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Magnetoinductive Waves and Complex Modes
in Two-Dimensional Periodic Arrays of
Split Ring Resonators

Salvatore Campione, Student Member, IEEE, Francisco Mesa, Senior Member, IEEE, and
Filippo Capolino, Senior Member, IEEE

Abstract—We investigate magnetoinductive waves in two-di-
mensional periodic arrays of split ring resonators or capacitively
loaded loops and characterize the modes with real and complex
wavenumber excitable in such arrays. Each resonator is modeled
as a single magnetic dipole, and the computation of the modal
wavenumbers is performed by searching for the zeroes of the
homogeneous scalar equation characterizing the field in the array.
We provide original developments for the Ewald method applied
to the required dyadic periodic Green’s function for the array of
magnetic dipoles, including the quasi-static case. The Ewald repre-
sentation is analytically continued into the complex wavenumber
space and also provides series with Gaussian convergence rate.
In particular, we analyze and classify proper, improper, forward,
backward, bound, and leaky magnetoinductive waves varying fre-
quency and compare the fully retarded solution to the quasi-static
one. We highlight the importance of accounting for field retarda-
tion effects for the prediction of the physical waves excitable in
the array when the dimensions of its unit cell are approximately
greater than a tenth of the free-space wavelength. The proposed
method complements previous investigations and is a powerful
tool for the design of waveguiding or radiating structures based
on magnetoinductive waves.

Index Terms—Magnetoinductive waves, metamaterials, modal
analysis, split ring resonators.

I. INTRODUCTION

AGNETICALLY coupled resonators can support prop-

agating waves, which are generally referred to as mag-
netoinductive (MI) waves. The simplest set of resonators con-
sists of a capacitor and an inductor coupled with other resonators
of the same kind, which can be easily realized with capaci-
tively loaded loops or split ring resonators (SRRs), as shown
in the inset in Fig. 1. These resonators may be for example
used to achieve left-handed metamaterials [1], effective nega-
tive permeability [2], and tunable metamaterial components [3].
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Fig. 1. Two-dimensional periodic array of capacitively loaded loops or SRRs
displaced in the »—y plane with ring plane in the (a) -y, (b) y—2, and (¢) x—=
plane, embedded in a homogeneous environment with relative permittivity =, .
The 00th reference resonator is placed here at rog = O, and d,, and d,, are the
periodicities along the x- and y- directions, respectively.

Moreover, applications of MI waves include near-field imaging
[4]-[8] and data transfer channels [9], for example.
Magnetoinductive waves have been studied in arrays of SRRs
periodic in one (1D), two (2D), or three dimensions in [10] by
using a circuit formulation, taking into account the coupling be-
tween elements and neglecting retardation (i.e., the dimensions
of the structure are assumed to be small with respect to the free
space wavelength). The authors in [10] have shown that the
nearest neighbor approximation provides the salient propaga-
tion features and that more coupling with further resonators is
needed for higher accuracy of the results. The propagation in
linear arrays of SRRs in axial or transverse configuration (i.e.,
the wavevector is in the same direction or in the transverse di-
rection of the magnetic dipole moment describing the SRR, re-
spectively) has been studied experimentally in [11], and similar
works (including theory) have been shown in [12]-[15]. The
dispersion properties of a bi-periodic linear array of SRRs (con-
tiguous loops are loaded with different capacitances) have been
shown experimentally in [16] to support MI waves in two dis-
tinct frequency bands. The same phenomenon has been studied
thoroughly in linear arrays in [17] for a unit cell with two SRRs
whose relative distance is smaller than the period. The arranging
in various orientations of the SRRs in two coupled linear arrays
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to tailor the dispersion diagrams has been shown in [18]. Ex-
perimental and theoretical analyses of the coupling mechanisms
between contiguous SRRs have been shown in [19], where it is
stated that, depending on the relative orientation of the SRRs,
the coupling may be either of magnetic or electric type or a com-
bination of the two; this fact can allow, for example, the design
of nanostructured devices based on propagation of slow waves.
The dispersion equations of finite linear arrays made of coupled
SRRs and plasmonic nanoparticles have been retrieved in [20]
when the interelement coupling is governed by retardation ef-
fects, showing how the two are closely related to each other. The
transmission and reflection properties of a left-handed metama-
terial made of 2D arrays of SRRs or wires have been shown in
[21]. A comprehensive review of MI wave theory and applica-
tions has been also provided in [22] and [23]. Propagating and
evanescent waves for 2D periodic structures have been studied
in [24] by adding eight new zones to the traditional first Bril-
louin zone, which have allowed to include in graphical form
the full information contained in a lossless dispersion equation.
Magnetostatic spin waves and their wavenumber-frequency dis-
persion diagrams have also been studied in linear arrays of ferro-
magnetic nanowires [25]. Very recently, magnetoinductive po-
laritons, defined as hybrid polaritonic modes of electromagnetic
waves and of slow waves of coupling between resonators, have
been introduced in [26], which have allowed for the design of
structures with controllable effective material parameters and
with required functionality (e.g., realization of Pendry’s near-
perfect lens).

The aim of this paper is to characterize the bound (non
radiating) and leaky (radiating) modes with real and complex
wavenumber excitable in 2D periodic arrays of SRRs (Fig. 1),
was recently done in [27] and [28] for 1D and 2D periodic
arrays of plasmonic nanoparticles. In Section II, we model
each SRR as a single magnetic dipole through the single dipole
approximation (SDA) [29], [30] and use a periodic Green’s
function (GF) formulation based on the Ewald method (out-
lined in Section IIT) to describe the field in the array, as shown
in [28] and [31]. We then obtain in Section IV reflection and
transmission coefficients of an array of SRRs in the gigahertz
range under oblique TE-polarized plane wave incidence and
characterize the modes excitable in the same array. Modal anal-
ysis in an array of capacitively loaded loops in the megahertz
range is performed in Section V for different loop orientations.
The two numerical analyses in Sections IV and V are intended
to confirm that our method provides results in good agreement
with full-wave results and may be applied to any frequency
range and thus employed for the design of waveguiding or
radiating structures based on magnetoinductive waves. The
analysis in this paper is a necessary step towards a thorough
understanding of modal description in periodic arrays, and
specifically the characterization of MI waves. In this regard,
this paper also presents a number of novel discussions and
numerical results.

II. DYNAMIC SIMULATION MODEL INCLUDING ALL COUPLINGS

A. Periodic Green's Function for the Evaluation of the
Modal Wavenumbers

The structure under analysis is the 2D periodic array of SRRs
(or capacitively loaded loops) reported in Fig. 1. The monochro-
matic time harmonic convention exp(jwt) is assumed here and
throughout the paper, and is therefore suppressed hereafter.
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Here, bold fonts refer to vector quantities, a bar under a bold
letter refers to dyadic quantities, and a hat denotes unit vectors.

We model each SRR as a single magnetic dipole. This is
a good approximation when the magnetic dipolar term domi-
nates the scattered-field multipole expansion, which is likely to
happen when the SRR dimensions are much smaller than the in-
cident wavelength, and when the periods d,, d;, > 3a. Note that
fairly accurate results may still be obtained even for smaller pe-
riods. As such, the induced magnetic dipole moment m is given

by

m =g, -H" (1)
where a,,, is the dyadic magnetic polarizability of the SRR, and
H'"* is the local magnetic field produced by all the SRRs of
the array except the considered SRR, plus the external incident
field to the array, if present. An SRR has an anisotropic mag-
netic polarizability directed along the direction orthogonal to
the ring plane, denoted here as ¥, which in this paper coincides
either with %X, ¥, or z. Accordingly, the SRR dyadic magnetic
polarizability is given by @,, = VVau,, where the quasi-static
expression for ay, is given by [32]-[34]

1 B3
Om = {O’_;n +J67T}

A2 (w2 B!
;o 0 ot
i = P07 (ﬁ”iw—L) :

In the above expressions, pg = 47 x 10~7 H/m is the perme-
ability of free space, A = 7wa? is the area of the ring,

L = ppa [ln (163—]) — 2}

is the self-inductance of a perfectly conducting ring [32], with
a and w (w < a) denoting the radius and the width of the
ring (Fig. 1). Moreover, wg = 1/v/LC is the resonance angular
frequency of the ring after having applied the capacitive split
or a lumped capacitor C, and B; ~ Rgma/(w + h) accounts
for the metal losses, with /4 the thickness of the ring, and Rg =
v/ wpo/(20) the surface resistance, which depends only on the
constitutive material of the ring (¢ is the metal conductivity).
The quality factor of the ring series resonance, evaluated at the
resonance frequency and neglecting radiation losses, is given by
Q = \/L/C/R;. The term jk?/(67) in (2) is added to account
for radiation damping in order to satisfy the energy conservation
law [35] and k& = kyy/}, is the host wavenumber, with k& the
free-space wavenumber and e, the host relative permittivity.

Consider now a 2D periodic array of SRRs located in the x—y
plane as in Fig. 1, with the rings plane in the x—y [Fig. 1(a)],
y—z [Fig. 1(b)], or z—= [Fig. 1(c)] plane, immersed in a homo-
geneous background with relative permittivity £5,. Each SRR is
placed at positions ry,,, = rog + dpn, where d,, = md, X +
n(lyy, with m,n = 07 :I:l7 :|:2 .., oo = .’ﬂ(]())A( + yOO}A’ + Zooi,
and d, and d,, are the periodicities along the 2 - and y-directions,
respectively [28], [29].

Suppose that the array is either excited by a plane wave or
supports a mode. In both cases, the field is periodic, except for a
phase shift described by the Bloch wavevectorkg = k,%X+k, ¥,
which also accounts for decay in case the wavenumbers are
complex. Consequently, the mnth SRR is represented by a mag-
netic dipole moment equal to my,,,, = myg exp(—jkp - dinn),

(2)
with

3

“
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where mg represents the magnetic dipole moment of the 00th
reference SRR. The local magnetic field acting on the reference
SRR at position rgq is given by

H'"(rgg, kp) = H™(ro0) + G (roo,roo, k) -mgy  (5)

wl\;}gre H"¢ is the incident magnetic field, and
G (roo,roo.kp) accounts for all the mutual cou-
plings between all mn-indexed magnetic dipoles and

myg, and therefore it is not singular at r = rgg. The term
— OO
G is the regularized periodic dyadic GF, defined as
— OO

~ (I', oo, kB)

G (r,ro0, kp) =G — G(r,rgp), where

400
Z g([‘, rrrL7L)€7ij'dvn,,,, (6)

m,n=—00

G™(r,roo. kp) =

is the magnetic-field dyadic GF for the phased “infinite” pe-
riodic array of magnetic dipoles. Here, G(r,r’) denotes the
dyadic GF for a single magnetic dipole in the homogeneous
background

e IFR R Gk 1
Glrr) = — Kf‘ﬁ‘ﬁ)—
k> 37k 3\ -
_(E_E_RS)RR} @

where R = RR = r—r’ is the vector from the source atr’ to the
observer atr, 2 = |r — 1’|, and I is the identity dyad. The ex-
pression in (7) includes all field retardation (FR) effects. In this
paper we also consider the case where the magnetic dipoles emit
only magnetic fields according to the quasi-static (QS) model

G(r,r') ~ -1+ 3RR] (8)

4T R3 [

which is a good approximation when the SRR radius and the
periods d, and d,, are all much smaller than the wavelength, at
any distance such that kR < 1.

Independently of the adopted GF (the one with FR effects
or the QS approximation), substituting the expression for the
local field in (5) into (1) and assuming a specific SRR axis ori-
entation along a predetermined direction v = z,y, or z, one
obtains mgg = v mqo, Where\ 90 satisfies the scalar equaziggl

Mmoo = amH(ro0) + am Gy (Yoo, oo, ks )mog, with G
being the proper diagonal component of the 2D periodic regu-
larized dyadic GF and H,"** = v - H™¢. This leads to the scalar
equation

Agy(kp)mgy = amH  (ro0) )

where
— X

Avy(kp) =1 — anGy(roo, roo, ks)- (10)
Mode analysis in the 2D periodic array is performed by com-
puting the zeroes of the homogeneous version of (9); i.e., when
no impressed excitation is present. This requires, in general, the
solving of A, (kg) = 0 for complex kg. Due to symmetry
both £kp are solutions. In the lossless case also £k} would be
solutions, where the * denotes complex conjugate. However, in
the present case where some losses are present but are not very

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 7, JULY 2013

large, if kg is a solution, in general a solution near kj; may be
found.

B. Floquet Waves Representation and Physical Excitation
Conditions

As mentioned in Section II-A, the magnetic field in the
planar array is periodic except for a phase shift, that is
H(r+dn,kg) = Hr,kp)exp(—jkp - dpmn), with
r = X + yy + zz. The field relative to a mode in the
array is expressed in terms of Floquet waves as

Hmode I' kB Z hmode 4 k )p—j(km-,pw"!‘ky,q‘!l) (ll)

P,g=—0oc

where ky p, =k, +2rp/d, =02 p — Jou, kyg=ky+2mq/d, =
By,q — oy, and h;}“’d" is the weight of the pgth harmonic. The
real parts /3, , and /3, , are repeated periodically in the com-
plex wavenumber domain, with periods 27p/d, and 27q/ dy,
respectively. Due to this period, a mode will be described by the
wavenumber of its Floquet wave in the fundamental Brillouin
zone (BZ), defined as —n/d, < fl.o < 7/d, and —7/d, <
By < w/d,. Therefore here, by definition, the wavenumbers
k. and k, lie in the fundamental BZ. Furthermore, the vertical
wavenumber is k. g = /A% — Kipg - Kipg = Bz.pg — 7% pgs
withky g = ki pX+F, ,¥. We distinguish between proper (i.e.,
decaying getting away from the array, Im(k. pq) < 0, . pg >
0) and improper (i.e., growing getting away from the array,
Im(k. pq) > 0,02 59 < 0) harmonics as previously done in
[28], and also described in [36] and [37]. This classification pro-
vides us with the knowledge of the physical bound and leaky
modes excitable in the array. By physical, we mean those that
can be excited by a localized source, a defect, or array trunca-
tion. Modes that are not classified as physical here may, how-
ever, be excited by much more complicated source distributions,
though this study is not within the scope of this paper.

Among all the mathematical solutions of A, (kg) = 0 [as
dictated by (9) as discussed in Section II-A], only a subset repre-
sents physical waves. These are summarized in Table I based on
the complex wavenumber of the fundamental Floquet harmonic
in the first BZ (i.e., the one with p = 0 and ¢ = 0), assuming
ky = 0. Modes are classified as backward when 3, gcr, < 0
and forward when (3, gcr; > 0; bound when |3, o| > & (slow
wave) and leaky when |3, o| < k (fast wave). The periodic con-
dition %, , = k. + 27p/d, would determine the behavior of
Floquet harmonics with wavenumbers in other BZs. Note that
in the case of array periods shorter than half wavelength, only
wavenumbers in the fundamental BZ may represent fast waves.
For larger periods, the leaky wavenumbers in the fundamental
BZ may originate from higher order harmonics, as it happens,
for example, in leaky wave antennas whose radiation is coming
from the —1 Floquet harmonic [38].

III. EWALD REPRESENTATION FOR THE DYADIC GREEN’S
FUNCTION FOR 2D PERIODIC ARRAYS OF MAGNETIC DIPOLES

The Ewald Orcepresentation for the 2D periodic regularized

dyadic GF, G , used in (5), can be evaluated following the
derivations in [28] and [31] adapted here to the array of mag-
netic dipoles. We take full advantage of the duality principle,
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TABLE 1
CLASSIFICATION OF PHYSICAL MODES WITH COMPLEX WAVENUMBER OF THE
FUNDAMENTAL FLOQUET HARMONIC, ASSUMING &k, =

Forward wave Backward wave

/Bx,Oax >0 ﬂx,Oax <0
Slow wave a0 > 0 a, o0 > 0
|/Bx,0| >k Proper, bound Proper, bound
Fast wave Q00 < 0 o, o0 > 0
|ﬁx,0’ <k Improper, leaky Proper, leaky

— S

and accordingly, G
and spatial terms as

is split into the hybrid sum of spectral

+ gspa‘tial(r'/ oo, kB)

(12)

G (r,ro0,kB) = G ectral(T: To0, kB)

with

(I + VV] qpomal(l‘,I‘o(),kB)a (13)
(k%1 + VV]quaml(r-, roo. kg). (14)

oc
gspectral (I’, oo, kB)
— 00

gspatial(r7 Too, kB)
The scalar terms in (13)—(14) are given by

o0
Gspectl‘al(r7 oo, kB)
4 oo

1
4Jd dy Z

P,y=—0oc

Joa(z

kZ,P(I

— Zoo) e*jkt‘pq-(r*ron) (15)

with k¢ g = kg + (27p/d. )X + (27q/d,)¥, and

— OO

quaml(r roo, kB)

(16)

and their derivation is sketched in Appendix A. Moreover,

VVG:Cpectral (I', T'oo; kB)

-1
= 1jd,d,
+o0
F z— % .
« Z —spcctr]:‘l( 00) 6731(14)(1.(1‘71‘00) (17)
Pyg=—00 &P
and
VVGspatial(r7 Too, kB)
—oC 1 oo .
=VVGo+ o Y. Eguiat(Bma)e 4™ (18)
Tz

This representation applies to both the FR and QS cases. For
F
tral:

s =—spect

the FR case, the expressions for f,,, f, Guo Foatial

and VVGOO in (15)—(18) can be found in [28], [31], and
[39]-[41], and their derivation is not repeated here.
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For the QS case and for r = ryg, one has
fl"l Z HIRe lgrfc( pq)
+ jkz J
o, = ZEM + |z|E,
ks pg = \/_kt,pq ki, pq (19)
J(Rmn) = 2crfe(Rpn F)
;_,YOO 1
Goo = gf/(o) (20)
Espoctral(z) = fPQ(Z)kt,qut-,Pq
+ Jf]éq (2)(ke pgZ + 2ke pq)
— zl)/q(‘)ii 21)
f’(Rmn) f(Rmn)
ESpatial(Rm/nl) - ( R?IL’L B R?I’L’L 1
f“( mn) 3f ( mn)
+ ( Rmn Ryznn
3f( mn) - -
+ R?ILTL ) RTn’n/RTnTI
— o0 1
VVG,, = — (0L 22
00 247rf (0)I (22)

The Ewald method is very convenient here since it pro-
vides both rapid converging summations (i.e., only a handful
of summation terms is needed to achieve convergence) and
analytic continuation to the complex wavevector-plane. The
singular terms in (20) and (22) can be determined following
the approach in [31], and their evaluation is not repeated here
for brevity.

IV. ARRAY OF SRRS IN THE GIGAHERTZ RANGE

In this section, we consider an array of SRRs made of copper
whose conductivity is ¢ = 5.8 x 107 S/m that are embedded in
free space (i.e., & = kg) and arranged in a square lattice with
periodicities d, = d, = 40 mm. We assume realistic SRR di-
mensions reported in [19] for flat SRRs with radius ¢ = 11 mm,
width w = 0.8 mm, thickness » = 0.2 mm, and gap size g =
2 mm. These dimensions make the SRRs resonant atwg /(27 ) =
2.1 GHz [19]. Using the formulas in Section II, one can retrieve
the self-inductance L. = 46.91 nH and the loss resistance 12; =
413.16 m{2 at 2.1 GHz.

First, we analyze reflection and transmission coefficients of a
2D periodic array of SRRs as in Fig. 1(a) comparing the SDA
with a full-wave method, showing that the SDA method catches
pretty well the resonance behavior of the array of SRRs.

Second, using the SDA, we compute the modes with real and
complex wavenumber traveling in the same 2D periodic array
along one principal axis of the array, say the z-direction, i.e.,
kg = k.x, with k, = (3, — ja,. In other words, we impose
ky =0 for any given frequency and solve A..(kg) = 0 in
(9) for complex k,,. This assumption can be done without loss
of generality and will not affect the conclusions given in this

paper.

A. Reflection and Transmission Coefficients

We consider an array of rings with axis along v = 2%, illu-
minated by a TE-polarized plane wave incident at 30° and 60°
from the normal, with H field in the xz—z plane, and F field
polarized along y. We compare in Fig. 2 results from two dif-
ferent methods: i) the SDA (summarized in Appendix B) and
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1 2 1

Transmission ".: \i' (a) Reflection ,‘{l (b)
0.75| —SDA i 0.75 | —SDA i
I
== Full-wave, x !,' 0.5 --Full-wave, x 1
0.51 ---Full-wave,y i " |=--Full-wave, y ; ,H
i 309, P I
0.25 ;’O!Z 0.25 17 4 X
0 : 0 bz
0.1 06 1.1 1.6 2.1 2.6 3 0.1 06 1.1 1.6 2.1 26 3
Frequency [GHz] Frequency [GHz]
1 o N Reflection
Transmission " S SDA
0.75 | —SDA 0.75 i
’ ] --Full-wave, x i
0.5 =~ Full-wave, x oY 0.5 | =*-Full-wave, y
=-=Full-wave, y il 60° 2 ;
025 60°1-’ 025 é‘) p
0 0 =z
0.1 06 1.1 1.6 2.1 26 3 0.1 06 1.1 1.6 2.1 26 3
Frequency [GHz] Frequency [GHz]

Fig. 2. Magnitude of (a), (¢) transmission and (b), (d) reflection coefficients
of a 2D periodic array of SRRs in the x—y plane in Fig. 1(a) illuminated by a
TE-polarized plane wave incident from (a), (b) 30° and (c), (d) 60°. Regarding
the full-wave simulations, each SRR gap is aligned along the direction in the
legend. Results show that the SDA method catches the resonant behavior of the
SRR array.

ii) full-wave simulations based on the finite-element method in
the frequency domain [Microwave Studio by Computer Simu-
lation Technology (CST) Inc.]. We perform two full-wave sim-
ulations, one by aligning the gap of each planar SRR along the
x-direction, and the other by aligning the gap along the y-di-
rection. [For clarity, by gap aligned along the y-direction, we
mean exactly as shown in Fig. 1(a).] The simulation with gap
aligned along x avoids direct electric excitation of the SRR be-
cause the electric field is polarized along y. Hence, only the
magnetic field will excite the SRR. In the case of the gap aligned
along y instead, the SRR is excited also by the incident electric
field, besides the magnetic field excitation. We note that since
the SDA models only magnetic effects, we expect better agree-
ment with full-wave simulations when the gap is aligned along «
(full-wave, z) and is thus not excited by the electric field. More-
over, since the array under analysis is not very subwavelength
asd, = dy = A/3.6 (\g is the free-space wavelength at wy),
multipolar contributions may also come into play, which are,
however, neglected in our SDA model.

Looking at the transmission plots in Fig. 2(a) and (c), one
may infer that the array of SRRs behaves as a stop-band filter
around the SRR resonance at 2.1 GHz (we recall that the
complementary structure of the one described here, i.e., a metal
plate with SRR-like apertures, would behave as a pass-band
filter according to Babinet’s principle [42], [43]). Note the
agreement between the full-wave and SDA methods for the
estimation of the resonance around 2.1 GHz. As mentioned
previously, the agreement is better when the electric field
does not excite the gap, i.e., when the gap is aligned along =
(blue dashed curve). Indeed, when compared with this case,
the SDA estimates a transmission resonance bandwidth in
good agreement with the full-wave result. When the gap is
aligned along y (red dashed—dotted curve), both reflection
and transmission exhibit a slightly wider resonance behavior
compared with those from the SDA (solid black curve), due to
the SRR coupling with the electric field. This wider band, and
hence smaller resonance quality factor, is in agreement with
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the experimental results shown in [44]. This fact can also be
noticed by looking at the reflection plots in Fig. 2(b) and (d):
a reflection dip, signature of a narrow magnetic resonance,
is present at around 2.2 GHz (30°) and 2.4 GHz (60°) when
the SRR gap is aligned along x. However, this dip disappears
when the SRR gap is aligned along y. We note that this dip is
not found when using the SDA method, and we attribute this
fact to the not very subwavelength dimensions of the array
cells, for which multipolar contributions might contribute to
the array response [45]. A slight frequency shift towards higher
frequencies with respect to the full-wave results is observed in
the SDA case (black solid curve). This shift is due to the fact
that, in the SDA, we use a quasi-static approximation (2) for the
SRR polarizability, and it has been observed also elsewhere,
for instance, in [29] for an array of plasmonic nanospheres.
Finally, comparing the results for the two considered angles
of incidence (30° and 60°), one can notice a larger filtering
frequency band as well as a slightly smaller (larger) transmis-
sion (reflection) value at resonance for increasing angle, in
agreement with [46]. In summary, we have found that the SDA
is in fairly good agreement with full-wave simulations and is
thus well suited to model waves in arrays even with the SRR
radii and inter-resonator distances considered here.

B. Modes With Real and Complex Wavenumber

Assuming that modes are excited by a point source close to
the origin, we define as “physical” the modes excitable by the
source, similarly to what was done in [27], [28], [36], and [37].
Therefore, for an observer along the positive (negative) x-direc-
tion, physical modes are those whose wavenumbers verify the
conditions in Table I and have c,; > 0 (v, < 0), and thus could
propagate in the array without violating energy conservation. In
the following, we will assume the observer to be along the posi-
tive & direction. The dispersion diagrams (limited to modes with
«,, > Q) for the array in Section IV-A are shown in Fig. 3(a) and
(b) for both (3, and «,, of the wavenumber k,, = 3, — jo, with
respect to the angular frequency normalized to the SRR reso-
nance one [we recall that wg /(2x) = 2.1 GHz]. We show curves
computed by using the GF with field retardation (FR) effects (7)
and those computed with the QS GF (8); in this subsection, we
describe the modal evolution for the more accurate FR case and
postpone the discussion of the approximated QS case to the next
subsection. Note that here, as was done for the results in Fig. 2,
we include ohmic losses modeled by the resistance F; in (3)
(whose value has been given in Section IV) as well as the radia-
tion damping (radiation loss) in (2) in the computation of modal
results.

In Fig. 3, we note the presence of two modes at low frequency,
namely modes 1 and 2 (blue and green curves, respectively).
When looking at the results in Fig. 3, we note a certain similarity
with the dispersion diagrams reported in Figs. 11 and 12 in [28]
for an array of plasmonic nanospheres. More importantly, we
observe similar features with the results reported in [10, Fig.
11(a)] that are relative to the two proper modes in Fig. 3(a)
around 0.99 < w/wy < 1.05 (solid green and blue lines). Note
that in [10], losses were not accounted for when evaluating the
dispersion relation of 2D arrays of SRRs and that the presence
of the improper modes (dashed blue and green lines) was not
reported. The method described here allows for the estimation
of the complex wavenumbers of both proper and improper as
well as both physical and unphysical modes, as detailed in what
follows.
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Fig. 3. Dispersion diagram for (a) 8, and (b) o, of the wavenumber &k, =
3. — jo, for the array in Section IV-A [wy/(27) = 2.1 GHz]. (¢) Com-
plex plane Re[k,]. Im[k.] normalized by k. The inset shows a zoomed sec-
tion where the wavenumbers cross from III (I) quadrant (where the modes are
proper, solid lines) to IV (II) quadrant (where the modes are improper, dashed
lines) of the complex plane for increasing frequency. Arrows indicate the direc-
tion of increasing frequency. FR = field retardation, QS = quasi-static.

At low frequencies, mode 1 is a physical forward proper
bound mode with 3, close to the light line and small a,
(“Proper 17, solid blue curve). Increasing frequency, this mode
deviates from the light line approaching (but not reaching) the
edge of the Brillouin zone §.d, /7= = 1, with increasing .
Then, this mode wavenumber experiences a decrease in [,
first with peaking and then decreasing «,, reaching a small /3,
propagation with small «v,.. However, when |3, | < k, this mode
becomes a proper leaky forward mode, unphysical according
to Table I. Close to a minimum for [,, the imaginary part of
this mode becomes positive and this mode transitions to the
improper mode “Improper 1” [Fig. 3(c), I quadrant] that cannot
propagate when the observer is along the positive = direction.
The corresponding opposite solution in the IIT quadrant [dashed
blue curve in Fig. 3] is instead a propagating solution, though
it is still unphysical because backward improper modes cannot
be excited according to Table I. One should note the +kp
symmetry in Fig. 3(c), whereas, in general, solutions are not
at k¥, though they may appear close because losses are not
very large. Thus, note also that the solution with negative 3,
and positive o, associated with the complex conjugate solution
of the mode “Proper 1” is not present, though “Proper 2” (solid
green curve) almost satisfies the conjugate condition for certain
frequency ranges, as shown in Fig. 3(c).

At low frequencies, mode 2 is a physical backward proper
bound mode with almost constant negative value of 3, and
decreasing v, (“Proper 27, solid green curve). Increasing fre-
quency, this mode has a wavenumber whose real part 3, crosses
the light line with decreasing .., becoming a physical back-
ward leaky mode (solid green curve). Further increasing fre-
quency, /3, goes from negative to positive without changing the
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sign of v, i.e., it goes from the III to IV quadrant of the com-
plex plane in Fig. 3(c) (as is also clearly visible from the inset
in the same figure) transitioning into the mode “Improper 27,
a physical improper forward leaky mode (dashed green curve).
Further increasing frequency, the real part 3, crosses the light
line, and this mode becomes an improper bound forward mode,
which is unphysical according to Table I. A peculiarity of the
dispersion diagram in Fig. 3 is that while at low frequencies,
two bound modes—one backward and one forward—are phys-
ical and in principle excitable, when frequency is increased such
that the wavenumbers are in the region |3,.| < k, only one leaky
mode—either backward or forward—pertaining to mode 2, is
physical and excitable.

The result in Fig. 3 clearly shows that efficient waveguides
and antennas can be designed by using 2D periodic arrays of
SRRs because the physical modes exhibit a very small attenu-
ation constant «, in certain frequency bands, which allows for
either long propagation distances or directive radiation. For ex-
ample, a potential waveguide could be efficiently designed by
employing the proper forward mode 1 for w/wg < 1. Moreover,
a potential leaky wave antenna could be efficiently designed by
employing either the proper backward mode 2 or the improper
forward mode 2. In particular, we note that in this configura-
tion (i.e., an array of rings with axis along ¥ = z), the mag-
netic dipoles modeling the SRRs have a radiation null along
the z-direction. This means that the choice of a mode around
w/wy & 1.04, which would in principle radiate at broadside,
will not result in efficient radiation. The use of modes below or
above w/wy & 1.04 in Fig. 3, with 3, far from 0 or close to
the light line, results in radiation away from broadside or even
in the endfire condition. However, further engineering of modal
dispersion is required to reduce «, in such frequency regions to
optimize radiation directivity. To conclude, note also that other
modes are present in the present configuration but not reported
because they have large attenuation constant cx,,.

C. Discussion: Electrodynamic Modes and Magnetostatic
Waves

In Section IV-B, we have discussed the physical modes ex-
citable by a localized source, a defect, or array truncation using
the FR GF model for fields generated by every magnetic dipole.
As stated in Section II, the QS model may also be adopted to
evaluate the modal wavenumbers, as was done in several pre-
vious papers. This model is a good approximation in the case
of very subwavelength array element spacings. The dispersion
diagrams for the array in Section IV-A employing the QS GF
magnetic dipole model are shown in Fig. 3 (red curves). It is
noteworthy that only the presence of mode 2 is predicted, and
no evidence of the presence of mode 1 is found. Moreover, the
QS model provides only the salient propagation characteristics
of mode 2 and hinders the frequency bands with very small cv,.
In conclusion, the result in Fig. 3 applied to an array with pe-
riods d,, = d, = Ag/3.6 shows the importance of considering
the FR solution versus the QS one because the QS model is not
capable of predicting propagation of mode 1 and does not de-
scribe well the dispersion of mode 2.

V. MODES IN A DEEPLY SUBWAVELENGTH 2D PERIODIC
ARRAY OF CAPACITIVELY LOADED LOOPS

Following our previous discussion in Section IV-C, in this
section, we will show the results of mode propagation in deeply
subwavelength arrays of capacitively loaded loops using the two
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Fig. 5. Dispersion diagram for an array of capacitively loaded loops where the
direction orthogonal to the ring plane is v = % as in Fig. 1(b) [wo/(27) =
63.87 MHz].

GF models adopted in Section IV. We expect the two models to
provide results in very good agreement because the subwave-
length condition satisfies the QS assumption.

We analyze modes with real and complex wavenumber trav-
eling along the z-direction with kg = k%, where k, = 3, —
jor, (assuming an observer along the positive x-direction). We
consider 2D periodic arrays of capacitively loaded loops em-
bedded in free space (i.e., & = ko), for the three loop orien-
tations in Fig. 1(a)—(c), arranged in a square lattice with pe-
riodicities d, = d, = 23 mm. The use of a lumped capac-
itor largely lowers the resonance frequency of the loop, making
the array deeply subwavelength with respect to the free-space
wavelength. This characteristic can be observed by the fact that
the light line in the dispersion diagrams in Figs. 4-6 is almost
a vertical line, in contrast to the case described in Fig. 3. We
observe similar features to the dispersion diagrams reported in
Figs. 11 and 12 in [28] for an array of plasmonic nanospheres.
Moreover, the use of a lumped capacitor allows for an easy tun-
ability of the loop resonance frequency. We use copper loops
with the following characteristics: L = 33 nH, ¢' =188 pF,
Q =+/L/C/R =200, wy/(27) = 63.87 MHz, as in [22], and
thus d,, = d,, & X¢/204; a practical design for the loops would
ber ~ 8.47mm, w ~ 0.826 mm, i < w and I; = 67.17 m? at
63.87 MHz, achieved using the formulas reported in Section II.

A. Loops With Axis Along the z-Direction (T-Pol)

The dispersion diagrams (limited to modes with a, > 0) for
an array as in Fig. 1(a), where the direction orthogonal to the
ring plane is v = z, are shown in Fig. 4 for both 3, and «,
of the wavenumber k,, = 6, — ja, with respect to the angular
frequency normalized to the SRR resonance one [we recall that
wo/(27) = 63.87 MHz]. Therefore, each magnetic dipole mo-
ment is polarized transversely with respect to the direction of
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proper solutions computed using the FR GF. Perfectly overlapping curves can
be calculated using the QS GF.

propagation (T-pol). At low frequency, the mode “Proper” is a
backward physical proper bound mode with an almost constant
negative value of 3, and decreasing c,,. Increasing frequency,
this mode has a wavenumber whose real part 3, crosses the light
line (3, is still negative), thus becoming a physical backward
leaky mode (although this is a condition that happens for a very
narrow bandwidth due to the deep subwavelength condition).
When 3, goes from negative to positive without changing the
sign of «,, (i.e., crossing from III to IV quadrant of the complex
plane), this mode transitions to the forward mode “Improper”,
which is physical and leaky when 5, < k and becomes un-
physical and bound when 3., > k. When physical, this mode ex-
hibits also a small ¢, for a small frequency band for both bound
and leaky conditions, and thus it is a good candidate for both
waveguiding and radiation purposes. In particular, the forward
improper leaky mode around w/wg = 1.06 in Fig. 4 provides
directive radiation away from broadside and even in the endfire
condition thanks to the small attenuation constant cv,.. Note that
this mode has very high attenuation constant for w < wqy and
starts to be able to propagate along the array for w > wy, i.e.,
when magnetic energy is predominantly stored in the loops.

The modes evaluated with the QS approximations are found
in good agreement with dynamic case (FR). To conclude, note
also that other modes are present, but not reported, because they
exhibit larger attenuation constant cv,,.

B. Loops With Axis Along the xz-Direction (L-Pol)

In Fig. 5, we show dispersion diagrams similar to those in
Fig. 4, but now for the array in Fig. 1(b), where the direction
orthogonal to the ring plane is v = x. Therefore each magnetic
dipole moment is polarized longitudinally with respect to the
direction of propagation (L-pol).

At low frequency, the mode “Improper” is a backward un-
physical improper mode with increasing [, and increasing c,,.
When 3, goes from negative to positive without changing the
sign of «, (i.e., crossing from the III to IV quadrant of the com-
plex plane), this mode transitions to the mode “Proper”, a proper
forward mode, physical and bound when 3, > k. In particular,
this physical mode exhibits a small «, forw < wy, but there it
is unphysical for 3, < 0. It also exhibits a low attenuation con-
stant in a small frequency region for w > wg, and for 3, > k&
is physical, and thus it can be excited. In this small frequency
region, it can be used for forward propagation.

Note that this mode, in general, has very high attenuation con-
stant for w > wy, in contrast to the case in Fig. 4. It is able to
propagate along the array for w < wy, i.e., when electric energy
is predominantly stored in the loops.
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Notice also that other modes are present, but not reported,
because they are largely attenuated. No backward propagation
with moderately low attenuation is found in this case. The
modes evaluated with the QS approximations are found in good
agreement with dynamic case (FR).

C. Loops With Axis Along the y-Direction (T-Pol)

We show in Fig. 6 the dispersion diagrams, similarly to what
we did in Fig. 4, but now for the array in Fig. 1(c), where the
direction orthogonal to the ring plane is v = y. Therefore, each
magnetic dipole moment is polarized transversely with respect
to the direction of propagation (T-pol). At low frequency, the
mode “Proper” is a backward physical proper bound mode with
increasing /3, and decreasing cr,;. A minimum normalized atten-
uation constant of about 0.4 is reached in the resonant region,
at an angular frequency slightly smaller than wy. At high fre-
quency, the mode is still proper, physical and backward, and has
high attenuation constant. The mode “Improper”, an unphysical
improper mode, is found to have a propagation constant almost
on top of the one of the proper mode.

Notice also that other modes are present, but not reported, be-
cause they are largely attenuated. No forward propagation with
moderately low attenuation is found in this case. The modes
evaluated with the QS approximations are found in good agree-
ment with dynamic case (FR).

VI. CONCLUSION

The strength of our analysis is that it allows for a compre-
hensive characterization of the modal wavenumbers according
to proper, improper, forward, backward, bound, and leaky
conditions. This, in turn, allows for the determination of
the physical and unphysical modes excitable by a localized
source, a defect, or array truncation. This enables the use of
the described method for designing waveguiding or radiating
structures based on magnetoinductive waves. We have shown
that modal wavenumber features are well described by mag-
netoinductive waves, under the QS approximation, in deeply
subwavelength SRR arrays, as shown in Section V. In contrast,
only salient propagation characteristics are achieved when
the array dimensions are comparable to the SRR resonance
wavelength in comparison to the case when field retardation is
accounted for, as shown in Section IV. In this latter case, the
QS approximation totally misses the description of some other
mode.

APPENDIX A
DERIVATION OF THE EWALD REPRESENTATION FOR THE
QUASI-STATIC GREEN’S FUNCTION

We summarize here the steps to obtain the Ewald represen-
tation for the quasi-static dyadic Green’s function to be used in
(5). According to [39] and [47], one can write

52
Rons 2
Rmn \/— / ( 3)

Then, by splitting the integral in (23) into the summation

e = (]‘OE—&- [z . with E = /7 /(d,d,) being the Ewald pa-
rameter, the first integral represents the spectral term, and the
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second one the spatial term. Following the steps in [31] and [39],
one can easily express the spectral terms as in Section III, with

k:pqg = v/ —Kt pg - Kt pg- Moreover, according to [39] and [47],

one can write

2 /67R37l7152 ds — eI'fC(RmnE)
VT
E

which allows for the retrieval of the spatial terms in Section III.
Interestingly, these expressions can be also obtained by evalu-
ating the formulas in [31] and [39] with & = 0.

(24)

R’”LTL

APPENDIX B
RETRIEVAL OF REFLECTION AND TRANSMISSION COEFFICIENTS
USING THE SINGLE DIPOLE APPROXIMATION

In general, it is possible to compute the induced magnetic
dipole moment 7y by solving the scalar equation in (9) in
the case of a 2D periodic array illuminated by a TE-polarized
incident plane wave that evaluated at the origin is HE, =
H (cos #% +sin 0%) with § being the incident angle and H 1,
the plane wave magnitude. The scattered magnetic field Hpy

produced by such an illumination is then calculated as

Hpw (1,100, ki) = G (T, Too, ki) - moo (25)
where k; = k.%X 4+ k,¥ is the transverse part of the plane wave
wavenumber k = k,x+k,y k.2, where the plus (minus) sign
is used when the observation point r is above (below) the array

plane, and k. = /k% — k2 — k2. The term G5y (r, roo, k¢) is

computed as
e—dki(r—roo) o —Jjk- [z—zng|

Qﬁv(rarooykt) = 2jdod,k
iy vz

(k1 — K]
(26)

assuming that only the 00th Floquet component is within the

first Brillouin zone, implying that d,, d,, are shorter than half-

wavelength. Then, reflection and transmission coefficients from
the array are evaluated as

st o
Hpw - x
inc &7
Hps - x

o>

Hjy -
I'=-— T=1+ 19— @7
HPVV ’

b4

where Hy{, and Hiy, are scattered magnetic fields from the
2D array of SRRs above and below the array plane referred to
the array plane, respectively.
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