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Ryerson University UC San Diego
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Abstract

Fixed e¤ects estimators in nonlinear panel models with �xed and short time series length
T usually su¤er from inconsistency because of the incidental parameters problem �rst noted
by Neyman and Scott (1948). Moreover, even if T grows but at a rate not faster than the cross
sectional sample size n, they are asymptotically biased, and therefore the associated con�dence
intervals have a large coverage error. This paper analyzes the properties of the parametric
bootstrap bias corrected maximum likelihood (ML) estimators of nonlinear panel models with
�xed e¤ects. We assume that each time series follows a �nite order Markov process. We show
that the bootstrap bias corrected estimators are asymptotically normal and centered at the
true parameter. In particular, we propose using the k-step parametric bootstrap procedure
to alleviate the computational cost of implementing the standard bootstrap. We also apply
the standard and k-step bootstrap bias correction to average marginal e¤ect estimation and
to the double bootstrap for con�dence interval construction. Our Monte Carlo simulations
show that the k-step bootstrap bias corrected estimator reduces the bias remarkably well in
�nite samples.
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1 Introduction

Panel data consists of repeated observations from di¤erent individuals across time. One virtue of
this data structure is that we can control for unobserved time-invariant individual heterogeneity
in an econometric model. When individual e¤ects are correlated with explanatory variables, we
may use the �xed e¤ects estimator, which treats each unobserved individual e¤ect as a parameter
to be estimated. However, this approach usually su¤ers from inconsistency when the time series
sample size (T ) is short. This is known as the incidental parameters problem, �rst noted by
Neyman and Scott (1948). Furthermore, even if T approaches 1, the �xed e¤ects estimator can
still have an asymptotic bias that is comparable to the asymptotic standard error. Statistical
inference that ignores the asymptotic bias may give misleading results.

This paper proposes using the standard parametric bootstrap and the k-step parametric
bootstrap to correct for the asymptotic bias. We consider a nonlinear �xed e¤ects panel model
with each time series following a �nite order Markov process. We allow for static panel data
models as well as some dynamic panel data models. We employ the maximum likelihood (ML)
approach, although many results in the paper also hold for a more general class of estimators.
Under some rate conditions on the time series and cross sectional sample sizes, we show that
the standard bootstrap-bias-corrected (BBC) estimators are asymptotically normal and centered
at the true parameter. We establish the asymptotic equivalence of the k-step BBC estimator
to the standard BBC estimator. Bootstrap bias correction reduces the asymptotic bias without
in�ating the asymptotic variance. So inferences based on the BBC estimators are more accurate
and reliable.

An advantage of the standard bootstrap bias correction is that the method is automatic to
a great extent. There is no need to derive the analytic bias correction formulae, which can
be quite complicated. The automatic nature can be very appealing in applied research. It is
also well known that the standard bootstrap applies to situations so complicated that they lie
beyond the power of traditional analysis. A drawback of the standard bootstrap method is
that it is computationally intensive, as it involves solving R nonlinear optimization problems to
obtain R bootstrap estimates. R usually needs to be fairly large for the bootstrap method to
be reliable. Unless the optimization problem is simple, this would be a very time-intensive task.
Particularly, as the �xed e¤ects approach treats the individual e¤ects as parameters, there are
many parameters to be estimated, and computational intensiveness can be more serious in this
type of models. For example, in our empirical application (not reported here), there are 1461
individuals, which means there are more than 1461 parameters to be estimated.

We propose using the k-step bootstrap method to alleviate the computational cost of the stan-
dard bootstrap. Compared to the standard bootstrap method, the k-step bootstrap procedure
is computationally attractive because it only involves computing the Hessian and the score func-
tions. It approximates the standard bootstrap estimator by taking k-steps of a Newton-Raphson
(NR) iterative scheme. We employ the original estimate as the starting point for the NR steps.
We show that when k � 2; the stochastic di¤erence between the standard and k-step bootstrap
estimators is of smaller order than the bias term we intend to remove. As a result, we can use
the k-step bootstrap in place of the standard bootstrap to achieve bias reduction.

In addition to model parameters, we apply the standard and k-step parametric bootstrap bias
correction to average marginal e¤ect estimation. We also develop a double bootstrap procedure
for con�dence interval (CI) construction.

To rigorously justify our bootstrap procedures, we use the following strategy repeatedly. For
an asymptotic result of interest, we �rst show that it holds uniformly over a compact set in
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the parameter space. Using the fact that the ML estimator, which is the true parameter in the
bootstrap world, lies in this compact set with probability approaching one uniformly, we show
that the asymptotic result also holds in the bootstrap world with probability approaching one
uniformly. More details of this type of argument are given in the appendix of proofs.

Several papers have discussed the di¢ culties involved in controlling for the incidental parame-
ters problem in nonlinear panel models and have suggested bias correction methods. Lancaster
(2000) and Arellano and Hahn (2006) give an overview on the subject. Anderson (1970) and
Honoré and Kyriazidou (2000) propose estimators which do not depend on individual e¤ects
in some speci�c cases. However, their approaches do not provide guidance in general cases to
eliminate the bias. More generally, Hahn and Newey (2004, denoted HN hereinafter) propose
jackknife and analytic procedures for nonlinear static models, and Hahn and Kuersteiner (2011,
denoted HK hereinafter) propose analytic estimators in nonlinear dynamic models. Both expand
the estimator in orders of T and estimate the leading bias term using the sample analogue. Bester
and Hansen (2009) propose a penalized objective function approach and Fernández-Val (2009)
develops bias correction for parametric panel binary choice models. Dhaene and Jochmans (2012)
consider split-panel jackknife estimation for the dynamic case. Compared to the analytic and
jackknife methods, the bootstrap procedure has gained relatively little attention in this setting
even though the latter is a natural method of estimating the bias of estimators. From this point
of view, this paper �lls an important gap in the literature, providing the bootstrap bias corrected
estimators for nonlinear panel models and analyzing their properties.1

There is a large literature on bootstrap bias corrected estimation. Hall (1992) introduces
general bootstrap algorithms for bias correction and for the construction of CI�s, which we adapt
in this paper. Hahn, Kuersteiner and Newey (2004) examine the asymptotic properties of a
bootstrap bias corrected ML estimator with cross sectional data and show that it is higher
order e¢ cient. The k-step bootstrap procedure �rst appears in Davidson and MacKinnon (1999)
and Andrews (2002, 2005), in which they prove its higher order equivalence to the standard
bootstrap. Our paper is particularly built on Andrews (2005), which considers the standard and
k-step parametric bootstrap methods for Markov processes. Other bootstrap procedures that
reduce the computational cost are also available. See, for example, the fast double bootstrap
by Davidson and MacKinnon (2002, 2007) and warp-speed bootstrap by Giacomini, Politis, and
White (2013).

The paper is organized as follows. Section 2 discusses the incidental parameters problem
in nonlinear panel models with �xed e¤ects. Section 3 describes the standard bootstrap bias
correction procedure and explains the k-step bootstrap bias correction. Section 4 establishes the
asymptotic properties of our estimators. Some extensions are considered in Section 5. Section
5.1 discusses bias correction for average marginal e¤ect estimation and Section 5.2 introduces
the double bootstrap procedure for CI construction. The Monte Carlo simulation results are
reported in Section 6. The last section concludes. For easy reference, we provide a list of selected
notations before presenting technical proofs.

1One exception is Pace and Salvan (2006). They suggest a bootstrap bias corrected estimator when there are
nuisance parameters. Their algorithm is di¤erent from ours. While we estimate the asymptotic bias of the �xed
e¤ects estimator directly by bootstrap, they use the bootstrap procedure to adjust the pro�le likelihood function
from which they obtain their bias corrected estimator.
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2 Incidental Parameters Problem

In this section, we introduce the incidental parameters problem and discuss the asymptotic bias
of the �xed e¤ects estimator in a nonlinear panel model.

Throughout the paper, we maintain the assumption of cross sectional independence. To
specify the nonlinear panel model, we only need to describe the data generating process for
each time series fWi :Wi1; : : : ;WiT g where Wit 2 Rdw and i = 1; 2; : : : ; n: We partition Wit

into Wit = (Y 0it; X
0
it)
0 where fXitg are strictly exogenous, and hence can be conditioned on or

taken as �xed, and fYitg form a �-th order Markov process for some �nite integer �: To simplify
the presentation, we ignore Xit so that Wit = Yit: In the presence of fXitg ; our results hold
conditional on fXitg.

We assume that the density and distribution functions of Yit given Yit�1; : : : ; Yi1 are

f(�jYit�1; : : : ; Yit��; �; �i) and F (�jYit�1; : : : ; Yit��; �; �i)

respectively, where � 2 Rd� is a vector of parameters of interest and �i is a scalar individual
heterogeneity. We assume that the initial observations fYi0; : : : ; Yi1��g are available in which
case there are T +� time series observations. But our inference will be conditioned on the initial
observations so the e¤ective time series sample size is T:

Let 
i =
�
�0; �i

�0 be the parameter that governs individual time series, and denote the para-
meter space for 
i by � := �� � ��.2 The true parameter 
i0 =

�
�00; �i0

�0 belongs to a subset �0
of �: Let Zit = (Yit; Yit�1; : : : ; Yit��) and l(�; �i;Zit) � log f(YitjYit�1; : : : Yit��; �; �i). When we
need to emphasize the dependence of Zit on the true parameter 
i0, we write Zit = Zit (
i0) : The
objective function for the �xed e¤ects estimator, �̂nT , is the concentrated log-likelihood function
based on �̂i(�). That is, we obtain �̂nT by solving

�̂nT = argmax
�2��

nX
i=1

TX
t=1

l(�; �̂i(�);Zit); (1)

where

�̂i(�) = arg max
�i2��

TX
t=1

l(�; �i;Zit) (2)

and the maximization is taken over �� and ��, which are assumed to be compact. We denote
�̂ (�) � (�̂1(�); : : : ; �̂i(�); : : : ; �̂n(�))0, �0 � (�10; : : : ; �i0; : : : ; �n0)0 and �̂ � �̂(�̂nT ):

Equation (2) implies that the estimation of �i uses only T time series observations (Zi1; : : : ; ZiT ).
Therefore, given that T is �xed, �̂i does not converge to �i0 even though n!1. This estimation
error in �̂i causes �̂nT to be inconsistent, which means plimn!1 �̂nT 6= �0. This is known as the
incidental parameters problem �rst noted by Neyman and Scott (1948). From the asymptotic
properties of extremum estimators (e.g. Amemiya, 1985), as n!1 with T �xed, we have

�̂nT !p �T ; (3)

where �T � argmax� E
hPT

t=1 l(�; �̂i(�);Zit)
i
and

E

"
TX
t=1

l(�; �̂i(�);Zit)

#
� lim
n!1

1

n

nX
i=1

E

"
TX
t=1

l(�; �̂i(�);Zit)

#
: (4)

2For notational simplicity, we have implicitly assumed that the parameter spaces for �i�s are the same across i:
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Since �0 maximizes E[
PT
t=1 l(�; �i0;Zit)], which is di¤erent from E

hPT
t=1 l(�; �̂i(�);Zit)

i
; it is

usually the case that �T 6= �0. As a result, �̂nT is inconsistent as n!1 for a �xed T:
As T !1; we can show by stochastic expansion that

�T = �0 +
B(�0; �0)

T
+ o

�
1

T

�
(5)

for some B(�0; �0) 6= 0. So the asymptotic bias is of order O(1=T ) and approaches zero as T
increases.

The above asymptotic analysis is conducted under the sequential asymptotics under which
n!1 for a �xed T followed by letting T !1: The basic intuition on the incidental parameter
bias holds under the joint asymptotics where n and T go to1 simultaneously. When n and T grow
at the same rate, the asymptotic bias is of the same order of magnitude as the asymptotic standard
error, which is of order O(1=

p
nT ): In this case, the asymptotic distribution of

p
nT (�̂nT � �0)

will not be centered at zero. More speci�cally, when n ! 1 and T ! 1 simultaneously such
that n=T ! � 2 (0;1), we can write:

p
nT (�̂nT � �0) = AnT (�0; �0) +

r
n

T
BnT (�0; �0) + op (1) (6)

where AnT (�0; �0) and BnT (�0; �0) satisfy

AnT (�0; �0)
d�! N(0;
) and BnT (�0; �0)!p B(�0; �0) (7)

for some variance matrix 
 := 
 (�0; �0). So the asymptotic distribution of
p
nT (�̂nT � �0) is

centered at
p
�B(�0; �0) 6= 0: Statistical inference that ignores the nonzero center will result in

misleading conclusions.
Since the mean of

p
nT (�̂nT � �0) may not exist,

p
n=TBnT (�0; �0) is not necessarily equal

to E
hp

nT (�̂nT � �0)
i
. For any M > 0; de�ne the truncation function ~gM (x) on R by

~gM (x) =

8<:
M; if x > M ;
x; if jxj �M ;
�M; if x < �M:

(8)

Then ~gM (x) is bounded and continuous. Let gM (�) = (~gM (�1) ; : : : ; ~gM (�d�))
0 : By construction,

EgM
hp

nT (�̂nT � �0)
i
always exists. Under some rate conditions on M; we can show that

EgM
hp

nT (�̂nT � �0)
i
=
p
n=TBnT (�0; �0) + o (1) : (9)

To correct the asymptotic bias of �̂nT , we need to estimate EgM
hp

nT (�̂nT � �0)
i
:

3 Bootstrap Bias Correction

In this section, we introduce parametric bootstrap procedures to estimate EgM
hp

nT (�̂nT � �0)
i
.

The parametric bootstrap is di¤erent from the nonparametric bootstrap in that the former utilizes
the parametric structure of the DGP by replacing the original parameters with their estimators to
generate the bootstrap samples, while the latter generates them from the empirical distribution
function.
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3.1 Standard Bootstrap Bias Correction

In the bootstrap world, we maintain cross sectional independence and generate each time series
fY �itg according to the conditional probability density function f(�jY �it�1; : : : ; Y �it��; �̂nT ; �̂i), which
is the same as the conditional probability density function for the original sample but with

i0 = (�0; �i0) replaced by 
̂i = (�̂nT ; �̂i): The initial value for the bootstrap sample is from the
stationary distribution of

�
Y �it�1; : : : ; Y

�
it��

�
: In practice, this can be achieved by simulating a long

time series using (Yi0; : : : ; Yi1��) as the initial value and keep only the last T + � observations.
Let Z�it =

�
Y �it ; Y

�
it�1; : : : ; Y

�
it��

�
: Based on fZ�i1; : : : ; Z�iT gni=1, we can obtain the bootstrap

estimators �̂
�
nT and �̂

�
i (�̂

�
nT ) by conditional ML estimation. That is,

�̂
�
nT = argmax

�2��

nX
i=1

TX
t=1

l(�; �̂�i (�);Z
�
it); (10)

where

�̂�i (�) = arg max
�i2��

TX
t=1

l(�; �i;Z
�
it): (11)

Under some regularity conditions, as n ! 1 and T ! 1 such that n=T ! � 2 (0;1) ; we
have

p
nT
�
�̂
�
nT � �̂nT

�
= A�nT (�̂nT ; �̂) +

r
n

T
B�nT (�̂nT ; �̂) + op� (1) (12)

conditional on a set with probability approaching 1 (see Theorem 3), wherer
n

T
B�nT (�̂nT ; �̂) = E�gM

hp
nT
�
�̂
�
nT � �̂nT

�i
+ op (1) (13)

and E� is the expectation operator under the bootstrap probability distribution P � conditional
on 
̂ � (�̂0nT ; �̂(�̂nT )0)0:

Using
p
n=TB�nT (�̂nT ; �̂) or its asymptotically equivalent form E�gM

hp
nT
�
�̂
�
nT � �̂nT

�i
as

an estimator of
p
n=TBnT (�0; �0), we can de�ne the bootstrap bias corrected estimator ~�nT by

p
nT
�
~�nT � �0

�
=
p
nT
�
�̂nT � �0

�
� E�gM

hp
nT
�
�̂
�
nT � �̂nT

�i
: (14)

Equivalently,
~�nT = �̂nT �

1p
nT
E�gM

hp
nT
�
�̂
�
nT � �̂nT

�i
: (15)

To compute E�gM
hp

nT
�
�̂
�
nT � �̂nT

�i
; we generate R bootstrap samples and obtain R bootstrap

estimates f�̂�(r)nT , r = 1; : : : ; Rg and then let

~E�gM
hp

nT
�
�̂
�
nT � �̂nT

�i
=
1

R

RX
r=1

gM

�p
nT

�
�̂
�(r)
nT � �̂nT

��
: (16)

~E�gM
hp

nT
�
�̂
�
nT � �̂nT

�i
is arbitrarily close to E�gM

hp
nT
�
�̂
�
nT � �̂nT

�i
whenR is large enough.

The bootstrap bias correction eliminates the bias of order O
�
T�1

�
so that

p
nT (~�nT � �0) is

asymptotically unbiased. To see this, we note that the conditional distribution of the bootstrap
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sample given the data (or 
̂) is the same as the distribution of the original sample except that
the former uses 
̂ rather than 
0 as the true parameter. As a result,

B�nT (�̂nT ; �̂) = BnT

�
�̂nT ; �̂

�
= BnT (�0; �0) [1 + op (1)] ; (17)

and so if n=T ! � 2 (0;1) ; we have
p
nT (~�nT � �0) =

p
nT
�
�̂nT � �0

�
� E�gM

hp
nT
�
�̂
�
nT � �̂nT

�i
=
p
nT
�
�̂nT � �0

�
�
r
n

T
B�nT (�̂nT ; �̂) + op (1)

=
p
nTAnT (�0; �0)�

r
n

T

h
BnT (�̂nT ; �̂)�BnT (�0; �0)

i
+ op (1)

=
p
nTAnT (�0; �0) + op (1)

d�! N(0;
): (18)

That is, the bootstrap bias correction removes the nonzero center of the asymptotic distribution
of
p
nT (�̂nT � �0):

3.2 k-step Bootstrap Bias Correction

In this subsection, we de�ne the k-step BBC estimator and demonstrate its asymptotic equiva-
lence to the standard BBC estimator.

The k-step procedure approximates �̂
�
nT by the NR iterative procedure. Let �̂

�
nT;k and �̂

�
k =�

�̂�1;k; :::; �̂
�
n;k

�0 denote the k-step bootstrap estimators. We de�ne �̂�nT;k and �̂�k recursively in the
following way: �

�̂
�
nT;k

�̂�k

�
=

�
�̂
�
nT;k�1
�̂�k�1

�
� (Hk�1)�1 Sk�1 (19)

where3

Hk�1 =
1

nT

nX
i=1

TX
t=1

@2 log l (�; �i;Z
�
it)

@
�
�0; �0

�0
@
�
�0; �0

������
�=�̂

�
nT;k�1;�=�̂

�
k�1

(20)

Sk�1 =
1

nT

nX
i=1

TX
t=1

@ log l (�; �i;Z
�
it)

@
�
�0; �0

�0
�����
�=�̂

�
nT;k�1;�=�̂

�
k�1

(21)

and the start-up estimators �̂
�
nT;0 = �̂nT ; �̂

�
0 = �̂:

We show in Theorem 4 below that

E�
n
gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
� gM

hp
nT
�
�̂
�
nT � �̂nT

�io
= op (1) (22)

when k � 2: De�ne the k-step BBC estimator as

~�nT;k � �̂nT �
1p
nT
E�gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
(23)

3The Hessian matrix we used is called the observed Hessian. We note that some terms in
@2 log l (�; �i;Z

�
it) =@ (�

0; �0)
0
@ (�0; �0) have zero expectation. Dropping these terms in equation (20), we obtain

the expected Hessian. Our asymptotic results remain valid for the expected Hessian, as the dropped terms are of
smaller order.
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which is analogous to the BBC estimator de�ned in (15). Then for n=T ! � 2 (0;1) and all
k � 2, we have

p
nT (~�nT;k � �0)

=
p
nT
�
~�nT � �0

�
+ E�

n
gM

hp
nT
�
�̂
�
nT � �̂nT

�i
� gM

hp
nT
�
�̂
�
nT;k � �̂nT

�io
=
p
nT
�
~�nT � �0

�
+ op (1)

d�! N(0;
): (24)

4 Asymptotic Properties

In this section, we state the assumptions and rigorously establish the asymptotic properties of
the standard and k-step BBC estimators.

Let 
 = (�; �1; : : : ; �n) and 
0 = (�0; �10; : : : ; �n0) : To emphasize their dependence on the
parameter value, we may use P
0 and E
0 to denote the probability measure and its expectation
under 
0: Similarly, we use �̂nT (
0) and �̂i (
0) to highlight their dependence on the observations
fZit (
i0) ; t = 1; : : : Tgni=1 generated under the parameter value 
0: When needed, we use similar
notation in the bootstrap world, for example, E�
̂ ; fZ�it (
̂i)g, etc.

Following HN (2004), we de�ne

uit(
i) �
@

@�
l(�; �i;Zit) and vit(
i) �

@

@�i
l(�; �i;Zit) (25)

and let additional subscripts denote partial derivatives, e.g. vit�i(
i) � @2

@�2i
l(�; �i;Zit). Let

Uit(
i) = uit (
i)� �i0vit (
i) (26)

where

�i0 =
E
PT
t=1 uit�i (
i0)

E
PT
t=1 vit�i (
i0)

: (27)

De�ne

 it (
i0) = �
vit (
i0)

E
h
T�1

PT
t=1 vit�i (
i0)

i : (28)

We suppress the arguments of the functions such as uit; vit;  it; when they are evaluated at the
true value 
i0. For any function h(�;Zit) and p = 1; 2; we let @ph(
i;Zit) be the matrix of p-th
order derivatives of h(
i;Zit) with respect to 
i: Denote

G(
i0; 
i) �
1

T

TX
t=1

E
i0 l(
i;Zit): (29)

If Zit is strictly stationary, then G(
i0; 
i) = E
i0 l(
i;Zit):
Let Ait(
i0) = � (Zit(
i0); Zit�1 (
i0) ; : : :) and Bit(
i0) = � (Zit(
i0); Zit+1 (
i0) ; : : :) be the

�-algebras generated by the respective sequences. De�ne the strong mixing numbers

� (
i0;m) = sup
t

sup
A2Ait(
i0)

sup
B2Bit+m(
i0)

��P
i0 (A \ B)�P
i0 (A)P
i0(B)�� : (30)

For some � > 0; let �1 = f
i 2 � : k
i � �0k < �g be a slightly larger set than �0; where k
i � �0k
is the usual Euclidean distance between a point and a set.

To establish the consistency of �̂i and �̂nT ; we maintain the following assumptions:
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Assumption 1 (i) l(
i;Zit) is continuous in 
i 2 �; (ii) � is compact and �1 is open.

Assumption 2 For each i; fZit (
i0)g is a strictly stationary strong mixing sequence with strong
mixing numbers satisfying

sup

i02�1

� (
i0;m) � C1 exp (�C2m)

for some constants C1 2 (0;1) and C2 2 (0;1) :

Assumption 3 (i) As a function of 
i; l(
i;Zit) is continuously di¤erentiable to four orders;
(ii) There exists some function M(Zit) �M(Zit (
i0)) such that�����@m1+m2 l(
i;Zit)

@
m1
i;�1

@
m2
i;�2

����� �M(Zit); for m1;m2 = 0; 1; 2; 3 and m1 +m2 � 4

where 
i;�1 and 
i;�2 are the �1-th and �2-th elements of 
i;

(iii) sup
i02�1 E
i0 [M(Zit (
i0))]
Q <1 for all Q 2 N.

Assumption 4 For each � > 0, there exists � > 0 such that

sup

i02�1

"
G (
i0; 
i0)� sup

f
i:k
i�
i0k>�g
G(
i0; 
i)

#
� �:

Assumption 1 ensures that the maximization problem is well de�ned. The mixing and moment
conditions in Assumptions 2 and 3 ensure that the ULLN and/or CLT hold for the derivatives of
l(
i; Zit): These two assumptions are similar to Conditions 3 and 4 in HK who have veri�ed them
for some nonlinear panel data models. Assumption 3 assumes that all moments of M (Zit (
i0))
exist. This is stronger than necessary. However, it is typically assumed in the literature that very
high moments ofM (Zit (
i0)) exist. For example, HN assume that E
i0 [M (Zit (
i0))]

64 <1 and
HK assume that E
i0 [M (Zit (
i0))]

Q < 1 for Q > 42 in the case when d
i = 2: The required
value of Q in HK grows with the dimension of 
i with 42 as the lower bound. Compared to
existing assumptions, our assumption is not overly strong from a practical point of view. Our
proof does not require the existence of all moments. It remains valid as long as Q is large enough.
Assumption 4 is the identi�cation assumption for extremum estimators. It is similar to Condition
3 in HN and Condition 1 in HK.

In Assumptions 2�4, we have assumed that the bounds hold uniformly over 
i0 2 �1: The
reason for the uniformity requirement is that in the bootstrap world the true parameter value is

̂i, which is random but falls in a shrinking neighborhood around �0 with probability approaching
one. So 
̂i 2 �1 with probability approaching one. We use the uniformity assumption to ensure
that the approximation errors in the bootstrap world are small. For more discussion on the
uniformity requirement, see Andrews (2005).

Theorem 1 Let Assumptions 1�4 hold, then for any � > 0

sup

02�



1

P
0

�


�̂nT (
0)� �0


 > �
�
= o

�
1

T

�
and sup


02�


1

P
0

�
max
i
j�̂i (
0)� �i0j > �

�
= o

�
1

T

�
as n!1 and T !1 jointly such that n = O (T �) for some � > 0 where

�
1 := f
 = (�; �1; : : : ; �n) : (�; �i) 2 �1g :

8



The rate condition n = O (T �) is very mild as � can be a large number. The proof is based on a
modi�cation of standard arguments for the consistency of extremum estimators. The modi�cation
is needed as the dimension of the parameter space increases with the cross sectional sample size
n. We also need the uniform consistency of �̂i: Pointwise consistency of �̂i for each i is not
su¢ cient for our stochastic expansion.

To establish a stochastic expansion of our estimator, we make additional assumptions.

Assumption 5 
0 = (�0; �0) is an interior point in �

 = f
 = (�; �1; : : : ; �n) : � 2 ��, �i 2 ��g.

Assumption 6 There exist constants � > 0 and C > 0 such that
(i) inf
i02�1 jEvit�i(
i0)j � � and sup
i02�1 kEvit� (
i0)k � C;

(ii) sup
02�


1
�min

n
n�1

Pn
i=1

�
Euit�(
i0)� [Evit� (
i0)]0 [Evit�i(
i0)]

�1 [Evit� (
i0)]
�o

� � where

�min (A) denotes the smallest eigenvalue of A:

Assumption 5 is standard. Assumption 6 maintains the full rank condition on the information
matrix.

Let

HnT � HnT (
0) =
1

nT

nX
i=1

TX
t=1

EUit;� (
0) ;

SnT � SnT (
0) =
1p
nT

nX
i=1

TX
t=1

Uit (
0) ; (31)

and

bnT � bnT (
0) =
1

nT

nX
i=1

TX
t=1

TX
s=1

E is

 
Uit�i +

"
1

2T
E

TX
t=1

Uit�i�i

#
 it

!
: (32)

De�ne
AnT (
0) = �H�1

nT (
0)SnT (
0) and BnT (
0) = �H
�1
nT (
0) bnT (
0) : (33)

For a random variable enT (
0) ; we say that enT (
0) is of order op (1) uniformly over 
0 2
�
1 if for any � > 0; sup
02�



1
P
0 (kenT (
0)k > �) = o (1) : We say that enT (
0) is of order

Op (1) uniformly over 
0 2 �
1 if for any " > 0; there exists a constant K > 0 such that
sup
02�



1
P
0 (kenT (
0)k > K) � " when n and T are large enough.

Theorem 2 Let Assumptions 1�6 hold. If (n; T )!1 such that T = O(n); then

�̂nT � �0 =
1p
nT

AnT (
0) +
1

T
BnT (
0) +

1

T
e�nT (
0)

�̂i � �i0 =
1p
nT

Ci (
0) +
1p
T
Di (
0) +

1

T
Ei (
0) +

1

T
e�inT (
0)

where e�nT (
0) and max
��e�inT (
0)�� are of order op (1) uniformly over 
0 2 �
1 and AnT (
0) ; BnT (
0) ;

Ci (
0) ; Di (
0) and Ei (
0) are of order Op (1) uniformly over 
0 2 �
1 :
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The expressions for Ci (
0) ; Di (
0) and Ei (
0) are not important here. They are given in
the appendix of proofs. See equation (A.27).

The theorem is presented in a general form to accommodate not only the ML estimator. It
holds as long as �̂nT and �̂i solve the empirical moment equations

1

nT

X
i;t

uit

�
�̂nT ; �̂i(�̂nT )

�
= 0 and

1

T

X
t

vit

�
�̂nT ; �̂i(�̂nT )

�
= 0 for all i

where uit and vit do not have to be score functions. That is, the theorem remains valid for general
method-of-moment estimators or Z estimators.

In the ML framework with a correct speci�cation model,  it is a martingale di¤erence se-
quence. In this case, we have

bnT =
1

nT

nX
i=1

TX
t=1

E it

 
Uit�i +

"
1

2T
E

TX
t=1

Uit�i�i

#
 it

!

=
1

n

nX
i=1

�
E ( itUit�i) +

1

2
(EUit�i�i)

�
E 2it

��
: (34)

Let V2it � v2it + vit�: Using the Bartlett identities, we can show that

bnT = �
1

2n

nX
i=1

E [V2itUit]
E
�
v2it
� ; (35)

which is the same as what HN obtained for iid data.

Theorem 3 Let Assumptions 1�6 hold and de�ne �
0 := f
 = (�; �1; : : : ; �n) : (�; �i) 2 �0g : If
(n; T )!1 such that n=T ! � 2 (0;1) and M !1; then

(i) for any � > 0 and " > 0;

sup

02�



0

P
0

�
P �
̂

�



pnT ��̂�nT � �̂nT��A�nT (
̂)�rn

T
B�nT (
̂)





 � �

�
> "

�
= o (1) ;

(ii) sup
02�


1




E
0gM hpnT ��̂nT � �0�i�pn=TBnT (
0)


 = o(1);

(iii)



E�
̂gM hpnT ��̂�nT � �̂nT�i�pn=TBnT (
̂)


 = op(1) uniformly over 
0 2 �
0 ;

(iv)
p
nT (~�nT��0)

d�! N [0;
 (
0)] for each 
0 2 �
0 where 
 (
0) = �
�
lim(n;T )!1HnT (
0)

��1.
The rate conditions on n and T can be relaxed. The theorem continues to hold if T = O (n)

and T=n1=3 !1. But the proof will be much more tedious, as we have to characterize the exact
order of the error terms in the expansions given in Theorem 2. As in HN, we provide the proof
only under the stronger rate conditions.

Theorem 3(iv) gives the pointwise normal approximation for each 
0 2 �
0 : In the proof, we
obtain the following stronger and uniform result: for any c 2 Rd� ;

sup

02�



0

���P
0(c0pnT (~�nT � �0)=pc0
 (
0) c < �)� � (�)
��� = o (1)

where �(�) is the standard normal CDF. The above result implies that the asymptotic size of a
normal or chi-square test is well controlled.
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Theorem 4 Let the assumptions in Theorem 3 hold. Then for all k � 2;

E�
̂
n
gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
� gM

hp
nT
�
�̂
�
nT � �̂nT

�io
= op (1)

uniformly over 
0 2 �
0 :

When k = 1; E�
̂
n
gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
� gM

hp
nT
�
�̂
�
nT � �̂nT

�io
= Op (1) : In this

case, the di¤erence between the two bias estimators is large enough to a¤ect the asymptotic
distribution. Therefore, condition k � 2 is necessary for the k-step bootstrap method to achieve
e¤ective bias reduction.

Combining Theorems 3 and 4, we get the following theorem immediately.

Theorem 5 Let the assumptions in Theorem 3 hold. Then for all k � 2;
p
nT (~�nT;k � �0)

d�! N [0;
 (
0)] :

As in Theorem 3(iv), Theorem 5 holds uniformly over 
0 2 �
0 : It provides the usual basis for
asymptotic inference. Both asymptotic normal and chi-square inference can be conducted. As
an example, suppose that we are interested in testing H0 : c0�0 = r against H1 : c0�0 6= r for some
c 2 Rd� : We construct the t-statistic as follows:

tnT := tnT (
0) =

p
nT
�
c0~�nT;k � r

�
p
c0
̂nT c

=

p
nTc0

�
~�nT;k � �0

�
p
c0
̂nT c

(36)

where


̂nT := 
̂nT

�
~�nT;k; ~�i;k

�
=

 
� 1

nT

nX
i=1

TX
t=1

Uit�

�
~�nT;k; ~�i;k

�!�1
and

~�k � �̂� 1p
T
E�gM

hp
T (�̂�k � �̂)

i
(37)

is the k-step BBC estimator of �0: Using the standard arguments, we can show that 
̂nT is a

consistent estimator of 
 (
0) under Assumptions 2 and 3. So tnT
d! N (0; 1) under H0:

5 Some Extensions

5.1 Bias Correction for Average Marginal E¤ects

In this subsection, we suggest bias corrected estimators of the average marginal e¤ects using the k-
step bootstrap procedure. In nonlinear models, the average marginal e¤ect may be as interesting
as the model parameters because it summarizes the e¤ect over a certain sub-population, which
is often the quantity of interest in empirical studies.

The �rst average marginal e¤ect, which we refer to as �the �xed e¤ect average�or simply the
average marginal e¤ect, is the marginal e¤ect averaged over �i0: It is de�ned as4

�1(w) =
1

n

nX
i=1

�(w; �0; �i0) (38)

4Strictly speaking, we should de�ne limn!1
1
n

Pn
i=1�(w; �0; �i0) as the population parameter of interest, but

the di¤erence between the �nite sample version and the limiting version is asymptotically negligible.
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where w is the value of the covariate vector where the average e¤ect is desired. For example,
in a probit model, �(w; �0; �i0) = �0(j)�(w

0�0 + �i0) where �0(j) and �(�) are the coe¢ cient on
the j-th regressor of interest and the standard normal density function respectively. The second
average marginal e¤ect, which we refer to as �the overall average marginal e¤ect�, is the marginal
e¤ect averaged over both �i and the covariates. It is de�ned as

�2 =
1

nT

nX
i=1

TX
t=1

�(Zit; �0; �i0): (39)

See also Fernández-Val (2009). The third average marginal e¤ect, which bridges the �rst two
de�nitions, can be de�ned by

�(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Zit; �0; �i0); (40)

where we set some covariates at the �xed value w and take an average over the rest of covariates
~Zit and the �xed e¤ects. The third de�nition includes the �rst two as special cases. So without
loss of generality, we can focus on the third de�nition.

A natural estimator of �(w) is

�̂(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Zit; �̂nT ; �̂i): (41)

As in the case for the estimation of model parameters, we construct a bootstrap bias corrected
estimator of �(w) as follows

~�(w) = �̂(w)� 1p
nT
E�gM

hp
nT (�̂�(w)� �̂(w))

i
(42)

where

�̂�(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Z�it; �̂
�
nT ; �̂

�
i ) (43)

and the expectation E�gM (�) can be computed by simulation. Similarly, our k-step BBC estimator
of �(w) is

~�k(w) = �̂(w)� 1p
nT
E�gM

hp
nT (�̂�k(w)� �̂(w))

i
(44)

where

�̂�k(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Z�it; �̂
�
nT;k; �̂

�
i;k): (45)

Let

LnT (
0) =
1

nT

nX
i=1

TX
t=1

E
�
��(w; ~Zit; 
i0)���i(w; ~Zit; 
i0)

Euit�i
Evit�i

�
: (46)

De�ne
A�nT (
0) = L0nT (
0)AnT (
0) (47)
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and

B�nT (
0) =
1

nT

nX
i=1

TX
t=1

E�0�(w; ~Zit; 
i0)BnT (
0) +
1

n

nX
i=1

E
h
��i(w;

~Zit; 
i0)Ei (
0)
i

+
1

nT

nX
i=1

X
t;s

E
h
��i(w;

~Zit; 
i0) is

i
+
1

2n

nX
i=1

E
h
��i�i(w;

~Zit; 
i0)D
2
i (
0)

i
:

(48)

Theorem 6 Let the assumptions in Theorem 3 hold. In addition, assume that (i) �(w; ~Zit; 
i)
is a twice continuously di¤erentiable function in 
i; (ii) there exists some function M(Zit) such

that
���@m1+m2�(w; ~Zit; 
i)=@


m1
i;�1

@
m2
i;�2

��� � M(Zit); for m1;m2 = 0; 1; 2 and m1 + m2 � 2; (iii)

sup
i02�1 E
i0 [M(Zit (
i0))]
Q <1 for all Q 2 N. Then

(i)
p
nT [�̂(w)� �(w)] d�! N

�p
�B� (
0) ;


� (
0)
�
;

(ii)
p
nT [~�(w)� �(w)] d�! N [0;
� (
0)] ;

(iii)
p
nT [~�k(w)� �(w)]

d�! N [0;
� (
0)] for k � 2;
where B� (
0) = lim(n;T )!1B�nT (
0) and 


� (
0) = � lim(n;T )!1 L0nT (
0)H
�1
nT (
0)LnT (
0) :

The asymptotic bias of �̂(w) comes from three di¤erent sources. The �rst term in (48) comes
from the asymptotic bias of �̂nT : The second term in (48) comes from the asymptotic bias of
�̂i: The last two terms in (48) capture the nonlinear bias originated from the fact that �̂(w) is
nonlinear in �̂ and that �̂ is random.

As in the case of model parameters, Theorem 6 holds uniformly over 
0 2 �
0 : As before, the
bias expression for the average marginal e¤ect is presented in a general form and can be simpli�ed
in the ML framework. In particular, when the model is correctly speci�ed, f isg is a martin-
gale di¤erence sequence. So the third term in (48) becomes (nT )�1

P
i;t E��i(w; ~Zit; 
i0) it:

Furthermore, when ~Zit is not present or is predetermined, this term vanishes.

5.2 Distributional Approximation by Double Bootstrap

The normal approximations in Theorems 5 and 6 may not work very well in �nite samples. As an
alternative, we can approximate the distributions of

p
nT (~�nT;k � �0) and

p
nT [~�k(w)� �(w)]

using double bootstrap. We focus on
p
nT (~�nT;k � �0) and the results can be easily extended top

nT [~�k(w)� �(w)] :
The double bootstrap sample is generated under the same DGP but using 
̂� = (�̂

�
nT ; �̂

�) as
the model parameter. De�ne

~�
�
nT;k = �̂

�
nT �

1p
nT
E��
̂�gM

hp
nT
�
�̂
��
nT;k � �̂

�
nT

�i
(49)

where �̂
��
nT;k is the k-step estimator based on the double bootstrap sample and using 
̂

� as the
starting point, and E��
̂� is the expectation operator with respect to the randomness in the double
bootstrap sample, conditional on 
̂�: The above de�nition is entirely analogous to the k-step
BBC estimator given in (23). The mechanics behind ~�nT;k and ~�

�
nT;k can be illustrated by the
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following chart:

�0 7! �̂nT 7! �̂
�
nT;k � ~�nT;k � �̂nT �

1p
nT
E�
̂gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
�̂nT 7! �̂

�
nT 7! �̂

��
nT;k � ~�

�
nT;k � �̂

�
nT �

1p
nT
E��
̂�gM

hp
nT
�
�̂
��
nT;k � �̂

�
nT

�i
(50)

where, for example, ��0 7! �̂nT�signi�es that �̂nT is the MLE based on the sample governed by
the model parameter �0 (and �0). We will show in Theorem 7 below that the distribution ofp
nT (~�

�
nT;k � �̂nT ) is consistent for that of

p
nT (~�nT;k � �0):

While ~�
�
nT;k is the bootstrap analogue of ~�nT;k; it involves the standard bootstrap estimator


̂� which is computationally intensive. To alleviate the computational burden, we use the k-step
estimate 
̂�k = (�̂

�
nT;k; �̂

�
k) as the model parameter to generate the double bootstrap sample. We

call this sample the k-step double bootstrap sample. We de�ne our double k-step BBC estimator
as

~�
�
nT;kk = �̂

�
nT;k �

1p
nT
E��
̂�kgM

hp
nT
�
�̂
��
nT;kk � �̂

�
nT;k

�i
(51)

where �̂
��
nT;kk is the k-step estimator based on the k-step double bootstrap sample and using 
̂

�
k

as the starting point. Similar to the chart in (50), we can use the chart below to illustrate the
mechanics behind ~�

�
nT;kk and the corresponding quantity ~�nT;kk :

�0 7! �̂nT;k 7! �̂
�
nT;kk � ~�nT;kk � �̂nT;k �

1p
nT
E�
̂kgM

hp
nT
�
�̂
�
nT;kk � �̂nT;k

�i
�̂nT ! �̂

�
nT;k ! �̂

��
nT;kk � ~�

�
nT;kk � �̂

�
nT;kk �

1p
nT
E��
̂�kgM

hp
nT
�
�̂
��
nT;kk � �̂

�
nT;k

�i
Here �̂nT;k is the k-step �estimator� starting with �0 and �0: It is a theoretical and infeasible
object. For this reason, �̂

�
nT;kk and hence ~�nT;kk are infeasible, but they are useful in analyzing

the asymptotic properties of ~�
�
nT;kk:

The following theorem establishes the consistency of the bootstrap approximation.

Theorem 7 Let the assumptions in Theorem 3 hold. Let # be a vector in Rd� ; then for any
� > 0;

(i) sup
02�


0
P
0

n
sup#

���P �
̂ hpnT (~��nT;k � �̂nT ) < #
i
� P
0

hp
nT (~�nT;k � �0) < #

i��� � �
o
= o(1);

(ii) sup
02�


0
P
0

n
sup#

���P �
̂ hpnT (~��nT;kk � �̂nT ) < #
i
� P
0

hp
nT (~�nT;kk � �0) < #

i��� � �
o
=

o(1):

The proof of the theorem shows that
p
nT (~�nT;k � �0) and

p
nT (~�nT;kk � �0) have the same

limiting distribution. Therefore the distribution of
p
nT (~�nT;k � �0) can be approximated by the

distribution of either
p
nT (~�

�
nT;k � �̂nT ) or

p
nT (~�

�
nT;kk � �̂nT ):

Theorem 7 can be used to construct con�dence intervals or regions. As an example, let c be
a vector in Rd� and suppose that c0�0 is the parameter of interest. Let qc;1�� be 1�� quantile ofp
nTc0(~�

�
nT;k � �̂nT ); i.e. P �
̂

hp
nTc0(~�

�
nT;k � �̂nT ) � qc;1��

i
= �: In the appendix, we show that

sup

02�



0

P
0

hp
nTc0(~�nT;k � �0) � qc;1��

i
� � = o(1): (52)
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Similar results hold for the approximation based on the distribution of
p
nT (~�

�
nT;kk � �̂nT ):

We can also approximate the distribution of tnT de�ned in (36) using double bootstrap. We
de�ne

t�nT;k =

p
nTc0

�
~�
�
nT;kk � �̂nT

�
r
c0
̂�nT

�
~�
�
nT;kk; ~�

�
kk

�
c

: (53)

Then under the assumptions of Theorem 3, we have

sup

02�



0

P
0

�
sup
�2R

���P �
̂k �t�nT;k (
̂k) < �
�
� P
0 (tnT (
0) < �)

��� � �

�
= o(1):

The proof is similar to Theorem 7 and is omitted.

6 Monte Carlo Study

In this section, we report our Monte Carlo experiment results, which show that k-step bootstrap
bias correction reduces the bias signi�cantly in �nite samples and also improves the coverage
accuracy of CI�s.

Our Monte Carlo experiment uses the following probit model:

Yit = 1fXit�0 + �i � �it � 0g; �it�N(0; 1); �i�N(0; 1=102);
Xit = t=10 +Xi;t�1=2 + uit; Xi0 = ui0; uit�U(�1=2; 1=2);
n = 100; T = 4; 8; 12; �0 = 1:

This design is based on the one employed in Heckman (1981), Greene (2004), HN, and Fernández-
Val (2009). The only di¤erence is that we simulate �i using N(0; 1=102) instead of N(0; 1) to
reduce the chance for each time series Yit (t = 1; : : : T ) to be constant over time.

The probit model we consider completely �ts within our framework. While Xit is correlated
over time, it does not cause any problem as our framework accommodates the conditional MLE
with strictly exogenous regressors. In the model, there is no correlation between Xit and �i, and
this is di¤erent from the usual condition under which the �xed e¤ects estimator is used. However,
the incidental parameters problem is still present as it has nothing to do with whether there is
a correlation between Xit and �i: The bias of the �xed e¤ects estimator can be severe for �xed
e¤ects models as well as for random e¤ects models.

The uncorrected estimator of model parameters is

(�̂nT ; �̂) = argmax
�;�

1

nT

nX
i=1

TX
t=1

[Yit log �(Xit� + �i) + (1� Yit) log(1� �(Xit� + �i)] ;

and the estimators of the average marginal e¤ect and overall average marginal e¤ect are

�̂1( �X) =
1

n

nX
i=1

�̂nT�( �X�̂nT + �̂i); �̂2 =
1

nT

nX
i=1

TX
t=1

�̂nT�(Xit�̂nT + �̂i);

where �X is the sample mean of fXitg.
For the k-step bootstrap, we use the �xed regressor bootstrap and use �̂nT and f�̂igni=1 as the

true parameters to generate bootstrap samples. We obtain �̂
�
nT;k by the NR iterative procedure
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presented in (19). We repeat this procedure 999 times (R = 999). Then, we have the bias
corrected k-step bootstrap estimator from (23). As discussed before, for each k value, we can use
either observed Hessian or expected Hessian in the NR step, leading to two versions of the k-step
procedure. Each simulation is repeated 1000 times.

We compare the performance of our bias corrected estimator with four alternative bias correc-
tion estimators: the jackknife and analytic bias corrected estimators by HN and the analytic bias
corrected estimator by Fernández-Val (2009). The jackknife bias corrected estimator is denoted
�Jackknife�. For the analytic estimators by HN, there are two versions: the analytic bias corrected
estimator using Bartlett equalities, denoted �BC1�; the analytic bias corrected estimator based
on general estimating equations, denoted �BC2�. Fernández-Val�s estimator is denoted �BC3�.

For each estimator, we report its mean, median, standard deviation, root mean squared error,
and the empirical size of two-sided nominal 5% and 10% tests. The tests are based on symmetric
CI�s, that is, we reject the null hypothesis if the parameter value under the null falls outside the
CI�s. For the jackknife and analytic bias correction procedures, the interval estimators or the
testing methods are the same as that given in the respective papers. For the k-step procedure,
the CI�s are based the double bootstrap procedure, which are�

~�nT;k � T �1��=2
1p
nT

̂(~�nT;k; ~�k); ~�nT;k + T

�
1��=2

1p
nT

̂
�
~�nT;k; ~�k

��
where T �1��=2 is the (1� �=2) � 100% percentile of

���t�nT;k��� de�ned in (53). We also employ the
double bootstrap procedure to construct CI�s for the average marginal e¤ects. The standard errors
for the original bias corrected estimators of the average marginal e¤ects and the corresponding
bias corrected estimators in the bootstrap world are evaluated at the bias uncorrected parameter
estimator (�̂nT ; �̂) and its bootstrap version (�̂

�
nT;k; �̂

�
k) respectively. In the simulation experiment,

we set the number of double bootstrap iterations to be 100. We do so in order to reduce the
computational burden. In empirical applications, we should use a larger number.

Table 1 shows the performance of the standard and k-step bootstrap bias corrected estima-
tors. From this table, we see that there is no sacri�ce of accuracy by using the k-step bootstrap
procedure in this setting. The k-step bootstrap bias correction tends to reduce the bias signif-
icantly as the standard bootstrap does, when k � 2. Results not reported here show that the
one-step procedure is not e¤ective in bias reduction. This result is consistent with our Theorem
5, which demonstrates the order of bias is reduced from O (1=T ) to o (1=T ) when k � 2. In terms
of the MSE, the 2-step bootstrap estimators with expected and observed Hessians are e¢ cient
when T = 4. When T = 8 and 12, there is little di¤erence in performance among the standard
and k-step bootstrap bias corrected estimators.

Table 2 compares di¤erent bias correction methods. We choose the 2-step bootstrap with
observed Hessian as our benchmark. First, we see that the estimator without bias correction
is severely biased when T is small. As T gets larger, the bias gets smaller, but there is still no
improvement in the coverage accuracy of CI�s. When T = 4, the bias of the uncorrected estimator
is 35%. When T = 12, the bias is reduced to 14%. But the rejection probability is 35:5% for the
5% two-sided test, which is even more inaccurate than the one with T = 4. Second, the k-step
bootstrap performs well in �nite samples compared to the other methods. In particular, when
T = 4, the bias of our estimator is 9% and RMSE is 0.213, while the bias of the jackknife method
is 24% and its RMSE is 0.319. The analytic method by Fernández-Val (2009) has a bias of 4%;
but its RMSE is 0.240, which implies that its variance is larger than ours. As T becomes large,
all the bias corrected estimators we consider tend to have similar RMSEs. Third, in terms of
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coverage accuracy, we see that our double k-step bootstrap procedure and normal approximation
with BC3 yield more accurate CI�s than other methods.

Table 3 presents the ratio of the estimators of the average marginal e¤ect to the true value.
As HN and Fernández-Val (2009) show, the bias of the original estimator is negligible, even when
T = 4. Its bias is less than 1% and in terms of RMSE, it performs as good as the bias corrected
ones. However, the CI�s based on the bias uncorrected estimator are especially not accurate when
we have small T . When T = 4, its error in coverage probability for the 95% CI is about 5%.
Inaccurate CI�s are not just the problem of the bias uncorrected estimator. The jackknife and
analytic bias corrected estimators do not reduce the coverage error either. When T = 4, the
errors in coverage probability for the 95% CI from jackknife and analytic estimators are 13% and
4-7% respectively. In contrast, the coverage error of the 95% CI constructed using the k-step
double bootstrap is 2.7%.

Table 4 gives the Monte Carlo results for the ratio of the estimators of the overall average
marginal e¤ect to the true value. As in the previous case, we �nd little evidence that bias
correction is necessary in terms of RMSE. Actually, the RMSE of the bias uncorrected estimator
is smaller than that of the jackknife estimator in general. It also shows that in contrast to other
estimators, our double k-step bootstrap procedure tends to improve the coverage accuracy of
CI�s, particularly when T is small.

7 Conclusion

In this paper, we analyze the properties of parametric bootstrap bias correction for �xed e¤ects
estimators in nonlinear panel models. In particular, we propose using the k-step bootstrap
procedure to alleviate the computational cost of implementing the standard bootstrap and show
that it is asymptotically equivalent to the standard parametric bootstrap bias corrected estimator
when k � 2. We also apply the k-step bootstrap procedure to average marginal e¤ect estimation
and to the double bootstrap for CI construction. In the simulation, we show that the k-step
bootstrap bias correction achieves substantial bias reduction. The CI�s based on the k-step
double bootstrap tend to have smaller coverage errors than the other CI�s especially when T is
small. The possible higher order re�nement of double bootstrap CI is not studied here, which is
an interesting topic for future research.

List of Some Notations


i =
�
�0; �i

�0 2 � := �� � �� 
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�
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�0 2 �0 
0 = (�0; �10; : : : ; �n0)
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Table 1: Finite Sample Performance of Standard and k-step BBC Estimators (cross section
sample size n = 100 and the true value �0 = 1)

Estimator Mean Median SD RMSE

T = 4

k=2, E 0.97 0.97 0.206 0.208
k=2, O 0.91 0.91 0.193 0.213
k=3, E 0.84 0.84 0.164 0.232
k=3, O 0.82 0.82 0.158 0.241
Standard 0.81 0.81 0.157 0.249

T = 8

k=3, E 0.96 0.96 0.099 0.106
Standard 0.96 0.96 0.099 0.107
k=2, E 1.00 1.00 0.107 0.107
k=2, O 0.98 0.97 0.106 0.109
k=3, O 0.96 0.95 0.101 0.110

T = 12

Standard 0.98 0.97 0.073 0.076
k=3, O 0.98 0.97 0.073 0.077
k=3, E 0.98 0.98 0.075 0.077
k=2, O 1.00 1.00 0.079 0.079
k=2, E 1.01 1.01 0.078 0.079

Notes: We use �E�to indicate the use of the expected Hessian in the k-step bootstrap while we
use �O�to indicate the use of the observed Hessian in the k-step bootstrap. The estimators are
ordered according to their RMSE.
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Table 2: Finite Sample Performance of Di¤erent Bias Corrected Estimators of � (cross section
sample size n = 100 and the true value �0 = 1)

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4

Probit 1.35 1.33 0.311 0.265 0.363 0.468
2-step Bootstrap 0.91 0.91 0.193 0.038 0.073 0.213

Jackknife 0.76 0.76 0.215 0.112 0.195 0.319
BC1 1.09 1.07 0.262 0.054 0.103 0.276
BC2 1.17 1.15 0.284 0.094 0.166 0.331
BC3 1.04 1.03 0.237 0.030 0.068 0.240

T = 8

Probit 1.16 1.15 0.132 0.260 0.357 0.209
2-step Bootstrap 0.98 0.97 0.106 0.040 0.083 0.109

Jackknife 0.95 0.94 0.108 0.059 0.111 0.120
BC1 1.04 1.04 0.121 0.068 0.126 0.129
BC2 1.05 1.04 0.120 0.065 0.118 0.128
BC3 1.01 1.01 0.113 0.040 0.085 0.114

T = 12

Probit 1.14 1.14 0.096 0.355 0.477 0.171
2-step Bootstrap 1.00 1.00 0.079 0.036 0.078 0.079

Jackknife 0.97 0.97 0.080 0.074 0.129 0.086
BC1 1.04 1.04 0.089 0.088 0.148 0.098
BC2 1.03 1.03 0.087 0.063 0.126 0.092
BC3 1.01 1.01 0.083 0.044 0.102 0.084

Notes: Jackknife denotes HN Jackknife bias corrected estimator; BC1 denotes HN bias corrected
estimator based on Bartlett equalities; BC2 denotes HN bias corrected estimator based on general
estimating equations; BC3 denotes Fernández-Val (2009) bias corrected estimator which uses
expected quantities in the estimation of the bias. p;.05 and p;.10 denote empirical rejection
probabilities of two-sided nominal 5% and 10% tests.
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Table 3: Finite Sample Performance of Di¤erent Bias Corrected Estimators of the Average Mar-
ginal E¤ect (cross section sample size n = 100 and the true value = 1)

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4

Probit 0.99 0.98 0.218 0.098 0.184 0.218
2-step bootstrap 0.99 0.98 0.219 0.077 0.132 0.219

Jackknife 1.08 1.06 0.273 0.181 0.250 0.283
BC1 0.99 0.99 0.233 0.115 0.184 0.233
BC2 1.03 1.03 0.227 0.104 0.178 0.229
BC3 0.93 0.93 0.202 0.095 0.156 0.214

T = 8

Probit 1.00 1.00 0.105 0.068 0.122 0.105
2-step bootstrap 0.99 0.99 0.104 0.051 0.110 0.105

Jackknife 1.00 0.99 0.107 0.071 0.126 0.107
BC1 1.01 1.01 0.108 0.073 0.137 0.108
BC2 1.00 1.00 0.105 0.067 0.124 0.105
BC3 0.98 0.98 0.102 0.075 0.122 0.104

T = 12

Probit 1.01 1.01 0.070 0.065 0.121 0.070
2-step bootstrap 0.99 0.99 0.069 0.064 0.109 0.069

Jackknife 0.99 0.98 0.072 0.065 0.128 0.074
BC1 0.99 0.98 0.070 0.058 0.111 0.072
BC2 0.99 0.99 0.070 0.053 0.106 0.070
BC3 0.98 0.98 0.069 0.060 0.120 0.072

Notes: See notes to table 2.
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Table 4: Finite Sample Performance of Di¤erent Bias Corrected Estimators of the Overall Average
Marginal E¤ect (cross section sample size n = 100 and the true value = 1)

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4

Probit 1.00 0.99 0.204 0.112 0.188 0.204
2-step Bootstrap 1.00 0.99 0.204 0.065 0.116 0.204

Jackknife 1.03 1.03 0.237 0.116 0.180 0.240
BC1 1.02 1.02 0.234 0.126 0.203 0.235
BC2 1.05 1.05 0.227 0.116 0.200 0.234
BC3 0.95 0.96 0.203 0.091 0.140 0.207

T = 8

Probit 0.99 0.99 0.092 0.068 0.116 0.092
2-step Bootstrap 0.99 0.99 0.092 0.054 0.084 0.093

Jackknife 1.01 1.00 0.096 0.068 0.133 0.097
BC1 1.02 1.02 0.099 0.083 0.155 0.101
BC2 1.01 1.01 0.095 0.069 0.126 0.095
BC3 0.99 0.99 0.093 0.066 0.120 0.094

T = 12

Probit 0.99 0.99 0.614 0.075 0.129 0.062
2-step Bootstrap 1.00 1.00 0.062 0.054 0.107 0.062

Jackknife 1.01 1.01 0.069 0.078 0.140 0.070
BC1 1.01 1.01 0.070 0.090 0.143 0.070
BC2 1.00 1.00 0.068 0.073 0.113 0.068
BC3 0.99 0.99 0.067 0.068 0.125 0.067

Notes: See notes to table 2.
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Appendix of Proofs

Proof of Theorem 1. We �rst prove the result that sup
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above equation goes to zero at an arbitrarily slow rate. For the �rst term, we use Assumption 2
and the strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995, Theorem 2
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This, combined with (A.3) and (A.5), yields
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The exchange of di¤erentiation with expectation holds under Assumption 3. In addition, using
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Therefore for any � > 0 and p > (d� + 1) =2 + 1; sup
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To prove Theorem 2, we �rst establish the following two lemmas, which employ the convention
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Proof of Lemma A.1. Part (i). Given the assumptions on �
; we have sup
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Part (ii). Again, we focus on the event that �
i 2 �1; which happens with probability
approaching one. Observing that

1

nT

nX
i=1

TX
t=1

�����@m1+m2 l(�
i;Zit (
i0))

@
m1
i;�1

@
m2
i;�2

����� � 1

nT

nX
i=1

TX
t=1

M(Zit (
i0));

26



we have, for K > limn!1
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Lemma A.2 Let Assumptions 1�6 hold. Then for any " > 0; there exists a K > 0 such that
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Proof of Lemma A.2. We prove the �rst part only as the proof for the second part is similar.
Since each time series uit is a strong mixing sequence and the time series are independent from
each other, fu11; : : : ; u1T ; u21; : : : ; u2T ; : : : ; un1; : : : ; unT g is a strong mixing sequence with an
exponentially decaying strong mixing numbers. Using the strong mixing moment inequality as
before, we have
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when K is large enough.

To keep track of the approximation errors, we introduce a de�nition for a random variable
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Similarly, when Lemma A.2 holds, we write
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vit (
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Proof of Theorem 2. We �rst establish a preliminary rate of convergence for �̂nT and �̂i:
Since l (�; �;Zit) is continuously di¤erentiable with respect to (�; �i), (�0; �0) is an interior point
of �; and (�̂; �̂) is consistent, the following �rst order conditions (FOCs) hold:
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where for notational economy we write �̂ = �̂nT : Taking a �rst order Taylor expansion of each
equation in the above FOCs, we have
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where (��; ��) may be di¤erent across di¤erent equations but for notational simplicity we use the
generic notation (��; ��): It then follows from Lemma A.1, Lemma A.2 and Theorem 1 that
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Equation (A.14) and Assumption 6(i) imply that
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Using Assumption 6(ii), we can then deduce that
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�
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We now proceed to establish the stochastic representation. Taking a second order Taylor
expansion of
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It then follows that �̂ � �0 can be represented as
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for some matrices ~Ci; ~Di and ~Ei that are all OUp (1) and depend on (n; T ) :
We proceed to �nd ~AnT and ~BnT : Using the above stochastic representations and taking a
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Since the above holds for all n and T such that T = O(n), the coe¢ cients for 1=
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The oUp (�) terms above can be absorbed into the remainder term of order oUp (1=T ) in (A.18). We
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drop them from now on without loss of generality and rede�ne ~Di; ~Ci and ~Ei as
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Next, using the above results and the second order Taylor expansion in (A.15), we have
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Combining the above approximations, we have
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T
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U
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�
(A.26)

for AnT = �H�1
nT SnT and BnT = �H�1

nT bnT : It is easy to see that AnT = OUp (1) and BnT =
OUp (1) :
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then
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where all of Ci (
0) ; Di (
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U
p (1) : Now for any � > 0; we have
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Note that in the statement of the theorem, we do not use the nonstandard notation OUp (�)
and oUp (�) but (A.26) and (A.28) are just alternative ways to present the same results.

To prove Theorem 3 and other results, we will use the following two lemmas repeatedly.
Lemma A.3 helps translate the asymptotic results for the original sample into the corresponding
ones for the bootstrap sample. Lemma A.4 shows that the e¤ect of nonlinear truncation can be
ignored in large samples.

Lemma A.3 Let �nT (
) be a sequence of real functions on �
1 . If (i) sup
02�
1 j�nT (
0)j =
o (anT ) for some sequence anT ; (ii) sup
02�
0 P
0 (k
̂ � 
0k � �) = o (anT ) ; then for any " > 0;
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P
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Proof of Lemma A.3. Since sup
02�
0 P
0 (k
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0k � �) = o (anT ) ; we have sup
02�
0 P
0
�

̂ =2 �
1

�
=
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o (anT ) : Now

sup

02�



0

P
0 (j�nT (
̂)j � anT ")

� sup

02�



0

P
0
�
j�nT (
̂)j � anT "; 
̂ 2 �
1

�
+ sup

02�



0

P
0
�

̂ =2 �
1

�
� sup


02�


0

P
0

 
sup

2�
1

j�nT (
)j � anT "

!
+ o(anT )

= sup

02�



0

P
0 (o(anT ) � anT ") + o(anT ) = o(anT ) (A.29)

where the last equality holds because P
0 (o(anT ) � anT ") = 0 when n and T are large enough.

Lemma A.4 Let ĴnT (
) and ~JnT (
) be two sequences of random vectors in RdJ and indexed by
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because gM (�) is continuous. That is, for any � > 0;

sup

02�



1

P
0

�


gM (ĴnT (
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gM (ĴnT (
0))� gM � ~JnT (
0)�


 1n


gM (ĴnT (
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for any �xed M: But

E
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for some constant C that does not depend on n; T or 
0: That is,
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This implies that for some M !1;
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0gM [ĴnT (
0)]� E
0 h ~JnT (
0)i


 = o(1):

Proof of Theorem 3. Part (i). Let �̂nT (
) be the estimator of � based on the sample
fZi1 (
)g := fZi1 (
) ; :::; ZiT (
)gni=1 generated under the original DGP with parameter value

 = (�; �) : Similarly let �̂

�
nT (
) be the estimator of � based on the bootstrap sample fZ�i1 (
)g :=

fZ�i1 (
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n
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Since the original DGP and the bootstrap DGP are the same, we have AnT (
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0gM [ĴnT (
0)]�pn=TBnT (
0)


 = o(1)

as desired.
Part (iii). Let Ĵ�nT (
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for any conformable vector c: In addition, it is easy to see that BnT (
̂)�BnT (
0) = op (1) : Using
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these two results, we have
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Because of (A.33) and that the o(1) terms in the above equation hold uniformly over 
0 2 �
0 ;
we have
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Proof of Theorem 4. We �rst consider the k-step �estimator�for the original sample:
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�
H
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(A.36)
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(A.37)

and 
̂0 = 
0: While the k-step estimator is feasible for the bootstrap sample, the above k-step
estimator for the original sample is not feasible, as we do not know the true value 
0. Nevertheless,
we want to show that there exists a constant K > 0 such that

sup
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P
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T 2

k�1 k
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= o (1) :

That is, had we known the true value 
0; the infeasible k-step estimator 
̂k would be very close
to the MLE 
̂ when k is large enough. This result will be used in establishing the convergence
property of the k-step estimator in the bootstrap world.

Using a Taylor expansion and the �rst order condition:
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where 
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A more explicit expression for �
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Hence with probability approaching one uniformly over 
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where k�k is the Euclidean norm, that is, for a symmetric matrix A; kAk2 = trace(AA0): So

k
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̂k � ��;k�1
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For k = 1; we have for any K > 0;

P
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(A.44)

Observing that
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1 I2 = o (1) : We have thus proved that
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when K is large enough. Therefore
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using sup
02�
1 P
0

�
T



�0 � �̂


2 � p0:5K� = o(1) and �̂k�1 = �0 for k = 1:
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Using Theorem 2, it is easy to show that there exists a constant C� > 0 such that
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where the last equality holds by the same arguments leading to Lemma A.1 but with a better
bound as in the proof of Theorem 1.

To sum up the above steps, we have proved that for k = 1;
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P
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Using the same steps, we can show that the above holds for k � 2: Hence
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where we have written 
̂k := 
̂k (
0) and 
̂ := 
̂ (
0) to emphasize their dependence on the true
parameter 
0: In particular, when k � 2:
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Letting
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p
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Combining this with Theorem 3(ii) yields
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E
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for k � 2:
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Proof of Theorem 5. In view of equation (24), the theorem follows from Theorems 3 and 4.

Proof of Theorem 6. Part (i). Under the smooth assumption on �(w; ~Zit; 
i); we have
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Using Theorem 2, we have
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Part (ii). Using the same argument for proving Theorem 3(ii), we can show
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This, combined with Lemma A.3, (A.54), implies that
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uniformly in that the underlying probability errors converge to zero uniformly over 
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for k � 2; (A.56) follows from the same argument for proving (A.52).
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o (1) by an argument similar to Lemma A.3. But
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Combining this with Poyla�s lemma, we have sup
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