q)(L(t), A(t), L(t+ 1)).

Since l̃ is convex, and from the definition of q̂T we have that ̂̃RT (q̂T )− ̂̃RT (q1) ≤ 0.
We will apply theorem 5.1 with the loss l̃. The key step is to show a variance bound. In the

upcoming lemma, we give one under the following assumption.

Assumption 5.8 (Lower bound on q1). There exists η > 0 such that, inf l,a,l′ q1(l′ | l, a) ≥ η.

Lemma 5.3. Suppose that assumption 5.8 holds. Then, for every q ∈ Q,

σT (˜̀(q)− ˜̀(q1)) . R̃T (q)− R̃T (q1).

Proof. For any two q, q′ ∈ Q, and o ∈ O, let

h(q, q′ | o) =

(∫
(
√
q −

√
q′)2(l′ | o)dl′

)1/2

,

the conditional Hellinger distance, and for any f : O × L → R, let

‖f(· | o)‖2,q,o =
(
f 2(l′ | o)q(l′ | o)dl′

)1/2
,
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the conditional L2 norm under q, and

‖f(· | o)‖B,q,o =

(∑
k≥2

1

k!

∫
|f |k(l′ | o)q(l′ | o)dl′

)1/2

,

the conditional Bernstein norm w.r.t. q.
Following the arguments of section 3.4.1, we obtain that∥∥∥(l̃(q)− l̃(q1))(· | O(t))

∥∥∥2

2,q,O(t)

.
∥∥∥(l̃(q)− l̃(q1))(· | O(t))

∥∥∥2

B,q,O(t)

.h2(q, q1 | O(t))

.E
[
(l̃(q)− l̃(q1))(O(t), L(t+ 1)) | O(t)

]
.

Therefore, averaging over t = 1, . . . , T , we obtain

σ2
T ((l̃(q)− l̃(q1))) . R̃T (q)− R̃T (q1).

As a corollary of the above variance bound lemma and of theorem 5.1, we have the following
result on the ERM q̂T .

Theorem 5.3. Suppose that the entropy assumption (assumption 5.1) and assumption 5.4 hold for
l̃(F), and that assumption 5.5 holds for ˜̀. Suppose further that assumptions 5.3 and assumption
5.8. Then, with probability at least 1− 2e−x, we have that, if p ∈ (0, 2),

hT (q̂T , q1) . (δT )−
1

2+p +

√
x(1 +B)

δT
,

and, if p > 2,

hT (q̂T , q1) . (δT )−
1
2p +

√
x(1 +B)

δT
,

where hT (q, q′1) := T−1
∑T

t=1 h(q, q′ | O(t)).

5.5 Stronger guarantees for the sequential Super Learner
We consider the sequential Super Learner, a cross-validation model selector for sequentially col-
lected data. The sequential Super Learner was initially proposed in Benkeser et al. [2018]. In
section, we propose a new version of the guarantees of the sequential Super Learner, in which we
remove assumption A3 of the original paper, which is hard to check.
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We work in the general setting presented in section 5.1. We consider a loss ` over functions
f : O → R, such that, for any such f , `(l(f) is a function O → R. We let `t be the impor-
tance sampling weighted loss defined as `t(f) := (gref/gt)`(f). Let (f̂1,t)t≥1, . . . , (f̂1,J)t≥1 be J
sequences of random functions such that for every j ∈ [J ], t ≥ 1, f̂j,t is Ō(t− 1) measurable. Let
f0 be a fixed function.

For a fixed function f , we define average conditional risk, and its IS-weighted empirical risk
as

RT (q, f) :=
1

T

T∑
t=1

Eq1,gref ,q2
[
`(f)(O(t)) | Ō(t− 1)

]
and R̂T (f) :=

1

T

T∑
t=1

`t(f)(O(t)).

and for any j ∈ [J ], we define the average conditional risk and the IS-weighted risk of the sequence
(f̂j,t) as

Rj,T (q) :=
1

T

T∑
t=1

Eq1,gref ,q2

[
`(f̂j,t)(O(t)) | Ō(t− 1)

]
,

and R̂j,T :=
1

T

T∑
t=1

`t(f̂j,t)(O(t)).

Let

j̃T := arg min
j∈[J ]

Rj,T (q),

be the oracle selector and let

ĵT := arg min
j∈[J ]

R̂j,T

be the Super Learner selector.
Although our results hold in full generality, we will think of these sequences of random func-

tions as sequences of estimators of a feature f0 of the uncontrolled component q0 of the data-
generating density.

We make the following assumptions. Unlike in the analysis of the empirical risk minimizers,
instead of making assumptions on the unweighted losses ` and on the importance sampling ratios
gref/gt, we directly make assumptions on the IS-weighted losses `t. This covers the former case
and allows for more generality.

Assumption 5.9. The fixed function f0 is such that, for any j ∈ [J ], t ≥ 1,

Rj,T (q)−RT (q, f0) ≤ 0.
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Let us give an example of a common situation where assumption 5.9 holds. Observe that in
the CB setting, we have that RT (q, f) = Eq1,gref ,q2 [`(f)(O(1))], and as a result RT (q, f) is non-
random. In this case, if f0 is a minimizer over the set of measurable functions of RT (q, f), f0 is a
non-random function that satisfies assumption 5.9.

Assumption 5.10 (Supremum norm bound). There exists M1 > 0 such that, for all t ≥ 1
supf ‖`t(f)− `t(f0)‖∞ ≤M1.

Assumption 5.11 (Variance bound). There exists α > 0, M2 > 0, such that, for all t ≥ 1, and any
j ∈ [J ],

E

[(
`t(f̂j,t)(O(t))− `t(f0)(O(t))

)2
∣∣∣∣Ō(t− 1)

]
≤M2

(
E
[
`t(f̂j,t)(O(t))− `t(f0)(O(t))

∣∣∣Ō(t− 1)
])α

.

Assumption 5.12 (Global variance bound). There exists M3 > 0 such that, for all j ∈ [J ] and
t ≥ 1,

E

[(
`t(f̂j,t)(O(t))− `t(f0)(O(t))

)2
∣∣∣∣Ō(t− 1)

]
≤M3.

We can now state our oracle inequality result.

Theorem 5.4 (High probability oracle inequality). Consider the setting of the current section, and
suppose that assumptions 5.10-5.12 hold. Consider an integer N ≥ 1 and a number a > 0, and
let x(a,N, α) := a(2−(N+1)M3/M2)1/α. Then, for all x > x(a,N, α), it holds that

Prq

[
RĵT ,T

(q)−RT (q, f0) ≥ (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)

+ x
]

≤2J(N + 1)

(
exp

(
− tx2−α

C1(M2, a)

)
+ exp

(
− tx

C2(M1, a)

))
,

with C1(M2, a) := 8× 22−α(1 + a)2M2/a
α, and C2(M1, a) := 16(1 + a)M1/3.

As corollary of theorem 5.4, we can obtain the following oracle inequality in expectation.

Corollary 5.1 (Oracle inequality for the expected risk). Suppose that assumptions 5.10-5.12 hold,
and let a > 0. Then

E
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)]

≤
(
C1(M2, a)

t

) 1
2−α

(1 + 4 log J(N + 1))
1

2−α + 2
C2(M1, a)

t
(1 + log(J(N + 1))) ,

where

C1(M2, a) = 8(1 + a)2M2/a
α and C2(M1, a) = 8(1 + a)M1/3,

N + 1 = log

(
aα
M3

M2

(
t

C1

) α
2−α
)
/ log 2.
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5.A Conclusion

The contributions we make in this chapter are two-fold. First, we have given guarantees for em-
pirical risk minimizers fitted on contextual bandit data, and on MDP data. In both situations we
gave high probability bounds under bracketing entropy conditions, and we required a certain rate
of uniform exploration — that is we assumed that actions were sampled from an ε-greedy de-
sign. Our second contribution is a new high probability oracle inequality for the Super Learner for
sequentially collected data.

These results are important in the sense that they allow for nuisance parameter fitting in causal
estimators and off-policy policy learning from sequentially collected data. We use variants of these
results in chapter 7, and in Malenica et al. [2021].

In chapter 4, we give study policy learning under a more efficient (from the point of view of
regret minimization) design than ε-greedy. It would be an interesting direction for future work
to generalize the high probability excess risk bounds to that design and to more general designs,
under minimal assumptions.
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5.B Proof of theorem 5.1
The proof of theorem 1 relies on a maximal inequality for importance-sampling weighted martin-
gale processes, which we present next. Consider a class of functions F : O → R. Let, for every
f ∈ F ,

MT (f) :=
1

T

T∑
t=1

Eq1,gref ,q2 [f(O(t)) | O(t)]− gref

gt
(A(t) | L1(t))f(O(t))

=
1

T

T∑
t=1

Eq1,gt,q2

[
gref

gt
(A(t) | L1(t))f(O(t)) | O(t)

]
− gref

gt
(A(t) | L1(t))f(O(t)).

Observe that the terms in the sum inMT (f) form a martingale difference sequence. The process
{MT (f) : f ∈ F} is a so-called martingale process. We refer to the particular type of processes of
the form of {MT (f) : f ∈ F} as importance sampling weighted martingale processes.

Our maximal inequality relies on the following assumptions.

Assumption 5.13 (Entropy). There exists p > 0 such that

logN[ ](ε,F , σT ) . ε−p.

Assumption 5.14 (Radius of F). There exists r0 > 0 and B > 0 such that

sup
f∈F

σT (f) ≤ r0 and sup
f∈F
‖f‖∞ ≤ B.

Theorem 5.5 (Maximal inequality for IS-weighted martingale processes). Make assumptions 5.13
and 5.14. It holds with probability at least 1− 2e−x that, for any r∈[0, r0/2], that

sup
f∈F

MT (f) . r− +HT (δ, r0, r−, B) + r0

√
x

δT
+
Bx

δT
,

where

HT (δ, r0, r−, B) :=
1

δT

∫ r0

r−

√
log(1 +N[ ](ε,F , σT )dε+

B

δT
log(1 +N[ ](r0,F , σT )

The proof is almost identical to that of theorem 4.5 in chapter 4.
We can now prove theorem 5.1. We distinguish the cases p ∈ (0, 2) and p > 2. The proof in

the case p ∈ (0, 2) is a straightforward adaptation of lemma 13 in Bartlett et al. [2006].

Proof of theorem 1, case p ∈ (0, 2). We proceed in three steps. In the first step, we identify a set
of upper bounds on RT (f̂T ) − RT (f1) that hold with probability at least 1 − 2e−x. In the second
step, we give a sufficient condition for the condition that defines the set of upper bounds. In the
third step, we give an explicit upper bound.
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Step 1: A set of high probability upper bounds. We will use the shorthand notation RT (f) and
R̂T (f) for RT (q, f) and R̂T (q, f), and observe that MT (f) = RT (f) − R̂T (f). Let r > 0. From
the convexity assumption (assumption 5.5) we have the following implication:

∃f ∈ F , R̂T (f)− R̂T (f1) ≤ 0 and RT (f)−RT (f1) ≥ r2

=⇒ ∃f ∈ F , R̂T (f)− R̂T (f1) ≤ 0 and RT (f)−RT (f1) = r2.

Therefore,

Prq

[
R̂T (f̂T )− R̂T (f1) and RT (f̂T )−RT (f1) ≥ r2

]
≤Prq

[
R̂T (f̂T )− R̂T (f1) and RT (f̂T )−RT (f1) = r2

]
≤Prq

 sup
f∈F

RT (f)−RT (f1)≤r2

MT (`(f)− `(f1) ≥ r2


≤Prq

 sup
f∈F

σT (`(f)−`(f1))≤rα

MT (`(f)− `(f1) ≥ r2

 ,
where the last line follows from the variance bound assumption (assumption 5.2).

Let r be such that

r2 & HT (δ, rα, 0, B) + rα
√

x

BT
+
Bx

δT
. (5.1)

Then, from theorem 5.5

Prq

 sup
f∈F

σT (`(f)−`(f1)≤rα

MT (`(f)− `(f1) ≥ r2

 ≤ 2e−x,

and thus

RT (f̂)−RT (f1) . r2

with probability at least 1− 2e−x.

Step 2: a sufficient condition to be an upper bound. It is straightforward to check that since
p < 2,

r 7→ HT (δ, r, 0, B)

r

is a decreasing function, and this this implies that if r∗ is a solution to (r∗)2 = HT (δ, r∗, 0, B),
then, if r ≥ r∗, then r2 ≥ HT (δ, r, 0, B). As a result, if

r2 ≥ max

{
(r∗)2,

( x

δT

) 1
2−α

,
Bx

δT

}
,

then r satisfies condition (5.1).
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Step 3: an explicit upper bound. Treating B as a constant that we absorb in the “.” symbol,
we have that

H(δ, r, 0, B) .
r1−p/2
√
δT

+
r−p

δT
.

It is straightforward to chcek that

r∗ = (δT )−
1

2−α+pα/2

is such that

(r∗)2 � HT (δ, r∗, 0, B).

Proof of theorem 5.1, case p > 2. Observe that since R̂T (f̂T ) ≤ R̂T (f1),

RT (q, f̂)−RT (q, f1) ≤MT (`(f̂)− `(f1))

≤ sup
f∈F

MT (`(f)− `(f1)).

The result then follows by applying the maximal inequality 5.5 and optimizing the lower bound r−
of the entropy integral.

5.C Proofs of the Super Learner results
Proof of theorem 5.4. The proof can be decomposed in three steps.

Step 1: an algrebraic decomposition. Denote H̃j,T := Rj,T (q)−RT (q, f0) and Ĥj,T := R̂j,T −
R̂T (f0), where, for all f , R̂t(f) := T−1

∑T
t=1 `t(θ)(O(t)). An algebraic decomposition proven in

past works on the Super Learner (see e.g. Dudoit and van der Laan [2005], Benkeser et al. [2018])
shows, that for any a > 0, the (average cumulative) excess risk of the Super Learner’s choice can
be bounded by (1 + 2a) times the (average cumulative) excess risk of the oracle choice, plus some
remainder terms, as follows:

RĵT ,T
(q)−RT (q, f0) ≤(1 + 2a)

(
Rj̃T ,T

(q)−RT (q, f0)
)

+ AĵT ,T (a) +Bj̃T ,T
(a)

≤(1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)

+ max
j∈[J ]

Aj,T (a) + max
j∈[J ]

Bj,T (a)(5.2)

where

Aj,T (a) := (1 + a)
(
H̃j,T − Ĥj,T

)
− aH̃j,T

and Bj,T (a) := (1 + a)
(
Ĥj,T − H̃j,T

)
− aH̃j,T .
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The first terms in both Aj,T (a) and Bj,T is a centered mean of a martingale difference sequence
(MDS). From Bernstein’s inequality we expect that their probability of being larger than x to
behave, for small x > 0, like exp(−Ctx2) for some constant C. Observe that by definition of f0,
H̃j,T ≤ 0 for every j. As we will see in the next step, the negative shifting by aH̃j,T in Aj,T (a) and
Bj,T (a) allows to get bounds tighter than exp(−Ctx2) for P [Aj,T (a) ≥ x] and P [Bj,T (a) ≥ x].

Step 2: Bounding positive deviations of Aj,T (a) and Bj,T (a). The analysis of Aj,T (a) and
Bj,T (a) is identical. We present it only for Aj,T (a). Denote Uj,t := `t(f̂j,t)(O(t)) − `t(f0)(O(t)).
Observe that Ĥj,T = t−1

∑T
t=1 Uj,t and that H̃j,T := t−1

∑T
t=1E[Uj,t | Ō(t − 1)]. Introduce

Vj,T := t−1
∑T

t=1E[U2
j,t | Ō(t− 1)] the mean of conditional second moments of Uj,1, . . . , Uj,T .

The general idea of this step is to use Bernstein’s inequality for martingales to bound P [Aj,T (a)

≥ x]. The first step is to show that {Aj,T (a) ≥ x} implies that the martingale H̃j,T − Ĥj,T is
greater than some quantity. We indeed have that Aj,T (a) ≥ x is equivalent to H̃j,T − Ĥj,T ≥
(1 + a)−1(x + aH̃j,T ). From assumption 5.11, H̃j,T ≥ (Vj,T/M2)1/α. Therefore, Aj,T (a) ≥ x

implies that H̃j,T − Ĥj,T ≥ (1 + a)−1(x+ a(Vj,T/M2)1/α). Bernstein’s inequality for martingales
for H̃j,T − Ĥj,T reads, for any fixed y > 0, as

P
[
H̃j,T − Ĥj,T ≥ y, Vj,T ≤ v

]
≤ exp

(
−1

2

ty2

v + 2
3
M1y

)
.

In order to be able to apply it to bound P [Aj,T (a) ≥ x], we thus need a fixed lower bound on
(1 + a)−1(x + a(Vj,T/M2)1/α), that is we need a lower bound on Vj,T , while in the meantime
the above form of Bernstein’s inequality also requires an upper bound on Vj,T . From assumption
5.12, Vj,T ≤ M3. A trivial lower bound is 0. However, if we use this trivial lower bound, we are
essentially forgetting about and loosing the benefit of the negative shifting by aH̃j,T . We can do
better if we can ensure that the lower bound is within a constant factor of the upper bound. This
motivates using a peeling device: we consider a dyadic partition tNi=0(vNi−1, v

N
i ] of [0,M3], and

we exploit the fact that, from a union bound, P [Aj,T (a) ≥ x] ≤
∑N

i=0 P [Aj,T (a) ≥ x, Vj,T ∈
[vNi−1, v

N
i ]]. This leads to dealing with more terms than if we were not using the peeling device, but

we will show that, for an appropriate choice of the size of the partition N , these are sufficiently
small so that it ends up being beneficial. Let us now give the precise definition of the dyadic
partition: for all i ∈ {0, . . . , N}, we let vNi := 2i−NM3, and we set vN−1 = 0 by convention. We
then have that

P [Aj,T (a) ≥ x] ≤P
[
H̃j,T − Ĥj,T ≥

1

1 + a

(
x+ a(Vj,T/M2)1/α

)]
=

N∑
i=0

P

[
H̃j,T − Ĥj,T ≥

1

1 + a

(
x+ a(Vj,T/M2)1/α

)
, Vj,T ∈ [vNi−1, v

N
i ]

]

≤
N∑
i=0

P

[
H̃j,T − Ĥj,T ≥

1

1 + a

(
x+ a(vNi−1/M2)1/α

)
, Vj,T ≤ vNi

]
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≤
N∑
i=0

exp

(
−1

2

t

(1 + a)2
Di(x)

)
with

Di(x) =

(
x+ a(vi−1/M2)1/α

)2

vi + 2
3
M1

1+a
(x+ a(vi−1/M2)1/α))

,

where we have dropped the N exponent in the vi’s so as to lighten notation. We now derive
lower bounds on the quantity Di(x). We distinguish two regimes in x, depending on whether
x is small or large. Specifically, for x ≤ x̃i := vi3(1 + a)/(2M1) − a(vi−1/M2)1/α, we have
vi ≥ (2M1/(3(1 + a))(x+ a(vi−1/M2)1/α) and thus

Di(x) ≥
(
x+ a(vi−1/M2)1/α

)2

2vi
=

(
x+ a(vi−1/M2)1/α

)2−α

2vi

(x+a(vi−1/M2)1/α)
α

≥ x2−α

2vi

(x+a(vi−1/M2)1/α)
α

.

Suppose that i ≥ 1. As x ≥ 0, the denominator in the right hand side of the above expression is at
least as large as 2M2vi/(vi−1a

α), and, since vi/vi−1 = 2, we thus have

Di(x) ≥ x2−α

4M2

aα

.

Now consider the case i = 0. For the same lower bound to hold, we need

2v0

(x+ a(v−1/M2)1/α)
α ≤

4M2

aα
⇐⇒ 2v0

xα
≤ 4M2

aα
⇐⇒ x ≥ a

(
2−(N+1)M3

M2

) 1
α

:= x(a,N, α).

We now consider the case x ≥ x̃i. Then

Di(x) ≥
(
x+ a(vi−1/M2)1/α

)2

4
3
M1

1+a
(x+ a(vi−1/M2)1/α)

≥ x
4
3
M1

1+a

.

Therefore, denoting C̃1(M2, a) := 8(1 + a)2M2/a
α and C̃2(M1, a) := 8(1 + a)M1/3, we have

that, for x ≥ x(a,N, α),

P [Aj,T (a) ≥ x] ≤
N∑
i=0

1{x ≤ x̃i} exp

(
− tx2−α

C̃1(M2, a)

)
+ 1{x > x̃i} exp

(
− tx

C̃2(M1, a)

)

≤(N + 1) exp

(
− tx2−α

C̃1(M2, a)

)
+ (N + 1) exp

(
− tx

C̃2(M1, a)

)
.
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Step 3: end of the proof. From bound (5.2) from the first step and a union bound, we have that

P
[
RĵT ,T

(q)−RT (q, f0) ≥ (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)

+ x
]

≤P
[
max
j∈[J ]

Aj,T (a) + max
j∈[J ]

Bj,T (a) ≥ x

]
≤

J∑
j=1

P
[
Aj,T (a) ≥ x

2

]
+ P

[
Bj,T (a) ≥ x

2

]
≤2J(N + 1) exp

(
− tx2−α

C1(M2, a)

)
+ 2J(N + 1) exp

(
− tx

C2(M1, a)

)
.

We now present the proof of the oracle inequality in expectation (corollary 5.1).

Proof of corollary 5.1. Observe that

E
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)]
≤∫ ∞

0

P
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)
≥ x

]
dx

In what follows, we use C1 for C1(M2, a) and C2 for C2(M1, a). From theorem 5.4,∫ ∞
0

P
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)
≥ x

]
dx

=

∫ x(N,a)

0

P
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)
≥ x

]
dx

+

∫ ∞
x(N,a)

P
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)
≥ x

]
dx

≤x(N, a) + 2

∫ ∞
x(N,a)

min

(
J(N + 1) exp

(
−tx2−α

C1

)
, 1

)
dx

+ 2

∫ ∞
x(N,a)

min

(
J(N + 1) exp

(
−tx
C2

)
, 1

)
dx

≤x(N, a) + 2

∫ ∞
0

min

(
J(N + 1) exp

(
−tx2−α

C1

)
, 1

)
dx︸ ︷︷ ︸

I

+ 2

∫ ∞
0

min

(
J(N + 1) exp

(
−tx
C2

)
, 1

)
dx︸ ︷︷ ︸

II
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We choose N such that x(N, a) = (C1/t)
1/(2−α), that is we set N such that

N + 1 = log

(
aα
M3

M2

(
t

C1

) α
2−α
)
/ log 2.

We now turn to the terms I and II .
We start with I . Let x1 such that J(N + 1) exp(−tx2−α

1 /C1) = 1, that is

x1 =

(
C1 log(J(N + 1))

t

) 1
2−α

.

We have that ∫ ∞
0

min

(
J(N + 1) exp

(
−tx

2−α

C1

)
, 1

)
dx

=x1 + J(N + 1)

∫ ∞
x1

exp

(
−tx

2−α

C1

)
dx

=x1 + J(N + 1)

(
C1

t

) 1
2−α
∫ ∞

log J(N+1)

exp(−u)u
1

2−α−1du

≤
(
C1 log J(N + 1)

t

) 1
2−α
(

1 +
1

log J(N + 1)

)
≤2

(
C1 log J(N + 1)

t

) 1
2−α

.

The third line in the above display follows from the change of variable u = tx2−α/C1. The fourth
line follows from the fact that u 7→ u1/(2−α)−1 is non-increasing, as α ∈ [0, 1]. The fourth line uses
that log J(N + 1) ≥ 1.

We now turn to II . Let x2 such that J(N + 1) exp(−tx2/C2) = 1, that is x2 = C2 log J(N+1)
t

.
We have that ∫ ∞

0

min

(
J(N + 1) exp

(
− tx
C2

)
, 1

)
dx

=x1 + J(N + 1)

∫ ∞
x1

exp

(
− tx
C2

)
dx

≤x1 + J(N + 1)
C2

t
exp

(
−tx1

C1

)
≤C2

t
(1 + log J(N + 1))

Therefore,

E
[
RĵT ,T

(q)−RT (q, f0)− (1 + 2a)
(
Rj̃T ,T

(q)−RT (q, f0)
)]
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≤
(
C1

t

) 1
2−α

(1 + 4 log J(N + 1))
1

2−α + 2
C2

t
(1 + log(J(N + 1))) .

5.D Proof of theorem 5.2
The proof of theorem 5.2 relies on the following two technical lemmas.

Lemma 5.4. Suppose that

Pr

[
XT ≥ C0(δT )−β̃ + C̃1

( x

δT

) 1
2−ν

+ C̃2
x

δT

]
≤ 2e−x.

Then,

Pr
[
XT ≥ C0(δT )−β̃ + x

]
≤ 2e−C̃3(xγ̃∧x),

with C̃3 := (C̃1 + C̃2)−γ̃ ∧ (C̃1 + C̃2)−1 and γ̃ = 2− ν.

The following lemma allows to obtain a high probability bound on the excess risk of a policy
gf̂T from a high probability bound on the excess φ-risk of f̂T .

Lemma 5.5. Suppose that R(q, gf̂T ) − R(q, g1) ≤ c̃(Rφ(q, f̂T ) − Rφ(f1))1/(2−ν) for some g1, f1

and ν ∈ [0, 1], and that

Pr
[
Rφ(f̂T )−Rφ(f1) ≥ C̃0(δT )β̃ + x

]
≤ 2 exp

(
−C̃2δT (xγ̃ ∧ x)

)
,

for β̃ > 0, γ̃ ≥ 1. Then

Pr
[
R(q, gf̂T )−R(q, g1) ≥ C0(δT )−β + x

]
≤ 2 exp (−C2δT (xγ ∨ x)) ,

with C0 := c̃C̃
1/(2−ν)
0 , γ := (2− ν)γ̃, β̃ := β/(2− ν), and C2 := C̃2(c̃−γ ∧ c̃−1).

We can now present the proof of theorem 5.2.

Proof. We treat separately the different settings presented in table 5.1. Whenever we refer to the
“constants of the problem” in this proof, we mean B and the constants absorbed in the “.′′ and
“ &′′ symbols in the statements of the Tsybakov noise assumption, calibration bounds, the entropy
assumption, and of the modulus of convexity bounds.

Direct policy optimization case. In this case gf̂T = f̂T and R(q, gf̂T ) − infg∈F R(q, gf ) =

Rφ(q, f̂t)−inff∈F R
φ(q, f). We distinguish two cases depending on whether or not the realizability

assumption (assumption 5.6) holds. Let f ∗ ∈ arg minf∈F R(q, f).
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Without realizability. Using the above identity corollary ?? and lemma 5.4 gives that

Pr
[
R(q, gf̂T )−R(q, gf∗) ≥ C0(δT )−β + x

]
≤ 2e−C2(x2∧x),

where β = 1/2 for p ∈ (0, 2) and β = 1/p for p > 2, and C0 and C2 depend on the constants of
the problem.

With realizability. Under realizability, lemma 5.2 gives us that, for all f ∈ F , ‖`(f) −
`(f ∗)‖q1,gref ,q2 . (R(q, f) − R(q, f ∗))α with α = ν/(ν + 1). Then applying theorem 5.1 and
lemma 5.4 yields

Pr
[
R(q, f̂T )−R(q, f ∗) ≥ C0(δT )−β + x

]
≤ 2e−C2(x2−α∧x),

with β = 1/(2− α + pα/2) if p ∈ (0, 2) and β = 1/p if p > 2.

Hinge surrogate case, under realizability. The theory of classification calibration relates the
excess risk to the excess φ-risk, where these excess quantities are defined relative to the optimal
measurable policy and the optimal measurable function A×L1 → R such that

∑K
a=1 f(a, l1) = 0

for all l1 ∈ L1. We do not know of equivalent results w.r.t. minimizers in smaller classes. We
thus only present results under the realizability assumption. We first start by characterizing the
φ-risk. Lemma 5.2 gives us that, for all f ∈ F , ‖`(f)− `(f ∗)‖q1,gref ,q2 . (Rφ(q, f)−Rφ(q, f ∗))α.
Applying theorem 5.1 and lemma 5.5 then yields

Pr
[
Rφ(q, f̂t)−Rφ(f ∗) ≥ C0(δT )−β + x

]
≤ 2e−C2(x2−α∧x),

for C0, C2 > 0 depending on the constants of the problem, and with β = 1/(2 − α + pα/2) for
p ∈ (0, 2) and β = 1/p for p > 2. The calibration bound gives that R(q, gf̂T ) − R(q, gf∗) ≤
Rφ(q, f̂t)−Rφ(q, f ∗), and therefore, the above bound also holds for the excess risk:

Pr
[
R(q, gf̂T )−R(q, gf∗) ≥ C0(δT )−β + x

]
≤ 2e−C2(x2−α∧x).

Quadratic surrogate case with realizability. Similarly to the previous case, as we rely on cali-
bration results, we only present guarantees under the realizability assumption. The variance bound
is obtained by using that φtquad has quadratic modulus of convexity. Lemma 5.1 then yields that
‖`(f) − `(f ∗)‖q1,gref ,q2 . Rφ(q, f) − Rφ(q, f ∗) for all f ∈ F . Theorem 5.1 (applied with α = 1)
and lemma 5.4 then give that

P
[
Rφ(f̂T )−Rφ(f ∗) ≥ C̃0(δT )−β̃ + x

]
≤ 2e−C̃2δTx,

with β̃ = 1/(1 + p/2) if p ∈ (0, 2) and β = 1/p if p > 2, and where C̃0, and C̃2 depend on the
constants of the problem.
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We now relate the excess risk to the excess φ-risk with calibration results. Using the calibration
bound under the Tsybakov noise assumption and then applying lemma 5.5 then gives us that

Pr
[
R(gf̂T )−R(gf∗) ≥ C̃0(δT )−β + x

]
≤ 2e−C2δTx2−α ,

with β = 1/((2− α)(1 + p/2)) for p ∈ (0, 2) and β = 1/((2− α)p) for p > 2, and where C0 and
C2 depend on the constants of the problem.

Proof of lemma 5.4. Let u(x) := (C̃1 + C̃2)(x/(δt))1/(2−ν) ∨ (x/(δt)). We have that

Pr
[
XT ≥ C0(δT )−β̃ + u(x)

]
≤ Pr

[
XT ≥ C0(δT )−β̃ + C̃1

( x

δT

) 1
2−ν

+ C̃2
x

δT

]
≤ 2e−x.

Observe that, for any y ≥ 0,

u−1(y) =δT

((
y

C̃1 + C̃2

)2−ν

∧ y

C̃1 + C̃2

)
≥C̃3(y2−ν ∧ y),

where C̃3 := (C̃1 + C̃2)−γ̃ ∧ (C̃1 + C̃2)−1. Therefore,

Pr[XT ≥ C0(δT )−β̃ + y] ≤ 2 exp(−C̃3δT (yγ ∧ y)).

Proof of lemma 5.5. We have that, for any a, x > 0,

Pr
[
R(q, gf̂T )−R(q, g1) ≥ a+ x

]
≤Pr

[
c̃
(
Rφ(q, f̂T )−Rφ(q, f1)

) 1
2−ν ≥ a+ x

]
=Pr

[
Rφ(q, f̂T )−Rφ(q, f1) ≥

(a
c̃

+
x

c̃

)2−ν
]

≤Pr

[
Rφ(q, f̂T )−Rφ(q, f1) ≥

(a
c̃

)2−ν
+
(x
c̃

)2−ν
]
,

where the last line follows from the fact that, for any convex function ψ such that ψ(0) = 0, and
any x1, x2 > 0, ψ(x1 + x2) ≥ ψ(x1) + ψ(x1). (To see it, observe that, as x1 + x2 ≥ x1 ∨ x2,
ψ(x1+x2)
x1+x2

≥ ψ(x1)
x1

, and ψ(x1+x2)
x1+x2

≥ ψ(x2)
x2

, and thusψ(x1+x2) = x1
x1+x2

ψ(x1+x2)+ x2
x1+x2

ψ(x1+x2) ≥
ψ(x1) + ψ(x1)). Set a such that (a/c̃)2−ν = C0(δt)−β̃ , that is a = c̃C

1/(2−ν)
0 (δt)−β̃/(2−ν). Let

C̃0 := c̃C
1/(2−ν)
0 , β = β̃/(2− ν). Then, we obtain,

Pr
[
R(q, gf̂T )−R(q, g1) ≥ C̃0(δT )−β + x

]
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≤Pr

[
Rφ(q, f̂T )−Rφ(q, f1) ≥ C0(δT )−β̃ +

( x

δT

)2−ν
]

≤2 exp

(
−C̃2δT

((x
c̃

)γ̃(2−ν
∧
(x
c̃

)2−ν
))

Then, as γ̃ ≥ 1, and 2− ν ≥ 1, 1 ≤ 2− ν ≤ γ̃(2− ν), and thus(x
c̃

)2−ν
∈
[(x

c̃

)γ̃(2−ν)

∧ x
c̃
,
(x
c̃

)γ̃(2−ν)

∨ x
c̃

]
.

Therefore,

Pr
[
R(q, gf̂T )−R(q, g1) ≥ C̃0(δT )−β + x

]
≤ 2 exp(−C2δT (xγ ∧ x)),

with C2 := C̃2(c̃−γ ∧ c̃−1), and γ = γ̃(2− ν).
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Chapter 6

Model selection for contextual bandits
AURÉLIEN BIBAUT, ANTOINE CHAMBAZ, MARK VAN DER LAAN
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As outlined in subsection 1.4.2 of the introduction chapter, as the underlying complexity of
the environment instance is unknown to the learner a priori, an ideal sequential decision making
algorithm should be able to adaptively choose the complexity of its policy class. In this chap-
ter we consider model selection in the stochastic contextual setting (see subsection 1.2.1 of the
introduction chapter).

We address the following generic model selection problem. Suppose we are given a collection
of black box contextual bandit algorithms for which we know an upper bound on the minimax
regret (these bounds are allowed to hold only under the realizability condition). Can we, without
prior knowledge on the environment achieve the best minimax regret among algorithms for which
the realizability condition holds?

We design a procedure that achieves this goal, up to logarithmic factor in time. We point
out nevertheless that in this work we treat the number of arms and the dimension of the context
space (or of feature space in linear bandit algorithms) as constants. Under these restrictions, our
procedure is the first one to yield a meta algorithm that has adaptive rate of regret in time.

Our proposed procedure is relatively simple: for a well chosen sequence of probabilities
(pt)t≥1, at each round t, it either chooses at random which candidate base algorithm to follow
(with probability pt) or compares, at the same internal sample size for each candidate, the cumula-
tive reward of each, and selects the one that wins the comparison (with probability 1− pt).

We demonstrate the effectiveness of our method with simulation studies.

6.1 Introduction
Contexual bandit (CB) learning is the repetition of the following steps, carried out by a an agentA
and an environment E .

1. the environment presents the agent a context X ∈ X ,

2. the agent chooses an action A ∈ {1, . . . , K},

3. the environment presents the learner the reward Y corresponding to action A.

The goal of the agent is to accumulate the highest possible cumulative reward over a certain num-
ber of rounds T . The relative performance of existing CB algorithms depends on the environment
E : for instance some algorithms are best suited for settings where the reward structure is linear
(LinUCB), but can be outperformed by greedy algorithms when the reward structure is more com-
plex. It would therefore be desirable to have a procedure that is able to identify, in a data-driven
fashion, which one of a pool of base CB algorithms is best suited for the environment at hand.
This task is referred to as model selection. In batch settings and online full information settings,
model selection is a mature field, with developments spanning several decades [Stone, 1974, Lep-
ski, 1990, 1991, Gyorfi et al., 2002, Dudoit and van der Laan, 2005, Massart, 2007, Benkeser et al.,
2018]. Cross-validation is now the standard approach used in practice, and it enjoys solid theoret-
ical foundations [Devroye and Lugosi, 2001, Gyorfi et al., 2002, Dudoit and van der Laan, 2005,
Benkeser et al., 2018].
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Literature on model selection in online learning under bandit feedback is more recent and
sparser. This owes to challenges specific to the bandit setting. Firstly, the bandit feedback struc-
ture implies that at any round, only the loss (here the negative reward) corresponding to one action
can be observed, which implies that the loss can be observed only for a subset of the candidate
learners (those which proposed the action eventually chosen). Any model selection procedure
must therefore address the question of how to decide which base learner to follow at each round
(the allocation challenge), and how to pass feedback to the base learners (the feedback challenge).
A tempting approach to decide how to allocate rounds to different base learners is to use a stan-
dard multi-armed bandit (MAB) algorithm as a meta-learner, and treat the base learners as arms.
This approach fails because, unlike in the usual MAB setting, the reward distribution of the arms
changes with the number of times they get played: the more a base learner gets chosen, the more
data it receives, and the better its proposed policy (and therefore expected reward) becomes. This
exemplifies the comparability challenge: how to compare the candidate learners based on the avail-
able data at any given time?

Existing approaches solve these challenges in differents ways. We saw essentially two types
of solutions in the existing literature, represented on the one hand by the OSOM algorithm of
Chatterji et al. [2019b] and the ModCB algorithm of Foster et al. [2019], and on the other hand
by the CORRAL algorithm of Agarwal et al. [2017], and the stochastic CORRAL algorithm, an
improved version thereof introduced by Pacchiano et al. [2020a].

In OSOM and ModCB, the base learners learn policies in policy classes that form a nested se-
quence, which can be ordered from least complex to most complex. Their solution to the allocation
challenge is to start by using the least complex algorithm, and move irreversibly to the next one if
a goodness-of-fit test indicates its superiority. The goodness-of-fit tests uses all the data available
to compute fits of the current and next policy, and compares them. This describes their solution to
the feedback challenge and the comparability challenge.

CORRAL variants take another route. They use an Online Mirror Descent (OMD) based mas-
ter algorithm that samples alternatively which base learner to follow, and gradually phases out the
suboptimal ones. In that sense, their allocation strategy resembles the one of a MAB algorithm.
The comparability issue arises naturally in the context of an OMD meta-learner, which can be un-
derstood easily with an example. Suppose that we have two base algorithms A(1) and A(2), and
that A(1) has better asymptotic regret thant A(2). It can happen that either by chance (A(1) plays
unlucky rounds) or by design (e.g. A(1) explores a lot in early rounds), A(1) fares worse than
A(2) initially. As a result, the master would initially give a lesser weight to A(1) than to A(2),
with the result that at some time t, the policy proposed byA(1) is based on a much smaller internal
sample size than the policy proposed by A(2). As a result, at t, even though A(1) is asymptoti-
cally better thanA(2), the losses ofA(1) are worse than the losses ofA(2), which accentuates the
data-starvation of A(1) and can lead to A(1) never recovering from its early underperformance.
The issue described here is that the losses used for the OMD weights update are not comparable
across candidates, as they are based on policies informed by significantly different internal sample
sizes. CORRAL can be viewed as the solution to the comparability challenge in the context of an
OMD master: by using gentle weight updates (as opposed to the more aggressive weight updates
of Exp3 for instance) and by regularly increasing the learning rate of base learners of which the
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weight drops too low, CORRAL prevents the base algorithm data-starvation phenomenon. The two
CORRAL variants differ in their solution to the feedback challenge. The original CORRAL algo-
rithm [Agarwal et al., 2017] passes, at each round, importance weighted losses to the master and
to all base learners. In contrast, Pacchiano et al. [2020a]’s stochastic CORRAL passes unweighted
losses to each base algorithm, but only at the time they get selected.

Guarantees in Chatterji et al. [2019a] and Foster et al. [2019] rely on the so-called realizabil-
ity assumption, which states that at least one of the candidate policy classes contains π0(E), the
optimal measurable policy under the current environment. Chatterji et al. [2019a] show that their
approach achieves the minimax regret rate for the smallest policy class that contains π0(E). Foster
et al. [2019] consider linear policy classes and show that their algorithm achieves regret no larger
than Õ(T 2/3d

1/3
∗ ) and Õ(T 3/4 +

√
Td∗) where d∗ is the dimension of the smallest policy class that

contains π0(E). This is optimal if d∗ ≥
√
T . In CORRAL variants, if one the the J base algori-

htms has regret O(Tα), the master achieves regret Õ(J/T + Tη + Tη(1−α)/α), with η the initial
learning rate of the master. The learning rate η can be optimized so that this regret bound becomes
Õ(J1−αTα), that is, up to log factors, the upper bound on regret of that base algorithm. As pointed
out by Agarwal et al. [2017], and as can be seen from the regret bound restated here, CORRAL
presents an important caveat: the learning rate must be tuned to the rate of the base algorithm one
wishes to compete with. This is not an issue when working with a collection of algorithms with
same regret upper bound, and in that case CORRAL offers protection against model misspecifica-
tion. However when base learners have different regret rates, CORRAL fails to adapt to the rate of
the optimal algorithm.

In this article, we propose a master algorithm that allows to work with general off-the-shelf
(contextual) bandit algorithhms, and achieves the same regret rate as the best of them. Our theo-
retical guarantees improve upon OSOM [Chatterji et al., 2019b] and ModCB [Foster et al., 2019]
in the sense that our algorithm allows to work with a general collection of bandit algorithms, as
opposed to a collection of algorithms based on a nested sequence of parametric reward models. It
improves upon CORRAL variants in the sense that it is rate-adaptive. Our master algorithm can
be described as follows: for a well chosen sequence (pt)t≥1 of exploration probabilities, at each
time t, the master either samples a base algorithm uniformly at random and follows its proposal
(with probability pt), or it picks the base algorithm that maximizes a certain criterion based on past
performance (with an exploitation probability of 1− pt). Each algorithm receives feedback only if
it gets played by the master. The crucial idea is to compare the performance of base algorithms at
the same internal time. At global time t, the J algorithms are at internal times n(1, t), . . . , n(J, t)
(with n(1, t) + . . . + n(J, t) = t). We compare them based on their n(t) := minj∈[J ] n(j, t) first
rounds, thus ensuring a fair comparison.

We organize the article as follows. In section 6.2, we formalize the setting consisting of a
master algorithm allocating rounds to base algorithms. In section 6.3, we present our master algo-
rithm, EnsBFC (Ensembling Bandits by Fair Comparison). We present its theoretical guarantees
in section 6.4. We show in section 6.5 that many well-known existing bandit algorithms satisfy the
assumption of our main theorem. We give experimental validation of our claims in section 6.6.
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6.2 Problem setting

6.2.1 Master data and base algorithms internal data

A master algorithm M has access to J base contextual bandit algorithms A(1), . . . ,A(J). At
any time t, the master observes a context vector X(t) ∈ X ⊂ Rd, selects the index Ĵ(t) of
a base algorithm, and draws an action A(t) ∈ [K] := {1, . . . , K}, following the policy of the
selected base algorithm. The environment presents the reward Y (t) corresponding to action A(t).
We distinguish two types of rounds for the master algorithm: exploration rounds and exploitation
rounds. We will cover in more detail further down the definition of each type of round. We letD(t)
be the indicator of the event that round t is an exploration round. The data collected at time t by the
master algorithm is Z(t) := (D(t), Ĵ(t), X(t), A(t), Y (t)). We denoteO(t) := (X(t), A(t), Y (t))
the subvector of Z(t) corresponding to the triple context, action, reward at time t. We denote
F(t) := σ(Z(1), . . . , Z(t)), the filtration induced by the first t observations. We suppose that
contexts are independent and identically distributed (i.i.d.) and that the conditional distribution of
rewards given actions and contexts is fixed across time points.

After each round t, the master passes the triple (X(t), A(t), Y (t)) to base algorithm Ĵ(t), which
increments the internal time n(Ĵ(t), t) of algorithm Ĵ(t) by 1, and leaves unchanged the internal
time of the other algorithms. For any j ∈ [J ], n ≥ 1, we denote Õ(j, n) = (X̃(j, n), Ã(j, n),

Ỹ (j, n)) the triple collected by base algorithm j at its internal time n. Making this more formal,
we define the internal time of j at global time t as n(j, t) :=

∑t
τ=1 1(Ĵ(τ) = j), that is the

number of times j has been selected by the master up till global time t. We define the reciprocal
of n(j, t) as t(j, n) := min{t ≥ 1 : n(j, t) = n}, that is the global time at which the inter-
nal time of j was updated from n − 1 to n. We can then formally define Õ(j, n) as Õ(j, n) :=

(X̃(j, n), Ã(j, n), Ỹ (j, n)) := (X(t(j, n)), A(t(j, n)), Y (t(j, n)). We denote F̃(j, n) :=

σ(Õ(j, 1), . . . , Õ(j, n)) the filtration induced by the first n observations of algorithm A(j).
Let nxplr(j, t) :=

∑t
τ=1 1(Ĵ(τ) = j,D(τ) = 1) and nxplt(j, t) :=

∑t
τ=1 1(Ĵ(τ) = j,D(τ) =

0), the number of exploration and exploitation rounds j was selected up till global time t. Note that
n(j, t) = nxplr(j, t) + nxplt(j, t). Define n(t) := minj∈[J ] n(j, t), nxplr(t) := minj∈[J ] n

xplr(j, t),
and nxplt(t) := minj∈[J ] n

xplt(j, t).

6.2.2 Policies and base algorithm regret

A policy π : [K] × X → [0, 1] is a conditional distribution over actions given a context, or
otherwise stated, a mapping from contexts to a distribution over actions. So as to define the value
and the risk of a policy, we introduce an triple of reference (Xref , Aref , Y ref) such that Xref has
same distribution as any context X(t), Y ref |Aref , Xref has same law as Y (t)|A(t), X(t) for any
t, and Aref |Xref ∼ πref(·, Xref), where πref(a, x) := 1/K for every a and x. We introduce what
we call the value loss `, defined for any policy π and triple o ∈ X × [K] × R as `(π)(o) :=
−yπ(a, w)/πref(a, w). We then define the risk of π as R(π) := E[`(π)(Oref)]. We will use
that−R(π) = E[Y refπ(Aref , Xref)/πref(Aref , Xref)] = E[

∑K
a=1 π(a|Xref)E[Y ref |Aref = a,Xref ]],

where the latter quantity is the value of π, that is the expected reward per round one would get if
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one carried out π under environment E . We denote it V(π, E).
We denote π(j, n) the policy proposed by A(j) at its internal time n. For any x ∈ X ,

π(j, n)(·, x) is an F̃(j, n − 1)-measurable distribution over [K]. We suppose that each algorithm
A(j) operates over a policy class Πj . The regret of A(j) over its first n rounds is defined as
Reg(j, n) :=

∑n
τ=1(V∗j (E)− Ỹ (j, τ)), with V∗j (E) := supπ∈Πj

V(π, E). We define the cumulative
conditional regret as CondReg(j, n) :=

∑n
τ=1(V∗j (E) − E[Ỹ (j, τ)|F̃τ−1]) = n(R(j, n) − R∗j ),

with R∗j = −V∗j (E) and R(j, n) = n−1
∑n

τ=1R(π(j, τ)), where the identity follows from the
fact that E[Ỹ (j, τ)|F̃(j, τ − 1)] = V(π(j, τ), E) = −R(π(j, τ)). We define the pseudo regret as
pseudoReg(j, n) := E[Reg(j, n)].

6.2.3 Master regret and rate adaptivity

We let V∗(E) := maxj∈[J ] V∗j (E), the optimal value across all policy classes Π1, . . . ,ΠJ , and
similarly, we denote R∗ := minj∈[J ] R

∗
j , the optimal risk across Π1, . . . ,ΠJ . We define the regret

of the master as Reg(t) :=
∑t

τ=1 V∗(E) − Y (t), and the conditional regret as CondReg(t) :=∑t
τ=1 V∗(E)− E[Y (τ)|F(τ − 1)].
The bandit literature gives upper bounds on either Reg(j, n) or CondReg(j, n) where the

dependence in n is of the form Õ(n1−βj), for some βj ∈ (0, 1). (We denote an = Õ(bn) if
an = O(bn(log n)γ) for some γ > 0.) While βj is known, it is not the case for V∗j (E), the asymp-
totic value of (the policy proposed by) A(j).

As a necessary requirement, a successful meta-learner should achieve asymptotic value V∗(E).
A second natural requirement is that it should have as good regret guarantees as the best algorithm
in the subset J := {j ∈ [J ] : V∗j (E) = V∗(E)} of algorithms with optimal asymptotic value. We
say that a master algorithm is rate-adaptive if it achieves these two requirements.

Definition 6.1 (Rate adaptivity). Suppose that base algorithms have known regret (or conditional
regret, or pseudo regret) upper bounds Õ(n1−β1), . . . , Õ(n1−βJ ). Let β(1) = maxj∈J βj , the rate
exponent corresponding to the fastest upper bound rate among algorithms with optimal limit value
V∗(E).

We say that the master is rate-adaptive in regret (or conditional regret, or pseudo regret), up
to logarithmic factors, if it holds that Reg(t) = Õ(t1−β(1)) (or CondReg(t) = Õ(t1−β(1)), or
pseudoReg(t) = Õ(t1−β(1))).

Remark 6.1. A natural setting where several base algorithms converge to the same value V∗(E)
is when several of the candidate policy classes contain the optimal measurable policy π0(E), that
is when the realizability assumption is satisfied for several base policy classes.

Remark 6.2. Suppose that rates Õ(n1−β1), . . . , Õ(n1−βJ ) are minimax optimal (up to logarithmic
factors) for the policy classes Π1, . . . ,ΠJ , and that at least one class contains π0(E). Then, in
this context, rate adaptivity means that the master achieve the best minimax rate among classes
that contain π0(E). In this context, rate-adaptivity coincides with the notion of minimax adaptivity
from statistics’ model selection literature (see e.g. Massart [2007], Giné and Nickl [2015]).
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Remark 6.3. OSOM [Chatterji et al., 2019b] and ModCB Foster et al. [2019] are minimax adap-
tive (and thus rate-adaptive) under the condition that π0 belongs to at least one of the policy
classes (that is under the realizability assumption). CORRAL and stochastic CORRAL are not
rate-adaptive.

6.3 Algorithm description
Our master algorithm M can be described as follows. At each global time t ≥ 1, M selects a
base algorithm index Ĵ(t) based on past data, observes the context X(t), draws an action A(t)

conditional on X(t) following the policy π(Ĵ(t), n(Ĵ(t), t−1)) proposed byA(Ĵ(t)) at its current
internal time, carries out action A(t) and collects reward Y (t). At the end of round t,M passes
the triple (X(t), A(t), Y (t)) to A(Ĵ(t))), which then increments its internal time and updates its
policy proposal based on the new datapoint.

To fully characterizeM it remains to describe the mechanism that produces Ĵ(t). We distin-
guish exploration rounds and exploitation rounds. We determine if round t is to be an exploration
round by drawing, independently from the past F(t − 1), the exploration round indicator D(t)
from a Bernoulli law with probability pt, which we will define further down. During an explo-
ration round (if D(t) = 1), we draw Ĵ(t) independently of F(t − 1), from a uniform distribution
over [J ]. During an exploitation round (if D(t) = 0), we draw Ĵ(t) based on a criterion depending
on the past rewards of base algorithms. Let us define this criterion.

Let R̂(j, n) := −n−1
∑n

τ=1 Y (j, τ), the mean of negative rewards collected by algorithm j up
till its internal time n. For any n ≥ 1, define the algorithm selector ĵ(n, R̂(1, n), . . . R̂(J, n), c1) :=

arg min{R̂(j, n) + c1n
−βj : j ∈ [J ]}, with c1 > 0 a tuning parameter. When there is no ambiguity,

we will use the shorthand notation ĵ(n). The selector ĵ(n) compares every base algorithm at the
same internal time, and picks the one that minimizes the sum of the estimated risk at internal time
n plus the theoretical regret upper bound rate n−βj . If D(t) = 0, we let Ĵ(t) := ĵ(nxplr(t)), that is
we compare the base algorithms at a common internal time equal to the highest common number
of exploration rounds each base has been called until t.

If any base algorithm j has average risk converging to some R∗j > R∗, the regret of an explo-
ration step is O(1) in expectation. If we want the regret of the master with respect to (w.r.t.) R∗

to be O(t−β(1)), we need the exploration probability pt to be O(t−β(1)). Because β(1) is unknown
(it depends on J hence on E too), we make a conservative choice and we set pt := c2t

−β , with
β := maxj∈[J ] βj (a quantity available to us), where c2 > 0 is a tuning parameter.

We give the pseudo code of the master algorithmM as algorithm 6.1 below.

6.4 Regret guarantees of the master algorithm
Our main result shows that the expected regret of the master satisfies the same theoretical up-
per bound with respect to R∗ as the best base algorithm. The main assumption is that each base
algorithm satisfies its conditional regret bound O(n1−βj) with high probability. We state this re-
quirement formally as an exponential deviation bound.
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Algorithm 6.1 Ensembling Bandits by Fair Comparison (EnsBFC)

Input: base algorithmsA(1), . . . ,A(J), theoretical regret per round exponents β1, . . . , βj , tuning
parameters c1, c2.
Initialize risk estimators: R̂(j, 0)← 0 for every j ∈ [J ].
for t ≥ 1 do

Draw exploration round indicator D(t) ∼ Bernoulli(pt).
if D(t) = 1 then

Draw Ĵ(t) ∼ Unif([J ]).
else

Set Ĵ(t)← ĵ(nxplr(t), R̂(1, nxplr(t)), . . . R̂(J, nxplr(t)), c1).
end if
Observe context X(t).
Sample action A(t) following the policy proposed by A(Ĵ(t)) at its current internal time:

A(t)|X(t) ∼ π(Ĵ(t), n(Ĵ(t), t− 1))(·, X(t)).

Collect reward Y (t).
Pass the triple (X(t), A(t), Y (t)) to A(Ĵ(t)), which then updates its policy proposal and
increments its internal time by 1.

end for.

Assumption 6.1 (Concentration). There exists C0 ≥ 0, C1, C2 > 0, β1, . . . βJ ≤ 1/2, ν1, . . . , νJ >
0 such that, for any n ≥ 1, j ∈ [J ] and x ∈ [0, 1],

P
[
R(j, n)−R∗j ≥ C0n

−βj + x
]
≤ C1 exp

(
−C2 × (nx1/βj)νj

)
, (6.1)

and R(j, n)−R∗j ≥ 0.

We also require that the rewards be conditionally sub-Gaussian given the past. Without loss of
generality, we require that they be conditionally 1-sub-Gaussian.

Assumption 6.2. For all λ ∈ R, and every t ≥ 1, E[exp(λ(Yt − E[Yt|Ft−1])|Ft−1] ≤ exp(λ2/2).

We show in the next section that the high probability regret bounds available in the literature
for many well-known CB algorithms can be reformulated as an exponential deviation bound of the
form (6.1). We can now state our main result.

Theorem 6.1 (Expected regret for the master). Suppose that assumptions 6.1 and 6.2 hold, and
recall the definition of β(1) from subsection 6.2.3. Then, EnsBFC is rate-adaptive in pseudo-regret,
that is,

E

[
T∑
t=1

(V∗(E)− Y (t))

]
≤ CT 1−β(1),

for some C > 0 depending only on the constants of the problem. If, in addition, the regret up-
per bounds satisfied by the base algorithms are minimax for their respective policy classes, then
EnsBFC is minimax adaptive in pseudo regret.
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Remark 6.4. Assumption 6.1 is met for many well-known algorithms, as we show in the following
section.

Remark 6.5. The c1n
−βj term in the criterion R̂(j, n) + c1n

−βj that ĵ(n) minimizes across [J ]

ensures that R̂(j, n) + c1n
−βj − R∗ is, in expectation, lower bounded by c1n

−βj . It may be the
case that, among the base algorithms that have optimal limit value V∗(E) (that is those in J ), the
one that performs best in a given environment is not the one that has best regret rate upper bound
Õ(n1−β(1)). Enforcing this lower bound on the criterion ensures that the master picks an algorithm
with optimal regret upper bound Õ(n1−β(1)). We further discuss the need for such a lower bound
in appendix 6.D.

Remark 6.6. The rate of pseudo-regret of EnsBFC is not impacted by the specific values of the
tuning parameters c1 and c2 (as long as they are set to constants independent of T ), but the finite
performance is. We found in our simulations that setting c1 = 0.5 and c2 = 10 works fine. We
leave to future work the task of designing a data-driven rule of thumb to select c1 and c2.

In the next subsection, we take a step back to put our results in perspective with the broader
model selection literature.

6.4.1 Comments on the nature of the result: minimax adaptivity vs. oracle
equivalence

Results in the model selection literature are essentially of two types: minimax adaptivity guarantees
and oracle inequalities.

Given a collection of statistical models, a model selection procedure is said to be minimax
adaptive if it achieves the minimax risk of any model that contains the “truth”. In our setting,
the statistical models are policy classes and the “truth” is the optimal measurable policy π0(E).
A notable example of minimax adaptive model selection procedure is Lepski’s method [Lepski,
1990, 1991].

Consider a collection of estimators θ̂1, . . . , θ̂J , and a data-generating distribution P , and denote
R(θ̂, P ) the risk of any estimator θ̂ under P . In our context, one should think of the estimators as
the policies computed by the base algorithms, and of specifying P as specifying E . We say that an
estimator θ̂ satisfies an oracle inequality w.r.t. θ̂1, . . . , θ̂J ifR(θ̂, P ) ≤ (1 + ε) minj∈[J ]R(θ̂j, P ) +

Err, with ε > 0 and Err an error term. Moreover, we say that the estimator θ̂ is oracle equivalent
if R(θ̂, P )/minj∈[J ]R(θ̂j, P )→ 1. Being oracle equivalent means performing as well as the best
instance-dependent (that is P -dependent) estimator. Multi-fold cross validation yields an oracle-
equivalent estimator [Devroye and Lugosi, 2001, Gyorfi et al., 2002, Dudoit and van der Laan,
2005].

Our guarantees are closer to the notion of minimax adaptivity than to that of oracle equivalence,
and, as we pointed out earlier, coincide with it if the base algorithms are minimax w.r.t. their policy
classes. Minimax adaptivity is the property satisfied by the OSOM [Chatterji et al., 2019b] and
ModCB Foster et al. [2019]. Minimax adaptivity is a worst-case (over each base model) statement,
which represents a step in the right direction. We nevertheless argue that what practioners are
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looking for in a model selection procedure is to get the same performance as the base learner that
performs best under the environment at hand, that is oracle equivalence, like the guarantee offered
by multi-fold cross-validation.

6.5 High probability regret bound for some existing CB algo-
rithms

In this section, we recast regret guarantees for well-known CB algorithms under the form the
exponential bound (6.1) from our concentration assumption (assumption 6.1).

Recall the definitions of Reg, CondReg and pseudoReg from section 6.2. Observe that our
concentration assumption is a high probability bound onR(n)−R∗ = CondReg(n)/n, the average
of the conditional instantaneous regret. Although some articles provide high probability bounds
directly on CondReg(n) (e.g. Abbasi-Yadkori et al. [2011]), most works give high probability
bounds on Reg(n). Fortunately, under the assumption that rewards are conditionally sub-Gaussian
(assumption 6.2), we can recover a high probability regret bound on CondReg(n) from a high
probability regret bound on Reg(n) using the Azuma-Hoeffding inequality.

(In the following paragraphs, we suppose, to keep notation consistent, that j is a base learner
of the type considered in the paragraph).

UCB. [Lemma 4.9 in Pacchiano et al., 2020a], itself a corollary of [theorem 7 in Abbasi-Yadkori
et al., 2011] states that if the rewards are conditionally 1-sub-Gaussian, the regret of UCB over n
rounds is O(

√
n log(n/δ)).

Corollary 6.1 (Exponential deviation bound for UCB). Suppose that assumption 6.2 holds. Then,
there exist C0, C1, C2 > 0 such that, for all x ≥ 0, P

[
R(j, n)−R∗j ≥ C0n

−1/2(log n)1/2 + x
]
≤

C1 exp(−C2nx
2).

ε-greedy. Bibaut et al. [2020] consider the ε-greedy algorithm over a nonparametric policy class.
The following result is a direct consequence of an intermediate claim in the proof [thereom 4 in
Bibaut et al., 2020].

Lemma 6.1 (Exponential deviation bound for ε-greedy). Consider the ε-greedy algorithm over
a nonparametric policy class Π. Suppose that the metric entropy in ‖ · ‖∞ norm of Π satisfies
logN(ρ,Π, ‖ · ‖∞) = O(ρ−p) for some p > 0, and that the exploration rate at t is εt ∝ t−( 1

3
∨ p
p+1

).
Then, there exist C0, C1, C2 > 0 such that, for all x ≥ 0, P

[
R(j, n)−R∗j ≥ C0t

−β + x
]
≤

C1 exp(−C2 × (nx1/β)2β), with β = 1
3
∨ p

p+1
.

LinUCB. [Theorem 3 in Abbasi-Yadkori et al., 2011] states that LinUCB satisfies CondReg(n) =
O(
√
n log(1/δ)) with probability at least 1− δ. We recast their bound as follows.

Corollary 6.2. Under the conditions of [theorem 3 in Abbasi-Yadkori et al., 2011], there exists
C2 > 0 such that, for all x > 0, P

[
R(j, n)−R∗j ≥ x

]
≤ exp(−C2(nx2)1/2)
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(a) Environment 1 (b) Environment 2

Figure 6.1: Mean cumulative reward of the master and base algorithms over 100 runs, with
(10%,90%) quantile bands

ILOVETOCONBANDITS. [Theorem 2 in Agarwal et al., 2014] et al. states that Reg(n) =
O(
√
n log(n/δ) + log(n/δ)) with probability at least 1 − δ. (The proof of their lemma actually

states as an intermediate claim a (1 − δ)-probability bound on CondReg(n) which can easily be
shown to be O(

√
n log(n/δ) + log(n/δ)) as well). We recast their bound as follows.

Corollary 6.3 (Exponential deviation bound for ILOVETOCONBANDITS). Suppose that as-
sumption 6.2 holds. Then, there exist C0 > 1, C2 > 0 such that, for any x ≥ 0,

P
[
R(j, n)−R∗j ≥ C0n

−1/2 log n+ x
]
≤ exp(−C2nx

2).

6.6 Simulation study
We implemented EnsBFC using LinUCB and an ε-greedy algorihtm as base learners, and we eval-
uated it under two toy environments. We considered the setting K = 2. We chose environments
E1 and E2, and the specifications of the two base algorithms such that:

• the ε-greedy has regret O(T 2/3) w.r.t. the value V0(E1) of the optimal measurable policy
under E1, while LinUCB has linear regret lower bound Ω(T ) w.r.t. V0(E1),

• LinUCB has regretO(
√
T ) w.r.t. V0(E2) while the ε-greedy algorithm has linear regret lower

bound Ω(T ) w.r.t. V0(E2).

We present the mean cumulative reward results in figure 6.1. We demonstrate the behavior of the
algorithm on a single run in figure 6.2 in appendix 6.E. We provide additional details about the
experimental setting in appendix 6.E.
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6.7 Discussion
In this chapter, we provide a uniform exploration based approach to model selection in contextual
bandits. We showed that, by tuning adequately the rate of uniform exploration, the algorithm is
guaranteed to achieve the rate in T of the best high probability regret bound among all algorithms
for which the realizability assumption is satisfied. A caveat of our method is that it does not offer in
its its current form adaptivity to other problem constants, such as the dimensionality of the feature
space in linear bandit problems.

Other recent proposals [Abbasi-Yadkori et al., 2020, Pacchiano et al., 2020b] offers adaptivity
to further problem constants such as the dimensionality of the feature space in linear bandit classes.
Their analysis shares some similiarities with ours in the sense that it relies on high probability regret
bounds and their guarantee is that their procedure achieve the best upper bound among algorithms
for which realizability holds. The [Pacchiano et al., 2020a] only requires each base algorithm to
come with a candidate upper bound (that may require on realizability for instance), and achieves
the best regret bound among the base algorithms for which the candidate regret bound holds.

We conjecture that the analysis of our procedure can actually be extended in a straightforward
fashion to achieve the same guarantees.

Broader Impact
Our work concerns the design of model selection / ensemble learning methods for contextual ban-
dits. As it has the potential to improve the learning performance of any system relying on contex-
tual bandits, it can impact essentially any setting where contextual bandits are used.

Contextual bandits are used or envisioned in settings as diverse as clinical trials, personalized
medicine, ads placement and recommender systems. We therefore believe the broader impact of
our work is positive inasmuch as these applications benefit to society.
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6.A Proof of theorem 6.1
We can without loss of generality assume that the tuning parameters c1 and c2 are set to 1. The
proof of theorem 6.1 relies on the following lemmas.

Lemma 6.2. For any j ∈ [J ], and n, t ≥, nxplr(t) and Õ(j, n) are independent.

The following lemma tells us that the probability of selecting j outside of the set J (1) of
optimal candidates decrease exponentially with the common internal time of candidates.

Lemma 6.3 (Probability of selecting a suboptimal candidate). For all n ≥ 1 and all j ∈ [J ]\J (1),

P
[
ĵ(n) = j

]
≤ C3,j exp (−C4,jn

κj) ,

with C3,j, C4,j > 0 depending only on the constants of the problem, and κj ∈ [0, 1].

Proof. Suppose that ĵ(n) = j ∈ [J ]\J (1). Then

R̂(j∗, n) + n−β(1) ≥ R̂(j, n) + n−βj ,

which we can rewrite as(
R(j∗, n)−R∗

)
+
(
R̂(j∗, n)−R(j∗, n)

)
+
(
R(j, n)− R̂(j, n)

)
≥
(
R(j, n)−R∗j

)
+
(
R∗j −R∗

)
+ n−βj − n−β(1).

Using that R(j, n)−R∗j ≥ 0, we must then have(
R(j∗, n)−R∗

)
+
(
R̂(j∗, n)−R(j∗, n)

)
+
(
R(j, n)− R̂(j, n)

)
≥
(
R∗j −R∗

)
+ n−βj − n−β(1). (6.2)

We distinguish two cases.

Case 1: j 6∈ J . Then, R∗j −R∗ ≥ ∆ := minj 6∈J R
∗
j −R∗, which is strictly positive by definition

of J . Denote γ(1) := max{γj : j ∈ J (1)} Therefore, for n ≥ n0 for some n0 depending only of
∆ and n−β(1), we can lower bound the right-hand side of (6.2) by ∆/2, and we then have that for
n ≥ n0,

P
[
ĵ(n) = j

]
≤P

[(
R(j∗, n)−R∗

)
+
(
R̂(j∗, n)−R(j∗, n)

)
+
(
R(j, n)− R̂(j, n)

)
≥ ∆

2

]
≤P

[
R(j∗, n)−R∗ ≥ ∆

6

]
+ P

[
R̂(j∗, n)−R(j∗, n) ≥ ∆

6

]
+ P

[
R(j, n)− R̂(j, n) ≥ ∆

6

]
.
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From assumption 6.1, the first term can be bounded as follows:

P

[
R(j∗, n)−R∗ ≥ ∆

6

]
≤C1 exp

(
−C2

(
n

(
∆

6
− C0n

−β(1)(log n)γ(1)

)1/β(1)
)νj∗

)
≤C̃3,j exp

(
−C̃4,jn

νj∗
)
,

for some C̃3,j > 0 and C̃4,j > 0 that depend only on the constants of the problem.
The other two terms can be upper bounded using Azuma-Hoeffding: observing that for all j′,

(R̂(j′, τ) − R(j∗, τ))τ≥1 is a martingale difference sequence, and that from assumption 6.2, each
of its term is 1-subGaussian conditionally on the past, we have that

P

[
R̂(j∗, n)−R(j∗, n) ≥ ∆

6

]
≤ exp

(
−n∆2

36

)
and P

[
R(j, n)− R̂(j, n) ≥ ∆

6

]
≤ exp

(
−n∆2

36

)
.

Therefore, P [̂j(n) = j] ≤ C3,j exp(−C4,jn
κj), for some C3,j, C4,j > 0 that only depend on the

constants of the problem, and κj := min(νj∗ , 1).

Case 2: j ∈ J \J (1). Then R∗j − R∗ = 0. As j ∈ J \J (1), we have βj < β(1), and therefore,
for n ≥ n1,j that depends only on β(1) and βj , we have n−βj−n−β(1) ≥ n−βj/2. For any n ≥ n1,j ,
we can then lower bound the right-hand side of (6.1) by n−βj/2, and therefore, reasoning as in the
previous step, we have that

P
[
ĵ(n) = j

]
≤P

[
R(j∗, n)−R∗ ≥ n−βj

6

]
+ P

[
R̂(j∗, n)−R(j∗, n) ≥ n−βj

6

]
+ P

[
R(j, n)− R̂(j, n) ≥ n−βj

6

]

From assumption 6.1, the first term can be bounded as follows:

P

[
R(j∗, n)−R∗ ≥ 1

6
n−βj

]
≤ C1 exp

(
−C2

(
n

(
1

6
n−βj − C0n

−β(1)(log n)γ(1)

)1/β(1)
)νj)

.

For n large enough, n−βj/6− C0n
−β(1)(log n)γ(1) ≥ n−βj/12, and therefore, there exists C̃3,j and

C̃4,j > 0 that depends only on the constants of the problem such that

P

[
R(j∗, n)−R∗ ≥ 1

6
n−βj

]
≤ C̃3,j exp

(
−C̃4,jn

(1−βj/β(1))νj
)
.
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Using Azuma-Hoeffding as in case 1 yields that

P

[
R̂(j∗, n)−R(j∗, n) ≥ n−βj

6

]
≤ exp

(
−n

1−2βj

36

)
,

and P
[
R(j, n)− R̂(j, n) ≥ n−βj

6

]
≤ exp

(
−n

1−2βj

36

)
.

Therefore, P [̂j(n) = j] ≤ C3,j exp(−C4,jn
κj), with C̃3,j, C̃4,j > 0 depending only on the con-

stants of the problem, and κj := min(1 − 2βj, (1 − βj/β(1))νj). Observe that κj > 0 as
βj < β(1) ≤ 1/2 and νj > 0.

We can now prove theorem 6.1.

Proof of theorem 6.1. Observe that the regret at time of the master w.r.t. R∗ can be decomposed as

Reg(t) :=E

[
1

t

t∑
τ=1

Y (τ)

]
−R∗

=E

 ∑
j∈J (1)

n(j, t)

t

(
R(j, n(j, t))−R∗

)+ E

 ∑
j 6∈J (1)

n(j, t)

t

(
R(j, n(j, t))−R∗

) .
Observe that for all 1 ≤ n ≤ t, nR(j, n)−R∗ =

∑n
τ=1R(π(j, τ)−R∗ ≤

∑t
τ=1R(π(j, τ))−R∗ =

tR(j, t)−R∗, since the terms in the sums are non-negative. Also, note that R(j, n(j, t))−R∗ ≤ 1
for all t and j. Therefore,

Reg(t) ≤
∑
j∈J (1)

E
[
R(j, t)−R∗

]
+
∑
j 6∈J (1)

E[n(j, t)]

t
.

Recall that n(j, t) = nxplr(j, t) + nxplt(j, t). It is straightforward to check that E[n(j, t)xplr(t)] ≤
t−β/(1− β). We now turn to E[n(j, t)xplt(t)]. We have that

E[n(j, t)xplt(t)] =E

[
t∑

τ=1

1(Ĵ(t) = j,D(τ) = 1)

]

=E

[
t∑

τ=1

1(ĵ(nxplr(τ) = j,D(τ) = 1)

]

≤E

[
t∑

τ=1

1(ĵ(nxplr(τ) = j)

]

=
t∑

τ=1

E
[
P
[
ĵ(nxplr(τ) = j

∣∣∣nxplr(τ)
]]

=
t∑

τ=1

E

[
τ∑

n=1

P
[
ĵ(n) = j

∣∣∣nxplr(τ) = n
]

1(nxplr(τ) = n)

]
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From lemma 6.2, ĵ(n) is independent of nxplr(τ), and therefore, P [̂j(n) = j|nxplr(τ) = n] =
P [̂j(n) = j]. Therefore, using this fact and the bound on P [̂j(n) = j] from lemma

E[n(j, t)xplt(t)] ≤
t∑

τ=1

τ∑
n=1

P
[
ĵ(n) = j

]
P
[
nxplr(τ) = n

]
≤

t∑
τ=1

τ∑
n=1

C3,j exp (−C4,jn
κj)P

[
nxplr(τ) = n

]
=

t∑
τ=1

C3,jE
[
exp

(
−C4,jn

xplr(τ)
)]
.

It is straightforward to check that if κ ∈ [0, 1], x 7→ exp(−xκ) is convex. Therefore, from Jensen’s
inequality

E[n(j, t)xplt(t)] ≤C3,j

t∑
τ=1

exp
(
−C4,jE

[
nxplr(τ)

])
≤C3,j

t∑
τ=1

exp

(
− C4,j

J(1− β)
τ−β
)

≤C5,j,

with C5,j := C3,j

∫∞
0

exp
(
− C4,j

J(1−β)
τ−β
)
dτ <∞.

Therefore, adding up the bounds on the expected number of exploration and exploitation
rounds, we obtain

E[n(j, t)] ≤
(
C5,j +

1

J(1− β)
t1−β

)
≤ C6,jt

1−β,

for some C6,j > 0 that depends only on the constants of the problem.
From assumption 6.1, for any j ∈ J (1), we have E[R(j, t)−R∗] ≤ C7t

−β(1) for some C6 > 0.
Therefore,

Reg(t) ≤JC6t
−β(1) +

J∑
j=1

C7,jt
−β

≤Ct−β(1),

for some C > 0 that depends only on the constants of the problem.

6.B Proof of the independence lemma
We start by stating a more general result of which lemma 6.2 is a corollary.
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Lemma 6.4. Consider some j ∈ [J ]. Let, for all t ≥ 1, U(t) := 1(D(t) = 1, J(t) = j). Then, for
every n, t ≥ 1, U(t)⊥⊥F̃(j, n).

We can now prove lemma 6.2. We relegate the proof of lemma 6.4 after the one of lemma 6.2.

Proof of lemma 6.2. Observe that for every j ∈ [J ], t ≥ 1, n(j, t) :=
∑t

τ=1 1(D(t) = 1, J(t) =
j). Lemma 6.4 then immediately gives the wished claim.

Proof of lemma 6.4. Let for all t ≥ 1,F−(t) := σ(F(t − 1), D(t), J(t)). The hypothesis in the
third bullet point can be rephrased as Y (t)|F−(t)

d
= Ỹ (j, n(j, t))|F̃(j, n(j, t)− 1).

Fix j and t. We denote U(t) := 1(D(t) = 1, J(t) = j). Observe that U(t) is F−(t)-
measurable, and that from the first and second conditions, U(t)⊥⊥F(t− 1).

We show by induction that for all n ≥ 1, U(t)⊥⊥F̃(j, n). We treat the base case at the end of
the proof. Suppose that for some n ≥ 1, U(t)⊥⊥F̃(j, n). Let us show that U(t)⊥⊥F̃(j, n + 1). It
suffices to show that U(t)⊥⊥Ỹ (j, n+ 1)|F̃(j, n). Observe that

P
[
Ỹ (j, n+ 1) = y, U(t) = u

∣∣∣F̃(j, n)
]

=P
[
Ỹ (j, n+ 1) = y, U(t) = u, t(j, n+ 1) < t

∣∣∣F̃(j, n)
]

+ P
[
Ỹ (j, n+ 1) = y, U(t) = u, t(j, n+ 1) ≥ t

∣∣∣F̃(j, n)
]
.

We start with the first term. We have that

P
[
Ỹ (j, n+ 1) = y, U(t) = u, t(j, n+ 1) < t

∣∣∣F̃(j, n)
]

=P
[
U(t) = u

∣∣∣Ỹ (j, n+ 1) = y, t(j, n+ 1) < t
∣∣∣F̃(j, n)

]
× P

[
Ỹ (j, n+ 1) = y, t(j, n+ 1) < t, F̃(j, n)

]
=P [U(t) = u]P

[
Ỹ (j, n+ 1) = y, t(j, n+ 1) < t

∣∣∣F̃(j, n)
]

since {Ỹ (j, n) = y, t(j, n + 1) < t} ∩ F̃(j, n) is F(t − 1) measurable and U(t)⊥⊥F(t − 1).
Moreover, observe that {t(j, n+ 1) < t} ∩ F̃(j, n) is F−(t(j, n+ 1))-measurable, and therefore,

P
[
Ỹ (j, n+ 1) = y

∣∣∣t(j, n+ 1) < t, F̃(j, n)
]

=E
[
P
[
Y (t(j, n+ 1)) = y

∣∣F−(t(j, n+ 1))
]∣∣∣t(j, n+ 1) < t, F̃(j, n)

]
=E

[
P
[
Ỹ (j, n+ 1)

∣∣∣F̃(j, n)
]∣∣∣t(j, n+ 1) < t, F̃(j, n)

]
=P

[
Ỹ (j, n+ 1)

∣∣∣F̃(j, n)
]
.

Therefore,

P
[
Ỹ (j, n+ 1) = y, U(t) = u, t(j, n+ 1) < t

∣∣∣F̃(j, n)
]
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=P
[
Ỹ (j, n+ 1)

∣∣∣F̃(j, n)
]
P [U(t) = u]P

[
t(j, n+ 1) < t

∣∣∣F̃(j, n)
]

=P
[
Ỹ (j, n+ 1)

∣∣∣F̃(j, n)
]
P
[
U(t) = u, t(j, n+ 1) < t

∣∣∣F̃(j, n)
]
,

since U(t)⊥⊥{t(j, n + 1) < t}, as {t(j, n + 1) < t} is F(t − 1)-measurable, and U(t)⊥⊥F̃(j, n)

by induction hypothesis, which imply that U(t)⊥⊥{t(j, n+ 1) < t}|F̃(j, n).
We now turn to the second term. Observe that {U(t) = u, t(j, n + 1) ≥ t} ∩ F(j, n) is

F−(t(j, n+ 1))-measurable. Therefore,

P
[
Ỹ (j, n+ 1) = y

∣∣∣U(t) = u, t(j, n+ 1) ≥ t, F̃(j, n)
]

=E
[
P
[
Y (t(j, n+ 1)) = y

∣∣F−(t(j, n+ 1))
]∣∣∣U(t) = u, t(j, n+ 1) ≥ t, F̃(j, n)

]
=E

[
P
[
Ỹ (j, n+ 1) = y

∣∣∣F̃(j, n)
]∣∣∣U(t) = u, t(j, n+ 1) ≥ t, F̃(j, n+ 1)

]
=P

[
Ỹ (j, n+ 1) = y

∣∣∣F̃(j, n)
]
.

Therefore,

P
[
Ỹ (j, n+ 1) = y, U(t) = u, t(j, n+ 1) ≥ t

∣∣∣F̃(j, n)
]

=P
[
Ỹ (j, n+ 1) = y

∣∣∣F̃(j, n)
]
P
[
U(t) = u, t(j, n+ 1) ≥ t

∣∣∣F̃(j, n)
]
.

Therefore, adding up the identities for the two terms, we have

P
[
Ỹ (j, n+ 1) = y, U(t) = u

∣∣∣F̃(j, n)
]

= P
[
Ỹ (j, n+ 1) = y

∣∣∣F̃(j, n)
]
P
[
U(t) = u

∣∣∣F̃(j, n)
]
.

We have thus shown that Ỹ (j, n+ 1)⊥⊥U(t)|F̃(j, n), which implies that U(t)⊥⊥F̃(j, n+ 1).
The base case can be treated with the same arguments.

6.C Proofs of reformulations of regret bounds for known base
algorithms

Proof of corollary 6.1. As Ỹτ − E[Ỹτ |F̃τ−1] is conditionally 1-sub-Gaussian with probability at
least 1− δ/2,

CondReg(n) ≤ Reg(n) +
√
n log(2/δ),

and thus, using the high-probability regret bound from [Pacchiano et al., 2020a, lemma 4.9 in],
there exists C > 0 such that, with probability at least 1− δ,

CondReg(n) ≤C
√
n log(2n/δ) +

√
n log(2/δ)
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≤C
√
n log(2n) + (C + 1)

√
n log(2/δ)

≤C ′
√
n log n+ C ′

√
n log(1/δ),

for some C ′ > C + 1. Let x = C
√
n log(1/δ), that is δ = exp(−(C ′)−2nx2). Recalling that

R(n)−R∗ = CondReg(n)/n, we thus have that

P
[
R(n)−R∗ ≥ C ′n−1/2(log n)1/2 + x

]
≤ exp

(
−(C ′)−2nx2

)
.

Proof of lemma 6.1. It suffices to observe that

1. The bracketing entropy in any Lp norm is always dominated by the covering entropy in ‖·‖∞
norm.

2. The proof of [theorem 2 in Bibaut et al., 2020] gives the desired bound on R(n)− R∗ as an
intermediate result (right before relating it to the regret by using Azuma-Hoeffding).

Proof of corollary 6.2. [Theorem 3 in Abbasi-Yadkori et al., 2011] gives that there exists C > 0
such that R(n)−R∗ = CondReg(n)/n ≤ Cn−1/2 log(1/δ) with probability at least 1− δ. Setting
x = Cn−1/2 log(1/δ), that is δ := exp(−C−1

√
nx), we have that

P
[
R(n)−R∗ ≥ x

]
≤ exp

(
−C−1

√
nx
)
,

which is the wished claim.

Proof of corollary 6.3. As Ŷτ − E[Ŷτ |F̂τ−1] is conditionally 1-sub-Gaussian, Azuma-Hoeffding
gives us that, with probability at least 1− δ/2,

CondReg(n) ≤ Reg(n) +
√
n log(2/δ).

Therefore, combining this with the claim of [theorem 2 in Agarwal et al., 2014], there existsC > 0,
such that, with probability 1− δ

R(n)−R∗ ≤Cn−1/2
√

log(2n/δ) + Cn−1 log(2n/δ) + n−1/2
√

log(2/δ)

≤C
(
n−1/2

√
log n+ n−1 log n

)
+ Cn−1 log(2/δ) + (C + 1)n−1/2

√
log(2/δ)

≤C ′
(
n−1/2

√
log n+ n−1/2 log(1/δ)

)
,

for some C ′ > C. Letting x = C ′n−1/2 log(1/δ), this is equivalent with

P
[
R(n)−R∗ ≥ C ′n−1/2(log n)1/2 + x

]
≤ exp

(
−C ′
√
nx
)
,

which is the wished claim.
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6.D Comment on the need to enforce a lower bound on the es-
timated risk

Unlike model selection methods such as Lepski’s method and cross-validation, our method relies
on explicit identification of the index of the best model. It is our understanding that such index
identification tasks usually require the existence of a lower bound on the risk of each alternative,
so as to ensure a gap in performance between the best and second best learner. Consider for
instance the situation where one wants to adaptively estimate in L∞ norm a density belonging to
the union of a collection of Holder balls: Ms = H(s, B), where H(s,M) := {f : Rd → R :
|f(x) − f(y)| ≤ M |x − y|s−bsc}. It is well known, that while Lepski ’s method is a minimax
adaptive procedure with respect to {Ms : s ∈ S}, identification of the index s of the smallest
Holder class that contains the truth is impossible without additional assumptions that enforce risk
lower bounds [Giné and Nickl, 2015].

A parallel can perhaps be drawn with the best arm identification problem in multi-armed bandit
settings: the analysis relies on the gap in mean reward between the best and second best arm.

Lower bounds of the sort we enforce are intrinsically tied to the minimax framework: they
require the knowledge of a rate associated to the model class. Moving beyond the minimax frame-
work to design a meta-learner that performs as well as the best instance-dependent base learner
therefore seems to imply that such a procedure must not rely on identifying the index of the best
model.

6.E Experimental details
In both environment, contexts are i.i.d. draws from N (0, I4).

In environment 1, the rewards Bernoulli conditional on A and X , with conditional means spec-
ified as follows: for all x = (x1, x2, x3, x4) ∈ R4,

E[Y |A = 1, X = x] =


0.1 if x1 < 0 and x2 < 0,

0.5 if x1 < 0 and x1 ≥ 0,

0.7 if x1 ≥ 0 and x2 < 0,

0.45 otherwise

,

and

E[Y |A = 1, X = x] =


0.8 if x1 < 0 and x2 < 0,

0.1 if x1 < 0 and x2 ≥ 0,

0.3 if x1 ≥ 0 and x2 < 0,

0.6 otherwise

.

In environment 2, for each a ∈ {1, 2}, rewards are normally distributed conditional on X:
E[Y |A = a,X = x] = µa(x)〉+ η, with η ∼ N (0, 1), with

µ1(x) =0.9 + 0.5x1 + 0.3x2 − 0.9x3 − 0.2x4
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µ2(x) =0.9− 0.5x1 + 0.1x2 − 0.7x3 + 0.6x4.

The ε-greedy learner uses as expected reward model the set of functions of the form (a, x) 7→
βa,0 +βa,11(x1 < 0, x2 < 0)+βa,21(x1 < 0, x2 ≥ 0)+βa,31(x1 ≥ 0, x2 ≥ 0). The reward learner
therefore converges at a parametric rate to the truth under environment 1. Therefore, by setting the
exploration rate to t−1/3 at each t, regret under environment 1 isO(T 2/3) over T rounds. However,
this reward model does not contain the truth under environment 2,which implies that the ε-greedy
algorithm incurs linear regret w.r.t. V0(E1).

We use LinUCB with a linear model including all four components of x and an intercept,
which implies that the realizability assumption is satisfied under environment 2, and therefore that
the regret of LinUCB w.r.t. V0(E2) is O(

√
T ) over T rounds.

Figure 6.2 demonstrates the master algorithm and its two base learners on a single run.

Figure 6.2: Mean cumulative reward of the master and its two base algorithms over 1 run. The
vertical black line indicates nxplr(T ), with T the final global time in the simulation.

We tried the following values for the hyperparameters: (c1, c2) ∈ {0.1, 0.5, 1} × {1, 10}. All
specifications lead to the master appearing to converge to the performance of the optimal algorithm,
but some values degrade a the performance in earlier rounds. As pointed out earlier, the specific
constant values of c1 and c2 have no impact on the asymptotics.

The results of figure 6.1 were generated using an AWS EC2 instance of type r4.8xlarge, with
32 cores and 244 GiB of memory. Each plot takes about 30 minutes to compute.

The results of figure 6.2 were generated on a personal laptop and take less than 5 minutes to
compute.
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Chapter 7

Sequential causal inference in a single world
of connected units
AURÉLIEN BIBAUT, MAYA PETERSEN, NIKOS VLASSIS,
MARIA DIMAKOPOULOU, MARK VAN DER LAAN
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In this chapter, we consider sequential decision making and causal inference under perhaps
the most challenging setting we considered in this dissertation: we consider N units that exhibit
network dependence that we follow along T time steps, that is we work under the statistical and
causal models presented in subsection 1.2.4 of the introduction chapter.

We suppose that we are in a trial setting, that is the experimenter controls the treatment assign-
ment of each unit at each time point, is allowed to choose treatments based on available history
of all N units. We define causal quantities of interest under our causal model, show identifiabil-
ity of these from the observed data distribution. We derive the canonical gradient and a targeted
maximum likelihood estimator of these. The main technical challenge is to deal with the temporal
and network dependence of observations. We derive a novel maximal inequality for empirical pro-
cesses under mixing conditions, from which we derive an equicontinuity result and high probability
risk bounds for empirical risk minimizers.

7.1 Introduction
We consider the setting in which, given a set of N individuals, a decision maker (or experimenter)
alternatively, over a sequence of time points t = 1, 2, . . ., assigns to each individual i a treatment
A(t, i) and then collects a vector of measurementsL(t, i) on this individual. We consider individual
and time point specific outcomes Y (t, i) that can be defined from L(t, i). We also suppose that the
decision maker can adapt the treatment assignment rule in response to past observations.

In these situations, it is often natural to define the performance of a treatment rule in terms
of the expectation average outcomes of the form N−1

∑N
i=1 Y (τ, i) at some time point τ , or as a

function of such averages at different time points τ1, τ2, . . .. Natural objectives the decision makers
may want to pursue include learning as fast as possible the optimal treatment rule (a so-called pure
exploration goal), or to ensure that over a certain time period, the individuals experience outcomes
as high as possible (a so-called regret minimization objective).

This setting can arise in particular in business and public health applications. We consider two
motivating examples.

First motivating example. Suppose an infectious disease is circulating in a country, and that
public health officials can access, for each inhabitant i, at each time point t, a vector of measure-
ments L(t, i) including the infection status, which we define as the outcome Y (t, i), demographic
characteristics and the set of people i has been in contact with in the recent past. Suppose the
government can assign to each individual i, at every time step t, a treatment A(t, i) consistent of
a certain set of restrictions on their daily activities. A question of interest is, given two candidates
treatment rules, how to learn as quickly as possible which one is the most efficient.

Second motivating example. Suppose that the administrators of a web platform wonder which
of two versions of the user interface users like best in the long run. They select a set of N users
among all of the users of the platform, and assign from the beginning half of them to version 1
(A(t, i) = 1 for every i = 1, . . . , N/2 and every t ≥ 1) and the other half to version 2 (A(t, i) = 2
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for every i = N/2 + 1, . . . , N and every t ≥ 1). For each user i, at each time t, they collect of
vector of measurements L(t, i) on the user, which contains in particular measures of engagement
with the platform, from which they define an outcome Y (t, i). Given an arbitrary time point τ ,
a question of interest is: how to find out as quickly as possible which user interface would have
maximized the expected average outcome N−1

∑N
i=1 Y (τ, i) at τ?

While traditionally the causal inference and sequential decision problems literature have fo-
cused on single time point interventions or multiple time points interventions on independents
units, the data collect in many real world situations involve network dependence between indi-
viduals. In the infectious disease setting presented above, the network dependence arises from
contagion effects. In the web platform example, adjusting the treatment rule of individuals at time
t as a function of the observed history of every individual up to time t − 1 induces dependence
between the trajectories of distinct individuals. In other business applications, there can be similar
network effect arising due to word of mouth between socially connected users of the same service.
Another source of association between units can arise from spillover effects, that is the effect of
the treatment assignment of one individual on other individuals.

In this work, we define causal effects defined under temporal and network dependence, and we
propose a methodology to design and analyze adaptive trials aiming at learning these causal ef-
fects. We propose a method to construct adaptive stopping rules for sequential hypothesis testing.
We work under the key modelling assumption that the conditional distribution of the measure-
ment vectors L(t, i) given the past is constant across i and t. This assumption is comparable to
an homogeneity assumption in a Markov Decision Process setting. We will see further down that
as a key consequence of this homogeneity assumption, the error rates of our estimators over this
model are a function of T × N , which acts as the effective sample size, even though under tem-
poral and network dependence, we only observe a single independent draw of the data-generating
distribution.

7.1.1 Existing work
The setting we study conjugates three topics often treated separately: causal inference under tem-
poral and network dependence, and adaptive experimentation.

Causal inference with temporal dependence. Temporal dependence in causal inference arises
in longitudinal studies, and in particular in the dynamic treatment regime (DTR) literature for
health applications, where patients are monitored across multiple time points, and a final outcome
is measured at the end. In the DTR literature, dependence on the past is arbitrary and not identical
across time points (as opposed to the homogeneous Markov Decision Process setting we discuss
next), and convergence guarantees are stated in terms of the number of individuals N enrolled in
the study. In another strand of causal inference for longitudinal settings, authors assume that the
trajectory of each individual can be modelled as an homogeneous Markov Decision Process (MDP)
(see Kallus and Uehara [2019] for the MDP model, and van der Laan et al. [2018] for a class of
statistical models which include the MDP model), and convergence guarantees are stated in terms
of the number of time points T if one follows only one single individual, or in terms of T ×N , if
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one follows the trajectories of N individuals over T time steps. These works can be categorized in
the Off-Policy Evaluation (OPE) sub-field of Reinforcement Learning (RL), where it is standard
to model the trajectory of the system by an MDP.

Causal inference in networks. Causal inference in networks has been studied by numerous
authors (see e.g. Hudgens and Halloran [2008], Tchetgen and VanderWeele [2012], van der Laan
[2013], Basse and Airoldi [2018], Basse et al. [2019], Ogburn et al. [2020]).

In network causal models, potential outcomes of an individual do not only depend on its own
treatment history, but can also depend on the treatment history of other individuals it is connected
to.

Applications include the study of infectious diseases and vaccines, spillover effects of adver-
tising campaigns on social network platforms, and spillover effects in public policy interventions
(see e.g. the aforementioned Basse et al. [2019]).

Adaptive experimentation. Adaptive experimentation, a sub-field of sequential decision prob-
lems has been a very active field of study for more than 75 years, with seminal contributions
dating back to the work of Wald on sequential probability ratio tests [Wald, 1945], and the semi-
nal multi-armed bandit paper of Robbins [Robbins, 1952]. The development of bandit algorithms
was initially motivated by clinical trials with the goal of making these faster, and minimizing the
opportunity cost of patients subjected to suboptimal treatments. Objective pursued in adaptive ex-
perimentation / sequential decision problems include (1) minimizing the cumulative regret, that is,
over a fixed number of rounds, maximizing the sum of rewards collected / outcomes observed, and
(2) inferential goals, such as identifying the best treatment arm with a certain predetermined level
of confidence in as few rounds as possible (top arm identification in the fixed confidence setting),
or to identify the best arm with as high a confidence level as possible, under a fixed number of
rounds (best arm identification in the fixed confidence setting). In the bandit literature, it is usually
assumed that rewards (and contexts in the contextual bandit setting) are independent of the past
(this covers both the stochastic i.i.d. setting and the oblivious adversarial setting). In that sense,
usual bandit methods aren’t appropriate to deal with the case of trajectories of individuals with
temporal dependence, which is the setting which interests us.

Bandit problems are a special case of reinforcement learning problems with trajectories of
length T = 1. In the general case however, reinforcement learning is concerned with trajectories
of the system over multiple time points, and states and outcomes at one time point can depend on
the state, outcomes, and treatment at previous time points. Note that under the MDP model, which
is the standard model considered in RL, dependency on the past is fully captured by the latest state
and treatment. The reinforcement literature literature is concerned with learning optimal policies,
either in a sequential fashion, or in an off-policy fashion, and with evaluating policies from off-
policy data.

Sequential adaptive experimentation in the statistics literature. We see mainly two directions
in which an experiment can be made adaptive to the past, and which the statistics literature has con-
sidered. The first one is the stopping rule. Contributions on adaptive stopping rules date back to the
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aforementioned work of Wald on sequential probability ratio tests [Wald, 1945]. The other com-
ponent that can be chosen adaptively is the design, that is the stochastic rule that the experimenter
uses to assign treatment in response to past observations and current covariates. An optimal design
is defined with respect to a given statistical parameter and is the design that maximizes efficiency
for that parameter, that is that leads to the smallest asymptotic variance of estimators of that param-
eter, and the highest power of tests of hypothesis defined from that parameter. van der Laan [2008]
proposed a comprehensive methodology for sequential adaptive trials in the single and multiple
time point settings, for independent individuals (as opposed to the network interference setting)

7.1.2 Contributions and comparison with past work
Our theoretical contributions are the following. We present our causal model, and we define our
causal parameter as a mean outcome under a post-intervention distribution under this causal model.
Under identifiability conditions, this post-intervention distribution equals a G-computation for-
mula. We thus define formally our statistical parameter as the corresponding mean outcome under
the G-computation formula.

We derive its efficient influence function (EIF), and thereby the semiparametric efficiency
bound. Our statistical model subsumes in particular the homogeneous MDP model with indepen-
dent trajectories. To the best of our knowledge, this work is the first to provide a formal derivation
of the EIF of mean outcomes under aG-computation formula under the homogeneous MDP model.

We provide a Targeted Maximum Likelihood Estimator (TMLE) and a one-step estimator of
our target parameter for generic sequential adaptive designs. We show under certain conditions
that a certain process obtained by rescaling in time the sequence of estimates converges weakly to
a Wiener process. In particular, this gives us the asymptotic distribution of our TMLE and one-step
estimator. The conditions include in particular conditions on the design. We show that, for designs
that converge to a fixed limit design, our estimator has asymptotic variance equal to the variance
of the canonical gradient of the target parameter, which we conjecture equals the semiparametric
efficiency bound. We use the results on the time-rescaled sequence of estimates to design a method
to construct adaptive stopping rules for sequential hypothesis testing.

As mentioned earlier, some technical challenges arise from the fact that observations of dif-
ferent individuals at different time points are a priori dependent, and from the fact that we need
to characterize the joint distribution of the sequence of estimates so as to be able to design an
adaptive stopping rule. In particular the dependence between individuals implies that we cannot
use the usual sample splitting techniques, which in the construction of semiparametric estimators
allow to circumvent Donsker conditions [Klaassen, 1987, Zheng and van der Laan, 2011, Kallus
and Uehara, 2020]. We therefore had to derive an almost sure equicontinuity result for empirical
processes generated by weakly dependent data. The almost sure convergence aspect is key to ob-
taining guarantees on the joint distribution of the sequence of estimators. For the latter purpose,
we also needed uniform-in-time convergence guarantees for nuisance estimators. We derived an
exponential deviation bound for empirical risk minimizers fitted on weakly dependent data, which
allows us to control these uniformly in time. Both the equicontinuity results and the results on
empirical risk minimizers stem from a maximal inequality for empirical processes generated by
weakly dependent data (that is from sequences that satisfy a certain mixing condition), which we
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obtain by applying an adaptive chaining device, a classical empirical process technique pioneered
by [Ossiander, 1987], to a Bernstein inequality for mixing sequences, proven by Merlevède et al.
[2009].

7.1.3 Paper organization

In section 7.2, we describe our causal model, our causal parameter, the statistical model, the statis-
tical target parameter parameter, and the class of adaptive designs we consider. In section 7.3, we
derive the efficient influence function (canonical gradient) of our target w.r.t. our statistical model,
and we study the robustness properties of the EIF. In section 7.4, we provide a Targeted Maximum
Likelihood Estimator and a one-step estimator of our parameter of interest, and we derive their
convergence guarantees. In section 7.5, we introduce a class of functions that we use for nuisance
modelling, and for modelling the EIF, and we give guarantees for empirical risk minimizers over
it. In section 7.6, we show how to construct an adaptive stopping rule for sequential hypothesis
testing. In section 7.7, we discuss adaptive learning of the optimal design.

7.2 Problem formulation

7.2.1 Observed data

An experimenter interacts with an environment consisting of N individuals indexed by i = 1, . . . ,
N , over rounds t = 1, . . . , T . At each round t, the experimenter first assigns the treatment vector
A(t) := (A(t, 1), . . . , A(t, N)) to the N individuals, where A(t, i) is the treatment assigned to
individual i at time t, and then observes for each individual i, a vector L(t, i) of time-varying co-
variates and outcomes. Let L(t) := (L(t, 1), . . . , L(t, N)). We denote O(t, i) := (A(t, i), L(t, i))
the data observed for individual i at time t, and O(t) = (A(t), L(t)) the data observed for the all
of the N individuals at round t, Ō(t) := (O(1), . . . , O(t)) the data available at round t, L−(t) :=
Ō(t−1), the data observed before L(t), A−(t) := (Ō(t−1), L(t)), the data observed before A(t),
L−(t, i) = (L−(t), L(t, 1), . . . , L(t, i− 1)), and A−(t, i) = (A−(t), A(t, 1), . . . , A(t, i− 1)).

Under this notation, the data observed throughout the course of the trial is thus Ō(T ), which
we will also denote OT,N to make explicit the dependence on the number of individuals N .

7.2.2 Causal model

Formal definition of the causal model. We suppose that there exists a set of deterministic func-
tions {fA(t,i), fL(t,i) : t ∈ [T ], i ∈ [N ]}, and a set of unobserved random variables U := (UA, UL),
with UL := (UL(t, i) : t ∈ [T ], i ∈ [N ]) and UA := (UA(t, i) : t ∈ [T ], i ∈ [N ]), such that, for
every (t, i) ∈ [T ]× [N ],

A(t, i) =fA(t,i)(L̄(t− 1), Ā(t− 1), UA(t, i)), (7.1)

L(t, i) =fL(t,i)(Ā(t), L̄(t− 1), UL(t, i)). (7.2)
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We place no restriction at this point on the functional form of the functions fA(t,i), fL(t,i). The
set of equations (7.1)-(7.2) form a so-called Nonparametric Structural Equation Model (NPSEM)
(see e.g Pearl [2009]). Let

MT,N
F :=

{
P T,N
F : PU , fA(t,i), fL(t,i), c̃A(t,i), c̃L(t,i) : t ∈ [T ], i ∈ [N ]

}
,

be the set of probability distributions P T,N
F over the domains of (OT,N , U) induced by the NPSEM

as the distribution PU of the unmeasured variable vector U , and the functions fA(t,i), fL(t,i), c̃A(t,i),

c̃L(t,i) vary freely. The setMT,N
F is our so-called causal model.

We denote P T,N
0,F the true distribution of (OT,N , U). In the remainder of the article, we will use

the subscript “0” to indicate true probability distributions or components thereof. Note that the full
data distribution fully determines the observed data distribution.

Counterfactual data and post-intervention distribution. We now describe a counterfactual
scenario in which the connectivity of the nodes and the intervention assigned to them is not as
under the NPSEM above.

Let {g∗s,j : s ∈ [τ ], j ∈ [N ]} be a collection of stochastic interventions at nodes {A(s, j), s ∈
[T ], j ∈ [N ]}, that is, for every (s, j), g∗s,j is a distribution over treatment arms conditional on
Ā(t− 1), L̄(t− 1).

Let O∗,T,N := (O∗(t, i) : t ∈ [T ], i ∈ [N ]), with O∗(s, j) := (A∗(s, g), L∗(s, j)) be the
counterfactual data set generated from U by the following NPSEM, obtained from the NPSEM
(7.1)-(7.2) by replacing the intervention nodes by the counterfactual interventions g∗s,j:

A∗(s, j) ∼g∗s,j(· | L̄(s− 1), Ā(s− 1)),

L∗(s, j) =fL(s,j)(Ā(s− 1), L̄(s− 1), UL(s, j)).

The distribution of (O∗,T,N , U) is the so-called post-intervention distribution of the full data. We
use the notation P ∗,T,NF for the post-intervention distribution of the full data.

Causal target parameter. Let τ ≥ 1 be an arbitrary time point. We define as our causal target
parameter as a certain mean outcome at time point τ , under the post-intervention distribution:

ΨF
τ (P T,N

F ) = EP ∗,T,NF
[Y ∗(τ)] ,

where Y ∗(τ) := N−1
∑N

i=1 Y
∗(τ, i), where Y ∗(τ, i) is a unit-specific outcome at time τ , defined

as Y ∗(τ, i) := fY (L∗(τ, i)) for a certain function fY . In words, ΨF
τ (P T,N

F ) is the mean outcome at
time τ , in the counterfactual scenario where the treatment mechanism is g∗.

Identifiability. We use the notation P T,N for a generic distribution over the domain of the ob-
served data OT,N and we denote P T,N

0 the true distribution of the observed data. As mentioned
above, any distribution P T,N

F on the domain of the full data fully determines a corresponding dis-
tribution P T,N on the domain of the observed data. For any P T,N

F , we say that the causal parameter
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ΨF
τ (P T,N

F ) is identifiable if we can write it as a function of the corresponding observed data distri-
bution P T,N .

The parameter ΨF
τ (P T,N

F ) is identifiable under the following two assumptions.

Assumption 7.1 (Sequential randomization). For any (t, i), A(t, i)⊥⊥L∗(t, i) | A(t, i)−.

Assumption 7.2 (Positivity). For any (t, i), a ∈ A, and l(t, i)− such that P0 [L(t, i)− = l(t, i)−] >
0,

P0

[
A(t, i) = a | L(t, i)− = l(t, i)−

]
> 0.

It can be shown under assumptions 7.1 and 7.2 that the post-intervention distribution of O∗

under P ∗,T,NF equals the following G-computation formula:

P T,N
g∗ (OT,N) :=

τ∏
s=1

N∏
j=1

P (L(s, j) | L(s, j)−)g∗s,j(A(s, j) | A(s, j)−).

Note that the factors of P T,N
g∗ are the conditional distributions P (L(t, i) | L(t, i)−), which are

known if we know P T,N , and the known counterfactual intervention g∗. Therefore, under assump-
tions 7.1 and 7.2, there exists a mapping Ψτ such that

ΨF
τ (P T,N

F ) = Ψτ (P
T,N).

The quantity Ψτ (P
T,N
0 ) is then our statistical target parameter. For γ ∈ (0, 1), which we interpret

as a discount factor, we also define the following other target parameter, derived from Ψτ :

Ψτ,γ(P
T,N) :=

∑
τ ′≥τ

γτ
′−τΨτ ′(P

T,N).

This parameter is the typical target (in particular in the case τ = 1) in the Off-Policy Evaluation
problem in reinforcement learning (see e.g. Kallus and Uehara [2020, 2019]). As the analysis of
Ψτ,γ follows from the analysis of Ψτ , in the rest of the paper, we treat Ψτ as our main object of
interest, and we will simply denote it Ψ when there is no ambiguity about τ .

7.2.3 Statistical model
The statistical model is the set of distributions we believe to contain the true data-generating dis-
tribution P T,N

0 . We denote itMT,N . We suppose that all of the elements ofMT,N admit a density
w.r.t. a common dominating measure µ. For any P T,N , we denote pT,N := dP T,N/dµ.

From the chain rule, any such pT,N can be factorized as a product of conditional densities as
follows:

pT,N(oT,N) :=
T∏
t=1

N∏
i=1

gt,i(a(t, i) | a(t, i)−)qt,i(l(t, i) | l(t, i)−).
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The conditional densities qt,i are a fact of nature and represent how each L(t, i) responds to past
interventions A(s, j), and depends on the vectors L(s, j) of past time-varying covariates and out-
comes of for each individual j ∈ [N ], for every time point s < t. We refer to it as the uncontrolled
part of the data-generating process of the trial, as the experimenter does not have control over it.
The factors gt,i, in our randomized experimental setting, are in control of the experimenter, and
represent the set of stochastic decision rules she follows to assign treatment at each time step.

The above decomposition places no restriction on the temporal and network dependence in the
observed data. We make an assumption on the complexity of the dependence allowed by supposing
that each L(t, i) can depend on the past of the trial only through a summary measure of the history
of a fixed number of individuals.

Assumption 7.3 (Conditional independence given summary measure). There exists a Euclidean
set CL ⊂ Rd1 , for some d1 ≥ 1, and a set of deterministic functions cL(t,i), t ∈ [T ], i ∈ [N ], with
image included in C, such that, for every t ∈ [T ], i ∈ [N ],

qt,i(l(t, i) | l(t, i)−) = qt,i(l(t, i) | cL(t,i)(l(t, i)
−)).

We denote CL(t, i) := cL(t,i)(L(t, i)−).

The vector CL(t, i), which lies in the Euclidean set CL, plays the role of a finite dimensional
summary measure of the past, which is such that L(t, i) is independent of its past when condi-
tioning on this summary measure. Following terminology used in existing works [Boruvka et al.,
2017, van der Laan et al., 2018], we will refer to it as the “context” preceding the node L(t, i).

Without any further assumptions, it is a priori not possible to obtain consistent estimators from
a single draw of OT,N . For consistent estimation to be possible, we need the likelihood to exhibit
a repeated factor. We therefore make the following assumption.

Assumption 7.4 (Homogeneity). The factors qt,i are constant across values of i and t, that is there
exists a common conditional density q such that qt,i = q for every t and i.

We can now state a formal definition of our statistical model.

Definition 7.1 (Statistical model). Fix µ a summary measure on the domain of OT,N . We define
our statistical modelMT,N as the set of distributions P T,N over the domain of OT,N that satisfy
assumptions 7.3 and 7.4.

Remark 7.1. We emphasize that, as we are in the setting of a controlled trial, the factors gt,i are
known.

Remark 7.2. Observe that any distribution P T,N in our statistical modelMT,N is fully determined
by q, and MT,N is indexed by the set of conditional densities Mq that we believe to contain q0.
Here, we assume thatMq is a saturated nonparametric model, that is for any c ∈ CL, the tangent
space of {l 7→ q(· | c) : q ∈Mq} is equal to the Hilbert space

L2
0,c(q) :=

{
(l, c)→ f(l, c) :

∫
f 2(l, c)q(l | c)dl <∞ and

∫
f(l, c)q(l | c)dl = 0

}
.
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Remark 7.3. Under the homogeneity assumption, the target parameter Ψ(P T,N) depends on P T,N

only through the common conditional density q = q(P T,N). Therefore, there exists a mapping Ψ(1)

such that Ψ(P T,N) = Ψ(1)(q(P T,N)).

In constructing and analyzing our estimators, we will require the following assumption.

Assumption 7.5. For any s ∈ [τ ], j, k ∈ [N ],

Eq,g∗ [Y (k) | L(s, j), CL(s, j)] = Eq,g∗
[
Y (k) | L(s, j), L(s, j)−

]
,

where Eq,g∗ is the expectation operator under the G-computation formula P τ,N
g∗ .

Making assumption 7.5 on top of the previous two assumptions 7.3 and 7.4 defines a new
statistical modelMT,N

1 , which is a subset of our previously defined statistical modelMT,N . Note
that this statistical model a priori depends on g∗. We want to emphasize the following: while we
will derive in the next section the canonical gradient D(P T,N) of our target parameter Ψ w.r.t. the
larger model MT,N , we will use the assumptions defining the smaller model MT,N

1 to derive a
more tractable representation D1(P T,N) of this canonical gradient D(P T,N), which we will use to
build our estimators. As a result, estimators that achieve asymptotic variance equal to the variance
of D1(P T,N) can only be locally efficient w.r.t. the modelMT,N : they can achieve the efficiency
bound forMT,N at P T,N only if P T,N ∈MT,N

1 .
Finally, in some special cases that we discuss next it might be realistic to make the following

set of three assumptions.

Assumption 7.6 (Context decomposition). For any t ∈ [T ], i ∈ [N ], the context summary mapping
cL(t,i) can be decomposed as

cL(t,i)(l(t, i)
−) = (a(t, i), cg,g

∗

A (t, i)),

where cg,g
∗

A (t, i) is a context for the node A(t, i) of the form

cg,g
∗

A (t, i) = cg,g
∗

A(t,i)(a(t, i)−),

where cg,g
∗

A(t,i) is a known deterministic function with image in a Euclidean set CA ⊂ Rd2 , such that,
for any a(t, i), a(t, i)−,

gt,i(a(t, i) | a(t, i)−) =gt,i(a(t, i) | cg,g
∗

A (t, i))

and g∗t,i(a(t, i) | a(t, i)−) =g∗t,i(a(t, i) | cg,g
∗

A (t, i)).

Assumption 7.7 (Individual outcomes independent from other trajectories). For any q ∈ Mq, it
holds under the corresponding G-computation formula P τ,N

g∗ that Y (k) ⊥⊥ O(s, j) for any s ∈ [τ ]
and k 6= j.

Assumption 7.8 (Observed treatment homogeneity). The treatment mechanisms gt,i are constant
across t and i, that is, there exists a conditional density g such that gt,i = g for every t and i.
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Making assumptions 7.6, 7.7 and 7.8 on top of assumptions 7.3, 7.4 and 7.5 defines a new sta-
tistical modelMT,N

2 such thatMT,N
2 ⊂MT,N

1 ⊂MT,N . Here too, we emphasize that we will use
these additional assumptions to obtain a simplified representation D2(P T,N) of the canonical gra-
dient of Ψ w.r.t. the larger modelMT,N , but that we won’t derive the canonical gradient w.r.t. the
smaller modelMT,N

2 . As a result, estimators achieving asymptotic variance equal to the variance
of D2(P T,N) can only be efficient w.r.t.MT,N if P T,N ∈MT,N

2 .

7.2.4 Network structures covered by the statistical models considered in this
article

Network structures covered by the larger modelMT,N

Note that assumption 7.4 does not restrict the network structure. The network structures covered
by modelMT,N are therefore those that satisfy assumption 7.3.

Example 1: finite memory, bounded number of contacts. Consider the setting where L(t, i)
is allowed to depend on L(t, i) only through a summary measure of the history over last t0 steps
of a set FL(t, i) of at most N0 friends. Then, if we allow the dimension of CL to be as large as
(2t0 + 1)N0, assumption 7.3 holds for the summary measure

cL(t,i)(l(s, i)
−) := ((a(s, j) : s = t− t0, . . . , t, j ∈ FL(t, i)),

(l(s, j) : s = t− t0, . . . , t− 1, j ∈ FL(t, i))) .

Example 2: finite memory, dependence on aggregate measures only. Consider the set of dis-
tributions P T,N such that L(t, i) depends on a finite set of aggregate measures of the trial’s history
observed before the nodes L(t). Consider for example, in the infectious disease example, and
suppose that the intervention A(t, i) is whether the i wears a mask at t. Such aggregate measures
could include summaries of L̄(t−1) such as the average infection rate across the entire population
at time steps t − t0, . . . , t − 1, the average infection rate among individuals i has been in contact
with at time steps t0, . . . , t − 1. Aggregate summary measures of Ā(t) could include the fraction
of people wearing masks in the population at t = t − t0, . . . , t, and the number of individuals at
time steps t = t − t0, . . . , t not wearing masks that i has been in contact with. Note that in this
setting, we can build a summary function mapping histories into a fixed dimensional set CL without
imposing restrictions on the number of contacts of each individuals.

Networks structures covered by the modelMT,N
1

Example 3: disjoint independent clusters modelled by MDPs. Suppose that H1, . . . , Hn form
a partition of [N ], and that there exists a constant N0 such that |Hk| ≤ N0 for every k. We say that
each Hk is a cluster. For any cluster H , denote A(t,H) := (A(t, i) : i ∈ H), L(t,H) := (L(t, i) :
i ∈ H), O(t,H) := O(t, i) : i ∈ H). For any i, let k(i) be the cluster i belongs to. Suppose that

q(L(t, i) | L(t, i)−) = q(L(t, i) | A(t,Hk(i)), L(t− 1, Hk(i))),
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that is, L(t, i) depends on the nodes preceding it only through the latest treatment vectorA(t,Hk(i))
of the individuals in the same cluster, and on the latest measurement vector L(t,Hk(i)) of individ-
uals in the cluster. Suppose that

g∗t,i(a(t, i) | a(t, i)−) = g∗t,i(a(t, i) | l(t− 1, Hk(i))),

that is under the counterfactual intervention, A(t, i) depends only on the latest vector of measure-
ment vector L(t− 1, Hk(i)) of the individuals in the same cluster as i. Let

cL(t,i)(l(t, i)
−) =

(
(l(t, j) : j < i, j ∈ Hk(i)), a(t,Hk(i)), l(t− 1, Hk(i))

)
.

Then it is immediate that assumption 7.3 holds. Since in general A(t,Hk(i)), L(t,Hk(i)) do not
block the dependence between the nodes {L(t, j) : j < i, j ∈ Hk(i)} and L(τ, k), for k ∈ Hk(i),
τ > t, we include these in the context summary measure to ensure that L(τ, k) ⊥⊥ L(t, i)− |
CL(t, i). It is then straightforward to check that assumption 7.5 holds. As a result, the class of
network structures described in this example is covered by modelMT,N

1 .
Note that the network structure under the observed treatment mechanism g and the counterfac-

tual treatment mechanism g∗ do not need to be the same. Note that the assumptions defining model
MT,N

1 do not place any restriction on how A(t, i) might depend on the past under g.

Example 4: treatment limits social interactions, g∗ forces individuals to stay in clusters. Let
H1, . . . , Hn be disjoints clusters of at most N0 individuals forming a partition of [N ]. In our
infectious disease example, we take these clusters to be households. We define the treatment as
follows: A(t, i) = 1 if individual i can meet with people outside of her household at time t, and
A(t, i) = 0 if not. Regardless of treatment status, we suppose that L(t, i) depends on the nodes
L(t, i)− preceding it only through the history over the latest t0 time steps of a set FL(t, i) of a most
N1 ≥ N0 individuals. We further suppose that L(t, i) can only depend on the history over the last
t0 time steps of individuals i is allowed to meet. Define the censoring indicator

∆(t, i, j) = 1
(
{a(t, i) = 1 and j ∈ FL(t, i)} or

{
a(t, i) = 0 and j ∈ Hk(i)

})
,

and the history summary mapping

cL(t, i)(l(t, i)−) := (((l(t, j)∆(t, i, j),∆(t, i, j)) : j < i, j ∈ FL(t, i)),

((a(s, j)∆(s, i, j),∆(s, i, j)) : j ∈ FL(t, i), s = t− t0, . . . , t),
((l(s, j)∆(s, i, j),∆(s, i, j)) : j ∈ FL(t, i), s = t− t0, . . . , t− 1)) .

Under the intervention g∗ that deterministically assigns A(s, j) = 0 to every individual j ∈ [N ]
at every time point s ∈ [τ ], it is straightforward to check that the above defined finite dimensional
summary measure mapping verifies assumptions 7.3 and 7.5.

Network structures covered by the modelMT,N
2

Example 5: N independent MDPs under g∗. Consider our second motivating example in which
the administrators of a web platform want to identify the treatment arm a that has highest long term
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outcome. Formally, let τ ≥ 1 be a time point at which we deem the outcome to be a “long-term”
outcome, and for each arm a = 1, 2, let g∗,at,i (a(t, i) | a(t, i)−) := 1(a(t, i) = a), the intervention
that always assigns deterministically arm a. We define the long terms outcomes of each arm as
Ψ(a)(P T,N) := Eq,g∗,a [Y (τ)]. Suppose that

q(l(t, i) | l(t, i)−) =q(l(t, i) | a(t, i), l(t− 1, i),

and g∗t,i(a(t, i) | a(t, i)−) =g∗t,i(a(t, i) | l(t, i)),

that is, under g∗, individual trajectories are independent MDPs. Suppose further that the observed
treatment mechanism satisfies

gt,i(a(t, i) | a(t, i)−) =gt,i(a(t, i) | l(t, i), θ(t)),
where θ(t) ∈ Rd3 is a summary measure of the entire trial’s history ō(t − 1) which contains the
parameters of the design. In this case, assumption 7.6 is satisfied for cg,g

∗

A (t, i) := (a(t, i), θ(t)).
It is straightforward to check that assumptions 7.3, 7.5 and 7.7 then hold.
We now discuss what type of adaptive designs can satisfy the constraint expressed in the pre-

vious display.
If the goal of the experimenter is to minimize regret, appropriate adaptive designs might include

some type of variant of UCB, or some type of ε-greedy design. In the UCB case, so as to param-
eterize the design at time t, it suffices for θ(t) to contain estimates (Ψ̂t(a) : a = 1, 2) of the long
term outcomes under each arms, and of the standard deviations, which we denote (σ̂t(a) : a = 1, 2)

of these estimates. In the case of an ε-greedy design, θ(t) needs only to contain (Ψ̂t(a) : a = 1, 2).
If the goal

If the goal of the experimenter is to maximize the efficiency of an estimator of the contrast
Ψ(2)(P T,N

0 ) − Ψ(1)(P T,N
0 ), an appropriate design might some type of Neyman allocation design

(see e.g. van der Laan [2008]). Such a design can be defined based on estimates (σ̂t(a) : a = 1, 2)
of the standard deviations of the canonical gradients of Ψ(1) and Ψ(2).

7.2.5 Comparison with the statistical model studied in past works
van der Laan et al. [2018] and Kallus and Uehara [2019] consider single individual trajectories or
multiple independent single trajectories, that is they work in the case N = 1. The model studied
in van der Laan et al. [2018] is MT,N under N = 1. The homogeneous MDP model studied in
Kallus and Uehara [2020] is a special case of the modelMT,N

2 , in the case N = 1.
We point out that neither of these two works provide a formal proof of the derivation of the

canonical gradient of their target parameters w.r.t. the statistical models they consider. These can
be obtained from the results of this article.

van der Laan [2013] and Ogburn et al. [2020] study a more general setting where g is unknown
and qt,i is not assumed to be constant across time points. This means that their statistical model
containsMT,N . Note that the the canonical gradient of Ψ w.r.t. their larger model is not equal to the
canonical gradient of Ψ w.r.t.MT,N . We point out nevertheless that the derivation of the canonical
gradient of Ψ w.r.t. MT,N follows from a straightforward adaptation of the proof technique of
van der Laan [2013].



220

7.3 Structural properties of our target paremeter

7.3.1 Efficient influence function
In the upcoming theorem, we present the canonical gradient D of Ψ w.r.t.MT,N . We also provide
two simplified representations ofD when P T,N is inMT,N

1 , and inMT,N
2 , respectively. As pointed

out in the previous section, we stress out that these are simplified representation of the canonical
gradient w.r.t. MT,N when P T,N belongs to submodels ofMT,N , and not the expressions of the
canonical gradient w.r.t. these submodels.

Let hLt,i and h∗,Lt,i , be the marginal densities of CL(t, i) under P T,N and the corresponding G-
computation formula P τ,N

g∗ , and let h̄LT,N := (TN)−1
∑N

t=1

∑N
i=1 h

L
t,i Under assumption 7.6, the

contexts are Cg,g∗

A (t, i) is defined. We then denote hAt,i and h̄∗t,i the marginal densities of Cg,g∗

A (t, i)

under P T,N and P τ,N
g∗ , respectively, and we let h̄AT,N := (TN)−1

∑T
t=1

∑N
i=1 h

A
t,i. Since we will

refer more often to h∗,Lt,i and h̄LT,N , than to the other marginal densities, we will often simply denote
them h∗t,i and h̄T,N .

Theorem 7.1 (Representation of the canonical gradient). The canonical gradient of Ψ w.r.t.MT,N

at P T,N is given by

D(q)(oT,N) =
1

TN

T∑
t=1

N∑
i=1

D̄T,N(q)(cL(t, i), l(t, i)),

where, for any cL and l,

D̄T,N(cL, l) =
τ∑
s=1

N∑
j=1

hLt,i(c
L)

h̄LT,N(cL)

{
Eq,g

[
Y g∗/g | L(t, i) = l, CL(t, i) = cL

]
−Eq,g

[
Y g∗/g | CL(t, i) = cL

]}
.

If P T,N ∈MT,N
1 , then we can represent D̄T,N as follows:

D̄T,N(cL, l) =
τ∑
s=1

N∑
j=1

h∗,Lt,i (cL)

h̄LT,N(cL)

{
Eq,g∗

[
Y | L(t, i) = l, CL(t, i) = cL

]
−Eq,g∗

[
Y | CL(t, i) = cL

]}
. (7.3)

Furthermore, if P T,N ∈MT,N
2 , then the following representation of D̄T,N holds:

D̄T,N(q)(cL, l) =
τ∑
s=1

N∑
j=1

ωs,j(c
A)ηs,j(a | cA)

{
Eq,g∗ [Y | L(t, i) = l, A(t, i) = a, CA(t, i) = cA]

−Eq,g∗ [Y | A(t, i) = a, CA(t, i) = cA]
}
, (7.4)

where ωs,j := h∗,At,i /h̄
A
T,N , and ηs,j := g∗s,j/gs,j = g∗s,j/gs,j (since under assumption 7.8, gs,j = g

for some g common across values of s and j).
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7.3.2 First order expansion and robustness properties
Let P T,N ∈MT,N . Denote q = q(P T,N) and q0 = q(P T,N

0 ). Let

R(q, q0) :=Ψ(P T,N)−Ψ(P T,N
0 ) + EPT,N0

[
D(q)(OT,N)

]
=Ψ(1)(q)−Ψ(1)(q0) + EPT,N0

[
D(q)(OT,N)

]
.

We like to view the equivalent representation

Ψ(P T,N)−Ψ(P T,N
0 ) = −EPT,N0

[
D(q)(OT,N)

]
+R(q, q0)

as a functional first order Taylor expansion of the difference Ψ(P T,N) − Ψ(P T,N
0 ), in which we

view R(q, q0) as a remainder term, which we will show is second order. We say that a remainder
termR′(q, q0) is second order if it can be written as a sum of terms such that every term has a factor
of the form

∏
k(ηk(q) − ηp(q))αk , with

∑
k αk ≥ 2. In the usual sense, we say that a remainder

term R′(q, q0) is robust (or equivalently we say that the canonical gradient from which it is formed
is robust) if it can be rewritten as R′1((η1(q), . . . , ηp(q)), (η1(q0), . . . , ηp(q0)), with η1(q), . . . , ηp(q)
variation independent nuisance parameters, and is equal to zero is ηi(q) = ηi(q0) for every i in a
subset I ⊂ [p], I 6= [p]. Note that if a remainder term is second order w.r.t. variation independent
parameters, then it is robust in the usual sense.

Unfortunately, the canonical gradient of Ψ w.r.t.MT,N is not robust in the usual sense, but we
can show that it is second order and robust in a weaker sense, in which the nuisance η1(q), . . . , ηp(q)
are not variation independent.

We give two results that show that the remainder term R is second order and robust in this
weaker sense. These two results correspond to respectively representations (7.3) and (7.4) of the
canonical gradient.

For pairs of indices (t, i) and (s, j), we write (s, j) < (t, i) (resp. (s, j) > (t, i)) if (s, j) comes
strictly before (resp. strictly after) (t, i) in the column ordering of indices. For any q, we denote

qt,i : oT,N 7→ q(l(t, i) | cL(t, i)), q−(t,i) : oT,N 7→
∏

(s,j)6=(t,i)

q(l(s, j) | cL(s, j))

q(t,i)− : oT,N 7→
∏

(s,j)<(t,i)

q(l(s, j) | cL(s, j)),

and q(t,i)+ : oT,N 7→
∏

(s,j)>(t,i)

q(l(s, j) | cL(s, j)).

Theorem 7.2. Suppose that P ∈ MT,M
1 . Then, we can rewrite R(q, q0) as R1(h̄T,N , h̄0,T,N , q, q0)

where R1(h̄T,N , h̄0,T,N , q, q0) satisfies

R1(h̄T,N , h̄0,T,N , q, q0) =R1(h̄T,N , h̄0,T,N , q, q0)−R1(h̄0,T,N , h̄0,T,N , q, q0)

+R1(h̄0,T,N , h̄0,T,N , q, q0),

where,

R1(h̄T,N , h̄0,T,N , q, q0)−R1(h̄0,T,N , h̄0,T,N , q, q0)
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=
τ∑
s=1

N∑
j=1

∫ (
h∗s,j

h̄0,T,N − h̄T,N
h̄T,N

)
(c)(q0 − q)(l | c)× Eq,g∗ [Y | L(t, i) = l, C(t, i) = c]dldc,

and

R1(h̄0,T,N , h̄0,T,N , q, q0) =
τ∑
s=1

N∑
j=1

Eq(s,j)−,(q−q0)(s,j),q0,(s,j)+−q(s,j)+,g∗Y.

If P T,N ∈ MT,N
2 , we can further simplify the representation of the remainder term, as the

following theorem shows.

Theorem 7.3. Suppose that P ∈ MT,N
2 . Denote ω = (ωs,j : s ∈ [τ ], j ∈ [N ]). We can then

rewrite R(q, q0) as R2(ω, ω0, q, q0) where the latter satisfies that

R2(ω, ω0, q, q0) =
τ∑
s=1

1

N

N∑
j=1

∫
h̄A0,T,N(cA)g∗s,j(a | cA)(ωs,j − ω0,s,j)(c

A)(q − q0)(l | a, cA)

× Eq,g∗
[
Y (j) | L(s, j) = l, A(s, j) = a, CA(s, j) = cA

]
dldadcA.

From the expression above, R2(ω, ω0, q, q0) if ω = ω0 or q = q0.

Remark 7.4. In the above theorem, ω and q are not variation independent components of P T,N .
In fact, since we know g, ω is fully determined by q.

Remark 7.5. The proof of theorem 7.3 relies on the fact that we know the treatment mechanism g
since we are in a controlled trial, while the proof of theorem 7.2 does not.

7.4 Construction and analysis of our estimators
Let q̂T,N , be an estimator of q0.

TMLE estimator. Let q̂∗T,N be an estimator of q0 obtained from q̂T,N by the TMLE targeting step
such that it solves approximately the EIF equation:

1

TN

T∑
t=1

N∑
j=1

D̄T,N(q̂∗T,N)(L(t, i), C(t, i)) = o((TN)−1/2).

We refer the reader to the Targeted Learning methodology papers and books [van der Laan and
Rubin, 28 Dec. 2006, Van der Laan and Rose, 2011, van der Laan and Gruber, 2016, Van der Laan
and Rose, 2018] for details on the TMLE targeting steps.

We define our TMLE estimator as the following plug-in estimator:

Ψ̂TMLE
T,N := Ψ(q̂∗T,N)
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One-step estimator. The one-step estimator is defined as

Ψ̂1−step
T,N := Ψ(q̂T,N) +

1

TN

T∑
t=1

N∑
i=1

D̄T,N(q̂T,N)(L(t, i), C(t, i)).

In what follows, we restrict our analysis to the TMLE estimator since the analysis for the 1-
step estimator is identical. We will just denote Ψ̂T,N := Ψ̂TMLE

T,N . The following theorem gives a
decomposition of the difference between Ψ̂T,N and its target Ψ(q0).

Theorem 7.4 (TMLE expansion). We have that

Ψ̂−Ψ(q0) :=M1,T,N(q0) +M2,T,N(q̂∗T,N , q0) +R(q̂∗T,N , q0),

with

M1,T,N(q0) =
1

TN

T∑
t=1

N∑
i=1

D̄T,N(q0)(L(t, i), C(t, i))

M2,T,N(q, q0) =
1

TN

T∑
t=1

N∑
i=1

(δL(t,i),C(t,i) − Pq0,h0,t,i)
(
D̄T,N(q)− D̄T,N(q0)

)
,

and R(q, q0) is as defined in section 7.3 above.

The first term is the sum of a martingale difference sequence, and the process

{x
√
TNM1,xT,N(q0) : x ∈ [0, 1]}

can be shown, using a functional central limit theorem for martingale triangular arrays, to converge
weakly, as T → ∞ and under fixed N , to a Wiener process σ2

0,∞,NW , with W a standard Wiener
process and σ2

0,∞,N the limit of the variance under a certain limit distribution, of limT→∞ D̄T,N(q0)
(we make precise these limits further down). Note that, as mentioned above, it is not immediately
clear that the variance of D̄T,N(q0) doesn’t diverge as N →∞. We provide in section 7.4.1 below
conditions under which D̄T,N(q0) remains finite as N →∞.

The second term can be bounded by the supremum of the process {M2,T,N(q, q0) : q ∈ MQ}.
This process is an empirical process generated by the sequence (X(t, i))t,i, where we define that
X(t, i) := (C(t, i), L(t, i)). So as to analyze this term, we prove a maximal inequality for such
processes which holds under mixing conditions (here on the sequence (X(t, i))t,i) and entropy
conditions. This maximal inequality will allow us to show the negligibility of M2,T,N(q̂∗T,N , q) in
front of the first term.

We will discuss the negligibility of the remainder term R(q̂∗T,N , q0) under convergence rate
conditions on q̂∗T,N
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7.4.1 Boundedness of the canonical gradient
We can rewrite D̄T,N(q0) as

D̄T,N(q0)(l, c) =
τ∑
s=1

1

N

N∑
j=1

h∗0,s,j
h̄0,T,N

(c)D̃s,j,N(l, c),

with

D̃s,j,N(q)(l, c) :=
N∑
k=1

Eq,g∗ [Y (k) | L(s, j) = l, C(s, j) = c]− Eq,g∗ [Y (k) | C(s, j) = c] .

A sufficient condition for D̄T,N(q0) to remain bounded as N → ∞ is that the terms D̃s,j,N(q)
themselves remain bounded as N →∞. It is immediate to observe that for s = τ , since L(s, j) ⊥
⊥ L(τ, k) | C(s, j), and since Y (k) is a a component of L(τ, j), we must have that

Eq,g∗ [Y (k) | L(s, j) = l, C(s, j) = c]− Eq,g∗ [Y (k) | C(s, j) = c] = 0

for every j 6= k, and therefore ‖D̃τ,j,N(q)‖∞ ≤ 1.
If we don’t make any assumption on g∗, and that we just assume that under g∗, A(s, 1), . . . ,

A(s,N) are conditionally independent given A(t)−, but can a priori depend on the entire past
A(t)−, then, if j 6= k, we don’t have the same kind of conditional independence between Y (k)
and L(s, j), for s ≤ τ − 1 as we have in the case s = τ . As a result, we don’t have the same
cancellations as in the case s = τ . Intuitively, for ‖D̃s,j,N(q)‖∞ not to diverge as N → ∞,
we need some measure of association between Y (k) and the nodes O(s, 1), . . . , O(s,N) to remain
controlled in some sense. A natural measure of association that can be used to formulate rigorously
this requirement is the classical notion of ϕ-mixing coefficient (see Bradley [2005] for a survey of
usual mixing coefficients), which we restate here in terms of densities.

Definition 7.2 (ϕ-mixing). For any two random variables (X, Y ) ∼ P , we define the ϕ-mixing
coefficient between X and Y as

ϕP (X, Y ) := sup{|pY |X(y | x)− pX(x)| : y, x, such that pX(x) > 0},

where pY |X and pX are the conditional densities of Y given X and the marginal density of X w.r.t.
an appropriate known dominating measure.

We now provide a generic condition under which ‖D̃s,j,N(q)‖∞, and therefore ‖D̄T,N(q)‖∞ are
controlled. We introduce the short-hand notation ϕq,g∗ for ϕP τ,N

g∗
, where we recall that P τ,N

g∗ is the

G-computation formula obtained from P T,N .

Assumption 7.9. Suppose that there exists ϕ <∞ such that, for any s ∈ [τ ] and k ∈ [N ],

N∑
j=1

ϕq,g∗(Y (k) | O(s, j)) ≤ ϕ.
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Under assumption 7.9, it is easy to show the following result.

Lemma 7.1. Suppose that assumption 7.9 holds. Then, ‖D̃s,j,k(q)‖∞ ≤ 2ϕ.

A sufficient condition for D̄T,N(q0) to be bounded is then a bound on the marginal density
ratios.

Assumption 7.10 (Marginal density ratios bound). Suppose that there exists B > 0 such that∥∥h∗0,s,j/h̄0,T,N

∥∥
∞ ≤ B

for every s ∈ [τ ] and every j ∈ [N ].

Lemma 7.2. Suppose that assumptions 7.9 and 7.10 hold. Then ‖D̄T,N(q0)‖∞ ≤ 2τBϕ.

While it might be hard to check that assumption 7.9 holds in practice, we see the value of it
and of lemmas 7.1 and 7.2 in that they show explicitly the nature of a condition that is sufficient
for D̄T,N to remain bounded, that is a mixing condition controlling the level of association within
the graph, across time points and individuals. We now discuss a few concrete examples where we
can directly show that assumption 7.9 holds, or where we think it is reasonable to suppose that it
holds.

Example 1. If P T,N
0 ∈MT,N

2 , then, under the G-computation formula distribution P τ,N
0,g∗ , any two

distinct trajectories Ō(τ, i) and Ō(τ, j) are independent.
Therefore

∑N
j=1 ϕq,g∗(Y (k) | O(s, j)) = ϕq,g∗(Y (k) | O(s, k)) ≤ 1, and thus ‖D̃s,j,N‖∞ ≤ 1.

(We can also directly check that all terms except the k-th one cancel out in D̃s,j,N ).

Example 2. Suppose now that g∗s,j(A(s, j) | A(s)−) = g∗s,j(A(s, j) | C∗A(s, j)), with C∗A(s, j)
:= c∗A(s,j)({Ō(s, j) : j ∈ FA(s, j)}), where FA(s, j) is a set of at most N0, individuals, including
j itself, and where c∗A(s,j) is a known summary function. In words, we are supposing here that the
treatment decision under g∗ for individual j at time s depends only on the history up to s− 1 of j
and of a set of at most N0 individuals. Then any Y (k) is associated with at most N0 nodes from
time point τ − 1, which are then in turn each associated with at most N0 nodes from time point
τ − 2, and so on. Therefore, any Y (k) is associated with at most N τ−s

0 nodes from time point s,
and therefore

∑N
j=1 ϕq,g∗(Y (k) | O(s, j)) has at most N τ−s

0 non zero terms, which implies that
‖D̃s,j,N(q0)‖∞ ≤ N0τ

τ−s, and thus ‖D̄T,N(q)‖∞ ≤ BτN τ
0 .

While this upper bound can quickly explode as τ gets large, this shows that for fixed τ , the
variance does not depend on N , and that therefore, under mixing conditions on the sequence
(O(t, i))t,i that we study in the following subsection, the asymptotic variance of our estimators
can scale as N−1.
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Example 3. Suppose now that g∗s,j(A(s, j) | A(s)−) = g∗s,j(A(s, j) | θN(s − 1)), where θN(s −
1) = 1

N

∑N
j=1 f(L(s, j)) for a certain f . As θN(s−1) concentrates, and should be almost constant

for large N , we expect that since treatment decisions depend on the past only through this almost
constant θN(s − 1), treatment assignment dependence on the past should not introduce too much
dependence between units. In this situation, we conjecture that most of the dependence within
the graph happens through the dependence of nodes L(s, j) on the contacts FL(s, j) of j. We
have seen in the previous example that if this is the main source of dependence, we should have
‖D̄T,N(q0)‖ . τBN τ

0 , provided that |FL(s, j)| ≤ N0 for every s and j.
In our infectious disease example, the setting described here can model the situation where the

intervention g∗ is to restrict, depending on the global infection rate θN(s), the set of individuals
any individual j is allowed to meet

7.4.2 Weak invariance principle for the martingale term
It is immediate to observe that Eq0,h0,t,i [D̄T,N(q0)(L(t, i), C(t, i) | C(t, i)] = 0, and therefore,
xTM1,xT,N(q0) is the sum of a martingale difference sequence. We will analyze the weak con-
vergence properties of the process {M1,xT,N(q0) : x ∈ [0, 1]} via a classic functional central limit
theorem for martingale triangular arrays, which we recall below.

Theorem 7.5 (Theorem 3.2 McLeish [1974]). Suppose that {Xn,i : 1 ≤ i ≤ n} is a martingale
difference array, and (kn) is a sequence of non-decreasing, right continuous, integer valued func-
tions, such that for every n, kn(0) = 0. Let, for any x ∈ [0, 1] Wn(x) :=

∑kn(x)
i=1 Xn,i. Suppose

that, for every x ∈ [0, 1]

max
i≤kn(x)

|Xn,i|
L2−→ 0, (7.5)

and

kn(x)∑
i=1

X2
n,i

P−→ x. (7.6)

Then Wn
d−→ W in D([0, 1]).

We will apply the above result by rewriting M1,xT,N(q0) as the sum of a martingale difference
triangular array, as we will make explicit in the proof. A key step ahead of applying theorem 7.5
is to show that the variance under Pq0,h0,t,i of D̄T,N(L(t, i), C(t, i)) stabilizes as T, t → ∞. We
provide below a set of conditions under which it is the case.

Assumption 7.11. For everyN , there exists h0,∞,N such that, for every t, i, ‖h̄−1
0,T,N−h

−1
0,∞,N‖2,h0,t,i

→ 0 as T → 0, and there exists B > 0 such that ‖h∗0,s,j/h0,∞,N‖∞ ≤ B.

Assumption 7.12. For every i, C(t, i)
d−→ C∞ ∼ h0,∞,N as t→∞.
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The first part of assumption 7.11, and assumption 7.12 are ergodicity/mixing conditions. Under
these assumptions, we can show the following result on the limit of

Varq0,h0,t,i(D̄T,N(q0)(L(t, i), C(t, i)).

Lemma 7.3 (Stabilization of the variance of the main term of the EIF). Suppose that assumptions
7.9, 7.10, 7.11 and 7.12 hold. Denote

D̄0,∞,N(l, c) :=
τ∑
s=1

1

N

N∑
j=1

h∗0,s,j
h0,∞,N

(c)D̃s,j,N(l, c),

and

σ2
0,∞,N := Varq0,h0,∞,N

(
D̄0,∞,N(L∞, C∞)

)
,

Then σ0,∞,N <∞, and

Varq0,h0,t,i
(
D̄T,N(q0)(L(t, i), (C(t, i))

)
→ σ2

0,∞,N , as T, t→∞.

For any t, i, let X(t, i) := (CL(t, i), L(t, i)). A key requirement for our analysis of the process
{M1,xT,N(q0) : x ∈ (0, 1]} is an α-mixing condition on the sequence (X(t, i))t,i. We first recall
the notion of α-mixing. We give here a definition based on theorem 4.4 in Bradley [2007].

Definition 7.3 (α-mixing). Consider a couple of random variables (X, Y ) ∼ P , with marginals
PX and PY and domains X and Y . The α-mixing coefficient between X and Y is defined as

αP (X, Y ) := sup

{
Cov(f(X), g(Y ))

‖f‖∞‖g‖∞
, f : X → R, g : Y → R, ‖f‖∞ <∞, ‖g‖∞ <∞

}
.

We state our α-mixing condition below.

Assumption 7.13 (α-mixing). It holds that∑
t1,t2∈[T ]

∑
i1,i2∈[N ]

αP (X(t1, i1), X(t2, i2)) = o(TN).

Theorem 7.6 (Weak convergence of the martingale termM1 ). Suppose that assumptions 7.9, 7.10,
7.11, 7.12 and 7.13 hold. Then, for any fixed N , as T →∞,

{M1,xT,N(q0) : x ∈ [0, 1]} d−→ σ0,∞,NW

on the set D([0, 1]) of cadlag functions on [0, 1], where σ0,∞,N ≤ C for some 0 < C < ∞ that
does not depend on N , and where W is a standard Wiener process.
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7.4.3 Analysis of the empirical process term under mixing conditions
Recall that we defined X(t, i) := (CL(t, i), L(t, i)). The process {M2,T,N(q, q0) : q ∈ Q} is an
empirical process generated by the sequence of dependent observations (X(t, i))t,i.

For there to be a hope of controlling the deviations of this process from its mean, we must
impose conditions on the amount of dependence between terms of the sequence (X(t, i))t,i. As in
the analysis of the term M1,xT,N , we impose mixing conditions. Let (X̃(k))k be the single-index
sequence obtained by reordering the terms of the double-index sequence (Xt,i)t,i in colunm order,
that is (X̃k)k is the sequence

X(1, 1), . . . , X(1, N), . . . , X(T, 1), . . . , X(T,N).

We define (C̃L(k))k and (L̃(k))k similarly. We state our mixing conditions in terms of the sequence
(X̃(k))k.

Assumption 7.14 (Geometric α-mixing). There exists c > 0 such that the α-mixing coefficients of
(X̃(k))k≥1 satisfy α(n) ≤ exp(−cn).

The next assumption is a ρ-mixing condition on the sequence (X̃(k)). We state below the def-
inition of ρ-mixing. We refer the reader to Bradley [2005] for more details on mixing coefficients.

Definition 7.4 (ρ-mixing). Consider a couple of random variables (X, Y ) ∼ P , with marginals
PX and PY The maximum correlation coefficient between X and Y is defined as ρP (X, Y ) :=
sup{Corr(f(X), g(Y )) : f ∈ L2(PX), g ∈ L2(PY )}.

Assumption 7.15 (ρ-mixing). The ρ-mixing coefficients of (X̃(k)) have finite sum, that is∑∞
n=1 ρ(n) := ρ <∞.

The main result of this section is an almost sure equicontinuity result, which will give us that√
NTM2,N,T (qN,T , q0) = o(1) almost surely. As for similar equicontinuity results (see e.g. van der

Vaart and Wellner [1996]) for i.i.d. empirical processes, we require two types of conditions: (1)
we need that the individual terms of M2,T,N(qN,T , q0) converge to zero, in some sense to be made
precise further down, and (2) we need a Donsker-like condition on the complexity of the class
{D̄T,N(q, q0) : q ∈ Q}.

While equicontinuity results for empirical processes usually give a convergence in probability
guarantee, we prove an almost sure convergence result. Almost sure convergence offers control
over the entire realization of the sequence (M2,T,N(qN,T , q0))N,T , which we need in section 7.6 to
design an adaptive stopping rule. As we work in a more challenging setting (mixing sequences v.s.
i.i.d. sequences), and as we prove stochastic convergence in a stronger sense, we need stronger
versions of the Donsker condition than in the classical equicontinuity results for empirical pro-
cesses (those of van der Vaart and Wellner [1996] for example). In particular, while the classical
results require convergence of some type of L2 norm of the difference D̄T,N(q̂T,N)− D̄T,N(q0), we
require convergence of this difference in ‖ · ‖∞ norm. Furthermore, while in the classical results
the type of stochastic convergence required is convergence in probability, here we need a form of
stochastic convergence slightly stronger than almost sure convergence.

We formulate precisely our convergence requirement in the following assumption.
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Assumption 7.16. There exists a sequence of positive numbers (aT ) satisfying a−2
T (log T )2/

√
T =

o(1), and aνT log T = o(1) for any ν > 0, such that

∀ε > 0, ∃C(ε) > 0, P
[
∀n ≥ 1,

∥∥D̄T,N(q̂T,N)− D̄T,N(q0)
∥∥
∞ ≤ C(ε)an

]
≥ 1− ε.

We introduce in section 7.5 a large nonparametric class of d-variate functionsFd, which is such
that, in our dependent data setting, any empirical risk minimizer q̂T,N over anyQ ⊆ Fd satisfies an
exponential deviation bound of the form P

[
‖q̂T,N − q∗‖∞ & n−β + x

]
. exp(−C(nxγ)ν), with

β, γ, ν > 0, 1 − γβ > 0, where q∗ is a population risk minimizer over Q. If the true transition
density q0 lies in our nonparametric classQ, and if

∥∥D̄T,N(q)− D̄T,N(q0)
∥∥
∞ . ‖q− q0‖∞, then it

is straightforward to show that assumption 7.16 holds.
We now present our Donsker-like condition. Suppose that, for any k, the distribution of C̃(k)

admits density h̃k w.r.t. the Lebesgue measure. The density w.r.t the Lebesgue measure of X̃(k) is
then q0h̃k. Let X be such that, for any t and any i, X(t, i) takes values in X . Let σ be the norm
defined, for any f : X → R by

σ(f) := sup
i≥1
‖f‖2,q0,h̃i

√
1 + 2ρ.

Our Donsker-like condition is a bound on the bracketing entropy in σ norm of the canonical gradi-
ent class.

Assumption 7.17 (Donsker condition for the canonical gradient class). Let DT,N := {D̄T,N(q) :
q ∈ Q}. There exists p ∈ (0, 2) such that

logN[ ](ε,DT,N , σ) . ε−p.

We show in section 7.5 that the nonparametric function class Fd we mentioned above satisfies
logN[ ](ε,F , σ) . ε−1| log(ε)|2d−1 under mild conditions. Therefore, if the canonical gradient
class DT,N is included in Fd′ for some d′ ≥ 1, then assumption 7.17 holds under the same mild
conditions.

We can now state our equicontinuity result.

Theorem 7.7 (Asymptotic equicontinuity of the canonical gradient process). Suppose that assump-
tions 7.14, 7.15, 7.16 and 7.17 hold. Then

√
NTM2,T,N(q̂T,N , q0) = o(1) a.s. as T,N →∞.

Proof of theorem 7.7. The proof is a direct consequence of our generic equicontinuity result, the-
orem 7.12 in the appendix.

Remark 7.6. It might seem surprising to the reader familiar with proofs of equicontinuity re-
sults and maximal inequalities for empirical processes that, while the Donsker condition only
requires control of the entropy w.r.t. the norm σ, which is an L2 norm, we need convergence
of ‖D̄T,N(q̂T,N) − D̄T,N(q0)‖∞ in a norm a strong as the sup norm. Indeed, in the usual case
where Z1, . . . , Zn are i.i.d. random draws from a distribution P taking values in a set Z , if F has
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square integrable bracketing entropy w.r.t. L2(P ), for a process of the form n−1
∑n

i=1 fn(Zi) −∫
fn(z)dP (z) to be oP (n−1/2), it suffices that the L2(P ) norm of fn converges to zero in probabil-

ity.
We discuss in subsection 7.C.2 in the appendix why, unlike in the i.i.d. setting, in the weakly

dependent case we consider here, convergence in L2 norm wouldn’t suffice given the technical
tools that we have, and why we do need convergence in ‖ · ‖∞ norm.

7.4.4 Weak invariance principle for our TMLE

Theorem 7.8 (Weak invariance principle for our TMLE). Suppose that the assumptions of theo-
rems 7.6 and 7.7 are satisfied, and that R(q̂T,N , q0) = o((NT )−1/2) almost surely. We then have
that the process {

t
√
TNσ−1

0,∞,N

(
Ψ̂tT,N −Ψ(P tT,N

0 )
)

: t ∈ [0, 1]
}

converges weakly in D([0, 1]) to a Wiener process W .

7.5 A nonparametric function class, nuisance estimation, and
the canonical gradient class

We first present a generic function class, which we then use as a statistical model for nuisance
estimation and canonical gradient modelling.

7.5.1 The function class

Consider a bounded Euclidean setX . Without loss of generality, we will suppose thatX = [0, 1]d1 ,
the unit hypercube in Rd1 . For M > 0, let F0,M be the class of real-valued cadlag functions on
X , with sectional variation norm (also called Hardy-Krause variation) no larger than M , and,
for L > 0, let F1,M,L be the class of functions in F0,M that are L-Lipschitz. The classes F0,M

and ∪M>0F0,M have been proposed as statistical models in several past articles [van der Laan,
2017, Fang et al., 2020, Bibaut and van der Laan, 2019]. We refer to these works for the rigorous
definition of the notion of sectional variation norm. For the present purpose, it will suffice to say
that the sectional variation norm is a multivariate extension of the 1-dimensional notion of total
variation of a real-valued function.

Statistical properties of F0,M . This class of functions present several attractive properties as a
statistical model. Bibaut and van der Laan [2019] have shown that its bracketing entropy is well
controlled, which will prove useful in our problem. We recall here the formal result on bracketing
entropy from Bibaut and van der Laan [2019].
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Proposition 7.1 (Proposition 2 in Bibaut and van der Laan [2019]). Consider F0,M as defined
above. For any r ≥ 1, ε > 0, it holds that

logN[ ](ε,F0,M , Lr(µ)) .Mε−1 |log(M/ε)|2(d1−1) ,

where we have absorbed a constant depending on the dimension d1 and on r in the “ .′′ notation,
and where µ is the Lebesgue measure.

Notice that the entropy depends on the dimension only through the log factor. As a result,
even in high dimensions this class remains Donsker, and rates of convergence of empirical risk
minimizers (ERMs) over it remain relatively fast. Unlike other popular nonparametric function
classes such as Holder classes, F0,M doesn’t impose local smoothness restrictions. Rather, it only
places a bound on a global measure of variation, the sectional variation norm, thus allowing for
function having different degrees of smoothness or roughness at different regions of their domains.
As a result, from a bias-variance trade-off perspective, when one increases M by some amount,
an ERM estimator will “spend” the additional allowed variation in the areas of the domain where
it most improves the fit, while only impacting the entropy loglinearly. While this might not be a
perfectly rigorous comparison, note that, Holder classes H(M,β) have entropy depending on ε as
εd/β , and therefore decreasing β so as to reduce bias has a steep entropy price.

We believe that since the nonparametric model ∪M>0F0,M only assumes a form of piecewise
continuity and that the sectional variation norm is not infinite, using it a statistical model for com-
ponents of the data-generating distributing amounts to a mild assumption. Our guess is that func-
tions that do not satisfy these requirements are essentially pathological functions x 7→ f(x) that os-
cillate increasingly fast as x approaches some value or region. Benkeser and Van Der Laan [2016]
have shown with extensive simulations that ERMs over F0,M̂ , with M̂ chosen by cross-validation,
perform on par with Random Forests and Gradient Boosting Machines, thereby confirming that
∪M>0F0,M is a realistic statistical model in most practical settings.

Computational properties. Fang et al. [2020] have shown that ERMs over F0,M can be com-
puted as the solution of a LASSO problem over at most (ne/d)d distinct basis functions, where
n is the sample size. van der Laan [2017] has proposed an alternative set of basis functions of
cardinality n2d, which, although it can be shown to not always be sufficient to represent the ERM,
leads to very good practical performance.

Properties of F1,M,L. Introducing the additional assumption that the functions in our model are
Lipschitz allows to bound the supremum norm of a function in terms of its L19(µ) norm, as shown
by the following lemma. We owe this result to Iosif Pinelis, who proved it as an answer to a
question of the first author on MathOverflow [Pinelis, 2020].

Lemma 7.4. There exists η(d, L) > 0 and C(d, L) > 0 such that, for any f is a d-variate, real-
valued L-Lipschitz function such that ‖f‖1,µ ≤ η(d, L), we have ‖f‖∞ ≤ C(d, L)‖f‖1/(d+1)

1,µ , with
µ the Lebesgue measure.
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Unlike in the i.i.d. setting, in our mixing data sequence setting, we will need to be able to
show that the supremum norm of some functions converge to zero at a certain rate. We refer the
interested reader to the proofs of the results of the next two subsections for more detail on these
technical questions.

7.5.2 Nuisance estimation
The efficient influence function expression makes appear the nuisance parameters q, (φs,j), (h∗s,j)
and h̄N,T . The latter are functions of q and can be computed from an estimate thereof via Monte-
Carlo integration, as discussed in van der Laan et al. [2018] in the case N = 1. The key statistical
challenge is then the estimation of the true conditional density q0.

We propose to estimate q0 by a maximum likelihood estimator over the subset of functions of
F1,M,L(X ), with X := C × O, that are conditional probability density functions (c, o) 7→ q(o | c),
that is over the set

QM,L :=

{
q ∈ F1,M,L : ∀c

∫
q(o | c)do = 1 and q(· | c) ≥ 0

}
.

In practice, M and L should be chosen by cross validation. As there will be no ambiguity in the
rest of this section, we use the notation Q instead of QM,L. In this section too, we work with the
reordered single-indexed sequence (Õ(k)) as defined in the previous section.

For any conditional density q : (o, c) 7→ q(o | c), let `(q)(c, o) := − log q(o | c) be the
log-likelihood loss for q, and let

R̂n(q) :=
1

n

n∑
i=1

`(q)(C̃(k), Õ(k)) and R0,n(q) :=
1

n

n∑
i=1

E[`(q)(C̃(k), Õ(k))].

Let q̂n ∈ arg minq∈Q R̂n(q) and qn ∈ arg minq∈QR0,n(q) be a maximum likelihood estimator,
and a maximizer overQ of the population log likelihood. We analyze q̂n using our generic result for
ERMs under mixing sequences, theorem 7.13 in the appendix. We need the following assumptions.

Assumption 7.18 (Lower bound on the population MLE). There exists δ independent of n such
that infc,o∈C×O qn(o | c) ≥ δ.

Assumption 7.19. There exists M1 > 0 independent of n such that ‖q0/qn‖∞ ≤M1.

Assumption 7.20 (Uniform boundedness of (h̃i)i≥1). There exists M2 > 0 such that

sup
i≥1
‖h̃i‖∞ ≤M2.

Assumption 7.21. Denote ¯̃
hn := n−1

∑n
i=1 h̃i. There exists M3 > 0 independent of n such that

sup
i≥1

∥∥∥h̃i/¯̃
hn

∥∥∥
∞
≤M3.
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Theorem 7.9 (High probability bound on the MLE of q0). Suppose that assumptions 7.14, 7.15,
7.18, 7.19, 7.20 and 7.21 hold. Then, letting α := 1/(d + 1), it holds that, for every x > 0, with
probability at least 1− 2e−x, that

σ (q̂n − qn) . n−
1

4−2α + log n

√
x

n
+ (log n)

2
2−α

(x
n

) 1
2−α

.

7.5.3 Canonical gradient
As argued in subsection 7.5, we think that assuming that components of the data-generating dis-
tribution P T,N

0 lie in F1,M,L for some M,L > 0 is a relatively mild modelling assumption. We
therefore assume that {

D̄T,N(q) : q ∈ Q
}
⊂ F1,M,L. (7.7)

We conjecture that this actually automatically follows if Q ⊂ F1,M,L and we think that one could
prove this using the usual arguments to prove bracketing numbers preservation results. However,
this appears to be tedious, so we leave it to future work. Under (7.7), assumption 7.17 holds. If we
further assume that ‖D̄T,N(q2) − D̄T,N(q1)‖∞ . ‖q2 − q1‖∞, lemma 7.4 and 7.9 then imply that
assumption 7.16 holds.

7.6 Adaptive stopping rules
In this section, we present an adaptive stopping rule for the test of the hypothesis H0 : Ψ(P T,N

0 ) =
0. In practice, it is natural to consider a parameter of the form Ψ(P T,N

0 ) = EPT,N0
[Y g∗1 − Y g∗2 ], for

which the analysis follows trivially from the the analysis of the individual terms of the difference
we have presented so far. (Note that H0 doesn’t actually depend on T and N , since Ψ(P T,N

0 ) can
be written as Ψ(1)(q0), as pointed out in section 7.2). An adaptive stopping rule allows to reject
the null hypothesis as soon as sufficient evidence has been collected, without the need to wait for
a pre-specified sample size to be met. Since an adaptive stopping rule checks a a criterion at every
time step, multiple testing considerations must be taken into account so as to make sure the type I
error remains controlled.

A typical approach to design a valid adaptive stopping rule is as follows. Say we want to
ensure that type I error is no larger than 1 − α. The key step is to construct a uniform-in-time
(1 − α)-probability confidence band, that is sequence of confidence intervals([±aα,N(T )])T≥1,
such that, with probability 1 − α, Ψ(P T,N

0 ) ∈ [±aα,N(T )] for every T . Then a natural stop-
ping rule is to reject the null hypothesis at the earliest time T such that 0 6∈ [±aα,N(T )]. A
uniform-in-time confidence band is a feature of the joint distribution of the sequence of estimators
(Ψ̂N,T )T≥1. Theorem 7.8 characterizes in an asymptotic sense the joint distribution of a process
obtain from the finite sequence (Ψ̂N,T )Tt=1 by rescaling it in time and in range: specifically, it
shows that {t

√
TNσ−1

0,∞,N(Ψ̂N,T − Ψ(P T,N
0 )) : t ∈ [0, 1]} converges weakly to a Wiener process.

Since confidence bands for the Wiener process are well documented, we will be able to use this to
construct an adaptive stopping rule.



234

Since our results on the joint distribution of the (rescaled process built from the) sequence of
estimates are asymptotic, our procedure requires a certain burn-in period, that is we must enforce a
minimum time point before which the procedure cannot reject. We now present formally our type
I error guarantees for the procedure we described.

Theorem 7.10 (Type I error of adaptive stopping). Let (aα(t) : t ∈ [0, 1]) be such that P [∀t ∈
[0, 1],W (t) ∈ [±aα(t)]] ≥ 1. Let Tmax be the maximum number of time steps the experimenter
is willing to run the trial. Let t0 ∈ [0, 1] be such that T0 := t0Tmax is the duration of the burn-in
period.

Let

τ(Tmax, t0) := min

{
T ≥ T0, Ψ̂T,N 6∈

[
±σ0,∞,N

√
Tmax/Ta(T/Tmax)√

NT

]}
.

Suppose that the assumptions of theorem 7.8 are satisfied. Then, under the null hypothesis
H0 : Ψ(P T,N

0 ) = 0, it holds that

lim
Tmax→∞

P0 [τ(Tmax, t0) ≤ Tmax] ≥ 1− α,

that is the probability that the procedure rejects under the null is asymptotically no larger than the
nominal level α.

In practice, theorem 7.10 teaches us that for reasonably large horizon Tmax and burn-in period
T0, the procedure has type-I error approximately no larger than 1− α.

An alternative direction to construct an adaptive stopping rule would be to analyze the de-
viations of our estimator with uniform-in-time concentration bounds, such as the ones presented
in Howard et al. [2018], instead of using a limit theorem. We leave this direction for future re-
search. We nevertheless point out that exact confidence bands/intervals obtained from concen-
tration inequalities tend to be larger than approximate confidence bands/intervals obtained from
FCLTs/CLTs. As a result, we conjecture that controlling exactly, rather than approximately the
type I error by using concentration inequalities rather than limit theorems might cost a signicant
loss of power.

7.7 Learning the optimal design along the trial
Consider a target parameter of the form Ψτ (q) := Eq,g∗2Y − Eq,g∗1Y , where Y is an outcome at
time τ , as defined earlier, and where g∗1 and g∗2 are known and fixed stochastic interventions. In
the best arm identification example in the case where there are two arms, we would have g∗1(a |
cA) = 1(a = 1) and g∗2(a | cA) = 1(a = 2), that is g∗1 and g∗2 are the deterministic interventions
that always assign the same treatment. In the infectious disease example, g∗1 and g∗2 would be two
different public health interventions, such as imposing that individuals wear a mask, or that they
stay at home for except for a certain set of allowed activities.

Suppose that we have a collection of candidate designs g1(q), . . . , gJ(q) that are indexed by
q. We would like to achieve the same asymptotic variance as we would if we had carried out the
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best design among g1(q0), . . . , gJ(q0) from the beginning. Let us make this more formal. Making
explicit that h∞,N depend on q and g, we will write h∞,N(q, g). For every k, let

χk(q) := Varh∞,N (q,g),q

(
(D̄

g∗1
T,N(q, g)− D̄g∗2

T,N(q, g))(C∞, L∞)
)

be the asymptotic variance of the EIF under gk.
Given an estimator q̂T,N of q0, we can compute (approximately by Monte-Carlo simulation for

example) χk(q̂T,N), the plug-in estimator of χk(q0). Let k(T ) := arg mink∈[J ] χk(q̂T,N). We define
our adaptive design at T as gk(T−1)(q̂T−1,N).

We now study heuristically the conditions under which this adaptive design is such that the
TMLE of Ψτ (q0) achieves the asymptotic variance χk∗(q0), with k∗ = arg mink∈[J ] χk(q0), that is
the optimal asymptotic variance among the J designs considered.

Suppose that q̂T,N converges almost surely to q0 and that χ1(q0), . . . , χJ(q0) are distinct. Then
χk(q̂T,N) converges a.s. to χk(q0), and therefore, with probability 1, k(T ) 6= k∗ only a finite
number of times. Therefore, we expect that ‖h̄0,T,N − h∞,N(q0, gk∗(q0))‖1 = o(1), which in
turns, if h̄0,T,N and h∞,N(q0, gk∗(q0)) are lower bounded away from zero implies that ‖h̄−1

0,T,N −
h−1
∞,N(q0, gk∗(q0))‖1 = o(1). Therefore, under the assumptions of lemma 7.3, the variance of the

the terms D̄g∗1
T,N − D̄

g∗2
T,N of the EIF should stabilize to χk∗(q0), which under the assumptions of

theorem 7.8, implies that under the adaptive design, the asymptotic variance of the TMLE must be
χk∗(q0).

Examples of candidate designs in the best arm identification example. In the best arm iden-
tification example, in the case where there are only two arms and where τ = 1 (that is the target
is the ATE after one time step, starting from a known distribution of contexts), it is known that the
optimal design is the so-called Neyman allocation design, defined as follows:

g(q0)(a | cA) :=
σq0(a, c

A)

σq0(1, c
A) + σq0(2, c

A)
,

where

σ2
q (a, c

A) := Varq(Y (1) | A(1, 1) = a, CA(1, 1) = cA).

In words, the Neyman allocation designs assigns treatment a with probability proportional to the
standard deviation of the outcome conditional on a and cA.

While we don’t know whether this design is optimal design among all possible designs in the
case τ > 1, we conjecture it should be more efficient that the uniform design over treatment arms.
In practice, we recommend considering a finite library of candidate designs including the Neyman
allocation design. Other possible designs are the constant design with fixed probabilities for each
arm.

7.8 Conclusion
In this chapter, we have studied the questions of inference and sequential decision making in a trial
involving N individuals that we enroll at the same time in the trial and then follow for T steps. We
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allow for network dependence. The statistical model is the one presented in subsection 1.2.4 of the
introduction chapter. We defined causal parameters that we interpret as the discounted cumulative
effect and the long term effect of a counterfactual stochastic intervention, and we showed that these
are identifiable from the observed data distribution.

At a high level, our analysis shows that statistical inference is possible if we impose restric-
tions on the amount of dependence within and across trajectories. We formalize this constraint by
imposing mixing conditions. The main technical enablers of this work are our novel maximal in-
equality for empirical processes over weakly dependent sequences and our high probability bound
for empirical risk minimizers.

One limitation of our work is that our estimators require that the asymptotic variance of the
terms of the canonical gradient stabilize as a function of T . This in particular rules out designs that
that let the probability of assignment of certain treatment arms converge to zero. A direction for
future work would be to alleviate this requirement so as to allow for designs that gradually phase
out suboptimal arms.
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7.A Notation

7.A.1 Notation relative to the data

A(t, i) : treatment assigned to individual i at t,
L(t, i) : time varying covariates and outcomes of individual i at t,

O(t, i) :=(A(t, i), L(t, i),

A(t) :=(A(t, i) : i ∈ [N ])

L(t) :=(L(t, i) : i ∈ [N ])

Ā(t) =(A(1), . . . , A(t)),

L̄(t) :=(L(1), . . . , L(t)),
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Ō(t) :=(O(1), . . . , O(t)),

Ā(t, i) :=(A(s, i) : s ∈ [t]),

L̄(t, i) :=(L(s, i) : s ∈ [t]),

Ō(t, i) :=(O(s, i) : s ∈ [t]),

OT,N :=(O(t, i) : t ∈ [T ], i ∈ [N ]).

Observe that OT,N = Ō(T ).
Data is observed in the order A(1), L(1), . . . , A(t), L(t). Within time points, we arbitrarily

order data points by increasing index i, that is, we order individual observations as:

A(1, 1), . . . , A(1, N), L(1, 1), . . . , L(1, N), . . . , A(T, 1), . . . , A(T,N), L(T, 1), . . . , L(T,N).

We refer to this ordering as the column ordering. We let A(t, i)− and L(t, i)− be the vectors of all
observations that come before A(t, i) and L(t, i) in the column ordering, that is

A(t, i)− :=(Ō(t− 1), A(t, 1), . . . , A(t, i− 1))

L(t, i)− :=(Ō(t− 1), A(t), L(t, 1), . . . , L(t, i− 1)).

We let FL(t, i) be the set of individuals i is in contact with at t, and we let FA(t, i) be the set of
individuals upon whose history the experimenter decides the treatment assignment of individual i
at time t. We define the context functions CA(t, i) and CL(t, i) as

CA(t, i) := cA(t,i)(A(t, i)−, FA(t, i))

CL(t, i) := cL(t,i)(L(t, i)−, FL(t, i)).

When there is no ambiguity, we drop the “L′′ superscript and we use C(t, i) for CL(t, i). We let

X(t, i) := (CL(t, i), L(t, i)).

We denote Ã(k), L̃(k), Õ(k) and X̃(k) the k-th element in the sequences (A(t, i))t,i, (L(t, i))t,i,
(O(t, i))t,i, and (X(t, i))t,i, respectively.

7.A.2 Notation relative to probability distributions, their components, and
the target parameters

P T,N
F : probability distribution of the full data (OT,N , U),

P ∗,T,NF : post-intervention distribution of the full data (O∗,T,N , U),

P T,N : probability distribution of the observed data OT,N ,

P T,N
g∗ : G-computation formula
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We denote MT,N
F the causal model, that is the set of possible full data distributions P T,N

F , and
MT,N the statistical model that is the set of possible observed data distributions P T,N . We now
present notation for components of these distributions:

q : conditional density of L(t, i) given L(t, i)− (or given CL(t, i))

g =
T∏
t=1

N∏
i=1

gt,i : treatment mechanism ,

g∗ =
τ∏
s=1

N∏
j=1

g∗s,j : counterfactual treatment mechanism,

hAt,i(q, g) and hLt,i(q, g) : marginal densities of CA(t, i) and CL(t, i) under P T,N =
∏
t,i

gt,iq,

hAt,i and hLt,i : shorthand for hAt,i(q,g) and hLt,i(q, g)

h∗,As,j and h∗,Ls,j : shorthand for hAs,j(q, g
∗) and hLs,j(q, g

∗),

h̄AT,N :=(TN)−1

T∑
t=1

N∑
i=1

hAt,i,

h̄LT,N :=(TN)−1

T∑
t=1

N∑
i=1

hLt,i,

ωs,j :=hAs,j/h̄
A
T,N and ηs,j := g∗s,j/gs,j.

When there is no ambiguity, we use ht,i, h∗s,j , h̄T,N for hLt,i, h
∗,L
s,j , h̄LT,N . We denote h̃k the k-

th element of the column ordered sequence (ht,i)t,i. We now recall the definition of the causal
parameter and the statistical target parameter:

ΨF
τ (P T,N

F ) :=EP ∗,T,NF
[Y ∗(τ)] (causal parameter),

Ψτ (P
T,N) :=EPq,g∗ [Y (τ)] (statistical target parameter).

7.B Proofs of the structural results

7.B.1 Derivation of the efficient influence function
The proof of theorem 7.1 relies on the following lemma, which is a straightforward extension of
lemma 1 in van der Laan [2013].

Lemma 7.5 (Projection onto tangent space.). The tangent space of the statistical modelM at P T,N

is given by

T (q) :=

{
oT,N 7→

∑
t,i

s(l(t, i) | cL(t, i)) : s : L × C → R, ∀c,
∫
s(l, c)q(l | c)dl = 0

}
.
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The projection of any function oT,N 7→ D∗(oT,N) on T (q) is

D̄ : oT,N 7→ 1

TN

N∑
t=1

N∑
i=1

ht,i(c
L)

h̄T,N(cL)
Dt,i(l | c),

with

Dt,i(l, c) := E
[
D∗(OT,N | L(t, i) = l, CL(t, i) = cL

]
− E

[
D∗(OT,N | CL(t, i) = cL

]
.

The proof is almost identical to that of lemma 1 in van der Laan [2013]. We refer the interested
reader to this work.

We now present the proof of theorem 7.1.

Proof of theorem 7.1. We start with the case t = τ . We use the following classical strategy to find
the canonical gradient: we first find a gradient of Ψ at q w.r.t. T (q), and we then project it onto
T (q), which gives the canonical gradient.

Finding a gradient. Consider a one-dimensional sub-model ofM of the form{
P T,N
ε : ε ∈ [±εmax],

dP T,N
ε

dµ
(oT,N) =

∏
t,i

qε(l(t, i) | cL(t, i))g∗(a(t, i) | cA(t, i))

}
,

such that P T,N
ε=0 = P T,N . We have that

Ψ(P T,N
ε ) = Ψ(qε) =

∫
y
∏
t,i

qε(l(t, i) | cL(t, i))g∗(a(t, i) | cA(t, i))doT,N .

Therefore
dΨ(qε)

dε

∣∣∣∣
ε=0

=

∫
y
d

dε

∏
t,i

qε

∣∣∣∣
ε=0

∏
t,i

g∗t,i

=

∫ ∏
t,i

qgt,i

{∏
t,i

g∗t,i
gt,i

y

}
d

dε
log
∏
t,i

qε

∣∣∣∣
ε=0

=

∫ ∏
t,i

qgt,i

{∏
t,i

g∗t,i
gt,i

y −Ψ(q)

}
d

dε
log
∏
t,i

qε

∣∣∣∣
ε=0

=Eq,g

[(∏
t,i

g∗t,i
gt,i

Y −Ψ(q)

)∑
t,i

s(L(t, i), CL(t, i))

]
,

where s(l, cL) := (d log qε/dε)|ε=0(l, cL), and therefore
∑

t,i s(l(t, i), c
L(t, i)) is the score of the

parametric submodel at ε = 0.
Therefore

oT,N 7→ D∗(oT,N) =
∏
t,i

g∗t,i
gt,i

y −Ψ(q)

is a gradient of Ψ at P T,N w.r.t. T (P ).
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Projecting D0 onto the tangent space. From lemma 7.5, the projection of D0 onto T (q) is

D(q)(oT,N) =
1

TN

∑
t,i

D̄T,N(q)(cL(t, i), l(t, i)),

with

D̄T,N(q)(cL, l) =
∑
s,j

hs,j(c
L)

h̄T,N(cL)

{
Eq,g

[
Y g∗/g | L(t, i) = l, CL(t, i) = cL

]
−Eq,g

[
Y g∗/g | CL(t, i) = cL

]}
.

Second representation. Suppose that assumption 7.5 holds. We have that

Eq,g
[
Y g∗/g | L(t, i) = l, CL(t, i) = cL

]
=

1

ht,i(cL)

∫
Eq,g

[
Y g∗/g | L(t, i) = l, L(t, i)− = l(t, i)−

]
× 1(cL(l(t, i)−) = cL)

∏
(s,j)<(t,i)

q(l(s, j) | l(s, j)−)gs,j(a(s, j) | a(s, j)−)doT,N

=
1

ht,i(cL)

∫
Eq,g∗

[
Y | L(t, i) = l, L(t, i)− = l(t, i)−

]
× 1(cL(l(t, i)−) = cL)

∏
(s,j)<(t,i)

q(l(s, j) | l(s, j)−)g∗s,j(a(s, j) | a(s, j)−)doT,N

=
1

ht,i(cL)
Eq,g∗

[
Y | L(t, i) = l, cL(L(t, i)−) = cL

]
×
∫

1(cL(l(t, i)−) = cL)
∏

(s,j)<(t,i)

q(l(s, j) | l(s, j)−)g∗s,j(a(s, j) | a(s, j)−)doT,N

=
h∗t,i(c

L)

ht,i(cL)
Eq,g∗

[
Y | L(t, i) = l, CL(t, i) = cL

]
.

Similarly,

Eq,g
[
Y g∗/g | CL(t, i) = cL

]
=
h∗t,i(c

L)

ht,i(cL)
Eq,g∗

[
Y | CL(t, i) = cL

]
.

Replacing these expression in the expression of the canonical gradient gives the wished represen-
tation.

Third representation. Under assumption 7.6, the third representation follows immediately from
the second one.
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7.B.2 Proofs of the results on the remainder term
Proof of theorem 7.2. Suppose h̄T,N = h̄0,T,N . We have that

EPT,N0

[
D(q)(OT,N)

]
=EPT,N0

[
1

TN

T∑
t=1

N∑
i=1

D̄T,N(C(t, i), L(t, i))

]
=

∫
h̄0,T,N(c)q0(l | c)D̄T,N(c, l)dcdl

=
τ∑
s=1

N∑
j=1

{∫
h∗s,j(c)q0(l | c)Eq,g∗ [Y | L(s, j) = l, C(s, j) = c] dldc

−
∫
h∗s,j(c)Eq,g∗ [Y | C(s, j) = c] dc

}
We have that ∫

h∗s,j(c)q0(l | c)Eq,g∗ [Y | L(s, j) = l, C(s, j) = c]

=

∫
q0(l | c)Eq,g∗

[
Y | L(s, j) = l, L(s, j)− = l(s, j)−

]
× 1(cL(s,j)(l(s, j)

−) = c)
∏

(s′,j′)<(s,j)

qs′,j′g
∗
s,jdldcd(l(s, j)−)

=

∫
Eq,g∗

[
Y | L(s, j) = l, L(s, j)− = l(s, j)−

]
q0,s,j

∏
(s′,j′)<(s,j)

qs′,j′g
∗
s,j

=Eq(s,j)− ,q0,s,jq(s,j)+Y, (7.8)

where the last line was obtained by using Fubini’s theorem and integrating out the indicator.

The same arguments show that∫
h∗s,j(c)Eq,g∗ [Y | C(s, j) = c] = Eq,g∗ [Y ].

Therefore,

EPT,N0

[
D(q)(OT,N)

]
=

τ∑
s=1

N∑
j=1

Eq(s,j)− ,(q0−q)(s,j),q
+
(s,j)

,g∗Y.

Using the telescoping sum formula for the product difference
∏

s,j qs,j −
∏

s,j q0,s,j , we have that

Ψ(q)−Ψ(q0) =
∑
s,j

Eq(s,j)− ,q(s,j)−q0,(s,j),q0,(s,j),g∗Y. (7.9)

Therefore, putting (7.8) and (7.9) together gives the wished expression for R(h̄0,T,N , q).
The derivation of the expression R(h̄0,T,N , q)−R(h̄T,N , q) is immediate.
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Proof of theorem 7.3. We have that

EPT,N0

[
D(q)(OT,N)

]
=EPT,N0

[
1

TN

T∑
t=1

N∑
i=1

D̄T,N(q)(CA(t, i), A(t, i), L(t, i)

]

=
τ∑
s=1

N∑
j=1

∫
h̄A0,T,N(cA)gs,j(a | cA)q0(l | a, cA)ωs,j(c

A)ηs,j(a |A)

×
{
Eq,g∗

[
Y (j) | L(s, j) = l, A(s, j) = a, CA(s, j) = cA

]
−Eq,g∗

[
Y (j) | A(s, j) = a, CA(s, j) = cA

]}
dldadcA,

where we have used assumption 7.7 in the last line above.

Case ω = ω0. We show that in this case, for any given j and s, the second term of the (s, j)-th
term in the sum above cancels out with the first term of the (s− 1, j)-th term.

We start with rewriting the second term of the (s, j)-th term:∫
h̄A0,T,N(cA)gs,j(a | cA)q0(l | a, cA)ω0,s,j(c

A)ηs,j(a | cA)

× Eq,g∗
[
Y (j) | A(s, j) = a, CA(s, j) = cA

]
dldadcA

=

∫
h̄∗,A0,s,j(c

A)g∗s,j(a | cA)Eq,g∗
[
Y (j) | A(s, j) = a, CA(s, j) = cA

]
dadcA

=

∫ s−1∏
t=1

g∗t,jq0,t,jg
∗
s,jEq,g∗

[
Y (j) | A(s, j) = a, Ō(s− 1, j) = ō(s− 1, j)

]
dadō(s− 1, j)

=Eq0,1:s−1,qs:τ ,g∗Y.

The third line above follows from assumption 7.5. We now show that the first term of the (s−1, j)-
th term is equal to the above quantity:∫

h̄A0,T,N(cA)gs,j(a | cA)q0(l | a, cA)ωs,j(c
A)ηs,j(a |A)

× Eq,g∗
[
Y (j) | L(s− 1, j) = l, A(s− 1, j) = a, CA(s− 1, j) = cA

]
dldadcA

=

∫
h̄∗,A0,s,j(c

A)g∗s,j(a | cA)q0(l | a, cA)

× Eq,g∗
[
Y (j) | L(s− 1, j) = l, A(s− 1, j) = a, CA(s− 1, j) = cA

]
dldadcA

=

∫ s−2∏
t=1

g∗t,jq0,t,jg
∗
s−1,jq0,s−1Eq,g∗

[
Y (j) | Ō(s− 1, j) = ō(s− 1, j)

]
dō(s− 1, j)

=Eq0,1:s−1,qs:τ ,g∗Y.

Thus, by telescoping, EPT,N0
[D(q)(OT,N)] = Ψ(q)−Ψ(q0), and therefore R(ω0, q) = 0.
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At a high level, the reason why this cross-terms cancellation happens is the first term of the (s−
1, j)-th term is obtained by integration against g∗s,j of the second term of (s, j)-th term. Applying
the operator EPT,N0

boils down to successively, in the backwards direction, integrating with respect

to the factors of P T,N
0 . The first step in this process applied to the second term of (s, j) is to

integrate w.r.t. g∗s,j , which gives the first term of (s − 1, j). The subsequent steps being the same
for both terms, the resulting quantities are the same.

Case q = q0. In this case, it is immediate to observe that the cancellation happens within each
term of the terms of the sum over (s, j). Therefore, R(ω, q0) = 0.

Therefore, we can writeR(ω, q) = R(ω, q)−R(ω0, q), which makes appear the wished product
of differences structure.

7.C Results on empirical process induced by weakly dependent
sequences

Let (Xn)n≥1 be a sequence of random variables taking values in a set X , and let F be a class of
functions with domain X . In this section, we present a several novel results on empirical processes
of the form

{Mn(f) : f ∈ F} where Mn(f) :=
1

n

n∑
i=1

f(Xi)− E[f(Xi)].

We present three types of results: a maximal inequality over F (or over the intersection of
F with a ball of controlled radius), an equicontinuity result, and an exponential risk bound for
empircal risk mimizers over F . The latter two are a consequence of the former.

We do not make independence nor stationarity assumptions on the sequence (Xn)n≥1. Rather,
we consider sequences (Xn)n≥1 that satisfy only the following mixing conditions.

Assumption 7.22 (α-mixing). The uniform α-mixing coefficients of the sequence (Xi)i≥1 satisfy

α(n) ≤ exp(−2cn), for some c > 0.

Assumption 7.23 (ρ-mixing). The uniform ρ-mixing coefficients of the sequence (Xi)n≥1 have
finite sum, that is

∑
n≥1 ρ(n) <∞. We denote ρ :=

∑
n≥1 ρ(n).

We suppose that X ⊂ Rd for some d ≥ 1 and that, for every i ≥ 1, the marginal distribution
of Xi admits a density w.r.t. the Lebesgue measure that we denote hi. Supposing that assumption
7.23 holds, we define the following mapping F → R:

σ(f) :=
√

1 + 2ρ sup
i≥1
‖f‖2,hi .

It is straightforward to check that σ is a norm. Our results apply to classes of functions that are
bounded in supremum norm.

Assumption 7.24 (Uniform boundedness). There exists M ∈ (0,∞) such that supf∈F ‖f‖∞ ≤
M .
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7.C.1 A local maximal inequality
The result of this subsection is a local maximal inequality in the sense that it bounds the supremum
of Mn(f) over a σ-ball included in F . We state below the corresponding assumption.

Assumption 7.25 (σ norm boundedness). There exists r > 0 such that supf∈F σ(f) ≤ r.

We can now state our result.

Theorem 7.11. Suppose that assumptions 7.22, 7.23, 7.24 hold. Suppose that r ≥ 2Mn−1/2.
Then, for any r∈[Mn−1/2, r], it holds with probability at least 1− 2e−x that,

sup
f∈F

Mn(f) .r− +
log n√
n

∫ r

r−

√
log(1 +N[ ](ε,F , σ))dε+

M(log n)2

n
log(1 +N[ ](r,F , σ))

+ r

√
(log n)x

n
+
M(log n)2

n
x.

The proof relies on the following lemma, which is a corollary of lemma A.7 in van Handel
[2010] and theorem 2 in Merlevède et al. [2009].

Lemma 7.6. Suppose that f1, . . . , fN ∈ F , and that conditions on the preceding theorem hold.
Then, for any event A defined on the same probability space as (Xi)n≥1,

E

[
max
i∈[N ]

Mn(fi) | A
]
.

1√
n

(
max
i∈N

σ(fi) +
M√
n

)√
log

(
1 +

N

P [A]

)
+
M(log n)2

n
log

(
1 +

N

P [A]

)
.

Proof of theorem 7.11. The result will follow if we show that for A :=
{

supf∈FMn(f) ≥ Ψ(x)
}

,
with

Ψ(x) :=r− +
log n√
n

∫ r

r−

√
log(1 +N[ ](ε,F , σ))dε+

M(log n)2

n
log(1 +N[ ](r,F , σ))

+ r

√
(log n)x

n
+
M(log n)2

n
x,

it holds that

E

[
sup
f∈F

Mn(f) | A
]
≤ Ψ

(
log

(
1 +

1

P [A]

))

Setting up the notation. Let εj := r2−j , and let J ≥ 1 such that εJ ≤ r− < εJ−1. For every j,
let

Bj := {(λjk, υ
j
k) : k ∈ [Nj]}
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be an εj-bracketing of F in σ norm. For every f ∈ F and every j, let k(j, f) be such that

λjk(j,f) ≤ f ≤ υjk(j,f).

For every j and f , define the function ∆j
f := υjk(j,f) − λ

j
k(j,f). Let aj be a decreasing sequence of

positive numbers, such that aj−1 and aj are within constant factors of each other for every j. We
introduce, for every f , the function

τ(f) : x 7→
(
min{j ≥ 0 : ∆j

f (x) > aj}
)
∧ J.

Chaining decomposition. We write f as a telescoping sum using an adaptive chaining device.
Adaptive chaining is a standard empirical process technique introduced by Ossiander [1987] for
the analysis of empirical processes under bracketing entropy conditions, in which the depth of a
chain is a function of the form of τ(f) that is chosen so as to control the supremum norm of the
links of the chain. We have, in a pointwise sense, that, for every f ∈ F ,

f =λ0
k(0,f) +

τ(f)∑
j=1

(
λjk(j,f) − λ

j−1
k(j−1,f)

)
+
(
f − λτ(f)

k(τ(f),f)

)
=λ0

k(0,f) +
J∑
j=1

(
λjk(j,f) − λ

j−1
k(j−1,f)

)
1(τ(f) < j)

+
J∑
j=1

(
f − λjk(j,f)

)
1(τ(f) = j).

The first term represents the root of the chain. The second term is the sum across depth levels j of
the links of the chain. The third term is the tip of the chain.

Control of the tips. We treat separately the case j < J and the case j = J .

Case j < J . We will use the fact that, for j < J , we must have that if τ(f) = j, then
∆j
f > aj . From non-negativity of f − λjk(j,f),

Mn((f − λjk(j,f))1(τ(f) = j)) ≤E

[
1

n

n∑
i=1

(f − λjk(j,f))(Xi)1(τ(f)(Xi) = j)

]

≤E

[
1

n

n∑
i=1

∆j
f (Xi)1(τ(f)(Xi) = j)

]
.

As ∆j
f1(τ(f) = j) > aj1(τ(f) = j), we have that ∆j

f1(τ(f) = j) ≤ a−1
j (∆j

f )
21(τ(f) = j), and

therefore

E

[
1

n

n∑
i=1

(
∆j
f1(τ(f) = j)

)
(Xi)

]
≤ 1

aj

1

n

n∑
i=1

E
[(

∆j
f (Xi)

)2
]
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=
1

aj

1

n

n∑
i=1

‖∆j
f‖

2
2,hi

≤ 1

aj
σ2(∆j

f )

≤
ε2j
aj
.

Therefore

E

[
sup
f∈F

Mn

(
(f − λjk(j,f))1(τ(f) = j)

)]
≤
ε2j
aj
.

Case j = J . We have that

Mn

(
(f − λjk(j,f))1(τ(f) = J)

)
≤ 1

n

n∑
i=1

‖∆j
f‖1,hi

≤ 1

n

n∑
i=1

‖∆j
f‖2,hi

≤σ(∆j
f )

≤εJ .

Control of the links. From the triange inequality

σ
(
λjk(j,f) − λ

j−1
k(j−1,f)

)
≤σ
(
f − λjk(j,f)

)
+ σ

(
f − λj−1

k(j−1,f)

)
≤σ
(
∆j
f

)
+ σ

(
∆j−1
f

)
≤εj + εj−1

.εj.

Similarly∥∥∥(λjk(j,f) − λ
j−1
k(j−1,f)

)
1(τ(f) < j)

∥∥∥
∞
≤
∥∥∥∆j

k(j,f01(τ(f) < j)
∥∥∥
∞

+
∥∥∥∆j−1

k(j−1,f01(τ(f) < j)
∥∥∥
∞

≤aj + aj−1

.aj.

When f varies over F , λjk(j,f) − λj−1
k(j−1,f) varies over a collection of at most N̄j :=

∏j
l=0Nl

functions. From lemma 7.6, we thus have that

E
[
Mn

(
λjk(j,f) − λ

j−1
k(j−1,f)

)
| A
]
.

1√
n

(
εj +

M√
n

)√
log

(
1 +

N̄j

P [A]

)
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+
aj(log n)2

n
log

(
1 +

N̄j

P [A]

)
.

1√
n
εj

√
log

(
1 +

N̄j

P [A]

)
+
aj(log n)2

n
log

(
1 +

N̄j

P [A]

)
,

as εj ≥ r− ≥Mn−1/2.

Control of the root. From the triangle inequality,

σ(λ0
k(j,f)) ≤σ(f − λ0

k(0,f)) + σ(f)

≤2ε0.

In addition, we have that ‖λ0
k(j,f)‖∞ ≤ M (if not, we can always, without loss of generality,

truncate it to [−M,M ] without altering its bracketing properties).
Therefore,

E

[
sup
f∈F

Mn(f) | A
]
.

ε0√
n

√
log

(
1 +

N0

P [A]

)
+
M(log n)2

n
log

(
1 +

N0

P [A]

)
.

Adding up the bounds. We obtain

E

[
sup
f∈F

Mn(f) | A
]
.
ε0√
n

√
log

(
1 +

N̄0

P [A

)
+
M(log n)2

n
log

(
1 +

N̄0

P [A]

)

+
J∑
j=1

εj√
n

√
log

(
1 +

N̄j

P [A]

)
+
aj(log n)2

n
log

(
1 +

N̄0

P [A]

)

+
J−1∑
j=0

ε2j
aj

+ εJ .

Set aj :=
√
n(log n)−1(log(1 + N̄j/P [A]))−1/2. Then above bound then becomes

E

[
sup
f∈F

Mn(f) | A
]
.
εJ√
n

+
log n√
n

J∑
j=0

εj

√
log

(
1 +

N̄j

P [A]

)
+

(log n)2

n
M log

(
1 +

N0

P [A]

)
.

Using the same arguments as at the end of the proof of theorem 5 in Bibaut et al. [2020], we have
that

J∑
j=0

εj

√
log

(
1 +

N̄j

P [A]

)
.
∫ ε0

εJ

√
log
(
1 +N[ ](ε,F , σ)

)
dε+ ε0

√
log

(
1 +

1

P [A]

)
.

The above and the fact that log(1 +N0/P [A]) ≤ log(1 +N0) + log(1 + 1/P [A]) yield the wished
claim.
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7.C.2 Equicontinuity
Theorem 7.12. Consider a class of functions F and a sequence (fn) of elements of F .

Suppose that conditions 7.22, 7.23 and 7.24 hold.
Suppose that there exists a deterministic sequence of positive numbers (an) such that

a−2
n (log n)2/

√
n = o(1) and aνn log n = o(1) for every ν > 0,

and, for every ε > 0, there exists Cn(ε) > 0 such that

P [∀n ≥ 1, ‖fn‖∞ ≤ C(ε)an] ≥ 1− ε..

Suppose further that there

logN[ ](u,F , σ) . up for some p > 0.

Then
√
nMn(f) = o(1) a.s.

Proof of theorem 7.12. Let ε > 0, and let C(ε) as in the conditions of the theorem, and introduce
the event

E1(ε) := {∀n ≥ 1, ‖fn‖∞ ≤ C(ε)an} .

Observe that under E1(ε), for every n ≥ 1,
√
nMn(fn) ≤ sup

{√
nMn(f) : f ∈ F , ‖fn‖∞ ≤ C(ε)an

}
.

We now bound with high probability the supremum in the right-hand side above, for every n. Let
xn := log(ε/(n(n+ 1))). From theorem 7.11, with probability at least 1− ε/(n(n+ 1)),

sup
{√

nMn(f) : f ∈ F , ‖fn‖∞ ≤ C(ε)an
}
. ψn(ε, an, xn),

with

ψn(ε, an, xn) :=C(ε)an + log n

∫ C(ε)an

C(ε)an√
n

u−p/2du+ (C(ε)an)−p
(log n)2

√
n

+ C(ε)an
√

log(n(n+ 1)/ε) log n+
C(ε)an√

n
log(n(n+ 1)/ε)(log n)2.

Therefore, from a union bound,

P
[
∃n ≥ 1

√
nMn(fn) ≥ ψn(ε, an, xn)

]
≤P [E1(ε)c] +

∞∑
n=1

ε

n(n+ 1)

≤2ε.

Since, for every ε > 0, condition 7.12 implies that ψn(ε, an, xn) = o(1), the above implies that,

∀ε > 0, P
[

lim
n→∞

√
nMn(f) = 0

]
≤ 2ε,

which, by letting ε→ 0, implies the wished claim.
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Discussion of the supremum norm convergence requirement. As we pointed out in the main
text, it might appear surprising at first that even though our Donsker condition involves the entropy
w.r.t. the σ norm, which is an L2 norm, we do need convergence in sup norm of (fn)n≥1.

The reason why this is the case can be understood from the expression and conditions of our
maximal inequality for weakly dependent empirical processes, theorem 7.11 from the previous
subsection. Recall that this result tells us that, under mixing conditions, given a class of functions
F such that supf∈F σ(f) ≤ r, and supf∈F ‖f‖∞ ≤ M , for some M, r > 0, then for any r− ≥
M/
√
n, it holds with probability at least 1− 2e−x that

sup
f∈F

Mn(f) ≤ r− +
log n√
n

∫ r

r−

√
log(1 +N[ ](ε,F , σ)dε+ r log n

√
x

n
+

(log n)2Mx

n
,(7.10)

where Mn(f) = n−1
∑n

i=1 f(Xi) − Ef(Xi). Suppose that we want to prove an asymptotic
equicontinuity result of the form Mn(fn) = oP (n−1/2) for a certain sequence (fn)n≥1, while only
assuming that σ(fn) = oP (1) and not making any assumptions on (‖fn‖∞)n≥1. Then, as n→∞,
we can bound Mn(fn) with high probability by the supremum of Mn(f) over subsets of F with
σ radius arbitrarily close to zero. This allows us to bound Mn(fn) with high probability by the
right-hand side above with the upper bound r of the entropy integral arbitrarily close to zero. Un-
fortunately, letting the upper bound of the entropy integral converge to zero isn’t enough to make
the expression converge to zero faster than n−1/2. Indeed, since the term r− needs to be at least as
large as M/

√
n, with M an upper bound on the ‖ · ‖∞ radius of the class over which we take the

supremum, we need to be able to let M get arbitrarily close to zero with high probability to make
the RHS of (7.10) go to zero faster than n−1/2. This explains why, given our maximal inequality
(7.10), we need to control (‖fn‖∞)n≥1.

That being said, one might still wonder why in our maximal inequality the lower bound r− of
the entropy integral needs to be larger than M/

√
n, thus making us pay an approximation error

price r− ≥ M/
√
n. The reason is that we obtain our result by applying a chaining device to

the following deviation bound Merlevède et al. [2009] for fixed f . Under exponential α-mixing
(condition 7.22) and finiteness of the sum of ρ-mixing coefficients, if ‖f‖∞ ≤M , their result gives
that

P
[√
nMn(f) ≥ x

]
. exp

(
− x2

σ(f)2 + M2

n
+ Mx(logn)2√

n

)
, (7.11)

Compare this with the usual Bernstein inequality i.i.d. random variables:

P
[√
nMn(f) ≥ x

]
. exp

(
− x2

‖f‖2
2,P + Mx√

n

)
While the i.i.d. Bernstein inequality implies that

√
nMn(f) scales as the L2 norm ‖f‖P,2 (as long

as the ratio ‖f‖2,P/‖f‖∞ & 1/
√
n), the concentration bound for mixing sequences implies that it

scales as σ(f) + ‖f‖∞/
√
n. In the chaining argument, we consider εj-bracketings in ‖ · ‖2,P norm

in the i.i.d. case, and in σ norm in the weakly dependent case, with εj = r2−j , for increasingly
large j, where j has the interpretation of the depth of the chains.
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Let us first discuss chaining in the i.i.d. case, and in the case where we want to obtain a bound
on EP

√
n supf∈FMn(f) (as opposed to obtaining a high probability bound on supf∈FMn(f),

which is slightly more technical). Denote {[λj,k, υj,k] : k ∈ [Nj]} the εj-bracketing of F used in
the chaining device. The contribution of depth j to the final bound on EP

√
n supf∈FMn(f) is a

supremum over links λj,k − λj−1,k between depths j and j − 1, which can essentially be bounded,
using Bernstein’s inequality, by

sup
k∈[Nj ],k∈[Nj−1]

‖λj,k − λj−1,k‖P,2
√

logN[ ](εj,F , ‖ · ‖P,2) . εj

√
logN[ ](εj,F , ‖ · ‖P,2).

(To be rigorous, the bound obtained from Bernstein’s inequality has another term, but in adaptive
chaining, we choose the maximal depth of the chains so that this term is no larger than the first one
above). By contrast, in the weakly dependent case, the concentration bound (7.11) gives that the
corresponding contribution is bounded by(

sup
k∈[Nj ],k∈[Nj−1]

σ(λj,k − λj−1,k) +
M√
n

)√
logN[ ](εj,F , σ)

.

(
εj +

M√
n

)√
logN[ ](εj,F , σ).

A consequence of this is that when the depth j of the chain is such that εj ≤ M/
√
n, then the

term M/
√
n becomes the main scaling factor. It can be checked that as result of this, the sum of

these bounds diverges as j →∞. This is why in our chaining decomposition, we impose that our
chains must have depth no larger that J such that εJ ≥ M/

√
n. This gives us a bound involving

an entropy integral with lower bound εJ and an approximation error
√
nεJ .

7.C.3 Exponential deviation bound for empirical risk minimizers
Let ` be a functional defined on RX , the space of functions X → R, such that, for every RX , `(f)
is a function X → R. We call ` a loss function. For every f : X → R, we define the population
risk and the empirical risk as

Rn(f) :=
1

n

n∑
i=1

E[`(f)(Xi)] and R̂n(f) :=
1

n

n∑
i=1

`(f)(Xi).

Let fn be an empirical risk minimizer over F , that is an element of F such that

R̂n(fn) = inf
f∈F

R̂n(f).

and f ∗ ∈ F be a minimizer of the population risk, that is a function such that

Rn(f ∗) = inf
f∈F

Rn(f).

In this section, we give exponential bounds on the excess population risk Rn(fn) − Rn(f ∗), and
on the norm σ(f − f ∗). We rely on the following assumptions.
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Assumption 7.26 (Variance bound). For every f ∈ F , σ2(`(f)− `(f ∗)) . (Rn(f)−Rn(f ∗)).

Assumption 7.26 can be checked in common settings, such as in non-parametric regression
settings when ` is the square loss and the dependent variable has bounded range.

Assumption 7.27 (A power of σ dominates ‖ · ‖∞ over `(F)). There exists α ∈ (0, 1) such that,
for all f ∈ F , ‖`(f)− `(f ∗)‖∞ . (σ(`(f)− `(f ∗)))α.

Assumption 7.28 (Excess risk dominates norm of difference). Suppose that σ2(f−f ∗) . Rn(f)−
Rn(f ∗) for every f ∈ F .

Assumption 7.27 holds for instance if all functions in `(F) are all L-Lipschitz for the same L,
as formally presented in lemma 7.4.

Assumption 7.29 (Entropy). There exists p ∈ (0, 2) such that

logN[ ](ε, `(F), σ) . ε−p.

Theorem 7.13 (Exponential deviation bound for ERM). Suppose that F is a convex set, and that
` is convex on F . Suppose that assumptions 7.22, 7.23, 7.26, 7.27, 7.28 and 7.29 hold. Let

φn : r 7→ rα√
n

+
log n√
n
r1−p/2 +

(log n)2

n
rα−p,

and let rn > 0 such that r2
n/3 = φn(rn) (there exists such an rn from lemma 7.7 applied to 3φn).

Let r > 0 such that

r ≥ max

{
n−

1
2(1−α) , rn,

√
3 log n

√
x

n
, (log n)

2
2−α

(
3x

n

) 1
2−α
}
.

Then, with probability at least 1− 2e−x, Rn(fn)−Rn(f ∗) . r2 and σ(fn − f ∗) . r.

The proof of 7.13 is a relatively straightforward adaptation of the proof of lemma 13 in Bartlett
et al. [2006]. It relies on the following two intermediate lemmas

Lemma 7.7. Let φ : (0,∞) → R+ such that r 7→ φ(r)/r is strictly decreasing on (0,∞) and
limr→0+ φ(r)/r > 1. Then, there exists a unique r∗ ∈ (0,∞) such that r2

∗ = φ(r∗), and for any
r ∈ (0,∞), r2 ≥ φ(r) if and only if r ≥ r∗.

Lemma 7.8. Suppose that the assumptions of theorem 7.13 hold and let rn and r be as defined in
theorem 7.13. Then, there exists a constant C > 0 such that, for any x > 0,

P
[
sup

{
Mn(`(f)− `(f ∗)) : f ∈ F , Rn(f)−Rn(f ∗) ≤ r2

}
≥ Cr2

]
≤ 2e−x.

Proof of lemma 7.7. The claim follows directly from the fact that, since both r 7→ φ(r)/r and
r 7→ 1/r are strictly decreasing on (0,∞), r 7→ φ(r)/r2 is also strictly decreasing on (0,∞).
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Proof of lemma 7.8. From assumption 7.26,

P
[
sup

{
Mn(`(f)− `(f ∗)) : f ∈ F , Rn(f)−Rn(f ∗) ≤ r2

}
& r2

]
≤P

[
sup {Mn(`(f)− `(f ∗)) : f ∈ F , σ(`(f)− `(f ∗)) . r} & r2

]
. (7.12)

Under assumption 7.27, ‖Mn(`(f) − `(f ∗))‖∞ . rα for any f ∈ F such that σ(`(f) −
`(f ∗)) . r. Therefore, since r > n−1/(2(1−α)), implies r > rαn−1/2, applying theorem 7.11 with
r− = rα/

√
n, we have that

P [sup {Mn(`(f)− `(f ∗)) : f ∈ F , σ(`(f)− `(f ∗)) . r} & ψn(r, x)] ≤ 2e−x,

with

ψn(r, x) :=
rα√
n

+
log n√
n

∫ r

rα√
n

u−p/2du+
(log n)2

n
rα−p

+ r log n

√
x

n
+ rα(log n)α

x

n
.

Observe that

ψn(r, x) ≤ φn(r) + r log n

√
x

n
+ rα(log n)α

x

n
. (7.13)

From the definition of r in the statement of theorem 7.11, we have r ≥ rn, which from lemma
7.7 implies that r2/3 ≥ φn(r). We also have r2/3 ≥ r log n

√
x/n, and r2/3 ≥ rα(log n)2x/n.

Therefore, r2 ≥ ψn(r, x). Therefore, from (7.12) and (7.13), we have

P
[
sup {Mn(`(f)− `(f ∗)) : f ∈ F , σ(`(f)− `(f ∗)) . r} & r2

]
≤P [sup {Mn(`(f)− `(f ∗)) : f ∈ F , σ(`(f)− `(f ∗)) . r} & ψn(r, x)]

≤2e−x.

Proof of theorem 7.13. From the convexity of F and the convexity of ` on F , the following asser-
tion holds for every r ≥ 0:

∃f ∈ F , R̂n(f)− R̂n(f ∗) ≤ 0 and Rn(f)−Rn(f ∗) ≥ r2

implies that

∃f ∈ F , R̂n(f)− R̂n(f ∗) ≤ 0 and Rn(f)−Rn(f ∗) = r2.

Using this fact, and the fact that by definition of fn, R̂n(fn)− R̂n(f ∗) ≤ 0, we have

P
[
R̂n(fn)− R̂n(f ∗) ≥ r2

]
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≤P
[
∃f ∈ F , R̂n(f)− R̂n(f ∗) ≤ 0 and Rn(f)−Rn(f ∗) ≥ r2

]
≤P

[
∃f ∈ F , R̂n(f)− R̂n(f ∗) ≤ 0 and Rn(f)−Rn(f ∗) = r2

]
≤P

[
sup {Mn(`(f)− `(f ∗)) : f ∈ F , σ(`(f)− `(f ∗)) . r} ≥ r2

]
≤2e−x

from lemma 7.8

7.D Proofs for the analysis of the TMLE

7.D.1 Proof of lemma 7.3 on the stabilization of the variance of the EIF
Proof of lemma 7.3. It is immediate to check that D̄T,N(q0) and D̄0,∞,N are centered, and therefore

Var
(
D̄T,N(q0)(L(t, i), C(t, i))

)
=‖D̄T,N(q0)‖2

2,q0,h0,t,i
,

Var
(
D̄0,∞,N(L∞, C∞)

)
=‖D̄0,∞,N‖2

2,q0,h0,∞,N
.

We have that

‖D̄T,N(q0)‖2,q0,h0,t,i − ‖D̄0,∞,N‖2,q0,h0,∞,N

=‖D̄T,N(q0)‖2,q0,h0,t,i − ‖D̄0,∞,N‖2,q0,h0,t,i

+ ‖D̄0,∞,N‖2,q0,h0,t,i − ‖D̄0,∞,N‖2,q0,h0,∞,N .

We first start with the first term. We have that∣∣‖D̄T,N(q0)‖2,q0,h0,t,i − ‖D̄0,∞,N‖2,q0,h0,t,i

∣∣
≤‖D̄T,N(q0)− D̄0,∞,N‖2,q0,h0,t,i

≤
τ∑
s=1

N∑
j=1

∥∥∥∥ 1

h̄0,T,N

− 1

h0,∞,N

∥∥∥∥
2,h0,t,i

‖h∗0,s,jD̃s,j,N(q0)‖∞

≤2Bϕτ

∥∥∥∥ 1

h̄0,T,N

− 1

h0,∞,N

∥∥∥∥
2,h0,t,i

=o(1).

The third line above follows from the triangle inequality. The fourth line above is a consequence
of lemma 7.1. The fifth line follows from assumption 7.11.

We now turn to the second term. We have that

‖D̄0,∞,N‖2
2,q0,h0,t,i

− ‖D̄0,∞,N‖2
2,q0,h0,∞,N

=E
[
D̄2

0,∞,N(L(t, i), C(t, i))
]
− E

[
D̄2

0,∞,N(L∞, C∞)
]

→∞0,

since, from assumption 7.12, ((L(t, i), C(t, i))→ (L∞, C∞)), and D̄0,∞,N is a bounded continuous
function.
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7.D.2 Proof of the weak convergence of the martingale term
Proof of 7.6. Order the couples (t, i) as (1, 1), . . . , (1, N), . . . , (T, 1), . . . , (T,N), and let (t(k),
i(k)) be the k-th couple in this ordering. Let

Zk,TN :=
D̄TN(q0)(X(t(k), i(k))

σ0,∞,N
√
TN

.

Observe that under assumptions 7.9, 7.10, from lemma 7.2, ‖D̄TN(q0)‖∞ ≤ C, for some C < ∞
that does not depend on N .

Therefore, assumption (7.5) in theorem 7.5 is trivially checked. Let us now turn to assumption
(7.6). First, observe that, as E[Z2

k,TN ] = Varq0,h0,i(k),t(k)(D̄TN(q0)(X(t(k), i(k))/(TNσ2
0,∞,N), we

have that NTE[Z2
k,TN ] → 1 as k → ∞, and therefore, by Cesaro’s lemma for deterministic

sequences of real valued numbers,

bxTNc∑
k=1

E[Z2
k,TN ]→ x.

We now need to show that VTN(x) :=
∑bxTNc

k=1 Z2
k,TN converges in probability to its mean as

T → ∞. We proceed by taking the variance of VTN(x) and showing that it converges to zero,
which, by Chebyshev’s inequality will give us the wished result. We have

Var(VTN(x)) =

bxNT c∑
k=1

Var(Z2
k,TN) +

∑
1≤k1<k2≤bxNT c

Cov(Z2
k1,TN

, Z2
k2,TN

)

≤xNT‖Zk,TN‖4
∞ +

bxNT c∑
k1=1

bxNT c∑
k2=k1+1

‖Zk1,TN‖4
∞α (X(t(k1), i(k1)), X(t(k2), i(k2))

≤xNT C4

(TN)2σ4
0,∞,N

(1 + o(NT ))

=o(1),

where the third line follows from assumption 5. By Chebyshev’s inequality, we thus obtain that

bxNT c∑
k=1

Z2
k,TN − E

[
Z2
k,TN

]
→ 0,

which implies that (7.6). This concludes the proof.

7.E Proof of the exponential deviation bound for nuisance esti-
mators

Proof of theorem 7.9. Most of the work in this proof is to check the conditions of our generic
theorem 7.13 for empirical risk minimizers, in particular the variance bound (assumption 7.26, the
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assumption connecting the ‖·‖∞ norm to the norm σ (assumption 7.27), and the entropy bound. In
doing so, we follow closely the techniques presented in section 3.4.1, chapter 3.4 of van der Vaart
and Wellner [1996] for the analysis of maximum likelihood estimators.

Notation. We introduce the alternative loss

˜̀
n(q)(c, o) := − log

(
q + qn

2qn
(o | c)

)
,

the corresponding empirical and population risks

̂̃
Rn(q) :=

1

n

n∑
i=1

˜̀
n(q)(C̃(k), Õ(k)) and R̃0,n :=

1

n

n∑
i=1

Eq0,h̃k

[˜̀
n(q)(C̃(k), Õ(k))

]
.

For any c and any two conditional densities q1(· | c) and q1(· | c), we introduce the conditional
Hellinger distance:

H(q1, q2 | c) :=

(∫ (√
q1(o, c)−

√
q2(o, c)

)2

do

)1/2

.

For any marginal density h : C → R, and any two q1 and q2, we define the conditional Hellinger
distance integrated against h:

Hh(q1, q2) :=

(∫
H2(q1, q2 | c)h(c)dc

)1/2

.

We further define

Hn(q1, q2 | c) = H(q1 + qn, q2 + qn | c) and Hh,n(q1, q2) = Hh(q1 + qn, q2 + qn).

For a conditional density q(· | c), a positive number number p ≥ 1, let, for any f : O × C → R,

‖f(·, c)‖q(·|c),p :=

(∫
|f(c, o)|p q(o | c)do

)1/p

,

and ‖f(· | c)‖q(·|c),B :=

(∑
p≥2

‖f(·, c)‖pq(·|c),p
p!

)1/2

,

be the Lp norm, and the so-called Bernstein “norm” 1 with respect to q(· | c).

1It is not actually a norm, but this doesn’t matter for what follows.
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Checking the entropy condition. We have that∥∥∥˜̀n(q1)− ˜̀n(q2)(·, c)
∥∥∥2

q0(·|c),2

≤
∥∥∥˜̀n(q1)− ˜̀n(q2)(·, c)

∥∥∥2

q0(·|c),B

.H2
n(q1, q2 | c)

=

∫ (
q1 − q2√

q1 + qn +
√
q2 + qn

)2

(o | c)do

.
∫

(q1 − q2)2(o | c)do.

The inequality in the third line above is proven to hold under assumption 7.19 in section 3.4.1
of van der Vaart and Wellner [1996]. The last line follows assumption 7.18.

Let µO be the Lebesgue measure on O. Integrating the previous inequality against h̃i, and
recalling the definition of σ, we have that

(1 + 2ρ)−1/2σ
(˜̀

n(q1)− ˜̀n(q2)
)

:= sup
i≥1

∥∥∥˜̀n(q1)− ˜̀n(q2)
∥∥∥
q0,h̃i,2

. sup
i≥1
‖q1 − q2‖µO,h̃i,2

.‖q1 − q2‖µ,2,

where the last inequality follows from assumption 7.20. Therefore, denoting ˜̀n(Q) := {˜̀n(q) :
q ∈ Q}, we have that

logN[ ](ε, ˜̀n(Q), σ) . logN[ ](ε,Q, L2(µ))

.ε−1 log(1/ε))2(d−1),

where the last inequality is the claim of proposition 7.1.

Checking the variance bound condition. The first claim of theorem 3.4.4 in van der Vaart and
Wellner [1996] asserts that

H2(q, qn | c) .
∫ (˜̀

n(q)− ˜̀n(qn)
)

(c, o)q0(o | c)do.

In section 3.4.1 of van der Vaart and Wellner [1996], the authors also show the following claim,
which we transpose to our notation:∥∥∥(˜̀n(q)− ˜̀n(qn)

)
(c, ·)

∥∥∥
q0(·|c),B

. H2(q, qn | c).

Therefore, putting the previous two inequalities together, integrating w.r.t. ¯̃
hn and recalling the

definition of R̃0,n, we have that∥∥∥˜̀n(q)− ˜̀n(qn)
∥∥∥
q0,

¯̃
hn,2

. R̃0,n(q)− R̃0,n(qn).
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Using assumption 7.21 then yields that

σ2(q, qn) . R̃0,n(q)− R̃0,n(qn),

which is the wished variance bound condition.

Checking assumption 7.27. Lemma 7.4 gives us that assumption 7.27 holds for α = 1/(d+ 1).

Upper bounding the rate of convergence. We calculate rn defined in theorem 7.13. Observing
that, from lemma 7.1, it holds for any ν > 0 that logN[ ](ε,Q, σ) . ε−(1+ν), we have

φn(r) =
r

1
d+1

√
n

+ log n
r

1−ν
2

√
n

+
(log n)2

n
r

1
d+1
−1−ν .

For d ≥ 2, ν small enough, and n large enough, it is straightforward to observe

n−
2

4−2α & φn(n−
1

4−2α ),

which, from lemma 7.7 implies that rn . n−
1

4−2α . We have thus checked the assumptions of
theorem 7.13 and shown that rn is upper bounded by the wished rate, which implies the claim.

7.F Proof of the type-I error guarantee for the adaptive stop-
ping rule (theorem 7.10)

Proof of theorem 7.10. Under H0, we have that Ψ(P T,N
0 ) = 0. That the procedure rejects is there-

fore equivalent to the following event:∃T ∈ [t0Tmax, Tmax],

√
T

Tmax

√
TN

(
Ψ̂T,N −Ψ(P T,N

0 )
)

σ0,∞,N
∈ [±aα(T/Tmax)]


=

∃T ∈ [t0Tmax, Tmax],
T

Tmax

√
TmaxN

(
Ψ̂T,N −Ψ(P T,N

0 )
)

σ0,∞,N
∈ [±aα(T/Tmax)]


=

 sup
t∈[t0,1]

t
√
TmaxN

∣∣∣Ψ̂tTmax,N −Ψ(P tTmax,N
0 )

∣∣∣
σ0,∞,Naα(t)

≤ 1


Let φ be the function defined on the set D([0, 1]) of real-valued cadlag functions on [0, 1] by

φ : f 7→ sup
t∈[t0,1]

|f(t)|
aα(t)

.
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For ([±aα(t) : t ∈ [0, 1]) to be an (1 − α) joint confidence band for (W (t) : t ∈ [0, 1]), each
[±aα(t)] must containW (t) with probability at least 1−α, and therefore, for every t ≥ t0, we must
have aα(t) ≥

√
t0q1−α/2, where q1−α/2 is the 1− α/2 quantile of the standard normal. Therefore,

the denominator in the definition of φ remains uniformly in t bounded away from 0, thus ensuring
that φ is continous w.r.t ‖ · ‖∞, and bounded.

Therefore, from the fact that,{
t
√
TmaxN

(
Ψ̂N,T −Ψ(P T,N

0 )
)

: t ∈ [t0, 1]
}

d−→ W,

by definition of weak convergence, and continuity and boundedness of φ as a mapping (D([0, 1]),
‖·‖∞)→ (R, | · |), we have that

lim
Tmax→∞

P0

 sup
t∈[t0,1]

t
√
TmaxN

∣∣∣Ψ̂tTmax,N −Ψ(P tTmax,N
0 )

∣∣∣
σ0,∞,Naα(t)

≤ 1


=P0

[
sup
t∈[t0,1]

|W (t)|
aα(t)

≤ 1

]
≥1− α,

where the latter inequality follows by definition of aα(t)
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Chapter 8

Sufficient and insufficient conditions for the
stochastic convergence of Cesaro means
AURÉLIEN BIBAUT, ALEXANDER LUEDTKE, MARK VAN DER LAAN
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Cesaro means and sequential causal inference. Cesaro means often arise in estimators of sta-
tistical parameters in sequential decision problems. Suppose for instance that we are in the stochas-
tic contextual bandit setting, as presented in subsection 1.2.1, and that we have collected a sequence
of triples context-action-rewards (O(t))t∈[n] = (X(t), A(t), Y (t))t∈[T ], where action A(t) is drawn
from policy gt. Suppose we care about estimating and making inference for the value of a counter-
factual policy g∗. One valid estimator for this task if the stabilized one-step estimator of Luedtke
and van der Laan [2016]:

Ψ̂T :=

(
1

T

T∑
t=1

σ̂t
−1

)−1

1

T

T∑
t=1

σ̂t
−1Dt(O(t)),

where

Dt(o) =
g∗(a | x)

gt(a | x)
(y − ̂̄Qt−1(a, x)) +

K∑
a′=1

g∗(a′ | x) ̂̄Qt−1(a′, x),

with ̂̄Qt−1 an O(1), . . . , O(t−1)-measurable estimator of the outcome regression function Q̄(a, x)

:= E[Y (1) | A(1) = a,X(1) = x], and σ̂t an ̂̄Qt−1 an O(1), . . . , O(t− 1) of

σt :=
√

Var(Dt(O(t) | O(1), . . . , O(t− 1))).

A condition in the analysis of Ψ̂T is the convergence of the Cesaro mean of estimators T−1
∑T

t=1

σ̂−1
t .

Cesaro means also appear in other estimation problems where estimators are computed in an
online fashion, as we illustrate in section 8.2 further down.

Our contribution. We study the stochastic convergence of the Cesàro mean of a sequence of
random variables. We show that establishing a rate of convergence in probability for a sequence
is not sufficient in general to establish a rate in probability for its Cesàro mean. We also present
several sets of conditions on the sequence of random variables that are sufficient to guarantee a rate
of convergence for its Cesàro mean. We identify common settings in which these sets of conditions
hold.

8.1 Introduction
The following fact is well known [Cauchy, 1821, Cesàro, 1888] for deterministic real-valued se-
quences (xn)n≥1:

nβxn → 0 for some β ≥ 0 =⇒ nβx̄n := nβ
1

n

n∑
i=1

xn → 0. (8.1)

In this note, we investigate the extent to which this kind of result carries over to a sequence (Xn)n≥1

of random variables defined on a complete probability space (X ,A, P ). Specifically, we aim to
answer the following questions:
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Question 8.1. Is nβXn
p→ 0 sufficient to ensure that nβX̄n := nβ 1

n

∑n
i=1Xi

p→ 0?

Question 8.2. Do reasonable conditions on (Xn)n≥1 imply the convergence of nβX̄n in probabil-
ity? almost surely? in mean?

Question 8.3. Does knowing that nβXn satisfies an exponential tail bound imply a similar bound
for nβX̄n?

Generalizing the deterministic result (8.1) to the stochastic case is important in many statistical
problems that have an online or sequential component [e.g., Luedtke and van der Laan, 2016].
In these settings, Xn is often a function of an estimator computed on data available at time n.
For example, Xn may be equal to θ̂n − θ0, where θ0 is a scalar statistical parameter and θ̂n is
an estimator of θ0 based on the first n observations. Alternatively, Xn may be an excess risk
R(θ̂n)− infθ∈ΘR(θ), where R a risk function and Θ is an indexing set.

Guarantees for estimators are generally stated in terms of some form of stochastic convergence,
where the type of convergence established varies depending on the setting. For example, results
for empirical risk minimizers (also called minimum contrast estimators or M-estimators) have been
given in terms of rates in probability [e.g., van der Vaart and Wellner, 1996] and exponential tail
bounds on excess risks [e.g., Bartlett et al., 2005, 2006]. Convergence rates for kernel density and
kernel regression estimators are often given in probability [see e.g. Hansen, 2008], in mean squared
error [see e.g. Tsybakov, 2008], or almost surely [see e.g. Hansen, 2008].

Section 8.3 answers 8.1 in the negative via a counterexample. Section 8.4 answers 8.2 in the
affirmative for convergence in mean, and Section 8.5 similarly answers this question for almost
sure convergence. Since convergence in mean or convergence almost surely imply convergence
in probability, these sections also yield reasonable conditions for the convergence in probability
of nβX̄n. Section 8.6 answers 8.3 in the affirmative, and also evaluates the implications of this
finding for empirical risk minimizers.

Whenever we do not make it explicit in the notation, we use the convention that probabilistic
notions are with respect to the measure P . This convention is applied to expectations E, almost
sure convergence, convergence in mean, and Lr(P ) norms ‖ · ‖r. Here we recall that ‖f‖r :=
{
∫
|f(ω)|rdP (ω)}1/r when r ∈ (1,∞) and that ‖f‖∞ denotes the P -essential supremum. We call

the sequence (Xn) uniformly bounded if (‖Xn‖∞)n≥1 is a bounded sequence.

8.2 Motivating examples

8.2.1 Online estimator of the Bayes risk in binary classification.
Suppose (X1, Y1), . . . , (Xn, Yn) are n i.i.d. copies of a couple of random variables (X, Y ), with
X a vector of predictors and Y ∈ {−1, 1} a binary label. Denote η(x) := Pr(Y = 1 | X =
x), and let fη(x) := sign{2η(x) − 1} be the Bayes classifier. For any classifier f , consider
`(f)(x, y) := 1[y 6= sign{f(x)}] the 0-1 classification loss of f , and let R(f) := E{`(f)(X, Y )},
the corresponding classification risk. Say we want to estimate the Bayes risk R∗ := R(fη). Sup-
pose that (f̂i)i≥1 is an (Hi)i≥1-adapted sequence of estimators of the Bayes classifiers fη, where
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Hi := σ{(X1, Y1), . . . , (Xi, Yi)} is the filtration induced by the first i observations. Consider the
online estimator R̂n := n−1

∑n
i=1 `(f̂i−1)(Xi, Yi) of R∗. It can be checked that the following

decomposition holds:

R̂n −R∗ =
1

n

n∑
i=1

`(fi−1)(Xi, Yi)− E {`(fi−1)(Xi, Yi) | Hi−1}+
1

n

n∑
i=1

{R(f̂i−1)−R∗}.

The first average can be easily checked to beO(n−1/2) with high probability via Azuma-Hoeffding.
We would then like to show that the second average is o(n−1/2) in some stochastic sense. It
is known that, under some well-studied assumptions, the individual terms R(f̂i−1) − R∗ can be
shown to converge faster than i−1/2 [see, e.g., Audibert and Tsybakov, 2007]. We would like to be
able to prove the same for their average.

8.2.2 Online estimator of the mean outcome under missingness at random.
Consider (X, Y ) ∈ Rd × {0, 1} to be a random couple, with, for instance, X having the interpre-
tation of an individual’s demographics and Y representing a person’s vote intention. Suppose that
R is a third random variable, representing whether a person’s outcome is measured. We observe
i.i.d. copies Z1 := (X1, R1, R1Y1), . . . , Zn := (Xn, Rn, XnYn) of Z := (X,R,RY ).

The objective is to estimate Ψ(P ) := EP{EP (Y | R = 1, X)}, which under some assumptions
(missingness at random of the outcome measurement, and non-zero probability of the condition-
ing event), equals the mean outcome Y across the entire population. Let (Q̂i)i≥1, and (ĝi)i≥1 be
sequences of (Hi)i≥1-adapted estimators of the conditional missingness probability g : (r, x) 7→
PrP (R = r | X = x) and outcome regression function Q̄ : (r, x) 7→ EP (Y | R = r,X = x).
Then, denotingD(P )(x, r, y) := {g(r, x)}−1r{y−Q̄(y, x)}+Q(1, x)−Ψ(P ), the online estimator
Ψ̂n := n−1

∑n
i=1 Ψ(P̂i−1) +D(P̂i−1)(Zi) admits the following decomposition:

Ψ̂n −Ψ(P ) =
1

n

n∑
i=1

D(P̂i−1)(Zi)− EP{D(P̂i−1)(Zi) | Hi−1}+
1

n

n∑
i=1

Rem(P̂i−1, P ),

where Rem(P̂i−1, P ) := EP [{g(R,X)}−1{ĝi−1(R,X) − g(R,X)}{Q̂(R,X) − Q̄(R,X)}] is a
remainder term. If g is uniformly lower bounded over its domain by some δ > 0, then the Cauchy-
Schwarz inequality implies that Rem(P̂i−1, P ) ≤ δ−1‖ĝ− g‖2‖Q̂− Q̄‖2. Convergence guarantees
on Rem(P̂i−1, P ) can therefore be obtained from convergence guarantees on ĝ and Q̂. Analyzing
the online estimator Ψ̂n requires characterizing the stochastic convergence of the average of the
remainder terms.

8.3 An example where nβXn converges to zero in probability,
yet nβX̄n does not

The following counterexample shows that nβXn
p→ 0 does not generally even imply that

(nβX̄n)n≥1 is uniformly tight, even if the further condition is imposed that the random variables
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(Xn)n≥1 are uniformly bounded. Therefore, it is certainly not the case that nβXn
p→ 0 implies that

nβX̄n
p→ 0.

Proposition 8.1. For any β ∈ (0, 1) and b > 0, there exists a sequence of random variables
(Xn)n≥1 such that (1) nβX̄n = op(1) and (2) |Xn| ≤ b a.s. for all n, and such that (nβX̄n)n≥1 is
not uniformly tight.

Proof. Without loss of generality, suppose that b = 1. Fix β ∈ (0, 1) and α ∈ (0, β). For all
n ≥ 1, let pn,α := (2blog2 nc)−α. Consider a sequence of independent random variables (Xn)n≥1

such that, for all n ≥ 1, Xn ∼ Bernoulli(pn,α). The definition of (pn,α)n≥1 ensures that for
every k ≥ 1, X2k−1 , . . . , X2k−1 is a block of 2k−1 i.i.d. observations with marginal distribution
Bernoulli(p2k−1,α).

Observe that, for any M > 0, Pr(Xn ≥ Mn−β) = pn,α → 0, that is, Xn = op(n
−β) holds.

We will show that X̄n is not uniformly tight, which implies in particular that it is not true that
X̄n = Op(n

−β). In what follows, we will denote X̄n1:n2 := (n2 − n1 + 1)−1
∑n2

i=n1
Xi.

Fix M > 0 and k ≥ 1. For n = 2k, we have that

Pr
(
X̄n−1 ≥ n−βM

)
= Pr

 1

n

n−1∑
i=n/2

Xi ≥ n−βM

 = Pr
(
X̄n/2:n−1 ≥ 2n−βM

)
=Pr

[{
n

pn/2,α(1− pn/2,α)

}1/2 (
X̄n/2:n−1 − pn/2,α

)
≥
{

n

pn/2,α(1− pn/2,α)

}1/2 (
2n−βM − pn/2,α

)]
. (8.2)

We now use the Berry–Esseen theorem to lower bound the last line in the above display. We have
that, for every i ∈ {n/2, . . . , n− 1}, E(Xi) = pn/2,α, E{(Xi− pn/2,α)2} = pn/2,α(1− pn/2,α), and

E{|Xi − E(Xi)|3} = pn/2,α(1− pn/2,α)3 + (1− pn/2,α)p3
n/2,α

= pn/2,α(1− pn/2,α)
{

(1− pn/2,α)2 + p2
n/2,α

}
≤ pn/2,α(1− pn/2,α).

Hence, E{|Xi − E(Xi)|3}/var(Xi) ≤ 1 for every i = n/2, . . . , n − 1. Using the Berry–Esseen
bound, and letting Φ denote the cumulative distribution function of the standard normal distribu-
tion, we see that

Pr

[{
n

pn/2,α(1− pn/2,α)

}1/2 (
X̄n/2:n−1 − pn/2,α

)
≥
{

n

pn/2,α(1− pn/2,α)

}1/2 (
2n−βM − pn/2,α

)]

≥ 1− Φ

[{
n

pn/2,α(1− pn/2,α)

}1/2 (
2n−βM − pn/2,α

)]
− C√

n
, (8.3)
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where C is a universal positive constant. Noting that pn/2,α = (n/2)−α, we see that, for all n = 2k

large enough, pn/2,α ≤ 1/2, and so, for such n,{
n

pn/2,α(1− pn/2,α)

}1/2

(2Mn−β − pn/2,α) ≥ 2(1−α)/2n(1+α)/2(2Mn−β − [n/2]−α),

and the right-hand side diverges to −∞ as n → ∞ since 0 < α < β < 1. Hence, the right-hand
side of (8.3) converges to 1 as n→∞. Combining this with (8.2) and recalling that (8.2) assumed
that n = 2k shows that Pr(X̄2k−1 ≥ 2−kβM)→ 1, and so there exists an infinite subsequence (nk)
of the natural numbers such that Pr(X̄nk−1 ≥ n−βk M)→ 1. As M > 0 was arbitrary, nβX̄n is not
uniformly tight.

8.4 Convergence in mean
The following proposition shows that convergence in mean of nβXn implies convergence in mean
of nβX̄n.

Proposition 8.2. Suppose that E(|Xn|) = o(n−β). Then E(|X̄n|) = o(n−β).

Proof. From the triangle inequality, nβE(|X̄n|) ≤ nβ × n−1
∑n

i=1E(|Xi|). From (8.1) applied
to the deterministic sequence {E(|Xi|)}n≥1, we have that nβ × n−1

∑n
i=1E(|Xi|) → 0, which

establishes the claim.

The above proposition can be restated by recalling that, if Xn
p→ 0, then the convergence in

mean ofXn to zero is equivalent to the asymptotic uniform integrability of (Xn)n≥1 [Theorem 2.20
in Van der Vaart, 2000]. Therefore, the above proposition immediately yields the following corol-
lary.

Corollary 8.1. Suppose that nβXn
p→ 0 and also that (nβXn)n≥1 is asymptotically uniformly

integrable, in the sense that

lim
x→∞

lim sup
n→∞

nβE{|Xn|1(nβ|Xn| > x)} = 0. (8.4)

Then, E(|X̄n|) = o(n−β).

The above can be used to prove the following corollary.

Corollary 8.2. Fix r ∈ (1,∞] and let q denote the Hölder conjugate of r. Suppose that nβXn
p→ 0

in probability and that r is such that (‖Xn‖r)n≥1 is a bounded sequence. If

lim
x→∞

lim sup
n→∞

nβqPr(nβ|Xn| > x) = 0, (8.5)

then E(|X̄n|) = o(n−β).
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Proof. For any β ≥ 0 and n ≥ 1, Hölder’s inequality shows that nβE{|Xn|1(nβ|Xn| > x)} ≤
nβ‖Xn‖rPr(nβ|Xn| > x)1/q. Since (‖Xn‖r)n≥1 is bounded and z 7→ zq is continuous at zero,
(8.5) implies (8.4), and so the result follows by Corollary 8.1.

In the special case where β = 0 and r =∞ (and, therefore, q = 1), (8.5) automatically follows
from the condition that Xn

p→ 0. Put another way, if Xn
p→ 0 and (Xn)n≥1 is uniformly bounded,

then E(|X̄n|) = o(1).
Observe that, in the context of the counterexample from the proof of Proposition 8.1, Corol-

lary 8.1 (applied with r =∞) shows that for any β < α, X̄n = Op(n
−β).

8.5 Almost sure convergence
Proposition 8.3. If nβXn → 0 almost surely, then nβX̄n → 0 almost surely.

Proof. Let E be the event {nβXn → 0}. That nβXn → 0 almost surely means that Pr(E) = 1.
Suppose that E holds. Then, by (8.1) applied to the realization of the sequence (Xn)n≥1, we have
that nβX̄n → 0. Therefore, Pr(nβX̄n → 0) ≥ Pr(E) ≥ 1, hence the claim.

Example 8.1 (Uniform almost sure convergence of kernel estimators). Consider (X1, Y1), . . . ,
(Xn, Yn) a stationary sequence of observations with Xi ∈ Rd and Yi ∈ R. For all x, let m(x) :=
E(Y1 | X1 = x) and consider the Nadaraya-Watson estimator m̂n(x) :=

∑n
i=1 YiK{(Xi −

x)/hn}/
∑n

i=1K{(Xi − x)/hn}, where K : Rd → R is a symmetric multivariate kernel and hn is
the bandwidth, which converges to zero. Hansen [2008] gives conditions for uniform almost sure
convergence of m̂n − m. In particular, for a compact set C ⊂ Rd, and under the conditions of
[Theorem 9 in Hansen, 2008], it holds that supx∈C |m̂n(x)−m(x)| ≤ O((log n/n)2/(d+4)) almost
surely.

We now present two corollaries of Proposition 8.3 that provide sufficient conditions for nβXn

→ 0 almost surely, and therefore for nβX̄n → 0 almost surely. Like Corollary 8.2, the first imposes
a bound on the tail of nβXn.

Corollary 8.3. Suppose that, for any x > 0, there exists α(x) > 0 such that Pr(nβXn > x) =
O(n−1−α(x)). Then, nβX̄n → 0 almost surely.

Proof. For x > 0 and n ≥ 1, define the event E(n, x) := {nβXn > x}. Because Pr{E(n, x)} =
O(n−1−α(x)), there exists a constant C < ∞ such that

∑∞
n=1 Pr{E(n, x)} = C

∑∞
n=1 n

−1−α(x) <
∞. Hence, by the Borel-Cantelli lemma, Pr{lim supn E(n, x)} = 0. As x > 0 was arbitrary,
Pr{∩∞k=1 lim supn E(n, 1/k)} = 0, which implies that nβXn → 0 almost surely. The result follows
by Proposition 8.3.

The second corollary works in the setting where (Xn)n≥1 is an adapted process. The corollary
imposes a condition that is considerably weaker than the requirement that nβ|Xn| almost surely
converge to zero, but, in the case where β > 0, is stronger than the condition that |Xn| is a
supermartingale. In the case where β = 0, the imposed condition is equivalent to requiring that
|Xn| is a supermartingale.
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Corollary 8.4. Suppose that (Xn)n≥1 is a sequence of random variables that is adapted to the
filtration (Hn)∞n=1, that nβXn

p→ 0, and that

(1 + 1/n)βE(|Xn+1| | Hn) ≤ |Xn| for all n ≥ 1. (8.6)

Under these conditions, nβX̄n → 0 almost surely.

Proof. Let Yn := nβ|Xn|. Eq. 8.6 imposes that (Yn)∞n=1 is a supermartingale adapted to the filtra-
tion (Hn)∞n=1. Since |Xn| is nonnegative, E[Y −n ] = 0 < ∞. Hence, by Doob’s martingale con-
vergence theorem, Yn converges almost surely to a random variable Y∞. Moreover, since Yn

p→ 0,
it must be the case that Y∞ = 0. Hence, Yn → 0 almost surely. Proposition 2 then gives the
result.

Since 1 + 1/n ≤ exp(1/n) for all n, the above corollary remains true if (8.6) is replaced by the
condition that exp(β/n)E(|Xn+1| | Hn) ≤ |Xn| for all n.

8.6 Exponential deviation bounds
The following result shows that if Xn satisfies an exponential deviation bound, then X̄n also satis-
fies such a bound.

Proposition 8.4. Suppose that (Xn)n≥1 is a sequence of random variables, for which there exists
C0 ≥ 0, C1, C2 > 0, β ∈ (0, 1), and γ ∈ (0, 1/β), such that, for any x > 0 and any n ≥ 1,

pr
(
Xn ≥ C0n

−β + x
)
≤ C1 exp(−C2nx

γ).

Let δ ∈ (β,min(γ−1, 1)). Then, there exists a constant C4 > 0 depending only on the constants of
the problem (C0, C1, C2, β, γ, and δ), such that, for any y ≥ 1, it holds that

pr

(
X̄n ≥

C0

1− β
n−β +

3

1− δ
n−δy

)
≤ C4n

α exp
{
−C2n

α(1−γδ)yγ
}
,

with α := γ(1− δ)/{γ(1− δ) + (1− γδ)}.

We defer the proof of the above result to the end of the current section.
Empirical risk mininizers are a common type of estimators for which the excess risk satisfies

an exponential tail bound, as the following example shows. This example is a weakened version
of Theorem 17 in Bartlett et al. [2006].

Example 8.2. Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. copies of a a couple of random
variables (X, Y ) taking values in X × Y . Consider a class of functions F defined as F :=
Babsconv(G), for some constant B > 0, and function class G ⊆ {±1}X , where absconv de-
notes the absolute convex hull (or symmetric convex hull). Let ` be a loss on F , that is, a
mapping defined on F , such that for all f ∈ F , `(f) is a mapping X × Y → R. For any
f , let R(f) := E{`(f)(X, Y )}. Let f̂ be an empirical risk minimizer over F , that is, f ∈
arg minf∈F

∑n
i=1 `(f)(Xi, Yi). Let f ∗ ∈ arg minf∈F R(f), a minimizer of the population risk

over F . Suppose that the following conditions are met.



269

Condition 8.1. There exists L > 0 such that, for any x, y ∈ X × Y , and any f1, f2 ∈ F ,
|`(f1)(x, y)− `(f2)(x, y)| ≤ |f1(x)− f2(x)|.

Condition 8.2. There exists c > 0 such that, for any f ∈ F , E[{`(f)(X, Y )− `(f ∗)(X, Y )}2] ≤
c{R(f)−R(f ∗)}.

Condition 8.3. It holds that dV C(F) ≤ d, for some d ≥ 1, where dV C is the Vapnik-Chervonenkis
dimension.

Then, it holds that, for any x > 0,

Pr
{
R(f̂)−R(f ∗) ≥ C0n

−(d+2)/(2d+2) + x
}
≤ exp(−C1nx),

for some C0, C1 > 0 depending on the B, L, and c.

Remark 8.1. Observe that the bound from Example 8.2 above is of the form Pr(Xn ≥ C0n
−β +

x) ≤ C1 exp(−C2nx
γ) with βγ < 1.

The proof of proposition 4 relies on the following lemma.

Lemma 8.1. Suppose that (Xn)n≥1 is a sequence of random variables, for which there exists
C0 ≥ 0, C1, C2 > 0, β ∈ (0, 1), and γ ∈ (0, 1/β), such that, for any x > 0 and any n ≥ 1,

pr
(
Xn ≥ C0n

−β + x
)
≤ C1 exp(−C2nx

γ).

Consider δ ∈ (0,min(γ−1, 1)). There exists a constant C ′1 that depends only on the constants of
the problem (C0, C1, C2, β, γ, δ) such that, for any integer m ≥ 1, and any real number y ≥ 1,

Pr
(
∃k ≥ m+ 1 : Xk ≥ C0k

−β + k−δy
)
≤ C ′1m exp

(
−C2m

1−γδyγ
)
.

Proof. Let y ≥ 1. We have that

Pr
(
∃k ≥ m+ 1 : Xk ≥ C0k

−β + k−δy
)
≤C1

∑
k≥m+1

exp
(
−C2k

1−γδyγ
)

≤C1

∫ ∞
m

exp
(
−C2k

1−γδyγ
)
dk

Making the change of variable u = k1−γδyδ, we obtain

Pr
(
∃k ≥ m+ 1 : Xk ≥ C0k

−β + k−δy
)
≤C1y

−γ/(1−γδ)
∫ ∞
m1−γδyγ

exp(−C2u)u1/(1−γδ)−1du

≤C1y
−γκ
∫ ∞
m1−γδyγ

exp(−C2u)udκ−1edu,

where we denote κ := 1/(1− γδ). Observe that κ > 1.
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We now prove a general identity for the type of integral that appears in the last line of the
above display. Denote, for any integer q ≥ 1, and real numbers a ≥ 1, and c > 0, Iq(a, c) :=∫∞
a

exp(−cu)uqdu. By integration by parts, we have that

Iq(a, c) = exp(−ca)
aq

c
+
q

c
Iq−1(a, c).

Reasoning by induction, we obtain that

Iq(a, c) = exp(−ca)

(
aq

c
+
qaq−1

c2
+ . . .

q!

cq+1

)
≤q × q! max{c−1, c−(q+1)}aq exp(−ca),

where we have used in the last line that a ≥ 1.
Therefore, denoting C3 := C3(C2, κ) := dκ− 1e × dκ− 1e! max{c−1, c−(q+1)}, we have that

Pr
(
∃k ≥ m+ 1 : Xk ≥ C0k

−β + k−δy
)
≤C1C3y

−γκm(1−γκ)dκ−1eyγdκ−1e exp
(
−C2m

1−γδyγ
)

≤C1C3m exp
(
−C2m

1−γδyδ
)
,

where we have used in the last line that m ≥ 1 and y ≥ 1.

We now prove proposition 8.4.

of proposition 8.4. Let y1 ≥ 1 and y ≥ 1, and let 1 ≤ m < n. From lemma 8.1, we have that, with
probability at least 1− C1C3 exp(−C2y

γ
1 ),

1

n

m∑
k=2

Xk − C0k
−β ≤ 1

1− δ
m1−δ

n
y1, (8.7)

and, with probability at least 1− C1C3 exp(−C2m
1−γδyγ),

1

n

n∑
k=m+1

Xk − C0k
−β ≤ 1

1− δ
n−δy. (8.8)

Set y1 = m(1−γδ)/γy and m = nα, with α := γ(1 − δ)/{γ(1 − δ) + (1 − γδ)}. Observe
that these choices are consistent with the conditions y1 ≥ 1 and 1 ≤ m ≤ n. We then have that
yγ1 = m1−γδyγ and m1−δ/ny1 = n−δy, which renders equal the right-hand sides in (8.7) and (8.8)
and the corresponding exponential probability bounds. From a union bound, we then have that,
with probability at least 1− C1C2(nα + 1) exp{−C2n

α(1−γδ)yγ},

1

n

n∑
k=2

Xk − C0k
−β ≤ 2

1− δ
n−δy.
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We now turn to the first term of X̄n. We have that

P

(
1

n
(X1 − C0) ≥ 1

1− δ
n−δy

)
≤ C1 exp

(
−C2(1− δ)−γn1+γ(1−δ)yγ

)
.

Observe that 1 + γ(1 − δ) > α(1 − γδ). Therefore, there exists C ′1 that depends only on the
constants of the problem (C0, C1, C2, β, γ, δ), such that, for any y ≥ 1,

P

(
1

n
(X1 − C0) ≥ 1

1− δ
n−δy

)
≤ C ′1 exp(−C2n

α(1−γδ)yγ).

Therefore, gathering the previous bounds via a union bound yields that there exists a constant C4

that depends only on the constants of the problem such that, for any y ≥ 1, with probability at least
1− C4n

α exp{−C2n
α(1−γδ)yγ}, X̄n ≤ C0/(1− β)n−β + 3/(1− δ)n−δy.

8.7 Conclusion
In this chapter we studied conditions under which the Cesaro means of random variables converge
stochastically. We have shown in particular that almost sure convergence, L1 convergence, and
high probability convergence yield the same rate of convergence for the Cesaro means. We also
gave a counterexample of a situation where convergence in probability at a certain rate does not
imply convergence in probability for the same rate of the Cesaro means.

As we pointed out in the introduction, we were motivated to work on the question of stochastic
convergence of Cesaro means are these arise in particular in the study of semiparametric estimators
built from a sequence of nuisance estimators. Fortunately, there exists high probability, almost sure,
or in L1 norm convergence guarantees for a wide range of nonparametric estimators we might want
to use for nuisance estimation, as we discussed in our examples.
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