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Abstract 

 

Survey and Analytical Methods for Long-Term Monitoring  

of Wildlife Metacommunities in California Montane Forests 

 

by 

 

Brett Jonathan Furnas 

 

Doctor of Philosophy in Environmental Science, Policy and Management 

 

University of California, Berkeley 

 

Professor Reginald Barrett, Chair 

 

 

Long-term, large-scale monitoring of wildlife metacommunities is needed to recognize 

population declines early enough to identify environmental stressors and facilitate adaptive 

planning.  Potential outcomes include information supporting the designation of new species of 

conservation concern, or better yet, conservation actions that avert the need for conferring 

critical statuses.  By surveying multiple species, declines of individual species need not be 

considered in isolation, but can be compared to responses of other species in the 

metacommunity.  However, multi-species monitoring presents a variety of new challenges in 

terms of appropriate survey methods and analytical techniques for drawing valid ecological 

inferences. 

 

In this study, I investigated several related aspects of multi-species monitoring.  One theme was 

the role of automated survey methods (e.g., audio recorders and camera stations) that leave a 

permanent record and easily provide for temporal replication of surveys.  I applied occupancy 

models to repeat surveys for addressing detection probability and providing unbiased estimates 

of species occurrence.  Lastly, I evaluated several novel quantitative methods for comparing 

community properties using monitoring data.   

 

In the first chapter I considered the effectiveness of automated recorders for monitoring common 

birds in California forests.  I applied single-species occupancy models to 46 species using 5 years 

of monitoring data in which automated recorders were placed at 453 random sites across a 5.4-

million-ha northern California study area. The devices were programmed to record sounds 

during up to 3 surveys each morning on 3 consecutive days during the breeding season when 

songbirds were singing from territories. Skilled interpreters reviewed these recordings to identify 

all species heard during each survey.  With Monte Carlo simulation and results from occupancy 

models, I demonstrated 80% power for monitoring declines as small as 2.5% per year over 20 

years for 32 species given a sampling effort of 100 new sites per year.  I also determined an 

effective survey area radius of 30 m to 50 m for automated recorders, and showed that the 

devices provided similar occupancy estimates as traditional point counts despite lower survey-

level detection probability. 
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In the second chapter I applied multi-species occupancy models to the calculation of biodiversity 

indices describing metacommunity organization.  I used the same automated recorder data set for 

birds from Chapter One.  Specifically, I applied simulation and Bayesian hierarchical models to 

demonstrate how a failure to address detection probability heterogeneity underestimates the 

evenness of species occupancy distributions.  In models of the bird data I found that a number of 

species traits (migration, foraging guild, territoriality, body size) were informative in explaining 

detection probability.  By pooling information from common species in a multi-species model, I 

was able to draw stronger inferences about rarer species than by modeling these species 

individually.  Lastly, I illustrated the ecological significance of species-traits modeling and found 

that warbler and woodpecker occupancies were evener than for sparrows.   

 

In the third chapter, I proposed a new quantitative method for comparing species abundance 

distributions.  I illustrated this method using avian point count surveys from 4 research forests in 

California.  I applied bootstrap resampling to probabilistically compare the abundances of 

intermediate ranks among and within species abundance distributions.  I found higher 

abundances of intermediately-common species on 2 of the forests, and ascribed this finding to 

differences in forest productivity and habitat complexity leading to greater niche partitioning of 

resources.  At the metacommunity-level, I found higher abundances of intermediately-common 

species for neotropical migrants compared to resident birds.   

.     

In the fourth chapter, I considered the use of baited camera stations for monitoring Pacific fisher 

(Pekania pennant pacifica) and other mammals.  Cameras were placed at 172 randomly selected 

forest sites across 2.8 million ha of northwestern California.  The duration of each survey was 2 

to 4 weeks.  I estimated regional occupancy from these data at 2 survey scales (e.g., individual 

sites [0.465] and pairs of sites 1.6 km apart [0.651]).  I also demonstrated 80% power for 

monitoring declines as small as 2.0% per year over 20 years given a sampling effort of 100 new 

sites per year.  Lastly, I calculated the median latency to first detection for 13 other species of 

mammals detected at > 5% of sites, showed that latency was < 6 days for 10 of these species, and 

argued that these results strengthen the case for expanding the use of camera traps to multi-

species monitoring.
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Para los dos halcones y la estrella de mil colores! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There are some who can live without wild things and some who cannot.”  

― Aldo Leopold 
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Chapter 1 
 

Automated recorders and occupancy models for monitoring common forest birds 

at the regional scale in California 

 

 

ABSTRACT  

 

Long-term monitoring of multiple wildlife species at large spatial scales is needed to recognize 

population declines early enough to identify environmental stressors and facilitate adaptive 

planning.  For this purpose automated recorders are an attractive method for monitoring birds, 

because they leave a permanent record that can be independently verified and conveniently 

scheduled to repeatedly survey different locations at the same time of the day. Since 2002, the 

California Department of Fish and Wildlife has used these devices to survey songbirds across 5.4 

million ha of northern California in primarily forested habitats on public and private lands.  In 

this study, I assessed the utility of automated recorders and single-species, single-season 

occupancy models for monitoring common forest birds.  I found that a survey protocol of three 

5-minute recordings at different times of the morning repeated over 3 consecutive days led to 

robust occupancy estimates for species detected at > 5% of survey sites.  For 32 species I 

demonstrated 80% power (α = 0.1) for monitoring average annual occupancy declines as small as 

2.5% over 20 years given a sampling effort of 100 sites per year.  The effective survey radius of 

automated surveys was 30 m to 50 m, but signal strength was reduced by protective containers 

used to prevent moisture damage to the recorder microphones.  Lastly, a test of concurrent 

automated recorder and point count surveys yielded similar occupancy estimates despite 

systematic differences in detection probability.  These results suggest that automated recorders, 

used alone or in conjunction with point counts, can facilitate effective monitoring of avian 

metacommunities at large spatial scales. 

 

INTRODUCTION 

 

A sustained commitment to effective, long-term, large-scale, biodiversity monitoring is 

needed for conservation planning efforts in the context of environmental changes affecting 

wildlife populations (Manley et al. 2005, Haughland et al. 2010, Koch et al 2011, Schultz et al. 

2013).  In particular, well-designed monitoring can recognize population declines early enough 

to facilitate adaptive planning.  Potential outcomes include information supporting the 

designation of new species of conservation concern, or better yet, conservation actions that avert 

the need for conferring critical statuses.   

 

Automated recorders are an increasingly common tool for surveying birds, bats and 

amphibians (Rempel et al. 2005, Acevedo and Villanueva-Rivera 2006, Brandes 2008, Gorresen 

et al. 2008, Celis-Murillo et al. 2009, Depraeterea et al. 2012).  They provide a permanent record 

of species identification that can be reviewed by multiple interpreters (Rempel et al. 2005).  

Since 2002, the California Department of Fish and Wildlife has used automated recorders to 

survey birds across a large portion of northern California in the USA.  Skilled interpreters review 

these recordings to identify all species heard during each survey.  This project, named Ecoregion 
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Biodiversity Monitoring project (EBM), is intended to track long-term, large-spatial-scale, 

population trends of numerous species for informing conservation planning.   

 

Occupancy modeling (MacKenzie et al. 2006) has been recommended for monitoring 

programs, because incidence data is often easier and less expensive to collect than abundance 

data, especially at large spatial scales (MacKenzie and Nichols 2004).  This analytical approach 

is well-suited for application in multi-species monitoring efforts (DeWan and Zipkin 2010).  The 

data collected from automated recorders are particularly amenable to occupancy modeling 

(Gorresen et al. 2008), in part because replicate surveys can be synchronized to occur at 

comparable times of the day and year thereby reducing a temporal source of variability in 

detection probability.  The permanent record provided by automated recorders facilitates review 

of species occurrence by more than one person, and these data can be used in occupancy models 

that address both omission and commissions errors (Royle and Link 2006, Miller et al. 2011). 

 

In this study, I considered the use of automated recorder survey data from EBM in single-

species, single-season occupancy models for monitoring common forest birds.  First, I assessed 

the relative importance of detection covariates for improving model performance, and 

constructed a rank occupancy distribution to approximate the relative abundances of common 

forest birds.  Second, I used the results to calibrate a power analysis demonstrating how many 

species could be monitored well (power > 0.8) for tracking occupancy trends as small as 2.5% 

per year over 20 years.  Third, I evaluated the technical limitations of automated devices to 

record bird sounds from different distances and for discriminating these signals from background 

noise.  Fourth, I conducted a side-by-side comparison of automated recorders and traditional 

point counts (Ralph et al. 1995, Bibby et al. 2000) to determine if these methods provided similar 

occupancy estimates despite systematic differences in survey-level detectability.  Lastly, I 

summarized the overall utility of automated recorders, used by themselves or in conjunction with 

point counts, for application in regional-scale, multi-species monitoring efforts. 

 

STUDY AREA 

 

The EBM surveys occurred across a 5.4-million-ha area of northern California in the 

USA (Fig. 1, Miles and Goudey 1997).   Conifer-dominated forests covering 64% of this region 

were primarily Klamath Mixed Conifer, Sierran Mixed Conifer, Douglas Fir (Pseudotsuga 

menziesii), White Fir (Abies concolor), Red Fir (Abies magnifica), Lodgepole Pine (Pinus 

contorta), Ponderosa Pine (Pinus ponderosa), Jeffrey Pine (Pinus jeffreyi), Eastside Pine, 

Montane Hardwood-Conifer, and Juniper (Juniperus spp.) forest types (Mayer and Laudenslayer 

1988).  Elevations range from 60 m to 4,270 m.  The geology is a mix of steep mountains and 

volcanic plateaus, and average annual precipitation varied from 20 to 300 cm (Schoenherr 1992).  

Forest ownership was a mix of public (64%) and private (36%) lands. 

 

METHODS 

 

Sampling Design 

 

Survey sites were randomly selected without replacement annually from the U.S. Forest 

Service hexagon grid for the Forest Inventory and Analysis (FIA) program (U.S. Forest Service 
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Forest Service 2012a) which completely overlaps the study area.  The distance between adjacent 

hexagon centroids was 5.35 km.  Permission was granted for surveying public agency and 

private industrial forestland ownerships.  Survey sites were usually located at hexagon centroids, 

but private property, steep terrain, and other logistical issues often required relocating sites to 

more accessible, secondary locations within selected hexagons.  When this occurred, a 

supplemental random distance and direction procedure was followed to avoid biased placement 

of survey sites.  In cases where relocation was not feasible the selected hexagon was not 

sampled.  For the reasons listed above the sampling design was best described as quasi-random.   

 

Biophysical conditions (elevation, slope, total basal area of live and dead trees) and land 

use (ownership, wilderness designation) at EBM sites were compared to reported values from the 

FIA program for all forestlands in the California North Interior region (i.e., Lassen, Modoc, 

Shasta, Siskiyou and Trinity counties) that largely matched the EBM study area (U.S. Forest 

Service 2012a).  This allowed me to judge how representative EBM sites were of habitat 

conditions and the avian metacommunity (Holyoak et al. 2005) hosted across all forestlands 

within the study area. 

 

Although EBM has been an ongoing effort, data analysis addressed in this study was 

limited to sites surveyed from 2006 to 2010 when survey methods were most consistent.  I 

adopted a post-stratification procedure to further limit inferences to conifer-dominated habitats.  

Using land-use land-cover information derived from satellite imagery (U.S. Forest Service 

2012b), I calculated the proportion of the 400 m radius area surrounding each survey in conifer 

forest cover.  All sites identified as < 0.5 conifer forest cover were excluded.   

 

Avian Surveys 

 

Bird surveys were conducted using inexpensive digital voice recorders manufactured by 

Olympus Corporation (www.olympusamerica.com).  These devices allowed recordings to be 

made automatically at preset times daily.  The models varied by year (e.g., DS-2, DS-40, DS-61), 

but recordings were set to the highest quality with a sampling rate of 44.1 KHz.  Microphones 

also varied by year.  In the initial years, I used external omni-directional microphones; recently I 

switched to factory-provided stereo microphones attached to the recording units.  For all 

configurations, the frequency reception of the combined recorder and microphone spanned a 

range of at least 100 Hz to14,000 Hz.  To protect the devices from moisture and small mammals, 

each recorder was placed in a lightweight, plastic food container, or the external microphone was 

placed in a plastic bag (see Fig, S1).   The automated recorder in its protective covering was 

placed on the ground within 5 m of the randomized site location; the field crew had final 

discretion for micro-site location of the recorder where it would maximize sound reception 

properties (e.g., away from the side of a large tree or below a shrub canopy). 

 

The devices were programmed to record sounds at up to 3 surveys each morning on 3 

consecutive days during the breeding season when songbirds were singing from territories.  

Surveys occurred from the middle of May through the first week of July.  Each survey was 5 

minutes in length and began 30 minutes before sunrise, at sunrise, or either 15 or 30 minutes 

after sunrise.  Prior to 2009 there were typically only 2 surveys per day occurring at sunrise and 

after sunrise.  After completion of the field season a biologist reviewed the recordings and listed 
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all species detected within each 5-minute survey.  The interpretation work was accomplished by 

listening to the recordings while simultaneously viewing the spectrograms using Raven Pro 

software (Cornell Lab of Ornithology, Ithaca, NY, USA).  Explanatory notes were sometimes 

included with detections, especially in cases of atypical vocalizations or when an interpreter was 

uncertain about a species identified.  Only biologists who scored at least 70% on a test 

interpreting species from sample recordings worked on this task.  Although multiple biologists 

participated in the interpretation of recordings, each recording was interpreted by a single person.   

 

The costs of avian monitoring under EBM were either documented or estimated by task 

(e.g., equipment, field technicians, transportation, interpretation of automated recordings).  These 

costs were aggregated to estimate the total cost and average cost per survey site in USD.  

Planning, management and overhead expenses can vary considerably among organizations and 

were not reported. 

 

Occupancy Modeling 

 

Occupancy modeling allows simultaneous estimation of detection and occupancy 

probabilities in relation to covariates (MacKenzie et al. 2006).  As surveys occurred at different 

sites in different years I adopted a single-species, single-season modeling approach (MacKenzie 

et al. 2006, p. 83; Tingley et al. 2012).  To model species individually, I used a zero-inflated-

binomial model structure to calculate the likelihood of parameters given the data.  For average 

occupancy across years )( and detection probability (p) that varied by site (j) and temporal 

survey replicate (k): logit() = intercept and logit(pjk) = xcovariates covariates.  For a single species the 

likelihood was given by,  

 

]0y[I)x1()x1()x(x)x,y|,(
1

,




 kj

y

pjk

y

pjk

kj

jp
jkjkL   , where y was 

the dichotomous detection history, and x were covariates. 

 

Models were solved by minimizing negative log likelihoods using the nlm function (see 

Section 3.1.1. in Royle and Dorazio [2008] for an example of this solution method) in the R 

programming language (Version 2.12, www.r-project.org,).  Model averaging (Burnham and 

Anderson 2002) was implemented for making multi-model inferences about the evidence 

supporting the role of several covariates potentially explaining detection probability.  It was also 

necessary to include additional variables in all models to address non-independence among 

observations.  These covariates were categorical variables representing the 3 different survey 

times and the 5 different survey years.   

 

I tested 3 a priori hypotheses examining whether detection probability: (1) decreased 

later in the breeding season as singing activity lessened (Catchpole 1973, Krebs et. al.1981, 

Logan 1983, Cuthill and Hindmarsh 1985, Lampe and Espmark 1987); (2) varied with forest 

density (Bibby and Buckland 1987, Schieck 1997) in different ways by different species, in part 

because bird song evolved for optimizing sound transmission in preferred habitats (Morton 1975, 

Slabbekoorn et al. 2002, Baker 2006); and (3) increased similarly for most species when latent 

atmospheric and physiological factors were more amenable for singing (Henwood and Fabrick 

1979, Larom et al. 1997, Lengagne and Slater 2002, Brown and Handford 2003).  The covariates 
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representing these respective hypotheses were Julian day of survey, the proportion of conifer 

forest cover across the 400-m-radius circle surrounding a survey site, and the total number of 

species detected at a site during a given survey period.   

 

Model-averaged estimates of occupancy and detection probability effects were calculated 

for all model subsets of the 3 covariates, while always including time of day and year as 

categorical variables in the null and all other models.  All variables were rescaled to smaller 

values suitable to tractable log likelihood minimizations on the logit scale (Bolker 2008).  As the 

ratio between the number of sites and number of parameters was often <40, the small sample 

size, second-order “AICC” information criterion (Hurvich and Tsai 1989, Burnham and 

Anderson 2002) was used to obtain model weights.  I used relative importance values (Burnham 

and Anderson 2002, p. 167) derived from model weights to judge the evidence supporting the 3 a 

priori hypotheses about detection covariates.  To assess the directionality of effects I evaluated 

the distribution of model-averaged parameter estimates for species for which relative importance 

was > 0.8.  To determine how detection probability varied among species, I calculated survey-

level detection probabilities for each species at each site given the site and survey covariate 

values.  Next, I averaged the predicted survey-level detection probabilities across sites for each 

species for each of the 3 daily survey times.  Lastly, I calculated the expected site-level detection 

probability for each species:  

])1()1()1[(1 3

3

3

2

3

1

* pppp  , where 321 ,, ppp  were fitted detection probabilities for the 3 

daily survey times. 

 

I calculated model-averaged estimates of  using weights from the full set of detection 

covariate models.   The models did not address spatial or annual differences in occupancy; rather 

they provided a baseline description of average occupancy at the study-area-scale during the 

years 2006 through 2010.   

 

Power to Detect a Trend 

 

For each species, I assessed the statistical power to detect an occupancy trend (Purcell et 

al. 2005, Nielsen et al. 2009, Meyer et al. 2010).  Time series were simulated for each species 

representing the annual occupancy estimates hypothetically monitored over 20 years.  The true 

starting occupancy values were those estimated from this study.  Each species’ trend was first 

modeled as a steady 2.5% annual decline from the starting occupancy value: 

1)]1(025.01[   tt  for year t.   

 

The “monitored” occupancy values used for assessing a trend were stochastically 

generated about the time series of declining true values by assuming a normal sampling 

distribution, observed ~ Norm(true, 
2

true ).  I used the standard errors from occupancy models, 

and adjusted them to reflect a sample size of 100 sites per year by multiplying by 100/453 .  

However, standard errors from the occupancy models were estimated using a variable number of 

survey replicates by year as described in the Methods Section.  To provide a conservative 

assessment of monitoring power, I considered these standard errors to liberally reflect 
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measurement uncertainty associated with 9 survey replicates.  Additionally, I adjusted 
true

downwards as true decreased by multiplying by )1( tt   / )1( 11   .   

 

I ran 10,000 Monte Carlo simulations of each decline scenario for each species and tested 

for a simple linear trend via ordinary least squares regression.  I calculated power as the 

proportion of simulations where I could reject (P < 0.1) the null hypothesis of a zero or positive 

slope for the trend line.  All power analyses assumed a constant annual sampling effort of 100 

sites in conifer habitats.  Power analyses were repeated for 2 additional scenarios: declines of 2.5 

and 5.0% per year over 10 years. 

 

Automated Recorder Signal Reception Degradation with Distance 

 

In September 2013 I conducted a field experiment evaluating how the audibility of bird 

sounds received by the automated recorders decayed with distance, and how this limited the 

ability of interpreters to visually distinguish bird sounds from background noise in recording 

spectrograms.  A full-factorial combination (4) of 2 types of recorders (Olympus DS-40 and 

DM-620 using built-in microphones) both with and without a protective container was set to 

record manually, and placed on the ground.  Playback recordings of 2 bird songs (hermit warbler 

[Setophaga occidentals] and American robin [Turdus migratorius]) and a bird call (brown 

creeper [Certhia Americana]) were sequentially broadcast (3 repetitions of each bird sound) from 

10 m increments in distance from the recorders out to 100 m.  This process was repeated along 2 

to 4 directional transects at 8 forested locations in northern California with gentle slopes but 

otherwise generally representative of sites where EBM survey occurred.  A total of 1,044 bird 

sounds were recorded for each distance increment (10 m to 100 m), and they were imported into 

Raven Pro software for viewing spectrograms and measuring relative signal power in decibels.  I 

calculated signal power of each bird sound, and then plotted median and interquartile ranges 

against distance.  This was done separately for bird songs versus calls, with and without 

protective containers.     

 

Comparison with Point Counts 

 

In a second field test, I concurrently compared the effectiveness of automated recorders 

with point counts (Bibby et al. 2000) surveyed by an experienced birder who estimated distances 

to birds heard or seen.  The surveyor placed the recorder on the ground and manually activated it 

at the beginning of each 5-minute point count.  He surveyed 60 points along 12 transects in 

northern California montane conifer habitats from early June through the middle of July 2008.  

The points along each transect were separated by at least 250 m.  He surveyed a single transect 

each morning commencing 30 minutes after sunrise and continuing through mid-morning, and 

each transect was repeated once on a different day.  After completion of all the fieldwork, a 

separate, experienced birder interpreted which species were detected from the recording 

accompanying each point count.   

 

 I applied incidence data from point counts and interpretation of recordings to simple 

occupancy models without covariates due to the small sample size (60 sites, 2 survey replicates).  

Models were run only for those species detected at >10% of points by both methods.  I compared 

occupancy estimates based on the 2 types of data by averaging ratios of species occupancy 
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estimates from point counts to those from interpretation of the recordings.  A ratio of one 

represented systematic agreement between occupancy estimates provided by automated 

recorders and point counts.  Monte Carlo sampling of occupancy estimates using the standard 

errors from the models allowed me to construct a confidence interval about the ratio.  In 

consideration of the small sample size, I relaxed the Type I error rate to 0.2 for this exercise.  To 

provide a sensitivity analysis of the distance beyond which automated recorders were ineffective, 

I sequentially ran occupancy models on the point count data after truncating detections using the 

following limiting distances: 20 m, 30 m, 40 m, 50 m, 75 m and 100 m.  My expectations were 

that the ratio would 1) increase with distance, 2) always be less than a ratio derived from naïve, 

unmodeled occupancies, and 3) most closely coincide with a value of one for the distance 

representing the effective range of the automated recorders. 

 

RESULTS 

 

Location of Survey Sites 

 

Of the 587 sites surveyed for birds from 2006 through 2010, 453 (78%) were post-

stratified as montane conifer for inclusion in occupancy models (Fig. 1).  For this stratum, the 5
th

 

and 90
th

 percentile elevation values were 546 m and 1,981 m, respectively.  Site location offsets 

from the centroids of randomly-selected sampling grid hexagons occurred at 27% of sites.  I did 

not keep consistent records on how many additional hexagons were abandoned for surveys 

because an offset was not attempted.  However, average elevation and total basal area of live and 

dead trees at EBM montane conifer sites were similar to values reported for all forestlands 

throughout the study area.  The EBM sites modestly under-represented private ownerships, 

steeper locations, and wilderness locations away from roads (Table 1).   

 

Bird Surveys 

 

Six biologists participated in the interpretation of recordings.  A total of 125 avian 

species was detected at coniferous sites.  These birds spanned 36 families and 13 orders.  

However, I only modeled data and reported results from the 46 most common avian species 

detected (Table 2; naïve > 0.05), and excluded all detections for which interpreters indicated 

uncertainty about species identification in their notes.  Uncertainty was most frequent for hermit 

warbler (11.3% of sites), dusky flycatcher (Empidonax oberholseri, 7.9%), Hammond’s 

flycatcher (Empidonax hammondii, 7.7%), gray flycatcher (Empidonax wrightii, 6.8%), white-

headed woodpecker (4.0%), purple finch (Haemorhous purpureus, 3.8%), and Cassin’s Finch 

(Haemorhous cassinii, 2.0%).     

 

The use of protective containers greatly reduced damage to automated recorders.  The 

types of damage included destruction of microphones and corrosion of batteries by moisture, and 

the gnawing of wires and other electrical components by rodents.  However, plastic bags used to 

protect external microphones were less effective.  Besides heightened risk of rodent damage, the 

bags trapped condensation that damaged microphones even in the absence of precipitation.  

Ventilation holes mitigated this problem for automated recorders placed in protective containers. 
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To complete annual surveys I required a minimum of 25 automated recorders costing 

USD 150 each.  Assuming a 2-year average lifespan and the cost of batteries and protective 

containers, the equipment cost per site was USD 25.  Other per site costs were USD 125 to USD 

160 for field personnel and USD 40 to USD 50 for vehicles.  The cost of interpreting species 

heard from these recordings was USD 12 to USD 17 per 5-minute survey period.  The total cost 

of data collection (excluding planning, management and overhead expenses) was USD 300 to 

USD 390 per site.  Given these assumptions the total cost of 5 years of avian survey data 

collection was USD 135,000 to USD 175,000 excluding planning, management and overhead 

expenses.  

 

Detection Probabilities 

 

A higher number of species heard was positively associated with detection probability for 

most species (average importance =0.982, 96% >0.8, see Fig. S2).  In contrast, survey date had a 

lower importance value of 0.56 averaged across species (33% >0.8).  For species for which 

survey date was an important (>0.8) predictor, the effect was more often (67%) a decrease in 

detection probability for later survey dates.  Forest cover in the vicinity of survey sites had an 

importance value of 0.61 averaged across species (39% >0.8).  For species for which this 

variable was important, the effect was split between increased (56%) and decreased (44%) 

detection probability.   

 

Detection probability varied considerably among species, especially in terms of time of 

the morning a survey occurred (see Fig. S3).  For example, American robin, black-headed 

grosbeak (Pheucticus melanocephalus), common nighthawk (Chordeiles minor), Pacific-slope 

flycatcher (Empidonax difficilis), spotted towhee (Pipilo maculatus), and Townsend’s solitaire 

(Myadestes townsendi) were substantially more detectable before sunrise than after.  Cassin’s 

vireo (Vireo cassinii), green-tailed towhee (Pipilo chlorurus), hermit warbler, Nashville warbler 

(Oreothlypis ruficapilla), red-breasted nuthatch (Sitta canadensis), Steller’s jay (Cyanocitta 

stelleri), and warbling vireo (Vireo gilvus) followed the opposite pattern.  Western tanager 

(Piranga ludoviciana) had the highest survey-level detection probability (>0.6) for all 3 survey 

times.  The per survey detection probability for all species was usually (66% of species-survey 

time combinations) greater than 0.2.  Assuming 9 survey replicates, site-level detection 

probability (p*) was above 0.8 for 31 of the 46 species I modeled (see Fig. S4). 

 

Occupancy Estimates 

 

 There were 7 species with occupancy estimates > 0.5 which I considered to be super-

common species (Fig. 2).  These were western tanager, dark-eyed junco (Junco hyemalis), red-

breasted nuthatch, mountain chickadee (Poecile gambeli), Steller’s jay, northern flicker 

(Colaptes auratus), and yellow-rumped warbler (Setophaga coronata).  Corrected occupancies 

were significantly (P<0.1) higher than naïve values for 65% of all modeled species.  The largest 

corrections were for the 4 species of woodpeckers (northern flicker, white-headed woodpecker 

[Picoides albolarvatus], hairy woodpecker [Picoides villosus], and pileated woodpecker 

[Dryocopus pileatus]) and these adjustments were due to low (<0.5) site-level detection 

probabilities.   
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As expected the increased accuracy for estimating occupancy via modeling came at the 

expense of reduced precision.  The median of standard errors on occupancy estimates was 68% 

higher [IQR: 7-268%] than would be expected under a simple Bernoulli distribution without 

additional dispersion due to uncertainty in detection probability.  

 

Power to Detect a Trend 

 

 My analysis showed that 32 of the 46 species I modeled can be monitored for study area-

scale, average annual declines as small as 2.5% over 20 years with statistical power > 0.8 (see 

Fig. S5).  This assessment assumed a yearly sampling effort of 100 sites in conifer habitats.  For 

a 10-year timeframe only 6 species met the 2.5% per year standard.  However, 25 species met a 

relaxed, 5.0% per year standard. 

 

Signal Reception 

 

 Data analyses from the playback field experiment revealed that signal power of recorded 

bird sounds was reduced by approximately 10 decibels at 50 m for recorders and microphones 

placed in protective containers versus those that were not (Fig. 3).  Furthermore, signal power 

was asymptotic at greater distances for recorders in protective containers.  Indeed, I had great 

difficulty distinguishing bird sounds from background noise in spectrograms for distances of 80 

m to 100 m for all recordings associated with protective containers.   

 

Consequently, I used the median power value at 100 m from protective container 

recordings to represent the background noise level.  I estimated the effective distance beyond 

which accurate species interpretation of recordings was unlikely as the distance at which 25
th

 

percentile value was higher than my estimate of background noise.  Taking this approach I found 

an effective distance of 50 m for bird songs (e.g., Fig. 3a, American robin and hermit warbler) 

and 30 m for bird calls (Fig. 3b, brown creeper [Certhia Americana]) for automated recorders 

placed in protective containers. 

 

Comparison with Point Counts 

 

 Survey-level detection probability was higher for point counts (median among species= 

0.53) versus automated recorders (median among species= 0.40).  The occupancy ratio between 

point counts and automated recorders was >1, except for low distance thresholds (e.g., 20 m and 

30 m) that excluded many point count detections but not automated recorder detections (Fig. 4).  

In contrast, ratios were almost always (5 of 6 distance thresholds) closer to one for modeled 

occupancy estimates.  The greatest agreement between occupancy estimates from the 2 survey 

methods was for point count truncation thresholds of 40 m and 50 m.   

 

DISCUSSION 

 

Survey Design 

 

Although not fully random, EBM surveys were reasonably representative of middle 

elevation (500 m to 2,000 m) conifer forests across a 5.4-million-ha, northern California study 
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area, thereby strengthening the case that my use of automated recorders provided accurate 

species occupancy estimates at the regional scale.  However, wilderness areas were 

underrepresented.  This was, in part, because travel to and from survey sites was the most 

expensive and time-consuming task for conducting the bird surveys.  Surveys along transects 

(Tingley et al. 2012) or trails (McGrann 2012) might improve the efficiency of surveying remote 

locations, but are also potentially subject to systematic bias (Thompson 2002 – Chapter 12) and 

reduced inference across the entire study area.  I am currently testing a hybrid approach to blend 

data from the main set of random sites with a subset of surveys along wilderness trail systems.  

Steep slopes were also underrepresented.  This issue will be harder to resolve, because prolonged 

travel by survey crews across slopes exceeding 80% was restricted due to safety concerns.  One 

approach for addressing these sampling biases would be to include covariates for these 

characteristics in models, and provide a weighted occupancy estimate that corrects for uneven 

sampling effort. 

 

Occupancy Modeling 

 

Site-level detection probabilities from the automated recorders were high (p* >0.8) for 

most species (67%), which highlights their effectiveness for monitoring a large proportion of the 

northern California forest songbird metacommunity.  The total number of species heard during a 

survey period was the covariate with the greatest importance for explaining survey-level 

detection probability across species.  This variable likely functioned as a proxy for a number of 

latent factors, such as weather, background noise, and recording malfunctions that I was unable 

to easily classify separately.  Survey year was also an important detection covariate originally 

included to ensure independence between observations.  This covariate also served to control for 

differences between interpreters who reviewed surveys from different years and differences in 

the automated recorders used in different years.  

 

Detection probabilities of woodpeckers were consistently lower than for passerines.  This 

finding is consistent with evolutionary differences between passerines and other taxa that have 

allowed the former to specialize on song as a means of attracting mates which over time has led 

to diversification via sexual selection and adaptive radiation (Lovette and Bermingham 1999, 

Irwin et al. 2008, Campagna et al. 2011).  Another explanation for the lower detection 

probabilities observed for woodpeckers is the difficulty in distinguishing between the drumming 

sounds of different woodpecker species (Stark et al. 1998).  The integration of automated 

playback into the automated recorder protocol might increase detection probabilities for 

woodpeckers which respond vocally and by drumming to playbacks of their call.   

 

An advantage of automated recorders is that they leave a permanent record that can be 

independently reviewed by more than one interpreter, thereby reducing observer bias.  This is 

important because misclassification error can lead to substantial error in occupancy estimates 

(Royle and Link 2006).  In this study, interpreters reported sizeable (> 5% of sites) identification 

uncertainties for hermit warbler and several species of Empidonax flycatchers.  As I excluded all 

instances of uncertain species identification from the models, this issue was likely to have 

negatively biased occupancy estimates.  This is because frequently there was identification 

uncertainty about all surveys at a site such that occupancy models might not have been able to 

adjust detection probability based on a reduced number of surveys in which the species was 
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confidently identified.  Much of the uncertainty about hermit warbler was due to geographical 

variation in its song form (Janes and Riker 2006) that I plan to address by providing interpreters 

with information on local dialects.  I will rectify the problem for other species by updating my 

models to explicitly include information about interpretation uncertainty and differences between 

duplicate interpretation results into the model equations.  Royle and Link (2006) provided a 

framework for this approach using a latent class mixture model which could be expanded upon 

to include actual information about uncertainties and discrepancies (Miller et al. 2011).       

 

For most of the species modeled I believe surveys met the closure assumption 

(MacKenzie et al. 2006, p. 104) required of occupancy modeling.  This is because survey 

replicates occurred over a short time period (e.g., 3 days) during the breeding season when most 

songbirds were maintaining territories.  Possible exceptions included common raven (Corvus 

corax) and finches (Fringillidae).  Furthermore, my occupancy estimates were unlikely to have 

changed much due to immigration over the dates surveyed.  This is because surveys began 

approximately one month after most visitors arrived from migration.    

 

Monitoring Trends 

 

The power analysis demonstrated that, for a modest investment of 100 sites per year, 

automated recorder surveys should be able to monitor 32 species of birds for declines as small as 

2.5% per year over 20 years.  This is the same standard recommended for the North American 

Breeding Bird Survey (Bart et al. 2004).  For 10 years one should be able to monitor 26 species 

for declines as small as 5% per year.   For monitoring timeframes of less than a decade, it might 

be very difficult to distinguish short-term population cycles from long-term trends linked to 

stressors of conservation concern (e.g. climate change, habitat degradation).  This is because 

transient or random annual events can lead to autoregressive effects resulting in multi-year 

population cycles (Elias et al. 2006, Ludwig et al. 2006).   

 

Species-level monitoring at large spatial scales is needed for identifying population 

trends and prioritizing conservation actions before species become endangered (Rich et al. 2004, 

Manley et al. 2005, Noon et al. 2012, Schultz et al. 2013).  In particular, multi-species 

monitoring utilizing occupancy modeling has been recommended for increased consideration by 

U.S. state wildlife agencies implementing Wildlife Action Plans using federal funds from State 

Wildlife Grants (DeWan and Zipkin 2010).   Additionally, California Partners in Flight 

recommended monitoring of 12 focal birds representing “functioning coniferous forest 

ecosystems” (CalPIF 2002).   I demonstrated that 7 of these species met a 20-year monitoring 

standard using automated recorder surveys.  These species were brown creeper (Certhia 

americana), dark-eyed junco, fox sparrow (Passerella iliaca), golden-crowned kinglet (Regulus 

satrapa), MacGillivray’s warbler (Geothlypis tolmiei), olive-sided flycatcher (Contopus 

cooperi), and western tanager. 

 

By monitoring an entire avian metacommunity (or at least a large fraction of the common 

passerines with automated recorders), declines of individual species need not be considered in 

isolation, but can be compared to responses of other species in the metacommunity.  For 

example, it would be important to distinguish whether the decline of a moderately-common 
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species was related to an environmental stressor affecting it or associated with competitive 

release of other species sharing the same niche.    

 

 In this study, I focused on monitoring common species.  One reason for this focus was 

the value of being able to detect a decline and inform conservation planning before a species 

becomes rare or endangered.  This approach is consistent with the Partners in Flight (Rich et al. 

2004) goal of “keeping common birds common.”  Furthermore, common birds may 

disproportionately reflect ecological processes within an avian metacommunity (Lennon et al. 

2004, Gaston and Fuller 2008, Koch et al. 2011).  Nevertheless, rare species can be addressed 

using multi-species occupancy models (Dorazio and Royle 2005, Zipkin et al. 2009, Tingley and 

Beissinger 2013) that can pool data from species with similar traits or conservation issues.  

Indeed, the EBM data using automated recorders can be applied to either a single- or multi-

species modeling framework.  One reason I chose to use single-species occupancy models for 

monitoring common species, however, is that multi-species models tend to pull species-specific 

estimates towards the metacommunity mean, a phenomenon known as “Bayesian shrinkage” 

(Zipkin et al. 2009).    

 

Automated Recorders versus Point Counts 

 

Occupancy modeling provides a straightforward method for correcting data from 

different survey methods associated with different detection probabilities such that the 

occupancy estimates are comparable.  My side-by-side comparison of automated recorders and 

point counts demonstrated the efficacy of this process.  The ratio of occupancies estimated using 

data from the different survey methods converged on one despite a higher survey-level detection 

probability for point counts. 

 

A difference in effective survey area was of greater concern than detection probability in 

my comparison of automated recorders and point counts.  This was because occupancy is 

expected to be higher for a larger survey area (Gaston and He 2011).  Therefore, to compare 

results from automated recorders with those using other methods, it was important to understand 

the effective survey area of surveys.  Findings from 2 field experiments I conducted indicated 

that the automated recorders in protective containers can detect most species vocalizing within a 

circular area of radius 30 m to 50 m.  This suggests that automated recorders are comparable to 

point counts, which are often truncated at 50 m because of inaccuracies beyond this distance 

(Ralph et al. 1995, Scheick 1997).   Additionally, a small survey area may be an asset because 

incidence is expected to most frequently equate to a single territory, thereby strengthening the 

case for occupancy as a surrogate for abundance.  Nevertheless, more investigation is warranted 

as the effective distance of automated recorders is expected to vary by species, and by recording 

device.  

 

Automated recorders offer an effective alternative to point counts.  One advantage of 

automated recorders is that they are more amenable to scheduling surveys at comparable times of 

the day and for cost-effectively allowing multiple repeat surveys for use in occupancy modeling.  

By surveying at the same times each day diurnal variability in detection probability is likely 

reduced.  Furthermore, the permanent record provided by automated recorders allows more than 

one interpreter to independently review the data, a decision that need not be made at the time of 
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surveys.  As a practical matter, this feature allows me the flexibility to choose whether to re-

analyze all of the EBM surveys back to 2002 for addressing false-positives using an alternative 

model structure.  On the other hand, I also identified a number of issues for using automated 

recorders.  It is important to note, however, that many of these issues apply similarly to point 

counts (e.g., study design, detection probability, misclassification, closure assumption).  Rather 

than choosing between automated recorders and point counts, I suggest that the combination of 

both may be the best approach.  One option would be to conduct point counts during the 

deployment and retrieval of automated recorders.  Both streams of data could then be used in the 

same occupancy model for reducing bias and improving precision.    

 

Data Storage 

 

The ability to collect survey recordings presents new challenges in terms of how to 

properly store and document these data.  Indeed, some bioacoustics researchers and curators 

have identified the need to develop standards for organizing and sharing audio recordings of 

wildlife (Bradbury et al. 1999, Gaunt et al. 2005).  The EBM bird survey recordings have value 

beyond the ability to confirm the species identifications made by interpreters. They are a random 

sample of how bird song varies spatially and temporally by species across a large portion of 

northern California.    

 

MANAGEMENT IMPLICATIONS 

 

 I reported on the utility of automated recorders for surveying birds, and demonstrated 

how occupancy modeling of this type of data can facilitate long-term monitoring of an avian 

metacommunity at the regional scale.  These devices are a good option for monitoring birds, 

because they leave a permanent record that can be independently verified and conveniently 

scheduled to repeatedly survey different locations at the same time of the day.  They are also 

advantageous for surveying remote sites representative of a large region, because a surveyor is 

not required to be present for each automated survey replicate.  In this study, I focused on 

monitoring common species, but multi-species occupancy models can be readily applied for 

drawing inferences about rarely detected species.  Despite providing lower survey-level detection 

probabilities than point counts, I showed that automated recorders programmed to make 9 survey 

replicates over 3 days led to high site-level detection probabilities for many common species.  

Indeed, I demonstrated 80% power for monitoring declines as small as 2.5% per year over 20 

years for 32 species.  

  

 Multi-species monitoring should constitute an essential function of agencies charged with 

managing and conserving wildlife.  Automated recorders, used by themselves or in conjunction 

with point counts, are well suited to helping biologists achieve this goal for songbirds.  

Furthermore, the combination of large assessment and small survey scales is likely to make 

occupancy modeling of automated recorder data a good proxy for abundance.  
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Table 1.  Summary statistics on land classification and biophysical conditions at Ecoregion 

Biodiversity Monitoring (EBM) sites where automated recorder bird surveys occurred from 2006 

to 2010.  Land classification, elevation and slope information was derived from geographic 

information systems (California Department of Fish and Wildlife, unpublished data).  Total live 

and dead tree basal area measurements were made using a 10-sq.ft-factor angle gauge (Avery 

and Burkhart 1994).  The EBM averages were compared with reported values from the U.S. 

Forest Service’s Forest and Inventory Analysis (FIA) program for all forestlands in the 

California North Interior region (i.e., Lassen, Modoc, Shasta, Siskiyou and Trinity counties) that 

largely matches the EBM study area. 

 

 Private 

Land 

Wilderness Average 

Elevation 

Average 

Slope 

Average 

Basal Area  

EBM survey sites 

All forestlands (FIA) 

27.2% 

31.9% 

 4.4% 

10.4 % 

1,334 m 

1,353 m 

24.7% 

29.2 % 

22.3 m
2
/ha 

23.2 m
2
/ha 

 

 

 

 

Table 2.  Most common birds detected (>5% of sites) with automated recorders in northern 

California forests from 2006 through 2010.   

 
AOU 
Code a 

Common Name Scientific Name AOU 
Code a 

Common Name Scientific Name 

AMRO 
BHCO 

BHGR 

BLUE a 
 

BRCR 

CAFI 
CAVI 

CBCH 

CHSP 
CONI 

CORA 

DEJU 
DUFL 

EVGR 

FOSP 
GCKI 

GRFL 
GTTO 

HAFL 

HAWO 
HETH 

HEWA 

HOWR 

American Robin 
Brown-headed Cowbird 

Black-headed Grosbeak 

Mountain Bluebird  
(or Western Bluebird) 

Brown Creeper 

Cassin's Finch 
Cassin's Vireo 

Chestnut-backed Chickadee 

Chipping Sparrow 
Common Nighthawk 

Common Raven 

Dark-eyed Junco 
Dusky Flycatcher 

Evening Grosbeak 

Fox Sparrow 
Golden-crowned Kinglet 

Gray Flycatcher 
Green-tailed Towhee 

Hammond's Flycatcher 

Hairy Woodpecker 
Hermit Thrush 

Hermit Warbler 

House Wren 

Turdus migratorius 
Molothrus ater 

Pheucticus melanocephalus 

Sialia currucoides 
(or Sialia mexicana) 

Certhia americana 

Haemorhous cassinii 
Vireo cassinii 

Poecile rufescens 

Spizella passerina 
Chordeiles minor 

Corvus corax 

Junco hyemalis 
Empidonax oberholseri 

Coccothraustes vespertinus 

Passerella iliaca 
Regulus satrapa 

Empidonax wrightii 
Pipilo chlorurus 

Empidonax hammondii 

Picoides villosus 
Catharus guttatus 

Setophaga occidentalis 

Troglodytes aedon 

LAZB 
MGWA 

MOCH 

MODO 
MOUQ 

NAWA 

NOFL 
OSFL 

PIWO 

PSFL 
PUFI 

RBNU 

RECR 
SPTO 

STJA 

TOSO 
TRES 

WAVI 
WBNU 

WETA 

WEWP 
WHWO 

YRWA 

Lazuli Bunting 
MacGillivray's Warbler 

Mountain Chickadee 

Mourning Dove 
Mountain Quail 

Nashville Warbler 

Northern Flicker 
Olive-sided Flycatcher 

Pileated Woodpecker 

Pacific-slope Flycatcher 
Purple Finch 

Red-breasted Nuthatch 

Red Crossbill 
Spotted Towhee 

Steller's Jay 

Townsend's Solitaire  
Tree Swallow 

Warbling Vireo 
White-breasted Nuthatch 

Western Tanager 

Western Wood-Pewee 
Wht.-headed Woodpecker 

Yellow-rumped Warbler 

Passerina amoena 
Geothlypis tolmiei  

Poecile gambeli 

Zenaida macroura 
Oreortyx pictus 

Oreothlypis ruficapilla 

Colaptes auratus 
Contopus cooperi 

Dryocopus pileatus 

Empidonax difficilis 
Haemorhous purpureus 

Sitta canadensis 

Loxia curvirostra 
Pipilo maculatus 

Cyanocitta stelleri 

Myadestes townsendi 
Tachycineta bicolor 

Vireo gilvus 
Sitta carolinensis 

Piranga ludoviciana 

Contopus sordidulus 
Picoides albolarvatus 

Setophaga coronata 

a
American Ornithologists’ Union species codes (Banks et al. 2003), except for bluebirds 

lumped into a genus-level taxon code. 
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Figure 1.  Northern California study area where bird surveys using automated recorders occurred 

from 2006 through 2010, USA. 
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Figure 2. Model-averaged, single-species, single-season occupancy estimates for conifer sites 

(n=453 sites), based on automated recorder surveys in northern Calfornia from 2006 through 

2010.  See Table 2 for species codes.  BLUE represents a genus-level taxon including both 

mountain bluebird (Sialia currucoides) and western bluebird (Sialia mexicana). 
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Figure 3. Distance-related decay of signal received by automated recorders.  A field experiment 

was conducted in August 2013, whereby playback of bird song (A, American robin [Turdus 

migratorius] and hermit warbler [Setophaga occidentalis]) and bird call (B, brown creeper 

[Certhia americana]) were recorded from different distances at 8 montane conifer locations in 

northern California.  The experiment compared automated recorders with and without protective 

containers.  Results suggest a limiting distance of 30 m to 50 m for automated recorders in 

protective containers, and that protective containers reduced audibility by 10 decibels at 50 m. 



18 

 

 
Figure 4.  Comparison of concurrent automated recorder (AR) and point count (PC) surveys.  

Surveys occurred twice on different days at 60 sites from 6 montane conifer locations in northern 

California during 2008.   Naïve occupancy and modeled occupancies correcting for 

methodological differences in detection probability were estimated.  A “modeled” ratio of one 

represents agreement between occupancy estimates provided by the 2 methods despite 

differences in detection probability.  The data were modeled separately for different truncation 

distances on the point count data, such that the distance where agreement was closest to one 

represents an estimate for the effective distance of the automated recorders. 
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Figure S1.  An automated recorder (Olympus DS-40 digital voice recorder, 

www.olympusamerica.com) and its protective container used for surveying common forest birds 

in northern California.  Each device was programmed to automatically record sounds during 5-

minute survey periods at 3 times each morning repeated over 3 consecutive days. 
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Figure S2.  Relative importance values of detection covariates used in occupancy models of 

automated recorder bird survey data from northern California forests from 2006 through 2010. 

 

Relative importance values (Burnham and Anderson 2002, p. 168) of detection covariates were 

calculated for each covariate for each bird species (n = 46) using the Akaike’s Information 

Criterion model weights. The distributions of these variable importance values are shown as 

histograms below.  The distributions of the logit-scale parameter estimates (“Betas”) are also 

shown for species for which variable importance exceeded 0.8.  The detection covariates were: 

(1) the total number of species detected in a 5-minute survey (nSPP), (2) the Julian date of a 

survey and, (3) the proportion of the 400 m radius area surrounding a survey site in conifer forest 

land cover.  The data for the models were from automated recorder surveys at 453 sites in 

northern California conifer forests. 

(1)  

(2)   
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(3)  
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Figure S3.  Survey-level detection probability by bird species from occupancy models of 

automated recorder survey data from northern California forests from 2006 through 2010. 

 

Only the most detectable (site-level p* > 0.8) species are shown here.  Estimates of survey-level 

detection probability (MacKenzie et al. 2006) incorporate spatial and temporal variation in 

explanatory covariates by averaging fitted values across sites where surveys occurred.  Detection 

probability was calculated per a single 5-minute survey for the 3 daily times: beginning 30 

minutes before sunrise, sunrise, and 15 or 30 minutes after sunrise.  Error bars represent upper 

bounds of 90% confidence intervals.  The data for the models were from automated recorder 

surveys at 453 sites in northern California conifer forests.  See Table 2 for species codes.   
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Figure S4.  Site-level detection probability by bird species from occupancy modeling of 

automated recorder survey data from northern California forests from 2006 through 2010. 

 

Site-level estimates of detection probability (MacKenzie et al. 2006) incorporate spatial and 

temporal variation in explanatory covariates by averaging across sites where surveys occurred.  

Site-level detection probability was calculated cumulatively after 9 replicate surveys 3 times 

daily repeated over 3 consecutive days: ])1()1()1[(1 3

3

3

2

3

1

* pppp  .  The data for the 

models were from automated recorder surveys at 453 sites in northern California conifer forests.  

See Table 2 for species codes.   
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Figure S5.  Statistical power to detect a trend in occupancy from regional-scale monitoring via 

surveys using automated recorders. 

 

Power analyses (Purcell et al. 2005, Nielsen et al. 2009, Meyer et al. 2010) demonstrating the 

ability of automated recorder to monitor long-term occupancy trends of birds in northern 

California forests. For 46 species I assessed power to detect average annual declines in 

occupancy assuming an annual sampling of effort of 100 sites across the study area addressed in 

the main article (power > 0.8 based on 10,000 Monte Carlo simulations and a type I error rate of 

0.1).  Staring occupancies and standard error for species for calibrating the power analysis were 

from occupancy modeling described in the main article. See Table 2 for species codes.   
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Chapter 2 
 

Multi-species occupancy models for estimating the evenness 

of a forest songbird metacommunity 

 

 

ABSTRACT 

 

Biodiversity analyses are increasingly considering the importance of survey detection 

probability in the estimation of species richness and turnover.  Less attention has been given to 

the effect of detection bias on the shape of rank abundance distributions.  Evenness is a popular 

measure for describing the shape of this distribution.  I used simulation and Bayesian 

hierarchical multi-species occupancy models for California avian surveys to demonstrate that the 

general effect of ignoring survey detection probability heterogeneity among species was an 

underestimation of the evenness of a metacommunity.  I justified occupancy as a reasonable 

surrogate for abundance because of the small area associated with the survey method used in this 

study.  By comparing rank occupancy distributions of different avian genera, I found that the 

relative occurrences of different flycatcher species (Tyrannidae) were evener than for wood 

warblers (Parulidae) or woodpeckers (Picadae), and that all 3 groups were evener than sparrows 

(Emberizidae). 

  

INTRODUCTION 

 

Habitat loss and climate change are expected to reduce biodiversity at the global (Fahrig 

2003, Thomas et al. 2004) and regional scales (Radeloff et al. 2005, Stralberg et al. 2009).  

Scientifically-rigorous, multi-species monitoring is needed for effectively adapting to these 

threats (Bianchi and Morri 2000, Thomas 2005, DeWan and Zipkin 2010).  The refinement of 

analytical techniques for community-level occurrence or abundance data is an active research 

field (Pueyo 2006, McGill et al. 2007, Magurran and McGill 2011, Iknayan et al. in press ) 

rooted in concepts of alpha, beta and gamma diversity (Whitaker 1960) and the evenness of rank 

abundance distributions (Shannon 1948, Simpson 1949).  In recent years researchers have begun 

to address the issue of detection probability in the estimation of species richness (Dorazio and 

Royle 2005, Kéry and Royle 2008) and turnover (Ruiz-Gutiérrez and Zipkin 2011, Tingley and 

Beissinger 2013) resulting in a more accurate understanding of how diversity is distributed and 

impacted by anthropogenic disturbance.  These approaches for addressing detection probability 

have shared a Bayesian hierarchical state-space structure that treats the true ecological state and 

observed survey data as 2 separate but linked process models (Link et al. 2002). 

 

In this study I considered the effects of detection probability on evaluating the evenness 

of species diversity.  I began by using occupancy as a surrogate for abundance (MacKenzie and 

Nichols 2004).  The rationale for doing so in this case was that I used bird survey data from 

automated recorders characterized by a small survey area (30 m to 50 m) for detecting forest 

songbird species (see Chapter One).  Next, I simulated the general effect of ignoring detection 

probability on the evenness of species diversity.  Then, I expanded the application of occupancy 

modeling (MacKenzie et al. 2006, Royle and Dorazio 2008, Kéry and Schaub 2012) to the 

estimation of a rank occupancy distribution (see Chapter One) at the metacommunity level of 
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assembly (Wilson 1992, Holyoak et al. 2005).  I compared the performance of 2 different 

hierarchical Bayesian approaches to modeling detection probability for the bird survey data, and 

evaluated their measures of evenness to that of the uncorrected, naïve occupancies.  Finally, I 

compared evenness among several families (Parulidae, Picadae, Tyrannidae, and Emberizidae), 

and discussed the ecological and conservation implications of these results. 

 

STUDY AREA 

 

Since 2002 the California Department of Fish and Wildlife has surveyed multiple avian 

species across a 5.4-million-ha area of northern California in the USA (Fig.1) as part of the 

Ecoregion Biodiversity Monitoring (EBM) project.  Conifer-dominated forests covering 64% of 

this region were primarily Klamath Mixed Conifer, Sierran Mixed Conifer, Douglas Fir 

(Pseudotsuga menziesii), White Fir (Abies concolor), Red Fir (Abies magnifica), Lodgepole Pine 

(Pinus contorta), Ponderosa Pine (Pinus ponderosa), Jeffrey Pine (Pinus jeffreyi), Eastside Pine, 

Montane Hardwood-Conifer, and Juniper (Juniperus spp.) forest types (Mayer and Laudenslayer 

1988).   Elevations range from 60 m to 4,270 m.  The geology is a mix of steep mountains and 

volcanic plateaus, and average annual precipitation varied from 20 cm to 300 cm (Schoenherr 

1992).  Forest ownership was a mix of public (64%) and private (36%) lands. 

 

METHODS 

 

Survey Design 

 

Survey sites were randomly selected without replacement each year from the U.S. Forest 

Service hexagon grid for the Forest and Inventory and Analysis (FIA) program (Bechtold and 

Patterson 2005), which completely overlaps the EBM study area.  The distance between adjacent 

hexagon centroids was 5.35 km.  Permission was granted for surveying public agency and 

private industrial forestland ownerships in the study area.   

 

Although EBM is an ongoing effort, data analysis in this study was limited to sites 

surveyed from 2006 through 2010.  A post-stratification procedure was adopted to limit 

inference to montane conifer habitats.  Using land-use, land-cover information derived from 

satellite imagery (U.S. Forest Service 2012b), I calculated the proportion of the 400-m-radius 

surrounding area in conifer forest cover and excluded all sites with < 0.5 conifer forest cover.  

Following these adjustments, the sample size was 453 sites.   

 

Avian Surveys 

 

Bird surveys were conducted using inexpensive digital voice recorders manufactured by 

Olympus Corporation (www.olympusamerica.com).  These devices were programmable to allow 

automated recordings to be made at preset times.  The models varied by year (e.g., DS-2, DS-40, 

DS-61).  Recording was set to the highest quality with a sampling rate of 44.1 KHz.  

Microphones also varied by year.  In the initial years external omni-directional microphones 

were purchased separately; recently factory-provided stereo microphones attached to the 

recording units were used instead.  For all configurations, the frequency range for the combined 

recorder and microphone set was at least 100 Hz to 14,000 Hz.  To protect the devices from rain, 
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condensation and small mammals, they were placed in a lightweight, plastic food container, or 

the external microphone was placed in a plastic bag.  

 

Devices were programmed to automatically record sounds at up to 3 specified times each 

morning on 3 consecutive days during the breeding season when songbirds were singing from 

territories.  Each survey period was 5 minutes in length and generally began 30 minutes before 

sunrise, at sunrise, or at either 15 or 30 minutes after sunrise.  Prior to 2009 there were typically 

only 2 surveys periods per day occurring at sunrise and after sunrise.  Surveys were conducted 

from the middle of May through the first week of July.  After completion of the field season a 

biologist reviewed the recordings and listed all species detected during each 5-minute survey.  

The interpretation work was accomplished by listening to the recordings while simultaneously 

viewing the spectrograms using Raven Pro software (Cornell Lab of Ornithology, Ithaca, NY, 

USA).  Only biologists who scored at least 70% on a test interpreting species from sample 

recordings worked on this task.   

 

To study birds competing on a similar trophic level, I considered only those species 

belonging to Passeriformes, Columbidae, Odontophoridae or Picadae, which included 101 

species that were detected at least once (Table 1). 

 

Simulation 

 

Monte Carlo simulation (Metropolis and Ulam 1949) was employed to examine the 

general effect of detection probability on the apparent shape and evenness of rank occupancy 

distributions.  The true occupancy states of 100 hypothetical species were modeled as, Ψ true i = 

exp(-0.03(xi+5)), for species i where x was drawn from a uniform distribution spanning 1 

through 100.  The observed occupancies were first modeled under heterogeneous detection 

probability, Ψ obs1i = p1i Ψ true i, where p1 was drawn from a uniform distribution ranging from 

0.2 to 0.9.  The observed occupancies were also modeled under homogeneous detection 

probability, Ψ obs2 i = p2i Ψ true i , where p2 = E[p1].  Simulations were repeated 10,000 times.  

The average values from these simulations were computed and rank sorted to create true versus 

observed occupancy distributions.  Simpson’s Measure of Evenness (Es, Smith and Wilson 1996) 

was calculated for each simulation.  The average value was taken and confidence intervals were 

constructed from the 5
th

 and 95
th

 percentile values, corresponding to a Type I error rate of 0.1, to 

test for differences among rank occupancy distributions.  The null hypothesis was rejected if the 

average evenness from one distribution was not contained within the interval of the other 

distribution or vice-versa.       

 

Occupancy Modeling 

 

Occupancy represents the true proportion of the study area in which a species occurs, or 

the probability that a given site is occupied by the species.  Occupancy modeling allows 

simultaneous estimation of detection and occupancy probabilities for providing an unbiased 

estimate of the latter (MacKenzie et al. 2006).   

 

I used Bayesian hierarchical multi-species, single-season occupancy models (Dorazio and 

Royle 2005, Zipkin et al. 2009, Tingley and Beissinger 2013) to simultaneously estimate 
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occupancies of all 101 species detected at least once.  The models did not include data 

augmentation (Dorazio and Royle 2005) for estimating the number of species potentially 

occurring but never detected.  For occupancy (Ψ) and detection probability (p):  

 

logit(Ψi) = βi for species i, and                                 eq. 1 

logit(pi,j,k)  = βi,j,kxi,j,k      eq. 2 

 

for species i at site j on survey occasion k where x were covariates for explaining detection.  The 

true occurrence state (z) for each site and species was assumed to follow a Bernoulli distribution, 

zi,j ~ Bern(Ψi), whereas the observation state (y) was modeled as a zero-inflated Bernoulli 

distribution, yi,j,k ~ Bern(pi,j,kzi,j) I [z=1].   

 

Two models were fit for comparing different approaches for addressing detection 

heterogeneity among species.  Using hyper-parameters (Zipkin et al. 2009, Tingley and 

Beissinger 2013) the first model treated inter-species variability as normal random effects, βs,i 

~Norm(µs,σs), for covariate s and species i.  The covariates included categorical variables for 

time of day, year, and total number of species heard in a 5-minute survey, an indicator 

representing latent weather and location factors affecting avian singing behavior (see Chapter 

One). 

 

The second model included fixed effects for the same covariates in the first model, but no 

hyper-parameters.  It also included variables representing a set of a priori hypotheses about how 

species traits and taxonomic identity affected detection probability: (1) Rooted in distance 

sampling (Buckland et al. 2001), I predicted that a species’ detection probability should be 

negatively correlated with territory size, because birds that move around larger territories are 

more likely to be farther away from the automated recorder during a survey.  As complete 

information on territory size was missing for most species, body mass was used as a proxy for 

territory size (Palmqvist et al. 1996, Keeley and McPhail 1998, Polishchuk and Tseitlin 1999, 

Iossa et al. 2008); (2) I tested whether species that actively defend Type A territories (Nice 

1941), and that should have greater site fidelity, had higher detectability than other birds; (3) I 

predicted species that forage higher in the canopy were more detectable, because they sing more 

continuously while feeding from heights where sound transmission properties are better 

(Bradbury and Vehrencamp 1998 – Chapter 5).  I compared ground, middle canopy/no 

specialization and high canopy foragers; and (4) I tested whether migratory birds were more 

detectable than resident birds, because the former group has less time to establish territories upon 

arrival on the summer range, necessitating more frequent singing to attract mates.  I compared 

species groups representing no migration, local migration and long-distance migration.  Species 

trait data for the variables representing each of these hypotheses listed above were gathered from 

the Birds of North America species accounts (BNA, www.bna.birds.cornell.edu) or from Tingley 

et al. (2012) which had already compiled this data from the BNA accounts. 

 

Two taxonomic covariates were also included in the species-traits model.  They 

represented woodpeckers (Picadae) and finches (Fringilidae).  The former was because of lower 

detectability for this group from previous analyses (see Chapter One), whereas the latter was 

added after initial analyses improved model fit. 
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Finally, single-species models for the most common species (Ψnaive > 0.05) were fit for 

assessing accuracy of the 2 multi-species models.  These intercept-only occupancy models 

included detection probability modeled with fixed effects for survey time, year and the number 

of species detected per survey.   

 

All models were solved through a Markov Chain Monte Carlo algorithm (Link et al. 

2002) implemented in WinBUGS (Version 1.4, www.mrc-bsu.cam.ac.uk/bugs) accessed using R 

statistical software (Version 2.12, www.r-project.org) with the R2WinBUGS package (Sturtz et 

al. 2005).  Uninformative priors were assumed for all parameters.  Three independent chains 

each of 10,000 samples were run with a burn-in period of 5,000 and a thinning rate of 3.  

Effective mixing of these chains was assessed visually and by means of the Gelman-Rubin 

convergence statistic (< 1.1, Gelman et al. 2004).  Significance tests for model covariates were 

made using 90 percent credible intervals of posterior distributions.   

 

Rank Occupancy Distributions 

 

Estimates of species’ occupancies were first compared among multi-species models and 

against naïve values.  Results from the single-species models provided an additional comparison 

for common species.  Rank occupancy distributions were then assembled by rank sorting and 

plotting results from the hyper-distribution and species-traits models, and from the naïve 

estimates.  As with the simulation exercise, evennesses of these distributions were quantified via 

Simpson’s Measure of Evenness (Es).  The standard errors from posterior distributions of model 

parameters were applied in Monte Carlo simulation.  Confidence intervals were constructed from 

the 5
th

 and 95
th

 percentile values corresponding to a Type I error rate of 0.1.  Differences 

between species occupancy distributions were tested using these intervals, and the null 

hypothesis was rejected if the average evenness from one distribution was not contained within 

the interval for the other distribution or vice-versa.       

 

 Lastly, rank occupancy distributions were evaluated separately for Parulidae (wood 

warblers), Picadae (woodpeckers), Tyrannidae (flycatchers) and Emberizidae (sparrows).  I 

hypothesized that warblers and woodpeckers would display more even distributions than 

sparrows, and that flycatchers would be intermediate.  I reasoned that warblers and woodpeckers 

are better adapted to breeding and foraging in forested habitats than sparrows leading to less 

competition, greater resource partitioning and more evenness within the first 2 groups 

(Cotgreave and Harvey 1994).  Rank occupancy distributions by family were assembled from 

occupancy estimates from the hyper-distribution model. 

 

RESULTS 

 

Simulation 

 

Apparent alpha diversity was similarly reduced under both homogeneous and 

heterogeneous assumptions of detection probability (Fig. 2).  However, apparent evenness was 

significantly (P<0.1) lower for the heterogeneous (Es = 0.54) versus the true distribution (ES = 

0.61).  The evenness of the homogeneous distribution was identical to that of the true 

distribution. 
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Occupancy Models 

 

For common species (Ψ > 0.1, Fig. 3a) the hyper-parameter multi-species model 

increased each species’s occupancy estimate above the naïve estimate by 34% on average.  The 

species-traits, multi-species model increased occupancy estimates of common species by 26% on 

average.  Single-species models increased occupancy estimates by 42% on average.  This pattern 

in magnitude was mirrored by a similar pattern in the difference in variance between modeled 

and naïve estimates (sd = 43%, 39% and 57% respectively); the variation was strongly right-

skewed. 

 

For rare species (Ψ < 0.1, Fig. 3b) occupancy estimates from the hyper-distribution, 

multi-species model were an average of 134% higher than naïve estimates, and 104% higher for 

the species traits, multi-species model.  However, these large percentage increases corresponded 

to much smaller increases on the occupancy scale (0.01 and 0.005 respectively). 

 

The species-traits model confirmed (P<0.1) all a priori hypotheses about detection 

probability.  For each 10 g increase in average species mass the per-survey odds of detection 

given occupancy decreased by 1%.  The odds increased by 19% for neotropical migrants versus 

yearlong residents.  They increased by 36% for species with Type A territories, and by 47% for 

high canopy versus ground foragers.  The odds of detection were 71% lower for finches and 84% 

lower for woodpeckers than for other birds. 

 

Evenness of Rank Occupancy Distributions 

 

Ocular comparisons suggested occupancies from the 2 multi-species models were more 

even than from naïve estimates (Fig. 4).  Formal assessment via Simpson’s Measure of Evenness 

confirmed this impression.  Modeled occupancies were significantly (P<0.1) more even than the 

naïve estimates.  Occupancies from the hyper-distribution model were 15% evener, whereas 

occupancies from the species-traits model were 5% more even.  Furthermore, occupancies from 

the hyper-distribution model were significantly (P<0.1) more even than those from the species-

traits model. 

 

The construction of partial rank occupancy distributions for different avian families 

confirmed my hypotheses that warbler and woodpecker occupancies within metacommunities 

would be significantly (P < 0.1) more even than for sparrows (Fig. 5).  Unexpectedly, flycatcher 

evenness (E s = 0.63) was substantially higher than for warblers (E s = 0.45), woodpeckers (E s = 

0.43) and sparrows (E s = 0.29).  Evenness of each family declined slightly (but not significantly, 

P > 0.1) when detection probability was not addressed.  However, the use of naïve occupancy 

estimates in the Simpson’s measure resulted in a significant (P < 0.1) difference in apparent 

evenness between warblers and woodpeckers that was not supported by the modeled data. 
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DISCUSSION 

 

Occupancy as a Surrogate for Abundance when Estimating Evenness 

 

One reason that there have been few evenness-related studies applying state space 

modeling solutions to detection probability might be that most ecologists use count (not 

incidence) data for calculating evenness (Magurran 2004, Magurran and McGill 2011).   Multi-

species hierarchical models for estimating abundance exist (Yamaura et al. 2012, Chandler et al. 

2013), but they require strong assumptions about the detection of individuals and how counts 

vary between sites which can lead to overestimation of abundance.  Theoretical relationships 

between occupancy and abundance (He and Gaston 2000, Harte 2011) tend to differentiate these 

2 metrics more at higher occupancies.  As a result one would expect occupancy-based measures 

of evenness to be greater in magnitude than abundance-based measures for the same community.  

For this reason it would be problematic to compare evenness across studies that are inconsistent 

in the use of count and incidence data.  Alternatively, occupancy-abundance relationships (e.g., 

negative binomial, maximum entropy) could be used to transform occupancy to abundance 

estimates prior to calculation of evenness.  Some researchers are directly considering theoretical 

relationships between the shape of species occupancy distributions and ecological process 

(McGeoch and Gaston 2002, Hieno 2008, Jenkins 2011).  

 

On the other hand, occupancy may be a good, direct surrogate for abundance in some 

situations.  The automated recorders used in this study were characterized by a small survey area 

(e.g., 30 m to 50 m radius) for detecting most songbird species (see Chapter One), such that site-

level occurrences were expected to most frequently equate to a single territory (see Chapter 

Three).  Incidence is more feasible than abundance to survey when using automated recorders 

and other automated methods (e.g., remote cameras, see Chapter Four) that make repeat surveys 

without the presence of a surveyor.  Furthermore, incidence data and automated methods are 

more practical for surveying consistently across large geographical areas, as was the case with 

EBM.  For all these reasons I believe multi-species occupancy modeling provided a good means 

of evaluating the evenness of the northern California forest songbird metacommunity addressed 

in this study. 

 

Evenness and Detection Probability 

 

Simulations clearly illustrated that the general effect of ignoring survey detection 

probability heterogeneity among wildlife species underestimates true evenness of communities.  

This bias was also demonstrated for real data from avian surveys in montane conifer forests.  

Inaccuracy in estimating community-level diversity has been addressed for species richness 

(Dorazio and Royle 2005, Kéry and Royle 2008) and turnover (Tingley and Beissinger 2013), 

but this study may be the first to quantify the role of detection probability in the assessment of 

evenness.  At least one review has raised the question of sampling intensity affecting the shape 

of species occupancy distributions (McGeoch and Gaston 2002).  At least one other study 

(Ahumada et al. 2011) has used occupancy modeling to evaluate the evenness of wildlife survey 

incidence data.   
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Species Traits and Detection Probability 

 

This study demonstrated the importance of species traits (e.g., body size, foraging height, 

migration, territoriality, taxonomy) in explaining detection probability in automated recorder 

surveys.  The species-traits observation model (eq. 2) violated an assumption of complete 

independence of observations among species; it did not include fixed or random effects 

distinguishing species identity.  However, it attempted to control for differences in detection 

among species through the use of 7 species trait variables differentiating 101 species.  I initially 

attempted a model that included both species trait variables and species identity random effects, 

but the solution was unable to split species-level variation between these components; all of the 

variation was assigned to species identity (i.e., hyper-parameter intercept versus hyper-parameter 

species traits covariates).  In theory, species trait information should improve the ability of a 

hyper-parameter model to adjust the occupancies of rare species.  For example, the knowledge 

that common woodpeckers are much less detectable than other species should upwardly adjust 

the occupancy of a rare woodpecker better than a random effect borrowing information from all 

species.  Evidence of this prediction was provided by acorn woodpecker in Fig. 3b.  Proponents 

of multi-species hierarchical models have pointed to the value of borrowing information across 

species, but previous published examples have not attempted species-trait covariates (Zipkin et 

al. 2009, Zipkin et al. 2010, Ruiz-Gutiérrez et al. 2010, Ruiz-Gutiérrez and Zipkin 2011, Burton 

et al. 2012, Tingley and Beissinger 2013).  Further investigation of species-traits models is 

needed.   

 

Predictable differences in detectability among species may be useful in planning future 

wildlife surveys.  For single-species studies, for example, survey effort could be customized to 

optimize site-level detection probability versus replication of surveys at other sites.  My results 

are especially relevant to the use of automated recorders, but many of the same detectability 

factors are expected to affect point counts (Bibby et al. 2000).   

 

Accuracy of Multi-Species Occupancy Models 

 

The ability of occupancy models to provide less biased estimates of community evenness 

was complicated by variation in results from the models I used.  For common species (Ψ>0.1) 

both forms of the multi-species model underestimated average occupancy compared to single-

species models.  Even the hyper-parameters model was unable to fully address inter-species 

variation in detection probability.  Although it is possible that site and temporal explanatory 

covariates may have mitigated this problem, Bayesian analysis improved precision at the 

expense of “shrinking” individual species estimates towards the community mean (Link et al. 

2002, Zipkin et al. 2009).  For rare species, differentiation between the 2 multispecies models 

was more pronounced, but there were no single-species model results available for comparison.  

Further investigation of the causes of these differences is needed, because differences in 

occupancy estimates of rare species affect the evenness of the entire distribution (e.g., Es was 

greater for the hyper-parameter model than for the species-traits model). 
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Ecological and Conservation Implications 

 

Species diversity distributions (e.g., abundance or occupancy) are centrally important to 

the study of biodiversity.  Their shapes have been linked to niche partitioning (MacArthur 1957, 

Whitaker 1965, Bazzaz 1975, Tokeshi 1996) and neutral theories (Watterson 1974, Hubbell 

2001, Harte 2011).  Biodiversity monitoring efforts have been criticized for failing to address 

detection probability, because inferences about rank abundance distributions can be affected by 

heterogeneity in detection probability among species (Yoccoz et al. 2001, Iknayan et al. in 

press).  The present study demonstrated this problem using both simulated and real data.  Unless 

heterogeneity in detection probability is addressed, the evenness of communities will be 

underestimated.  Recently there has been greater attention to empirical comparisons of diversity 

as means of evaluating differences between places or changes over time.  It is essential that these 

assessments (e.g., managed versus unmanaged landscapes, or before and after an impact) not be 

confounded by coincident differences in survey detectability.  For example, it is not difficult to 

envision a case in which a difference in vegetation density alters inter-species heterogeneity in 

detectability thereby masking or accentuating the true difference in evenness between 2 

communities being compared with respect to their conservation value. 
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Table 1.  Bird species included in multi-species occupancy models 

 
AOU 

Code a 

Common Name Scientific Name AOU 

Code a 

Common Name Scientific Name 

ACWO 

AMCR 

AMGO 

AMRO 

ATFL 

BARS 

BTPI 

BEWR 

BBMA 

BBWO 

BHGR 

BLGR 

BHCO 

BRBL 

BRSP 

BRCR 

BTYW 

BGGN 

BUOR 

BUSH 

CAQU 

CALT 

CAFI 

CAVI 

CBCH 

CHSP 

CLNU 

CORA 

COYE 

COFL 

DEJU 

DOWO 

DUFL 

EUST 

EVGR 

FOSP 

GTTO 

GCKI 

GRFL 

GRAJ 

HAWO 

HAFL 

HETH 

HEWA 

HOFI 

HOWR 

HUVI 

JUTI 

LASP 

LAZB 

LEGO 

Acorn Wodpecker 

American Crow 

American Goldfinch 

American Robin 

Ash-throated Flycatcher 

Barn Swallow 

Band-tailed Pigeon 

Bewick's Wren 

Black-billed Magpie 

Black-backed Woodpecker 

Black-headed Grosbeak 

Blue Grosbeak 

Brown-headed Cowbird 

Brewer's Blackbird 

Brewer's Sparrow 

Brown Creeper 

Black-throated Gray Warbler 

Blue-gray Gnatcatcher 

Bullock's Oriole 

Bushtit 

California Quail 

California Towhee 

Cassin's Finch 

Cassin's Vireo 

Chestnut-backed Chickadee 

Chipping Sparrow 

Clark's Nutcracker 

Common Raven 

Common Yellowthroat 

Cordilleran Flycatcher 

Dark-eyed Junco 

Downy Woodpecker 

Dusky Flycatcher 

European Starling 

Evening Grosbeak 

Fox Sparrow 

Green-tailed Towhee 

Golden-crowned Kinglet 

Gray Flycatcher 

Gray Jay 

Hairy Woodpecker 

Hammond's Flycatcher 

Hermit Thrush 

Hermit Warbler 

House Finch 

House Wren 

Hutton's Vireo 

Juniper Titmouse 

Lark Sparrow 

Lazuli Bunting 

Lesser Goldfinch 

Melanerpes formicivorus 

Corvus brachyrhynchos 

Spinus tristis 

Turdus migratorius 

Myiarchus cinerascens 

Hirundo rustica 

Patagioenas fasciata 

Thryomanes bewickii 

Pica hudsonia 

Picoides arcticus 

Pheucticus melanocephalus 

Passerina caerulea 

Molothrus ater 

Euphagus cyanocephalus 

Spizella breweri 

Certhia americana 

Setophaga nigrescens 

Polioptila caerulea 

Icterus bullockii 

Psaltriparus minimus 

Callipepla californica 

Melozone crissalis 

Haemorhous cassinii 

Vireo cassinii 

Poecile rufescens 

Spizella passerine 

Nucifraga Columbiana 

Corvus corax 

Geothlypis trichas 

Empidonax occidentalis 

Junco hyemalis 

Picoides pubescens 

Empidonax oberholseri 

Sturnus vulgaris 

Coccothraustes vespertinus 

Passerella iliaca 

Pipilo chlorurus 

Regulus satrapa 

Empidonax wrightii 

Perisoreus cnadensis 

Picoides villosus 

Empidonax hammondii 

Catharus guttatus 

Setophaga occidentalis 

Haemorhous mexicanus 

Troglodytes aedon 

Vireo huttoni 

Baeolophus ridgwayi 

Chondestes grammacus 

Passerina amoena 

Spinus psaltria 

MGWA 

MOBL 

MOCH 

MODO 

MOUQ 

NAWA 

NOFL 

NUWO 

OATI 

OSFL 

OCWA 

PSFL 

PIWO 

PIJA 

PISI 

PUFI 

PUMA 

PYNU 

RBNU 

RBSA 

RECR 

RWBL 

ROWR 

SAGS 

SOSP 

SPTO 

STJA 

SWTH 

TOSO 

TRES 

VATH 

VESP 

VGSW 

WAVI 

WEBL 

WESJ 

WEME 

WETA 

WEWP 

WBNU 

WHWO 

WIFL 

WISA 

WIWR 

WIWA 

WREN 

YBCH 

YHBL 

YEWA 

YRWA 

MacGillivray's Warbler 

Mountain Bluebird 

Mountain Chickadee 

Mourning Dove 

Mountain Quail 

Nashville Warbler 

Northern Flicker 

Nuttall's Woodpecker 

Oak Titmouse 

Olive-sided Flycatcher 

Orange-crowned Warbler 

Pacific-slope Flycatcher 

Pileated Woodpecker 

Pinyon Jay 

Pine Siskin 

Purple Finch 

Purple Martin 

Pygmy Nuthatch 

Red-breasted Nuthatch 

Red-breasted Sapsucker 

Red Crossbill 

Red-winged Blackbird 

Rock Wren 

Sage Sparrow 

Song Sparrow 

Spotted Towhee 

Steller's Jay 

Swainson's Thrush 

Townsend's Solitaire 

Tree Swallow 

Varied Thrush 

Vesper Sparrow 

Violet-green Swallow 

Warbling Vireo 

Western Bluebird 

Western Scrub-Jay 

Western Meadowlark 

Western Tanager 

Western Wood-Pewee 

White-breasted Nuthatch 

White-headed Woodpecker 

Willow Flycatcher 

Williamson's Sapsucker 

Winter Wren 

Wilson's Warbler 

Wrentit 

Yellow-breasted Chat 

Yellow-headed Blackbird 

Yellow Warbler 

Yellow-rumped Warbler 

 

Geothlypis tolmiei 

Sialia currucoides 

Poecile gambeli 

Zenaida macroura 

Oreortyx pictus 

Oreothlypis ruficapilla 

Colaptes auratus 

Picoides nuttallii 

Baeolophus inornatus 

Contopus cooperi 

Oreothlypis celata 

Empidonax difficilis 

Dryocopus pileatus 

Gymnorhinus cyanocephalus 

Spinus pinus 

Haemorhous purpureus 

Progne subis 

Sitta pygmaea 

Sitta candensis 

Sphyrapicus rubber 

Loxia curvirostra 

Agelaius phoeniceus 

Salpinctes obsoletus 

Artemisiospiza belli 

Melospiza melodia 

Pipilo maculatus 

Cyanocitta stelleri 

Catharus ustulatus 

Myadestes townsendi 

Tachycineta bicolor 

Ixoreus naevius 

Pooecetes gramineus 

Tachycineta thalassina 

Vireo gilvus 

Sialia mexicana 

Aphelocoma californica 

Sturnella neglecta 

Piranga ludoviciana 

Contopus sordidulus 

Sitta carolinensis 

Picoides albolarvatus 

Empidonax traillii 

Sphyrapicus thyroideus 

Troglodytes hiemalis 

Cardellina pusilla 

Chamaea fasciata 

Icteria virens 

Xanthocephalus xanthocephalus 

Setophaga petechia 

Setophaga coronata 

 

 
a
American Ornithologists’ Union species codes (Banks et al. 2003) 
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Figure 1.  Northern California study area throughout which multi-species avian surveys were 

conducted from 2006 to 2010 using automated recorders. 

 

 

 
Figure 2.  Simulation results demonstrating how heterogeneity of detection probability 

underestimates the evenness of a rank occupancy distribution.   
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a)  

b)  

 

Figure 3.  Occupancy estimates for common (a) and rare (b) species in a northern California 

conifer forest songbird metacommunity.  The 2 approaches to addressing detection bias through 

multi-species occupancy models were hyper-parameters (e.g., random effects for differences 

among species) and fixed effects for species-traits (e.g., body size, foraging height guild, etc.) 

explaining detection probability.   For reference, naïve and single-species estimates are also 

shown. 
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Figure 4.  Comparing Simpson’s measure of evenness of rank occupancy distributions for a 

northern California montane-conifer songbird metacommunity.  The 2 approaches to addressing 

detection bias through multi-species occupancy models were hyper-parameters (e.g., random 

effects for difference between species) and fixed effects for species-traits (e.g., body size, 

foraging height guild, etc.).  The observed rank occupancy distribution using naïve estimates is 

provided for reference. 
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Figure 5. Comparing evenness of rank occupancy distributions among genera for a northern 

California conifer forest songbird metacommunity. Simpson’s measure of evenness was used. 

Non-detection bias was addressed with a multi-species occupancy model using hyper-parameters 

(e.g., random effects) to explain difference in detection probability among species.  
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Chapter 3 

 

Bootstrap comparisons of avian rank abundance distributions 

from four California forests 

 

 

ABSTRACT 

 

Biodiversity indices, such as those that measure species richness or evenness, provide 

limited information about ecological communities.  The species abundance distributions from 

which these indices are derived contain greater detail about community structure.  For this reason 

conservation planners and land managers would benefit from methods that allow more nuanced 

comparisons of these distributions than offered by traditional indices.  I used bird survey data 

from 4 research forests in California to construct rank abundance distributions.  I then combined 

data from all these forests to investigate differences in abundance between migratory and 

resident species.  Using bootstrap re-sampling, I created uncertainty bands associated with the 

empirical shapes of these curves, allowing identification of significant (P<0.1) differences 

between distributions over a portion of their ranks.  I found higher abundances of intermediately-

common species on 2 of the forests, and ascribe this finding to differences in forest productivity 

and habitat complexity leading to greater niche partitioning of resources.  At the metacommunity 

level, I found higher abundances of intermediately-common species for neotropical migrants 

compared to resident birds.  Biodiversity indices derived from these data were less informative.     

 

INTRODUCTION 

 

Many researchers have advocated species diversity indices for quantifying and assessing 

biodiversity. The simplest index, species richness, formed the basis of MacArthur and Wilson’s 

(1967) landmark theory of island biogeography.  Other indices (Simpson 1949, Shannon and 

Weaver 1963) furnish relative abundance derived information on evenness (or dominance) 

among species in a community.   

 

Species abundance distributions (Motomura 1932, Fisher et al. 1943, Preston 1948, 

Hubbell 2001, Harte 2011) provide a richer source of information than indices for quantifying 

biodiversity.  One way of displaying these data, known as a rank abundance distribution (RAD), 

is to plot species abundances in rank order.  Whittaker (1965) was one of the first to use the RAD 

to connect concepts of resource competition and ecological niche to differences in abundance for 

dominant, intermediate and rare species.  Beedy (1981) applied this method to comparing bird 

communities and forest structure in California.  He drew RADs of different forest types and 

concluded that the lognormal form (Preston 1948) of the associated species abundance 

distribution in structurally complex habitats was indicative of greater resource partitioning (and 

food availability) supporting greater numbers of intermediately common species.  One 

shortcoming of Beedy’s results was the lack of a formal test of these differences.     

 

I modified Beedy’s approach comparing the avian communities from 4 montane conifer 

forest locations in California.  Rather than using indices or fitting functional forms of species 

abundance distributions, I compared empirical shapes of RADs by means of bootstrap re-
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sampling (Efron 1982).  Instead of evaluating entire curves, I focused attention on intermediate 

ranks (6 to 20) perhaps most pertinent to niche differentiation.  Aggregating data from all forests, 

I also evaluated differences between migratory and resident bird metacommunities (Holyoak et 

al. 2005).  Results were compared also with diversity indices of the data pertaining to species 

richness and evenness.  

 

 The methods developed here offer an alternative to traditional biodiversity indices and 

fitting forms to species abundance distributions for assessing differences between ecological 

communities and metacommunities.  They provide detail on nuanced differences in species 

abundances, and may be more useful than parametric approaches for estimating species diversity 

because they allow one to focus on a portion of ranks.     

     

METHODS 

 

Study Area 

 

The avian survey data were from 4 research forests owned and managed by the 

University of California at Berkeley or the California Department of Forestry and Fire Protection 

(Fig. 1).  Management objectives for these forests included timber production and research.  The 

3,650-ha Latour State Demonstration Forest is located 70 km east of Redding in the Southern 

Cascades mountains.  Elevations range from 1,200 m to 2,050 m.  Average annual precipitation 

was 117 cm on volcanic soils.  The forest was predominantly mixed conifer and true fir forest 

punctuated by a few wet meadows and some post-fire brush fields.  The forest was generally 

even-aged with sparse understory vegetation except along creeks and in brush fields.  Average 

forest productivity was characterized as a low Dunning Site Class II (Ronald 1992, Barrett and 

Bise 1993).   

 

The 1,175-ha Blodgett Forest is located 18 km east of Georgetown in the central Sierra 

Nevada mountains.  Elevations range from 1,200 m to 1,500 m across gently rolling, highly 

productive terrain.  Average annual precipitation was 166 cm.  The forest was primarily mixed 

conifer with some oak stands and brush fields.  Average forest productivity was characterized as 

a high Dunning Site Class I (R. York, UC Berkeley, personal communication). 

 

 The 3,280-ha Sagehen Experimental Forest is located 16 km north of Truckee in the 

central Sierra Nevada mountains.  Elevations range from 1,450 m to 2,300 m.  Average annual 

precipitation was 85 cm.  The forest was a mosaic of mixed conifer and white fir stands, post-fire 

plantations, grassy meadows and rocky shrublands.  Average forest productivity was 

characterized as Dunning Site Class III or IV (S. Conway, U.S. Forest Service, personal 

communication).  

 

The 1,870-ha Mountain Home State Demonstration Forest is located 35 km northeast of 

Porterville in the southern Sierra Nevada mountains.  Elevations range from 1,450 m to 2,300 m.  

Average annual precipitation was 102 cm.  The forest was predominantly mixed conifer forest 

with approximately 5,000 giant sequoia (Sequoiadendron giganteum) trees in excess of 1 m in 

diameter spread across half of the property.  The forest was generally uneven-aged with more 

understory vegetation than at Latour.  Springs supporting wet meadows occurred at numerous 
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locations.  Average forest productivity was characterized as a high Dunning Site Class II (Ronald 

1992, Barrett and Bise 1993). 

 

Bird Surveys 

 

Breeding bird surveys were part of a comprehensive wildlife and wildlife habitat 

inventory undertaken by the University of California at 10 study sites throughout the State 

beginning in 1977 (Dedon and Barrett 1982).  At Sagehen 80 sites were surveyed in 1979 or 

1981.  At Latour and Mountain Home 80 sites and 79 sites, respectively, were surveyed in 1993 

or 1994.  At Blodgett 81 sites were surveyed in 1996 or 1997.  Sites were distributed evenly 

across each forest using a systematic design (Thompson 2012), and they were generally spaced 

at least 400 m apart.  Each survey consisted of 20 consecutive 10-minute periods beginning 30 

minutes after sunrise on a single morning by a single surveyor during the breeding season from 

the middle of May through the middle of July (Dedon and Barrett 1982, Barrett and Bise 1993).   

 

Statistical Analyses 

 

For analysis purposes I limited detections to those birds the surveyor judged to have 

breeding territories intersecting at least half of the 30-m-radial area surrounding the point count 

site.  As surveys at each site occurred on a single day, I did not attempt to address detection 

probability via a model-based approach (Royle 2004).  Instead I used the highest count from the 

20 consecutive survey replicates to represent the true abundance of each species at the site.  

Counts were converted into densities (birds/ha) by dividing by the 30-m-radial area to which 

surveys applied.  Species estimates of densities were calculated as averages at the community 

(for each forest) and metacommunity (for all forests) levels of organization. 

 

I rank sorted and plotted point estimates of species abundance.  Considering the small 

survey area (0.28 ha) for the point counts and because most counts were unitary, I did not log 

transform abundances as is usually done for these distributions (Whittaker 1965).  RAD curves 

were constructed as such for each forest, and also from the combined data representing all 

forests.  For the metacommunity, ranks for neotropical migrants and resident birds were 

highlighted.  Information for distinguishing migratory guilds was from review of the Birds of 

North America species accounts (BNA: www.bna.birds.cornell.edu, Table 1).   

 

To assess differences between RADs, I bootstrap re-sampled (Efron 1982) from the ~80 

sites on each forest 10,000 times.  A new distribution was constructed for each re-sample such 

that each rank had a new abundance estimate regardless of species identity.  Lastly, I estimated 

the uncertainty of these curves using the 5
th

 and 95
th

 percentiles for each rank.  These 

corresponded to a 90% confidence interval.  The lower and upper bounds were connected 

separately by rank for graphing an uncertainty band associated with each RAD.  This process 

was repeated for the combined data set across all forests. 

 

Pairs of forest-level RADs were considered significantly (P<0.1) different over a portion 

of their ranks as indicated by the bootstrapped uncertainty bands.  Differentiation for each rank 

was determined only if both point estimates lay outside of the uncertainty band of the other.  In 

this study, I focused attention on differences for ranks 6 through 20 representing moderately 
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common species.  To evaluate how well the uncertainty band technique worked with respect to 

traditional biodiversity indices, I also computed Simpson’s measure of evenness, average site-

level species richness (alpha diversity), and forest-level species richness (gamma diversity).  I 

used the same bootstrap re-samples to create 90% confidence intervals for these indices.  Next, I 

created a dichotomous variable, INDEXi,j which was 1 if a biodiversity index was significantly 

different (P<0.1) between forest pairs, otherwise it was 0, where i represented the forest pair 

comparison and j denoted which index (e.g. evenness, alpha, or gamma).  I created another 

variable, INTERi,j representing the proportion of significantly different (P<0.1) intermediate 

ranks for each forest pair comparison.  To test for an association between results from the 

uncertainty band method and traditional biodiversity indices, I fit a linear mixed-effect model as 

follows:  INTERi,j =  β0 + β1*INDEXi,j +  β3j + ϵi,j, where β0 was the intercept, β1 represented the 

tested association, β3 ~ Norm(0,σβ3), and ϵ were the residual errors. 

 

For the RAD representing the avian metacommunity across forests, probabilistic 

comparisons were made between ranks from this single curve.  In particular, the migratory guild 

composition of intermediate ranks was compared against the composition of very common and 

rare ranks.       

 

My a priori hypotheses about differences in RADs for intermediately-common species 

were based on ideas of niches and resource partitioning (Grinnell 1917, MacArthur 1958, 

Hutchinson 1959, Whittaker et al.1973, Schoener 1974, Chesson 2000).  First, I hypothesized 

that higher forest productivity would lead to higher abundances of intermediately-common 

species because larger trees, taller forests and greater structural complexity should lead to an 

increased potential for resource partitioning with respect to nesting and foraging habitat.  

Second, I posited that migratory birds should have higher abundances than resident birds for the 

intermediate ranks, because migrants are better adapted to take advantage of and partition 

resources on breeding season ranges (Lovette and Bermingham 1999).  

 

RESULTS 

 

Abundance Estimation 

 

A total of 47 species were detected at least once at Latour, 57 at Blodgett, 62 Sagehen, 

and 62 at Mountain Home.  A total of 91 species was detected at least once across all forests.  

Species in the top 5 abundance ranks in at least one of the forests were American robin (Turdus 

migratorius), black-headed grosbeak (Pheucticus melanocephalus), dark-eyed junco (Junco 

hyemalis), golden-crowned kinglet (Regulus satrapa), mountain chickadee (Poecile gambeli), 

Nashville warbler (Oreothlypis ruficapilla), pine siskin (Spinus pinus), red-breasted nuthatch 

(Sitta canadensis), red crossbill (Loxia curvirostra), spotted towhee (Pipilo maculatus), Steller’s 

jay (Cyanocitta stelleri), western tanager (Piranga ludoviciana), and yellow-rumped warbler 

(Setophaga coronata).  Dark-eyed junco was the only species in the top 5 ranks in all forests. 

Species in the intermediate ranks (6 through 15) in at least one of the forests were 

American robin, band-tailed pigeon (Patagioenas fasciata), black-headed grosbeak, brown-

headed cowbird (Molothrus ater), Brewer’s blackbird (Euphagus cyanocephalus), brown creeper 

(Certhia americana), Calliope hummingbird (Selasphorus calliope), Cassin’s finch 

(Haemorhous cassinii), Cassin’s vireo (Vireo cassinii), chipping sparrow (Spizella passerina), 
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common raven (Corvus corax), dusky flycatcher (Empidonax oberholseri), fox sparrow 

(Passerella iliaca), golden-crowned kinglet, hairy woodpecker (Picoides villosus), Hammond’s 

flycatcher (Empidonax hammondii), hermit thrush (Catharus guttatus), hermit warbler 

(Setophaga occidentalis), house wren (Troglodytes aedon), MacGillivray’s warbler (Geothlypis 

tolmiei),  mountain chickadee, Nashville warbler, northern flicker (Colaptes auratus), purple 

finch (Haemorhous purpureus), red-breasted nuthatch, Steller’s jay, warbling vireo (Vireo 

gilvus), western tanager, white-headed woodpecker (Picoides albolarvatus), Wilson’s warbler 

(Cardellina pusilla), yellow warbler (Setophaga petechia), and yellow-rumped warbler.  Brown 

creeper and fox sparrow were the only species in the intermediate ranks of all forests, despite the 

fact that 24 of the 33 intermediately-ranked species listed above were detected at least once at 

every forest. 

 

Based on visual inspection of natural breaks in the “all forests” RAD, I re-classified 

intermediately-common species as ranks 10 through 25.  The only neotropical bird in the top 9 

ranks was western tanager, whereas 3 resident species (brown creeper, mountain chickadee, 

Steller’s Jay) filled these ranks.  However, there were 8 intermediately-common neotropical 

migrants (black-headed grosbeak, Cassin’s vireo, dusky flycatcher, Hammond’s flycatcher, 

hermit warbler, MacGillivray’s warbler, Nashville warbler, and warbling vireo), versus 3 

residents (hairy woodpecker, northern flicker, and white-headed woodpecker).   

 

A full reporting of abundances by forest and across forests is provided in Table 1. 

 

Rank Abundance Distributions 

 

Bootstrap comparisons of RADs among forests demonstrated significant (P<0.1) 

differentiation between of the majority intermediate ranks (6 to 20) for the Blodgett and 

Mountain Home forests versus Latour and Sagehen (Fig. 2a though 2d).  On the other hand, there 

were only 2 intermediate rank differences between Blodgett and Mountain Home, and only 5 

between Sagehen and Latour (Fig. 2e through 2f).  Using the linear mixed-effects model, I found 

no significant association (P=0.28) between the results of the uncertainty band comparisons of 

intermediately-common species and traditional biodiversity indices.     

 

I constructed a single RAD representing the metacommunity across all forests, and 

differentiated its composition in terms of neotropical migrants, residents and other species (Fig. 

3).  There were 5 migratory species in the intermediate ranks that had significantly higher 

(P>0.1) abundances than 2 of the 3 resident birds in these ranks.  On the other hand, there were 3 

very common resident birds at higher abundances, and a greater proportion of residents (74%) 

than migrants (65%) were rare. 

 

DISCUSSION 

 

Ecologists have proposed a confusing variety of biodiversity indices over the past century 

(Magurran and McGill 2011), accompanied by some criticism of the usefulness of this approach 

(Hurlbert 1971, Schwartz et al. 2000).  Others have focused on the functional forms of species 

abundance distributions (Wilson 1991), for example, theorizing that lognormal-shaped 
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distributions are associated with more structurally complex habitats and support greater resource 

partitioning than geometric-shaped ones (Preston 1948, Whittaker 1965, Beedy 1981).   

 

Rather than choosing indices or fitting functional forms, I directly compared RADs using 

bootstrap re-sampling to construct uncertainty bands for differentiating pairs of curves.  The 

results suggest that the avian communities at Blodgett and Mountain Home had higher 

abundances of intermediately-common species than at Sagehen and Latour.  These findings are 

consistent with the hypothesis that higher productivity forests provide the potential for greater 

structural diversity and enable more intermediately-common species to rise to higher 

abundances, because niche partitioning reduces interspecies competition for resources.  All 

forests experienced similar timber management histories, but Blodgett and Mountain Home lay 

on more productive grounds than the other 2 forests.  In particular, the Blodgett forest is on some 

of the most productive soils on the west slope of the Sierras which supports rapid growth of tall, 

large-diameter conifers, whereas the seeps and springs at Mountain Home nurture a mosaic of 

mature giant sequoias and small wet meadows. 

 

A second, metacommunity-level finding from this study was that migratory birds 

dominated and rose to higher abundances within the intermediate ranks than resident species.  

Consistent with this hypothesis, there was additional evidence of resource partitioning within 

these ranks.  For example, the 3 intermediately-common warbler species (hermit warbler, 

Nashville warbler, MacGillivray’s warbler) tend to partition their feeding activities within the 

high canopy, middle story and ground layers, respectively (see BNA species accounts).  All of 

the intermediately-common resident species were woodpeckers, which are also known to display 

a high degree of niche partitioning (Bull et al. 1986).  Two additional, yet not inconsistent, 

findings were that resident species dominated the very common ranks, whereas the reverse was 

true for rare species.   

 

The story that emerges from all 3 metacommunity findings is that resident species may 

face more resource limitations in California conifer forests, because they need to survive there 

throughout the winter when competitive interactions may be the most intense (Fretwell 1972).  

This could lead to a stable condition of lower abundances for most species, and higher 

abundances for a few dominant species.  There were some exceptions to this pattern, including 

woodpeckers.  On the other hand, migratory visitors may be better adapted to temporary 

partitioning of resources, behaviorally (MacArthur 1958) and via other evolved traits (Lovette 

and Bermingham 1999).  These factors may allow migrants to temporarily rise to higher 

intermediate-abundances than residents during the breeding season.  However, except for 

western tanager, these factors may have been insufficient to allow migrants to rise to the higher 

abundances manifested by the 3 most abundant resident species, brown creeper, mountain 

chickadee, and Steller’s Jay. 

 

I have shown that empirical evaluation of RAD shapes can furnish a data rich alternative 

to biodiversity indices or the fitting of functional forms for evaluating and comparing 

communities.  Indices and forms can describe characteristics of the entire RAD, whereas the 

uncertainty band method allows one to evaluate more nuanced differences over a portion of 

ranks.  In particular, it is possible to deconstruct patterns related to common, intermediate and 

rare species, as well as interactions between these segments as demonstrated in the migratory 
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versus resident example.  MacArthur’s (1957) broken stick hypothesis and other theories about 

RAD shapes (Fisher et al. 1943, Preston 1948) provide a mechanism for less direct inferences 

about resource partitioning affecting the abundances of common, intermediate and rare species.  

The method proposed here provides a more direct means of assessing the composition of 

differentiated ranks among communities, as was the case for warblers and woodpeckers, thereby 

strengthening the explanation of how resources were likely partitioned.   

 

There was no consistency between biodiversity indices and my findings on how middle 

ranks were differentiated.  This discrepancy highlights that use of indices versus the uncertainty 

band method may illuminate different community properties.  Although alpha diversity and 

evenness across an entire community may also be associated with greater productivity and 

resource partitioning, these metrics might not be optimal for isolating effects over a portion of 

ranks or by guild.  This is important in that resource partitioning may not be universal.  In this 

study, I found that resident birds were bifurcated between very common and rare species, 

whereas migratory birds displayed greater clustering within intermediate ranks.    

 

   Results from this study are qualified by some limitations related to study design.  First, 

these data only reflected avian community structure over 2-year timeframes, and the survey years 

were different by forest.  Only one of the survey years was preceded by a strong El Nino or La 

Nina event that might have confounded results (Sillett el al. 2000).  A sensitivity analysis in 

which I removed the 1996 surveys from the Blodgett forest did weaken abundance differences in 

intermediate ranks between Blodgett and Sagehen, but this may have been due to the reduced 

sample size (n=40 sites) resulting from the omission.  Second, this study utilized raw survey data 

to which I was unable to apply hierarchical modeling for addressing heterogeneity in survey 

detection probability (Royle 2004) beyond taking the maximum count during a single day.  It is 

possible that systematic differences in detectability (e.g., different surveyors, years, habitat 

conditions) may have confounded the conclusion that apparent difference in RADs were due to 

differences in forest productivity.  This problem was compounded by the small sample size (n=4 

forests) of the comparison among forests.  Furthermore, the forests differed in area, which was 

likely to have underrepresented differences between the larger, more productive forests (e.g., 

Blodgett and Mountain Home) and the smaller, less productive forests (e.g., Latour and 

Sagehen).  Despite these study limitations the RAD bootstrapping has diverse applications for 

evaluating and comparing communities. 

 

Scale is another issue to consider when evaluating my results.  The point counts used for 

estimating density covered a small area (0.28-ha), leading to generally small survey counts.  In 

particular, 89% of non-zero counts per species per survey period were = 1, and 99% were < 2.  It 

is unclear whether the rank differences reported here would have been the same for larger survey 

units.  Nevertheless, the methodological advantages of bootstrapping discussed above for 

comparing a portion of ranks are not especially related to scale.  Furthermore, considering the 

dominance of ones and zeros in the data set I used, the RAD uncertainty band approach taken 

here may also be appropriate for applying to rank occupancy distributions derived from 

incidence data.       

 

In conclusion, the bootstrap-uncertainty band comparison method developed here allows 

for greater empirical examination of how RADs differ over portions of their ranks.  By 
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evaluating finer distinctions between very common, intermediate and rare species, there is 

greater potential for drawing ecological inferences, particularly in regard to resource partitioning.  

This approach may be especially relevant to biodiversity monitoring and conservation planning 

(see Chapters One and Two).  Declines of individual species may be better understood in context 

of their relationship to other species and niches within the community using RAD uncertainty 

bands.  In particular, rank segments could be monitored for changes in differentiation and 

composition (Collins et al. 2008) over time.  For example, assuming the metacommunity-level 

RAD estimated in this study was valid, this information may provide greater insight into how the 

expected invasion of Townsend’s warbler into California (Krosby and Rohwer 2010) might 

displace hermit warbler from its current role dominating a foraging niche among intermediately-

abundant migratory species.      
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Table 1.  Abundance estimates for avian species surveyed at Latour, Blodgett, Sagehen and 

Mountain Home forests in California. These species were assigned to migratory guilds (NM – 

neotropical migrant, RE - resident) based on a review of the Birds of North America species 

accounts.  

 
                   Density (birds/ha) 

Common Name Scientific Name Migratory 

Guild 

All 

Forests 

Latour Blodgett Sagehen Mt. 

Home 

Acorn Woodpecker 

American Dipper 
American Kestrel 

American Robin 

Anna's Hummingbird 
Ash-throated Flycatcher 

Band-tailed Pigeon 

Bewick's Wren 
Black-headed Grosbeak 

Black-backed Woodpecker 

Brown-headed Cowbird 
Brewer's Blackbird 

Brewer's Sparrow 

Brown Creeper 
Blk.-throated Gray Warbler 

Bullock's Oriole 
Bushtit 

Calliope Hummingbird 

California Towhee 
Cassin's Finch 

Cassin's Vireo 

Chestnut-backed Chickadee 
Chipping Sparrow 

Clark’s Nutcracker 

Common Nighthawk 
Common Raven 

Cooper’s Hawk 

Dark-eyed Junco 

Downy Woodpecker 

Dusky Flycatcher 

Evening Grosbeak 
Forster's Tern 

Fox Sparrow 

Green-tailed Towhee 
Golden-crowned Kinglet 

Great Blue Heron 

Hairy Woodpecker 
Hammond's Flycatcher 

Hermit Thrush 

Hermit Warbler 
House Wren 

Hutton's Vireo 

Lazuli Bunting 
Lincoln’s Sparrow 

MacGillivray's Warbler 

Mountain Bluebird 
Mountain Chickadee 

Mourning Dove 

Mountain Quail 
Nashville Warbler 

Northern Flicker 

Northern Goshawk 
Olive-sided Flycatcher 

Orange-crowned Warbler 

Pacific-slope Flycatcher 
Pileated Woodpecker 

Pine Grosbeak 

Pine Siskin 
Plumbeous Vireo 

Melanerpes formicivorus 

Cinclus mexicanus 
Falco sparverius 

Turdus migratorius 

Calypte anna 
Myiarchus cinerascens 

Patagioenas fasciata 

Thryomanes bewickii 
Pheucticus melanocephalus 

Picoides arcticus 

Molothrus ater 
Euphagus cyanocephalus 

Spizella breweri 

Certhia americana 
Setophaga nigrescens 

Icterus bullockii 
Psaltriparus minimus 

Selasphorus calliope 

Melozone crissalis 
Haemorhous cassinii 

Vireo cassinii 

Poecile rufescens 
Spizella passerine 

Nucifraga columbiana 

Chordeiles minor 
Corvus corax 

Accipiter cooperii 

Junco hyemalis 
Picoides pubescens 

Empidonax oberholseri 

Coccothraustes vespertinus 
Sterna forsteri 

Passerella iliaca 

Ardea herodias 
Pipilo chlorurus 

Regulus satrapa 

Picoides villosus 
Empidonax hammondii 

Catharus guttatus 

Setophaga occidentalis 
Troglodytes aedon 

Vireo huttoni 

Passerina amoena 
Melospiza lincolnii 

Geothlypis tolmiei 

Sialia currucoides 
Poecile gambeli 

Oreortyx pictus 

Zenaida macroura 
Oreothlypis ruficapilla 

Colaptes auratus 

Accipiter gentilis 
Contopus cooperi 

Oreothlypis celata 

Empidonax difficilis 
Dryocopus pileatus 

Pinicola enucleator 

Carduelis pinus 
Vireo plumbeus 

RE 

 
 

 

 
NM 

 

RE 
NM 

 

NM 
 

NM 

RE 
 

NM 
RE 

RE 

 
 

NM 

RE 
NM 

RE 

NM 
RE 

NM 

 

RE 

NM 

 
 

 

NM 
 

 

RE 
NM 

 

NM 
NM 

RE 

NM 
 

NM 

 
RE 

RE 

 
NM 

RE 

 
NM 

 

NM 
RE 

 

 
 

0.055 

0.011 
0.056 

2.032 

0.122 
0.033 

0.465 

0.099 
1.392 

0.022 

0.618 
0.411 

0.089 

1.977 
0.044 

0.110 
0.144 

0.529 

0.011 
0.972 

0.706 

0.168 
0.453 

0.156 

0.045 
0.321 

0.055 

5.060 

0.089 

1.038 

0.364 
0.011 

1.555 

0.143 
2.735 

0.022 

0.772 
0.739 

0.596 

1.127 
0.242 
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Figure 1.  Research forests where birds surveys occurred over the course of 2 breeding seasons 

at approximately 80 sites on each forest, 1979 through 1996. 
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Figure 2.  Pairwise of comparisons of avain rank abundance distributions using bootstrapped 

confidence intervals to represent uncertainty bands. Segments where these distributions lie 

outside of regions of confidence interval overlap represent ranks for which there was signficant 

(P<0.1) differentation in abundance.  
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Figure 3.  Rank abundance distribution for the avian metacommunity represented by all 4 

research forests. The 90% confidence bars show the abundance range for a cluster of 

intermediately-common neotropical migrants. These 5 species (black-headed grosbeak, dusky 

flycatcher, hermit warbler, MacGillivray’s warbler, Nashville warbler) were significantly more 

abundant (P<0.1) than all but one other resident bird (white-headed woodpecker) in the 

intermediate ranks, but less abundant than several very common resident species (brown creeper, 

mountain chickadee, Steller’s Jay).   
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Chapter 4 

 

Monitoring Pacific fisher (Pekania pennant pacifica) and other mammals 

at the regional scale using camera traps and occupancy modeling 

 

 

ABSTRACT 

 

The Pacific fisher (Pekania pennant pacifica) is a forest carnivore of conservation concern in 

California due to a variety of anthropogenic stressors.  Here I report on the initiation of a 

monitoring effort for this species at the regional scale using baited camera stations.  Over 2 years 

beginning in 2011, 172 stations were surveyed at random forest locations in northwestern 

California.  I used hierarchical modeling to estimate occupancy at 2 survey scales (i.e., for 

stations and pairs of stations 1.6 km apart).  Latitude was negatively associated with detection 

probability, whereas occupancy was not, both possibly due to larger home ranges to the north.  

Throughout the 2.8-million-ha study area, fisher occupancy was estimated at 0.465 [90%CI: 

0.372-0.599] for stations, and 0.651 [90%CI: 0.535-0.791] for station pairs.  Simulations 

calibrated from these estimates suggest that continuation of this monitoring approach could 

provide 80% power for measuring occupancy declines as small as 2% per year over 20 years.  

Furthermore, the ability to estimate occupancy at more than one survey scale is likely to improve 

inferences linking occupancy to abundance as required for better informing conservation 

planners about fisher population status.  I discuss how camera station surveys can expand single-

species monitoring to multiple species. 

 

INTRODUCTION 

 

The Pacific fisher (Pekania pennant pacifica) is a mesocarnivore of conservation 

concern, because of a combination of stressors including historical trapping (Dixon 1925, 

Grinnell et al 1937, Lewis and Zielinski 1996), timber harvesting (Lefroth et al. 2010), disease 

(Gabriel et al. 2012a), poisoning (Gabriel et al. 2012b) and climate change (Lawler et al. 2012).  

For these reasons and because of potential listing of fisher under the federal Endangered Species 

Act (USFWS 2004) and the California Endangered Species Act (Fish and Game Commission 

2013), there is an immediate need for sustained monitoring of this subspecies at the regional 

scale and across its range.  Although there have been some studies estimating fisher abundance at 

the local or landscape scale (Matthews et al. 2011, Thompson 2008, Jordan 2007), there are few 

examples of long-term monitoring at larger spatial scales (Zielinski et al. 2005, Zielinski et al. 

2013).    

 

In this study I report on the initiation of a regional-scale, multi-species, long-term 

monitoring program that uses baited camera traps (Kay and Slauson 2008) in northern California 

to monitor metapopulations of fisher and other mammalian species.  I demonstrated how 

hierarchical occupancy models (Royle and Dorazio 2008, Kéry and Schaub 2012) can be applied 

to a design where more than one camera station is included at a survey location, thereby allowing 

estimation of occupancy at more than one survey scale.  I investigated sources of detection 

probability heterogeneity at the regional scale, and tested the statistical power of camera traps to 
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monitor long-term population trends of fisher.  Finally, I considered the applicability of this 

method to multi-species monitoring.   

 

METHODS 

 

Study Area 

 

Since 2009 the California Department of Fish and Wildlife has used baited camera traps 

to survey fisher and other mammals across a 4.4-million-ha northern California assessment area.  

The surveys were part of the State Wildlife Grant-funded, Ecoregion Biodiversity Monitoring 

project for informing conservation planning.  The survey area encompassed conifer- and 

hardwood-dominated habitats in the Klamath Mountains, East Franciscan, Southern Cascades 

and Northern Sierra Nevada USDA-defined ecoregions (Miles and Goudey 1997) truncated to 

California boundaries.  

 

This study limited reporting to data collected from the Klamath Mountains and East 

Franciscan ecoregions, a combined area of 2.8-million-ha (Fig. 1).  Habitats in these ecoregions 

were primarily montane conifer forest dominated by Douglas fir (Pseudotsuga menziesii), 

Ponderosa pine (Pinus ponderosa), and white fir (Abies concolor) intergrading with oak 

(Quercus spp.) dominated forests at lower elevations.  Pockets of chaparral and annual 

grasslands punctuated this mosaic across generally steep slopes (Schoenherr 1992).   

 

Camera Trap Surveys 

 

 Sampling Design. Survey hexagons were randomly sampled each year without 

replacement from the Forest and Inventory Analysis sampling frame (Bechtold and Patterson 

2005).   The distance between adjacent hexagon centers from this gird was 5.35 km.  An array of 

2 camera stations 1.6 km apart was placed within each selected hexagon.  Permission for surveys 

was granted for surveying most public agency and private industrial forestland ownerships 

within the study area.  The primary camera station was usually located at a hexagon centroid, but 

private property, steep terrain, and other logistical issues often required relocating survey sites to 

more accessible, offset locations still within selected hexagons.  When this situation occurred, a 

supplemental random distance and direction procedure was followed.  In cases where relocation 

was not feasible, the selected hexagon was not sampled.  A final constraint was that crews were 

instructed to limit survey sites to areas surrounded by at least 20 ha of forest in excess of 10% 

canopy cover as deemed necessary for finding trees on which to place cameras.  There was also a 

randomization procedure for locating the secondary camera stations.  For all the reasons listed 

above, the sampling design is best described as quasi-random.   

 

 Surveys in the Klamath Mountains occurred in 2011 and 2012, but only during 2012 in 

the East Franciscan ecoregion.  A total of 86 hexagons were surveyed, 65 in the Klamath 

Mountains and 21 in the East Franciscan.  Geographical information systems (GIS) and land-use 

land-cover data derived from Satellite imagery (U.S. Forest Service 2012b) were used to assess 

the amount of forest cover surrounding each survey location.  
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 Survey Protocol.  A “stealth mode” Reconyx PC 90 or PC 900 infra-red sensor, motion 

activated, digital camera (www.reconyx.com) was affixed to a tree at each station.  It was 

typically placed approximately 1 m above the ground aimed at a shallow angle (<20 degrees) 

towards a bait tree 3 m to 5 m distant.  The camera settings were set to high trigger sensitivity, 3 

pictures per trigger, 1-second trigger interval and no delay quiet period.  The resolution of each 

image was 3.2 megapixels.  During the day these images were color, at night they were black and 

white illuminated by an infra-red flash.   

 

Bait items included chicken parts and “fishy” cat food in a sock nailed approximately 1 m 

up the bait tree bole, half an apple impaled on a nail below the sock, 2 cups of oatmeal-peanut 

butter mixture on a plate surrounded by a ring of sliced apple at the base of the tree, and a salt 

lick placed next to the grain.  To assist in the identification of individual animals and by gender, 

a measuring board with marks every 10 cm was attached to the tree vertically below the sock 

bait.  Finally, “Gusto” scent lure (www.minntrapprod.com) was applied to the sock and low 

hanging branches of at least 2 nearby trees behind the bait tree.   

 

The majority (>95%) of camera stations was never re-baited, which has been done on a 

weekly basis by other researchers (Zielinski and Kucera 1995).  The survey season began in the 

middle of August, and continued though the middle of November or whenever snow and winter 

weather prevented safe access to survey locations by field crews.  The durations of surveys at 

stations varied between 2 and 4 weeks, and both stations within a hexagon were always surveyed 

concurrently.   

 

Data Interpretation.  All photos were downloaded and stored electronically in Mapview 

software (www.reconyx.com).  Metadata imbedded in the header code of every photograph (e.g., 

image number, date, time, temperature) were automatically exported to an electronic database.  

A technician then viewed and interpreted all images.  She entered information (species 

identification, bait condition, camera operation status) for every photograph into the database.  

For fisher, she also entered best guesses about gender and the number of unique animals.  

Additionally, field crews independently reviewed all the images to identify at which stations 

fishers were detected; this provided a quality check to ensure that no fishers were overlooked in 

the interpretation process. 

 

Data Processing.  Data were first truncated to < 30 days, and a detection history was 

created for each station that indicated whether a fisher was detected in each survey day (i.e., 

00000110101000).  If the survey duration was < 30 days, or if the camera was not functional 

some of the time, these days were treated as missing data in a full 30-day detection history.  Each 

survey day was the 24-hr period commencing upon camera set-up.  

 

Covariates pertaining to station locations and survey days for potentially explaining 

variation in fisher occupancy and detection probability were created as follows.  To address 

changes in animal behavior upon discovery of a station, I created a covariate array for testing a 

1
st
 order Markov dependency (Hines et al. 2010, Slauson et al. 2012) between detection history 

days at each station; the covariate value at dayk was the detection history at dayk-1, or it was zero 

if this data was not available.  To address seasonal changes in detection and occupancy there was 

also a covariate vector for the start date of each station survey.  To address potential regional-
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level heterogeneity in occupancy and detectability, I created a covariate vector of station 

latitudes.  Information on weather, bait condition, fisher gender, topography and vegetation cover 

was not used for creating additional model covariates due to the small sample size (n=172 

stations).   

 

Occupancy Modeling 

 

Model Structure.  Occupancy represents the true proportion of a study area in which a 

particular species occurs, or probability that a given location is occupied by the species.  

Occupancy modeling allows simultaneous estimation of detection and unbiased occupancy 

probabilities, based on the frequency of detections from temporally-replicated surveys occurring 

over a time period for which occupancy is assumed to remain constant (MacKenzie et al. 2006).   

 

I used a Bayesian hierarchical, single-species, single-season occupancy model structure 

(Royle and Dorazio 2008, Kéry and Schaub 2012) to estimate fisher occupancy and detection 

probabilities at the regional scale represented by the forested locations throughout Klamath 

Mountains and East Franciscan ecoregions.  The fully saturated models for occupancy (Ψ) and 

detection probability (p) were:  

 

logit(Ψj) = βΨ0 + βRE + βΨ1xlatitude j + βΨ2xstart j     eq. 1 

logit(pj, k)  = βp0 + βMAyj, k-1 + βp1xlatitude j + βp2xstart j ,  eq. 2 

 

for station j on survey day k where y was the detection history and x were covariates.   

A random normal effect (βRE) with an expectation = 0 was included in the occupancy model to 

account for non-independence of stations nested within sampling hexagons.  The detection 

model included a Markov dependency (βMA) on the previous day’s detection history.  The true 

occurrence state (z) at each station was assumed to follow a Bernoulli distribution, zj ~ Bern(Ψj), 

whereas the observation state (y) was modeled as a zero-inflated Bernoulli distribution, yj, k ~ 

Bern(pj, k*zj).   

 

All models were solved through a Markov Chain Monte Carlo algorithm (Link et al. 

2002) implemented in WinBUGS (Version 1.4, www.mrc-bsu.cam.ac.uk/bugs) accessed via R 

statistical software (Version 2.12, www.r-project.org) with the R2WinBUGS package (Sturtz et 

al. 2005).  Uninformative priors were assumed for all parameters.  Three independent chains 

each of 40,000 samples were run with a burn-in period of 10,000 and a thinning rate of 3.  

Effective mixing of these chains was assessed visually and by means of the Gelman-Rubin 

convergence statistic (< 1.1, Gelman et al. 2004).  Average occupancy across the study region 

was estimated at the station and hexagon scales by averaging z among stations and hexagons, and 

including these additional parameters as derived quantities in the algorithm.  Applying a 

“Bayesian P-value” approach, significance tests for model covariates were made using 90 

percent credible intervals of posterior distributions.   

 

Model Selection.  Rather than just fitting the fully saturated model (eq. 1 & 2), I first fit 

simpler detection models always including the intercept (βp0), but only including one of the 

remaining detection covariate effects (βMA, βp1, βp2) at a time.  I considered an effect to be 

“significant” if the 90% credible interval did not include zero.  If an effect was “significant,” I 
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advanced to combining it with other such effects in more complicated models.  Once a final 

detection model was selected, I repeated the process for testing potential effects (βΨ1, βΨ2) on 

occupancy given the final detection model.  

 

Power Analysis  
 

Statistical power to detect a trend (Purcell et al. 2005, Nielsen et al. 2009, Meyer et al. 

2010) in fisher occupancy was assessed via Monte Carlo simulation.  I simulated time series over 

10 and 20 years based on the station- and hexagon-scale occupancy estimates and their 

uncertainties from this study and different scenarios for average annual declines in occupancy.  

The true starting occupancy ( 1 ) for each scale was the point estimate from this study.  The true 

occupancy state for each subsequent year (t) in the time series was modeled as 

1)]1(1[   tdt , where d was the true average annual decline occupancy with respect to 1 .  

The monitored occupancy in each year was modeled as a normal random variable with 

expectation t and standard deviation σt, where σt was the standard error from the fisher 

occupancy estimate from this study scaled to the annual sample size of stations (n) by dividing 

by sqrt(n/172).  

 

I generated 50,000 simulations of each average annual decline scenario (d=0.01 to 0.03) 

and annual sample size of stations (n=100 to 200), and tested each simulation for a simple linear 

trend via ordinary least squares regression.  I calculated power as the proportion of simulations 

where one could reject (P < 0.1) the null hypothesis of a zero or positive slope for the trend line.  

I evaluated satisfactory monitoring power as > 0.8 (Cohen 1969).   

 

Other Mammal Species  

 

Occupancy models were only run for fisher.  However, I calculated naïve occupancy 

estimates for all other mammal species detected > 5% of stations.  For each species, I calculated 

the latency to first detection (Slauson et al. 2009) as the median number of survey days until first 

detection among stations at which the species was detected within 30 days.  Comparison of this 

measure for the other species to its value for fisher provided a rudimentary means for assessing 

how effective camera traps would be for monitoring species other than fisher. 

 

RESULTS 

 

Survey Design and Methods 

 

 From GIS analysis 86% of stations were > 40% forest cover within a 250 m radial area 

surrounding each station, and 91% of stations surpassed this cover threshold for a 500 m radius.  

Less than 5% of stations from this study were re-baited between set-up and take-down of 

cameras.  Black bears (Ursus americanus) rendered cameras inoperable for a portion of survey 

duration at 18% of stations.  The median number of operable survey days per station was 15.   

 

  



59 

 

Occupancy Estimation 

 

 Of the covariates for explaining detection probability, 1
st
 order Markov dependency and 

latitude were “significant” whereas the start date of surveys was not.  The first 2 variables 

remained important when included in the final model.  The expected probability of detection per 

day for before a station was discovered by a fisher declined from 0.127 at 39 degrees North to 

0.035 at 42 degrees North (Fig. 2a).  Cumulative, station-level detectability increased from an 

average of 0.624 after 14 days to 0.870 at 30 days (Fig. 2b to 2d).  Latitude was not predictive of 

occupancy when added to this model, whereas it was predictive when the same covariate was not 

included in the detection model.  The start date of surveys was marginally important (but not 

“significant”) for occupancy.  Both parameters were positively correlated, but relaxation to an 

84% credible interval on survey date for explaining detection was necessary to reject a null 

hypothesis that the effect was zero.  Following the model selection process summarized earlier, I 

chose a final model including an intercept, Markov factor and latitude for explaining detections, 

and an intercept and the random effect for explaining occupancy (Table 1).  Based on this model 

the occupancy estimate at the station scale was 0.465 [90%CI: 0.372-0.599], whereas it was 

0.651 [90%CI: 0.535-0.791] at the hexagon scale.  In contrast, the unmodeled, naïve occupancy 

estimates for these scales were 0.261 [90%CI: 0.207-0.317] and 0.407 [90%CI: 0.320-0.494], 

respectively. 

 

Power Analysis 

 

The simulations demonstrated 82% power for monitoring average annual declines as 

small as 2.0% per year over 20 years for fisher occupancy at the station scale.  They showed 81% 

power for identifying a trend as small as 1.6% at the hexagon scale.  For surpassing the 80% 

power standard, 5.9% and 4.8% were the smallest average annual declines that could be 

monitored over 10 years, at the station and hexagon scales respectively. 

 

Other Mammal Species 

 

 Besides fisher a total of 22 mammalian and 14 avian species were photographed.  Of 

these species,14 mammals were detected > 5% of stations (Fig. 3).  Black bear, mule deer 

(Odocoileus hemionus), and gray fox (Urocyon cinereoargenteus) were the most frequently 

detected large mammals, whereas Douglas squirrel (Tamiasciurus douglasii) and western gray 

squirrel (Sciurus griseus) were the most frequently detected small mammals.  The median 

latency to first detection was < 6 days for 11 of these 14 species, and this threshold was only one 

day more than for fisher (e.g., 5 days). 

 

DISCUSSION 

 

Occupancy model results suggest detectability of fishers at baited camera stations 

decreased with latitude in northwestern California.  One explanation of this finding might be that 

home ranges for both genders are generally larger at higher latitudes across western North 

America (Lefroth et al. 2010, p. 68).  This could lead to a longer period until first detection, 

because, as animals move throughout larger areas, they become less likely to encounter a camera 

station by chance.  Hence, this study illustrated the importance of hierarchical modeling for 
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correcting methodological biases when estimating occupancy of wildlife species at large spatial 

scales.  If latitude had not been included in the detection model, one could have mistakenly 

concluded that fisher were more widespread to the south of the study area (i.e., Mendocino 

National Forest) than in the north (i.e., along the Klamath River and near the Oregon border).  In 

addition, naïve estimates of occupancy were substantially lower than modeled ones that 

corrected for non-detection bias. 

 

Unexpectedly, survey date did not affect detectability for these data. There was a “non-

significant” association, however, between survey date and increased occupancy.  It is unclear 

whether this effect would have been more conclusive if sample size had been greater.  Temporal 

adjustments in territoriality, especially among dispersing juveniles and females (Matthews et al. 

2013, Shelley et al 2013), were expected to affect variability in occupancy during the earlier 

months of surveys (e.g., August and September).  If there had been stronger evidence of this 

issue, I would have modified model structure to estimate it as increasing asymptotically over the 

course of the survey season.   

 

The surveys reported on here provide evidence of relatively high, station-level 

cumulative detection probabilities, mostly without re-baiting visits.  This point is germane in that 

visits to remote survey locations (whether for set-up, re-baiting, or take-down) were this 

project’s greatest expense.  For this reason I began phasing out revisits in 2011 to concentrate on 

surveying more hexagons during each survey season.  On the other hand, station-level detection 

probabilities were less than the 0.8 standard proposed by other practitioners (Slauson et al. 

2009).  According to other studies 30-day surveys with weekly re-baiting (Zielinski and Kucera 

1995) has been required to meet this detection probability standard (Gompper et al. 2006, 

Slauson et al. 2009).   

 

This study demonstrated statistical power to monitor 2% average annual declines over 20 

years for surveys characterized by a median duration of 15 days and which were rarely re-baited 

after the initial visit.  I also found that monitoring moderate declines (<5% per year) over shorter 

(<10 years) time frames will be challenging.  This problem could presumably be addressed by 

some combination of dramatically increasing sample size, regularly re-baiting, and increasing 

survey duration.  However, ecological factors are likely to add to the difficulty in identifying 

declines related to persistent stressors affecting limiting factors or carrying capacity.  For 

timeframes of less than 10 years, information about steady-state declines could be easily 

confounded by transient or cyclical patterns in population numbers.  Numerous studies have 

identified population cycles related to weather patterns (Lima et at. 1995, Stenseth et al. 2002), 

irruptive events (Koenig 2001, Linden et al. 2011), disease epidemics (Anderson and May 1991) 

and random variation (Cole 1951, Saether et al 2000).  Some researchers (Kaitala et al. 1996, 

Elias et al 2006) have used autoregressive models to support the idea that random or episodic 

effects over a year or two can lead to population cycles that are longer (4 to 7 years) than the 

events that triggered them. 

 

Occupancy has been proposed as a surrogate for monitoring abundance (MacKenzie and 

Nichols 2004), but the magnitudes of trends in these 2 state variables may not be the same for 

fisher (Tucker 2013) and other animals with large territories.  The occupancy-abundance 

relationship is governed by how clustered a population or metapopulation is distributed in space 
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(He and Gaston 2000).  Therefore, one cause of a disparity between occupancy and abundance 

trends could be an expansion in average home range size over time.  Considering the theoretical 

link between abundance and detection probability (Royle and Nichols 2003, Royle et al 2008), 

the home range expansion hypothesis described above is consistent with findings from this study 

that fisher detectability declined with latitude.  As fisher territories that partially overlap get 

larger, fewer individuals, on average, might contribute to the occupied status of a location.  

Indeed, although I found fisher occupancy invariant across northwestern California, it is possible 

that abundance is lower to the north.  For these reasons, occupancy modeling at multiple spatial 

scales is especially relevant (Pavlacky et al. 2012).  By modeling at 2 spatial scales (i.e., station 

and hexagon), this study provided an example for improving inferences about abundance trends 

using incidence data.  Specifically, this design should allow one to make better inferences about 

whether a decline in occupancy is related to a decrease in abundance, by assessing whether 

occupancy declines occur at both scales.  Alternatively, occupancy could be monitored 

separately by sex, because males generally have larger home ranges (Lofroth et al. 2010).  

Although I did not attempt to do so in this study, photo information interpreted on the minimum 

number of identifiably distinct fishers seen at each station could be used to help estimate 

abundance via a repeated counts n-mixture model (Royle 2004, Kéry et al. 2005). 

 

The findings from this study were qualified by some limitations.  The sample size was 

relatively small, meaning that the lack of association of some of the predictive variables I tested 

could be related to analytical power.  For the same reason, I did not include other covariates such 

as bait condition which may have improved model performance of a larger data set.  Along these 

lines, the data set spanned only 2 years and locations were not visited both years, thereby 

preventing application of a multi-season occupancy model.  Zielinksi et al. (2013) have taken the 

multi-season modeling approach to show that fisher sites monitored over 8 years rarely changed 

their occupancy states.  Their finding suggests that, given the right balance between new location 

visits and yearly visit to a portion of sites, a multi-year occupancy model framework could 

further increase statistical power for detecting occupancy declines for fisher at large spatial 

scales. 

 

An additional limitation was that the random effect accounting for non-independence 

among baited camera stations was not easily interpretable for providing a biological explanation.  

It would have been preferable to include a Markov dependency term in the occupancy model 

such that the occupancy state, z1, at one station was predicted by both the model intercept, βΨ0 , 

and an effect, βΨma, representing whether the paired station was also occupied (z2=1).  

Unfortunately, although this modeling approach worked well for simulated data, I was unable to 

achieve good model chain mixing when run on the real fisher data.  

 

Bears were deleterious to sampling effort, especially in the project’s early years; they 

frequently misaligned or damaged cameras.  In a few cases, they tore cameras into pieces and 

chewed up all the batteries.  Besides following clean handling procedures for the camera side of 

a sampling station, the problem was further mitigated as follows.  Field crews switched from a 

camera mounting bracket to the use of a cable lock for tightly securing the camera to the tree 

bole, and used splints for aiming.  This procedure appeared to reduce the bears’ curiosity which 

might have been heightened by the bracket method which caused the camera to stick out 

awkwardly from the tree. 
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An often overlooked benefit of baited camera surveys is that they are well suited for 

monitoring multiple species for little additional effort.  The data they provide may be viewed 

equally as a fisher monitoring project or a big game monitoring project or a biodiversity 

monitoring project.  Based on a qualitative review of the survey data, the addition of grain and 

fruit dramatically increased the detection frequency for squirrels (Sciuridae) and woodrats 

(Neotoma spp.).  A follow-up occupancy analysis, taking full advantage of the bait condition 

information collected, is warranted for formally addressing these questions.  Nevertheless, the 

low median latency to first detection (< 6 days) for most (11) of the 14 mammalian species with 

naïve occupancy estimates >0.05 lends support to the idea that camera traps could serve as a 

valuable and effective survey method for implementing long-term, multi-species monitoring at 

large-spatial scales (Manley et al. 2005, Zielinski et al. 2005).  

 

MANAGEMENT IMPLICATIONS 

 

Although not a perfect surrogate for monitoring abundance, camera trap surveys provide 

a robust method for estimating fisher occupancy, interpreted broadly as the proportion of a large 

region inhabited by this species.  Combined with the application of hierarchical models, this 

method can provide good statistical power for monitoring occupancy declines as small as 2% per 

year over 20 years.  This approach allows occupancy estimates at multiple spatial scales for 

better informing inference about how an occupancy decline might be related to a long-term 

population trend affected by stressors including land use or climate change.  Given enough 

resources, the regional monitoring scheme reported on here could be expanded to add enough 

annual revisits to increase monitoring power for fisher even further, through the application of a 

multi-season occupancy model approach.  More importantly, cameras trap surveys at large 

spatial scales provide an easy opportunity for broadening single-species monitoring into multi-

species monitoring. 
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Table 1.  Bayesian hierarchical model results for fisher occupancy across northwestern 

California.  The model was fit to data from baited camera surveys up to 30 days in duration from 

2011 or 2012.  Occupancy was estimated for 2 spatial scales: stations 1.6 km apart within 

randomly selected survey hexagons.   

 

Parameter Mean SD Median 5% 95 % R-Hat 

Occupancy  

     Station 

     Hexagon 

Occupancy Model Parameters        
     Intercept 

     SD for random effect 

Detection Probability Model  

     Intercept 

     Latitude (per 0.1 degree >39) 

     1
st
 Order Markov Dependency 

 

  Model Deviance 

 

0.472 

0.652 

 

-0.148 

1.255 

 

-1.921 

-4.698 

1.243 

 

625.8 

 

0.070 

0.078 

 

0.433 

0.516 

 

0.292 

1.884 

0.326 

 

19.6 

 

0.465 

0.651 

 

-0.169 

1.307 

 

-1.916 

-4.714 

1.248 

 

625.1 

 

0.372 

0.535 

 

-0.815 

0.277 

 

-2.409 

-7.776 

0.704 

 

594.8 

 

0.599 

0.791 

 

0.607 

2.019 

 

-1.446 

-1.575 

1.771 

 

659.4 

 

1.00 

1.00 

 

1.00 

1.05 

 

1.00 

1.00 

1.00 

 

1.00 
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Figure 1. Northern California study area where baited camera surveys occurred in 2011and 

2012.  The historic fisher range identified by Joseph Grinnell is shown for comparison. 
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Figure 2.  Estimates of detection probability and their dependency on latitude are shown for a 

single day (A) and for total suvey duration (B through D). 
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Figure 3. Naïve, unmodeled occupancy estimates for mammal species detected at baited camera 

stations in northwestern California forests in 2011 or 2012.  Occupany is given for stations and 

for sampling hexagons each consisting of a pair of stations 1.6 km apart.  Additionally, the 

median number of days until first detection (if a detection occurred < 30 days) is shown at the 

top for each species.  The species/taxa are black bear (Ursus americanus), gray fox (Urocyon 

cinereoargenteus), mule deer (Odocoileus hemionus), Douglas squirrel (Tamiasciurus 

douglasii), western gray squirrel (Sciurus griseus), Pacific fisher (Pekania pennant pacifica), 

western spotted skunk (Spilogale gracilis), chipmunk (Neotamias spp.), ringtail (Bassariscus 

astutus), California ground squirrel (Otospermophilus beecheyi), mountain lion (Puma 

concolor), northern flying squirrel (Glaucomys sabrinus), dusky-footed woodrat (Neotoma 

fuscipes) and striped skunk (Mephitis mephitis). 
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Chapter 5 

 

General conclusions 

 

 Automated survey devices such as sound recorders and cameras offer an excellent 

opportunity for efficiently, accurately and simultaneously monitoring population trends for 

multiple wildlife species.  These methods are particularly amenable to occupancy modeling 

because repeat survey data for addressing detection probability biases can be collected from 

remote locations without a skilled surveyor being physically present for each survey.  These 

incidence-based methods are appropriate for monitoring large areas for several reasons.  First, 

gathering count data across such a large area may be prohibitively expensive.  Second, for birds, 

the effective survey area of automated recorders may be small enough that occupancy becomes a 

reliable proxy for abundance.  Third, for mammals with larger territories, a nested design of 

camera stations allows occupancy estimation at multiple survey scales for drawing more 

informative inferences about the connection between occupancy and abundance.   

 

 Multi-species occupancy models offer the opportunity of expanding monitoring of 

common species to an entire metacommunity.  I applied this approach to bird survey data and 

found that species traits predicted detection probability and improved model accuracy.  I also 

demonstrated the ability of a bootstrap re-sampling method to probabilistically compare 

abundance ranks of intermediately-common species, and reasoned that differences in these 

abundances provided inferences about resource partitioning within communities. 

     

 Long-term, large-scale monitoring of wildlife metacommunities is needed to recognize 

population declines early enough to identify environmental stressors and facilitate adaptive 

planning.  Potential outcomes include information supporting the designation of new species of 

conservation concern, or better yet, conservation actions that avert the need for conferring 

critical statuses.  The survey and analytical methods investigated in this dissertation provide a 

variety of tools for effective and efficient monitoring.  I demonstrated their statistical power for 

identifying long-term trends, and provided examples of baseline results in the shorter term. 

However, the political and financial commitment of wildlife management agencies to sustain 

monitoring programs such as the Ecoregion Biodiversity Monitoring project is essential to 

success of conservation efforts.  I liken the value of investing in monitoring to planting and 

nurturing orchard.  One needs to wait for the trees to mature, but then new fruit becomes 

available each year.   
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