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ABSTRACT OF THE DISSERTATION

Star Formation with Adaptive Mesh Refinement and

Magnetohydrodynamics

by

David C. Collins

Doctor of Philosophy in Physics

University of California San Diego, 2009

Professor Michael L. Norman, Chair

Professor Paolo Padoan, Co-Chair

In this thesis, we develop an adaptive mesh refinement (AMR) code includ-

ing magnetic fields, and use it to perform high resolution simulations of magnetized

molecular clouds. The purpose of these simulations is to study present day star

formation in the presence of turbulence and magnetic fields.

We first present MHDEnzo, the extension of the cosmology and astrophysics

code Enzo to include the effects magnetic fields. We use a higher order Godunov

Riemann solver for the computation of interface fluxes; constrained transport to

compute the electric field from those interface fluxes, which advances the induction

equation in a divergence free manner; divergence free reconstruction technique to

interpolate the magnetic fields to fine grids; operator splitting to include gravity

and cosmological expansion.

We present a series of test problems to demonstrate the quality of solution

achieved. Additionally, we present several other solvers that were developed along

the way.

Finally we present the results from several AMR simulations that study

isothermal turbulence in the presence of magnetic fields and self gravity. Ten

simulations with initial Mach number 8.9 were studied varying several parameters;

virial parameter α from 0.52 to 3.1; whether they were continuously stirred or

xiii



allowed to decay; and the number of refinement levels (4 or 6). Measurements of the

density probability density function (PDF) were made, showing both the expected

log normal distribution and an additional power law. Measurements of the line

of sight magnetic field vs. column density are done, giving excellent agreement

with recent observations. The line width vs. size relationship is measured and

compared with good agreement to observations, reproducing both turbulent and

collapse signatures

The core mass distribution is measured and agrees well with observations

of Serpens and Perseus core samples, but the power-law distribution in Ophiuchus

is not reproduced by our simulations.

Finally we attempt to make contact with recent theoretical predictions of

the star formation rate. Our measured rate is significantly higher than predicted,

indicating that our root grid resolution is likely too low. Nonetheless, the simu-

lations presented here are the first of their kind, and the general agreement with

observations indicates the promise of our approach. We conclude by outlining fu-

ture work which will explore numerical systematics more fully, and make detailed

contact with observations.

Draft 4, revision 1183, April 26, 2009
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Chapter 1

Introduction

1.1 Unsolved Problems in Star Formation

Stars are the most important objects in the night sky. They are the source

of almost all the light in the night sky, either directly or indirectly. They are

the source of all the elements heavier than Lithium, many of which are quite

important to life on earth. Much is know about the composition and evolution of

stars. However, parts of their birth process is still largely a mystery. See McKee &

Ostriker (2007) for a recent review. This is in part due to difficulty in observations,

as most of the process happens in highly obscured regions of cold, dense molecular

clouds; and in part due to the extremely complex nonlinear behavior of magnetized

turbulence which is now recognized as a primary component in the process (Padoan

& Nordlund, 2002; Mac Low & Klessen, 2004; McKee & Ostriker, 2007).

There are currently two important unsolved problems in star formation:

the rate of star formation and the distribution of masses of the stars. In this

work we will discuss the development of an Adaptive Mesh Refinement code that

incorporates magnetohydrodynamics, and then try to shed some light on these two

questions using it.

In the rest of this chapter, we will discuss observational and theoretical

background needed for the turbulent fragmentation model of star formation, the

paradigm explored in this work, and to put it in context of stars forming in the

galaxy. In chapter 2, we will discuss the implementation of MHD in Enzo. Chapter

1
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3 will discuss numerical development that happened along the way that, for various

reasons that will be discussed, were not suited to the numerical rigors of supersonic

turbulence. Finally in chapter 4 we will present results from some new simulations

that attempt to test the best models currently available with the highest resolu-

tion simulations of self gravitating MHD ever performed. These simulations are

the first to combine magnetic fields with adaptive mesh refinement to model the

conditions and length scales of real star forming regions. We compare the results of

supersonic isothermal turbulent simulations with theory and observations to begin

to further validate the paradigm of isothermal MHD turbulence as the primary

vehicle regulating star formation in present day galaxies.

Unfortunately, due to some numerical setbacks, this last section is still

somewhat of a work in progress– all the previously computed data was invalidated

by the discovery of a code bug at the beginning of February 2009, so all the data

presented here has been freshly simulated analyzed in the recent weeks. The data

we will present here is extremely promising, and presents tests of the theory never

before performed.

1.2 Observational Overview

1.2.1 Stellar Birth

The formation of stars has been broken into 4 distinct classes. Figure 1.1

shows a schematic of these 4 classes, plus the pre main sequence phase, and the

main sequence star. We will be focusing on the stages leading up to this process,

but it is useful to make the full connection to the stars in the night sky first. The

first four stages are as follows:

Class 0 Dark cloud. These are classified by dark, cold (10 K) condensations

roughly 104 AU in size (panel b in figure 1.1). It is the formation of these

objects that we will be concerned with in this work.

Class I Collapsing protostar and the onset of deuterium burning. These objects

now have an embedded protostar at the center, visible in the infrared, but
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Figure 1.1: A schematic figure showing the six stages of stellar birth.

without sensitive infrared measurements, they are difficult to distinguish from

Class 0 protostars. (panel c)

Class II Classical T-Tauri star. The star almost reached its final mass, and is

classified by strong X-ray emission, due to the strong stellar magnetic field.

There is now an identifiable circumstellar disk, and frequently a strong jet.

(panel d)

Class III Weak Lined T-Tauri star. The disk has now been almost entirely been

evaporated, launched through the jet, or been accreted onto the star. (panel

e)

Zero Age Main Sequence The star is born onto the main sequence, and has

decoupled from its birth environment.

We will be primarily concerned with the first two phases of this process:

the formation and initial contraction of the cores.
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1.2.2 Molecular Clouds

Molecular Clouds (MCs) and their larger friends Giant Molecular Clouds

(GMCs) are massive structures that are the birth places for all present day star

formation. They are large, ranging from 104 − 107M⊙, cold, in the 3− 15K range,

turbulent, and have number densities roughly 100cm−3. Figure 1.2 shows an image

of the Taurus molecular cloud mapped in 12CO from Goldsmith et al. (2008).

This figure shows two key features. First, the hierarchical structure of clumps

inside of other dense clumps suggestive of its turbulent nature; and second, the

elongated structures in the top left corner, which are most likely caused by freezing

of material along magnetic fields. This map of the Taurus cloud represents the key

features we wish to model. Padoan et al. (1999) performed a statistical comparison

between numerical simulations of ideal super-Alfvénic MHD turbulence and the

Perseus molecular cloud and found extremely good match on a number of statistical

measures, strongly indicating that super-Alfvénic MHD turbulence is the correct

underlying physics in these clouds. In this work I adopt this hypothesis and carry

out numerical simulations to test its predictions, including greatly improved spatial

resolution and self gravity.

1.2.3 Mass Distribution

The initial mass function (IMF) of stars was first measured by Salpeter

(1955) who fit the number of stars in the solar neighborhood as a function of mass

to a power law:

dN = 0.03(
M

M⊙

)−1.35d ln M. (1.1)

Highly detailed studies by Chabrier (2003), who fit multiple components of the

galaxy and found that the distribution fits a power law above 1M⊙, and a log nor-

mal below. Kroupa (2001) argue that the IMF is universal, indicating that a gen-

eral underlying physical mechanism is responsible for star formation everywhere.

The origin of the shape of the IMF is an important question in star formation.

Turbulence begins to explain this distribution quite naturally, as we will discuss

in sections 1.4.2 and 4.3.
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Figure 1.2: An image of the Taurus molecular cloud in 12CO, from Goldsmith et al.
(2008)

1.2.4 Velocity Statistics

Larson (1981) measured the velocity differences between a large number of

clouds, and found that the line width σ scaled with the object size ℓ as

σ ∝ (ℓ)0.5 (1.2)

which is consistent with supersonic turbulence (Passot et al., 1988), as will be

discussed in section 1.3

1.2.5 Star Formation Rate

As first pointed out by Zuckerman & Evans (1974), if all molecular clouds

were collapsing at the infall rates that were presumed from the super thermal

velocities observed in molecular clouds, the star formation rate in the galaxy would

be 30−300M⊙yr−1. However, the observed rate is only 4M⊙yr−1. This discrepancy

is a fundamental problem in the theory of star formation, and many explanations



6

have been suggested to explain it (Shu et al., 1987; McKee & Ostriker, 2007).

Mouschovias (1976) suggested that magnetic fields suspend the clouds, and the

super thermal velocities were caused by Alfvén waves propagating through the

cloud. This paradigm began to lose favor in the mid to late 1990s as works like

Padoan (1995), Vazquez-Semadeni (1994), and Ostriker et al. (2001) began to

demonstrate the strengths of the turbulent model. Krumholz & McKee (2005)

presented a new theory that could predict the star formation rate using turbulent

fragmentation, claiming another strong victory. This model will be discussed in

depth and compared to our numerical work in sections 1.4.3 and 4.9.

1.2.6 Observed Magnetic Fields

The only known method of directly measuring the strength of magnetic

fields in molecular clouds is through Zeeman splitting. Other methods, such as

starlight polarization or dust grain alignment, provide estimates of field strength

but not direct measurements. Zeeman splitting occurs when the magnetic field

in the gas splits a hyperfine state in the gas in the cloud. Due to the angular

momentum differences between the new split levels, the newly energy segregated

photons also have different circular polarizations. Taking the difference of the two

states gives (eventually) the strength of the magnetic field along the line of sight.

An excellent review of measurements of magnetic fields in the galaxy can be found

in Crutcher et al. (2003).

Troland & Crutcher (2008) and Falgarone et al. (2008) have recently pub-

lished Zeeman splitting measurements of clouds using OH and CN, respectively.

These results will be used for comparison in chapter 4

1.3 Turbulence

The most important advance in turbulence theory came in 1941 when Kol-

mogorov published his seminal theory on turbulence (Kolmogorov, 1941b,a); here-

after we will do as is done in the rest of the literature and refer to this as the K41

model. (These were recently translated in (Kolmogorov, 1991b,a)). His highly
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phenomenological theory had several quite restrictive assumptions; that the fluid

is spatially homogeneous, isotropic, inviscid, incompressible, and steady in time.

The turbulent systems relevant for star formation are none of those things, and

additionally they are magnetized. However, the results he found in 1941 are a

useful starting point when relaxing those assumptions. First we will discuss this

idealized picture.

1.3.1 Kolmogorov 1941 (K41)

The basic picture is one of a collection of eddies of various size scales. See

figure 1.3 for a cartoon. These eddies are classified in three spatial regimes. The

largest spatial scale is the driving scale. This is the source of the motions, and can

be due to the motion of a spoon in a coffee cup or large scale differential rotation of

the galaxy, to name a few. Eddies generated at this driving scale generate eddies

at smaller scales. The physics of this cascade depends on the physics involved:

in incompressible hydrodynamics, this happens through the stretching of vortex

tubes and the shearing apart of eddies. The motion to smaller scales is a lossless

process, and local in terms of the size of the eddy: eddies at scale ℓ generate eddies

at only slightly smaller scales ℓ − δ. Motion of energy continue down to smaller

and smaller scales through the second spatial regime, the inertial scale. This is

characterized by a power law slope in the energy

E(k) ∝ k−5/3. (1.3)

Derivation of this is fairly straight forward. Assume that on a given scale ℓ one

has velocity vℓ. This should be thought of as the velocity differences across the

structure ℓ, not the bulk motion of structures of that size. Energy transfer should

happen on a timescale comparable to the circulation time for that eddy,

tℓ = ℓ/vℓ.

Thus the energy transfer rate, which is assumed to be a constant of the fluid,

ǫ =v2
ℓ /tℓ (1.4)

=v3
ℓ /ℓ (1.5)
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Figure 1.3: Turbulence in the K41 model is viewed as a collection of eddies of
various sizes. Larger eddies transfer energy to smaller eddies.
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from which we have

vℓ =(ǫℓ)1/3, (1.6)

Eℓ =v2
ℓ (1.7)

=ǫ2/3ℓ2/3 (1.8)

where we have assumed ρ = 1, as is appropriate for incompressible fluids. Upon

Fourier transform of equation 1.8, we have

Ek = ǫ2/3k−5/3

The cascade ends where the dissipation length scale ℓD is reached at small wave-

lengths. This the length scale where the atomic forces work to dissipate the fluid

motions. This can be estimated as the length scale where the fluid dissipation rate

is on the order of the cascade transfer rate,

vℓD
η

ℓ2
D

≈
v2

ℓD

tℓD

(1.9)

η

ℓ2
D

≈vℓD

ℓD

(1.10)

≈(ǫℓD)1/3

ℓD

(1.11)

ℓD ≈
(

η3

ǫ

)1/4

(1.12)

where η is the kinematic viscosity. In numerical simulations, this scale is severely

unresolved. For galactic gas, this length scale is on the order of 50AU For the bulk

of the simulations in this work, the finest resolution element is 1000AU, and the

dissipation length scale is as much as 30 times that. Figure 1.4 shows a schematic

of these length scales, and also mentions both the direct cascade and the inverse

cascade. Only the direct cascade occurs in 3 dimensional fluid turbulence, but

MHD has one quantity that exhibits an inverse cascade, which will be discussed

next.

One significant shortcoming of this theory is that it assumes that energy

dissipation is uniform. However, numerical and laboratory simulations indicate

that turbulence is intermittent both spatially and temporally (Anselmet et al.,
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Figure 1.4: A schematic of the turbulent cascade, showing the turbulent generation
scale at low k, the inertial range at intermediate k, and the dissipation range at
high k. Taken from Müller (2009)

1984; Vincent & Meneguzzi, 1991; Müller & Biskamp, 2000). The most prominent

and successful model that treats dissipation only in the most singular structures is

the model of She & Leveque (1994). As we will not be exploring scalings outside

of a very basic usage, we will only mention this here.

1.3.2 MHD Turbulence

Now we will present some of the deviations from the above picture caused

by MHD effects. This work will not be testing the details of MHD turbulence,

only using the results from turbulent environments, so we present this only for

completeness of the overall picture of interstellar turbulence. MHD turbulence is

both less well constrained theoretically and less well verified experimentally, and

are still under much investigation.

The first major distinction with MHD is the fact that not all the quantities

in MHD perform a direct cascade. The total energy, E = 1/2
∫

V
(v2 + b2)dV , and

cross helicity HC = 1/2
∫

V
v · b dV , exhibits a direct cascade, but the magnetic

helicity HM = 1/2
∫

V
v · a dV where b = ∇ × a defines the vector potential a,
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exhibits an inverse cascade. Structures in HC transfer energy to larger scales. It is

believed that this inverse cascade may be responsible, in some part, for the large

scale magnetic fields observed in the galaxy.

MHD: Iroshnikov-Kraichnen

There are two major scaling arguments for MHD. The first is the Iroshnikov-

Kraichnen (IK) relation (Iroshnikov, 1964; Kraichnan, 1965). This model retains

the isotropy nature of the K41 model, which is a major source of criticism. IK

uses the Elsässer variables z± = v ± B, and considers the collision of counter-

propagating waves, z+ vs z−. It is important that the waves are counter propagat-

ing, since co-propagating waves will never interact. This is not necessarily true in

fluids with strong density gradients (McKee & Zweibel, 1995), but that is beyond

the scope of this model. IK then assumes that the background field B0 is larger

than the perturbations causing the waves δv, δB (which clearly conflicts with the

assumption of isotropy) and again examines the transfer timescales, as K41 does.

They arrive at the scalings for energy and dissipation length

EIK(k) ∝(ǫB0)
1/2k−3/2 (1.13)

ℓD,IK =

(

B0η
2

ǫ

)1/3

(1.14)

MHD: Goldreich-Sridhar

The other dominant MHD scaling model is due to Goldreich and Sridhar

(Goldreich & Sridhar, 1995; Sridhar & Goldreich, 1994), hereafter GS. Essentially

they assume that there is a balance between the Alfvén timescale for a propagation

of disturbance of size λ, τλ = λ/B0 and the eddy turnover time for a disturbance of

size ℓ perpendicular to B0, τℓ = ℓ/zℓ, where zℓ is the amplitude of the disturbance.

This yields two relations, one for the disturbances along B0, and one for transverse

scalings:

Ek⊥
∝ k

−5/3
⊥ (1.15)

Ek‖
∝ k−2

‖ . (1.16)
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1.3.3 Compressible Turbulence

The other major deviation from K41 at work in GMCs is the issue of com-

pressibility. The Mach > 10 shocks developed in GMCs change the nature of the

turbulence at least as much as the magnetic fields do. In a limiting case of infinitely

compressible gas, Gotoh & Kraichnan (1993) examined turbulence in the Burgers

equation, and found

EBurgers(k) ∝ k−2.

Burgers equation is simply the Navier-Stokes equations without the pressure term

or magnetic term. Thus a steeper spectrum than this would be quite surprising,

since without the thermal and magnetic pressure terms opposing the shock, they

can be essentially arbitrarily thin. And that is the most direct route to small

structure.

Kritsuk et al. (2007) performed direct numerical simulations of isothermal

Mach 6 shocks at extremely high resolution, and measured

E(k) ∝ k−1.95

which is much steeper than any of the other hydrodynamical models. They make

contact with K41 by treating not the velocity v but the mass weighted velocity

u = ρ1/3v. This can be seen as replacing the energy transfer rate in equation 1.4

with the one that’s proper to a compressible fluid, restoring the density:

ǫ =ρℓv
2
ℓ /tℓ (1.17)

which leads to

vℓ =(ǫℓ/ρℓ)
1/3 (1.18)

uℓ =(ǫℓ)1/3 (1.19)

The scaling of this new quantity does numerically show a scaling exponent of −5/3,

like K41.

1.3.4 The Decay of Turbulence

It has been shown by a number of works (Mac Low, 1999; Padoan & Nord-

lund, 1999; Ostriker et al., 2001) that supersonic turbulence decays in much less
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than a free fall time, regardless of the presence of magnetic fields. Mac Low (1999)

showed that the decay timescale τD = Ekinetic/Ėkinetic decays as

τD/tff ≃ 3.9
λTurb/λJ

M (1.20)

where λTurb is the length scale of the initial perturbation, λJ =
√

3π/32Gρ is

the Jeans Length, tff is the free fall time, and M is the RMS Mach number.

However, it has been shown that clouds are likely a few free fall times old (see Mac

Low & Klessen (2004) for a review), though that number is still under debate.

Gravitational and magnetorotational instabilities in the galactic disk, supernovae,

and stellar feedback have all been cited as plausible sources for this turbulence,

but no definitive answer has been found yet.

1.4 Consequences of Turbulence

There are several significant consequences that lead us to believe that this

is the dominant paradigm for star formation. With one mechanism star formation

can begin to explain cloud lifetimes, the mass distribution, and the star formation

rate.

1.4.1 Dual Role of Turbulence

Turbulence in molecular clouds does essentially two things: first, it prevents

the global collapse of gravitationally unstable clouds; and second, it provides the

density enhancements that actually do form regions that locally collapse. Klessen

et al. (2000) did a series of runs varying the length scale of the driving and the Mach

number in turbulent boxes both globally supported and globally unsupported. Un-

surprisingly, all the unsupported runs formed stars, but even the globally supported

simulations formed stars except for one case where the box was driven below the

Jeans length. In almost all cases collapse was slowed to much lower rates than

what one would expect from collapse alone. This is the central role of turbulence

in molecular clouds– permitting some slow collapse, but preventing the cloud as a

whole from collapsing entirely.
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Figure 1.5: The density PDF of an isothermal MHD simulation with a fit to a
lognormal

1.4.2 PDF

As will be discussed in section 4.3, the density probability distribution func-

tion (PDF) in isothermal turbulence produces a lognormal distribution. This dis-

tribution function can be used to begin to describe both the star formation rate

and the mass distribution of clumps that will eventually become stars. Figure 1.5

shows the density PDF from a snapshot from the initial conditions from one of the

runs presented in this work, with the fit to a lognormal demonstrating this dis-

tribution. We can see that the lognormal is a good fit to the density distribution

over several orders of magnitude.
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1.4.3 Star formation rate

Krumholz & McKee (2005), building on the work of Padoan (1995), use

the density PDF of isothermal turbulence to predict the rate at which the star

formation efficiency (the fraction of the cloud’s mass in stars) of a cloud increases

relative to its free fall time. They dub this “star formation rate per free fall time,”

SFRff , and define it as “the fraction of a cloud that can become stars in one free

fall time.” In essence, they define a length scale below which the velocity differences

across a region are too small to support the clump against its own collapse. This

in turn defines a density scale, and the gas above that density scale, according

to this model, will collapse to form stars in one free fall time. In section 4.9, we

discuss this model in greater detail, as well as how it compares to our simulations,

and discuss some potential problems with it.

1.4.4 IMF

Padoan & Nordlund (2002) use the density PDF to predict the mass distri-

bution of prestellar clumps in a cloud. They combine the shock jump conditions,

an assumption about structure scaling, and the density PDF to model structures

that are likely to collapse to form stars, and successfully reproduce key features

of the observed mass distribution. In section 4.8, we discuss this model in more

detail and compare it and observations to our simulations.

1.5 Numerics: AMR MHD

Star formation involves a huge dynamic range of length and mass scales.

As discussed in section 1.2.2, mean densities of the progenitor clouds have number

densities of 100cm−3, and length scales of 10 pc or more. The prestellar cores

we wish to study, on the other hand, have densities of 5 × 107cm−3 and length

scales of 1000AU. With an outer box of 10pc, one would need 104 zones on a

side to resolve 100AU, which would only resolve the objects by 10 zones; hardly

enough to say anything meaningful about them. This scale of simulation, if done
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at fixed resolution, may not be feasible in our lifetime. This is where Adaptive

Mesh Refinement comes in.

Adaptive Mesh Refinement (AMR) is a technique of increasing resolution

only where its needed. A simulation begins with a volume-filling regular mesh

of zones. As the error in the solution increases, by whatever metric one chooses

for “error”, rectangular patches of a higher spatial resolution are added to those

regions. Both the initial parent grid and new refined region are solved as if the

other weren’t there, and then the solutions are synchronized at the end of an

integration timestep. This is discussed at length in section 2.1.11. In this work,

we take the existing AMR framework implemented in the Enzo code and add

magnetic fields. This was a substantial undertaking, as the magnetic fields require

a different data stencil than the initial code structures used, so this required a

substantial amount of reworking; magnetic fields also have the constraint ∇ ·B =

0, which not only requires fine tuning of the algorithm, but also brings to light

other numerical glitches in the software. Additionally, we wrote or installed four

different MHD patch solvers in an attempt to find one that is both stable and

accurate enough to tackle the extremely rigorous numerical challenge of super-

Alfvénic MHD turbulence with gravity.



Chapter 2

Enzo MHD: Current Method

In this chapter, we describe the final version of the source code used in

EnzoMHD. The earlier solvers will be described in chapter 3

This chapter is almost identical to the paper submitted to the Astrophysical

Journal Supplement Series. Two major differences are in the test sections. We have

omitted the section on galaxy clusters, and inserted section 2.2.1 on turbulence

tests.

EnzoMHD is also a purpose code. In this chapter, we will discuss it as a

cosmological code, but all the same machinery applies in non-cosmological mode.

All algorithms used here reduce to the non-cosmological limit by setting a →
1, ȧ → 0, and ä → 0. This removes any frame dependent terms in the equations.

We will describe the numerical procedures in section 2.1, present test prob-

lems in section 2.2. In section 2.5 we present a simplified schematic to unify the

pieces of the solver, and in sections 2.4 and 2.3 we expand on some of the more

complex numerical procedures.

17
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2.1 Numerics

2.1.1 Cosmological MHD Equations

EnzoMHD solves the MHD equations in a comoving coordinate frame.

∂ρ

∂t
+

1

a
∇ · (ρv) = 0 (2.1)

∂ρv

∂t
+

1

a
∇ · (ρvv + p̄ − BB) = − ȧ

a
ρv − 1

a
ρ∇Φ (2.2)

∂E

∂t
+

1

a
∇ · [v(p̄ + E) − B(B · v)] = − ȧ

a
(ρv2 +

2

γ − 1
p +

B2

2
) − ρ

a
v · ∇Φ (2.3)

∂B

∂t
− 1

a
∇× (v × B) = − ȧ

2a
B (2.4)

with the equation of state

E =
1

2
ρv2 +

p

γ − 1
+

1

2
B2 (2.5)

p̄ = p +
1

2
B2 (2.6)

Here, ρ is the comoving density, p is the comoving gas pressure, v is the

proper peculiar velocity, B is the comoving magnetic field, E is the total peculiar

energy per unit comoving volume, p̄ is the total comoving pressure, γ is the ratio

of the specific heats, Φ is the proper peculiar gravitational potential from both

dark-matter and baryons, a = (1+zi)/(1+z) is the expansion factor and t is time.

In this formulation, the comoving quantities that are evolved by the solver

are related to the proper observable quantities by the following equations:

ρproper = ρ ∗ a(t)3 (2.7)

pproper = pcomoving ∗ a3 (2.8)

vproper = vcomoving − ȧx (2.9)

Φproper = Φ − 1

2
aä~x2 (2.10)

Bproper = Bcomovinga
−3

2 (2.11)

It should be noted that the relationship between Bproper and Bcomoving in

equation 2.11 is different than that stated in other cosmological MHD codes like Li
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et al. (2008). This is due to the additional expansion factor that we use in equation

2.4. The proper magnetic field decreases proportional to a−2 in all formulations

of the cosmological MHD equations, but in the formulation we use one half power

of a is included as a comoving source term and is due to the redshifting of the

photons that carry the magnetic field.

For non-cosmological simulations, the same equations hold, but with with

a = 1, ȧ = 0 and ä = 0. This effectively removed each appearance of a from the

left hand side, and eliminates the terms involving ȧ from the right. For ease of

reference, these are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.12)

∂ρv

∂t
+ ∇ · (ρvv + p̄ − BB) = −ρ∇Φ (2.13)

∂E

∂t
+ ∇ · [v(p̄ + E) − B(B · v)] = −v · ∇Φ (2.14)

∂B

∂t
−∇× (v × B) = 0 (2.15)

with the same equation of state, equations 2.5 and 2.6. Here, ρ is the

density, p is the gas pressure, v is the velocity, B is the magnetic field, E is the

total energy per unit volume, p̄ is the total gas pressure, γ is the ratio of the specific

heats, Φ is the gravitational potential. The mechanism to switch between the two

systems of equations will be described in section 2.1.6.

To solve these equations, we operator split eqns (2.1)-(2.4) into four parts:

the left hand side of equations (2.1)-(2.3), the left hand side of equation (2.4), the

gravitational acceleration (the two terms involving ∇Φ), and the expansion terms

(the two terms involving ȧ.) These will be discussed in sections 2.1.6 - 2.1.7. In

section 2.1.10, we will discuss the dual energy formulation in Enzo for hypersonic

flows, and in section 2.1.11 we will discuss the Adaptive Mesh Refinement algo-

rithm. We first discuss the data structures used to carry all this data in section

2.1.2

In the following, we will often have cause to separate the purely fluid dy-

namical quantities ρ,~v, E from the magnetic field ~B. Unless otherwise noted, ’fluid
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quantities’ will refer to the former only.

For ease of reference, we have supplied a schematic summary of the steps

involved in section 2.5.

2.1.2 Data Structure

In Enzo, both parallelism and AMR are done in block decomposed manner.

Each patch of space, called a grid, is treated as a unique computational problem

with Dirichlet boundary conditions which are stored in a number of Ghost Zones

(see section 2.1.5.) The number of ghost zones depends on the method used. The

pure-hydro methods in Enzo, ZEUS and PPM, use 3 ghost zones. The method we

describe here uses 5 ghost zones.

Grids are arranged in a strictly nested hierarchy, with each grid having a

cell width half that of its parent (pure hydro Enzo can take any integer refinement,

but the interpolation for MHD is restricted to factors of 2.) See figure 2.1. Each

processor keeps a copy of the entire hierarchy, while only one of the processors

actual stores the data.

For all physics modules described in this paper, an individual grid cares

not for where it sits in space or the hierarchy, and communicates with other grids

only through boundary condition fills (section 2.1.5) and the AMR cycle (section

2.1.11).

EnzoMHD in its default mode tracks 14 fields, stored at 3 different points

of the cell. The 5 hydrodynamic quantities, ρ,v, Etotal are stored at the center

of the cell, denoted (i, j, k), and represent the volume average of the respective

quantities. These are the same quantities stored in non-MHD Enzo.

EnzoMHD tracks 2 copies of the magnetic field and the electric field. One

copy of the magnetic field is stored in the face of the cell perpendicular to that

field component, and represents the area average of that field component over that

face. This is the primary representation of the magnetic field. So Bf,x is stored in

the center of the x face, denoted (i− 1
2
, j, k), Bf,y in the y face at (i, j − 1

2
, k), and

Bf,z in the z face at (i, j, k − 1
2
). It is this field that remains divergence free under
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the cell centered divergence operator:

∇ · Bf =
1

∆x
(Bf,x,i+ 1

2
,j,k − Bf,x,i− 1

2
,j,k)+

1

∆y
(Bf,y,i,j+ 1

2
,k − Bf,y,i,j− 1

2
,k)+ (2.16)

1

∆z
(Bf,z,i,j,k+ 1

2

− Bf,z,i,j,k− 1

2

)

The magnetic data structures are one element longer in each longitudinal direction,

so for an nx × ny × nz grid patch, the Bf,x structure is (nx + 1) × ny × nz.

The second representation of the magnetic field is centered with the fluid

quantities at the center of the cell. This field is used wherever a cell centered

magnetic quantity is needed, most notably in the hyperbolic solver in section 2.1.6.

It’s equal to the first order average of the face centered magnetic field:

Bn+1
c,x,i,j,k = 0.5 ∗ (Bf,x,i+ 1

2
,j,k + Bf,x,i− 1

2
,j,k)

Bn+1
c,y,i,j,k = 0.5 ∗ (Bf,y,i,j+ 1

2
,k + Bf,y,i,j− 1

2
,k) (2.17)

Bn+1
c,z,i,j,k = 0.5 ∗ (Bf,z,i,j,k+ 1

2

+ Bf,z,i,j,k− 1

2

)

The final data structure used in EnzoMHD is the Electric Field, which is

stored along the edges of the computational cell. This represents a linear average

of the electric field along that line element. Each component is centered along the

edge its parallel to, so Ex lies along the x edge of the cell at (i, j − 1
2
, k − 1

2
), etc.

It is longer than the fluid fields by one in each transverse direction, so Ex would

be nx × (ny + 1) × (nz + 1).

Each grid also stores one copy of each of the above mentioned fields for

use in assigning ghost zones to subgrids. This is described further in 2.1.5. A

temporary field for fluxes is also stored, which exists only while the hyperbolic

terms are being updated. This data structure is also stored on the faces of the

zone. There are three fluxes for all 7 MHD quantities.

For other configurations of EnzoMHD, more or fewer fields may be used. In

purely isothermal mode (which is at present an option only in EnzoMHD, not in

Enzo) the total energy field is not tracked, and the isothermal sound speed is taken

as a global scalar quantity. This reduces the number of fields tracked everywhere
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the total energy shows up. With dual energy formalism on (see section 2.1.10) an

additional field corresponding to either gas energy or entropy is stored, giving an

additional field where needed. Future work will include multi-species chemistry

and more complex cooling, which will include additional fields for each species.

2.1.3 Consistency

In several places throughout the flow of Enzo, there may be more than one

data structure using and writing to a given variable at a given point in space.

Ghost zones and face centered fields (fluxes and magnetic fields) are examples of

this. In EnzoMHD, it is imperative that all data at a given point is identical,

regardless of the data structure describing it. This may seem like an unnecessary

comment, but it isn’t; in pure hydro simulations, numerical viscosity will damp

out small perturbations caused by slight inconsistencies in data description. Thus

in practice, especially in large, stochastic simulations, errors can go unnoticed.

Often these discrepancies are negligible, other times not, especially when one is

concerned with the conservation of a particular variable, like ∇·B. By construction

EnzoMHD preserves ∇ · B to machine precision, but it never forces ∇ · B = 0;

so if it’s not zero at the beginning of a time step, it’s not going to be at the

end, either. It is also worth mentioning that inconsistencies in any quantity will

cause inconsistencies in the flow, which will in turn cause ∇ · B issues. Thus any

improper handling of any fluid quantity will cause errors in ∇ ·B that will persist

and usually grow to catastrophic proportions in a relatively short period of time.

There is a prominent redundancy in the magnetic field, namely the field on

the surface of the active zones of grids. See figure 2.2. Care is taken to include

enough ghost zones, and frequent enough ghost zone exchange between grids, that

after a time step, two neighboring grids have reached exactly the same answer on

the surface between the two grids completely independently.
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2.1.4 Time Stepping

Enzo uses hierarchical time stepping to determine it’s time step. The mini-

mum of 4 different criteria is taken for each level, which will be described in sections

2.1.4 - 2.1.4. Timesteps are taken in order of coarsest to finest, in a ’W’ cycle. See

figure 2.3. Given 3 levels, level 0 takes the first step of ∆t. Then level 1 takes a

single step of ∆t/2. Then level 2 takes one step of ∆t/4. Then, given that there

are only three levels, it takes another timestep so it is temporally in line with the

level above. The last three steps repeat: level 1 then takes its second and final

step of ∆t/2 so it is now at the same time as level 0, followed by two steps on level

2.

In principle, if a given level has a cell size ∆x and the next level of refinement

has cell size ∆x
r

, where r is the refinement factor, the more refined grid will have, in

principle, time step size ∆t
r

. In Enzo, the step size is chosen for each level and each

subgrid time step. In practice, owing to more finely resolved structures having

slightly higher fast shock speeds, fine grids may in fact take more than r time

steps for each parent grid step. In some rare cases, such as cosmological expansion

limiting, a finer grid may take less than r steps.

Time Stepping: Hydro

For the hydrodynamics, the harmonic mean of the 3 Courant conditions

is used. This was demonstrated to be the most robust time stepping criterion

possible for multi dimensional flows by Godunov et al. (1961).

∆thydro =
1

1/tx + 1/ty + 1/tz

tx =min(
∆x

cf,x

) (2.18)

ty =min(
∆y

cf,y

)

tz =min(
∆z

cf,z

)
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where the min is taken over the zones on a level, and cf,x, cf,y and cf,z are the fast

MHD shock speeds along each axis:

c2
f,x =

1

2

(

a2 +
B · B

ρ
+

√

(a2 +
B · B

ρ
)2 − 4a2B2

x/ρ

)

(2.19)

and similar definition for the other two.

Time Stepping: Gravitational Acceleration

The time step is also restricted to be less than the time it takes for the

gravitational acceleration alone to move a parcel of fluid half of one zone.

∆taccel = min(
1

2

√

∆x

ai

) (2.20)

where i = x, y, z and the min is taken of the zones on a level.

Time Stepping: Cosmological Expansion

An additional restriction comes from the cosmological expansion, requiring

the timestep to be less than the cosmological expansion timescale,

∆texpansion = η
a

ȧ
(2.21)

where η is typically 0.01.

Time Stepping: Particle Motion

The fourth timestep criterion is based on restricting particle displacement

in a single timestep to be smaller than a single zone:

∆tparticles = min(
a∆x

vi,p

) (2.22)

where min is over velocity component i and particle p.

2.1.5 Boundary Conditions and Ghost Zones

Ghost Zones are filled in one of three means.
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1. Copying. The dominant mechanism for filling ghost zones copying from ac-

tive zones that occupy the same physical space. This also takes into account

periodic boundary conditions. For EnzoMHD, face centered fields are copied

from the faces of all cells, including those that border on active cells. This

is somewhat redundant for reasons described in 2.1.3.

2. External Root grids that lie along the domain wall filled with the external

boundary routine. If the external boundary condition is not periodic, the

grids zones are filled by a predetermined algorithm; for instance, outflow

boundary conditions set ghost zones to be equal to the outermost active

zone, akin to a Neumann condition of zero slope. These involve outflow,

reflecting, and a completely general ’inflow’. Note that this is called only on

the root grid, and not on subgrids that happen to lie on the edge. This can

cause spurious waves at reflecting or outflow boundaries with AMR. Also

note for EnzoMHD, the only external boundary conditions that have been

tested are periodic and outflow.

3. Interpolation The third mechanism is used on refined grids whose ghost

zones do not occupy the active space of another grid; these grids have their

ghost zones filled by interpolation from the parent grid. Since Enzo uses

hierarchical time stepping, subgrid steps that begin in the middle of a parent

grid step fill their ghost zones from a linear interpolation of the parent grid

time steps at tn and tn+1.

2.1.6 Left Hand Side: Hyperbolic terms

With the exception of the 1/a term that appears in front of each ∇· opera-

tor, the left hand side of equations 2.1-2.4 are the familiar Ideal MHD equations.

A form of equations (2.1) - (2.4) more relevant for this treatment is the following:

∂V

∂t
+

∂F

∂x
= 0 (2.23)
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where
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ρ
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ρvy
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By
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(2.24)
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ρvx

ρv2
x + p + B2/2 − B2

x

ρvxvy − BxBy

ρvxvz − BxBz

Byvx − Bxvy = −Ez

Bzvx − Bxvz = Ey

(E + p + B2/2)vx − Bx(B · v)































(2.25)

p = (E − 1

2
ρv2 +

1

2
B2(γ − 1)) (2.26)

These form a hyperbolic system of equations, which have been studied extensively

in the literature. To take advantage of the work already done on this type of system

of equations for our cosmological algorithm, we first multiply the cell width dx by

the expansion factor a. This allows us to use any non-cosmological solver for

cosmological applications. Upon completion of the solver, dx is divided by a to

restore dx to the original comoving value.

Equation 2.23 is solved by first re-writing it in conservation form, that

is taking suitable integrals in time and space. The resulting update is, in one

dimension,

V̂ n+1
i,j,k = V̂ n

i,j,k −
∆t

∆x
(F̂

n+ 1

2

x,i+ 1

2
,j,k

− F̂
n+ 1

2

x,i− 1

2
,j,k

) (2.27)

where V̂ represents the spatial average of the conserved quantities, and F̂ repre-

sents an space and time average of the flux, centered in time at t = t + ∆t/2. V̂

is the quantity we store in the cells, and F̂ comes from the hyperbolic solver.
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The solver we use to solve the hyperbolic equations is that of Li et al. (2008),

which is comes in three parts: spatial reconstruction, time centering, and the

solution of the Riemann problem. Spatial reconstruction is done using piecewise

linear monotonized slopes on the primitive variables (ρ,v, p,B). Time centering

of the interface states by ∆t/2 is performed using either the MUSCL-Hancock

(Li et al., 2008) or Piecewise Linear Method (Colella & Glaz, 1985) integration.

The Riemann problem is then solved using either the HLLC Riemann solver of Li

(2005), HLLD solver of Miyoshi & Kusano (2005), or the isothermal HLLD solver

of Mignone (2007). These fluxes are computed for the conserved, cell centered

variables (ρ, ρv, E,Bc). These fluxes are then differenced to obtain the update

values of the fluid quantities only. The fluxes for the magnetic field are stored

for use in the Constrained Transport algorithm, discussed in section 2.1.7. This is

done in one dimension on successive sweeps along the x, y, and z directions. To

reduce operator splitting error, the order of the sweeps is permuted. For more

details, see Li et al. (2008).

In isothermal mode, the same method is used, but the energy terms in V

and F are removed, and only the isothermal HLLD can be used.

2.1.7 Constrained Transport and the Divergence of B

One of the biggest challenges for an MHD code is to maintain the divergence

free constraint on the magnetic field (∇·B = 0). Brackbill & Barnes (1980) found

that non-zero divergence can grow exponentially during the computation and cause

the Lorentz force to be non-orthogonal to the magnetic field. There are three major

ways to assure the divergence remains zero. The first is a divergence-cleaning (or

Hodge Projection) approach by Brackbill & Barnes (1980), which solves an extra

Poisson’s equation to recover ∇ · B = 0 at each time step. But Balsara & Kim

(2004) found that non-locality of the Poisson solver introduces substantial spurious

small scale structures in the solution. Additionally, solving Poisson’s equation

on an AMR mesh is computationally expensive. The second method involves

extending the MHD equations to include a divergence wave (Powell et al., 1999;

Dedner et al., 2002) which then advects the divergence out of the domain. As most
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of our solutions are done on periodic domains, this is also an undesirable solution.

The third method, and the one we have employed in Enzo, is the constrained

transport (CT) method of Evans & Hawley (1988). This method centers the

magnetic field on the faces of the computational cells and the electric field on the

edges. Once the electric field is computed (more on this later) it’s curl is taken to

update the magnetic field. This ensures ∇ · B = 0 for all time, provided it’s true

initially.

Bn+1
f,x,i− 1

2
,j,k

= Bn
x,i− 1

2
,j,k

− ∆t(
1

∆y
(Ez,i− 1

2
,j+ 1

2
,k − Ez,i− 1

2
,j− 1

2
,k)+ (2.28)

1

∆z
(Ey,i− 1

2
,j,k+ 1

2

− Ey,i− 1

2
,j,k− 1

2

))

Plugging equation 2.54 into the divergence operator 2.16 to find ∇ · Bn+1
f ,

one finds all terms are eliminated except the initial divergence ∇ · Bn
f .

The CT algorithm of Evans & Hawley (1988) was extended to work with

finite volume methods by Balsara & Spicer (1999). This method uses the fact that

the MHD Flux has the electromotive force as two of its components (see the 5th

and 6th components of eqn. 2.25), so using these components then incorporates

all the higher order and shock capturing properties of the Godunov solver into the

evolution of the electric field. These components, which are centered at the face

the computational cell, are then averaged to obtain an electric field at the edges

of the cell. This was the first CT method applied to Enzo, so unless otherwise

noted, the simulations presented here were done with this method. The reader is

encouraged to read Balsara & Spicer (1999) for the full details. Full details of this

method can be found in section 3.3

Gardiner & Stone (2005) extended this idea to include higher order spatial

averaging, which eliminates a number of numerical artifacts present in Balsara &

Spicer (1999) and increases the accuracy of the method. This method uses the

fluxes from the Riemann solver, plus additional information from the data in the

cell to construct a linear interpolation from the cell face to the cell edge. The

reader is encouraged to see that paper for the details.

After the curl is taken and the face centered field Bf is updated, it is then

averaged to obtain Bc, via equation 2.17.
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2.1.8 Right Hand Side: Gravitational Acceleration

In cosmological simulations, Enzo tracks the proper peculiar gravitational

potential.

∇2Φ =
4πG

a
(ρb + ρd − ρ0) (2.29)

where ρb and ρd are baryonic and dark matter comoving density respectively, and

ρ0 is the comoving background density. For non-cosmological simulations, the dark

matter and background density are ignored.

The gravitational potential Φ is solved in Enzo using a combination of

methods. First, the root grid potential (which covers the entire computational

domain) is solved for using a fast Fourier transform. Then the subgrids (which

hopefully do not cover the computational domain) are solved using a multigrid

relaxation technique. This resulting potential Φ is then differenced to obtain the

acceleration g = ∇Φ. Specifically,

gi =
1

2
(Φi+1 − Φi−1) (2.30)

As mentioned before, the fluxes are computed at the half time point t +

1/2∆t. In order to keep the velocity and consistent with this time centering, they

are first advanced by a half time step:

v = v +
∆t

2
g (2.31)

After the fluxes are differenced to obtain the new state vn+1
x , these states are

then updated with the accelerations. For the velocity update, a density field cen-

tered in time is used. We follow the same formulation used by Colella & Woodward

(1984)

vx
n+1 = v′n+1

x + ∆t
1
2
(ρn+1 + ρn)Ax

ρn+1
(2.32)

En+1 = E ′n+1 − 1

2
ρn+1(vx

′n+1)2 +
1

2
ρn+1(vx

n+1)2 (2.33)

2.1.9 Right Hand Side: Expansion Source Terms

The cosmological expansion source terms are treated in much the same way

as the gravitational source terms. First, a half time step is added to the values
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before the flux is computed.

v′n =vn − 1

2
∆t

ȧ

a
ρn (2.34)

p′n =pn − 1

2
∆t

ȧ

a
3(γ − 1)pn (2.35)

B′n
c =Bn

c − 1

2
∆t

ȧ

2a
Bn

c (2.36)

The quantities v′n, p′n and B′n are then used in the rest of the solver

described in section 2.1.6. After the fluxes are differenced, the source terms are

then added to the fluid quantities in full. This is done in a semi-implicit manner,

by averaging the quantities to be updated in time. For instance, the expansion

contribution to the magnetic field is

∂B

∂t
= − ȧ

2a
B (2.37)

which is discretized

Bn+1
exp

− Bn+1 = − ȧ

2a
(
Bn+1

exp
+ Bn+1)

2
) (2.38)

and solving for Bn+1
exp

we have

x =
ȧ

4a
(2.39)

Bn+1
exp

=
(1 − x)

(1 + x)
Bn+1 (2.40)

Pressure and velocity are updated in a similar manner. See appendix 2.5 for the

full update.

2.1.10 Dual Energy Formalism

Hypersonic flows are quite common in cosmological simulations. Due to

the extremely large gravitational forces, the ratio of kinetic energy Ekinetic to gas

internal energy Einternal can be as high as 108. This leads to problems when

computing the internal energy in this type of flow, as the universe does math with

infinite accuracy, but computers do not. Higher order Godunov code typically
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track only the total energy (equation 2.5). Thus finding the internal energy from

the total energy tracked by the software,

Einternal = Etotal − Ekinetic − Emagnetic

involves the small difference of two (or three) large numbers, which causes problems

when the small number (Einternal) is near the roundoff noise of the original numbers

(Etotal and Ekinetic + Emagnetic).

To overcome this, we have implemented two algorithms that solve an addi-

tional equation to track the small numbers; the modified entropy equation given

in Ryu et al. (1993) and the internal energy equation given in Bryan et al. (1995).

These two equations are:

∂S

∂t
+

1

a
∇ · (Sv) = −3(γ − 1)ȧ

a
S (2.41)

∂ρe

∂t
+

1

a
∇ · (ρev) = −3(γ − 1)ȧ

a
ρe +

p

a
∇ · v (2.42)

where S ≡ p/ργ−1 is the comoving modified entropy and e is the internal energy.

The modified entropy equation is valid only outside the shocks where the entropy

is conserved. Use of either (not both) of these equations is at the discretion of the

simulator.

Through the course of the simulation, the ratio of internal energy to total

energy is monitored. When this ratio is less than some preset value η, one of

the modified equations is used. As in Li et al. (2008), we use η = 0.008. They

note that reducing this parameter will cause a decrease in the volume filled by low

temperature gas, as most of the gas affected by the switch is cold, high velocity

gas. The optimal choice for this parameter is still an open question for the general

situation. Li et al. (2008) compared this two approaches and found almost identical

results.

2.1.11 Adaptive Mesh Refinement

Structured AMR, initially devised by Berger & Colella (1989), is a tech-

nique for increasing resolution of a simulation in parts of a simulation that require

higher resolution for increased accuracy or suppression of numerical artifacts, while
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conserving memory and CPU cycles in areas that don’t. Refinement criteria will

not be described here, as they vary from simulation to simulation. AMR has four

basic necessary parts:

1. Patch Solver This is the algorithm that actually solves the finite volume

PDEs in question, as described by sections 2.1.6 - 2.1.10. The approximations

used for the patch solver are conservative in a finite volume sense, and the

rest of the choices are made to preserve that conservation.

2. Refinement Operator This is the routine that creates fine resolution el-

ements from coarse ones. In Enzo, we use conservative, volume weighted

interpolation for the fluid quantities ρ,E,~v. For the magnetic fields, we use

the method described by Balsara (2001), with some slight modifications in

implementation. This method constructs a quadratic divergence free polyno-

mial, and area-weighted averages are used for the fine grid quantities. This

is described in more detail in appendix 2.4.

3. Projection Operator This is the routine that projects the fine grid data

back to the parent coarse grid. For Enzo, the parent grid is simply replaced

by a volume-weighted average of the fine cells. For the face centered magnetic

field, this is an area weighted average, though in practice we don’t explicitly

average the magnetic field, as discussed in below and in appendix 2.4.1

4. Correction Operator Once the projection operator replaces the solution

on the coarse grids, the evolution on the coarse grids is no longer consistent

with the underlying equations in the manner they were discretized. That

is to say, the total change of any conserved quantity inside the region is no

longer equal to the flux across its surface. For the Enzo hydro fields, this is

corrected with the flux correction mechanism. More details on this and the

modifications in EnzoMHD see appendix 2.3

EnzoMHD does all of these steps for the fluid quantities, but for the mag-

netic field it slightly alters this procedure. In order to overcome a shortcoming in

the original data structures used in Enzo, we combined the projection and correc-

tion operations for the magnetic fields in one step. The net effect of the correction
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operator is to ensure that all zones are updated by finest resolution fluxes available,

even if they were updated by coarse data initially. For the magnetic field update,

we don’t project the actual magnetic field that is of interest, but rather the electric

field (effectively the ’flux’ for Bf ), then take the curl of the newly projected electric

field. Thus the coarse magnetic data co-located with the fine grids get updated

with the fine data, and the bounding zones don’t need correction at all.

More detail on this process can be found in appendices 2.4 and 2.3

2.2 Numerical Experiments

EnzoMHD has many configurations available. Here, we test some of the

possible configurations, to indicate the quality of solution possible with EnzoMHD.

2.2.1 MHD Tests without AMR

We first test our code in unigrid (fixed resolution) mode, in order to ensure

consistency of the patch solver with the algorithm described in Li et al. (2008). We

do two one dimensional cosmology tests (Caustics and Zel’dovich Pancake), two

one dimensional non-cosmological tests (Brio and Wu and the Kim Isothermal),

one 2d non-cosmological test (Orszag Tang) and one 3d cosmological test, and one

3d turbulence test.

Brio and Wu shock tube

The shock tube defined by Brio & Wu (1988) is a standard test of any MHD

solver, as it displays a number of the important MHD waves, including a compound

wave. Compound waves are not a property of pure hydrodynamics, because the

system is convex. However, due do the more complex nature of the MHD equations,

certain initial conditions can cause flows in which at one point the shock speed in

a given family is higher than the wave speed for that family, causing a shock, but

lower in the post shock region, causing a rarefaction immediately following the

shock.
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This can be seen in figure 2.4. The problem was run with 800 zones to

a time t = 0.2, using the HLLD solver in Enzo. This shock tube shows, from

left to right, a fast rarefaction, slow compound (shock+rarefaction), contact, slow

shock, and fast rarefaction. It can be seen that this solver captures this shock tube

problem quite well.

Isothermal Tests

One of the primary application areas of EnzoMHD will be in simulating

turbulence and star formation in cold molecular clouds. Due to the fast cooling

time of these environments, an isothermal equation of state is a good approximation

a large portion of these processes. In simulations done by Kritsuk et al. (2007)

using Enzo and other works by the same authors an isothermal equation of state

is approximated by using an adiabatic solver and setting γ = 1.001.

To test if this approximation is appropriate for this code, we ran the isother-

mal shock tube of Kim et al. (1999). One can see from figure 2.5 that this approach

works well, as shock jumps and positions are all correct, and features are reasonably

sharp. This test was run with 256 zones to a time of 0.1.

However, in turbulent simulations with gravitational collapse, the measured

value of the sound speed,
√

p/ρ, is initially uniform, but after a few hundred

timesteps can vary by as much as 1000, which is far from isothermal. It is believed

that the difference between this code and what has been done in the past with

Enzo stems from the Riemann solver. The HLL family of Riemann solvers assumes

a particular wave structure in computing the interface flux. This wave structure,

for HLLC and HLLD, contains a contact discontinuity which is not present in the

isothermal Riemann fan, and does not reduce appropriately in the γ → 1 limit.

To combat this, we installed the Isothermal variant of HLLD by Mignone (2007).

The results of this code on the Kim test are nearly identical to that in figure 2.5

and not reproduced here. The problem seen are, of course, eliminated as the sound

speed is set as an input parameter.
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One-dimension MHD Caustics

This test is taken from Li et al. (2008), which initially derived from a

pure hydro version from Ryu et al. (1993). This problem is used to test the

ability of the code to capture shocks and to deal with hypersonic flows. Initially,

vx = −π
2
sin(2πx), ρ = 1 and p = 10−10. Caustics are formed because of the

compression by the velocity field. The Mach number of the initial peak velocity

is 1.2 × 104. The pressure can easily become negative for such high Mach number

flow.

We performed the test with same magnetic field settings as in Li et al.

(2008). The magnetic field in the x and z directions are always zero while By =

0, 0.001, 0.02 and 0.05. The calculation was done with 1024 cells and the results

at t = 3 are shown in figure 2.6. Our results match the results from CosmoMHD

(Li et al., 2008) quite well, as expected.

The Zel’Dovich Pancake

The Zel’Dovich pancake is a popular test problem for codes that include

gravity in comoving coordinates. The problem setups are taken from Li et al.

(2008). This takes place in a purely baryonic universe with Ω = 1 and h = 1
2
.

The initial scale factor ai = 1 corresponds to zi = 20. The initial velocity field is

sinusoidal with the peak value 0.65/(1 + zi), and v = 0 at the center of the box.

The initial comoving box size is 64h−1Mpc. The shocks forms at z = 1. The initial

baryonic density and pressure are uniform with ρ = 1 and p = 6.2 × 10−8. The

tests were run with 1024 cells, both with and without magnetic fields. Our results

are almost identical to the results from CosmoMHD (Li et al., 2008), as expected.

Results can be seen in figure 2.7.

Orszag-Tang

The Orszag-Tang Vortex was originally developed by Orszag & Tang (1979)

to demonstrate that small scale structure can be generated by the nonlinearities

in the MHD equations. It initially starts with a single large scale rotating velocity

structure and two circular magnetic structures. From these simple large scale



36

initial conditions, substantial small scale structure is formed. It now serves as a

standard test problem to demonstrate the accuracy and diffusivity of MHD codes.

The initial conditions are on a 2 dimensional periodic box, 256 zones on

a side. v = v0(−sin(2πy)x̂ + sin(2πx)ŷ,B = B0(−sin(2πy)x̂ + sin(4πx)ŷ), v0 =

1, B0 = 1/
√

4π, ρ0 = 25/(36π), p0 = 5/(12π), and γ = 5/3 which gives a peak

Mach number of 1 and peak β = p0/(B
2
0/2) = 10/3. Figure 2.8 shows the density

at t = 0.48, from which one can see that the solution agrees with other solutions

to the problem in the literature.

3D Adiabatic Universe with MHD

We have also performed the 3D adiabatic CDM Universe test described

by Li et al. (2008) both with and without magnetic fields. We also compared

the non-magnetized results with the results run using the PPM solver (Colella

& Woodward, 1984). Adiabatic evolution of a purely baryonic Universe was

computed with an initial CDM power spectrum with the following parameters:

Ω = Ωb = 1, h = 0.5, n = 1 and σ8 = 1 in a computational volume with side

length L = 64h−1Mpc. The transfer function from Bardeen et al. (1986) was used

to calculate the power spectrum of the initial density fluctuations. Evolution was

done from z = 30 to z = 0. We used 2563 cells for each simulation. The com-

parisons are made at the final epoch, z = 0. Though this test is identical to that

of Li et al. (2008), our results can’t compared with theirs directly since different

random seeds were used for the realization of the initial density and velocity.

Figure 2.9 shows a comparison of the mass-weighted temperature distribu-

tion, figure 2.10 is a comparison of the volume-weighted density distribution. The

discrepancies between PPM and MHD solvers are small, indicating the two codes

perform roughly the same. The nature of the differences is expected, since PPM

solver has third order accuracy while the MHD solver has second order accuracy

and larger numerical diffusion. This allows PPM to capture shocks in fewer zones,

which causes the dense shocked gas to not only have a smaller volume fraction,

but also be hotter and slightly less dense than in the MHD solver.

We have also done a similar run with the same initial conditions to the



37

above, but with an initial magnetic field, Bx = Bz = 0, By = 2.5 × 10−9 Gauss,

which is 4.32 × 10−7 in code units. Figure 2.11 shows the scaled divergence of the

magnetic fields, averaged over the entire box, as a function of redshift. The scaled

divergence is < |h∇ · B/|B|| >, where h = 1/256 is the spatial scale, and |B| is

the local maximum magnetic field strength, is the most relevant measure of the

potential numerical effects of divergence. The divergence of the magnetic fields is

close to the round-off error.

Comparison of Turbulent Evolution

Turbulence is one of the primary physical environments of astrophysical

fluids. Thus is is extremely important to understand how a code performs in a

turbulent environment.

The Santa Barbara Turbulence Comparison project, which began in Novem-

ber 2007, is an attempt to quantify the performance of several difference codes on

the same Hydrodynamic and Magnetohydrodynamic Turbulent flow. Initial condi-

tions were prepared by Åake Nordlund, and distributed to a number of simulators,

who then ran the simulation with their respective codes. The initial conditions

were initially uniform density and magnetic field with plasma β = 22. The field

was stired with Gaussian velocity distribution until a steady state mach number

of 8.9 was reached. This initial state was then run without driving on 6 different

MHD codes; Flash (Fryxell et al., 2000), Ramses (Fromang et al., 2006), PPML

(Ustyugov & Popov, 2008) and 3.6, EnzoMHD, Zeus (Stone & Norman, 1992), and

Phantom-SPH (Rosswog & Price, 2007).

This comparison was fairly elaborate, and only two of the results are re-

ported here. Figures 2.12 and 2.13 show the power spectrum after t = 0.2, roughly

twice the time it takes an average shock to cross the box for the velocity and

magnetic field, respectively. The primary point we wish to draw here is the rela-

tive strength of the small scale structure to the right of each set of curves. It is

generally seen in both theory and practice that in turbulent flow, the transfer of

power from large scale to small is a conservative process until the smallest scale

is reached. This dissipative scale is driven my microphysics in real fluids, but by
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the details of the numerical solver in numerical (“Made Up”) physics. So one can

easily gague the relative dissipation in the method by the power seein in the small

scale end of the power spectrum.

The part of the graph that’s relevant for this discussion in each of figure

2.12 and 2.13 is the pink curve, labled Enzo. This was done with EnzoMHD with

the Isothermal HLLD solver. In both figures, one first notes that the inertial range

scaling, the part of the graph that is not the large scale driving and not the small

scale dissipation, from roughly k/kmin = 1 to k/kmin = 1.5, the slopes of most of

the curves are comparable. This demonstrates that each code responds relatively

similarly to eachother. The notable exception is the yellow curve, Phantom-SPH.

This is an SPH code, and has much less development time under its belt, and is

obviously doing the worst. The more interesting features come in the small strcture

at high k/kmin. In figure 2.12, one sees that the velocity dissipation is comperatble

to both Ramses and PPML, indicating that the dissipation is as low as relaistically

obtainable. However, in figure 2.13, EnzoMHD has clearly the lowest power of the

grid based codes, indicating that it has the weakest dissipation properties. It is

currently believed that this is due to the CT method used. While Athena CT is

quite good, the other methods use more sophisticated mechanisms that use either

higher order time evolution, as in Flash, or characteristic tracing or some other

reconstruction that more closely tracks the fluid dynamics, as in Ramses, PPML,

and Zeus.

Two other similar comparisons have been done in this work. They can be

found in sections 3.5, which shows DaveThena, this method, PPM, and PPML;

and 3.1.2 which only shows the Ryu and Jones method.

2.2.2 MHD Tests with AMR

To test the Adaptive Mesh Refinement, we ran a sample of the tests from

the previous section with AMR, to ensure no spurious artifacts are introduced by

the AMR. These are the Adiabatic Expansion test in section 2.2.2 and the one

dimensional caustic and pancake tests (sections 2.2.2 and 2.2.2).
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Three-dimension MHD Adiabatic Expansion

This test is taken from Bryan et al. (1995). This test uses a completely

homogenous universe with initial Ti = 200K and vi = 100km/s in the x-direction

at an initial redshift of zi = 20. In the code units, the initial density is 1.0 and

initial velocity is 2.78 × 10−3 and the initial pressure is 1.24 × 10−9. Additionally

we have a uniform magnetic field Bx = By = Bz = 1 × 10−4 in code units, which

is 2.66 × 10−7G in cgs.

The simulation used a 163 root grids with 2 levels of refinement in the center

region and ran to z = 0.

The expansion terms in eqns (2.1) - (2.4) operate like drag terms, so that

in the absence of a source, the velocity decreases as v = via
−1, the temperature as

T = Tia
−2 and the magnetic field should decrease as a−1/2.

The temperature at z = 0 is 0.453406K, 0.024% below the analytic result

of 0.453515K. The velocity at z = 0 is 4.76176km/s, compared to the analytic

result 4.7619km/s, a 0.0029% discrepancy. The final magnetic field strength is

6.03× 10−10G (2.18× 10−5 in the code units), a difference of 0.0006% with respect

to the analytic solution. Figure 2.14 shows the By as a function of redshift, the

solid line shows the theoretical value.

One-dimensional MHD Caustics with AMR

We also ran the the 1d MHD Caustic test with AMR, using 256 root grid

zones with 2 levels of refinement, again by a factor of 2, giving an effective resolution

is 1024 cells. Figure 2.15 shows comparisons of density and gas pressure of non-

AMR and AMR runs with different initial magnetic field strengths, as described

before. Figure 2.16 shows the comparisons of By for runs with different initial

values of By. In both plots, the AMR result is sampled to the finest resolution.

The AMR runs give almost identical results to the unigrid runs, while the CPU

time and memory were greatly saved in the AMR runs.
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Zel’Dovich Pancake with AMR

We also ran the pancake problem with AMR. The problem was set up with

the same initial conditions as the unigrid run, but with a root grid of 256 root

cells and 2 levels of refinement by 2. We compared these results having effectively

1024 cells to the results of our previous high resolution which actually had 1024

cells. Figure 2.17 shows comparisons of density and gas pressure between the non-

AMR and AMR runs, with different initial values for By. Figure 2.18 shows the

comparisons of By with different initial values. Again, the AMR computation got

very similar results, while saving CPU and memory resources.

2.3 Flux Correction

At any given time in an AMR simulation, there are points in space that are

described by more than one data structure. In a finite volume hydro calculation,

with cell centered data fields, this occurs at the boundary between coarse and

fine grids in the Flux fields, ~F . In an AMR MHD calculation, with face centered

magnetic fields, this occurs at the same boundary, in the face centered magnetic

field, and the edge centered electric field. Ensuring consistency between data is

vital for the conservation of quantities like mass, energy, momentum, and ∇ · B.

Flux Correction is essential for this consistency.

2.3.1 Conservation Form

It is useful to briefly describe the basic formulation of the methods used in

Enzo and EnzoMHD before moving on to the flux correction mechanism.

Any conservative system, such as ideal MHD, can be written in a differential

form as
∂V

∂t
+ ∇ · F = 0 (2.43)

where V and F are suitably defined, in our case by 2.24 and 2.25. Here we ignore

any source terms.
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In finite volume methods, we store average quantities of V and F , and re-

write the conservation law in Conservation Form, using the Fundamental Theorem

and Stokes Theorem. Starting with eqn 2.43, and integrating, we get:

∫ t+∆t

t

∫

V

∂V

∂t
dV dt = −

∫ t+∆t

t

∫

A

F · dAdt (2.44)

where the volume V is taken from the point (x, y, z) to (x + ∆x, y + ∆y, z + ∆z).

Now let

V̂ n =
1

∆V

∫

V

V (x, y, z, tn)dV (2.45)

F̃x,I+ 1

2
,J,K =

1

∆y∆x

∫

∆y,∆z

F (x = I +
1

2
, y, z) · x̂dydz (2.46)

where x̂ is the unit vector in the x direction. Similar definitions apply F̃y and F̃z,

and

F̂x =
1

∆t

∫

∆t

F̃xdt (2.47)

The averaging here was taken explicitly in two steps to emphasize that ∆x,∆y

and ∆z are possibly functions of t, as the are in cosmological hydrodynamics.

Putting this all together, we get the equations in their final analytical form before

discretization (also the last form we’ll be using here)

V̂ n+1
I,J,K = V̂ n

I,J,K − ∆t(
1

∆x
(F̂x,I+ 1

2
,J,K − F̂x,I− 1

2
,J,K)+

1

∆y
(F̂y,I,J+ 1

2
,K − F̂y,I,J− 1

2
,K)+ (2.48)

1

∆z
(F̂z,I,J,K+ 1

2

− F̂z,I,J,K− 1

2

))

Note that equation 2.48 is an exact equation, since only averages and the funda-

mental theorem of calculus have been used up to this point. The trick in finite

volume methods such as our MHD is finding appropriate approximations to F̂ that

are both accurate and stable.

2.3.2 Conservation Form and AMR: Enter Flux Correc-

tion.

As mentioned at the beginning of the section, an AMR simulation has mul-

tiple data structures representing a single point in space. In entirely cell centered
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codes such as PPM, the only such instance is at the surface of a fine grid boundary,

where both the fine grid and coarse grid represent the flux at that point. More-

over, after the fine grid field is projected into the coarse, there’s a mismatch on

the coarse grid itself as to the value of the flux at the surface. The value of that

discrepancy can be easily found. After the projection, a coarse grid at a point

(I, J) has the value (restricting to 2d, for clarity)

V̂ n+1
I,J =

∑

i=I± 1

4

j=J± 1

4

q̂n+1
i,j (2.49)

where lower case quantities denote the value of the fine grid data. Expanding the

time update for q̂n+1 in space and time, we find that

V̂ n+1
I,J =

∑

i=I± 1

4

j=J± 1

4

q̂n
i,j−(

n+1
∑

m=n

∑

x,j=J± 1

4

∆tm

∆V m
f̂m

I+ 1

2
,j
+ −

n+1
∑

m=n

∑

x,j=J± 1

4

∆tm

∆V m
f̂m

I− 1

2
,j
) (2.50)

−(y and z terms)

By construction of the interpolation polynomial (and projection at the last timesteps)

the first term is just equal to V̂ n
I,J , which means that, by equation 2.48 V̂I,J effec-

tively sees, at the point I + 1
2
,

∆t

∆V
F̂x =

n+1
∑

m=n

∑

x,j=J± 1

4

∆tm

∆V m
f̂m

I+ 1

2
,j

:=< fx > (2.51)

However, for the cell (I − 1, J), which has no corresponding fine grid flux, F̂I+ 1

2

come from the discretization method on the coarse grid. There is absolutely no

reason for the two to match, so we have a discrepancy in the descriptions of the

data. This can be solved by simply replacing the less refined data that V̂I+1,J used

with the more refined average, given by equation 2.51:

V̂I+1,J,fc
= V̂I+1,J +

∆t

∆V
F̂x,I+ 1

2
,J −

∑

m

∑

j

∆tm

∆V m
f̂m

x,I+ 1

2
,j

(2.52)

Now every place F̂x,I,J show up in our method, the exact same approximation is

used.
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2.3.3 Flux Correction and MHD

A similar formalism to that described in 2.3.1 is used for to advance the

magnetic fields in EnzoMHD, but instead of using volume averages, we use area

averages. The magnetic evolution is given by the induction equation:

∂ ~B

∂t
= −∇× ~E (2.53)

When discretized, equation 2.53 yields the equation

B̂n+1
x,I+ 1

2
,J

= B̂n
x,I+ 1

2
,J
− ∆t

∆y∆z
(∆z(Êz,I+ 1

2
,J+ 1

2
,K − Êz,I+ 1

2
,J− 1

2
,K)+ (2.54)

∆y(Êy,I+ 1

2
,J,K+ 1

2

− Êy,I+ 1

2
,J,K− 1

2

))

where

B̂n
x,I+ 1

2
,J,K

=
1

∆y∆z

∫

A

~B(x = I +
1

2
, y, z, tn) · x̂dydz (2.55)

Ên =
1

∆t

∫ t+∆t

t

1

∆x

∫

x

~E · dldt (2.56)

which is also exact, and the main problem is finding a suitable approximation for

Ê.

Again, after the area-weighted projection of the fine grid field b̂x into the

coarse grid B̂x, there’s a discrepancy between the electric field at a refined point on

the surface of a refined grid, as it’s seen by both grids that have subgrids and grids

that don’t. In Balsara (2001), he suggests a similar flux correction mechanism to

that of the standard hydro, described in 2.3.2. However, due to an issue with the

initial implementation of flux correction in Enzo (which has since been fixed) and

ease of computational logic, we chose a different route. In EnzoMHD, instead of

projecting fine grid magnetic fields into coarse magnetic fields and then correcting

zones in the coarse grid, we project the electric field and then take the curl of the

entire coarse grid. Thus, all coarse grid magnetic fields see the most accurate data

at the same time, and no a-posteriori correction needs to be done. Where there are

no subgrids, the coarse grid sees an electric field that comes from the CT module
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in section 2.1.7, and where there are subgrids it sees

Ên
z,i− 1

2
,j− 1

2
,k

=
∆tn

∆t
(e

n+ 1

2

z,i− 1

2
,j− 1

2
,k− 1

4

+ e
n+ 1

2

z,i− 1

2
,j− 1

2
,k+ 1

4

)+

∆tn+ 1

2

∆t
(e

n+ 3

4

z,i− 1

2
,j− 1

2
,k− 1

4

+ e
n+ 3

4

z,i− 1

2
,j− 1

2
,k+ 1

4

) (2.57)

While a complete flux correction treatment would potentially save on memory and

flops, in practice the extra memory is negligible compared to the total memory

and time used by the rest of Enzo, and the extra floating point operations done

here are offset by increase cache utilization of the data, as the entire grid is done

in a single stride one sweep instead of an essentially random access pattern.

As described in section 2.1.5, some of the subgrids get their boundary con-

ditions updated from the parent zones. Because of this, the curl of the magnetic

field is actually taken twice. The first time is done immediately after the hyperbolic

update, in order to ensure that the parent zones are up to date for the interpolation

of the ghost zones of the subgrids that need it. The second time is after the sub-

grids project their electric field to the parent, to ensure maximal accuracy of the

parent grids. This additional call takes negligible time, as the curl has relatively

few operations. See appendix 2.5 for the details of this order of operations.

2.4 AMR MHD Reconstruction

2.4.1 MHD Reconstruction

For completeness, we will briefly outline the AMR reconstruction used in

EnzoMHD. The reader is encouraged to see the details in the original paper by

Balsara (2001).

In this appendix, we have dropped the subscript f from the face centered

fields, as the face centered field is the only one in question.

Balsara’s reconstruction method for the magnetic field is a 3 dimensional,

quadratic reconstruction of all 3 vector fields simultaneously. If we let b be the

polynomial fit to the discrete face centered field field B, the general reconstruction

is
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bx(x, y, z) = a0 + axx + ayy + azz + axxx
2 + axyxy + axzxz (2.58)

by(x, y, z) = b0 + bxx + byy + bzz + bxyxy + byyy
2 + byzyz (2.59)

bz(x, y, z) = c0 + cxx + cyy + czz + cxzxz + cyzyz + czzz
2 (2.60)

The coefficients are found by the following constraints:

1. The analytic reconstruction should be divergence free.

2. At the faces of the parent cell, the reconstruction should reduce to a bilinear

reconstruction, where the slopes are monotonized with the minmod slope

limiter. For instance,

bx(x =
∆x

2
, y) = Bx,i+ 1

2
,j,k +

∆yBx,i+ 1

2

∆y
y +

∆zBx,i+ 1

2

∆z
z (2.61)

where

∆yBx,i+ 1

2

= minmod(Bx,i+ 1

2
,j+1 − Bx,i+ 1

2
,j, Bx,i+ 1

2
,j − Bx,i+ 1

2
,j−1) (2.62)

minmod(x, y) =























x, |x| < |y| and xy > 0

y, |y| < |x| and xy > 0

0, xy < 0

(2.63)

The minmod slope is used in order to minimize oscillations. Area weighted averages

over these polynomials are then used to assign the fine grid values.

Often, a fine grid patch will encroach on unrefined territory. This results in

the refinement of coarse zones that a.) share a face with fine grids but b.) don’t

have corresponding fine grids of their own. Balsara refers to this as “Prolongation”

of the fine grid. To avoid generating any divergence at the boundary of the face,

the interpolation polynomials need to match the old fine data. The interpolation

equations above (eqns 2.58 - 2.60) do not have enough degrees of freedom to accom-

modate that many data points. In this case, Balsara describes a new polynomial

that DOES have enough degrees of freedom, by adding 3rd order cross terms to

equations 2.58 - 2.60:
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bx(x, y, z) =a0 + axx + ayy + azz + axxx
2 + axyxy + axzxz

+ ayzyz + axyzxyz + axxzx
2z + axxyx

2y (2.64)

by(x, y, z) =b0 + bxx + byy + bzz + bxyxy + byyy
2 + byzyz

+ bxzxz + byyzy
2z + bxyzxyz + bxyyxy2 (2.65)

bz(x, y, z) =c0 + cxx + cyy + czz + cxzxz + cyzyz + czzz
2

+ cxyxy + cyzzyz2 + +cxzzxz2 + cxyzxyz (2.66)

The yet undetermined coefficients are found by matching the polynomial to

a bilinear fit on the face:

b(x =
∆x

2
, y, z) = Bx,i+ 1

2
,j,k +

∆yBx,i+ 1

2

∆y
y +

∆zBx,i+ 1

2

∆z
z +

∆yzBx,i+ 1

2

∆y∆z
yzp (2.67)

and now the finite differences are taken from the finest grid:

∆yzBx,i+ 1

2

= 4((Bx,i+ 1

2
,j+ 1

2
,k+ 1

2

− Bx,i+ 1

2
,j− 1

2
,k+ 1

2

)−

(Bx,i+ 1

2
,j+ 1

2
,k− 1

2

− Bx,i+ 1

2
,j− 1

2
,k− 1

2

)) (2.68)

∆yBx,i+ 1

2

= ((Bx,i+ 1

2
,j+ 1

2
,k+ 1

2

− Bx,i+ 1

2
,j− 1

2
,k+ 1

2

)+

(Bx,i+ 1

2
,j+ 1

2
,k− 1

2

− Bx,i+ 1

2
,j− 1

2
,k− 1

2

)) (2.69)

where B is the field on the fine grid. Note that since this is now a centered

difference, the minmod slope limiter is not used.

2.4.2 Implementation in Enzo

In order to avoid complicated book keeping routines to determine which

cells are being prolonged into, and from which direction, we formulate only one

interpolation polynomial, given by equations 2.64-2.66. The necessary finite dif-

ferences for a given refinement region are taken from the finest data available, as
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in equations 2.68 and 2.69. The last four terms in each reconstruction polynomial

are there exclusively to ensure consistency of Old Fine Grid Data, so for faces that

have no Fine Data before the reconstruction, these are set to zero. Since the recon-

struction polynomial exactly matches the old fine grid data, this also eliminates

the need to copy the old fine grid data to the newly refined patch.

2.5 Schematic for the Cosmological MHD Code

In this section, we present a schematic of the MHD code, for clarity and

easy reference.

Step 0.– We start with conserved quantities density, total energy, and mo-

mentum (ρn
BM , En

total,p
n
DM), and primitive quantities velocity and gas pressure

(vn
BM , P n

gas) for the baryonic matter; face and cell centered magnetic fields (Bn
c ,

Bn
f ); and Lagrangian dark matter mass, position, and velocity (ρn

DM ,xn,vn
DM).

These are all at time tn. Where needed, primitive quantities will be described by

U = (ρDM , Pgas,vDM ,B), and conserved quantities by V = (ρDM , Etotal,pDM ,B).

Conversion between the two is done as needed.

Step 1. Solve Poisson’s equation for the acceleration field at tn+ 1

2

φn ⇐=ρn
BM + ρn

DM (2.70)

φn+1/2 =φn(1 +
∆tn

2∆tn−1
) − φn−1 ∆tn

2∆tn−1
(2.71)

g
n+1/2
i =

1

2an+1/2δxi

(φ
n+1/2
i+1 − φ

n+1/2
i−1 ) (2.72)

Step 2.– Update particle positions and velocities. (Strictly speaking, this

happens after the Expansion step, but the narrative works better if it’s here.)

v
n+1/2
DM = vn

DM − ∆tn

2

ȧn+1/2

an+1/2
vn

DM − ∆tn

2
gn+1/2 (2.73)

xn+1
DM = xn

DM + ∆tn(v
n+1/2
i,DM /an+1/2) (2.74)

vn+1
i,DM = v

n+1/2
i,DM −−∆tn

2

ȧn+1/2

an+1/2
v

n+1/2
i,DM − ∆tn

2
g

n+1/2
i (2.75)

Step 3.– Apply half of the gravitational and expansion update to the fields
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that require it, to obtain the temporary state Ũ = (ρ, P̃ n
total, ṽ

n
BM , B̃n

c )

ṽn
BM = vn

BM − ∆tn

2

ȧn

an
vn

BM − ∆tn

2

1

an
gn+1/2 (2.76)

p̃n = pn − ∆tn

2

2ȧn

an
pn (2.77)

B̃n
c = Bn

c − δtn

4

ȧn

an
Bc (2.78)

Ũ = (ρ, P̃ n
total, ṽ

n
BM , B̃n

c ) (2.79)

Step 4. Compute interface states at i ± 1
2
, n + 1

2
using linear spatial recon-

struction and second order time integration:

U
n+ 1

2

i+ 1

2
,L

, U
n+ 1

2

i+ 1

2
,R

⇐= Ũi−1, Ũi, Ũi+1, Ũi+2 (2.80)

Step 5. Compute approximation of the flux in equation 2.25 at the interface

i + 1
2
. This is done by solving the Riemann problem using one of the solvers

mentioned in section 2.1.6

F̂
n 1

2

i+ 1

2

= Riemann(U
n+ 1

2

i+ 1

2
,L

, U
n+ 1

2

i+ 1

2
,R

) (2.81)

Step 6. Update the conserved quantities with the new fluxes:

(V n+1
i )

MHD
= V n

i − ∆t

∆x
[F̂i+ 1

2

− F̂i− 1

2

] (2.82)

Step 7. Compute Electric field from Fluxes

E
n+ 1

2

i+ 1

2
,j+ 1

2

⇐= F̂i+ 1

2

(2.83)

Step 9. Update magnetic fields from electric fields for the first time.

Bn+1
f = Bn

f − ∆t

a
∇× E

n+ 1

2

i+ 1

2
,j+ 1

2

(2.84)

Step 8.–Gravitational step for the baryonic matter, with time centered den-

sity

(pn+1
i,BM)

MHD,Grav
= (pn+1

i,BM)
MHD

− ∆tn
(ρn + ρn+1

MHD
)

2
g

n+1/2
i (2.85)

Step 9.–Expansion step for the baryonic matter,

(vn+1
BM )

MHD,Grav ,exp
=

1 − (∆tn/2)(ȧn+1/2/an+1/2)

1 + (∆tn/2)(ȧn+1/2/an+1/2)
(vn+1

BM )
MHDGrav

(2.86)

pn+1 =
1 − (∆tn)(ȧn+1/2/an+1/2)

1 + (∆tn)(ȧn+1/2/an+1/2)
(pn+1)

MHD
(2.87)
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Step 10. Recurse to finer grids. Integrate fine grids from tn to tn+1

V n+1
FineGrids ⇐= V n

FineGrids (2.88)

Step 11.–Flux correction step for conserved baryon field quantities

V n+1
MHD,Grav ,exp,fc

⇐= (F̂ n+1/2), (F̂ n+1/2)FineGrids, V
n+1

MHDGrav,exp
(2.89)

Step 12.–Project conserved baryon field quantities and electric field from

fine grids to coarse grids. This is done after the flux correction step to avoid

any bookkeeping errors. The average is taken over ∆tn and the surface of each

FineGrid.

V n+1
ParentGrid = < V n+1

FineGrid >t,surface (2.90)

E
n+ 1

2

ParentGrid = < E
n+ 1

2

FineGrid >t,surface (2.91)

Step 13. Update magnetic fields from electric fields for the final time.

Bn+1
f = Bn

f − ∆t

a
∇× E

n+ 1

2

ParentGrid (2.92)

Step 14. Apply expansion to the Face Centered Fields

Bn+1
f,exp

=
1 − (∆tn/4)(ȧn+1/2/an+1/2)

1 + (∆tn/4)(ȧn+1/2/an+1/2)
(Bn+1

f ) (2.93)

Step 15. Compute cell centered magnetic field from face centered (with the

expansion subscript from step 9 dropped for clarity)

Bn+1
c,x,i,j,k = 0.5 ∗ (Bf,x,i+ 1

2
,j,k + Bf,x,i− 1

2
,j,k)

Bn+1
c,y,i,j,k = 0.5 ∗ (Bf,y,i,j+ 1

2
,k + Bf,y,i,j− 1

2
,k) (2.94)

Bn+1
c,z,i,j,k = 0.5 ∗ (Bf,z,i,j,k+ 1

2

+ Bf,z,i,j,k− 1

2

)

Step 16. We have now finished an update of this level. Rebuild the hierarchy

from this level down.

V n+1
New FineGrids ⇐=V n+1 (2.95)

Bn+1
f,New FineGrids ⇐=Bn+1

f (2.96)

Chapter 1 has been submitted in full for publication in The Astrophysical

Journal Suppliment series as Collins, D.C., Xu, H., Norman, M.L., Li,H., & Li., S

“Cosmological AMR MHD with Enzo”
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Processor 1 Processor 2

ghost zone

Distributed hierarchy Grid zones

real grid
ghost grid

real zone

Figure 2.1: A schematic of a parallel AMR hierarchy on two processors (left) and
a grid patch with ghost zones (right). Image courtesy James Bordner, initially
appeared in (Norman et al., 2007)

G r i d 1 G r i d 2
Figure 2.2: Data redundancy of the face centered magnetic fields: the face centered
field denoted by the stars are updated by both grid 1 and grid 2. Enough ghost
zones are exchanged to ensure that the entire stencil for the update of these fields
is the same in both data structures.
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Figure 2.3: A depiction of the timestep strategy in Enzo

Figure 2.4: The shock tube of Brio & Wu (1988), showing from left to right a fast
rarefaction, slow compound (shock+rarefaction), contact, slow shock, and fast
rarefaction. T=0.08, and 800 zones were used.
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Figure 2.5: The shock tube of Kim et al. (1999), run with 256 zones to t=0.1.
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Figure 2.6: 1-D MHD caustics at t = 3. Density, gas pressure, total pressure and
By are plotted. For the small field runs, almost no change can be seen, while
larger field runs decrease the peak of the density considerably due to the increased
pressure.
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Figure 2.7: The Zel’Dovich Pancake problem with various values of the magnetic
field, at t = 0. Increasing the magnetic field strength increases the central magnetic
pressure, reducing the density and changing the overall solution structure. Results
match those of Li et al. (2008).
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Figure 2.8: Density from the Orszag-Tang vortex, at t=0.48. Initial conditions are
uniform density, with a single rotating velocity structure and two circular magnetic
structures. This generates significant small scale structure, which has been used
to compare effective resolution of different MHD schemes.
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Figure 2.9: Comparison of mass-weighted temperature histogram at z = 0 for the
3D purely baryonic adiabatic Universe simulation. The solid line is from the MHD
code and the dashed line is from Enzo-PPM.
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Figure 2.10: Comparison of volume-weighted density histogram at z = 0 for the
3D purely baryonic adiabatic Universe simulation. The solid line is from the MHD
code and the dashed line is from Enzo-PPM.
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Figure 2.12: The power spectrum of the velocity field for 6 MHD codes on decaying
MHD turbulence; Flash in red (Fryxell et al., 2000), Ramses in green, (Fromang
et al., 2006), PPML in blue (Ustyugov & Popov, 2008) and 3.6, EnzoMHD with the
Li solver in magenta, Zeus in light blue (Stone & Norman, 1992), and Phantom-
SPH in yellow (Rosswog & Price, 2007). The Li solver has lower numerical viscosity
than most other methods.
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Figure 2.13: The power spectrum of the magnetic field for 6 MHD codes on de-
caying MHD turbulence; Flash in red (Fryxell et al., 2000), Ramses in green,
(Fromang et al., 2006), PPML in blue (Ustyugov & Popov, 2008) and 3.6, En-
zoMHD with the Li solver in magenta, Zeus in light blue (Stone & Norman, 1992),
and Phantom-SPH in yellow (Rosswog & Price, 2007). The Li solver is somewhat
more magnetically diffusive than the others.
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analytic result.
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Figure 2.15: Comparisons of density and pressure in the MHD Caustic tests, non-
AMR vs AMR. The left column shows density and the right column shows gas
pressure. Initial magnetic field of each row from top to bottom is 0, 0.001, 0.02
and 0.05.
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Figure 2.16: Comparison of By in the MHD Caustic tests, non-AMR vs AMR.
Initial magnetic field of each panel from top to bottom is 0.001, 0.02 and 0.05.
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Figure 2.17: Comparisons of density and pressure in non-AMR and AMR runs of
the Pancake test. The left column shows density and the right column shows gas
pressure. Initial magnetic field of each row from top to bottom is 0, 1.3e-6G, 2e-5G
and 1e-4G.
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Figure 2.18: Comparisons of magnetic y component in non-AMR and AMR runs
of the Pancake test. Initial magnetic field of each panel from top to bottom is
1.3e-6, 2e-5 and 1e-4G.



Chapter 3

Trial and Error: DaveThena and

other solvers

The MHD solver presented in chapter 2 was not the first MHD method in-

stalled in EnzoMHD. There were three iterations before that one, each with their

own strengths but ultimately irreconcilable weaknesses. In this chapter, we will

describe the other solvers and their shortcomings. This will be done in chronologi-

cal order of installation. First will be the method of Ryu & Jones (1995), in section

3.1. Then in section 3.2 will be a new method called DaveThena, designed to be a

lightweight version of the Athena method of Gardiner & Stone (2005). Finally in

section 3.6 we will describe in brief PPML, another new method, the lone physical

instability that prevented us from continuing to use both it and DaveThena, and

a brief summary of the potential resolution.

3.1 The Ryu and Jones method.

The first solver implemented in Enzo was the TVD method by Harten

(1983), as extended to MHD by Ryu & Jones (1995). This method is a second

order extension of the first order method described by Roe. It was later extended

to 3d (Ryu et al., 1998), by way of directional splitting and a Constrained Trans-

port type method for updating the induction equation. A brief summary of this

method will be given here.
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3.1.1 The method

Essentially this method is a combination of two first order methods in such

a way that the first order methods cancel, and we’re left with a second order

method. The two methods are due to Harten and Roe, and are both Approximate

Godunov type schemes. Both methods can be viewed as piecewise constant spa-

tial reconstructions and approximate Riemann solvers. The First Order Harten

method computes the interface flux F ∗ as a piecewise quadratic interpolation be-

tween F (UL) and F (UR). The Roe method computes the interface flux F ∗ by first

linearizing 2.23 as
∂Q

∂t
+ A

∂Q

∂x
= 0 (3.1)

A =
∂F

∂Q
(3.2)

and then solving the piecewise-constant Riemann problem with UL and UR as

initial data. In hydrodynamics, this has an analytic solution. In MHD, a linearized

solution is usually used, due to the computational overhead of finding the exact

solution.

The two are then combined using the minmod function, see equation 3.11.

The first order terms cancel and leave us with a formally second order accurate

scheme.

3.1.2 Turbulent Evolution: Ryu and Jones

The Ryu and Jones method was determined to be too diffusive to use for

our star formation application. As discussed in 4.8, it is believed that the shape

of the turbulent power spectrum determines the mass distribution of protostellar

objects, and in turn the mass distribution of stars. Failure to resolve any part

of the spectrum properly will cause incorrect statistics of cores. Unfortunately,

the slope of the velocity power spectrum obtained for this method was extremely

steep, and the statistics of cores found using this solver would be untrustworthy.

In standard Kolmogorov turbulence theory, which holds up quite well in

practice, the transfer of energy from large scale to small scale is a conservative

process, with dissipation only occurring at the smallest scale where microphysics
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and inelastic collisions between molecules takes place. See section 1.3 In numerical

simulations, this dissipation is happens at the grid scale by the effective numerical

viscosity of the method. If the dissipation of the method is too large, this will cause

destruction of structures at the scales larger than the dissipation scale, manifest

itself as a steeper spectrum in the velocity.

Padoan et al. (2007) perform a set of simulations using the Stagger code

(which has no method paper), the Zeus MHD code (Stone & Norman, 1992). They

find slopes of −1.9 and −2.2, respectively. Padoan et al. (2006) measured the power

spectrum in the molecular clouds, and got a value of 1.8 ± 0.1, which is shallower

still than the other two results.

A driven turbulence simulation at Mach 5 with a weak magnetic field B =

[0, 0, 0.1] was performed with the Ryu and Jones code. The driving was performed

as in sections 2.2.1, 3.5, and 4.1 The slope of the power spectrum is measured to

be -2.4, which is substantially steeper than that of the other two simulations and

much steeper than the cloud we’re trying to model. For this, the method was

abandoned and a less dissipative method was sought. This led to the inclusion of

the Li method in section 2.1.6, the development of the DaveThena method (section

3.2) and the inclusion of the PPML method (section 3.6).

3.2 DaveThena: the new Athena.

The basic patch solver for DaveThena is, like all numerical methods, and

assembly of other parts. Essentially it is a higher order Godunov method with

linear reconstruction, several choices for Riemann solver, several choices for CT,

including both Balsara (Balsara & Spicer, 1999) and Gardiner & Stone (2005),

and second order Runge Kutta time integration. Rather than directional splitting,

which has been the standard method for turning one dimensional algorithms into

three dimensional ones, we difference our fluxes in a completely unsplit manner.

The code is formulated as one integration step, which is applied twice as

a predictor-corrector or 2nd order Runge-Kutta integration. The basic integrator

goes as follows:
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Figure 3.1: Velocity power spectrum for a Mach 5, β=100 simulation. The spec-
trum is fit to an index of -2.4, and plotted compensated so the inertial range is in
the plot. This slope is much steeper than what has been seen in other simulations,
demonstrating excessive dissipation in the numerical scheme.
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1. Spatial Reconstruction Left and Right states are computed by one of sev-

eral methods. Currently there are only two, piecewise constant or piecewise

linear, but in principle any other method can be incorporated with relative

ease. More will be said on this step in section 3.2.1

2. Flux computation Fluxes at each face are computed with, again, a variety

of methods. These will be described in section 3.2.2

3. Unsplit Flux Differencing Fluxes are then differenced as in equation 2.48

in section 2.3.1.

4. Constrained Transport The electric field at the cell edges is computed

using one of three options: Balsara & Spicer (1999), and the two major

options from Gardiner & Stone (2005). More will be said in section 3.2.4

5. Bn+1

f
= Bn

f
+∇×E. That’s kind of self explanatory. Central differences for

E yield a divergence free update for Bf

6. Compute Cell Centered Field The cell centered magnetic field is then

computed from the Face Centered magnetic field. Simple direct average is

used:

Bx,i,j,k =
1

2
(Bx,i+ 1

2
,j,k + Bx,i− 1

2
,j,k) (3.3)

This formulation is the applied in two steps, using 2nd order Runge Kutta method.

That is:

V̂ n+ 1

2 = V̂ n − ∆t

2
( ∇ · F̂ (Q̂n) )

V̂ n+1 = V̂ n − ∆t( ∇ · ˆ̂
F (V̂ n+ 1

2 ) ) (3.4)

Some of the 6 steps described above have several options associated with

it, which will be discussed in the next section, and the user is not tied to using

the same option for both steps. For instance, the flux in the first step of equation

3.4, F̂ , can be computed using a lower order-accurate, and thus faster, formulation

than the second step,
ˆ̂
F . For instance, a piecewise constant step and first order
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flux approximation for the first step, with a piecewise linear reconstruction and

HLLD solver for the second.

Every numerical method requires some number of ghost zones. These zones

are used for interpolation of a given cell, and must be filled by some method.

Details can be found in section 2.1.5. Due to the two step solution here, ghost

zones must be considered for both steps. In principle, two options exist when it

comes to filling the ghost zones used by the correct step. Either it can be saved as

an extra layer of ghost zones, and updated by the predict step, or a communication

step can be done between predict and correct steps. AMR makes this slightly more

than just another instance of the age old speed vs. memory debate. The additional

concern is the ghost zones of refined regions that need to get their ghost zones

interpolated from parent grid cells. It seemed more consistent to the code authors

to have as few interpolations from parent grids as possible, since this is a much

coarser approximation to the solution than actually advancing the equations.

3.2.1 Reconstruction Options

The spatial reconstruction has several options. The order of the recon-

struction can either be piecewise constant or piecewise linear. This can be selected

independently for each sub-step. The linear reconstruction can be created with

either the minmod or Van Leer slope limiters. The minmod tends to be a more se-

vere slope limiter, so is used for quantities that self steepen, namely velocity, while

Van Leer tends to be somewhat steeper, so is used for fields that don’t naturally

steepen on their own, namely density and magnetic field. This wisdom is from Bal-

sara & Kim (2004). Lastly, it wasn’t obvious from the literature whether primitive

or conservative variables would give the best results, so for the “kinematic” quan-

tities the user can switch between reconstructing velocity and momentum, while

for “energetic” quantities the user can switch between total energy, gas pressure,

total pressure (gas + magnetic), or enthalpy. It is recommended and demonstrated

in 3.4.1 that Balsara was indeed correct, and vanLeer should be used on density

and magnetic field, while minmod should be used on velocity and energy.
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3.2.2 Flux options

There are several flux options available in EnzoMHD, as well. Current

options are the linearized solver of Roe, as described by Cargo & Gallice (1997),

the robust solver HLLE (Toro, 1999), the contact preserving MHD HLLC (Li,

2005) and HLLD (Miyoshi & Kusano, 2005). Because of the unsplit nature of the

code, all fluxes for all fields are stored for the entire grid patch. This yields 21

fields per cell.

3.2.3 Finite Difference Equations with Sources

In gory detail, here is an update of the DaveThena method, including the

gravitational and driving source terms.

For reference, we’ll define the following, which map to the variables of the

same name in Enzo.

U = BaryonField, MagneticField. Used for both full and half time step

updates.

O = OldBaryonField, OldMagneticField.

U,O =















ρ

(ρvx, ρvy, ρvz)

(Bx, By, Bz)

E















(3.5)

Source Terms:

G =















0

(ρax, ρay, ρaz)

(0, 0, 0)

ρ(axvx + ayvy + azvz)















(gravity) (3.6)

D =















0

(Aδvx, Aδvy, Aδvz)

(0, 0, 0)

ρAδv · (v + 1
2
Aδv)















(driving) (3.7)
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Pre-Step, ala Ryu et al. (1993):

U = U +
∆t

2
G (3.8)

The Update: Linear Reconstruction

UL,i− 1

2
,j,k = Ui−1,j,k +

1

2
∆xUi−1,j,k (3.9)

UR,i− 1

2
,j,k = Ui,j,k +

1

2
∆xUi,j,k (3.10)

Limited slopes to reduce oscillation

∆xUi,j,k = minmod(Ui+1 − Ui, Ui − Ui−1) (3.11)

Compute flux. Choices include HLLE, HLLC, and Roe.

Fx,Riemann = ... (3.12)

Add Artificial Viscosity. It has been found that the unsplit method of Saltzman

(1994) is imperative if turbulence is to be done. This method is a fully 3 dimen-

sional and fully unsplit viscosity method. It’s basic formulation is the same as

Colella & Woodward (1984), but the viscosity coefficient at the zone face νi+ 1

2
,j,k

is formulated as the spatial average of the divergence at the corners. in short, ν is

proportional to the divergence of v, ν = −min(∇ · v, 0) For Colella & Woodward

(1984), the divergence is as follows:

Fx(UL,i− 1

2

, UR,i− 1

2

) = Fx,Riemann(UL,i− 1

2

, UR,i− 1

2

) − ηνx,i− 1

2

∗ (Ui − Ui−1) (3.13)

η = 0.01 − 0.1 (3.14)

νx = max(0, vx,L,i− 1

2

− vx,R,i− 1

2

+
∆x

4 ∆y
(vy,i,j−1,k − vy,i,j+1,k

+ vy,i−1,j−1,k − vy,i−1,j+1,k)

+
∆x

4 ∆z
+ (vz,i,j,k−1 − vz,i,j,k+1

+ vz,i−1,j,k−1 − vz,i−1,j,k+1) )
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For Saltzman (1994),

νx,i+ 1

2
,j,k = −η min(0, 0.25

∑

j′=−1,0

k′=−1,0

Ci+ 1

2
,j+ 1

2
+j′,k+ 1

2
+k′) (3.15)

(so the average of the corners of the face) and

Ci+ 1

2
,j+ 1

2
,k+ 1

2

=
1

4
(

1

∆x
∆i(u + uj+1 + uk+1 + uj+1,k+1) (3.16)

1

∆y
∆j(v + vi+1 + vj+1 + vi+1,j+1) (3.17)

1

∆z
∆k(w + wj+1 + wk+1 + wj+1,k+1)) (3.18)

(so the velocity divergence). In the last equation, u, v, w are the 3 velocity com-

ponents, dropped subscripts refer to i, j, k where omitted, and ∆iF = Fi − Fi−1

is the difference of F in the i direction. Cyclically permute i, j and k as needed.

Unsplit predictor flux difference:

U ′
i,j,k = Oi,j,k −

∆t

2∆x
(Fx(UL,i+ 1

2

, UR,i+ 1

2

) − Fx(UL,i− 1

2

, UR,i− 1

2

) (3.19)

− ∆t

2∆y
(Fy(UL,j+ 1

2

, UR,j+ 1

2

) − Fy(UL,j− 1

2

, UR,j− 1

2

) (3.20)

− ∆t

2∆z
(Fz(UL,k+ 1

2

, UR,k+ 1

2

) − Fz(UL,k− 1

2

, UR,k− 1

2

) (3.21)

+
∆t

2
(
1

2
(GU ′ + GO)) (3.22)

+
1

2
D (3.23)

By equation 3.22 we mean the “time centered ish” gravitational terms, ala

Colella & Woodward (1984):

1

2
(GU ′ + GO) =















0

(ρ′ + ρ)ax,

...

1
2
ax(ρ

′v′
x + ρvx) + ...















(3.24)
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Unsplit corrector: Repeat steps 3.9 and 3.12, if desired also 3.13

U ′′
i,j,k = Oi,j,k −

∆t

∆x
(Fx(U

′
L,i+ 1

2

, U ′
R,i+ 1

2

) − Fx(U
′
L,i− 1

2

, U ′
R,i− 1

2

) (3.25)

− ∆t

∆y
(Fy(U

′
L,j+ 1

2

, U ′
R,j+ 1

2

) − Fy(U
′
L,j− 1

2

, U ′
R,j− 1

2

) (3.26)

− ∆t

∆z
(Fz(U

′
L,k+ 1

2

, U ′
R,k+ 1

2

) − Fz(U
′
L,k− 1

2

, U ′
R,k− 1

2

) (3.27)

+ ∆t(
1

2
(GU ′′ + GO)) (3.28)

+ D (3.29)

In a slightly more compact form, letting H cover reconstruction, Riemann

solver, and artificial viscosity; and ∇ defined as the unsplit finite difference oper-

ator, and G̃ as the “time centered(ish)” gravity, we can write:

U ′ = U − ∆t

2
∇ · H(U) +

dt

2
G̃ +

1

2
D

U ′′ = U − ∆t∇ · H(U ′) + ∆tG̃ + D

(3.30)

Note that I’ve also tried fully splitting the driving out the way its done in

Enzo, so the update is the following. No substantial difference was noticed.

U = U + D

O = U

U ′ = O − ∆t

2
∇ · F (U)

U ′′ = O − ∆t∇ · F (U ′)

(3.31)

3.2.4 CT options

DaveThena also has 3 CT options:

1. Balsara Electric Field is the direct average of the adjacent fluxes from the

Riemann Solver

2. Athena 1 Electric Field is computed using a Lax-Wendroff type integration,

involving both fluxes at the interfaces and Magnetic Field and Velocity data

at the cell center.
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3. Athena 2 Electric Field is computed with a much simpler linear reconstruc-

tion, selected bases on the fluid velocity direction.

3.3 Finite Difference Equations for CT

In this section we will outline the details of the Constrained Transport (CT)

algorithms used in EnzoMHD. First we will present induction equation, which will

motivate the use of the edge centered electric fields. Computation of the electric

fields will be presented next. Figure 3.3 shows the centering of the electric and

magnetic fields on a cube centered at (i, j, k). In section 3.3.1, we will demonstrate

why CT works. In section 3.3.2 we will present the method of Balsara & Spicer

(1999), in sections 3.3.3 and 3.3.4 we will present the Lax-Friedrichs and switched

method of methods of Gardiner & Stone (2005), respectively.

3.3.1 CT and ∇ · B

The time derivative of the divergence of the magnetic field is identically

zero because it is the divergence of the curl of a field:

∂B

∂t
= −∇× E (3.32)

∂∇ · B
∂t

= −∇ (∇× E) (3.33)

= 0. (3.34)

We mirror this numerically by updating the magnetic field with the curl of a field

in such a way that the most obvious choice for its divergence is zero. It should

be noted that the divergence operator can be defined a number of different ways,

and in practice and principle satisfying ∇ · B = 0 in all possible operators is not

possible. As mentioned in section 2.1.2, we store the magnetic field in the faces of
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zones. See figure 3.3. The most natural divergence operator is then

∇ · B ≡ 1

∆x
(Bf,x,i+ 1

2
,j,k − Bf,x,i− 1

2
,j,k)

1

∆y
(Bf,y,i,j+ 1

2
,k − Bf,y,i,j− 1

2
,k) (3.35)

1

∆z
(Bf,z,i,j,k+ 1

2

− Bf,z,i,j,k− 1

2

). (3.36)

If we define the electric field on the edges of the zone, we can define the induction

equation as

Bn+1
f,x,i− 1

2
,j,k

= Bn
f,x,i− 1

2
,j,k

− ∆t(
1

∆y
(Ez,i− 1

2
,j+ 1

2
,k − Ez,i− 1

2
,j− 1

2
,k)+ (3.37)

1

∆z
(Ey,i− 1

2
,j,k+ 1

2

− Ey,i− 1

2
,j,k− 1

2

))

Bn+1
f,y,i,j− 1

2
,k

= Bn
f,y,j− 1

2
,k
− ∆t(

1

∆z
(Ex,i,j− 1

2
,k+ 1

2

− Ex,i,j− 1

2
,k+ 1

2

)+ (3.38)

1

∆x
(Ez,i+ 1

2
,j− 1

2
,k − Ez,i− 1

2
,j− 1

2
,k))

Bn+1
f,z,i,j,k− 1

2

= Bn
x,i,j,k− 1

2

− ∆t(
1

∆x
(Ey,i+ 1

2
,j,k− 1

2

− Ey,i− 1

2
,j,k− 1

2

)+ (3.39)

1

∆y
(Ex,i,j+ 1

2
,k− 1

2

− Ex,i,j− 1

2
,k− 1

2

)).

Carefully plugging the magnetic field update from equation 3.38 into 3.35, one

finds

∇ · Bf
n+1 = ∇ · Bf

n (3.40)

so if ∇ · B = 0 at the initial conditions, it will be so for all time, to machine

precision. The next step is computing the electric field.

3.3.2 Direct Average Electric Field

The first CT method implemented was that of Balsara & Spicer (1999).

This can be viewd as a piecewise linear average of the electric field components

that are returned by the Riemann solver at the centers of faces to the corner they

share. We will follow the notation of Balsara & Spicer (1999) in defining the fields.

Let the conservation law be given by

∂V

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0, (3.41)
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where state vector V and fluxes F,G,H are

V6,7,8 =















· · ·
Bx

By

Bz















(3.42)

F6,7,8 =















· · ·
0

−Ez

Ey















(3.43)

G6,7,8 =















· · ·
Ez

0

−Ex















(3.44)

H6,7,8 =















· · ·
−Ey

Ex

0















. (3.45)

We have suppressed the hydrodynamic arguments ρ,v, E and their fluxes for sim-

plicity. The electric fields a the cell edges is the average of the electric fields in the

faces that touch it. So the electric field at (i, j + 1
2
, k + 1

2
) is the average of all the

relevant quantities at (i, j + 1
2
, k), (i, j + 1

2
, k + 1), (i, j, k + 1

2
), and (i, j + 1, k + 1

2
).

Following the electric components from the fluxes, we find

Ex,i,j+ 1

2
,k+ 1

2

=
1

4





H7,i,j,k+ 1

2

+ H7,j+1,k+ 1

2

−G8,i,j+ 1

2
,k − G8,i,j+ 1

2
,k+1



 (3.46)

Ey,i+ 1

2
,j,k+ 1

2

=
1

4





F8,i+ 1

2
,j,k + F8,i+ 1

2
,j,k+1

−H6,i,j,k+ 1

2

− H6,i+1,j,k+ 1

2



 (3.47)

Ez,i+ 1

2
,j+ 1

2
,k =

1

4





G6,i,j+ 1

2
,k + G6,j+1,j+ 1

2
,k

−F7,i+ 1

2
,j,k − F7,i+ 1

2
,j+1,k



 (3.48)
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3.3.3 Lax-Friedrichs Electric Field

The previous method can be seen as a piecewise constant interpolation of

each flux at the face center, eg. (i, j, k + 1
2
), to the edge, eg. (i, j + 1

2
, k + 1

2
). The

Athena method of Gardiner & Stone (2005) is a linear interpolation:

Ez,i+ 1

2
,j+ 1

2
−ǫ,k = Ez,i+ 1

2
,j,k +

∆y

2

(

∂(Ez)

∂y

)

i+ 1

2
,j+ 1

4
,k

(3.49)

that is, the z component of the electric field at (i + 1
2
, j + 1

2
, k), approached from

below along y. There are four such components, from below and above, along x

and and along y. The full computation is then

Ez,i+ 1

2
,j+ 1

2
,k =

1

4

(

Ez,i+ 1

2
,j,k + Ez,i+ 1

2
,j+1,k + Ex,i,j+ 1

2
,k + Ex,i+1,j+ 1

2
,k

)

+
∆y

8

(

(

∂Ez

∂y

)

i+ 1

2
,j+ 1

4
,k

−
(

∂Ez

∂y

)

i+ 1

2
,j+ 3

4
,k

)

(3.50)

+
∆x

8

(

(

∂Ez

∂x

)

i+ 1

4
,j+ 1

2
,k

−
(

∂Ez

∂x

)

i+ 3

4
,j+ 1

2
,k

)

.

This section and the next concern the computation of the derivatives of the electric

field.

In the first method, the standard numerical integration scheme of Lax and

Friedrichs (Lax, 1954) is used to compute the derivatives at (i+1
2
, j+1

4
), (i+1

2
, j+3

4
),

(i + 1
4
, j + 1

2
) and (i + 3

4
, j + 1

2
). Where not included, the z index is assumed to be

k.

We will begin our discussion with a description of the LF method for a

linearized conservation law, and then apply it to the derivative of the electric field.

Begin with a linearized conservation law of the form

∂u

∂t
+

∂f

∂x
= 0, (3.51)

This can be discretized in a number of ways. The LF method is a Forward Time

Center Space (FTCS) method, with the initial time taken as the arithmetic mean

of ui+1 and ui−1. See the excellent book by Laney (1998) for a full description of

discretization methods. Equation 3.51 is discretized as

un+1 − 1
2
(un

i+1 + un
i−1)

∆t
+

f(un
i+1) + f(un

i−1)

2∆x
= 0. (3.52)
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Rearranging, one arrives at

un+1
i =un

i − 1

λ
(f̂i+ 1

2

− f̂i− 1

2

) (3.53)

f̂i+ 1

2

=
1

2

(

f(un
i+1) + f(un

i )
)

− λ

2
(un

i+1 − un
i ) (3.54)

where λ = ∆x/∆t is the wave speed.

We derive an estimate for (∂Ez/∂x)i+ 1

4
,j+ 1

2

by deriving the flux from apply-

ing equation 3.54 to the x derivative of the induction equation:

∂

∂t

(

∂Bx

∂x

)

+
∂

∂y

(

∂Ez

∂x

)

= 0. (3.55)

We will compute the analog of the centered-space flux from equation 3.54 at (i +

1
4
, j + 1

2
) by computing the flux for 3.55 along the y axis at i + 1

4
. This requires us

to define
(

∂Bx

∂x

)

i+ 1

4
,j

=
2

∆x

(

Bf,x,i+ 1

2
,j − Bc,x,i,j

)

(3.56)

(

∂Ez

∂x

)

i+ 1

4
,j

=
2

∆x

(

Ez,i+ 1

2
,j − Ez,i,j

)

(3.57)

where Bf,x,i+ 1

2
,j is the face centered magnetic field, Bc,x,i,j is the cell centered

magnetic field gotten from the averaging of Bf , Ez,i+ 1

2
,j is computed from the flux

from the Riemann solver at the same point, and Ez,i,j = vxBc,y − vyBc,x is the cell

centered electric field. Plugging this into the LF scheme, treating equation 3.56 as

u and equation 3.57 as f , we get
(

∂Ez

∂x

)

i+ 1

4
,j+ 1

2

=
1

∆x

(

Ez,i+ 1

2
,j − Ez,i,j + Ez,i+ 1

2
,j+1 − Ez,i,j+1

)

(3.58)

+
λ

∆x

(

Bf,x,i+ 1

2
,j − Bc,x,i,j + Bf,x,i+ 1

2
,j+1 + Bc,x,i,j+1

)

After repeating this argument for all necessary components, and putting the answer
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in 3.50, we arrive at

Ez,i+ 1

2
,j+ 1

2

=
1

2
(Ez,i,j+ 1

2

+ Ez,i+1,j+ 1

2

+ Ez,i+ 1

2
,j + Ez,i+ 1

2
,j+1) (3.59)

− 1

4
(Ez,i,j + Ez,i+1,j + Ez,i,j+1 + Ez,i+1,j+1)

+
λ

8
(Bf,x,i+ 1

2
,j − Bc,x,i,j − Bf,x,i+ 1

2
,j+1 + Bc,x,i,j+1)

+
λ

8
(Bf,x,i+ 1

2
,j − Bc,x,i+1,j − Bf,i+ 1

2
,j+1 + Bc,x,i+1,j+1

+
λ

8
(Bf,y,i+1,j+ 1

2

− Bc,y,i+1,j − Bf,y,i,j+ 1

2

+ Bc,y,i,j)

+
λ

8
(Bf,y,i+1,j+ 1

2

− Bc,y,i+1,j+1 − Bf,y,i,j+ 1

2

+ By,i,j+1)

It should be noted that by itself, LF is somewhat prone to even-odd instabilities,

though the method is globally stable. See Laney (1998), chapter 17 for more details

3.3.4 Velocity Switched Electric Field

The other scheme is essentially an upwinded version of equation 3.59 with

λ = 0. Simply setting λ = 0 will result in an unstable method. However, we can

improve the method with upwinding, by switching the electric field direction based

on the fluid velocity:

(

∂Ez

∂y

)

i+ 1

2
,j+ 1

4































(

∂Ez

∂y

)

i,j+ 1

4

for vx,i+ 1

2
,j > 0

(

∂Ez

∂y

)

i+1,j+ 1

4

for vx,i+ 1

2
,j < 0

1
2

(

(

∂Ez

∂y

)

i,j+ 1

4

+
(

∂Ez

∂y

)

i+1,j+ 1

4

)

otherwise.

(3.60)

Equation 3.60 is then used in equation 3.50. It has been found in turbulence tests

not presented here that this method is preferred, as it is suppresses the small

oscillations seen in the previous method.
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3.4 Tests

3.4.1 One Dimension

Brio and Wu shock tube

As discussed in 2.2.1, the shock tube defined by Brio & Wu (1988) is a

standard test of any MHD solver. It displays a number of the important MHD

waves, including a compound wave. Compound waves are not a property of pure

hydrodynamics, because the system is convex. However, due do the more complex

nature of the MHD equations, certain initial conditions can cause flows in which at

one point the shock speed in a given family is higher than the wave speed for that

family, causing a shock, but lower in the post shock region, causing a rarefaction

immediately following the shock.

The initial conditions are (ρ = 1, vx = 0, vy = 0, vz = 0, By = 1, Bz =

0, P = 1) on the left, (ρ = 0.125, vx = 0, vy = 0, vz = 0, By = −1, Bz = 0, P = 1)

on the right. Bx = 0.75, and γ = 1.4

The test shows, from right to left, a fast rarefaction, slow compound (shock

+ rarefaction), contact, slow shock, and fast rarefaction.

This was the primary test of the various switches in the method. This test

was run combining a huge variety of the solver switches available to DaveThena.

Only 4 are shown here, due to the fact that this solver is not likely to see the light

of day once I graduate. These have been saved, and interested readers can contact

me if you’re actually going to be using the solver.

Figure 3.4 shows the least expensive and least accurate method, with piece-

wise constant for both predict and correct step. It is completely non-oscillatory, but

also quite diffusive. Figure 3.5 shows the minmod slope limiter, which is the more

diffusive limiter, on all fields, and primitive variables. It’s less diffusive than the

constant reconstruction, as expected. Figure 3.6 shows what happens if one uses

the vanLeer limiter, the more compressive limiter, on the conservative fields. One

can see that certain options in this code can cause catastrophic results. Figure 3.7

is done with the “recommended” set, using vanLeer on density and magnetic field,

and minmod on velocity and total energy. For ease of reference, figure 3.8 shows an
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enlargement of the density for the constant, minmod, and “recommended” setups.

Kim Isothermal

In order to verify correct behavior in the isothermal solver, we have also

performed the first one dimensional shock tube of Kim et al. (1999). The initial

conditions are (ρ = 1, vx = 0, vy = 0, vz = 0, By = 5/(4π)
1

2 , Bz = 0) (ρ = 0.1, vx =

0, vy = 0, vz = 0, By = 2/(4π)
1

2 , Bz = 0) on the left. Bx = 3/(4π)1/2. It shows fast

and slow rarefactions to the left, and fast and slow shocks to the right. Because this

is an isothermal run, there is no contact discontinuity. We ran this with both the

isothermal solver and the adiabatic solver, with γ = 1.001. The adiabatic solver

shows one small overshoot and oscillation in the density, immediately after the slow

shock. Other than that, the two solvers behave almost identically. Figure 3.9 shows

the non-constant fluid quantities after a time of 0.1, solved on a computational grid

of 512 zones.

3.4.2 Two Dimensions

The Orszag-Tang Vortex was originally developed by Orszag & Tang (1979)

to demonstrate that small scale structure can be generated by the nonlinearities

in the MHD equations. It initially starts with a single large scale rotating velocity

structure and two circular magnetic structures. From these simple large scale

initial conditions, substantial small scale structure is formed. It now serves as a

standard test problem to demonstrate the accuracy and diffusivity of MHD codes.

The initial conditions are on a 2 dimensional periodic box, 256 zones on

a side. v = v0(−sin(2πy)x̂ + sin(2πx)ŷ,B = B0(−sin(2πy)x̂ + sin(4πx)ŷ), v0 =

1, B0 = 1/
√

4π, ρ0 = 25/(36π), p0 = 5/(12π), and γ = 5/3 which gives a peak

Mach number of 1 and peak β = p0/(B
2
0/2) = 10/3. Figure 3.10 shows the density

at t = 0.48 for both the Ryu and Jones method (top) and the DaveThena method

(bottom), both at 2562 resolution. One can see immediately that the DaveThena

solver has substantially more structure resolved, indicating less diffusion in the

solver. This is exactly what we wanted from the development of this solver.
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Loop Advection

In Gardiner & Stone (2005), they describe a test specifically designed to

break the CT method of Balsara-Spicer. It consists of a loop of magnetic field

contained within a radius R, no field outside, and is advected obliquely to the grid.

Specifically, the domain is −1 ≤ x ≤ 1 by −0.5 ≤ y ≤ 0.5. Results shown here use

128x64 zones. Density ρ = 1 and pressure P = 1, velocity v = v0[2/
√

5, 1/
√

5],

where v0 = 1/
√

5. The magnetic field is initialized from a vector potential A =

[0, 0, Az], where

Az =







A0(R − r) for r ≤ R

0 for r > R
(3.61)

3.5 Comparison of Turbulent Evolution: Enzo

Options

As discussed in sections 2.2.1 and 3.1.2, turbulence is an excellent measure

of the dissipation of a method. In order to quantify the performance of a code,

specifically the numerical diffusion of the method. We did a Mach 5, zero-field

simulation with 2563 zones using DaveThena, PPML, PPM, and the Li method,

and the results of the power spectrum can be seen in figure 3.12. Unfortunately, on

this test DaveThena doesn’t perform as well as one would have liked. The power

falls off quite rapidly. The fit to this spectrum is P (k) ∝ k−2.2, which while not as

bad as the Ryu and Jones method, not as good as the other options available in

EnzoMHD. In principle I would like to have compared the Ryu and Jones method

directly in the comparison, but it was not deemed worth the resources at the time.

The small scale turn up of the PPML spectrum is not understood, and it is not

believed to be present in other runs.
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3.6 PPML

A fourth method for MHD was introduced and showed great promise before

an uncorrected error unsplit MHD was found. This bug will be discussed in section

3.7

PPM on a Local Stencil (PPML) (Ustyugov & Popov, 2008) is an extension

of the PPM method of Colella & Woodward (1984). In regular PPM, a parabolic

reconstruction of the data in a given cell Vi is obtained by using the data points

Vi−2 through Vi+2. This parabola is used to reconstruct the interface states at the

zone faces at VL,i+ 1

2

and VR,i− 1

2

. (Here, L and R refer to which side of the interface

the state is on.) This gives regular PPM a 5 point stencil. The Riemann problem

is then solved with an approximate solver using VL,i− 1

2

and VR,i− 1

2

, which gives a

flux that updates the interface.

In order to reduce the numerical diffusion in the code, Ustyugov & Popov

(2008) reduce the stencil to (almost) a single point. They do this by actually

storing VL,i+ 1

2

and VR,i− 1

2

for the entire simulation, and evolving them using a

second call to the Riemann problem. This effectively doubles the resolution, but

more than halves the numerical dissipation, as the stencil is reduced by two zones

on either side.

This is done in an unsplit manner, much like what is done in Gardiner &

Stone (2005). It was seen that this code and DaveThena are both subject to the

instability described in the next section. This has been rectified in a different

version of PPML, but not in DaveThena.

3.7 One Shortcoming of Unsplit Methods: Catas-

trophic Instability

Both DaveThena and PPML pass the regimen of standard of test problems

quite well. However, in the standard regimen there are no strongly supersonic

turbulence simulations, which it turns out is quite good at exposing numerical

instabilities. Figure 3.13 demonstrates this problem. Both panels in the figure
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show the density field in Mach 3 driven turbulence. The left panel has no magnetic

field, the panel at right has B = [0, 0,
√

2]. Peak density in the left panel is 33

times the mean, in the right panel the peak density is 100 times the mean, and

grows in a few timesteps to 3e4 times the mean. This is extremely unphysical.

This instability is seen in both DaveThena and PPML.

Recently, it has been reported that this bug has been fixed in PPML by in-

corporating the divergence constraint in the reconstruction of the fields. However,

this fix came after we began using the Li solver discussed in chapter 2, so was not

incorporated into Enzo in either solver.

3.8 Other necessary Enzo fixes

Keeping the divergence of the magnetic field below 1 × 10−10 is quite a

challenge, and is an extremely strong test of the subtle details of an AMR code.

Miniscule errors that were previously unknown become glaring errors when the

divergence goes from 1 × 10−14 to 1 × 10−6 in a single time step. This can be

caused by an error in the other data as small as 1 × 10−8 that is, in any realistic

simulation, insignificant and expected. This brings us to several modifications that

needed to be made to Enzo before this work could be produced. Data consistency

is the common thread in all the modified subsystems. None of these modifications

have shown to make any significant impact on other works done with Enzo. While

these modifications are of interest primarily to the Enzo developer, it is important

to have them documented here.

3.8.1 Gravity Mod

Enzo’s gravity solver returns an acceleration field that is given to the patch

solver. The patch solver then adds the acceleration to the velocity and energy in the

appropriate manner. See section 2.1.8 for more details. Since the Poisson problem

is solved on each grid patch independently, it was found that the accelerations in

the ghost zone of a given grid were often different than the active zones in the grid

they neighbored. This difference was frequently not more than 1 part in 106, but
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would quickly and efficiently ramp ∇·B from it’s machine noise value of 1× 10−14

to much larger values. This comes from the fact that slightly different values of the

velocity would be entering the Riemann problem in the ghost zones, and would

yield slightly different results for the electric field on the boundary of the grid.

This destroys the underpinnings of why CT keeps ∇ · B = 0.

To fix this, EnzoMHD installs an additional boundary condition call on the

acceleration field. While this is a bandage on the underlying problem, it allows

MHD simulations to be run without the quality of the solution being compromised.

3.8.2 SibSUB mod and Boundary Correction

The hierarchy structure used in Enzo is a strictly nested one, in which

subgrids belong to exactly one parent. The flux correction step was done in a loop

over children of a given parent. However, no treatment was done on grids that

shared a boundary with a fine grid that wasn’t its own child. Such a situation

can arise when two coarse grids share a face, and one coarse grid has a child along

that same face. If the other parent has no child along that same face, the flux

correction was not performed in those zones. This is an extremely rare occurrence,

as a fine grid on one coarse boundary usually is tracking a physical structure that

spans both coarse grids, in which case the ’other’ coarse grid also has a child

grid to project its solution into the parent. However, as mentioned in 2.1.3, any

discrepancy in flow will lead to divergence in the field, so this was corrected.

The correction is a fairly brute force one. For each grid on a given level, it

first scans for neighbors on that level that share a face. It then looks for subgrids

of those grids that also share a face. This list is then passed along to the flux cor-

rection routine, which had to have its logic expanded to take care of the additional

work. It has been noted that this correction does not work with the Fast Sibling

locator. This will be rectified in the future.
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3.8.3 Boundary Conditions

Initially, Enzo had no boundary condition call between the routines that

update a coarse grid from a fine one and the rebuilding of the hierarchy. This

also lead to discrepancies, as parent grids with subgrids along their boundaries

inevitably use the ghost zones for interpolation. If the active zones that those

ghost zones coincided with were updated from their own fine grids, that change

needs to be the ghost zones, or discrepancies will occur between the subgrids that

share that face, again causing divergence.

3.8.4 Cosmology and Flux Correction

In its initial formulation, Enzo did not take into account the time variability

of the cell width due to the expansion during the fine grid subcycle when saving

fluxes for the flux correction routine. This again lead to conservation loss and

discrepancies, since the flux that was used to correct the parent grid used the

cell width at the time of correction, neglecting any change during the subcycle

integration. This was corrected. See sections 2.3.1 and 2.3 for more details.
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Figure 3.2: The complete stencil for 2nd order time step integration, where the first
(predictor) step has no CT and piecewise constant reconstruction, and the second
(corrector) step uses CT and piecewise linear reconstruction.
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Figure 3.3: The data structure for the electric field E and face centered magnetic
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Figure 3.4: Piecewise Constant reconstruction for the Brio-Wu shock tube.
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Figure 3.5: Brio-Wu shock tube with minmod slope limiter on the correct step for
all fields, using primitive variables (pressure and velocity)
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Figure 3.6: The Brio-Wu Shock Tube with vanLeer limiter on the conserved quan-
tities. Note the sever numerical oscillations between the slow shock and fast
rarefaction.
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Figure 3.7: The Brio-Wu shock tube with the “recommended” set, using vanLeer
on density and magnetic field, and minmod on velocity and total energy.
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Figure 3.8: Density from the Brio-Wu shock tube showing the “recommended” set
of switches (solid line), a single piecewise linear reconstruction (dotted) and the
minmod slope limiter on all fields.
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Figure 3.9: The Kim Isothermal Test using the “recommended” set of switches.
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Figure 3.10: The Orszag Tang vortex problem for both the Ryu and Jones (top)
and DaveThena method (bottom) This shows the significant decrease in numerical
diffusion in the second method.
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and A0 = 10−3, R = 0.3, r =
√

x2 + y2. This is then advected back to its starting

point. The results from this test can be seen in figure 3.11. The top panel shows

a single integration step with piecewise constant reconstruction and the Balsara

Spicer CT method. For reasons that are lost to a beer haze several years old, this

run was done with vy = 0. The bottom panel shows a result from a run with

piecewise constant reconstruction for the predict step and piecewise linear for the

correct, wind-switched Athena CT, and is quite similar to the result in (Gardiner

& Stone, 2005). It is claimed that omitting the higher order terms that make the

Athena CT different from the Balsara-Spicer CT cause the loop to disintegrate,

but this is not seen here. However, the result shown here is terrible.

Figure 3.11: The magnetic energy from the magnetic loop advection test of Gar-
diner & Stone (2005), done poorly (top panel) and properly (bottom panel). The
top panel uses a single integration step and the Balsara-Spicer CT method, the
bottom uses piecewise constant reconstruction for the predict step and piecewise
linear for the correct, wind-switched Athena CT
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Figure 3.12: The compensated velocity power spectrum for 4 solvers on Mach 5
unmagnetized turbulence.
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Figure 3.13: A demonstration of an instability that is believed to be caused by
improper reconstruction of the electric field in an unsplit method. Both panels
show density in driven turbulence at Mach 3. The left panel has no magnetic field,
the panel at right has B = [0, 0,

√
2]. The spike in the right is an unavoidable

explosion.



Chapter 4

Star Formation

4.1 Numerical Experiments

4.1.1 Suite of runs

Simulations performed for this work are initialized in a manner similar to

those in sections 2.2.1 and 3.1.2. The cubic domain is initially uniform in density

with an initial plasma β = 8πp/(B2) = 22. A divergence free, Gaussian, random

velocity field with power only at the large scale (1 <= k <= 2) is added to

the velocity field at each time step in such a way that that energy input Ė is

constant (Mac Low, 1999). Driving is maintained for several dynamical times

τdyn = Lbox/vrms to statistically decouple the initial conditions from the field that

we wish to measure. This initial driving is done without gravity. This initial cube

is identical to the cube used for the Santa Barbara Turbulence comparison project

(Kritsuk, 2009), currently under way. At t = 0, gravity is switched on. For some

runs presented in this work the driving is continued after t = 0, others it is stopped

and the turbulence is allowed to decay.

A series of ten simulations were done using the Kraken Cray XT4 at the

National Institute for Computational Science. Each of these simulations had a

root grid of 1283; nine of these used 4 levels of refinement, one used 6. This gives

an effective resolution of 20483 for the 4 level runs, and 81923 for the 6 level run.

Refinement was triggered by the Truelove condition (Truelove et al., 1997). If at

101
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any point in time the local Jeans length

λJ =
√

πc2
s/Gρ (4.1)

was shorter than 4 zones, the area was refined. This defines the Truelove density

ρT =
pic2

s

G(4∆x)2
(4.2)

where ∆x is resolution on a given level. Zones in which ρ > ρT are flagged for

refinement.

For the finest level, some fraction of zones will eventually violate the Tru-

elove condition. Cores discussed in this work will frequently have the fraction of

their mass that has violated this condition indicated. This will be denoted MV /M .

This serves as an indicator of the level of collapse the core has experienced.

Four of these runs allowed the turbulence to decay after the gravity was

switched on, the rest continued the driving.

The primary parameter change among the runs was the virial parameter,

αvir. The virial parameter gives a ratio of the kinetic energy (ke) to the gravita-

tional energy (ge): α = |2ke/ge|. A sphere with α = 1 is in virial equilibrium,

while α > 1 is understood to be unbound. Typically, the value for a uniform sphere

is used;

αsphere =
5σ2

1dR

GM
(4.3)

where σ1d = σ3d/
√

3 is the velocity dispersion, R is the object radius, G is the

gravitational constant, and M is the total mass in the box (Bertoldi & McKee,

1992). However, since our box is a cube, we instead use the gravitational potential

energy for a cube:

αvir =
18σ2

1dR

πGM
(4.4)

This yields a slight discrepancy with the quoted value of αvir for other simulators,

as the increased gravitational energy of a cube decreases αvir. This lowers the

quoted value for αvir as compared with other simulations.

The simulation values of density, sound speed (thus pressure), and box

length are set to unity. In the simulation, different values of αvir are obtained by
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altering the value of the gravitational constant Gcode. In the analysis, simulations

are all normalized to a size of 10 pc and a sound speed of 0.2kms−1, the sound

speed for gas at 10K. The value of the mean density is changed proportional to the

gravitational constant such that G ∝ ρt2. However, since G only constrains one

of the free dimensional parameters, we are free to re-scale units with the following

conditions:

L ∝ T 1/2ρ−1/2 (4.5)

M ∝ T 3/2ρ−1/2 (4.6)

cs ∝ T 1/2 (4.7)

tff ∝ n−1/2. (4.8)

Table 4.1 shows the range of parameters. The first column shows the value

of αvir; the second column indicates whether the driving was continued after t = 0,

or if it was allowed to decay; the third column indicates whether or not driving

was continued past t = 0. The last column gives the name of the simulation. The

name relates to the labels put on the simulations as they were run in the order

they were performed, and serve only as a reference to the archived data.

Most of the analysis will be done on the αvir = 0.52 run. This is equivalent

to αvir ≈ 1 for the spherical definition. Four of these simulations (ok5, ok6, ok7

and ok10) will be ignored entirely in this analysis due to time constraints, and

appear on this table only for reference to the archived data.

4.1.2 Core Selection and Images

We used the yt analysis package ((Turk, 2008)) for most of the data analysis

presented here. yt is a highly extensible tool designed to visualize and analyze

AMR datasets, written in the Python programming language. Cores were selected

using yt’s Clump module. Clump and its find clumps tool finds connected sets of

zones with nearest neighbors having values of density ρi and ρi+1 = δρi for levels

spanning some minimum density ρ0 through the maximum found in the dataset.

This technique is similar to CLUMPFIND (Williams et al., 1994). For our analysis,

we set ρ0 = 10× < ρ > to be 10 time the mean, and with levels spaced every 12%
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Table 4.1: Parameters for the suite of simulations done for this study.

αvir Driven N Levels Name
0.52 Y 4 ok04
0.91 Y 4 ok03
1.3 Y 4 ok02
1.6 Y 4 ok09
2.3 Y 4 ok06
3.1 Y 4 ok07
1.3 N 4 ok01
1.3 N 6 ok08

0.52 N 4 ok05
5.1 N 4 ok10

above the previous level (δ = 1.12). We define a “core” as any object returned

from find clumps that a.) does not have more than one child and b.) who’s parent

does have more than one child. This technique is common in in both observational

studies (Johnstone et al., 2000)) and numerical studies (Lunttila et al., 2008). In

figure 4.1 we indicate a schematic of this process: the grey circles indicate clumps

that will be defined as cores

It has been argued by Rosolowsky et al. (2008) that selecting objects in this

fashion makes the object population too sensitive to the details of the minimum

density and level spacing. This will be taken into account in future work.

A representative selection of cores from the αvir = 0.52 run at t = 0.75tff

can be seen in figure 4.2. This selection gives an overview of the different types of

objects that can be considered cores. The object on the bottom right also shows

a potential defect with clumpfind type algorithms, as one can clearly see that a

slightly different selection of ρ0 and δ could potentially bifurcate this into two

objects.

Section 4.3 shows a close up of a selection of cores. This shows how clustered

the objects are in the simulation, and how the filamentary nature of the turbulence

is preserved in the core arrangement. This has been seen in nature in a number of

observations, such as Motte et al. (1998) in Ophiuchus.
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δρ

Figure 4.1: A schematic of clump selection. Lines indicate levels of constant den-
sity. Connected sets at constant density are selected, and isolated objects are
selected as cores. Circles indicate objects that would be selected as cores in this
schematic

4.2 Mass vs Size

We first show the mass and size of cores in order to get a preliminary picture

of what we will be examining. Figure 4.4 shows core mass M vs size S in zones for

cores in 4 snapshots in our primary run, the αvir = 0.52 driven simulation. Cores

in this plot were selected to have α < 2.0, which is an indicator of boundedness,

though neither necessary nor sufficient one, as discussed in section 4.4. S is defined

as the radius R in pc divided by the smallest zone width in the dataset, also in pc.

R is defined as half of the geometric mean of the width of the core along each of

the coordinate axes ∆x, ∆y, ∆z:

R =(∆x × ∆y × ∆z)1/3/2. (4.9)

S = R/dx (4.10)

For spherical objects this is identically the radius. Times are 0.208tff , 0.388tff , 0.468tff ,

and 0.743tff . The color of each point represents the fraction of mass above the

Truelove density. This is an indicator of how collapsed each core is. “Red” cores
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Figure 4.2: A representative selection of cores from the αvir = 0.52 run at t =
0.75tff . This selection gives an overview of the different types of objects that can
be considered cores by the the algorithm defined in section 4.1.2. The width of
each plot is 0.2pc
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Figure 4.3: A close up of a selection of cores. Image is 2.5pc on a side.
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have completely violated the Truelove condition and are entirely at the finest res-

olution. As time progresses, these cores get smaller and smaller, until they occupy

only a few zones. Even at early times, though, “Red” cores can be seen at all

masses up to a few hundred solar masses and a few hundred zones. We will be

using the Truelove density as an indicator of collapse in cores. We believe that

cores with with high fraction above Truelove are in general quite bound and remain

so, though this will need to be investigated in the future.

While Truelove et al. (1997) saw artificial fragmentation for their spherical

collapse. However, we believe that the size of these objects is not due to artificial

fragmentation. As will be discussed in section 4.5, increasing the resolution in fact

increases the number of cores, while artificial fragmentation from lack of resolution

would tend to decrease it.

Also plotted are fits to M = Sγ. Kritsuk et al. (2007) measured a similar

quantity for boxes in their turbulent hydrodynamic runs, and found that γ = 2.0

for small boxes (less than 30 zones) and γ = 2.4 for larger boxes. In our case of self

gravitating MHD turbulence, we find much shallower fits that decreases with time.

Fit exponents are, as time progresses, 1.65, 1.40, 1.00, 0.95. This suggests that

objects are in transition from the somewhat larger than 2 dimensional structures

generated in the turbulence to much more filamentary structures.

4.3 Density PDF

One of the most prominent consequences of turbulence in molecular clouds

is the log-normal distribution of densities (Vazquez-Semadeni, 1994; Padoan et al.,

1997a,b; Scalo et al., 1998; Passot & Vázquez-Semadeni, 1998; Nordlund & Padoan,

1999; Klessen, 2000; Padoan & Nordlund, 2002). This has been used to predict

both the Initial Mass Function of stars (IMF) (Padoan & Nordlund, 2002; Padoan

et al., 2007), brown dwarf frequency (Padoan & Nordlund, 2004) and the star

formation rate (Krumholz & McKee, 2005). The IMF and star formation rate will

be discussed further in sections 4.8 and 4.9 respectively. Here we will discuss the

PDFs one expects to see from isothermal turbulence, and what has been seen in
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Figure 4.4: Mass vs. Size for 4 timesteps in the αvir = 0.52 driven
run. Color indicates fraction of mass above the Truelove density. Size is in
zones on the finest level. Times and fits to the M = Sγ power law are
(0.208tff , 1.65), (0.388tff , 1.40), (0.468tff , 1.00) and (0.743tff , 0.95). For reference,
1 zone is 4.8 × 10−3 pc, and 1000 zones is 4.8 pc.
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our simulations.

The central limit theorem states that the sum of a sufficiently large number

of uncorrelated events will form a Normal, or Gaussian, distribution. The corollary

of this is a sufficiently large number of random multiplicative events will form a

lognormal distribution. This distribution has been experimentally verified in a

large number of different simulations, both pure hydro (Vazquez-Semadeni, 1994;

Padoan et al., 1997c) and MHD (Li et al., 2004; Lemaster & Stone, 2008)

The log-normal distribution is given by

P (x)d ln x =
1√

2πσ2
exp

[

(ln x − µ)2

2σ2

]

dx (4.11)

where x = ρ/ρ0, is the over density, and |µ| = σ2/2 is the mean of ln x. For

pure hydrodynamical turbulence,

σ =
√

ln(1 + γ2M2) ≈ γM (4.12)

where γ ≈ 0.5 has been determined from numerical experiment. For driven MHD

turbulence, Lemaster & Stone (2008) find that

σ =
√

| − 0.72 ln [1 + 0.5M2] + 0.20| (4.13)

When turbulence simulations are performed in the presence of self gravity,

several authors (Klessen, 2000; Slyz et al., 2005; Vázquez-Semadeni et al., 2008)

find that the log-normal PDF underestimates the high density tail of the measured

PDF. Two of these can be seen in figure 4.5. Slyz et al. (2005) fit the high density

tail to a power law with index of −1.5. Klessen (2000) does not show a power law,

but his simulations are poorly resolved, and Vázquez-Semadeni et al. (2008) only

mention the power law in passing. Our work is the first reported case in an MHD

simulation.

Figure 4.6 shows snapshots of the density PDF for our fiducial run at t = 0

and at t = 0.75tff , with fits to log normals. Fit parameters are in table 4.3. The

shifts in µ and σ as the gas collapses are not surprising, as the mean shifts to lower

density and the breadth becomes somewhat broader. The shift to lower density

comes because this is a volume weighted density; more mass at high density implies
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Figure 4.5: Top: Density PDF from the self gravitating simulation of Slyz et al.
(2005). This set of simulations were not isothermal, but nearly so due to the rapid
cooling. Bottom: The same, from Vázquez-Semadeni et al. (2008).
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Table 4.2: Fit parameters.

t/tff µ σ χ2

0 -0.80 1.35 4.6 × 10−6

0.75 -1.86 1.74 1.6 × 10−6

Figure 4.6: Density PDFs of the initial conditions (left) and after t = 0.75tff .
(right) Both are fit to lognormal distributions.

lower overall volume average. The broadening of the fit reflects the fact that more

mass is at higher densities at later times. It is interesting to note that the quality

of the fit as measured by χ2 actually improves by a factor of 4 in the gravitating

case.

The right panel of Figure 4.7 shows an average of 10 timesteps for run

ok4 between t = 0.5 tff and t = 0.75 tff . This corresponds to star formation

efficiencies of SFE = 0.07 and SFE = 0.15. In this range, all simulations have

roughly constant star formation rate. We will use this range to compare star

formation rates with different values of αvir. This is discussed further in section

4.9. Also plotted is a power law fit between ρ/ρ0 = 10, 1000. The fit exponent is

−1.6, similar to the value −1.5 seen by Slyz et al. (2005). The left panel shows

each timestep over plotted individually. The power law is remarkably stable over

both time and, consequently, violation fraction. Also shown in the left plot are

the Truelove density discussed in section 4.1 and the critical density discussed in
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Figure 4.7: PDF of 10 steps between t = 0.5tff and t = 0.75tff of the α = 0.52
(ok4) run. Left: All steps over plotted. Right averaged and fit with a power law
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Also shown in the left plot are the Truelove Density and the critical density of
Krumholz & McKee (2005) discussed in section 4.9

section 4.9.

Figure 4.8 shows the robustness of the power law against virial parameter

αvir. Plotted are PDFs for each of the 4 driven runs with αvir < 2. These plots are

averaged over times corresponding to star formation efficiencies between SFR =

0.07 and SFR = 0.15, as in the previous run. This serves to normalize each run

to the same physical conditions.

Figure 4.9 shows the PDF for 3 runs with αvir = 1.3; a driven (green) and

decaying (blue) run with 4 levels of resolution, and a decaying run with 6 levels

(red). More will be said about this later in section 4.5, here we will simply note

that the power law slope is additionally not a function of Mach number, as the

runs marked “undriven” have M = 5.5 at this time, nor resolution, as one of the

graphs has 6 levels.

4.4 αvir vs Energy Ratios

The parameter αsphere (eqn. 4.3) is the typical parameter used in the liter-

ature to indicate whether or not an object is collapsing. We would like to address

the validity of using this as an indicator of whether or not a core or other clump
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of gas is collapsing by comparing

The derivation of αsphere = 5σ2R/GM comes from a simplification of the

Virial Theorem, which states that for any clump of gas

1

2
Ï = 2(T − Ts) + B + W (4.14)

where I is proportional to the inertia tensor; T is the kinetic energy and thermal

energy in the clump; Ts is the surface pressure; B is the magnetic term, which

contains both isotropic pressure and curvature terms; and W is the gravitational

energy. By ignoring surface and magnetic terms and assuming a sphere of constant

density, one can define a term

αsphere ≡ −2T
W =

5σ2R

GM
(4.15)

which, indirectly, indicates the sign of Ï which is in turn treated as a tracer of

expansion or collapse.

Since both simulated and observed cores are typically not spherical nor uni-

form in density, and also include magnetic fields, we thought it would be beneficial

to examine how the estimated Virial ratio α compares to ratios of combinations of

kinetic (ke), thermal (te), and magnetic (be) energies to gravitational energy (ge)

in cores. Additionally, σ1d (eqns. 4.3, 4.4) is sometimes computed in the compu-

tational literature using only the fluid velocity, neglecting the thermal component.

However, the observational literature typically doesn’t deconvolve contributions to

the line width from velocity and thermal motions. We will not treat the validity

of ignoring the surface term here. Both Dib et al. (2007) and Ballesteros-Paredes

(2006) study that in detail.

In figure 4.10, we show six figures comparing both computations of αvir,

purely fluid velocity in the left column and fluid + thermal in the right. The top

row shows α vs. R = ke/ge, the second is (te+ke)/ge, the third is (be+te+ke)/ge.

Also plotted are lines at 0.2, 2.0, and 20.0. Additionally, as with most plots in this

work, the color of each point shows the fraction of mass in the object above the

Truelove density. Ideally, all points would cluster along the line α = 2ke/ge.

In the top line, we treat only kinetic energy. The points here cluster basi-

cally around 2, with some outliers, most notably on population of collapsing objects
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around ke/ge = 0.3 The left plot indicates that αvir somewhat undershoots the

expected, while the inclusion of the thermal energy in the definition of αvir serves

to shift the points up somewhat. The spread is not changed much.

The second row shows the inclusion of the thermal energy in the energy

ratio. The left plot shows αvir without the thermal component, and the spread is

quite large. However, with the thermal component included, the spread narrows

substantially. This shows that when ignoring magnetic effects, it’s important to

include the thermal energy in computation of αvir, or one will substantially under

estimate the value.

The third row shows compares αvir to the full energy available to an object,

which is usually ignored in both observations and numerical work. These plots show

that αvir computed for a uniform non-magnetized sphere is not a good indicator

of gravitational boundedness.

Somewhat more telling is figure 4.11. This is the same plot as 4.10 with

the plot range restricted to α < 10 and ratio/ge < 10 (where ratio is one of the

energy ratio combinations plotted). Also shown are the lines ratio = 1 and α = 2,

which are the cuts above which traditional wisdom would say the objects should

not collapse. Three things are interesting about these plots, and the same is true

for all except the top row.

The first is the collection of “orange” objects with ratio < 1 and α > 2.

The nature of these objects is still under investigation. The orange color indicates

objects that are in the process of collapse, as non-collapsing objects are unable

to reach such densities. These are likely highly non-spherical objects, or objects

where the core definitions are not sampling the gas that one would naively expect

to be collapsing.

The second is the collection of objects that exist in the bottom two rows

that have α < 2 but ratio > 1. Energetic arguments would forbid these objects

from collapsing, but α arguments would pick them up as bound. Further studies

will track these objects in time to determine if they do in fact collapse.

The third population is the collection of “red” objects that have fully vio-

lated the Truelove condition. They’re concentrated in the quadrant that one would
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Figure 4.10: A comparison of α = 5σ2r/(GM) with ratios of Kinetic (ke), Thermal
(te) and Magnetic (be) energies to Gravitational Energy (ge). Color bar denotes
fraction of core above the Truelove Density. Top: ke/ge; Middle: (ke+te)/ge;
Bottom: (ke+te+be)/ge. σ is the velocity of the object: in the left column, σ
includes only the fluid velocity; the right column combines both fluid and thermal.
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expect, α < 2 and ratio < 1, but more interestingly is how uniformly they’re spread

throughout the distribution. The exact nature of the cores with ratio >> 1 and

α >> 2 has not been fully investigated, but indicates that these criteria may not

be necessary or sufficient to indicate collapse.

Plots 4.10 and 4.11 show that approximating cores as uniform density

spheres is not unreasonable, but is neither necessary nor sufficient in determin-

ing the collapse future of a given core.

Dib et al. (2007) analyzed a series of simulations from Vázquez-Semadeni

et al. (2005) in an attempt to answer the same question, namely what physical

quantities are correlated with collapsing objects. They analyze all the surface

terms in the Virial Theorem in detail, αvir as defined by equation 4.3, the num-

ber of Jeans masses in a core, and the mass-to-magnetic-flux ratio. They find no

one-to-one correspondence between any of these tracers and gravitational bound-

edness, which is consistent with what we find here, though their simulations are

significantly lower resolution than the ones presented in this thesis. Additionally,

they show that the surface terms from the Virial Theorem are on the same order

as the volume terms, further calling into question the validity of using αsphere from

equation 4.3 as a tracer. Ballesteros-Paredes (2006) attacks a number of assump-

tions about the Virial Theorem that go into using αsphere in specific, and the Virial

Theorem in general, as a tracer of collapse. He finds a number of conclusions

that further validate the point made here; first, that the compressive/expansive

and vortical components of the velocity of a core (or really, any object) must be

treated separately since compressive motions aid collapse, while the other two pre-

vent collapse; second, that the surface terms cannot be neglected; third, that the

gravitational energy in the Virial Theorem is not only the self gravity of the object,

but contains additions from the surrounding gas, so not exclusively a term that

aids in collapse. These arguments further call the use of αsphere into question when

the issue of whether a clump of gas will collapse.
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Figure 4.11: Same plot as 4.10, but only showing α < 10 and ratio < 10. Also
shown are the lines ratio = 1 and α = 2, which are the cuts above which traditional
wisdom would say the objects should not collapse. (here ratio is the given ration
on the x axis)
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4.5 Resolution Study

Here we present a resolution study in which we examine the effects of in-

creasing the maximum of refinement by a factor of 4, from 4 levels to 6. Future

studies will examine this further, as well as examine the effects of increasing root

grid resolution.

The decaying run ok1, with αvir = 1.30 was repeated with an additional

two levels of refinement, for a total effective resolution of 81923. The 6 level run

(ok8) took approximately twice as long to run and used approximately 50% more

memory than the 4 level run. This is a substantial savings over increasing the total

box size by a factor of 4, which would increase the CPU time by a factor of 256

and memory by a factor of 64.

It was demonstrated by Truelove et al. (1997) that if the Jeans Length

λJ =
√

πc2
s/Gρ is not resolved by at least 4 zones, a Gaussian sphere would artifi-

cially fragment into smaller structures that were not present in more highly refined

simulations. This has become the standard minimum resolution for self gravitating

simulations. By their reasoning, we could anticipate artificial fragmentation as our

cores violate the Truelove condition. This would manifest itself as a higher number

of small cores in the lower resolution run relative to the higher one, as fragmenta-

tion would break large cores into smaller ones and increasing the resolution would

halt that process. This is not seen.

Figure 4.12 shows four projections at roughly 2 Myr for both the 4 level

simulation (top row) and the 6 level (bottom row). The left column shows the

entire box, and the right column images are restricted to the central 25% of each

simulation. The left column images show that the basic large structures are nearly

identical in both simulations. The right column images show that some cores in

the 4 level run are broken into smaller cores that then dynamically interact with

each other and their environments.

Figure 4.13 shows the density PDF for the three runs with α = 1.3. The

blue line is the driven run, the green line is the undriven run (both 4 level) and

the red line is the undriven run with 6 levels. It is interesting to note that the

width of the PDF does not change between the three runs, demonstrating first that
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Figure 4.12: Density projections for resolution study. Top: 4 levels. Bottom: 6
levels. Right column is a zoom in of the central 25% for each. In general, the two
runs are quite similar, but zooming in reveals more small scale detail in the higher
resolution run.
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resolution doesn’t change the bulk of the material, and second that a single free

fall time is not enough time to redistribute the mass away from the initial PDF.

The rms Mach number for the driven run is still 9, while the other two runs have

decayed to 5.

The second feature is the power law between ρ = 5 × 10−21 and 1 × 10−18

g/cm−3. As mentioned in 4.3, this power law is reported in other simulations

of gravoturbulent fragmentation. We also see that the slope of the power law is

unchanged with resolution.

The final feature is the very high density deviation from the power law.

The 4 level runs deviate from a power law at roughly 1× 10−18 g/cm−3, while the

power law in the 6 level run extends for another factor of 15, roughly the increase

in resolution. The vertical lines mark the Truelove density for each of the runs.

While the Truelove density coincides with the knee, figure 4.8 shows that it is in

fact due only to linear spatial resolution.

These PDFs further demonstrate that the large scale features of these sim-

ulations are robust against changes to the refinement, while the small scale details

are altered somewhat.

Figure 4.14 shows the mass distribution for cores with αvir < 2 One can

see that the peak of this distribution is around 1M⊙, consistent with observations

by Chabrier (2003) (section 4.8.1), but the higher resolution run peaks at slightly

lower density and has significantly more small mass cores. Unfortunately, this

demonstrates that the mass distribution is unconverged, and higher resolution will

be needed in the future to obtain converged mass distribution.

Figure 4.15 serves to further illustrate the changes to the cores with in-

creasing resolution. Both figures show the non-thermal velocity dispersion σ in

units of the sound speed vs. the size of the core R. The 4 level run is on top,

the 6 level run on bottom. As with other plots, the color of each point is the

fraction of mass in the core above the Truelove density, which serves to indicate

how collapsed the core is. Two regions in each plot are clearly distinguished. The

first is the collection of larger cores around 10−1pc. These are nearly identical in

both simulations, in both slope and violation parameter, indicating that cores on
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Figure 4.13: Density PDF for 4 and 6 levels. One can see that the power-law tail
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Figure 4.14: Mass distributions for α < 2 cores in the 4 level (solid) and 6 level
(dashed). One can see that the two distributions are similar, but higher resolution
causes significantly more small scale cores. This indicates that our lower resolution
runs are not subject to the artificial fragmentation predicted by Truelove et al.
(1997)
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this scale are not altered by increasing refinement. The second population is the

collection of small cores around 10−2. As the resolution is increased, this popula-

tion shifts to smaller sizes and becomes more numerous. The small objects have

fully collapsed, as indicated by the amount of gas above the Truelove density, and

will likely continue collapsing as far as the resolution will allow. The larger objects

are in earlier states of collapse, indicated by the lower fraction of mass above the

Truelove density.

These simulations were normalized to an outer scale of 6pc, giving resolution

elements of 2.9×10−3pc for the 4 level run and 7.3×10−4pc for the 6 level run. The

resolution element can be clearly seen as the strong lower bound on the distribution

of cores.

4.6 Magnetic Field vs Column Density

In this section we will discuss the nature of the relationship between mass

and magnetic fields in these simulations. First we will discuss the relationship

between total magnetic field strength B and volume density n in the entire volume.

Second we will compare the line of sight magnetic field strength Blos and column

density N relationship to cores observed in Zeeman splitting.

In ideal MHD, the infinite conductivity causes the field to be dragged along

with the plasma exactly. Given a spherically collapsing region, density will increase

as

ρ ∝ R−3. (4.16)

Since the material can only contract the field perpendicular to the field,

B ∝ R−2. (4.17)

This yields B ∝ ρ2/3. However, the material may flow preferentially along the

field lines, which would cause the magnetic field to grow even more slowly with

density. The geometry of the collapse will be determined by an array of factors,

including relative mass to magnetic flux of each point in space and the turbulent

environment.
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Figure 4.15: Linewidth Size relation for 4 level (top) and 6 level (bottom) simula-
tions. Large cores remain relatively unchanged, but small cores get smaller, and
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When comparing with the column density N and line-of-sight magnetic

field Blos, the exponent on the relation Blos ∝ Nγ will be somewhat larger: to first

approximation, N = ρR, which will serve to increase the exponent in equation

4.16 by one. The power on the magnetic field scaling in equation 4.17, on the

other hand, will remain unchanged, since the frequency shift between the left and

right polarization states due to the Zeeman splitting is unchanged by the column

depth. Thus we expect the B−N relation to be somewhat steeper than the B− ρ

relation.

Padoan & Nordlund (1999) collect data from several observations and fit

the upper envelope with B ∝ ρ0.4. Their result is reproduced in figure 4.16.

This is somewhat more shallow than the naive spherical collapse approximation,

indicating some level of flow along the field. Lunttila et al. (2008) and Troland

& Crutcher (2008) find Blos ∝ N2/3, which is somewhat steeper than the volume

density relation, as anticipated. This result, along with recent observational data

from Troland & Crutcher (2008), are shown in figure 4.17.

Figure 4.18 shows the B − ρ relation taken from the four driven αvir < 2

simulations at a time when the star formation efficiency SFE = 0.15. This time is

different for each of the four simulations due to differences in their star formation

rate, and serves as a reference state for the level of collapse experienced by each

simulation. Also plotted is a powerlaw, B ∝ ρ0.5. The higher resolution simulation,

in the bottom right, shows a somewhat different relationship than the other three,

indicating that some of the behavior of the highest and lowest density gas, and

highest and lowest field strengths are resolution dependent. There is a general

trend for the upper envelope where the magnetic field strength is almost completely

independent of density. This is not yet understood. Higher resolution simulations

need to be run to establish the resolution dependence of the outer envelope, and

better statistical measurements of the B−n relationship need to be established in

the future.

Figure 4.19 shows data from one of our simulations along with data from two

different Zeeman splitting surveys. Cores with αsphere < 2 from the αvir = 0.52

run at t = 0.75 tff are the colored points; data from the OH Zeeman splitting
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Figure 4.16: Synthesis of multiple observations of magnetic field strength and
volume density, taken from Padoan & Nordlund (1999).

Figure 4.17: This figure from Lunttila et al. (2008) shows observed B−N relation
from Troland & Crutcher (2008) (left) and the same relation from the simulation.
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Figure 4.18: B − ρ phase plot for four driven αvir < 2 runs. Clockwise from top
left: αvir = 0.52; αvir = 0.91; αvir = 1.30, 6 levels; αvir = 1.30
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measurements of Troland & Crutcher (2008) are the black points; and data from

the CN Zeeman measurements of Falgarone et al. (2008) grey points. The trend for

cores looks somewhat like Blos ∝ N2/3, though again a better statistical diagnostic

should be developed. Color denotes fraction of the core above the Truelove density,

which serves as a tracer of the level of collapse experienced by each core. This

plot demonstrates several key things. First, our code successfully reproduces the

magnitude and relation between Blos and column density for two independent

measurement using two different molecules. This demonstrates that the turbulent

fragmentation picture can accurately reproduce the relationship between density

and magnetic field seen in nature. This includes the quite high magnetic field

strengths seen in cores, as high as 1 mG, despite weak initial field strength of

∼ 0.5 µG in both observations and simulations. This is a great victory for the

turbulent fragmentation model. Second, since MV /M traces the amount of very

dense gas in an object, it serves as a tracer for how “collapsed” and object is.

Since CN measured in Falgarone et al. (2008) (grey points) traces higher density

material than OH, it is a likely indicator that the objects of Falgarone et al. (2008)

are more collapsed than those in Troland & Crutcher (2008), likely indicating

different phases of collapse.

4.7 Linewidth Size

One of the key indicators of the existence of turbulence in star formation is

the linewidth-size relation noticed by Larson (1981). Here we compare our results

to the cores in the Zeeman splitting measurements in section 4.6. In figure 4.20

we plot velocity dispersion σ vs. size as defined in section 4.5 for cores found

in the αvir = 0.52 run at t = 0.75tff (colored points). Also plotted are the CN

measurements from Falgarone et al. (2008) (grey points) and the OH measurements

from Troland & Crutcher (2008).

Figure 4.20 shows the velocity vs. size for three populations of cores: cores

from the OH Zeeman splitting survey of Troland & Crutcher (2008) in black; cores

from the CN Zeeman splitting survey of Falgarone et al. (2008) in grey; and cores
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and Falgarone et al. (2008) (grey points). The trend for cores looks somewhat like
Blos ∝ N2/3. Color denotes fraction of the core above the Truelove density



133

from the αvir = 0.52 simulation at t = 0.75tff with αsphere < 10 for each core,

again colors show the fraction of mass above the Truelove density. Also plotted is

the observed linewidth size relation σ = (R/pc)0.5. One can see that the cores in

our simulation match the observed powerlaw from Larson (1981) and the observed

cores from the two Zeeman splitting surveys. When simulated cores broken into

color segments, or equivalently segments of degree of collapse, one sees that each

color band matches the observed power law well, with increasingly contracted

objects moving to smaller sizes and higher velocity dispersions.

One feature of figure 4.20 is the general shift of simulated cores to the left

along the powerlaw. This is due to observational sensitivity and resolution, as well

as core selection in our simulation. Figure 4.21 shows all clumps found without

selecting them to be without children. The range of values in the σ − R relation

populated by the observed points are now fully populated by simulated points, and

the bands of constant MV /M are more clearly seen to have similar slopes to the

two populations of observed data.

4.8 Mass distribution

4.8.1 Stellar Initial Mass Function

One of the open questions in star formation is the origin of the stellar initial

mass function (IMF). Salpeter (1955) first measured this and fit it to a power law,

dN = 0.03(
M

M⊙

)−1.35d ln M. (4.18)

This fit between was done between 1 and 10 M⊙ More recent studies have been

done by Chabrier (2003) and Kroupa (2001). Chabrier (2003) found the stellar

IMF fits a power law above 1M⊙, and a lognormal below. Kroupa (2001) argues

that the IMF is universal, indicating that a general underlying physical mechanism

is responsible for star formation everywhere. These can be seen in figure 4.22.

Padoan & Nordlund (2002) predict the IMF by modeling it with supersonic,

superalfvenic isothermal turbulence. By using the shock jump conditions from
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MHD

ρ1 ≈ ρ0MA, (4.19)

λ ≈ LM−1
A , (4.20)

B1 ≈ B0MA, (4.21)

the lognormal density PDF of isothermal turbulence,

P (x)d ln x =
1√

2πσ2
exp

[

(ln x − µ)2

2σ2

]

dy, (4.22)

and using the spectral energy index β, where

E(k) ∝ k−β,

they arrive at the following mass distribution:

dN ∝mxd ln m. (4.23)

x =−3/(4 − β) (4.24)

Given β = 1.74, as found in Boldyrev et al. (2002), they find and exponent of

x = −1.33, remarkably close to (Salpeter, 1955). For the measured slope from a

suite of compressible M = 10 turbulence runs, Padoan et al. (2007) find β = 1.9,

which gives a slope x = −1.4 For our simulations, β = 2.2 so this would predict

x = −1.7

Using the hydrodynamic jump conditions instead of the MHD conditions,

ρ1 ≈ ρ0M2 (4.25)

λ ≈ LM−2 (4.26)

Padoan et al. (2007) find a much steeper power law

x = − 3/(5 − 2β) (4.27)

dN ∝mxI(m)d ln m (4.28)

which for the same β = 1.9 gives a slope x = −2.5. This is a substantial difference

between hydro and MHD, and gives a result that is inconsistent with observa-

tions. This indicates that magnetic fields may play a vital role in determining the

properties of stellar distributions.
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Figure 4.22: Cumulative mass distributions for stars and cores, taken from André
et al. (2007). The pink curves show the stellar IMFs from Chabrier (2003) and
Kroupa (2001), and the blue points show the data from Motte et al. (1998)

Padoan & Nordlund (2002) then extend the core distribution in equation

4.23 to the bound object distribution by multiplying 4.23 by the probability that

the mass is above the Jeans mass, taken from the PDF in equation 4.22, to get

dN ∝ m−3/(4−β)

[∫ m

0

P (mJ)dmj

]

d ln m. (4.29)

This successfully fits both the slope at high mass and the low mass turnover M <

1M⊙.

4.8.2 Core Mass Distribution

The next challenge is to connect stellar IMF observations with the above

model by way of the core mass distribution, and finally to the numerical models

presented here.

The first step in the chain is connecting core observations with the stellar

IMF. A number of authors have been fairly successful with this recently. Figure

4.22 shows the core mass distribution found from Motte et al. (1998). These cores
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are found from a millimeter continuum map of the ρ Ophuchi cloud. They overlap

the stellar mass distribution extremely well, suggesting that this population of

cores will become stars in a nearly 1-1 fashion.

This has been taken as a strong evidence that cores form directly from

the turbulence. It has been argued (Clark et al., 2007) that the lifetime of these

condensations depends strongly on the mass of the core, so the core mass function

that matches the IMF so well might evolve away from a decent match due to

differential collapse rates, and then evolve back through accretion. André et al.

(2007) accounted for this by weighting the core mass distribution by the inverse free

fall time, which would give the initial core distribution. However, since higher mass

objects are basically uncorrelated with their density, this served only to increase

the peak of the distribution slightly, without changing the slope of the power law

end.

Other surveys do not match the observations as well as Motte et al. (1998).

Enoch et al. (2007a) compare a combined survey of Perseus, Serpens and Ophiuchus

and found that the peak of their distribution roughly 4 times larger than the peak

of the stellar IMF peak. Figure 4.23 shows the CMF they obtain overplotted with

the Chabrier (2003) and Kroupa (2001) mass functions results, and is shifted to

the right noticeably. This shift in peak is likely due to incomplete sampling at the

low mass range. Enoch et al. (2007a) mention that it may be indicate that only

1/4 to 1/3 of the core mass will go into stellar mass.

Figure 4.24 shows the normalized cumulative mass distribution of three pop-

ulations: Data from our αvir = 0.52 simulation at t = 0.75tff , with cores selected

using total energy ratio as discussed in section 4.4 (blue line); Combined class 0

and class I sources from the Perseus and Serpens star forming region combined, as

measured by Enoch et al. (2007a) (green line); and data from the combined class 0

and class I sources from the Ophiuchs cloud, also from Enoch et al. (2007a). The

Perseus and Serpens cores have nearly identical distributions, so are combined

here. In this plot, the length scale in simulated data has been re-scaled to 1.6 pc,

in order to get the peak mass to line up (see section 4.1 for scaling arguments.)

Two things are apparent from this figure. First is the stark difference between
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Figure 4.23: Core mass distribution from Enoch et al. (2007a)

the Ophiuchus region and the Serpens and Perseus regions (who’s distributions

are extremely similar). The Ophiuchus cores are typically lower mass and their

distribution forms a power law, while the Perseus and Serpens data have a much

more gradual decline. This suggests that star formation may not be as universal

as pronounced by Kroupa (2001). The second is similarity in shape between the

Serpens/Perseus data and our simulated data. It is not likely that data selection

technique plays a large part in the difference in figure 4.24 since all three clouds

were selected with an identical technique ((Young et al., 2006; Enoch et al., 2006,

2007b)). Differences may arise from differences in the sensitivity or resolution to

each of the clouds, but such a comparison is beyond the scope of this work.

4.9 Star Formation Rate

One of the biggest unanswered questions in astrophysics is the rate at which

molecular clouds turn into stars. The Milky Way contains ∼ 109M⊙ of molecular
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Figure 4.24: Cumulative Mass Distribution: simulated objects selected by energy
ratio (blue line), Serpens and Perseus cores (green line) from Enoch et al. (2007a)
and Ophiuchus cores (red line) from Enoch et al. (2007a)
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Figure 4.25: Average PDF of 10 steps between t = 0.5tff and t = 0.75tff of the
α = 0.52 (ok4) run. Top: All steps over plotted. Bottom: averaged. The circle
indicates the critical density predicted by Krumholz & McKee (2005), and the plus
indicates the Truelove density.
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gas (Williams & McKee, 1997) with an average free fall time of tff ∼ 4 Myr.

If all the gas were collapsing in free fall, this would give a star formation rate

of 250M⊙/yr. This is two orders of magnitude larger than the observed star

formation rate of ∼ 3M⊙yr−1 (McKee & Williams, 1997). Until quite recently,

the prominent support mechanism proposed was magnetic fields (Mouschovias,

1987a,b). However, recent observations have all but eliminated this possibility

(Crutcher et al., 2009).

4.9.1 Predicting Star Formation Rate

Krumholz & McKee (2005) suggested the first comprehensive prediction of

the star formation rate that works on a broad range of galactic star formation

environments. Their work builds on the idea of Padoan (1995) wherein the log-

normal density PDF is used to predict the star formation efficiency in a cloud.

Below a certain length scale λs, the velocity fluctuation across an eddy is lower

than its sound speed. Eddies of this size will not have support against gravitational

collapse from their internal turbulent motions.

This can be translated into a density scale by examining the Jeans length

λJ(ρ) =

√

πc2
s

Gρ
, (4.30)

the length at which cores become gravitationally unstable, and the density at

which the local Jeans length is less than the sonic length. Empirically (Larson,

1981; Solomon et al., 1987) the relationship between velocity and size follows a

power law

σλ = (0.72 ± 0.07)(λ/pc)0.5±0.05kms−1. (4.31)

Given a sound speed of 0.2kms−1 appropriate for 10K gas, we have

λs = (
cs

0.72
)2pc = 0.07pc. (4.32)

Thus the over density at which the Jeans length is larger than the sonic length is

the critical fraction

xc =

(

φx
λJ(ρ0)

λs

)2

, (4.33)
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where φx = 1.12 is a numerical fudge factor determined by fits to simulations.

To generalize the star formation rate across different environments, Krumholz

& McKee (2005) suggest using the star formation rate per free fall time, SFRff ,

which is defined as the fraction of a cloud’s gas that can be converted into stars

in a free fall time. Under their model, the mass that can collapse is the total

mass above the critical over density, and that mass can collapse in a time scale

τ = φttff . Thus,

SFRff =
ǫcore

φt

∫ ∞

xc

xP (x)dx, (4.34)

where P (x) is the density PDF (see section 4.3); ǫcore ≈ 0.5 is the fraction of a core

gas that does not reach the star due to ejection from stellar outflows, and is deter-

mined observationally (Matzner & McKee, 2000); and φt ≈ 1.9 is an adjustment

for the actual timescale, determined by fits to numerical experiments.

The free parameters in hydrodynamic self gravitating turbulence can be

viewed as the virial parameter α and the Mach number M, since these show the

relative importance of turbulence to gravity and turbulence to thermal pressure.

Krumholz & McKee (2005) also provide a numerical fit to eqn. 4.34 as a dual

power law in both parameters:

SFRff ≈ 0.014(
αvir

1.3
)−0.68(

M
100

)−0.32. (4.35)

Figure 4.26 shows the fraction of mass above the Truelove density vs. tff

for the 4 driven runs with αvir < 2. There are two salient features of these runs: an

initially exponential growth at low star formation rate, followed by a linear growth

phase. The initial low growth is due to the simulation readjusting the the sudden

presence of gravity.

The plot indicates the region fit for the SFRff with the grey bar. The

region was selected in order to have an estimate of SFRff independent of the

artificial simulation effects of the sudden introduction of gravity or the finite box

size. This was determined by the abrupt changes in curvature seen most notably

in the αvir = 1.30 run, where the exponential stops at t ≈ 0.75tff and the slope

changes again at t ≈ 1.5tff when the slope increases again when a large fraction of
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Figure 4.26: Fraction of mass above the Truelove density, Mviolated vs. free fall
time. Fits are between Mviolated=0.7% and 0.15%, where the Violation Rate is
roughly linear.

the gas that was present in the turbulent phase preventing collapse has not been

accreted into the dense stellar phase.

In figure 4.27, we plot the violation rate against 3 interpretations of equation

4.34. “KM05 analytic” is the literal interpretation of 4.34; “KM05 fit” is the value

obtained from equation 4.35; and “KM05 simulated” is the same integral as in

4.34, but with the lognormal form of P (x), replaced by the measured fraction of

simulated density above xc. One can plainly see a factor of 3 − 10 discrepancy

between the computed violation rate and the predicted values.

There are several possible reasons for this discrepancy. The first is that

using the Truelove density as a proxy for SFRff is incorrect. However, Vázquez-

Semadeni et al. (2008) performed a similar experiment and changed the density cut-
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Figure 4.27: Star formation rates. Black points show the rate of growth of the
fraction of mass above the Truelove density for each simulation. Green points
show the analytic prediction of equation 4.34. Red points show the power law fit
of equation 4.35. Blue points show the predicted rate of equation 4.34, with the
analytic PDF replaced by the integral of the measured PDF.

off, and claimed that there was minimal change. The most likely answer, though,

is that the root grid resolution in these simulations is too coarse, and numeri-

cal viscosity damps the turbulence at a much larger scale than it does naturally.

This leads to a disruption of turbulent support at a much larger, thus much more

massive, scale.



Chapter 5

Summary and Future Work

5.1 Summary

In this work, we have presented the implementation of MHD in the AMR

cosmology code Enzo. EnzoMHD is capable of multi-resolution cosmological and

non-cosmological astrophysical simulations using ideal MHD. We also presented

preliminary results using the code to model self-gravitating isothermal MHD tur-

bulence as the factory for the initial conditions of star formation.

In chapter 2, we presented the final version of EnzoMHD. EnzoMHD uses

block structured AMR, which solves the hydrodynamic (and now magnetohydro-

dynamic) PDEs on fixed resolution patches, and communicates the finest resolu-

tion information between coarse and fine patches in way that is conservative in

the volume-averaged quantities. This entails 4 basic components: the PDE patch

solver, creation of fine grids (interpolation), communication of fine data back to

coarse data (projection) and correction of the interface between coarse and fine

grids (flux correction). MHD has the additional constraint that the divergence of

the magnetic field, ∇ · B, must be zero to machine precision at all times, which

requires additional machinery to advance the PDEs (Constrained Transport) and

some modifications to the projection and flux correction steps. In addition to

multi-resolution hydrodynamics, EnzoMHD includes the effects of gravitational ac-

celeration and cosmological expansion, and a modification to the base PDE solver

to account for flows with large disparity between kinetic and thermal energies (dual

146
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energy formalism). In EnzoMHD, we use the PDE solver of Li et al. (2008) to solve

the ideal MHD equations (section 2.1.6) for the patch solver, which is second order

accurate in both time and space. We use a slightly modified version of the AMR

algorithm procedure of Balsara (2001) to interpolate fine grids and project the

more accurate fine grid data to the coarse grid (sections 2.1.11 and 2.4). We have

used the CT methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to

advance the induction equation while maintaining the constraint ∇·B = 0(section

2.1.7). We have operator split the gravitational (2.1.8) and cosmological expansion

(2.1.9) terms; and included the dual energy techniques of Ryu et al. (1993) and

Bryan et al. (1995).

In section 2.2, we present the results of a broad array of tests to demonstrate

the accuracy of the chosen methods. These include the shock tube of Brio and

Wu 2.2.1, the isothermal shock of Kim 2.2.1, on dimensional MHD Caustics 2.2.1,

the famous Zel’Dovich Pancake 2.2.1, the Vortex problem of Orzag-Tang 2.2.1,

an adiabatic expanding universe 2.2.1. Some of these were additionally run with

AMR, and the results compared to the unigrid case. The results of these overall

agree with both what’s been present in the literature before and comparisons with

our existing PPM solver.

In chapter 3 we presented three other solvers extant in full or in part in

EnzoMHD. The first of these is the solver of Ryu & Jones (1995), presented in

section 3.1. This method is the MHD extension of the algorithm of Harten (1983).

This solver combines the first order methods of Roe (1981) and Harten (1978)

in a manner that is formally second order. Unfortunately this scheme proved

too numerically diffusive to be able to provide reliable solutions to isothermal

turbulence, and more important the small scale structure we will be relying upon

to properly model the initial conditions of star formation. The second method is a

new method, called DaveThena, and was presented in section 3.2. This method is

a light weight variant of the solver of Gardiner & Stone (2005), which attempts to

simplify the costly PPM integration by using a piecewise linear reconstruction. It

is an unsplit algorithm, meaning it solves the 3d MHD equations in a single pass,

rather than solving in successive sweeps. This is more suited to MHD. The fourth
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and final method we introduced was the method of Ustyugov & Popov (2008),

called PPML, presented very briefly in section 3.6. This has the most promise of

all the solvers presented here due to its extremely low diffusivity, but due to its

complex numerical structure it does not yet work with the AMR. These last two,

DaveThena and PPML, both suffer from an explosive MHD instability that it is

presently believed to be a problem with the unsplit nature of the solver.

In chapter 4, we presented new simulations of isothermal self gravitating

MHD. These simulations, while somewhat preliminary, showcase the impressive

dynamic range of the code and further bolster the case for MHD turbulence being

the primary physical mechanism in star formation. In section 4.1, we presented a

suite of 10 numerical experiments that were performed. These simulations varied

the virial parameter αvir in an attempt to explore its impact on the star for-

mation rate. We found, as expected, that αvir and the star formation rate are

inversely proportional, but our simulations were too coarse on the root grid, so

a detailed exploration was not meaningful. In section 4.3, we discussed at some

length the density probability density function in self gravitating MHD, noting

the prominent power law it develops in addition to the lognormal one expected

from non-self-gravitating turbulence. In section 4.4, we examined the validity of

the frequently practice of using the value of the virial parameter for a sphere to

indicate collapse, noting that it often fails as a predictor for collapse. In section

4.5, we presented a brief resolution study as an indicator for the simulations that

we hope to run in the future. We demonstrated that our while our simulations

are unconverged, the increase of cores as resolution increased indicates that we are

not susceptible to the artificial fragmentation reported elsewhere in under-resolved

studies. In section 4.6 we explored the relationship between density and magnetic

field strength. The column density vs. field strength as measured in cores in the

simulation match the most recent observations of cores in the galaxy with unprece-

dented accuracy and range. Our simulations match both the observed relationship

Blos ∝ N2/3 and B ∝ ρ1/2. It was also noticed that the upper envelop of the B − ρ

relation ship shows that peak field strengths are somewhat independent of density

for high density collapsed regions. It is not clear if this is physical or a numeri-
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cal effect, higher resolution simulations will explore this in the future. In section

4.7, we presented measurements of the relationship between velocity and size, re-

producing observations with good accuracy. In section 4.8, we present the mass

distribution in galactic cores and compare to those in our simulation. With one

pair of star forming regions, our simulations match observations quite nicely, while

for another they do not. The star forming region Ophiuchus shows a powerlaw in

the normalized cumulative mass distribution. This is not seen in our simulations.

However, Serpens and Perseus show a higher order turnover, which matches our

simulations. This suggests to us that the long held belief that star formation is a

universal process may not be exactly true. These three star forming regions are

at different stages of evolution, or have different physical parameters, virial pa-

rameter, Mach number, Alfvén Mach number, which would alter the shape of the

mass distribution somewhat. Since our simulations only varied one of these three

parameters, virial parameter, the difference may show a dependence on one of the

other two. Finally, in section 4.9 we compare the rate at which stars are formed

in our simulation to the most prominent analytical model. Our simulations show

a star formation that is roughly 3-10 times larger than predicted and observed.

It is presently believed that the root grid resolution of this study was too low to

accurately reproduce the model since the low resolution causes increased numer-

ical dissipations, which decreases turbulent support at intermediate scales, which

causes collapse of clumps that would normally be too large in spatial extent to

collapse.

5.2 Future Work

The results presented here with the our newly developed AMR MHD code

are extremely promising. There are several avenues we will be pursuing to ade-

quately improve the picture of star formation.

Two new sets of simulations will be started shortly. These are a set of

higher resolution simulations aimed at testing the convergence of these results

and improving the turbulent support for collapsing structures, in order to improve
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agreement with theory and observations. The second set of simulations will be a

repeat of the four primary runs presented here, with the magnetic field set to zero.

This will allow us to definitively examine the role of magnetic fields in this collapse

process by comparing the magnetized and non-magnetized structures.

Two things that need to be more fully incorporated in analytic models of

the star formation rate are the effects of MHD and the power law slope of the

density PDF. Both MHD and power-law slopes are observed in simulations, but

the analytic theory neglects them. MHD will likely shift the critical mass to higher

densities, and the increased high mass power will add to the mass available to star

formation. These need to be dealt with carefully analytically. Following that,

we will be repeating this same suite of simulation expanding the root grid in an

attempt to better resolve the severely unresolved turbulence scale, and comparing

the analytic work to it. If the power-law and MHD can in fact be neglected, this

will be apparent in the simulations that follow

With the data we already have, we will be finalizing a technique to track

the collapsing clumps by examining the positions of the clumps closely spaced in

time, to analyze the true history of the gas in a collapsed object. This will provide

an unequivocal demonstration of the origin of the collapsed objects, thus strongly

supporting or refuting the star formation picture.

The numerical software aspect of this project also has future plans. En-

zoMHD diverged from the primary development branch of Enzo at the beginning

of development. There have been a number of developments in Enzo that we wish

to take advantage of, primarily the development of a generalizable Lagrangian par-

ticle that we will be using as sink particles. Sink particles will allow us to follow

the ballistics and accretion of newly formed stars more accurately than we will be

able to do with AMR alone.

Additionally we will be preparing EnzoMHD to work with the PPML

method. It has been reported (A. Kritsuk, private communication) that the prob-

lems described in this work have been fixed since we began using the method

described in chapter 2, and will prove to be the finest MHD code in existence.
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