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Abstract

Background: Recent advances in nucleic acid sequencing technologies have led to
a dramatic increase in the number of markers available to generate genetic linkage
maps. This increased marker density can be used to improve genome assemblies as
well as add much needed resolution for loci controlling variation in ecologically and
agriculturally important traits. However, traditional genetic map construction methods
from these large marker datasets can be computationally prohibitive and highly
error prone.

Results: We present TSPmap, a method which implements both approximate and
exact Traveling Salesperson Problem solvers to generate linkage maps. We demonstrate
that for datasets with large numbers of genomic markers (e.g. 10,000) and in multiple
population types generated from inbred parents, TSPmap can rapidly produce high
quality linkage maps with low sensitivity to missing and erroneous genotyping data
compared to two other benchmark methods, JoinMap and MSTmap. TSPmap is open
source and freely available as an R package.

Conclusions: With the advancement of low cost sequencing technologies, the number
of markers used in the generation of genetic maps is expected to continue to rise.
TSPmap will be a useful tool to handle such large datasets into the future, quickly
producing high quality maps using a large number of genomic markers.

Keywords: Genetic mapping, Linkage, Travelling salesperson problem, Genomic
markers, Next generation sequencing, Genotyping by sequencing

Background
Genetic maps are the foundation of genotype to phenotype mapping and a critical

component in the discovery of the molecular basis of both simple and complex traits.

Increased sample size and number of markers in a map improves the resolution of

chromosomal regions underlying quantitative trait loci (QTL) and reduces the number

of possibly causal variants for further investigation. Additionally, genetic maps are a

valuable tool for constraining and validating the assembly of eukaryotic genomes be-

cause genetic linkage map construction is robust to repetitive regions and paralogs,

which can confound assembly algorithms based purely on sequence data. These
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motivations, and recent advances in genotyping by sequencing (GBS) technologies,

have led to dramatic increases in the number of markers used to generate genetic maps.

Indeed, recent reports demonstrate the use of maps composed of more than 10,000

markers [1–5].

While next generation sequencing technologies have allowed for the identification

of increasing number of genetic markers, the rate of erroneous calls, on the order of

1–2% [6–8], affect map quality. The often-high rates of missing genotype data result-

ing from popular GBS methods also can create problems for mapping algorithms.

The increasing risk of mis-clustering and mis-ordering of markers with increasing

size of datasets demands computational methods that can efficiently generate genetic

maps with larger marker datasets while effectively handling missing or erroneous

marker calls.

To date, software methods for generating genetic maps have used strategies such

as simulated annealing to maximize a likelihood function [9–12], graphical ap-

proaches such as minimum spanning tree of the marker graph [13] or projecting a

principal coordinate analysis onto a 3D trend line [14]. Since the late 1990s it has

been recognized that genetic linkage mapping could be conceptualized as a Travel-

ling Salesperson Problem (TSP) [11, 15–17]. However the application of TSP

solvers has yet to be implemented into a usable open source genetic mapping tool.

The TSP is formulated as a problem in which an agent wishes to visit all of the verti-

ces of a graph, G(V,E). The edges of the graph are weighted. The goal is to find a

Hamiltonian circuit (a “tour”) that visits all of the vertices using n edges, and that also

results in the lowest cost, meaning that the sum of the weighted edges on the

Hamiltonian circuit is minimized. Each genetic marker corresponds to a vertex in the

graph G(E,V), and the recombination frequency (rf ) values between markers represent

the weights between the vertices. This allows the recombination frequency matrix to

serve as the weight matrix for the TSP instance, and the solution will give us the

lowest-cost path through the markers. However, no genetic mapping tool using an

exact TSP solver has been developed to date. This is likely because only recently has

the computational power required to implement exact TSP solvers for large datasets

been achieved for personal computers, finally unlocking the potential to apply this

approach toward generating genetic maps [18].

Another computational framework that can be applied to the problem of finding

genetic linkage maps is the minimal spanning tree (MST). Finding the minimal

spanning tree of a graph, G(V,E), has a polynomial time complexity of O(V + E). By

contrast, the TSP is an NP-Hard problem, meaning there is no known determinis-

tic algorithm for solving all TSP instances in polynomial time. Thus it would seem

better to use a minimal spanning tree if possible to generate genetic linkage maps.

Under perfect conditions, one can indeed use a minimal spanning tree to generate

accurate genetic linkage maps. By perfect conditions, we mean that the recombin-

ation frequencies exactly and precisely capture the distance between genetic

markers. This means, for example, if m1, m2, m3, m4, m5 are genetic markers that

are already in the correct order, then the distance between m3 and m4 must be

less than the distance between m3 and m5, and the distance between m2 and m3

must be less than the distance between m3 and m1. We can think of these

markers as being points on a straight line. In this case, a minimal spanning tree
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will link the markers in the proper sequence. However, we can’t precisely know the

true recombination frequencies of a set of genetic markers. If we think of the re-

combination frequencies as being two numbers, the true recombination frequencies

plus a noise term, then as the level of “noise” increases the minimal spanning tree

is increasingly corrupted by this noise. At a certain low level of noise it is no lon-

ger possible to properly order the genetic markers, but it may still be possible to

separate the genetic markers that are on different linkage groups. At higher levels

of noise, it may not even be possible to correctly separate the genetic markers that

are on different linkage groups. There is a commonly used tool, MSTmap, which

attempts to use information from the minimal spanning tree to construct genetic

linkage maps [13]. However the quality of the solutions produced from the min-

imal spanning tree is highly dependent on the quality and reliability of the recom-

bination frequencies.

By posing genetic linkage map construction as a Traveling Salesperson Problem,

we add the additional constraint that we are selecting small weights and imposing

an ordering on all of the genetic markers. Methods that only look at the minimal

spanning tree do not impose an ordering on all of the genetic markers. By impos-

ing an ordering on all of the genetic markers, we also obtain a solution that is

more robust to noise, errors and missing data in the recombination frequencies.

Here we present TSPmap: an R package that applies TSP algorithms to the gen-

eration of genetic linkage maps from genetic marker data. We compared this

method with commonly used tools, JoinMap and MSTmap, with simulated datasets

of varying marker number and missing/erroneous markers, and found that this

new tool generates maps in less time and with equal or higher quality.

Implementation
An important element in our strategy for constructing genetic linkage maps is to

exploit problem decomposition. A fundamental motivation for exploiting problem

decomposition is to break large problems into smaller problems. This is particu-

larly important if we want to use an exact solver for the TSP. An exact solver

might perform reasonably for 2000 markers, but then require an unreasonable

amount of time to solve a TSP with 10,000 markers. A natural form of problem

decomposition is to separate different groups of markers that are on different chro-

mosomes. For example, if we construct the minimal spanning tree, we may not be

able to determine the ordering of all of the genetic markers. However, we may be

able to determine that certain groups of genetic markers are on different linkage

groups with high probability by examining the minimal spanning tree. In other

cases, we may run a heuristic TSP solver, which is less sensitive to problem size,

to generate an initial high quality solution. From this initial solution, we may de-

termine that different groups of markers either are on different linkage groups or

might be on different linkage groups. By separating the markers into different

groups, we can solve each group as a separate instance of a TSP, and then re-

assemble the solutions for each group into one overall solution. Thus, the pro-

posed solver uses a mix of heuristic methods to generate initial solutions to the

TSP instances, and then uses an exact solver on groups of markers that are clearly

on the same linkage group.
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TSP solvers

TSPmap uses two TSP solvers. Lin-Kernighan-Helsgaun (LKH) is an heuristic local

search algorithm based on the Lin-Kernighan algorithm [19, 20]. LKH is able to run in

significantly less time than an exact solver. The second is Concorde, an exact solver

based on the branch-and-bound method, a technique used to prune the search space

and limit unnecessary exploration of areas of the state space which are guaranteed not

to produce improvement on an already existing result [18]. Because Concorde is an

exact method, it is guaranteed to find the optimal TSP solution. This causes much lon-

ger run times than that of LKH, especially as the problem size (number of markers)

grows. With TSPmap, LKH is used in the early stages of the mapping process, namely

to identify and separate the linkage groups. Once these groups are identified, the final

order of markers on each linkage group is determined using the exact solution imple-

mented by Concorde (Fig. 1).

TSPmap algorithm

Computation of pair-wise recombination frequency (rf)

TSPmap uses a matrix of recombination frequencies (rf ) between markers to identify

linkage groups and order markers. In mapping populations where genotypes are almost

Fig. 1 Workflow for TSPmap program. First, a matrix of recombination frequencies (rf) between markers is
generated (either by R/QTL or with functions included with TSPmap). Next, the LKH solver is used to identify
clusters of markers and merge clusters into linkage groups. Lastly, the Concorde solver is used to correctly order
markers in each linkage group
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entirely homozygous, such as those comprised of recombinant inbred lines (RILS) or

generated through double haploidization, TSPmap includes a pipeline for quickly

generating rf matrices. First, genotype data in a matrix format are filtered by removing

duplicate and heterozygous markers, as well as markers above a user-defined threshold

of similarity across all individuals. Since smaller rf values indicate higher correlation

between markers, the smaller recombination frequency values are most relevant to the

construction of the linkage map. The larger values represent unlinked markers and thus

are of limited utility. Because the performance of the TSP solver is slowed by the inclu-

sion of these values, the user may input a cutoff threshold (default set to 0.4) above

which all rf values are inflated to 0.5, preventing the solver from spending computation

time optimizing these non-informative values. However, setting the threshold too low

could begin to affect the clustering and the final ordering of markers within the linkage

group. This is especially true for noisy datasets where relatively high rf values may still

be informative.

Missing data can cause recombination frequencies to be underestimated or overesti-

mated, depending on whether the missing call represents a difference or similarity be-

tween the two markers. To account for this uncertainty, recombination frequency

values for markers with missing data are adjusted to lie at the midpoint of the possible

rf value range. This prevents the TSP solver from erroneously linking pairs of markers

because of missing calls in the data set.

TSPmap can also take as input rf matrices generated by R/QTL [21] for different

types of mapping populations, including those with large numbers of heterozygous

markers, such as F2 intercrosses and backcrosses. These R/QTL formatted rf matrices

can then be used for downstream steps in the TSPmap algorithm. However, it should

be noted that creating rf matrices in R/QTL can be time intensive with large numbers

of markers, and may slow the overall workflow of generating linkage maps with

TSPmap.

Clustering to form linkage groups

In the typical TSP formulation, the solution is a Hamiltonian cycle. That is, the solution

is a tour in which each vertex is visited exactly once and ends at the beginning vertex,

thus forming a complete cycle. In the case of a genetic linkage map, we have no need

to consider the linkage between the last marker in the linkage group and the first. In

fact, allowing the TSP to run in this standard configuration will negatively impact the

result, since the algorithm will include the value of this last edge when attempting to

minimize the total tour cost, and the rf value between the beginning node and ending

node are expected to be large since they are on opposite ends on the linkage group. To

eliminate this effect we convert TSP problem into a Hamiltonian path problem (HPP).

To accomplish this, we introduce into the TSP weight matrix a dummy vertex that has

a zero-weight connection to all other vertices. The inclusion of this vertex allows the

TSP solver to connect the last vertex in the tour with the first without incurring the

large-weight penalty associated with the rf value between two distant vertices, in es-

sence allowing the solver to construct a non-cyclic path [22].

Using the recombination frequency matrix, the first step is to connect the unordered

dataset into a minimum spanning tree and then break the spanning tree into large clus-

ters that may contain markers from more than one linkage group. This is because we
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only want to break the spanning tree at a location that has a very high probability of

being a transition between chromosomes. To further aid decomposition, the user in-

puts an initial estimate of the number of linkage groups (chromosomes), k, into the al-

gorithm as a parameter. Along with the number of markers, m, this is used to define

the minimum size of a cluster (s) according to the formula

s ¼ m
2k

By calculating s in this way the algorithm is meant to penalize small clusters, but

allow for the possibility of large variation in physical size and marker density among

chromosomes. However, we acknowledge that the assigned minimum chromosome size

may not hold true in species with extreme variation in chromosome size, e.g. birds and

some other vertebrates.

The algorithm begins by constructing the minimum spanning tree and breaking

it apart at the largest 1.5*k recombination frequency values. If this does not pro-

duce k significant clusters, the next-largest rf value is added to the list of cut

points between clusters. This is repeated until at least k significant clusters have

been produced. In this way, more cuts are made than by simply breaking into the

number of known chromosomes, because some chromosomes might not neatly

form a single linkage group while other pairs might not have a nice break between

linkage groups. Therefore, the algorithm is designed make more cuts, and later test

which mergers are best.

Next, each cluster is run through the approximate TSP solver, LKH, and checked for

rf values that exceed a user-specified threshold. When such a value is detected, the

cluster is broken apart to ensure that the final clusters do not contain markers from

more than one linkage group (Fig. 2). This allows the user to control the sensitivity of

the linkage group formation by setting what recombination frequency values may exist

within a linkage group.

Fig. 2 Separation of clusters containing markers from two different linkage groups. If the TSP solution of a
cluster shows a large jump in rf value between two adjacent markers, this indicates that markers from two
different linkage groups are present and the cluster is separated at this point. Clusters are broken into
multiple clusters between markers with the largest recombination frequency (dashed lines) to separate
markers from different linkage groups (open versus closed circles)
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Once the markers have been broken into well-separated clusters, the next step is to

merge clusters that belong together as a single linkage group. Clusters are processed in

order of increasing size, based on the logic that a small cluster is more likely to be

merged with a larger cluster. Each cluster is processed through three stages to deter-

mine with which cluster, if any, it should be merged.

The first stage involves examination of the rf matrix to see if the cluster can be dir-

ectly merged with another without any further analysis. The second stage involves com-

bining clusters pairwise and processing them with LKH to see if the Hamiltonian path

clearly indicates whether the clusters should be merged, based on a merger having a

maximum rf less than half of the next smallest merger (Fig. 3). Finally, if a cluster does

not pass the criterion for being merged in stage 2, the third stage attempts to verify

which cluster it belongs to using a reciprocal matching technique of the most likely

candidate cluster. If a cluster does not meet any of these criteria, it is considered to be

a complete linkage group.

Fig. 3 Merging of clusters to create final linkage groups. To create final linkage groups, clusters are sequentially
combined, with the resulting recombination frequencies compared to determine clusters to be merged
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Ordering of markers

The final clusters (linkage groups) are processed using Concorde to produce the opti-

mal linkage map for the given data. Because Concorde is an exact solver it is able to

find the exact TSP solution to the order of markers in within each linkage group.

Finding an exact solution does not guarantee that the order of the markers is absolutely

correct; instead, the exact solution is the best solution possible given the available re-

combination frequencies. Experimental datasets can contain a few markers that are

highly erroneous across the entire population. Once TSPmap has determined the

marker order, these highly erroneous markers can be identified and dropped using tools

available in R/QTL (i.e. droponemarker function) [21] prior to subsequent analyses

such as QTL mapping.

Implementation in R

This procedure was implemented in R, version 3.2.5 [23]. The algorithms that

identify duplicate markers and compute the recombination frequency matrix were

implemented in C and are called via R’s built-in C interface. The TSPmap R pack-

age is freely available and includes a user tutorial vignette and example datasets.

Simulations, comparative mapping algorithms and measures of performance

Datasets representing a mapping population of 300 recombinant inbred lines were

simulated using the R/QTL package [21]. Datasets were generated in a factorial de-

sign in which each dataset was comprised of a total number of markers (m) of

1000 or 4000, evenly distributed across five linkage groups or 10,000 distributed

across 10 linkage groups, a genotype error rate (η) of 0.0, 0.01, or 0.05, and a

missing genotype rate (γ) of 0.0, 0.05, or 0.10. Five replicates of each configuration

were created.

For each simulated marker dataset we generated linkage maps with TSPmap. An ex-

ample script for implementation of TSPmap with these data can be found in Add-

itional file 1: File S1. For comparison, datasets were also run on JoinMap 4.0 [12] and

MSTmap [13]. For JoinMap, the maximum likelihood algorithm was used, as the re-

gression method gave unreasonably long runtimes for the 4000-marker datasets, and

the results for 1000-marker datasets were determined to be higher quality using the

maximum likelihood algorithm. Default parameters were used, except values were in-

creased to 5000 for chain length, 10,000 for number of chains without improvement

before stopping, and 1000 for chain length per Monte Carlo EM cycle. Additionally, we

created linkage maps with these simulated data using MSTmap, which uses a minimum

spanning tree algorithm [13]. The exact settings used to create linkage maps with simu-

lated datasets in MSTmap can be found in Additional file 2: File S2, which is an input

file for a simulated dataset into MSTmap.

To quantitatively measure the quality of a solution, we compared the final num-

ber of linkage groups (chromosomes) c, to the true number of chromosomes in

the simulated data. Additionally, we calculated the number of erroneous pairs, E,

in each solution. This number is the number of pairs of markers which appear in

reversed order in their estimated positions as compared to their true positions in

the simulated data [13].
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Results
Identification of linkage groups

TSPmap correctly identified the linkage groups for all simulated data sets (Table 1;

Fig. 4). In contrast, the performance of MSTmap in correctly identifying linkage groups

proved sensitive to the number of markers, as well as missing data and genotyping

error. The c values (number of linkage groups) for MSTmap in Table 1 show that mul-

tiple linkage groups often remain grouped in the final solution, and this behavior be-

comes much more pronounced for the 4000-marker data sets. For this reason, c values

are not reported where MSTmap was unable to separate the majority of the linkage

groups, as the value is not meaningful. The c values in Table 1 are only calculated for

datasets where MSTmap produced 4 or 5 linkage groups (when 4 linkage groups were

produced, the groups were manually separated before computing the value of E, the

number of erroneous marker pairs). JoinMap failed to correctly identify the linkage

groups for only one data set and generally performed similarly to TSPmap, albeit with

much longer run times.

Ordering of markers

Ordering of markers, which is both computationally intensive and sensitive to missing

and erroneous data, is the limiting step when using NGS data to conduct linkage map-

ping. To compare the accuracy and efficiency of TSPmap with MSTmap and JoinMap,

we tested the number of miss-ordered markers relative to simulated positions across a

Table 1 Comparison of TSPmap, MSTmap, and JoinMap

TSPmap MSTmap JoinMap

n γ η E c E c E c

1000 0 0 46.2 5 166.4 5 45.8 5

0.01 60.8 5 196.2 5 55.6 5

0.05 148.2 5 226.4 5 64.4 5

0.05 0 62.8 5 169.6 5 60.4 5

0.01 78.8 5 255.4 5 77.4 5

0.05 184.4 5 330 4.8 103.4 5

0.1 0 92 5 178.6 4.8 149.2 5

0.01 113.8 5 9070 4.4 173.2 5

0.05 210.8 5 5313.2 4.2 211.4 5

4000 0 0 188.6 5 680.4 4.8 426,090.8 5

0.01 268.2 5 788.8 4.8 488,497 5

0.05 596.8 5 875.8 4.6 317,156.8 5

0.05 0 271.6 5 80,507 4 389,329 5

0.01 350.2 5 192,508 4 467,511 5

0.05 698.4 5 1325.8 4.6 529,166.6 5

0.1 0 364.6 5 639,625 2 711,720.2 5

0.01 437.6 5 1,166,876 1.6 625,957.8 5

0.05 826.2 5 927,429 2.2 523,810.4 5.1

E is the number of erroneous pairs, c is the number of linkage groups produced by each algorithm, γ is the percentage
of missing data, η is the error rate within the data. Five data sets were produced for each parameter combination
Reported values are the mean
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number of marker dataset sizes, error rates and missing data contents (Table 1). As

expected, all three approaches solved the marker-ordering problem effectively in the

complete 1000 marker datasets with low error rate. These simulated datasets mimic

traditional genotyping techniques and represent easily solvable computational prob-

lems. The main difference among methods was computational time, where both

MSTmap and TSPmap dramatically outperformed JoinMap. However, as error rate (η)

and missing genotype rate (γ) increased, TSPmap and JoinMap dramatically outper-

formed MSTmap, which exhibited very high E values in the datasets with the most

missing and erroneous data. It appeared that linkage group assembly represented the

error-prone step in the MSTmap protocol, where an inability to fully separate the link-

age groups led to substantial marker mis-ordering (Table 1).

We observed the most dramatic improvements in performance of TSPmap among the

larger simulated datasets, which are more representative of GBS mapping populations. For

4000-marker datasets, TSPmap produced solutions with fewer errors than both JoinMap

and MSTmap. TSPmap performed only slightly worse with 4000 markers than with 1000

markers. This is in contrast to both other methods we tested, which were strongly affected

by increased marker number (Fig. 5). The likelihood of mis-ordering should scale

linearly with the number of markers. For example, in the 4000-marker datasets, we

expected 4× higher E values than the 1000-marker datasets. Indeed, we found that

the overall solution quality from TSPmap was generally constant despite the in-

crease in the number of markers. However, this was not the case for MSTmap and

JoinMap, which exhibited exponentially greater E-values in the larger datasets.

TSPmap was the least sensitive to genotyping errors and missing data. Markers or-

dered by JoinMap had substantially higher E values (Fig. 5b). This is attributable to its

tendency to reverse large segments of the linkage groups with respect to the true solu-

tion (Fig. 6). MSTmap showed dramatic sensitivity to missing data (Fig. 5).

Finally, TSPmap also performed well with 10,000-marker datasets (Table 2), produ-

cing results in less than one hour. In contrast, JoinMap was computationally limited at

10,000 markers, taking more than 35 h per linkage group. For comparison, TSPmap

generated maps with 10,000-marker datasets of higher quality than 4000-marker data-

set maps generated by both MSTmap and JoinMap. The dataset comprising 10,000

Fig. 4 Linkage group identification among the methods. Error bars, SD; dashed line, number of linkage
groups in 4000-marker simulated data
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Fig. 5 Dependence of erroneous pairs in marker order on missing data and genotyping error. A, 1000-marker
datasets; B, 4000-marker datasets

Fig. 6 Marker order solutions for an example linkage group from a 4000-marker dataset (γ = 0.05, η = 0.01).
An inversion of part of the linkage group leads to a large E-value in the JoinMap solution. Black circles,
TSPmap; grey circles, JoinMap
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markers was not analyzed with MSTmap because quality scores were already low with

4000 markers (Table 1).

The preceding analyses were performed using simulated genetic marker dataset repre-

senting RIL mapping populations only. The efficacy of using recombination frequencies

to generate linkage maps can vary depending on the type of mapping population [24, 25].

Therefore, to test the ability of TSPmap to create linkage maps with other population

types, we evaluated and confirmed the accuracy of TSPmap in simulated datasets repre-

senting multiple types of mapping populations generated from inbred parents including

4-way cross ((A x B) x (C x D)), F2, and backcross. We simulated five sets of 27 genotype

matrices for each cross type, representing three error probabilities (0, 0.1 and 1%), three

missing data probabilities (0, 0.1, and 1%) and three marker densities (2 cM, 0.5 cM,

0.2 cM). Partially informative (e.g. dominant) markers were not simulated, because re-

combination fractions cannot be calculated among pairs of markers in 4-way mapping

populations that are only informative in alternative crosses. Marker positions of each

genotype matrix were randomized, recombination fractions were calculated in R/qtl, and

the resultant matrix was fed into TSPmap. For each dataset, the correlation coefficient be-

tween the true marker order and the simulated marker order generated by TSPmap was

>0.999 (Additional file 3: Figure S1). While the overall order nearly perfect, performance

did vary slightly among different mapping populations. Backcross populations, which have

the least recombination and only two alleles, was more prone to slightly incorrect orders

among the high error and high missing data simulations. However, both 4-way and F2
population orders were more accurate than the RIL, indicating that our focus on RIL

populations represents a conservative estimate of the accuracy of TSPmap.

To examine the performance of TSPmap with experimentally generated marker data,

we created maps using previously published marker data from RIL populations of

Arabidopsis thaliana [26] and rice [27]. Although the true solution cannot be known

for such experimental datasets, we observe that the TSPmap linkage map solution gen-

erally matched that of JoinMap (Additional file 4: Figure S2). Given the results of our

analyses with simulated datasets, those differences between the TSPmap and JoinMap

solutions that are observed (ie. Additional file 4: Figure S2d) may reflect TSPmap’s

greater accuracy when creating maps from larger datasets containing higher levels of

missing and erroneous data, as is often encountered in experimental data.

Table 2 TSPmap results for 10,000-marker datasets

γ η E c Run time (sec)

0 0 495.4 10 1672

0.01 630.4 10.2 2019

0.05 1478.4 10 2786

0.05 0 648.8 10 1690

0.01 824.4 10 1858

0.05 1724.6 10.2 2134

0.1 0 908 10 2273

0.01 1116.6 10.2 2260

0.05 2106.6 10 2265

These datasets contained 10 linkage groups. E is the number of erroneous pairs, c is the number of linkage groups
produced by each algorithm, γ is the percentage of missing data, η is the error rate within the data. Five data sets were
produced for each parameter combination. Reported values are the mean
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Conclusions
Genotyping by sequencing is now the preferred method to genotype mapping popula-

tions. However, tools to process and order these error prone and incomplete datasets

remain undeveloped. Here we confirm that current widely used genetic mapping soft-

ware does not produce sufficiently accurate genetic maps from datasets of the size

generated by NGS. We offer a solution through an implementation of the Travelling

Salesperson Problem for generation of genetic maps, TSPmap, which produces low-

error maps even with large datasets and high rates of missing and erroneous marker

calls. When compared to other benchmark methods of linkage mapping, JoinMap and

MSTmap, TSPmap was faster (Table 2) and far more accurate (Table 1, Fig. 5).

Additionally, TSPmap proved robust for analysis of large marker datasets, performing

well even with 10,000 markers (Table 2). We acknowledge that the performance of

JoinMap to generate linkage maps in the simulations we present here may be improved

by fine-tuning its algorithm parameters; however, JoinMap’s long run-times are prohibi-

tive to such exploratory analyses. We also find that TSPmap can create accurate link-

age maps from simulated marker datasets representing F2, backcross, and 4-way

mapping populations (Additional file 3: Figure S1), and with experimental marker data

(Additional file 4: Figure S2).

Discussion
In addition to handling large marker datasets efficiently and effectively, TSPmap is open

source software, increasing its accessibility and flexibility. As a package written in the

statistical language R, it is freely available online and users can tailor it to their specific

needs. Included with the package is a vignette that will guide users through the func-

tions and workflow of TSPmap.

TSPmap requires that users indicate the number of expected linkage groups, so it is

valuable to know the chromosome count of the species being studied. It would be pos-

sible to carefully explore a set of possible k values and choose the best fit to the data,

in the case that an approximate chromosome number is unknown, but TSPmap is

highly biased toward the prior, the user-specified number of linkage groups. While we

expect that chromosome number will be known for most species in which linkage

maps would be created, we note that TSPmap may calculate an erroneous number of

linkage groups if used with a species of unknown chromosome count.

Since TSPmap operates on a recombination fraction matrix, our approach is poten-

tially extendable to any mapping population in which recombination fractions can be

calculated, including inbred and outbred breeding designs that are genotyped by either

codominant or dominant markers. However, since our simulations have been con-

ducted in R/qtl we limit our inference here to inbred-parent breeding designs sup-

ported by that environment, including: recombinant inbred, F2, backcross, and

intercrossed 4-way phase known populations.

Genetic linkage maps have evolved from calculating linkage disequilibrium between a

handful of phenotypic markers [28] to datasets of containing tens of thousands of

genomic polymorphisms. With the advancement of low cost sequencing technologies,

the number of markers used in the generation of genetic maps is expected to continue

to rise. TSPmap will be a powerful tool to handle such large datasets into the future,

quickly producing high quality maps using a large number of genomic markers.

Monroe et al. BioData Mining  (2017) 10:38 Page 13 of 15



Additional files

Additional file 1: Example script for generating linkage maps with TSPmap. (R 2 kb)

Additional file 2: Example parameters for generating linkage maps with MSTmap. (TXT 593 kb)

Additional file 3: Figure S1. Performance of TSPmap with simulated datasets of different types of mapping
populations (4way – four-way cross, bc – backcross, f2 – F2 population, riself – recombinant inbred lines), marker
number (100, 400, 1000), proportions of missing data (0, 0.001, 0.01) and genotyping error rates (0, 0.001, 0.01). The
accuracy of the TSPmap solution was measured by the correlation coefficient between the true marker order and
marker order generated by TSPmap for each simulated dataset. Note the scale of the y-axis is 0.99935–1.000.
(DOCX 40 kb)

Additional file 4: Figure S2. Linkage maps generated by TSPmap using marker datasets from A. Arabidopsis
thaliana [26] and B. & C. rice [27] compared to those generated by JoinMap. (DOCX 213 kb)
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c: Final number of linkage groups; E: Number of erroneous pairs; G(V,E): All of the vertices of a graph;
GBS: Genotyping-by-sequencing; HPP: Hamiltonian path problem; k: Initial estimate of the number of linkage groups;
LKH: Lin-Kernighan-Helsgaun; m: Number of markers; MST: Minimal spanning tree; O(V + E): Polynomial time
complexity; QTL: Quantitative trait loci; rf: Recombination frequencies; RILS: Recombinant inbred lines; s: Minimum size
of a cluster; TSP: Travelling salesperson problem; γ: Missing genotype rate; η: Genotype error rate
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