
UC San Diego
UC San Diego Previously Published Works

Title

CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns 
Using Data From Hip-Worn Accelerometers in Adults Aged 35.

Permalink

https://escholarship.org/uc/item/9gq2n8xb

Journal

Journal for the Measurement of Physical Behaviour, 5(4)

Authors

Bellettiere, John
Nakandala, Supun
Tuz-Zahra, Fatima
et al.

Publication Date

2022-12-01

DOI

10.1123/jmpb.2021-0062
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gq2n8xb
https://escholarship.org/uc/item/9gq2n8xb#author
https://escholarship.org
http://www.cdlib.org/


CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting 
and Measure Sitting Patterns Using Data From Hip-Worn 
Accelerometers in Adults Aged 35+

John Bellettiere1, Supun Nakandala2, Fatima Tuz-Zahra1, Elisabeth A.H. Winkler3, Paul 
R. Hibbing4, Genevieve N. Healy3, David W. Dunstan5,6, Neville Owen5,7, Mikael Anne 
Greenwood-Hickman8, Dori E. Rosenberg8, Jingjing Zou1, Jordan A. Carlson4,9, Chongzhi 
Di10, Lindsay W. Dillon1, Marta M. Jankowska11, Andrea Z. LaCroix1, Nicola D. Ridgers12, 
Rong Zablocki1, Arun Kumar2, Loki Natarajan1

1Herbert Wertheim School of Public Health and Human Longevity Science, University of 
California San Diego, La Jolla, CA, USA

2Department of Computer Science and Engineering, University of California San Diego, La Jolla, 
CA, USA

3School of Public Health, the University of Queensland, Brisbane, QLD, Australia

4Center for Children’s Healthy Lifestyles & Nutrition, Children’s Mercy Hospital, Kansas City, MO, 
USA

5Baker Heart and Diabetes Institute, Melbourne, VIC, Australia

6Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 
Australia

7Centre for Urban Transitions, Swinburne University of Technology, Melbourne, VIC, Australia

8Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA

9Department of Pediatrics, University of Missouri–Kansas City, Kansas City, MO, USA

10Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 
USA

11Qualcomm Institute/Calit2, University of California San Diego, La Jolla, CA, USA

12School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin 
University, Geelong, VIC, Australia

Abstract

Background: Hip-worn accelerometers are commonly used, but data processed using the 100 

counts per minute cut point do not accurately measure sitting patterns. We developed and validated 

a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a 

wide age range of older adults.
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Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as 

inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 

years from cohorts in two continents were used to train the model, which we call CHAP-Adult 

(Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted 

among 419 randomly selected adults not included in model training.

Results: Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary 

time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout 

duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), 

and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent 

errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% 

(9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent 

across age, gender, and body mass index groups with the largest deviations observed for those with 

body mass index ≥30 kg/m2.

Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a 

significant advancement in the ambulatory measurement of sitting and sitting patterns using 

hip-worn accelerometers. Pending external validation, it could be widely applied to data from 

around the world to extend understanding of the epidemiology and health consequences of sitting.

Keywords

sedentary behavior; activity classification; computational methods; neural networks; validation; 
machine learning

Time spent sitting increases risk of developing major chronic diseases and is associated 

with multiple adverse health outcomes (Dempsey et al., 2020; Katzmarzyk et al., 2019; 

Saunders et al., 2020). Sitting is most often operationalized as amount of time accumulated 

during a day or week. However, emerging epidemiologic and experimental evidence shows 

that the temporal pattern of accumulating sitting time in a comparatively prolonged versus 

more interrupted manner (henceforth referred to as sitting patterns; Tremblay et al., 2017) is 

also important to public health inquiry (Bellettiere et al., 2017; Diaz et al., 2016; Dunstan 

et al., 2012; Hartman et al., 2018; Healy et al., 2011; Owen et al., 2020; Saunders et 

al., 2018). The mounting evidence has led several national and international public health 

guideline development committees to call for more research on the topic, both to establish 

its importance in chronic disease etiology and subsequently to support development of 

quantitative public health recommendations (Dempsey et al., 2020; Katzmarzyk et al., 2019; 

Saunders et al., 2020).

Accurate, scalable measurement of sitting time and sitting patterns is critically needed to 

inform future iterations of public health guidelines. Most prospective cohorts (Wijndaele et 

al., 2015) have used hip-worn accelerometers and processed the data using the 100 counts 

per minute (cpm) cut point (Migueles et al., 2017). However, this method has low accuracy 

for measuring posture and postural transitions (Barreira et al., 2015) and consequently leads 

to low-quality measures of sitting patterns. The estimated percent error in measuring sitting 

patterns using the 100 cpm is evident across age groups, and ranges from 40% to over 

300% depending on the sedentary metric being used (Bellettiere et al., 2021; Carlson et 
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al., 2019). The degree of misclassification generated by this cut point classification leaves 

some uncertainty around quantitative recommendations for sitting patterns. A few large 

cohorts (Stamatakis et al., 2020) use devices worn on the thigh that are optimized and often 

programmed specifically to detect posture and can accurately measure both sitting time 

and sitting patterns when compared with direct observation (Lyden et al., 2012). However, 

data from these studies are limited, and the pool of available information regarding sitting 

patterns could be rapidly expanded by developing new data processing methods for hip-worn 

accelerometer data to generate measures of sitting patterns that converge with estimates 

from thigh-worn devices. The application of these new processing methods to both newly 

collected hipwornaccelerometer data and the large amount of archival data could produce 

accurate and homogenous norms and risk estimates related to sitting patterns and health, 

both of which are needed to generate quantitative public health recommendations.

Our research group has recently demonstrated that deep learning models can be used to 

improve the utility of hip-worn monitors (Greenwood-Hickman et al., 2021). Using a 

combined Convolutional Neural Network (CNN) + bidirectional long shortterm memory 

network (BiLSTM) model architecture in a sample of older adults, we developed a novel 

method for predicting sitting postures from hip-worn accelerometer data (e.g., ActiGraph) 

in older adults by training against concurrently thigh-worn activPAL inclinometers. This 

algorithm, which we named CHAP (CNN Hip Accelerometer Posture), substantially out-

performed previous, widely used data processing methods (e.g., 100 cpm cut point based 

method) in older adults (≥65 years), achieving 93% agreement in predicted minute-level 

posture (i.e., sitting vs. upright/nonsitting) and 83% sensitivity for detecting sit to stand 

postural transitions (Greenwood-Hickman et al., 2021). CHAP was trained for use in an 

older adult population, but norms and risk estimates for sitting patterns and how they relate 

to health are needed across the age spectrum. Especially since many existing cohort studies 

that collect accelerometer data include younger, middle-aged, and older adults. Therefore, 

accurate posture classification is needed across a broader age range. Ideally, a single postural 

detection algorithm could be used to make accurate predictions for all adults.

Building on CHAP to fashion a procedure suitable for adults of a broader age range, we 

created the CHAP-Adult algorithm bytraining a new and more generalizable CNN+BiLSTM 

model using data from adults across a broader age range (35–99 years). We leveraged data 

from participants of two cohort studies who concurrently wore ActiGraph and activPAL 

accelerometers for up to 7dayswhile going about their usual (i.e., free living) behavior 

patterns (N = 1,397). (Healy et al., 2015; Rosenberg et al., 2020) The objective of this study 

was to assess the validity and reliability of CHAP-Adult, which we did using a separate, 

randomly selected validation sample of 419 adults. We also assessed reliability and validity 

separately by subgroups of age, gender, and body mass index (BMI).

Methods

Participants

Data for this study come from two distinct studies among adults who concurrently wore 

an activPAL on their thigh and an ActiGraph GT3X+ on their hip: the Australian Diabetes, 

Obesity, and Lifestyle study (AusDiab) and the Adult Changes in Thought (ACT) study.
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The AusDiab is a population-based epidemiologic cohort that initially enrolled adults aged 

25 years and older throughout Australia. The original complex survey sampling methods 

were previously published (Dunstan et al., 2002). In brief, three data collection points 

(1999–2000, 2004–2005, and 2011–2012) were undertaken with each assessment including 

questionnaires and biomedical assessments conducted at a local testing site. Of the 11,247 

adults who completed the baseline assessment in 1999–2000, 4,562 (all ≥ 35 years) attended 

one of 46 testing centers across Australia in the 2011–2012 follow-up (Tanamas et al., 

2013). From this group, a subsample of 1,014 ambulatory community-living participants 

were invited to join an ancillary activity monitor study, described in detail elsewhere (Healy 

et al., 2015). Participants were asked to wear the activPAL3™ (thigh) and the ActiGraph 

GT3X+ (hip) for seven consecutive days, with the ActiGraph removed for sleeping and 

the activPAL worn continuously. Of those approached, 77% (n = 782) provided informed 

written consent and participated. Protocols for the study were approved by the Alfred Health 

Human Ethics Committee (project no. 39/11).

The ACT began in 1994 as an ongoing longitudinal cohort study investigating risk factors 

for the development of dementia and a wide range of cognitive and noncognitive factors 

of healthy aging. ACT recruited adults aged over 65 years randomly sampled from the 

King County membership of Group Health Cooperative of Puget Sound (now Kaiser 

Permanente Washington). As of 2005, ACT continually replaced participants who have 

died, were lost to follow-up, or who were diagnosed with dementia, in order to maintain a 

consistent enrollment of approximately 2,000 participants. Study participants attend biennial 

assessment visits. Beginning with biennial visits in April 2016, ACT participants were 

invited to participate in an activity monitor substudy (ACT-AM). Those who consented 

were invited to wear an ActiGraph GT3X+ accelerometer on the hip (ActiGraph LLC), an 

activPAL micro3 on the thigh (PAL Technologies), or, if willing, both continuously for seven 

consecutive days. Participants were excluded from ACT-AM if they were wheelchair bound, 

or receiving hospice or care for a critical illness, or resided in a nursing home, or, if memory 

problems became evident during testing. In total, 1,211 ACT participants provided written 

informed consent to participate in ACT-AM and wore at least one device. Details on the 

ACT-AM cohort were published elsewhere (Rosenberg et al., 2020) and protocols for the 

study were approved by the Kaiser Permanente Washington Institutional Review Board.

Data Processing

ActiGraph data originally collected at 30 Hz from both studies were obtained so that 

identical data processing methods could be applied. The 30-Hz data were subsequently 

converted to 1-min epochs using ActiLife software. ActiGraph nonwear was detected using 

the commonly used (Migueles et al., 2017) Choi algorithm applied to vector magnitude 

cpm using a 90-min window, 30-min stream-frame, and 2-min tolerance (Choi et al., 2011, 

2012). For each night of device wear, participants completed sleep logs and the resulting 

data were used to identify in-bedandout-of-bedtime. TheactivPAL data were processed using 

PALbatch (version 7.2.32; PAL Technologies, original VANE algorithm) with the default 10-

s minimum sitting/upright period and converted to event level files. The activPAL “sitting/

lying” events are referred to hereinafter as “sitting.” ActiGraph and activPAL data were then 
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plotted together with sleep log and nonwear data using heat maps (Greenwood-Hickman et 

al., 2021) that were then visually inspected by trained analysts.

Inclusion Criteria for This Training and Validation Study

Figure 1 shows a STROBE diagram detailing participant allocation into the training and 

validation subsamples. Analyses excluded any time either device was not worn or the person 

was in bed, and no exclusions were made based on minimum wear time. A total of 51 

(6.5%) participants from AusDiab and 231 (19.1%) from ACT did not have concurrently 

worn devices and were excluded from the analyses. Because ACT participants could choose 

to wear a single device, this exclusion rate is higher for ACT participants. Data were 

visually inspected for all AusDiab and ACT participants who wore both devices. In some 

cases, there was evidence that the devices gradually fell out of sync with each other in a 

phenomenon called time drift (Steel et al., 2019), possibly due to malfunction or different 

internal clocks (see the supplemental digital content in Greenwood-Hickman et al., 2021, for 

an example and description of drift). This occurred in 38 AusDiab participants and 271 ACT 

participants, with differential time drift rates possibly due to different internal clocks used in 

the activPAL3™ and the activPAL micro. To ensure that our prediction algorithm used the 

most accurate and optimal criterion data, we excluded samples with time drift for training 

and for validation.

Data from the resulting 688 AusDiab and 709 ACT participants were then randomly 

assigned within each cohort to the for-training data set (70%) or the for-validation data 

set (30%). To ensure model accuracy was not biased by overfitting that occurs when the 

model is trained and validated using the same data, the team who trained the CHAP-Adult 

algorithm used only the for-training data set and had no access to the for-validation data set.

Sitting Time, Prolonged Sitting Time, Breaks in Sitting, and Sitting Accumulation

Total sitting time was measured as the average number of minutes per day sitting. There 

is no agreed-upon metric for measuring sitting patterns, so we present validation results 

for postural transitions, prolonged sitting time, and three common pattern indicators based 

on the duration of sitting bouts. Time spent in ≥30-min bouts (herein termed prolonged 
sitting) was computed as the average minutes per day spent in bouts ≥30 min. The number of 

breaks in sitting (sometimes termed sit–stand transitions, or interruptions) is approximately 

equal to the number of sitting bouts and the number of nonsitting bouts. For convenience, 

in this study we have used the term “number of breaks” and report the average number of 

sitting bouts per day. Mean sitting bout duration was computed as the arithmetic mean of all 

sitting bout durations in minutes. Using procedures outlined by Chastin and Granat (2010) 

and Chastin et al. (2015), we calculated usual bout duration (in minutes) via nonlinear 

regression, and alpha (see Supplementary Methods [available online] for equations). Alpha 

is a unitless parameter that indicates how steep the distribution of bout duration is, which 

is assumed to be power–law (see Supplemental Figure 1 in Bellettiere et al., 2017). Unlike 

mean and usual bout duration, higher values of alpha indicate a more interrupted sitting 

pattern. All measures were based on strict bouts that contained only sitting and did not 

include modified bouts with a tolerance for upright behaviors.
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The CNN+BiLSTM Model and Training

Details of the machine learning architecture and training procedures have been previously 

published (Greenwood-Hickman et al., 2021; Nakandala et al., 2021). Briefly, the input 

data (raw triaxial 30-Hz ActiGraph data) and the ground truth data (activPAL event-level 

data classified as sitting or not sitting using majority rules for each epoch) during awake 

wear time were split into 10-s nonoverlapping windows. Features in the ActiGraph data that 

could differentiate sitting from not sitting were automatically learned using a CNN model. 

These features were then input into a BiLSTM to learn the features required to recognize 

temporal patterns that could further distinguish sitting from not sitting. This network was 

specifically designed to identify the timing of transitioning from sitting to not sitting. The 

CHAP-Adult algorithm was trained by first separating each person in the for-training data 

set into two randomly selected groups, a training group (n = 782) and a test group (n = 

196). The for-validation data set was not used during this process. During training, data 

from the training group were fed into the CNN+ BiLSTM model, classifying each 10-s 

window of ActiGraph data as sitting or not sitting. Next, these predicted classifications 

were compared with the true labels of the time-matched activPAL data and the learnable 

parameters of the CNN+BiLSTM model were updated to maximize the accuracy of the 

predicted classifications using neural network training methods. This process was repeated 

for several iterations until the model achieved a good classification accuracy. Model 

selection was then performed to find the best model configuration. Several models with 

different hyperparameter (i.e., nonlearnable model parameters) values were trained on the 

training group and the model that had the highest accuracy on the test set was chosen, 

and ultimately dubbed CHAP-Adult. Finally, CHAP-Adult was applied to the for-validation 

sample and then the processed data were used to compute the five sitting pattern metrics.

Statistical Methods

Participant characteristics were summarized for each cohort and for the for-training and 

for-validation groups and compared between groups with two-sample t tests (continuous 

variables) or chi-square tests (categorical variables). Validation statistics were calculated and 

reported only from the for-validation data set. To assess how well CHAP-Adult predicted 

each instance of sitting versus not sitting at the 10-s epoch, sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value were computed separately for each 

individual, then summarized using boxplots (Figure 2). To assess how well CHAP-Adult 

captured the timing of postural transitions, for each individual separately, we used the 

transition pairing method (Hibbing et al., 2020) to pair activPAL-labeled transitions and 

CHAP-Adult-labeled transitions, with a 1-min lag time tolerance. From these matches 

sensitivity (fraction of activPAL transitions matched to a CHAP-Adult transition) and PPV 

(fraction of CHAP-Adult transitions matched to an activPAL transition) were calculated 

and summarized using boxplots (Figure 2). Agreement between activPAL and CHAP-Adult 

measures was assessed for sitting time, prolonged sitting time, breaks in sitting, and 

sitting accumulation by computing mean error with 95% limits of agreement, percent error, 

absolute mean error, mean absolute percent error (MAPE), Pearson correlation coefficient, 

and the Lin’s (1989) concordance correlation coefficient. Agreement was assessed for 

overall and also reported within subgroups based on age (35–49, 50–64, and ≥65 years), 

sex (male and female), and BMI (<30 and ≥30 kg/m2).
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Results

Overall, ages ranged from 35 to 90+ years old in the combined ACT and AusDiab data set. 

Most participants were women (58.5% of ACT and 56.3% of AusDiab), and approximately 

23% had a BMI ≥30 kg/m2 (Table 1). There were notably more adults with high school 

education or less in AusDiab (29.6%) than in ACT (8.7%). There was no evidence of 

randomization failure or imbalanced data sets, with no meaningful differences on measured 

variables between the for-training and for-validation data sets.

When applied to the for-validation data set, the CHAP-Adult algorithm correctly classified 

as sitting an average (SD) of 95.3% (4.7%) of the activPAL sitting time (sensitivity), while 

the algorithm correctly classified 89.8% (8.1%) of activPAL not sitting (specificity). On 

average 93.5% (6.0%) of the predicted sitting instances and 92.2% (8.4%) of predicted 

nonsitting instances were correct (PPV and negative predictive value respectively). To 

accurately measure sitting patterns, it is critical to get the timing of postural transitions 

correct as well as the total number. An average of 74.4% (10.2%) of the activPAL transitions 

were detected within a 1-min window by CHAP-Adult (sensitivity) and 77.6% (12.4%) of 

the transitions that CHAP-Adult predicted were true postural transitions recorded on the 

activPAL within a 1-min window (PPV).

The estimates of sitting, prolonged sitting, breaks in sitting, and sitting patterns produced 

using CHAP-Adult correlated strongly with those derived from the activPAL, with Pearson’s 

correlations (r) ranging between .78 and .96. Correlations were lower for alpha (r = .78) 

and the number of breaks per day (r = .86) than for total sitting time (r = .96), time spent 

in prolonged (≥30 min) sitting bouts (r = .96), usual bout duration (r = .92), and mean 

bout duration (r = .92). Concordance correlation coefficients were nearly identical to the 

Pearson’s correlations.

There was good agreement in sitting time, prolonged sitting time, breaks in sitting, and 

sitting patterns (Table 2), with MAPE <5% for total sitting time and alpha, between 5% and 

10% for prolonged sitting time and usual bout duration, and only slightly higher than 10% 

for mean bout duration and postural transitions. Mean differences (activPAL − CHAP-Adult) 

were also modest, ranging from 0% to 5.4% of the activPAL value, and indicating on 

average a small amount of overestimation of total sitting time, mean bout duration, usual 

bout duration, and prolonged sitting time and underestimation of postural transitions.

Validation results in each population subgroup (Table 3 and Supplementary Table S1 

[available online]) resembled those for the overall for-validation sample with consistently 

high correlations and reasonably modest error that was similar though not identical in 

each subgroup. For example, BMI-stratified Pearson’s correlations were: total sitting time, 

r<30 kg/m2 = .96 and r≥30 kg/m2 = .95; breaks in sitting time, r<30 kg/m2 = .88 and r≥30 kg/m2 

= .79; and mean bout duration, r<30 kg/m2 = .95 and r≥30 kg/m2 = .88, with MAPEs ranging 

from 3.7% to 16.7% across the different sedentary pattern metrics. Importantly, across age 

categories, Pearson’s correlations were ≥.95 for total sitting time, ≥.82 for breaks in sitting 

time, and ≥.9 for mean bout duration, with MAPEs ranging from 3.5% to 13.9% for these 

sedentary pattern metrics across age categories. Error across age categories was larger for 
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usual bout duration MAPE35–49 = 5.8%, MAPE50–64 = 6.4%, and MAPE≥65 = 11.6% and 

for prolonged sitting MAPE35–49 = 7.3%, MAPE50–64 = 8.6%, and MAPE≥65 = 10.4%, 

although remaining relatively low with Pearson’s correlations ranging between .90 and .99.

Discussion

Our findings demonstrate the CHAP-Adult algorithm can provide accurate classification of 

sitting and sitting patterns for men and women over a wide range of adult ages, expanding 

on our previous successful work with the CNN and BiLSTM model architecture in older 

adults (Greenwood-Hickman et al., 2021). The algorithm performed well at distinguishing 

sitting from not sitting (mean balanced accuracy = 93% ± 5%) and detected 74% ± 10% 

of postural transitions. Consequently, the measures derived using this algorithm displayed 

good validity not only for total sitting time (MAPE = 4%) but also for breaks in sitting time 

(MAPE = 11.6%), prolonged sitting time (MAPE = 9.6%), and sitting accumulation patterns 

(MAPE = 1%–12%), which have historically been more difficult to capture accurately. 

Agreement metrics were consistent across age, gender, and BMI subgroups, with mean error 

approximately three times lower than when metrics are computed using the common 100 

cpm data processing method (discussed below). Overall, CHAP-Adult, a single algorithm 

that can be used to detect sitting behaviors across a wide range of adult age groups, 

represents a significant advancement in the ambulatory measurement of sitting and sitting 

patterns using hip-worn monitors. If validity in an external adult population can also be 

demonstrated, it would be suitable for extracting valid measures from the numerous historic 

studies that have collected raw triaxial hip-worn acceleration data (Wijndaele et al., 2015), 

and could extend our understanding of the epidemiology and health consequences of sitting.

Comparison With Extant Literature

Sedentary behavior, by definition, is waking time spent sitting or reclining with energy 

expenditure below 1.5 metabolic equivalents (Tremblay et al., 2017). While hip-worn 

ActiGraph devices cannot accurately distinguish posture, estimates of total time per day 

spent sedentary using the most common 100 cpm data processing method are typically 

close to the estimates of sitting time derived from direct observation or activPAL—with 

mean errors from several studies across a wide age range of adults ranging from 5% to 

20% (Aguilar-Farías et al., 2014; Bellettiere et al., 2021; Koster et al., 2016; Kuster et al., 

2020; Lyden et al., 2012). This mean error can be further reduced to 2%–3% by increasing 

the cut point used to classify time as sedentary to 200 cpm (Aguilar-Farías et al., 2014; 

Koster et al., 2016), or by implementing either the Kuster algorithm (4% error; Kuster et 

al., 2020), the original CHAP (0% error; Greenwood-Hickman et al., 2021), or CHAP-Adult 

(2% error).The similar error rates mean that many of these data processing methods would 

provide similar results, on average, for measuring total sitting time.

Measuring sitting patterns, on the other hand, has been notoriously challenging. Primary 

because it is predicated on the accurate identification of breaks between sitting or reclining 

and being upright, which happen rapidly and relatively infrequently in real life. Accordingly, 

hip-worn accelerometer data processed using the 100 cpm method have historically 

overestimated the frequency of sit–stand transitions (also known as breaks in sedentary 
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behavior) in younger (Barreira et al., 2015; Lyden et al., 2017), middle-aged (Kuster et 

al., 2020), and older (Bellettiere et al., 2021) adults with mean error ranging from 63% to 

99%. There are two primary sources of error using hip-worn accelerometers processed using 

the 100 cpm cut point: (a) long sitting bouts are artificially broken by seated movement 

such as fidgeting and wiggling; and (b) standing without ambulation gets misclassified as 

sitting, and then any subsequent stepping while already standing is incorrectly registered as 

a “sitting break.” Both sources of error stem from an inability to distinguish posture when 

relying solely on the accelerometer signal from vertical acceleration at the hip. To more 

accurately assess posture using data from hip-worn devices, Kuster et al. (2020) trained 

a random forest machine learning algorithm (using ground truth data from the activPAL) 

using 26 predefined signal features from hip-worn ActiGraph data as inputs (Kuster et al., 

2020). This algorithm reduced error in the number of sit– stand transitions to just 18%, 

thereby improving the accuracy of sitting pattern measurement. Notably, the deep learning 

characteristics of CNN, adopted by our CHAP models, automatically determine signal 

features, thus obviating the need to define a priori features. Furthermore, adding BiLSTM 

models to the CNN architecture leverages the concept that when predicting human behavior 

(i.e., here, transitions from one posture to the next), modeling the behavior that occurred 

directly before and after the behavior aligns the prediction process with theoretical models 

of behavior.(Hovell et al., 2009) This also effectively leverages the within-person correlated 

data to improve prediction accuracy. This advancement resulted in CHAP-Adult reducing 

error in the number of breaks to 4%. Importantly, the low error for estimating the number 

of breaks using CHAP-Adult was consistent across age, gender, and BMI, demonstrating 

consistent performance across subgroups of adults.

The Public Health Implications of CHAP-Adult

The U.S. Physical Activity Guideline Advisory Committee and the World Health 

Organization Sedentary Behavior Guideline Committee recognized heterogeneity across 

studies in the measurement of bout lengths and breaks in sedentary time as an “important 

area of future research” and a reason for the lack of evidence regarding how bouts 

and breaks in sedentary behavior are related to health outcomes (Dempsey et al., 2020; 

Katzmarzyk et al., 2019). CHAP-Adult was intentionally designed to fill these gaps in 

two ways: first by being trained and validated among community-living adults from two 

continents across a wide age range (35–99 years); and second by being designed for 

application to a very common accelerometer and wear protocol (hip-worn ActiGraph 

GT3X+) for free-living physical behavior measurement (Wijndaele et al., 2015). With 

CHAP-Adult, many large epidemiologic cohorts that use either hip-worn GT3X+ or thigh-

worn activPAL accelerometers can produce estimates of sitting patterns that are in high 

agreement. This broad applicability will enable consistent and accurate estimates that will 

help the field of sedentary behavior epidemiology generate norms for sitting patterns. It will 

also facilitate generation of estimates of the health risks associated with sitting patterns 

from various, heterogenous cohorts around the world—estimates that can more easily 

be harmonized for metaanalytic purposes since they would be generated using the same 

pretrained model (CHAP-Adult). Finally, it is our hope that this widespread availability of 

accurate data on sitting patterns will spur rigorous investigation of how sitting patterns and 

total sitting volume are jointly and independently associated with health. Ultimately, the 
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new data generated using CHAP-Adult can therefore help the field progress toward specific 

quantitative (time based) recommendations that include a threshold for limiting sitting time 

and recommendations regarding how sitting can be broken up throughout the day.

Strengths and Limitations

CHAP-Adult was trained using 30-Hz data from the triaxial ActiGraph GT3X+ as inputs 

and activPAL-classified postures as the ground truth, both set up strengths and limitations. 

Use of triaxial data preclude the application of this pretrained algorithm to data collected 

using uniaxial accelerometers, limiting applicability, although new deep learning algorithms 

could be developed for uniaxial accelerometer data streams, provided a large volume of 

raw acceleration data as well as data from a concurrent ground truth assessment were also 

available. We also are unsure how well CHAP-Adult will work with triaxial data collected 

using other devices that collect raw acceleration data (e.g., GENEActiv and Axivity), but we 

suspect it would perform well as long as a similar wear protocol was followed. CHAP-Adult 

was not designed for use with data from wrist-worn accelerometers; new algorithms are 

needed for wrist-based devices. While the activPAL is highly accurate for measuring sitting 

and sit–stand transitions compared with direct observation (Lyden et al., 2012), it is not 

without error. Thus, we have shown convergent and concurrent validity, but future work 

should also look at criterion validity. However, the error in using this ambulatory monitor 

must be viewed against the benefits of including a large and diverse sample from the United 

States and Australia, and measuring physical behavior during free-living environments for 

an average of 7 days. This greatly enhances the utility and therefore the potential impact 

of CHAP-Adult. Other limitations are that we could not assess specificity and negative 

predictive value for transitions because the class is highly imbalanced and the validation 

metrics would be artificially inflated. This algorithm was also developed using data on 

adults ≥35 years of age, and future similar studies among children and younger adults are 

warranted. Analyses did not consider clustering or stratification from the multiple cohorts or 

within cohorts (e.g., AusDiab stratified multistage sampling), however, since this validation 

is concerned with pairwise comparisons, the impact on the validation metrics is likely 

negligible.

Conclusions

The CHAP-Adult is a pretrained deep learning algorithm that leverages CNN and BiLSTM 

architecture to classify sitting and postural transitions in adults over a wide age range. 

Our validation results demonstrate that CHAP-Adult produces estimates of sitting time 

and sitting patterns that are highly convergent with the activ-PAL, and does so within 

subgroups based on age, gender, and BMI. Additional external validation is needed to 

increase confidence in these findings. Ultimately, we will measure the success of CHAP-

Adult by how often it is applied to data around the world. Application to data collected 

in many established and emerging national and international cohort studies will more 

strongly position the field of sedentary behavior epidemiology to establish scientifically 

sound population and subgroup sitting norms and determine how sitting and sitting patterns 

may be causally related to adverse health outcomes. Better identification of sitting patterns 

will also enable more accurate classification of the types of activities used to break up 
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sitting (Blankenship et al., 2021), which is an emerging area of public health inquiry. 

Ultimately, widespread use of CHAP-Adult could generate data that contribute to national 

and international quantitative (as distinct from current broadly qualitative) recommendations 

for sitting and sitting patterns.

Open-sourced code and detailed vignettes for implementing CHAP-Adult are available at the 

following website: https://adalabucsd.github.io/DeepPostures/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 —. 
STROBE diagram for data used to train and validate the CHAP-Adult algorithm. ACT = 

Adult Changes in Thought study; AusDiab = Australian Diabetes, Obesity, and Lifestyle 

study; CHAP = Convolutional Neural Network Hip Accelerometer Posture.
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Figure 2 —. 
Accuracy metrics for sitting (a) and postural transitions (b) for CHAP-Adult using the ACT 

and AusDiab combined for-validation sample (n = 419). ACT = Adult Changes in Thought 

study; AusDiab = Australian Diabetes, Obesity, and Lifestyle study; CHAP = Convolutional 

Neural Network Hip Accelerometer Posture.
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