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ABSTRACT OF THE DISSERTATION

Adiabatic Motion of Fault Tolerant Qubits

by

David Edward Drummond

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, August 2014

Dr. Leonid P. Pryadko, Chairperson

This work proposes and analyzes the adiabatic motion of fault tolerant qubits in two

systems as candidates for the building blocks of a quantum computer. The first proposal

examines a pair of electron spins in double quantum dots, finding that the leading

source of decoherence, hyperfine dephasing, can be suppressed by adiabatic rotation

of the dots in real space. The additional spin-orbit effects introduced by this motion

are analyzed, simulated, and found to result in an infidelity below the error-correction

threshold. The second proposal examines topological qubits formed by Majorana zero

modes theorized to exist at the ends of semiconductor nanowires coupled to conventional

superconductors. A model is developed to design adiabatic movements of the Majorana

bound states to produce entangled qubits. Analysis and simulations indicate that these

adiabatic operations can also be used to demonstrate entanglement experimentally by

testing Bell’s theorem.
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Chapter 1

Introduction to Quantum

Information

1.1 Historical Overview of Quantum Computing

The fundamentally different physics at the atomic scale has interested and con-

founded scientists ever since the discovery of quantum mechanics in the first quarter of

the twentieth century. While physicists did not fully reconcile the philosophical ramifi-

cations of the theory of quantum mechanics, they came to terms with it and made in-

credibly successful predictions in the decades that followed. However, in 1964 Bell made

the philosophical differences between the classical and quantum worlds more concrete

by conceiving his famous inequality that could be experimentally tested [7]. Subsequent

experimental results were consistent with quantum mechanical predictions, suggesting

that nanoscopic systems are inherently different from the macroscopic systems that our

every-day intuition is based on.

This difference led physicists like Poplavskii and Feynman to believe that it was

physically impossible to simulate a quantum mechanical system on a classical computer
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[35, 88], suggesting that a new type of computer constructed from a quantum system

may be more powerful than a classical Turing machine. Thoughout the 1970’s and

1980’s many physicists established quantum information theory and elaborated on the

specific requirements and potential of a quantum computer [119, 53, 51, 75, 9, 120, 29, 8].

Specifically, Deutsch showed that a quantum Turing machine could not only simulate a

classical Turing machine, but could fundamentally out-perform conventional computers

at certain tasks [25].

In the 1990’s, physicists developed several algorithms that could be imple-

mented on a quantum computer exponentially faster than classical computers [34, 27,

109, 46]. In particular, Shor discovered a quantum algorithm in 1994 capable of factoring

large numbers in reasonable times, which was previously considered impossible and thus

the crux of many of the cryptographic systems still in use today [106]. These discoveries

spurred further interest into the theory of quantum information and the pursuit of a

physical realization of a quantum computer.

Over the past 20 years, there have been many proposals for systems that could

perform quantum computations and numerous experimental attempts at constructing

them. While important developments in the field of quantum error correction made

building a quantum computer more feasible, it has proven to be one of the most chal-

lenging goals in contemporary physics. At the heart of the difficulty is the delicate

requirement of controlling individual particles, yet shielding them from their local envi-

ronment. In recent years, experimental progress has been made through both incredible

effort and advances in nano-technology and material science [80, 112, 28, 3, 30, 4].

Nonetheless, it is far from clear when, or whether, these advances will produce a quan-

tum computer that surpasses the power of classical computers.
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At the same time, theorists have proposed innovative new approaches that

use the concept of fault tolerance, building a quantum computer from systems that

are inherently immune to certain environmental factors [89]. Rather than using a single

two-state quantum system (i.e., qubits), these proposals encode quantum information in

multiple qubits; some non-local degrees of freedom of a collection of qubits are tolerant

to errors from any single local disturbances. Though these proposals often require more

complicated setups or more advanced physics, fault tolerant quantum information offers

an additional avenue towards a quantum computer.

This dissertation introduces and analyzes two proposals for fault tolerant quan-

tum systems: the spin state of two electrons in a double quantum dot, and the particle

parity of a topological state in a Majorana wire. In particular, this dissertation analyzes

the gradual, adiabatic motion of their constituents that is crucial to both these propos-

als. The remainder of this introduction will briefly review the fundamentals of quantum

information necessary to understand the two proposals discussed in the later chapters.

For a more thorough review of quantum information, the interested reader should see

the texts by Nielsen and Chuang[84] or Mermin[79].

1.2 Fundamentals of Quantum Information

1.2.1 Qubits

Rather than the classical bit that only takes the values of 0 or 1, the fun-

damental unit of quantum information, known as a quantum bit or qubit, can be a

superposition state, |ψ〉, of two orthonormal basis states |0〉 and |1〉 of a quantum sys-

tem

|ψ〉 = α|0〉+ β|1〉 (1.1)

3



where α and β are complex coefficients that satisfy

|α|2 + |β|2 = 1. (1.2)

When the physical system is measured, the state is projected to either |0〉 or |1〉 with

probability |α|2 or |β|2, respectively. The overall phase of |ψ〉 is not physically relevant

since the probabilties depend only on the absolute value of inner products. For example,

the probability of measuring a qubit in the state |0〉 is

∣∣〈0|ψ〉∣∣2 =
∣∣〈0|(α|0〉+ β|1〉)

∣∣2 (1.3)

=
∣∣α〈0|0〉+ β〈0|1〉

∣∣2 (1.4)

= |α|2. (1.5)

The choice of basis states used to describe a qubit is not unique; any qubit can be

written in terms of any other orthonormal bases such as |0̃〉 = (|0〉 + |1〉)/
√
2 and

|1̃〉 = (|0〉 − |1〉)/
√
2. In practice, the preferred basis choice usually depends on the

physical method of measurement. For example, when encoding information in the spin

of electrons, the measurement device typically separates the spin in two directions, which

are conventionally defined as |0〉 and |1〉.

Mathematically, the superposition in Eq. (1.1) can be represented by a column

vector

|φ〉 = α|0〉+ β|1〉 =⇒ φ =

 α

β

 . (1.6)

4



This representation is generalized to multiple qubits through the Kronecker product.

For example, two general qubits can be represented as

|ψ1〉 ⊗ |ψ0〉 ∼

 α1

β1

⊗

 α0

β0

 =



α1

 α0

β0


β1

 α0

β0




=



α1α0

α1β0

β1α0

β1β0


, (1.7)

which maintains the binary convention from classical bits. For example, the state |10〉 ≡

|1〉 ⊗ |0〉, which is the binary version of 2, is represented as

 0

1

⊗

 1

0

 =



0

 1

0


1

 1

0




=



0

0

1

0


, (1.8)

with only element 2 non-zero (with the count starting from 0). The Kronecker product

and this binary rule both generalize as one would expect, for any number of qubits.

1.2.1.1 Superposition

While the probabilistic interpretation of the coefficients in Eq. (1.1) may seem

similar to a statistical ensemble of states, superposition is fundamentally different. In

addition to the ratio of the coefficient magnitudes, the relative phase difference between

α and β also contains information that can lead to physically measurable results. For

example, it is tempting to consider the state (|0〉+ |1〉)/
√
2 as simply an equal mixture

of |0〉 and |1〉. However, this description doesn’t discern between the previous state and

(|0〉 − |1〉)/
√
2, despite the fact that these two states are distinct in another orthogonal

basis. To make this distinction concrete, a superposition such as Eq. (1.1) is known as
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a pure state, while a classical mixture of states from an ensemble is known as a mixed

state.

Part of the power of quantum algorithms comes from performing computations

with superpositions of the basis states. For example, instead of separately calculating

the values f(0) and f(1) of some computationally expensive function f(x), a quantum

computer can find both values simultaneously by computing the function with a super-

position of |0〉 and |1〉. More so, a superposition of the two-qubit states |00〉, |01〉, |10〉,

and |11〉 can be used to simultaneously calculate four values and generally a quantum

computer with n qubits could simultaneously calculate 2n values in principle. This expo-

nential scaling, known as quantum parallelism, is at the heart of the incredible speed-up

of quantum algorithms.

However, this description is slightly specious since only one of the results is

accessible; when the result is measured the final state is projected to just one of the

calculated values. This projection also makes it impossible to check a calculation in

the middle of a computation since any intermediate measurement would ruin the su-

perposition required in later steps. Fortunately, this restriction can be overcome with

clever algorithms that solve a given problem with just a small subset of the function

values. In practice, non-trivial algorithms like those designed by Grover or Shor don’t

solve problems deterministically, but rather find the correct solution in a relatively small

number of attempts, with a probability that tends towards one [46, 106].

It should be noted that this “collapse” of a superposition to a single state upon

measurement can also be useful. For example, if a secure cryptographic key is encoded

in a superposition, any unintended eavesdropping will collapse the state and can be

detected before transimitting sensitive messages [9]. Alternatively, a specific quantum
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state can be initialized by projectively measuring the relevant system until the desired

state is found.

1.2.1.2 Entanglement

Another feature of quantum mechanics that is responsible for the potential

of quantum computers is the property that some multi-particle systems can only be

described as a single “entangled” state. For example, the maximally entangled two-

qubit system

|Φ−〉 = |00〉 − |11〉√
2

(1.9)

cannot be written as separable states (i.e., there are no |ψ1〉, |ψ0〉 such that |Φ−〉 =

|ψ1〉⊗|ψ0〉). Thus measuring one of the qubits automatically determines the outcome of

the other, even if the qubits have been spatially separated after they were entangled [33].

This “spooky action at a distance” can be used to implement useful applications like

quantum teleportation and cryptography that would be impossible on classical com-

puters [34]. More so, entanglement plays a crucial role in many algorithms and other

applications such as superdense coding [10, 55]. For this reason, preparing and demon-

strating entanglement is an essential ingredient for any quantum computing proposal.

The fundamental distinction between entangled and classical systems can be shown

using Bell’s theorem, as discussed further in Sec. 1.3.

1.2.1.3 Bloch Sphere Visualization

A single pure state can be visualized by using the real parameters

θ = 2 tan−1(|β|/|α|) (1.10)

φ = arg(β)− arg(α) (1.11)
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to write a qubit as

|φ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. (1.12)

Thus θ and φ can serve as the polar and azimuthal angles, respectively, on the surface

of what is known as the Bloch sphere, with |0〉 and |1〉 at the North and South pole,

respectively (see Fig. 1.1). The Bloch sphere representation is quite helpful for un-

derstanding single qubits and how they evolve. Unfortunately, this simple visualization

doesn’t easily generalize to multiple qubits since any visualization would have to contain

exponentially more information and account for the possibility of entanglement.

Figure 1.1: A single qubit can be represented as a point on the surface of the Bloch
sphere. The latitude of the point describes the probability of measuring |0〉 or |1〉;
Northern points have higher probabilites of measuring |0〉. The longitude describes the
phase difference between the states |0〉 and |1〉 in the superposition.
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1.2.2 Quantum Operations

Despite the complexity of qubits compared to classical bits, any quantum com-

putation can be performed with arbitrary accuracy with a small set of operations known

as universal quantum operations [26, 22].

1.2.2.1 Single Qubit Operations

The simplest operations involve a single qubit at a time, performing operations

such as a bit flip that switches |0〉 ↔ |1〉 or a phase shift that switches |1〉 ↔ −|1〉. More

generally, any single qubit operation can be thought of as an a rotation of the states on

the Bloch sphere. With this in mind, Euler’s rotation theorem ensures that any rotation

can be generated if one can perform arbitrary rotations about two orthogonal axes.

Mathematically, single qubit rotations can be generated by the orthogonal

Pauli spin matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 , (1.13)

which are sometimes referred to as the X, Y , and Z operations. It is easy to see that

the X operation performs the bit flip when acting on a general qubit 0 1

1 0


 α

β

 =

 β

α

 , (1.14)

effectively rotating the state π radians about the x-axis of the Bloch sphere. Similarly,

the Y and Z operations correspond to π-rotations about their respective axes.

In general, any single-qubit operation corresponds to a unitary matrix and

can be performed by allowing an appropiate Hamiltonian to evolve the qubit state.

For example, a two-state quantum system driven by a harmonic electric field with a
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frequency near the splitting energy of the two states, ~ω ∼ ∆E, causes the occupation

probabilities of the two states to oscillate. This periodic behavior, known as Rabi

oscillation, can be described as the operation of the unitary evolution

U(t) = e−iωtσx (1.15)

on the two-level system. The matrix representation of this exponential can be found

by noting that even powers of the Pauli matrices are just the identity, σ2i = 1, so the

Taylor series can be written

e−iωtσx = 1+ (−iωt)σx +
(−iωt)2

2!
1+

(−iωt)3

3!
σx + ... (1.16)

= 1

(
1− (ωt)2

2!
+ ...

)
− iσx

(
(ωt)− (ωt)3

3!
+ ...

)
(1.17)

= 1 cos(ωt)− iσx sin(ωt) (1.18)

=

 cos(ωt) −i sin(ωt)

−i sin(ωt) cos(ωt)

 . (1.19)

Thus an X rotation of any given angle can be performed in this system by oscillating

an electric field for the appropriate duration. Similarly, Y and Z operations can be per-

formed by finding or designing a system with the appropriate terms in the Hamiltonian.

1.2.2.2 Multi-Qubit Operations

Single-qubit operations alone are not sufficient to perform most quantum algo-

rithms; multi-qubit operations are necessary in order to construct a universal quantum

computer [27]. Specifically most algorithms use “controlled” gates that perform an op-

eration on a target qubit if and only if another control qubit is |1〉. For example, the
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controlled-not operation, also known as CNOT, given by

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (1.20)

performs an X rotation (traditionally known as the NOT gate in the classical computing

context) on the right, target qubit if and only if the left, control qubit is 1. Explicitly,

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



 1

0

⊗

 α

β

 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





α

β

0

0


=



α

β

0

0


, (1.21)

while

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



 0

1

⊗

 α

β

 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





0

0

α

β


=



0

0

β

α


. (1.22)

More generally, any single-qubit operation U can be applied to the target qubit, forming

the controlled-U operation, represented in block matrix form as 1 0

0 U

 . (1.23)

Similarly, it is easy to check that the matrix

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


(1.24)
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also represents a CNOT operation, but with the target and control qubits interchanged.

These controlled operations add multi-particle interactions, enabling logical operations

where the outcome of one qubit depends on the input of another qubit. Together with

the single-qubit operations, any non-trivial controlled operation forms a universal set of

quantum operations capable of performing any quantum computation [27].

The importance of controlled operations can be seen by observing that they

can be used, together with single-qubit rotations, to entangle two qubits. For example,

a qubit initialized in the state |0〉, then acted on by a π/2-angle Y rotation, given by

e−iπ
2
σy =

√
2

2

 1 1

1 −1

 , (1.25)

[cf. Eq. (1.16)], produces the superposition (|0〉 − |1〉)/
√
2. If this state is used as the

control qubit of a CNOT operation, with a target qubit initialized in the state |0〉, the

resulting state is 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





√
2/2

0

−
√
2/2

0


=



√
2/2

0

0

−
√
2/2


. (1.26)

which represents (|00〉 − |11〉)/
√
2, the maximally entangled state |Φ−〉.

The fact that controlled operations like CNOT can entangle qubits leads to

a very useful consequence: together with entangled qubits, single-qubit rotations are

sufficient to form a universal set of quantum operations [12]. For example, in the context

of qubits formed by Ising anyons discussed in Ch. 3, universal quantum computation

can only be achieved by complementing the topologically protected operations with

entangled qubits in a process known as magic state distillation [11].
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1.2.3 Decoherence

Perhaps the most difficult aspect of constructing a quantum computer is to

overcome decoherence, undesired interactions of the qubits with their environment. Al-

most all scalable physical systems are incredibly sensitive to environmental influences

such as stray electromagnetic fields, disorder, and finite-temperature effects. One can

consider the environment as a large set of unknown qubits that entangle themselves with

the computational qubits and thus introduce unpredictable errors into the calculations.

In order to reliably execute algorithms, a quantum computer needs to perform

several hundreds or thousands of operations without errors. Unfortunately, there is a

difficult trade-off; systems with weaker environmental interactions tend to have longer

operation times. Thus, longer decoherence times usually come at the cost of longer

operation times.

1.2.3.1 Fidelity

In order to track progress in preventing decoherence, a number of mathemat-

ical distances and measures have been introduced in quantum information [41]. While

the details of these measures often depend on the relevant physical system, the most

ubiquitous measure is known as “fidelity”, which generally describes the similarity of

two quantum states. This dissertation only considers the fidelity that compares a pure

state before (ρ0) and after unitary evolution (Uρ0U
†), which leads to the simpler defi-

nition [84]

F = Tr(ρ0Uρ0U
†), (1.27)

where ρ0 is the density matrix of the pure state, U is the time-evolution operator, and

“Tr” is the trace operator. Since the initial state is not always known a priori, it is
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often useful to average the above fidelity over the subspace of possible pure states to

calculate the average fidelity, 〈F 〉, as discussed in more detail for the relevant systems

in Sec. 2.4 and Sec. 4.4. Under these assumptions, the fidelity describes the ability of

a system to preserve the value of its computational qubits. In practice, the fidelity can

be quite close to 1, so the infidelity, 1− F , is usually reported instead.

1.2.3.2 Quantum Error Correction

Even with significant improvements in fidelity, quantum algorithms would be

severely restricted without the ability to correct errors during computations. However,

quantum error correction is much more complicated than its classical counterpart. A

quantum error, which can involve both a bit-flip and a phase-shift, cannot be simply

reversed between steps of an algorithm since measuring a superposition projects the

state to either |0〉 or |1〉, losing the information contained in the superposition and

destroying any entanglement required for further steps. Furthermore, it is impossible to

copy a general superposition prior to measuring for errors, due to a quantum mechanical

rule known as the no-cloning theorem [120, 29].

Nevertheless, there are more advanced ways to correct errors by encoding the

information of a single qubit into several entangled qubits using quantum error correction

codes [107, 111]. While these codes require many more qubits, they make it possible to

find the error syndrome, which can be used to detect and correct errors without directly

measuring the state. Since these codes are self-correcting in a sense, quantum error

correction codes are one form of fault tolerant qubits. For a more thorough review of

the field of quantum error correction, the interested reader should read the overview by

Gottesman [44].
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Crucially, quantum error correction codes can be concatenated by encoding

one logical qubit with several physical qubits, then using several of those coded qubits

to create another layer of coded qubits, continuing in this manner indefinitely until

the fidelity is sufficiently high. This repeated use of codes only helps if the increased

overhead of operations needed for the coding scheme does not cause more errors than it

corrects. While the details of this requirement depend on the specific system and type of

errors possible, this important threshold for the infidelity per operation typically ranges

from 10−4 to 10−2. In practice, the infidelity needs to be well below the threshold to

avoid needing several levels of error correction codes, and thus, a prohibitve number of

qubits. For this reason, the goal of most quantum computing proposals is to perform

quantum operations while remaining below this infidelity threshold, which is the focus

of the proposal discussed in Ch. 2.

1.3 Bell’s Theorem

This section briefly reviews Bell’s theorem and the relevant entanglement in-

equalities. It only covers the basic aspects needed for the proposal in Ch. 4; the inter-

ested reader should refer to the numerous works on the topic for a more comprehensive

review [90, 78, 104, 79, 84].

1.3.1 Bell’s Inequality

To derive a simplified version of Bell’s inequality, consider an experiment that

separately measures each qubit of the state |Φ−〉 = (|00〉 − |11〉)/
√
2 with one of three

different methods, denoted a, b, and c. When both qubits are measured using the same

method, the results are always the same. However, when the two qubits are measured
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using different methods, the results are completely uncorrelated. Thus the possible

results for one qubit measurement depend on what method is used for the other qubit,

even if the measurement events are well separated spatially (i.e., space-like).

Einstein, Podolsky, and Rosen famously objected to this type of non-local be-

havior [33], citing it as motivation for a more complete theory that removes the proba-

bilistic nature of quantum mechanics by introducing “hidden variables”. Hidden variable

theories predict, with full certainty, the outcomes of different measurement methods on

a single qubit, even though only one measurement at a time is possible. Bell’s theo-

rem states that any local hidden variable theory makes predictions that are inconsistent

with quantum mechanics [7]. Thus any experiment that agrees with quantum mechanics

rather than hidden variable theories, implies that the qubits in the system are entangled.

To see where the two theories are inconsistent, consider the interpretation of

|Φ−〉 in hidden variable theories. Instead of a pure state, it is viewed as one instance

from a classical ensemble of states, prepared with different hidden variables. If an

experimentalist could measure a single preparation with all three methods at once, the

two qubits’ results would match for each method. In this view the two qubits only seem

uncorrelated when using different methods, but are actually correlated regardless of the

method chosen. Thus the possible results of one qubit measurement don’t depend on

the method chosen for the other.

While this interpretation avoids non-local behavior, it replaces a superposition

of states with a classical ensemble. Thus any single preparation in the ensemble must

be either 0 or 1, not a more general superposition. Since there are three measurement

methods, but only two possible outcomes, the pigeonhole principle states that at least

two of the methods must give matching results. By defining P=(a, b) as the probability

that the results match when one qubit is measured with a and the other is measured
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with b, this statement can be written

P=(a, b) + P=(b, c) + P=(a, c) ≥ 1, (1.28)

which is one version of Bell’s inequality. Meanwhile, quantum mechanics predicts that

this inequality is invalid for certain measurement methods, which demonstrates Bell’s

theorem. Specifically, each of the probabilities can be 1/4, leading to a violation of the

inequality by 25%.

1.3.2 Clauser-Horne-Shimony-Holt Inequality

While this inequality can be tested experimentally in principle, it requires

method b to be tested for both qubits, which would be difficult to accomplish exactly

in many proposals. Instead, consider the case where the left qubit of |Φ−〉 is measured

with either method L1 or L2, while the right qubit is measured using either method R1

or R2. Without superposition, each hidden variable preparation of the left qubit must

have either L1 = 0 or L1 = 1, meaning that measuring the left qubit with method L1

would yield 0 or 1, respectively. It is simpler to derive the inequality by considering the

parity of these quantities so we use 1 and −1 for even and odd parity, respectively, for

the remainder of this appendix. Thus, each preparation must have L1, L2, R1, and R2

as either 1 or −1 according to the hidden variable interpretation.

Consider the quantities L1+L2 and L1−L2; either L1+L2 = ±2 and L1−L2 =

0, or L1 + L2 = 0 and L1 − L2 = ±2. This implies that the quantity

|(L1 + L2)R1 + (L1 − L2)R2| = 2 (1.29)

for each preparation since one of the terms vanishes in either case.

If an experimentalist could measure the qubits with more than one method at

a time, this prediction could be tested directly. Instead, one must extract a statistical
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prediction that only requires a single measurement of each qubit for any given prepara-

tion. With that in mind, note that the expectation value of any constant is simply that

constant, and any variable X satisfies |〈X〉| ≤ 〈|X|〉 for any probability distribution.

Applying these arguments to Eq. (1.29) yields the eponymous inequality first derived

by Clauser, Horne, Shimony, and Holt[19]

|〈L1, R1〉+ 〈L2, R1〉+ 〈L1, R2〉 − 〈L2, R2〉| ≤ 2, (1.30)

where 〈L,R〉 = P=(L,R)−P6=(L,R) is the expectation value for the combined parity of

the left and right qubits when measured with methods L and R, respectively. Since each

term only involves one measurement per qubit, it is possible to predict the left side of

the inequality with quantum mechanics. For several measurement method combinations

the left side can be as large as 2
√
2 ' 2.8, a violation of over 40%. Thus the quantum

mechanical predictions are inconsistent with the local hidden variably theories and any

experiment that violates the CHSH inequality negates the local hidden variable theories,

demonstrating entanglement in the system.
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Chapter 2

Double Quantum Dots Spatial

Exchange Proposal

2.1 Introduction

In recent years there has been great interest in the prospect of using scalable

solid-state devices to implement qubits for potential applications such as quantum com-

putation. One promising candidate for a qubit is a pair of electron spins in quantum

dots, which forms a fault-tolerant subspace that is immune to collective decoherence [69].

This section briefly reviews double quantum dots, though the interested reader should

refer to texts such as Marder [76] or Refs. [63, 97] for more details.

2.1.1 Quantum Dot Background

The quantum dots in quantum computing proposals are built from semicon-

ductor heterostructures that combine different semiconductor alloys with very similar

properties to realize novel band structures not typically possible in nature. For example,

since GaAs and AlAs have similar lattice sizes and structures, yet different band gaps,

19



constructing a layer of Ga0.7Al0.3As on GaAs using molecular beam epitaxy leads to an

abrupt change in the band structure at the junction (see Fig. 2.1B).

Figure 2.1: Band structure of a heterostructure showing the band bending and abrupt
change at the junction in (A) and (B). The chemical potential can be tuned to occupy
only a small inversion layer, shown in (C) and (D). Figure from Ref. [76].

With appropriate doping of the semiconductor, the chemical potential can be

tuned to produce an inversion layer (see Fig. 2.1C), a small set of states that are bound

for sufficiently small temperatures (typically on the order of a Kelvin). Thus the junction

of the two alloys of the heterostructure forms a plane of confined electrons known as a

two-dimensional electron gas (2DEG).

The electrons can be further confined by placing electrostatic gates on the top

or bottom of the sample, parallel to the 2DEG. By placing a long, thin gate across the

sample with a small opening, known as a quantum point contact, the path of electrons

from a source to a drain can be narrowed so much that the resulting conductance

through the opening is quantized in units of 2e2/h, allowing for very accurate detection

of conductance [76].
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Figure 2.2: Quantum dot confining a small area of a two-dimensional electron gas be-
tween two quantum point contacts and a plunger gate. Figure from Ref. [76].

A quantum dot, which is essentially a zero-dimensional quantum well, can be

built with two quantum point contacts that confine an area of a 2DEG with a radius

on the order of 100nm. Together with the quantum point contacts, another “plunger”

gate is used to control the number of electrons in the interior of the dot using Coulomb

repulsion, known as the Couloumb blockade in this context. With careful control of

the voltages on the plunger and across the two sides of the sample (see Fig. 2.2), it is

possible to control and detect the presence of a single electron in the dot [63, 97, 87].

2.1.2 Double Quantum Dot Qubit

With the ability to confine a single electron in a quantum dot, it is theoretically

possible to encode a qubit with the spin of that electron. Unfortunately, the spin of the

electron would couple to any stray magnetic field in the system and quickly decohere

before any meaningful operations could be performed.

However, Levy proposed a fault-tolerant modification of this qubit that is im-

mune to a uniform magnetic field [69]. By using a pair of electrons shared between a
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Figure 2.3: Double quantum dots confining a pair of electrons to encode a fault-tolerant
qubit immune to a uniform magnetic field formed from the ms = 0 triplet and singlet
spin states. From Ref. [87].

double quantum dot (see Fig. 2.3), with the ms = 0 triplet and singlet states as the

logical basis states

|0〉 = | ↑↓〉+ | ↓↑〉√
2

, |1〉 = | ↑↓〉 − | ↓↑〉√
2

. (2.1)

Since these states have an equal superposition of up and down spin states, a uniform

magnetic field has the same effect on the spins of each dot, producing an innocuous

overall phase. Nonetheless, each electron is still subject to the local hyperfine interaction

from the nuclear spins of the semiconductor lattice of each individual dot, which are

generally different for each quantum dot and thus lead to dephasing of the individual

electron spins [14].

There have been several proposals to suppress this dephasing such as nuclear

polarization [14, 59, 47], state narrowing [62], and spin-echo pulse correction [60, 123].

While improved coherence has been experimentally demonstrated using these techniques,

the coherence times desired for applications have proven very difficult to achieve. For
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example, pumping methods have been used to partially polarize nuclei, but the nearly

full polarization needed has yet to be achieved [62, 52, 113, 97].

Promising results have been shown using spin-echo sequences through the ex-

change interaction between two spins [87, 5, 117]. The exchange is controlled by lower-

ing the tunneling barrier between the two quantum dots using quickly-controlled electric

gates. This leads to Rabi oscillations; a single π-pulse corresponds to exchanging the two

spins. Sequences of such pulses effectively couple both spins to the same average hyper-

fine interaction resulting in improved coherence times. While several echo sequences can

be performed using this exchange, it is likely that the electrical gate noise and spatial

variations in the Overhauser field remain the dominant sources of dephasing [5].

Rather than relying on interdot tunneling, the current proposal uses a spatial

exchange of the two quantum dots, allowing the two electrons to traverse the same path,

spending the same time coupled to the local nuclei, as shown in Figure 2.4. Compared

to exchange via tunneling, ideally, this should eliminate the effect of the electrical gate

noise. On the other hand, in the presence of spin-orbit coupling, the motion of electrons

may introduce additional errors. In the remainder of this chapter, we analyze how these

errors depend on the parameters of the motion and discuss the constraints and possible

parameters for potential implementation of this proposal.

It should be noted that a similar setup with spatial exchange of electrostatically-

defined quantum dots has been discussed in relation to holonomic quantum computa-

tion [42, 105]. However, the corresponding coherence estimates have been done in the

absence of a magnetic field. This proposal focuses on the parameter range characteristic

of double-quantum dot qubits and accounts for typical magnetic fields of order & 0.1T.

23



Figure 2.4: Suggested electrode geometry for a rotating double-quantum-dot qubit with
top and bottom gates in different shades of gray. Exchange gates via real space rotation,
as opposed to tunneling, are expected to strongly reduce the qubit sensitivity to charge
noise.

The outline of the remainder of this chapter is as follows. In Sec. 2.2, the

Hamiltonian of the double-quantum dot qubit with spatial exchange is defined. The

effective spin-only Hamiltonian for a single electron in a moving quantum dot is derived

in Sec. 2.3, and the single-qubit fidelity associated with a sequence of double-dot rota-

tions is found in Sec. 2.4. Simulations of a possible protocol are shown in Sec. 2.5, and

the constraints and corresponding characteristic time and distance scales are discussed

in Sec. 2.6, followed by a summary in Sec. 2.7.

2.2 Double Quantum Dot Setup

Consider a qubit formed by a pair of quantum dots electrostatically defined

in a III-V semiconductor (e.g., GaAs/AlGaAs) heterostructure using a system of top

and bottom gates similar to that discussed in the previous section and illustrated in

Fig. 2.4, with the parameters of the dots similar to the experiments in Refs. [87, 5, 117].
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Specifically, each dot contains a single electron, with a typical dot-size quantization

energy ~ωd ∼ 1meV. The qubit is defined as the subspace of the singlet and ms = 0

triplet states of the two electrons. The triplet degeneracy is removed by a uniform,

constant magnetic field B0 of at least ∼ 0.1T, applied perpendicular to the sample,

which creates a Zeeman gap of ∆ ∼ 2.5 µeV. The electrons interact with N ∼ 106 spins

of the lattice nuclei, leading to a different local hyperfine interaction for each electron.

This can be approximated as a Zeeman interaction with a random, fluctuating, non-

uniform magnetic “Overhauser” field BN ∼ 1mT.

To prevent dephasing, both quantum dots will be moved along the same trajec-

tory in a time much shorter than the relaxation time of the nuclear spins, tnuc ∼ 100 µs,

so it is assumed that the Overhauser field is quasi-static. In order to reduce the sensi-

tivity to charge noise the distance between the dots must be significantly greater than

the size of each quantum dot, a ∼ 100nm. Due to this spatial separation between the

dots, the Hamiltonians of each electron can be treated separately,

H = Hd(r0) +HZ + VZ(r, t) +HSO + V (r, t). (2.2)

Here the dot Hamiltonian is given by

Hd(r0) =
p2

2m
+ U(r− r0(t)), (2.3)

with the canonical momentum p = P+ eA/c and the confining potential U centered at

r0 ≡ r0(t); the Zeeman Hamiltonians for the externally-applied and Overhauser fields

are respectively

HZ =
gµB
2

B0 · σ, (2.4)

VZ(r, t) =
gµB
2

BN(r, t) · σ, (2.5)
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and the spin-orbit Hamiltonian is given by

HSO = σiCijpj . (2.6)

The last term, V (r, t), accounts for additional effects originating from disorder, vari-

ation of the dot potential as it moves due to imperfections of the confining potential,

as well as phonons. The spin orbit coupling coefficients Cij in Eq. (2.6) incorporate

both Dresselhaus (originating from the lack of the inversion symmetry of the lattice)

with Cyy = −Cxx = β, and Rashba terms (structural inversion asymmetry due to the

quantum well) with Cxy = −Cyx = α. This specific form assumes that the growth of

the semiconductor heterostructure and the quantum well asymmetry are in the positive

z direction,[108, 121] so all the matrix elements that involve z are zero.

For numerical estimates the effective electron mass used is m ∼ 0.067me, and

the spin-orbit parameter is assumed to satisfy α ' β with values ranging from 103 to 104

m/s, as appropriate for typical GaAs heterostructures.[108] Based on the above values,

mβ2 � gµBB � ~ωd, so terms quadratic in the spin-orbit coupling can be ignored for

the following analysis.

2.3 Effective Single-Dot Hamiltonian

Consider the moving reference frame of the dot using the translation operator

Ψ(t) → e−
i
~P·ro(t)Ψ(t), (2.7)

H → e
i
~P·ro(t)He−

i
~P·ro(t) − v0(t) ·P, (2.8)

which introduces the additional term proportional to the dot’s velocity, v0 ≡ ṙ0, and

removes the r0 from the confining potential, U(r − r0) → U(r). This also affects the

vector potential, A(r) → A(r+ r0), in the dot Hamiltonian and spin-orbit term, which
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can be reversed with an appropriate gauge transformation. Using the symmetric gauge,

A(r + r0) = 1
2B × (r + r0), and transforming A → A + ∇f with f = −1

2r · (B × r0)

results in

Ψ → Ψ exp(− ie

~c
f), (2.9)

P → P− e

c
∇f. (2.10)

These transformations introduce two additional terms in the time-dependent Schrödinger

equation i~∂Ψ/∂t = HΨ. The first term, −(e/2c)v0 · (B× r0), arises when Eq. (2.10) is

substituted into the −v0(t) ·P term in Eq. (2.8). The second term, −(e/2c)r · (B×v0),

appears on the left hand side as a result of taking the time derivative of the exponent

in Eq. (2.9). These two terms can be moved to one side of the equation and combined

using the cyclic property of the mixed product:

− e

2c
v0 · (B× r0) +

e

2c
r · (B× v0) = − e

2c
v0 ·B× (r+ r0) (2.11)

which is precisely the vector potential term in −v0 · p. This leads to the moving-frame

Hamiltonian

H = Hd +HZ +HSO + V
(
r + r0(t), t

)
+ VZ

(
r + r0(t), t

)
− v0 · p. (2.12)

Following Golovach et al.[43], a canonical transformation is performed, H → eSHe−S '

(1 + S)H(1 − S) = H + [S,H], where S is anti-Hermitian and chosen to eliminate the

original spin-orbit term. Splitting S = S0 + S1 such that

[S0,Hd] +HSO = 0, (2.13)

[S1,Hd] + [S0,HZ] = 0, (2.14)

and choosing

S0 =
im

~
σiCijrj , (2.15)
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satisfies Eq. (2.13). This can be verified, noting that S0 has no momentum dependence

so it clearly commutes with the confining potential, and[
im

~
σiCijrj ,

p2

2m

]
=

i

~
σiCij [rj , pk]pk

= −σiCijpj . (2.16)

With S0 known, Eq. (2.14) is used to define S1,

[Hd, S1] = [S0,HZ] =
imgµB
2~

Cijrj [σi, σk]Bk
0

= −mgµB
~

CijrjεiklBk
0σ

l

= −gµB
2

Q · (B0 × σ)

=
gµB
2

(B0 ×Q) · σ, (2.17)

where Qi ≡ (2m/~)Cijrj . This equation can be written in terms of the electron’s orbital

states |n〉 in the dot potential,

〈n|[Hd, S1]|m〉 =(S1)nm(En − Em)

=
gµB
2

σ · (B0 × 〈Q〉nm). (2.18)

As long as the relevant dot quantization energies are non-degenerate, En 6= Em, this

can be written as

(S1)nm =
gµB
2

σ · (B0 × 〈Q〉nm)

En − Em

=
gµB
2

σ ·Wnm, (2.19)

where Wnm is defined as

Wnm ≡ B0 × 〈Q〉nm
En −Em

. (2.20)

Expanding the canonical transformation to first order in the spin-orbit parameter con-

tained in S0 and S1, the transformed Hamiltonian is

H̄ ' H + [S0, VZ] − [S0,v0 · p] + [S1, V ] + [S1,HZ] − [S1,v0 · p] + [S1, VZ] (2.21)
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Using the definition of S0, the first two commutators are

imgµB
2~

Cijrj [σi, σk]Bk
N = −mgµB

~
Cijrj(εiklBk

Nσ
l)

=
gµB
2

(BN ×Q) · σ (2.22)

and

− im

~
σiCij [rj , pk]vk0 = mσiCijvj0 =

1

2
Qv · σ, (2.23)

respectively, with Qi
v ≡ 2mCijvj0 defined analogously to Qi. One can now define the

effective spin Hamiltonian by projecting onto the orbital ground state, HS ≡ 〈0|H̄|0〉.

This makes it possible to express the remaining commutators in the transformed Hamil-

tonian using the definition of S1. The first commutator involving S1 in Eq. (2.21) is

simplified by explicitly writing out the commutator and inserting a complete set of

states,

〈0|S1V |0〉 − 〈0|V S1|0〉 =
∑
n>0

〈0|S1|n〉〈n|V |0〉 − 〈0|V |n〉〈n|S1|0〉

=
∑
n>0

(S1)0nVn0 − V0n(S1)n0. (2.24)

Assuming V has no momentum dependence, it commutes with S1 and the order of the

second term above can be reserved. Since S1 is anti-Hermitian, while V is Hermitian,

〈0|S1V |0〉 − 〈0|V S1|0〉 = 2
∑
n>0

(S1)0nVn0

= gµBσ ·
∑
n>0

W0nVn0. (2.25)

This technique can be used on the remaining terms in Eq. (2.21). The second term

involving S1 in Eq. (2.21) vanishes because

(HZ)n0 =
gµB
2

σ · 〈n|B0|0〉 = 0. (2.26)

However, the final commutator in Eq. (2.21) contains the terms

(S1)0n(VZ)n0 − (VZ)0n(S1)n0, (2.27)
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which do not commute because they contain two spin terms, but can be treated using

the spin identity

(σ · a)(σ · b) = a · b+ iσ · (a× b). (2.28)

The first term in Eq. (2.27) becomes

(gµB
2

)2 {
W0n · (BN)n0 + iσ · [W0n × (BN)n0]

}
, (2.29)

and the second term looks quite similar, except the anti-commutator of the cross product

causes the spin dependent term to cancel with the one above, while the spin-indepedent

terms is doubled. The Hamiltonian contains several of these spin-independent terms

that can be taken as constants. The effective spin Hamiltonian, up to a constant, can

now be written simply as

HS =
1

2
~ [ω0 + ω1(t)] · σ, (2.30)

where

ω0 =
gµB
~

B0, (2.31)

is the Larmor frequency, and the time-dependent term ω1 ≡ ω1(t) is

ω1 =
gµB
~

[BN + (BN)0n × (Q)n0] +
4gµB
~

W0nVn0

+
1

2~
Qv −

2gµB
~

W0n(v0 · pn0), (2.32)

where the index n is implicitly summed over all the excited states of the dot. If the

phonons are ignored and the Overhauser fields are approximated as static, the time

dependence of the terms in the first line of Eq. (2.32) comes only from the position,

parameterized by the known trajectory of the dot, r0(t). Similarly, the time-dependence

of the terms in the second line comes from both the position r0(t) and the dot velocity

v0(t), [in fact, these terms are all linear in components of v0(t)]. This simple spin
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Hamiltonian is the key result of this derivation; it is correct to linear order in the spin-

orbit couplings. It should be noted that including cubic spin-orbit terms in the original

Hamiltonian introduces additional terms proportional to v2
0(t) and v3

0(t) in Eq. (2.32),

but these terms are smaller by at least an order of magnitude [64] and the general spin

Hamiltonian form in Eq. (2.30) is preserved.

2.4 Average Fidelity

2.4.1 General Expression

In order to analyze the implications of the additional terms in the effective

spin Hamiltonian (Eq. 2.30), one needs to take into account that the qubit is actually

formed by two electron spins. It will be convenient to assume that the dots’ velocities

are small compared to the speed of sound, v0 � s ∼ 5× 103m/s, meaning the phonon

effects should decouple from the dots’ motion and can be approximated as contributing

to the same “intrinsic” decoherence times as one would have without the motion. The

effect of such decoherence terms on dynamical decoupling has been considered in detail

in Ref. [91]; in the following we assume that these decoherence times are large compared

to the characteristic period T of the dots’ motion and therefore can be ignored.

In the absence of phonons, and approximating the Overhauser field as classi-

cal, the time evolution of the two-spin wavefunction with N = 4 components can be

characterized by a unitary matrix U(t). The qubit subspace Q is formed by the mz = 0

component of the two-spin wavefunction; it has M = 2 dimensions. The standard as-

sumption is that, at the beginning of the experiment, the two spins are initiated in a

pure state |ψ〉 which belongs to the qubit subspace, |ψ〉 ∈ Q. Therefore, when com-
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puting the average fidelity, one only needs to average over the original wavefunctions in

Q.

More generally, consider an M -dimensional subspace Q of an N -dimensional

Hilbert space H. Introducing an N ×M matrix T whose columns are formed by the

components of orthonormal vectors that form a basis of Q, then the components of an

arbitrary wavefunction |ψ〉 ∈ Q are a linear combination of the columns of T ; namely

ψ = Tϕ, where ϕ is an M -dimensional column vector, ‖ϕ‖ = 1. The corresponding

density matrix can be written in this basis as ρ0 ≡ Tϕϕ†T †. The fidelity corresponding

to the evolution matrix U is

F = Tr(ρ0Uρ0U
†) = (ϕ†Wϕ)(ϕ†W †ϕ), (2.33)

where W = T †UT can be thought of as the projection of U onto the subspace Q. The

average fidelity in the subspace can now be calculated using the averaging identities for

components ϕi of the normalized wavefunction |ϕ〉

〈ϕiϕ
∗
j 〉 = δij/M, (2.34)

〈ϕiϕ
∗
jϕkϕ

∗
l 〉 =

δijδkl + δilδjk
M2 +M

. (2.35)

This leads to the average fidelity

〈F 〉 = |TrW |2 +Tr(WW †)

M2 +M
. (2.36)

For the special case of the qubit formed by the singlet and m = 0 triplet

states of two spins, assuming no interdot tunneling, the net evolution matrix is just the

Kronecker product of evolution matrices corresponding to the two qubits, U = U1 ⊗U2.

Further, it will be convenient to decompose each single-spin matrix in the interaction

representation with respect to the precession in the net effective magnetic field along
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the z-axis,

Ui = U0iSi, U0i ≡ e−iσz ϕi(t)/2, (2.37)

where

ϕi(t) ≡ ω0t+

∫ t

0
dt′ ωz

1i(t
′), (2.38)

ω0 is the Larmor frequency, ωz
1i(t), with i = 1, 2 [cf. Eq. (2.30)], are the two dot’s effective

perturbing fields in the z-direction, and the matrices

Si ≡ e−iγi−iφi·σ/2, i = 1, 2, (2.39)

are parametrized as rotations by angle φi ≡ |φi| around the unit vectors φ̂i, with extra

phases γi. These rotations come entirely from transverse, µ = x, y, components of ωµ
1i

in the rotating frame, largely due to the Larmor frequency. Since the Larmor frequency

is large, the additional rotation angles are expected to be small; we expand the average

fidelity (2.36) to quadratic order in components of φi,

〈F 〉 = 1− f0 − f1 − fz2 − f⊥2 + . . . , (2.40)

with the infidelity terms

f0 =
2

3
sin2(∆ϕ/2), (2.41)

f1 =
1

3
(φz2 − φz1) sin(∆ϕ), (2.42)

fz2 =
1

6
(φz2 − φz1)

2 cos(∆ϕ), (2.43)

f⊥2 =
2 + cos(∆ϕ)

12

[
(φ⊥1 )

2 + (φ⊥2 )
2
]
. (2.44)

Note that, as expected, the fidelity only depends on the differences ∆ϕ ≡ ϕ2 − ϕ1 and

φz2 −φz1 of the two precession angles around the z-axis. To the same quadratic accuracy

in the small angles, one can also write

f0 + f1 + fz2 =
1

3
[1− cos(∆ϕ+ φz2 − φz1)], (2.45)
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which only depends on the total phase difference, and is exact in the limiting case when

φ⊥i = 0.

2.4.2 Rotating-Frame Approximation

Returning to the analysis of the single-spin Hamiltonian (Eq. 2.30), the Lar-

mor frequency, ω0 & 4 × 109 rad/s, is the dominant term, ω1 � ω0. Given that the

phonons have been excluded, one can also assume that the dot trajectory is such that

the time dependence in ω1(t) is slow on the scale of ω0. This implies that the interaction

representation Eq. (2.37) is valid, where S(t) is the slow part of the unitary evolution

operator; it obeys the equation

i~Ṡ = Hint(t)S, S(0) = 1, (2.46)

where the dot index is temporarily omitted, and

1

~
Hint(t) ≡ 1

2
ω1(t) · U †

0(t)σU0(t) (2.47)

=
1

2

{
σx[ωx

1 (t) cosϕ(t) + ωy
1(t) sinϕ(t)]

+ σy[ωy
1(t) cosϕ(t)− ωx

1 (t) sinϕ(t)]
}

(2.48)

is the perturbing Hamiltonian in the interaction representation.

The remaining analysis is performed perturbatively with the Magnus (cumu-

lant) expansion,

S(t) = exp(C(1) + C(2) + . . .), (2.49)

where the first two cumulants are

C(1)(t) = − i

~

∫ t

0
dt1Hint(t1), (2.50)

C(2)(t) = − 1

~2

∫
0<t1<t2<t

dt1 dt2 [Hint(t2),Hint(t1)]. (2.51)
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The integration is performed explicitly to leading order in ω1/ω0, also assuming that

the time-dependence of ω1 is slow on the scale of ω0:

iC(1)(t) =
1

2ω0

{
σx[a sinϕ(t) + b0 − b cosϕ(t)]

+ σy[b sinϕ(t)− a0 + a cosϕ(t)]
}
, (2.52)

iC(2)(t) =
1

4ω0
σz

∫ t

0
dt1 [a

2(t1) + b2(t1)], (2.53)

denoting a ≡ ωx
1 (t), b ≡ ωy

1(t), and a0, b0 as the corresponding values at t = 0 [ϕ(0) ≡ 0

by definition]. Eq. 2.40 gives the expression for the average qubit infidelity

1− 〈F 〉 = fz + f⊥1 + f⊥2 , (2.54)

fz =
1

3
[1− cos (∆ϕ+ δ2 − δ1)], (2.55)

f⊥i =
2 + cos(∆ϕ)

12ω2
0

[
(Bi − b0i)

2 + (Ai − a0i)
2
]
, (2.56)

where the index i = 1, 2 refers to the two spins, Ai ≡ ai cosϕ(t) + bi sinϕ(t) and

Bi ≡ bi cosϕ(t) − ai sinϕ(t) are the rotated components of the transverse angular-

velocity vectors, (ωx
1 , ω

y
1), for the corresponding spins, and the additional phases δi are

given by the integrals.

δi ≡
∫ t

0

dt′

2ω0
[ω⊥

1i(t
′)]2. (2.57)

One immediately recognizes the additional phases in Eqs. (2.55) and (2.57) as the effect

of level repulsion, or equivalently as the gap for the spins, driven adiabatically by the

total instantaneous magnetic field ∝ [(ω0 + ωz
1i)

2 + (ω⊥
1i)

2]1/2. Then, Eq. (2.56) can be

interpreted as the effect of the basis change between the original quantization z-axis and

the direction of the instantaneous magnetic field; it is similar in nature to the initial

decoherence associated with any periodic decoupling sequence, see, e.g. Ref. [92].

The terms of the next order in 1/ω0 expansion, omitted in Eqs. (2.52) and

(2.53), include the trivial correction to Eq. (2.53) ∝
∫
dt ωz

1 [ω
⊥
1 ]

2/ω2
0, as well as the ge-
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ometrical phase ∝
∫
dt′W [ωx

1 , ω
y
1 ], where W [x, y] ≡ W [x(t), y(t)] ≡ x(t)y′(t)− x′(t)y(t)

is the Wronskian.

Since ∆ϕ =
∫ t
0 dt

′ [ωz
12(t

′) − ωz
11(t

′)], the term fz does not contain any rapid

oscillations at the Larmor precession frequency ω0, while the terms f⊥i can be averaged

over the period of Larmor precession by replacing A2
i +B2

i with (ω⊥
1i)

2 and dropping all

of the terms linear in Ai, Bi,

f
⊥
i =

2 + cos(φz2 − φz1)

3ω2
0

{
[ω⊥

1i(t)]
2 + [ω⊥

1i(0)]
2
}
. (2.58)

2.4.3 Sequences

Overall, the dynamical decoupling should be designed to null the difference

between the accumulated phases ϕi + δi of the two spins which suppresses the main

contribution to the infidelity, see Eq. (2.55). For a static Overhauser field, this can

be achieved just by ensuring that each spin spends the same amount of time at each

position, e.g., via the solid adiabatic trajectory in Fig. [2.5]. This is also sufficient to

suppress the effect of the velocity-dependent terms in the second line of Eq. (2.32). A

more complicated set of dot rotation involving motion in both directions, e.g., see the

dashed trajectory of Fig. [2.5], are required to suppress a time-dependent Overhauser

field.

To analyze the effect of a sequence of π-rotations in the presence of a time and

position-dependent Overhauser field, consider its Fourier expansion at a position on the

trajectory parametrized by the rotation angle θ,

Bz(θ, t) = A0(t) +
∑
m

Am(t) cosmθ +Bm(t) sinmθ. (2.59)
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Figure 2.5: Time dependent adiabatic trajectories used in the simulations. Plotted is
the position of the first dot parametrized in terms of the angle θ as a function of time
t. The angle-dependent positions were defined as a sum of properly scaled and shifted
hyperbolic tangents. Single direction rotations suppress the effect of a static Overhauser
field but not of a time-varying one. Longer rotation sequences like alternating forward-
and-back suppress the effect of a linear in time Overhauser field. Arbitary rotations
on the Bloch sphere may be accomplished using additional operations when the dot is
stationary, corresponding to the flat segments in the sequence.
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Only the difference between the fields corresponding to the two dots (located at θ and

θ+ π) is relevant for the infidelity Eq. (2.55). This leaves only the terms with m odd in

the Fourier expansion (2.59).

For a term with cosmθ (an even function of θ), a sequence of π rotations acts

the same way, independent of the direction. It is easy to check that with an equidistant

sequence of rotations centered at T0/2, 3T0/2, . . . , (2s + 1)T0/2, where the number of

rotations s is even; any time-independent and linear in t contributions to Am(t) are

suppressed, but a quadratic term would generally remain. Unlike the usual dynamical

decoupling problem[60, 116], it is not generally possible to suppress the quadratic term

of Am(t).

The rotation direction starts to matter for a term with sinmθ which is an

odd function of θ. Here a sequence of π rotations in the same direction picks up a

sum of contributions from consecutive time intervals with alternating signs, suppressing

the time-independent contribution to Bm(t) but not the linear contribution. As an

alternative prescription, a symmetrized sequence of two forward rotations by angle π,

followed by two rotations in the opposite direction can be used to suppress the effect

of the linear in t term in Bm(t). Generally, it is possible to design more complicated

sequences analogous to concatenated or Uhrig’s sequences to suppress the effect of any

fixed-degree polynomial in time Bm(t)[60, 116]. However, this is not expected to be

useful since the quadratic time contribution of Am(t) would still remain.

2.5 Simulations

The above analytical results were corroborated by simulating the two-spin uni-

tary evolution with the effective Hamiltonian (Eq. 2.30). Specifically, the dot trajectory

38



was parametrized by the rotation angle θ = θ1(t); the other dot is assumed to have the

symmetric position, θ2(t) = θ1(t) + π [see Fig. 2.5 for samples of actual trajectories.]

The position-dependent terms in the first line of Eq. 2.32 were simulated in terms of

a three-component correlated magnetic field B(θ) drawn from the Gaussian distribu-

tion with zero average and the correlation function 〈Bµ(θ)Bν(θ
′)〉 = σ2µδµνϑ(θ − θ′) (no

implicit summation in µ, ν = x, y, z), where

ϑ(θ) ≡
∞∑

m=−∞
e−(θ−2πm)2/`2

is an infinite sum of Gaussian functions (which can also be represented in terms of the

Jacobi theta function). These were obtained by applying a Gaussian filter to a discrete

set of uncorrelated random numbers drawn from the Gaussian distribution, and using

the standard cubic spline interpolation with the result. To simulate the components of

the time-dependent magnetic field B(r, t), explicit order-r spline interpolation are used

between several such angle-dependent functions, where r = 1, 2.

For all simulations, the time units were chosen to correspond to the Larmor

precession period, τ0 ≡ 2π/ω0, and the correlation time of the Overhauser field, 4 ·

104τ0, with each component of its r.m.s. value corresponding to rotation frequency,

〈|ω1|2〉 = 0.025/τ20 . The adiabatic trajectories of the dots were simulated using a sum

of appropriately shifted hyperbolic tangents, scaled so that the dot is in motion for

approximately half of the protocol. The leading velocity-dependent term in Eq. 2.32

was simulated using the corresponding derivatives and the parameter Qv/~ = 0.075/τ0,

assuming equal contributions from the Rashba and Dresselhaus parameters.

For the case of the static Overhauser field (see Fig. 2.6) the average infi-

delity is dominated by the contribution from the z-component of the field, and the
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Figure 2.6: Simulated qubit infidelity 1− 〈F 〉 (Eq. 2.36) in the vicinity of the first full
rotation period of the double-dot qubit at t = T . Position-dependent magnetic field
Bµ(θ) is assumed static, and the rotation period T is chosen commensurate with the
Larmor frequency, ω0T/2π = 400. Dashed line: only Bz(θ) is included; the infidelity
minimum is exactly at t = T , in agreement with Eq. 2.56 which is exact in this situation.
Dotted line: only the transverse components Bµ(θ), µ = x, y are included. The infidelity
minimum is slightly off the commensurate time t = T due to the terms not included in
Eq. 2.54. All three components of the field Bµ(θ) are included for the red solid line.
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Figure 2.7: Simulation results for fidelity measured at the end of each cycle, for a linear
time-dependence of Bµ

1i with (a) forward, (b) forward-back dot rotations (cf. Fig. 2.5),
as well as (c) forward-back for quadratic time-dependence.

infidelity nearly vanishes at the end of the spatial exchange protocol. For a linearly

time-interpolated Overhauser field, the infidelity increases over several cycles of the

single-direction π pulses(see Fig. 2.7a), but maintains a low value ∼ 10−5 after alter-

nating between a sequence of two forward rotations, followed by two rotations in the

opposite direction (see Fig. 2.7b). However, for the quadratic interpolation (see Fig. 2.7c)

the infidelity gradually increases even for the alternating protocol, though it stays below

10−4 for several cycles. The code for the above simulation is provided in Appendix A.

2.6 Possible Experimental Setup

Aspects of this proposal, such as the precise construction of few-electron quan-

tum dots in III-V semiconductor heterostructures, have already been demonstrated in

experiments [87, 97, 117, 65]. However, the precise adiabatic rotation required in our
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proposal may be quite difficult to accomplish experimentally. This section discusses

possible design implementations for an experimental realization, as well as physical con-

straints.

As discussed above, our proposal is suitable in materials with relatively weak

spin-orbit coupling such as GaAs/AlGaAs heterostructures. It should be possible for the

electrons in a 2DEG to be confined in the radial direction by creating a circular depletion

layer by placing electrostatic gates with a constant voltage in the center and outer edge of

the circle as sketched in Figure 2.4. Since the tunneling should be suppressed, the normal

interdot spacing should be much larger than the dot size, a, so the circular trajectory

can have a radius r0 ∼ 15a ∼ 1 µm. Confinement and rotation in the angular direction

could be accomplished by placing appropriately chosen time-dependent voltages on the

”wedge-gates” on both sides of the electron (Fig. 2.4). Several of these wedges will be

needed to accomplish the smooth and adiabatic trajectory needed. The combined use of

wedge and circular gates may require gates on both the top and bottom of the sample.

The typical confining potential is approximated by U ∼ mω2
da

2, which only requires

reasonable gate voltages on the order of 100 mV.

The averaging of the hyperfine interaction is only valid in the quasi-static

approximation of the Overhauser field. In general, the hyperfine interaction between

the electron and the nuclei leads to a Knight shift. However, in the presence of the

magnetic field, fluctuating corrections to the quasi-static approximation are inversely

proportional to B0 and can be neglected [114]. Thus, the most significant effect in this

case is due to the dipole-dipole interaction of nearest neighboring nuclei which requires

that T � tnuc ∼ 10−4s [77]. This places a lower bound on the velocity, while there is also

an upper bound necessary to ensure that the Lorentz force from the dot rotation only

deforms the actual path of the electron by a distance much smaller than the correlation
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length of the Overhauser field. This results in the restriction, 10−1 � v � 105 in m/s.

This rather lenient constraint is due to the assumption that the confinement potential

be large compared to the other potentials in our system. This allows one to neglect

trajectory deviations from perturbations such as charge noise. In these estimates, v is

assumed to be small compared to the speed of sound, s ∼ 5× 103m/s. With a/r0 ∼ 15

and v ∼ 10m/s, a rotation period of T ∼ 1 µs, which easily satisfies the above conditions

and, according to the simulations, should result in the infidelities lower than 10−4 for

significant time-scales. The rotation period could potentially be decreased to allow more

operations to be performed before the states decohere.

2.7 Quantum Dot Proposal Summary

The real-space exchange of quantum dots was analyzed as a possible substitute

for the tunneling exchange. Ideally, exchange eliminates the hyperfine dephasing from

the Overhauser field parallel to the applied field, leaving only the smaller effects from

the in-plane field. The real-space exchange accomplishes the same suppression of the

hyperfine interaction, but avoids the problematic sensitivity to charge noise present in

exchange via tunneling. While spatial exchange does introduce additional effects such as

spin-orbit coupling, simple tricks like using pairs of π rotations in alternating directions

can be used to suppress these so that the decoherence is still dominated by the hyperfine

interaction. In particular, this field only enters as the small ratio of the average in-plane

Overhauser field to the externally applied field. Perhaps the simplest way to suppress the

hyperfine interaction in this approach is to reduce this ratio by increasing the externally

applied field.
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In addition, this spatial exchange is compatible with some of the methods

already being attempted such as nuclear polarization via pumping. If the hyperfine

interaction can be further suppressed, the next largest contribution from our spatial

exchange approach would come from the disorder of the sample or the electron-phonon

coupling. The analysis of this spatial exchange also remains valid in systems that use

additional quantum dots [65, 117], with universal quantum operations in mind, as long

as each operation is applied to only two dots at a time.

While the movement of quantum dots requires the precise control of the con-

fining potential, which may be difficult to realize experimentally, the analysis shows that

the construction of such a system is viable. With realistic parameter values from current

experiments, the analysis produces infidelities smaller than 10−4 after ten decoupling

cycles. This setup could also be a productive step towards the experimental realization

of more complicated exchange systems, with many more interesting applications.
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Chapter 3

Majorana Bound States

Background

3.1 Historical Review: Topological Quantum Information

3.1.1 Majorana Fermions

The experimental observation of a self-conjugate fermionic particle with equal

creation and annihilation operators, γ̂† = γ̂, known as a Majorana fermion, has been a

goal in physics since it was first theorized by Ettore Majorana over 75 years ago as a real

solution to the relativistic Dirac equation [74]. It should be noted that the creation (ĉ†)

and annihilation (ĉ) operators of any conventional fermion can be trivialy decomposed

into two self-conjugate forms

γ̂A = −i(ĉ− ĉ†) (3.1)

γ̂B = ĉ+ ĉ†. (3.2)

While these operators are mathematically valid, they do not neccesarily correspond to

physically meaningful particles that occur in nature.
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While the existence of a self-conjugate, elementary particle is still an unsolved

problem [98, 58, 115], there has been recent evidence, and subsequent interest, that a self-

conjugate quasiparticle may also exist in condensed matter systems [37]. Besides being

self-conjugate, these particles are novel because they arise from topological principles

rather than broken symmetries alone. The rest of this section briefly reviews some of

these systems; refer to the articles by Nayak et. al. and Hasan et. al. [83, 48] for a more

thorough review.

3.1.2 Two-Dimensional Spinless p-wave Superconductor

One of the first systems theorized to host a self-conjugate fermion is a two-

dimensional p-wave superconductor with spinless, or spin-polarized, particles as noted

by Read and Green [95], given by the effective Hamiltonian

H =
∑
k

[
tk ĉ

†
k ĉk +

1

2

(
∆∗

k ĉ−k ĉk +∆k ĉ
†
k ĉ

†
−k

)]
, (3.3)

where tk = εk − µ, with single-particle kinetic energy εk, and ∆k has p-wave symmetry

(e.g. ∆k ∝ kx − iky). This system can be diagonalized by making a Bogoliubov-de

Gennes transformation

âk = uk ĉk − vk ĉ
†
−k (3.4)

â†k = u∗k ĉ
†
k − v∗k ĉ−k (3.5)

with the requirement that |uk|2 + |vk|2 = 1. The Bogoliubov coefficients uk and vk can

be found by requiring that [âk,H] = Ekâk, which is consistent with

H = E0 +
∑
k

Ekâ
†
kâk, (3.6)
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for some constant E0 and positive quasiparticle energies, Ek. Together with the transfor-

mation, the commutation relation leads to the Bogoliubov-de Gennes(BdG) equations

tkuk −∆∗
kvk = Ekuk, (3.7)

−∆kuk − t∗kvk = Ekvk, (3.8)

or equivalently in matrix form, tk −∆∗
k

−∆k −tk


 uk

vk

 = Ek

 uk

vk

 , (3.9)

which lead to the equations

E2
k = t2k + |∆k|2, (3.10)

vk
uk

=
tk − Ek

∆∗
k

, (3.11)

|uk|2 =
1

2

(
1 +

tk
Ek

)
, (3.12)

|vk|2 =
1

2

(
1− tk

Ek

)
. (3.13)

The topological nature of this system can be seen by noting the asymptotic behavior of

k. For large values of |k|, ∆k ' 0 and εk � µ, which implies tk ' Ek. Thus as |k| → ∞,

|uk| → 1 and |vk| → 0 [see Eq.(3.13)]. For small k, εk ' k2/(2m∗) and ∆k ' ∆(kx−iky),

so as k → 0 then tk → −µ and ∆k → 0, which together lead to E2
k → t2k, yielding two

distinct cases.

3.1.2.1 Topological Phases

When µ < 0, tk > 0 and tk → Ek implies |uk| → 1 and |vk| → 0, while

when µ > 0, tk < 0 and tk → −Ek implies |uk| → 0 and |vk| → 1. These two

cases have physically distinct phases: the first case, known as strong-pairing, has short-

range wavefunctions, while the second case, known as weak-pairing, has long-range
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wavefunctions [95]. More so, these two phases are topologically distinct, which can be

seen by looking at the relationship between k and the Bogoliubov coefficients uk and vk.

Specifically, values of the Bogoliubov coefficients uk and vk, which satisfy |uk|2+

|vk|2 = 1, correspond to points on the surface of a sphere, S2, with the point |uk| = 1,

|vk| = 0 defined as the North pole, while the opposite case, |uk| = 0, |vk| = 1, is

defined as the South pole. By adding the point at |k| → ∞ as the North pole, the

two-dimensional plane spanned by kx and ky corresponds topologically to S2 as well.

This defines a map from the k-space S2 to u,v-space S2 that forms the homotopy group

π2(S
2), which is equivalent to the group of integers Z. This mapping has an integer

topological invariant, known as the degree, that counts the minimum number of times

a mapping must pass through any point other than the North pole [118, 95].

In the µ < 0 case, both |k| → ∞ and k → 0 can be mapped to the point

with |uk| = 1, |vk| = 0 at the North pole, meaning that this mapping can be smoothly

deformed to the trivial mapping of all points to the North pole. Thus, the mapping

does not need to pass through any point other than the North pole, and the degree of

this phase is 0. For the µ > 0 case, on the other hand, since k → 0 corresponds to

|uk| = 0, |vk| = 1, this mapping must include the South pole and cannot be smoothly

deformed to the trivial mapping. Thus, this phase has degree 1 and these two phases are

topologically distinct; the strong and weak pairing phases cannot be smoothly deformed

into each other without changing the sign of µ.

3.1.2.2 Majorana Bound States and Non-Abelian Statistics

Since these two phases are topologically distinct, any system that includes

both phases must contain a boundary where the topological parameter changes sign,

i.e., µ = 0. At this boundary value, the k = 0 solution has t0 = −µ = 0, meaning
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E0 = 0 since ∆0 = 0. Solving the BdG equations when µ = 0 also yields uk = v∗k,

meaning the k = 0 quasiparticle operator satisfies â†0 = â0 [see Eq. (3.5)] and is thus

a self-conjugate Majorana fermion. As a consequence, a system in the topologically

non-trivial weak-pairing phase that contains a defect in the trivial phase, such as the

core of a superconducting vortex, must have a zero-energy Majorana state bound to

that defect.

While the guarantee of Majorana bound states(MBS) pinned to defects is in-

teresting in itself, the real promise of these states come from their non-trivial exchange

statistics. Unlike the wavefunctions of conventional bosons or fermions that only gain a

phase of 1 or −1 when they are exchanged, these topological bound states can take on

“any” phase upon exchange, and are known as “anyons” for this reason [95, 83].

Just as any conventional fermion can be decomposed into two self-conjugate

fermions [see Eq. (3.2)], a pair of Majorana bound states γ̂A and γ̂B, bound to two

different defects, can be combined to form a conventional, albeit non-local, fermion by

writing

d̂ =
1

2
(γ̂A + iγ̂B). (3.14)

Since the MBS has zero-energy, the presence or absence of this fermion does not change

the energy, meaning there are two degenerate ground states. More generally, 2n Majo-

rana bound states form n conventional fermions, which can each be present or absent,

forming a 2n-fold ground state degeneracy. Physically exchanging any two of the bound

states, known as braiding, applies a non-trivial unitary transformation to the degenerate

manifold of ground states and can be used to perform quantum operations. Further-

more, when exchanging multiple pairs of Majorana bound states, the order of the braid-

ing matters; the braiding operations do not commute, also known as “non-Abelian” in
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the group theory context [83]. Since the MBS bound to topological defects are inher-

ently non-local, they are immune to local pertubations, and thus, excellent candidates

for fault-tolerant qubits.

3.1.3 Additional Topological Systems

Many other physical systems have been proposed to advance towards a more

feasible experimental setup, though the underlying topological arguments often remain

the same. For example, the non-Abelian statistics of Majorana bound states, also known

as Ising anyons, were also discussed in the Moore-Read Pfaffian state of the ν = 5/2

fractional quantum Hall state [81]. In addition, it is worth noting that the ν = 12/5

Read-Reyazi state [96] may host more powerful topological states, known as Fibonacci

anyons, which are capable of universal quantum computation [38, 83], unlike Ising anyons

which require entangled states via magic state distillation [11].

Ivanov showed that equivalent MBS exist in the cores of half-quantum vortices

(vortices where the superconducting phase shifts by π, rather than 2π, as it circles

the core) of p-wave superconductors with spin [54], rather than the spinless or spin-

polarized case discussed previously. Similarly, Kane and Mele found that similar states

should exist in quantum spin Hall states of graphene [56].

Another important step came when Fu and Kane found that the required su-

perconducting Cooper pairs with the rare p-wave symmetry could be replaced by Cooper

pairs that tunnel from a conventional s-wave superconductor into a topological insulator

via the proximity effect [39]. This proposal was advanced even further by Sau et. al.

when they replaced the topological insulator with a ferromagnetic insulator and semi-

conductor with strong Rashba spin-orbit coupling [102]. Alicea simplified that proposal
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even more by showing that the ferromagnetic insulator could be omitted if the semicon-

ductor also had Dresselhaus spin-orbit coupling and a magnetic field was applied [2].

All of these gradual improvements culminated in the proposals by Lutchyn

et. al. [73] and Oreg et al. [86] of a one-dimensional semiconductor nano-wire with

strong spin-orbit coupling, on top of an s-wave superconductor in the presence of a

magnetic field. Since it only involves relatively conventional materials and a one-

dimensional system, their proposal was experimentally attempted by several groups.

These groups reported zero-bias conductance peaks when connecting the nano-wire to a

normal lead [82, 24, 20, 36, 18], indicating a single level at zero-energy that is consistent

with a MBS at the wire-ends. This exciting development has spurred a great amount of

interest in this system, and is the subject of the proposal in Ch. 4.

The remainder of this chapter will introduce and discuss some details of this

“Majorana wire” system. However, it is helpful to first understand a simplified model

analyzed by Kitaev [61], as well as Lieb et. al. in the context of the transverse Ising

model [70].

3.2 Review of Kitaev’s Toy Model

Kitaev’s toy model is a 1D chain of N spinless electrons, with tight-binding

hopping parameter t0, chemical potential µ, and superconducting pairing ∆eiθ with

phase θ on bonds (i.e. p-wave).

H = µ
∑

1≤j≤N

(
c†jcj −

1

2

)
+

∑
1≤j≤N−1

[
−t0(c†jcj+1 + c†j+1cj) + ∆eiθcjcj+1 +∆e−iθc†j+1c

†
j

]
(3.15)

This Hamiltonian is not meant to represent a physical system, but is useful in easily

demonstrating the existence of localized unpaired Majorana modes at the ends of the
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wire. With that said, one can think of a spinless model as a real system where one spin

species is energetically favored, effectively eliminating spin as a true degree of freedom

in the low-energy Hamiltonian. Indeed, the semiconductor wire system discussed in the

next section can be directly mapped to the Kitaev model in certain parameter regimes.

Consider the self-conjugate Majorana operators (i.e. those that satisfy γ† = γ)

γAj = −i(ei
θ
2 cj − e−i θ

2 c†j) γBj = ei
θ
2 cj + e−i θ

2 c†j . (3.16)

. One can easily check the anti-commutation relations

{γAj , γAj′} = −({cj ,−c†j′}+ {−c†j , cj′}) = 2δjj′ (3.17)

{γBj , γBj′ } = {cj , c†j′}+ {c†j , cj′} = 2δjj′ (3.18)

{γAj , γBj′ } = −i({cj , c†j′}+ {−c†j , cj′}) = 0 (3.19)

to give the general {γαj , γα
′

j′ } = 2δjj′δαα′ . Note that there are two “species” of Majo-

rana fermions that commute with each other, but which one is A or B is an arbitrary

distinction. Equivalently, one can solve for the electron operators

cj =
1

2
e−i θ

2 (γBj + iγAj ) c†j =
1

2
ei

θ
2 (γBj − iγAj ) (3.20)

and substitute these into the Hamiltonian. Before doing this, note the useful property

γαj γ
α
j =

1

2
(γαj γ

α
j + γαj γ

α
j ) =

1

2
{γαj , γαj } = 1. (3.21)
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Thus the Hamiltonian in terms of the Majorana operators is given by

H =
µ

4

∑
1≤j≤N

[
(γBj − iγAj )(γ

B
j + iγAj )− 2

]
+
1

4

∑
1≤j≤N−1

{
− t0

[
(γBj − iγAj )(γ

B
j+1 + iγAj+1) + (γBj+1 − iγAj+1)(γ

B
j + iγAj )

]
+∆

[
(γBj + iγAj )(γ

B
j+1 + iγAj+1) + (γBj+1 − iγAj+1)(γ

B
j − iγAj )

]}
=

µ

4

∑
1≤j≤N

[
1 + 1 + i(γBj γ

A
j − γAj γ

B
j )− 2

]
+
1

4

∑
1≤j≤N−1

{
− t0

[
γBj γ

B
j+1 + γAj γ

A
j+1 + i(γBj γ

A
j+1 − γAj γ

B
j+1)

]
−t0

[
γBj+1γ

B
j + γAj+1γ

A
j + i(γBj+1γ

A
j − γAj+1γ

B
j )

]
+∆

[
γBj γ

B
j+1 − γAj γ

A
j+1 + i(γBj γ

A
j+1 + γAj γ

B
j+1)

]
+∆

[
γBj+1γ

B
j − γAj+1γ

A
j − i(γBj+1γ

A
j + γAj+1γ

B
j )

]}
=

i

2

{
− µ

∑
1≤j≤N

γAj γ
B
j +

∑
1≤j≤N−1

[
(t0 +∆)γAj γ

B
j+1 + (t0 −∆)γAj+1γ

B
j

]}
.

It is useful to analyze this Hamiltonian in two extreme parameters regimes. First, if

t0 = ∆ = 0 while µ 6= 0 we have

H = − i

2
µ

∑
1≤j≤N

γAj γ
B
j = −1

2
µ

∑
1≤j≤N

(ei
θ
2 cj − e−i θ

2 c†j)(e
i θ
2 cj + e−i θ

2 c†j) (3.22)

= µ
∑

1≤j≤N

c†jcj , (3.23)

which is, not surprisingly, just a trivial 1D chain of fermions on the usual sites, with

a ground state with no fermions present. This is a reminder that the substitution of

Majorana operators is always mathematically possible, but in most cases doesn’t lead

to any physical significance. However, if µ = 0 and ∆ = t0 then

H = it0
∑

1≤j≤N−1

γAj γ
B
j+1, (3.24)

which importantly lacks the operators γAN and γB1 . One can introduce new fermion

operators that are localized between two adjacent sites

dj =
1

2
(γAj + iγBj+1), (3.25)
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which are conventional in the sense that they are not self-conjugate and they satisfy the

usual anti-commutation relations

{dj , dj′} =
1

4
{γAj + iγBj+1, γ

A
j′ + iγBj′+1} =

1

2
(δjj′ − δjj′) = 0, (3.26)

{d†j , d
†
j′} =

1

4
{γAj − iγBj+1, γ

A
j′ − iγBj′+1} =

1

2
(δjj′ − δjj′) = 0, (3.27)

{d†j , dj′} =
1

4
{γAj − iγBj+1, γ

A
j′ + iγBj′+1} =

1

2
(δjj′ + δjj′) = δjj′ . (3.28)

Using

d†jdj =
1

4
(γAj − iγBj+1)(γ

A
j + iγBj+1) =

1

4

[
2+ i(γAj γ

B
j+1−γBj+1γ

A
j )

]
=

1

2
+
i

2
γAj γ

B
j+1 (3.29)

the Hamiltonian can be written in terms of the “conventional” fermions operators

H = 2t0
∑

1≤j≤N−1

(
d†jdj −

1

2

)
. (3.30)

The significant point is that the missing end Majorana operators can be combined to

form a conventional, but non-local, fermion operator

dend =
1

2
(γAN + iγB1 ), (3.31)

with

d†enddend =
1

4
(γAN − iγB1 )(γAN + iγB1 ) =

1

4
(2 + 2iγANγ

B
1 ) (3.32)

=
1

2
+
i

2
γANγ

B
1 , (3.33)

or equivalently,

iγANγ
B
1 = 2d†enddend − 1. (3.34)

In order to include every operator in the Hamiltonian, one could write

H = Eg + ε0d
†
enddend + 2t0

∑
1≤j≤N−1

d†jdj (3.35)

54



with Eg = −2t0(N − 1) and ε0 = 0. Thus, Majorana operators at the ends of the chain

form a zero-energy fermion, while the conventional localized fermions in the bulk of the

chain require energy 2t0. Thus the system has a ground-state degeneracy consisting of

the states with, and without, the non-local fermion. The operator that measures the

presence of the non-local fermion is

− iγANγ
B
1 = 1− 2d†enddend, (3.36)

with eigenvalues −1 and +1 corresponding to the presence and absence of the non-local

fermion, respectively. Thus, the Kitaev toy model also has two distinct phases, with and

without the presence of a zero-energy Majorana mode, sometimes known as a Majorana

zero mode.

While the case of general parameters requires more complicated calculations,

the above result generalizes for all parameter values. However, instead of the MBS

existing only at the end sites, the distribution of these two states decays exponentially

into the wire, and thus have a small overlap that slightly breaks the degeneracy of the

two ground states.

3.3 Majorana Wire System Band Structure

While the more realistic Majorana wire proposal by Lutchyn et. al. [73] and

Oreg et al. [86] is more complicated then the Kitaev model, the band structure in the

uniform case shows that similar states emerge. The full Hamiltonian of the system is

given by

HS = HTB +HSO +HZ +HSC, (3.37)
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where

HTB =
∑
jσ

[
(2t0 − µ)ĉ†jσ ĉjσ − t0ĉ

†
j±1,σ ĉjσ

]
, (3.38)

HSO =
∑
jσ

[α
2
s(σ)

(
ĉ†jσ̄ ĉj+1,σ − ĉ†j+1,σ̄ ĉjσ

)]
, (3.39)

HZ =
∑
jσ

[
s(σ)V z ĉ†jσ ĉjσ + V s(σ)ĉ†jσ̄ ĉjσ

]
, (3.40)

HSC =
∑
j

(
∆ĉ†j↑ĉ

†
j↓ +∆∗ĉj↓ĉj↑

)
, (3.41)

are the tight-binding, spin-orbit, Zeeman, and proximity-effect superconducting terms,

respectively. Here ĉjσ is the electron annihilation operator for spin σ at site j, t0 =

~2/(2m∗a2) is the tight-binding coefficient with effective mass m∗ and lattice size a,

µ is the chemical potential, α/2 is the Rashba coupling, V = gµBB/2 is the Zeeman

coupling with V ± = V x ± iV y used for the terms perpendicular to the wire axis, and

∆ is the s-wave pairing potential. The coefficient s(σ) stands for + and − when σ is ↑

and ↓, respectively, and σ̄ denotes the opposite spin.

Consider the tight-binding terms in the lattice Hamiltonian, transferring to

momentum space by using

cjσ =
∑
k

〈jσ|k〉ckσ =
∑
k

eikjackσ (3.42)

where |jσ〉 is the state at site j, at x = ja, and ckσ annihilates an electron of momentum

k and spin σ. Thus, the tight-binding term in k-space can be written

H =
∑
jσkk′

[
−t0(e−ik(j+1)aeik

′ja + e−ik(j−1)aeik
′ja) + (2t0 − µ)e−ikjaeik

′ja
]
c†kσck′σ

=
∑
jσkk′

[
−t0(e−ikae−i(k−k′)ja + eikae−i(k−k′)ja) + (2t0 − µ)e−i(k−k′)ja

]
c†kσck′σ

=
∑
σk

[
−t0(e−ika + eika) + (2t0 − µ)

]
c†kσckσ

=
∑
σk

[−2t0 cos(ka) + (2t0 − µ)] c†kσckσ

=
∑
σk

{2t0[1− cos(ka)]− µ} c†kσckσ, (3.43)
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while the spin-orbit term is written

∑
jσkk′

α

2
s(σ)[e−ikjaeik

′(j+1)ac†kσ̄ck′σ − e−ik(j+1)aeik
′jac†kσ̄ck′σ] (3.44)

=
∑
jσkk′

α

2
s(σ)[eik

′a − e−ika]e−i(k−k′)jac†kσ̄ck′σ (3.45)

=
∑
σk

α

2
s(σ)[eika − e−ika]c†kσ̄ckσ =

∑
σk

iαs(σ) sin(ka)c†kσ̄ckσ, (3.46)

and the superconducting terms are

∑
jkk′

(∆e−ikjae−ik′jac†k↑c
†
k′↓ +∆∗eikjaeik

′jack↓ck′↑) (3.47)

=
∑
jkk′

(∆e−i(k+k′)jac†k↑c
†
k′↓ +∆∗ei(k+k′)jack↓ck′↑) (3.48)

=
∑
k

(∆c†k↑c
†
−k↓ +∆∗c−k↓ck↑). (3.49)

This can be repeated for the remaining terms in the lattice Hamiltonian to give

H =
∑
σk

{2t0[1− cos(ka)]− µ+ s(σ)V z} c†kσckσ (3.50)

+
∑
σk

[
iαs(σ) sin(ka) + V s(σ)

]
c†kσ̄ckσ (3.51)

+
∑
k

(∆c†k↑c
†
−k↓ +∆∗c−k↓ck↑). (3.52)

Separating the terms with negative-momentum and reordering gives

H =
∑
k≥0,σ

{2t0[1− cos(ka)]− µ+ s(σ)V z} (c†kσckσ + c†−kσc−kσ) (3.53)

+
∑
k≥0,σ

[
iαs(σ) sin(ka) + V s(σ)

]
c†kσ̄ckσ (3.54)

+
∑
k≥0,σ

[
−iαs(σ) sin(ka) + V s(σ)

]
c†−kσ̄c−kσ (3.55)

+
∑
k≥0

∆(c†k↑c
†
−k↓ + c†−k↑c

†
k↓) + ∆∗(c−k↓ck↑ + ck↓c−k↑) (3.56)

=
∑
k≥0,σ

{2t0[1− cos(ka)]− µ+ s(σ)V z} [c†kσckσ + (1− c−kσc
†
−kσ)] (3.57)

+
∑
k≥0,σ

[
iαs(σ) sin(ka) + V s(σ)

]
c†kσ̄ckσ (3.58)

+
∑
k≥0,σ

[
iαs(σ) sin(ka)− V s(σ)

]
c−kσc

†
−kσ̄ (3.59)

+
∑
k≥0

∆(c†k↑c
†
−k↓ − c†k↓c

†
−k↑) + ∆∗(c−k↓ck↑ − c−k↑ck↓) (3.60)
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By defining h(k) = 2t0[1−cos(ka)]−µ, one can write the momentum-space Hamiltonian

concisely in matrix form as H = Ek
g +

∑
k≥0K

†HkK with Ek
g = 2

∑
k≥0 h(k),

K† =

(
c†k↑ c†k↓ c−k↑ c−k↓

)
(3.61)

and

Hk =



h(k) + V z −iα sin(ka) + V − 0 ∆

iα sin(ka) + V + h(k)− V z −∆ 0

0 −∆∗ −h(k)− V z iα sin(ka)− V +

∆∗ 0 −iα sin(ka)− V − −h(k) + V z


,

(3.62)

which has the expected block formH(k) ∆

−∆∗ −H∗(−k)

 . (3.63)

The eigenvalues can be found, but are generally quite complicated. Instead,

consider the simpler case of just the tight-binding, Zeeman, and spin-orbit terms. With-

out the superconducting terms, the eigenvalues of the top-left 2× 2 block are

ε±(k) = h(k)±
√
V 2
⊥ + [Vy + α sin(ka)]2, (3.64)

where V 2
⊥ = V 2

x + V 2
z is the Zeeman field perpendicular to the spin-quantization axis

caused by the spin-orbit coupling. The relevant physics occurs near k = 0, so consider

the k � a limit. The tight-binding and spin-orbit terms give

ε±(k) = t0(ka)
2 ± αka− µ (3.65)

⇐⇒ ε/t0 = x2 ± α

t0
x− µ

t0
= x

(
x± α

t0

)
− µ

t0
(3.66)
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Figure 3.1: Band structure with α = 6.666, t0 = 11.3, and V⊥ = 0.5: Dashed is
tight-binding and spin-orbit only, while solid also includes perpendicular Zeeman field,
plotting with µ = 0 and implicitly understanding that µ is the y = 0 axis. The units for
the y and x axis are t0 and 1/a respectively.

with x ≡ ka, so the spin-orbit shifts the spin bands to be centered at ± α
2t0

with kF =

±(α+
√
α2 + 4µt0)/2t0a. The introduction of the perpendicular Zeeman terms gives

ε±/t0 = x2 ± 1

t0

√
V 2
⊥ + α2x2 − µ

t0
, (3.67)

which opens up a gap of 2V⊥/t0 at k = 0.

For the introduction of the superconducting pairing terms, consider the whole

4×4 matrix, which has the particle-hole symmetry that results in symmetric eigenvalues

about E = 0. For this reason, consider the square of the excitation spectrum

ε2±(k) = h2 + V 2
⊥ +∆2 + α2 sin2(ka)± 2

√
V 2
⊥(h

2 +∆2) + h2α2 sin2(ka), (3.68)

which at k = 0 is

ε2±(0) = µ2 + V 2
⊥ +∆2 ± 2V⊥

√
µ2 +∆2 (3.69)

= (V⊥ ±
√
µ2 +∆2)2. (3.70)
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So ε−(0) = |V⊥ −
√
µ2 +∆2|. Thus the gap closes when V⊥ =

√
µ2 +∆2 and, just like

the Kitaev toy model, this marks the transition between the two distinct phases.

To see which side of this transition yields localized modes, consider the band

structure in the figure above. With just the tight-binding and spin-orbit terms present,

the Kramer’s degeneracy is split, forming two spin-bands parallel and anti-parallel to

the spin-orbit quantization axis (shown in the figure as up and down arrows). The

introduction of the Zeeman term perpendicular to that axis results in a gap which creates

two bands with different “spin-momentum” species. In the upper band, the electrons

with positive momentum have one spin (down in the figure), while the electrons with

the opposite momentum have the opposite spin (up in the figure). Similarly in the lower

band, the momentum and spin are tied together. This relationship between spin and

momentum, which effectively reduces the degrees of freedom of the system, is known as

a helical liquid. If the chemical potential lies in the gap (and kBT � (V⊥ − µ)/t0) the

upper band becomes energetically unavailable and the system can be projected to the

lower band. While the lower band still contains opposite spins for opposite momentum

(as required for the s-wave pairing which will be introduced) the spin is not a true degree

of freedom; in some sense the system is “spinless” like Kitaev’s toy model.

As mentioned above, the energy spectrum for more general parameters in this

system can be found analytically, but are quite complicated and not particularly helpful.

Instead, the lowest energy level and the gap to next highest energy level was simulated

using the code in App. B, and are plotted below with Vz = 0.9, Vy = Vx = 0, ∆ = 0.5,

µ = 0 and α = 3.
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Lowest Positive Energy Level in meV
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Figure 3.2: Modes near zero energy are robust near Vz ∼ 0.5, and small Vy < 0.3. It
should be noted that Vx could be used equivalently since it is also perpendicular to the
spin-orbit quantization axis.
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 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

α 
(m

eV
)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Gap to next hightest level

 0  0.5  1  1.5  2

Vz (meV)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

α 
(m

eV
)

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45

Figure 3.3: Modes near zero energy are robust near Vz ∼ 0.9, and large α > 1.5. There
seems to be little benefit to increasing α beyond 3.
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Lowest Positive Energy Level in meV
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Figure 3.4: The results are in general agreement that the topological threshold is given
by µ2 < V 2

z −∆2, which for µ = 0 is below the line of slope 1. On the other hand, a ∆
value that is too small (∆ < 0.3) doesn’t create a sufficiently large gap, so this equation
doesn’t apply for small ∆. Thus, robust modes only appear for Vz ≥ 0.5, and decent
window of feasible ∆ doesn’t begin until Vz ≥ 0.9.
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Figure 3.5: The results are in general agreement that the topological threshold is given
by µ2 < V 2

z − ∆2, which is a circle of radius Vz. On the other hand, a ∆ value that
is too small (∆ < 0.2) doesn’t create a sufficiently large gap, so this equation doesn’t
apply for small ∆. Thus, robust modes are best achieved with higher Vz ∼ 0.9, where
∆ ∼ 0.5 is ideal for small µ values.
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Figure 3.6: The results are in general agreement that the topological threshold is given
by µ2 < V 2

z −∆2, which is plotted as a red line. Robust modes are best achieved with
higher Vz > 0.75 for small µ values.
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Chapter 4

Majorana Wire

4.1 Introduction

While Majorana zero modes bound to the ends of semiconductor nanowires as

discussed in the previous chapter are theoretically supported by models, further evidence

is needed to rule out alternative explanations [71, 101, 68]. Perhaps the most definitive

signature of Majorana bound states in these “Majorana wires” would be the demon-

stration of their non-trivial braiding statistics. While braiding is ultimately needed for

topological quantum computation, it remains an ambitious experimental task. With

this in mind, simpler experiments are desired to provide insight and direct further re-

search before braiding is attempted. Though there have been feasible tests proposed

and performed on several aspects of the system [50, 49, 15, 21, 99, 72, 103], such as

qubit measurement, there is still no clear consensus on the presence of Majorana bound

states [37].

Observing entanglement of these states in Majorana wires would not only be

a significant step towards their verification, but would also demonstrate their potential

utility for topological quantum computation. While tests of quantum entanglement
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with Ising anyons have been discussed formally [13, 16], the goal of this chapter is

to devise and analyze a more concrete protocol motivated by the recent experimental

developments discussed in the previous chapter.

Thus we propose a procedure for demonstrating Bell’s theorem with three pairs

of Majorana bound states in semiconductor nanowire systems [see Fig. 4.1]. Specifi-

cally, our procedure can be used to test the Bell [7] and Clauser-Horne-Shimony-Holt

(CHSH) [19] inequalities using only two operations on maximally entangled states, which

can be prepared using the same operations and projective measurement [see Fig. 4.2].

These operations are accomplished by moving the domain walls along the axis of the

wire using “keyboard” gates already needed for braiding [1]. Hence, our proposal may

also serve as a step towards experiments that perform topological operations.

The remainder of this chapter will proceed as follows: Sec. 4.2 introduces a sim-

plified model for the Majorana wire and defines a qubit basis. Sec. 4.3 summarizes the

entanglement inequalities and lay out the procedure for testing them. Sec. 4.4 introduces

a more realistic description of the semiconductor nanowire system, discuss corresponding

simulation results, and introduces a simpler version of the CHSH experiment. Sec. 4.5

discusses experimental considerations and Sec. 4.7 summarizes the proposal. Modifi-

cations to this procedure for different measurement outcomes are discussed in Section

4.6.
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Figure 4.1: The wires are segmented into three regions where the wires are in the
topological phase (solid lines). Majorana bound states, represented by red x’s, are
localized at the ends of these regions. Majorana bound states at the ends of the same
topological region are coupled by η, while neighboring topological regions are coupled
by Γ.

Figure 4.2: Preparation of the maximally entangled states of even total parity. A)
The occupation of all three topological regions is measured, represented by rectangles
around each region. B) The topological regions (solid lines) are expanded to perform π/2
rotations about the x-axis for the left and right logical qubits. C) The middle qubit is
measured, projecting to one of the four maximally entangled states of even total parity.
Different measurement outcomes are shown; when both middle measurements are 0,
the |Φ−

E 〉 state is prepared as discussed in Sec. 4.3 (solid arrows), while other outcomes
(dashed arrows) are discussed in Section 4.6.

4.2 Majorana Model Hamiltonian

To discuss the salient features of the Majorana wire system, begin by consid-

ering a description similar to the toy model analyzed by Kitaev [61]. With appropri-

ate parameters, the wire is driven into a topological phase with an unpaired Majorana

fermion at each end [73, 86, 1]. If the parameters vary spatially (e.g., non-uniform chem-

ical potential) there may be multiple topological regions separated by non-topological
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regions, with a Majorana fermion localized at each domain wall separating the two re-

gions. For this proposal, consider the case with three topological regions separated by

two non-topological regions [see Fig. 4.1] with the Majorana Hamiltonian

H = iη1γ̂1,Aγ̂1,B + iη2γ̂2,Aγ̂2,B + iη3γ̂3,Aγ̂3,B + iΓ12γ̂1,B γ̂2,A + iΓ23γ̂2,B γ̂3,A, (4.1)

where η describes the coupling between Majorana bound states at the ends of a single

topological region, while Γ describes the coupling of neighboring topological regions,

assuming that all couplings decay exponentially as the Majorana bound states sep-

arate from their nearest neighbors. Each topological region has two types of Majo-

rana operators, denoted by index A or B, that form a conventional fermion operator

d̂n = 1
2(γ̂n,A+ iγ̂n,B), and satisfy {γ̂i, γ̂j} = 2δij , where i, j specifies both the region and

type.

The parity of the occupation number for the conventional fermions, (i.e., the

eigenstate of N̂n ≡ d̂†nd̂n), will serve as the degree of freedom for our qubits. A com-

putational basis is specified with the conventional fermions by defining the state |000〉

such that d̂n|000〉 = 0 for all n and using the ordering conventions given by

|000〉 |010〉 = d̂†2|000〉

|011〉 = d̂†2d̂
†
3|000〉 |001〉 = d̂†3|000〉

|110〉 = d̂†1d̂
†
2|000〉 |100〉 = d̂†1|000〉 (4.2)

|101〉 = d̂†1d̂
†
3|000〉 |111〉 = d̂†1d̂

†
2d̂

†
3|000〉.

Since this model describes a system with superconductivity, the total number of particles

is conserved modulo 2. This restriction splits the basis into two sub-bases, SE and SO,

with an even and odd number of total particles (i.e., total parity), which are the left

and right columns of Eqs. (4.2), respectively. A state from one basis cannot evolve into
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a state from the other basis since they differ by a single particle. Strictly speaking, the

two bases can interact if we account for quasi-particle poisoning in our model [94], but

this occurs on a much longer time-scale than our proposed operations as discussed in

Sec. 4.5. The middle occupation number is used to preserve the total parity rather than

storing unique quantum information. Thus, two logical qubits are encoded in the left

and right topological regions while the occupation of the middle region is forfetied as

the “parity qubit”.

By writing the Majorana operators in terms of the conventional fermions with

γ̂n,A = d̂n + d̂†n and iγ̂n,B = d̂n − d̂†n, the Hamiltonian in this basis is

H = −η1(σz ⊗ σ0 ⊗ σ0)− η2(σ
0 ⊗ σz ⊗ σ0)− η3(σ

0 ⊗ σ0 ⊗ σz)

− Γ12(σ
x ⊗ σx ⊗ σ0)− Γ23(σ

0 ⊗ σx ⊗ σx). (4.3)

The η terms for each topological region perform the σz operation for their corresponding

qubits, while the σx operation is performed on the neighboring qubits involved in the Γ

terms. Thus rotations on the Bloch spheres of the qubits can be made by adjusting the

parameters of the wire to suppress the couplings of all but one term in the Hamiltonian.

For example, if all the couplings other than Γ12 are negligible, the evolution operator

after time T is

rx12(θ) ≡ exp

[
i
θ

2
(σx ⊗ σx ⊗ σ0)

]
(4.4)

= cos
θ

2
(σ0 ⊗ σ0 ⊗ σ0) + i sin

θ

2
(σx ⊗ σx ⊗ σ0), (4.5)

where θ = 2Γ12T/~ is the angle that qubits 1 and 2 rotate about the x-axis of their

respective Bloch spheres. By adjusting the parameters appropriately, one can perform

all the Bloch sphere rotations necessary for this proposal.

70



4.3 Entanglement Inequalities

Before testing the Bell and CHSH inequalities, this section discusses the prepa-

ration of one of the four maximally entangled states of even parity,

|Φ±
E 〉 =

|000〉 ± |101〉√
2

, |Ψ±
E 〉 =

|011〉 ± |110〉√
2

(4.6)

using the operations already discussed and projective measurement. To begin the prepa-

ration, the parity of each topological region is measured, fixing the total parity and

projecting to one of the basis states. The inequalities can be tested equivalently with

any of the maximally entangled states from either parity, but for conciseness, assume

the total parity is even for the rest of the body of this paper, and consider only the

inequalities with |Φ−
E 〉, assuming the initially measured state is |000〉. This proposal

can be accomplished for general initial conditions by altering the procedure slightly as

described in Section 4.6. If a π/2 rotation about the x-axis is performed for both logical

qubits the resulting state is rx12(π/2)r
x
23(π/2)|000〉, or

|000〉 − |101〉+ i|011〉+ i|110〉
2

=
|Φ−

E 〉+ i|Ψ+
E 〉√

2
, (4.7)

which will project to |Φ−
E 〉 if the middle parity qubit is measured to be 0. Note that

the rx12 and rx23 operations commute since they involve different γ operators, making the

operation order irrelevant (as well as allowing simultaneous operations). In general, each

maximally entangled state can be prepared by measuring all three qubits to project to a

single basis state, extending the outer topological regions towards the middle topological

region for a small time, returning them to their original position, then projectively

measuring the middle qubit.
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Once the state |Φ−
E 〉 is prepared, one can test the version of Bell’s inequality

given in Section 1.3,

P=(a, b) + P=(b, c) + P=(a, c) ≥ 1, (4.8)

where P=(L,R) is the probability that the left and right qubits are equal after being

rotated by angles L and R, respectively. The left side of the inequality, which will be

called the “Bell quantity”, can be interpreted as the probability that at least one of the

rotation combinations will make the left and right qubits equal.

According to quantum mechanics the probability that the qubits are equal

after rotations L and R is cos2
(
L−R
2

)
. Only the relative angles between rotations are

physically relevant, so one can set A ≡ a− c and B ≡ b− c to write the Bell quantity as

cos2
(
A−B

2

)
+ cos2

(
A

2

)
+ cos2

(
B

2

)
, (4.9)

which is plotted in Fig. 4.3. Quantum mechanics predicts the Bell quantity can be

as low as 3/4 (for the relative angles A = 2π/3 and B = 4π/3, or vice-versa) and

is inconsistent with local hidden variable theories, which require the Bell quantity to

be greater than or equal to 1. In principle, Bell’s inequality could be experimentally

tested in our proposal by repeatedly preparing maximally entangled states, performing

the three rotation combinations in Eq. (4.8), and measuring the qubits to find the

probability of each state.

In practice however, almost every experiment that tests Bell’s theorem uses

the CHSH inequality discussed in Appendix 1.3,

|〈L1, R1〉+ 〈L2, R1〉+ 〈L1, R2〉 − 〈L2, R2〉| ≤ 2, (4.10)

where 〈L,R〉 = P=(L,R)− P 6=(L,R) is the expectation value of the combined parity of

the left and right qubits after being rotated by angles L and R, respectively. The left
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Figure 4.3: Contour plot for the quantum mechanical prediction of the Bell quantity for
the state |Φ−

E 〉. Local hidden variable theories require that the Bell quantity be greater
than or equal to 1, but it is predicted to be less than 1 for relative rotation angles inside
the white triangles.
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side of the inequality, which will be called the “CHSH quantity”, must be less than or

equal to 2 in local hidden variable theories.

According to quantum mechanics, the expectation value discussed above for

general rotation angles L and R is simply cos(L−R). Again, only the relative angles of

rotation are physically significant, so we introduce angles A ≡ L1 − R2, B ≡ R1 − L1,

and C ≡ L2 −R1, [see Fig. 4.4], making the CHSH quantity

|cos(A) + cos(B) + cos(C)− cos(A+B + C)| , (4.11)

which has a maximum of 2
√
2 when A = B = C = π/4, contradicting the local hidden

variable prediction. The inequality can be tested experimentally by repeatedly preparing

the state |Φ−
E 〉, extending the topological regions to perform one of the four rotation

combinations involved in Eq. (4.10), then returning the topological regions to their

original position to measure the qubits.

Figure 4.4: Top: Angles of rotation in CHSH inequality. The left qubit is rotated by
either angle L1 or L2, while the right qubit is rotated by either angle R1 or R2. Bottom:
A) One of the four rotation combinations is performed by extending the outer topological
regions, B) then returned for measurement.
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4.4 Semiconductor Hamiltonian and Simulation

Consider a more realistic model of the semiconductor system by re-introducing

the one-dimensional lattice Hamiltonian

HS = HTB +HSO +HZ +HSC, (4.12)

where

HTB =
∑
jσ

[
(2t0 − µj)ĉ

†
jσ ĉjσ − t0ĉ

†
j±1,σ ĉjσ

]
, (4.13)

HSO =
∑
jσ

[
α s(σ)

(
ĉ†jσ̄ ĉj+1,σ − ĉ†j+1,σ̄ ĉjσ

)]
, (4.14)

HZ =
∑
jσ

[
s(σ)V z ĉ†jσ ĉjσ + V s(σ)ĉ†jσ̄ ĉjσ

]
, (4.15)

HSC =
∑
j

(
∆ĉ†j↑ĉ

†
j↓ +∆∗ĉj↓ĉj↑

)
, (4.16)

where all the terms are the same as defined in the uniform case of Sec. 3.3, except that

the chemical potential, µi, is allowed to vary at each site.

When µ > µT ≡
√
V 2
⊥ −∆2, where V 2

⊥ = (V z)2 + (V x)2 is the Zeeman field

perpendicular to the spin-orbit quantization axis, the wire is a normal superconductor.

In the other case, µ < µT, a topologically distinct state emerges with Majorana bound

states localized at the ends of the wire. If the chemical potential varies spatially and

crosses the topological limit at multiple locations, then multiple Majorana bound states

will be present and the setup discussed in Sec. 4.2 is possible.

Specifically, this proposal separates the wire into three topological regions,

leading to six Majorana bound states, one at the end of each region, which are sufficiently

separated to prevent them from fusing together. The Majorana bound states from each

topological region can be paired together to form conventional fermions [e.g., d̂n =

(γ̂A + iγ̂B)/2] that correspond to three zero-energy (in the limit of an infinite wire)

Bogoliubov excitations, separated from the higher-energy bulk states by a topological
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gap ∆T[see Fig. 4.5]. Alternatively, these excitations can be thought of as the zero-energy

eigenstate solutions to the Bogoliubov-de Gennes equations for the system. Just as in

the simpler model, the occupation number of the eigenstates localized to the left and

right serve as the logical qubits, while the occupation number of the middle eigenstate

does not contain unique quantum information since the total parity is conserved.

The spatial distribution of these excitations is contained in the coefficients u

and v from the Bogoliubov transformation

d̂†n =
∑
jσ

(unjσ ĉ
†
jσ + vnjσ ĉjσ), (4.17)

which can be used to form the parity operators of the wire segments, P̂n ≡ 1− 2d̂†nd̂n.

The simulation begins by finding the coefficients for the lowest three eigen-

states of the Hamiltonian in Eqs. (4.12)-(4.16) with parameters corresponding to m∗ =

0.015me, a = 15nm leading to t0 = 11.3meV, g = 50, B = Bz = 0.625T leading to V⊥ =

0.9meV, Rashba parameter αR = 225meV·Å corresponding to α ≡ αR/a = 1.5meV,

and ∆ = 0.5meV. Thus the chemical potential marking the threshold between topolog-

ical phases is µT = 1.06meV. The wire has 600 sites leading to length l = 9µm, with

non-periodic boundary conditions. At the domain walls the chemical potential smoothly

alternates between 0 and 2µT over a length of approximately 4λ = 0.04l with the profile

function ±µT tanh(x/λ), as shown in Fig. 4.5.

Each of the lowest three eigenstates has two peaks localized at the ends of

the topological region, indicating the location of the Majorana bound states. The spa-

tial distribution of the left and right bound states of each wire segment can be found

numerically by considering the self-conjugate combinations of the three eigenstates, cor-

responding to d̂n + d̂†n and −i(d̂n − d̂†n), shown as solid and dashed curves in Fig. 4.5,

respectively. Though the peaks decrease exponentially, their small, but non-zero over-
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Figure 4.5: Bottom Right: A spatially varying chemical potential with three regions

below the topological threshold of
√
V 2
⊥ −∆2, with domain wall lengths of ∼ 4λ. Top

Right: This leads to six Majorana bound states, one at the end of each region, that form
three conventional eigenstates. The simulated spatial distribution of the Bogoliubov co-
efficients

∑
σ(|uσ|2+|vσ|2) along the length of the wire for the left and right bound states

of each region s plotted in solid and dashed, respectively. Left: The energy spectrum of
these eigenstates is plotted in log scale, as well as the lowest-energy bulk state separated
by a topological gap of 360µeV. The splitting of the “zero”-energy states is due to the
exponentially small overlap in peaks, which is larger for the shorter topological region
of the middle segment. The topological region lengths are 13.3% and 9.5% of the wire
length for the outer and middle regions, respectively.
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laps cause the eigenstates to split from zero-energy. Thus the topological regions must be

long enough to prevent these overlaps from splitting the excitations and coupling them

to the bulk states. The lengths between the domain walls are set as l1 = x1 = 0.133l,

l2 = x3 − x2 = 0.095l, and l3 = l − x4 = 0.133l. These lengths were chosen to mini-

mize the overlaps between the Majorana bound states of the same region, as well as the

overlap between neighboring regions.

Once the chemical potential is tuned as described above, it can be varied

dynamically to perform operations on the qubits. The only operation needed to test

entanglement inequalities are rx12 and rx23, which can be performed simultaneously by

extending the outer topological regions towards the middle region. Specifically the

domain wall positions xi alternate back and forth according to the function

± Λ

[
tanh

(
t

τ

)
− tanh

(
t−D

τ

)]
, (4.18)

which smoothly shifts the domain walls 2Λ over an approximate transition time of 4τ

for a duration D between the center of the two transitions as shown in Fig. 4.6.

One only needs to consider the dynamics of the zero-energy states, which won’t

mix with the bulk states above the topological gap as long as the domain wall trajectories

are adiabatic. This constraint can be treated with the Landau-Zener condition [66, 122]:

the rate the chemical potential changes must satisfy ~|dµ/dt| � 2π∆2
T. To test this in

the simulation, it finds the probability that the basis states of Eqs. (4.2) remain in the

zero-energy subspace of the same total parity after evolution by using the following

procedure.

The initial state |φ〉 is assumed to be in the set of even parity basis states given

in Eqs. (4.2), SE = {|000〉, |011〉, |110〉, |101〉}, where |000〉 is defined as the state such

that d̂n|000〉 = 0 for all n, including those corresponding to bulk states. The zero-energy
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Figure 4.6: Top Left: Trajectories for the two left domain walls showing the amplitude,
transition time, and duration for the rx12(π/4) operation. Top Right: Average infidelity
of even states after performing rx12(π/4), plotted against transition time for various
amplitudes (labeled as percentages of the wire length l) showing exponential behavior
in general agreement with the Landau-Zener formula until limited by the Runge-Kutta
step-size. The Λ = 0.055l data is fit with a line that scales as exp(−βτ) with β = 240
Ghz, reasonably close to the predicted value of 214 GHz. Bottom: Probabilities that
the initial state |000〉 remains in |000〉 or transitions to |110〉 when acted on by rx12 with
various duration times. The simulated operation agrees well with the expected rotation,
with a minimum probability of ∼ 0.3% for the |000〉, due to the very small unintended
overlaps of the bound states.

eigenstates are evolved using fourth-order Runge-Kutta in the eigenstate basis, possibly

leaking into the bulk states if the transition time is too short, then acted on by the zero-

energy eigenstate projector P̂0 to find the sub-matrix Û0 = P̂0Û P̂0 of the full evolution

matrix Û . Using Û0, the time-evolved occupation operators in the Heisenberg picture

are,

N̂n(t) = Û †
0(t)d̂

†
n(0)d̂n(0)Û0(t), (4.19)
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for n = 1, 2, 3, which are bilinear combinations of the original d̂n(0), including anomalous

terms (e.g., d̂1d̂2) since the Hamiltonian contains superconductor pairing. The three

N̂n(t) are then used to form the projector for each multi-particle state in the three-

qubit basis, allowing one to calculate the probability that the corresponding state is

occupied. For example, the state |110〉 has the projector N̂1N̂2(1̂− N̂3), which yields 0

when acting on any other basis state. Since the projector’s eigenvalue for |110〉 is 1, the

expectation value is equal to the probability, and the probability that the initial state

will be measured in the state |110〉 after time t is

P110(φ) = 〈φ|N̂1(t)N̂2(t)[1̂− N̂3(t)]|φ〉, (4.20)

which can be easily calculated for any |φ〉 ∈ SE. Similarly, the probabilities that |φ〉

evolves into the other states in SE are found using their respective multi-particle pro-

jectors, which are summed to give the fidelity from |φ〉 to SE,

FE(φ) = P000(φ) + P011(φ) + P110(φ) + P101(φ). (4.21)

This is calculated for all |φ〉 ∈ SE after simulating the operation rx12(π/4), and plot

the average infidelity for even states, 1 − 〈FE〉, versus the transition time for various

amplitudes in Fig. 4.6. The results are compared with the Landau-Zener formula[66, 122]

by using the maximum of the chemical potential rate

dµ

dt
=

∂µ

∂x1

∂x1
∂t

, (4.22)

which occurs halfway through the transitions when sech2(0) = 1, giving(
dµ

dt

)
max

=
µTΛ

λτ
. (4.23)

Thus 1− 〈FE〉 should scale as exp(−βτ) with

β =
2πλ∆2

T

~µTΛ
, (4.24)
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in general agreement with the data. For example, the fitted line for Λ = 0.055l in

the logarithmic plot in Fig. 4.6 has a slope that corresponds to βfit = 240 GHz, while

the value predicted from Eq. (4.24), using ∆T = 0.36 meV found in the simulation,

is β ' 214 GHz. All the amplitudes fit the expected exponential behavior reasonably

well until limited by the Runge-Kutta step-size, with the exception of small plateaus

that appear at different transition times for different amplitudes. This indicates that

the coefficient for the average infidelity contains some amplitude-dependent factors, but

these factors are insignificant compared to the exponential scaling and unimportant

for this proposal. The adiabatic constraint is easily satisfied by proceeding with our

simulation using Λ ∼ 0.06l and τ = 100 ps.

In order to ensure the rx12 operation is performed as expected, the probabilities

for the basis states are found using the initial state |000〉 after the domain wall trajec-

tory in Fig. 4.6 is simulated. As anticipated, the probabilities P000(000) and P110(000)

oscillate, with negligible probabilities (on the order of our step-size limit of 10−6) found

in the states with incorrect total parity. However, the operation doesn’t complete a full

bit-flip for the duration expected to correspond to a π rotation, with ∼ 0.3% of the

probability found in the |011〉 and |101〉 instead of |110〉. This is consistent with a 0.3%

shift of the rotation axis away from x̂ due to small, undesired overlaps between Majo-

rana bound states not involved in the operation. For example, a small overlap between

the bound states of the middle and right regions would lead to an additional rotation

rx23 that effectively shifts the axis of rotation very slightly.

Using an amplitude Λ = 0.06l for rx12 and rx23, the simulated rotations have a

period of ∼ 0.2ns. Since the operations are achieved by bringing together exponentially

decaying peaks, the overlap-dependent coupling between topological regions (e.g., Γ in

the Majorana Hamiltonian) is exponentially sensitive to the trajectory amplitude. Thus,
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longer rotation periods can be achieved by slightly decreasing the amplitude. On the

other hand, greater amplitudes give shorter periods, but can also risk fusing the adjacent

Majorana bound states if increased too much, which begins to occur in the simulation

near Λ ∼ 0.07l. Thus, the typical operation time (including adiabatic transitions) for

the parameters is on the order of 0.4 ns.

Finally, the CHSH inequality is tested in the simulation by simultaneously

performing the rx12 and r
x
23 rotations on the initial state |Φ−

E 〉 and finding the probabilities

for each basis state. The CHSH quantity is a function of three relative angles, making

it more difficult to visualize and compare to our simulation. Instead, consider one

of the planes involving the maximum violation, namely when R2 = 0 and L1 = π/4

[i.e., A = π/4 in Eq. (4.11)]. The theoretical prediction and simulation are plotted in

Fig. 4.7, showing very good agreement and a significant range of angles that violates

the inequality. Thus the simulation indicates that the more realistic semiconductor

Hamiltonian is consistent with the simpler Majorana model and the proposal is feasible

for demonstrating entanglement in a Majorana wire. The code for this simulation is

provided in Appendix B.

Before discussing experimental considerations, consider a simplification to the

CHSH experiment that only requires projective measurement and the repeated use of

two operations, namely rx12(L) and rx23(R) with specific values for L and R. Ideally

L = R = π/4, but they remain unspecified here with the thought that the experiment

could be attempted with angles that differ slightly from the ideal case.

The experiment begins by tuning the chemical potential to create three topo-

logical regions and measuring all of their occupation parities to project to one of the

eight basis states. For concreteness, consider only the states that lead to the |Φ−
E 〉 state,
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Figure 4.7: Left: Theoretical contour plot of the quantum mechanical prediction of the
CHSH quantity for |Φ−

E 〉 for the A = π/4 plane. Local hidden variable theories are
inconsistent with a CHSH quantity above 2, which occurs inside the white lines. Right:
Simulated contour plot showing agreement with the global maximum at B = C = π/4
present, violating the CHSH inequality by approximately 40%.

so the procedure only continues if the measurement of the middle parity matches the

total parity [see Table 4.1]. Alternatively, the full experiment is carried out regardless

of the measurement outcomes, but the cases when the parities do not match are dis-

regarded. Then the operations rx12(L) and rx23(R) are simultaneously performed twice

before measuring the middle parity, proceeding only when this parity matches the initial

result. For the ideal angles L = R = π/4, this procedure prepares maximally entangled

states.

This preparation is followed by one of the four rotation combinations given in

Eq. (4.10), with L1 = L, L2 = 3L, R1 = 0, and R2 = 2R. For example, the combination

with L2 and R1 is performed by carrying out rx12(L) three times but leaving the right

domain walls stationary. After one of the rotation combinations is performed, all three
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parities are measured and the results are recorded. This is repeated several times for each

combination to find the corresponding probabilities and calculate the CHSH quantity in

Eq. (4.10). The quantum mechanical prediction for the CHSH quantity using the above

procedure is easily calculated (though not particularly illuminating in written form) and

is plotted in Fig. 4.8. As expected, the CHSH quantity has a maximum at L = R = π/4,

with a wide range of angles spanning from approximately π/8 to 3π/8 confirming Bell’s

theorem. Thus this procedure can be used for a broad range of angles, demonstrating

entanglement in Majorana wires, even with limited accuracy in the tuning operations.
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Figure 4.8: Contour plot of the quantum mechanical prediction of the CHSH quantity
with L1 = L, L2 = 3L, R1 = 0 and R2 = 2R. Local hidden variable theories are
inconsistent with a CHSH quantity above 2, which occurs inside the white lines. The
plot repeats with a period of π for both L and R.
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4.5 Experimental Considerations

This section discusses some aspects of this proposal that may be significant

for an experimental realization. One of the first hurdles that must be overcome is the

development of reliable projective measurement of the occupation. Aside from directly

probing the wire with point contacts, there have been several proposals for observing

the presence of Majorana bounds states such as using the Aharanov-Casher effect [50],

transmons [49], and Shapiro step doubling in the AC-Josephson effect [99]. Without

committing to a particular readout scheme, oe should note that this proposal requires

measurement of a single topological region during the procedure in order to project to

a maximally entangled state.

Another non-trivial experimental task is the fine-tuning of the chemical poten-

tial to minimize undesired Majorana peak overlaps. The simplest way to mitigate these

overlaps is to use a longer wire, which exponentially reduces the overlaps. The simula-

tion indicates that a wire length on the order of 5− 10µm is sufficient. Alternatively, a

setup that links together several shorter wires may also be possible if longer wires are

experimentally unavailable.

The adiabatic constraint that was found using the Landau-Zener formula is

rather lenient, only requiring transition times on the order of 0.1ns. This is due to the

generous topological gap of ∼ 0.35 meV that separated the zero-energy and bulk states,

due to the relatively large proximity effect and g-factor. In addition, the topological

phase requires a relatively large spin-orbit coupling. The parameters are reasonable

when compared to experiments [82, 24, 20, 36, 99], but the need for a robust topological

gap should be considered when selecting materials, and further advances of the proximity

effect and spin-orbit in relevant materials would be helpful.
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The operation time for performing the ideal rotation angles can be found exper-

imentally by reproducing the probability plot in Fig. 4.6. Indeed, calibration is needed

to find the effective coupling that accounts for additional effects such as disorder, local

tunings, and the small coupling between regions via the s-wave superconductor [124].

For example, the ideal rx12(π/4) for the simplified CHSH experiment can be calibrated

in the following way. First, all three parities are measured to project to a basis state,

then gates are gradually tuned to shift the chemical potential in the left non-topological

region for an operation time ∼ 0.5ns, followed by a final measurement of all three

parities. Note that the operations can be achieved by moving a single domain wall if

this is easier experimentally; the simulation moved both the outer and middle domain

walls to suppress overlaps in the topological regions, but this may be unnecessary in

longer wires. This procedure is repeated several times with the same operation time,

tracking the percentage of times the state remains in the initially measured state. This

is repeated with several slightly different operation times, until the percentage is near

cos2(π/8) ' 0.85. Once the rotations that correspond to L = R = π/4 are roughly

calibrated, the simplified CHSH experiment can be carried out.

As noted by Rainis et. al. [93], one must also consider the phenomena of quasi-

particle poisoning in any system that uses superconductors to achieve the topological

phase. While a superconductor at T = 0 (which our simulation assumed) will only

form Cooper pairs, at finite temperatures less than ∼ 160mK a small, fixed population

of quasi-particles seems to be present [23]. Quasi-particle poisoning occurs when a

single quasi-particle tunnels between the superconductor and semiconductor, changing

the total parity of the system and destroying the quantum information. Thus, both the

measurement and operation times must be much shorter than the average time of quasi-

particle tunneling, constraining the operation time in the opposite limit as the adiabatic
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condition. Fortunately, estimates of the average time for quasi-particle tunneling in

Majorana wire systems are 100ns or greater in typical experimental systems, depending

on the specific parameters [93]. These calculations depend linearly on the resistance of

the wire; thus longer wires will have shorter tunneling times. Nevertheless, with the

adiabatic constraint only requiring operation times ∼ 0.1ns, there is a wide window for

the few operations needed in this proposal. Thus the constraint on the operation time

of measurements is largely unaffected by the proposed operations.

Another non-trivial aspect inherent to the entanglement inequalities is the need

to find probabilities rather than single measurements outcomes, requiring a high level

of precision in the gate tuning. While this may make it difficult to reproduce the exact

predictions of quantum mechanics, the large violation of the CHSH inequality by > 40%,

and the wide range of angles that violate hidden variable theories may still be sufficient

for demonstrating entanglement.

One way to circumvent the precision requirement is to perform the test pro-

posed by Greenberger, Horne, Zeilinger [45] and Mermin [78] (GHZM). The GHZM

experiment requires three logical qubits (thus four topological regions), but tests hid-

den variable theories with a single measurement, rather than involving probabilities and

inequalities. Indeed, there are many interesting experiments that demonstrate entan-

glement, such as quantum teleportation, that are possible with one additional qubit.

This and other relevant systems are still a new and emerging area of research

for theorists and experimentalists alike. With that said, there are many recent develop-

ments which are not reflected in the above Hamiltonian. For example, it seems that the

experiments on the Majorana wire systems are not strictly one-dimensional, and must

be analyzed as multi-channel wires to explain some of the experimental findings [110].

Others note that phenomena like Andreev reflection, disorder, finite temperature and
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the Kondo effect may need to be further understood in these systems [110, 71, 94]. De-

spite these complications, one should note that almost any convincing manifestation of

Majorana bound states must demonstrate entanglement, which will likely be easier than

full braiding. While this proposal discussed the specific setup of Majorana wires, the

general idea of using non-topological, proximity-induced operations to test the entan-

glement inequalities as a stepping stone to braiding operations, as well as other aspects

like separating logical qubits with a parity qubit, may be applied to many systems that

potentially support Majorana bound states, such as topological insulators [39, 85, 40].

4.6 General Preparation Procedure

Sec. 4.3 discussed the Bell and CHSH inequalities with the state |Φ−
E 〉. This

section considers more general procedures for preparing any maximally entangled state

and testing the inequalities.

Entanglement can be demonstrated for any initial condition with very simple

alterations to the proposal, rather than discarding data for the incorrect initial state or

measurement outcome.

The procedure shown in Fig. 4.2 prepares one of the eight maximally entangled

states,

|Φ±
E 〉 =

|000〉 ± |101〉√
2

, |Ψ±
E 〉 =

|011〉 ± |110〉√
2

, (4.25)

|Φ±
O〉 =

|010〉 ± |111〉√
2

, |Ψ±
O〉 =

|001〉 ± |100〉√
2

, (4.26)

by measuring all three parities to project to one basis state from Eqs. (4.2), performing

the operations rx12(π/2) and r
x
23(π/2), then measuring the middle parity. The state that

is prepared depends on the overall parity and middle parity measurements, as shown in
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Table 4.1. Note that the results for the even and odd total parity are equivalent upon

the exchange 0 ↔ 1 for the middle parity qubit.

Table 4.1: Maximally entangled state prepared for various total parity and middle
parity measurements. The even and odd total parities give the same results if upon
exchanging 0 ↔ 1 for the middle parity.

Total Parity Even Odd

Initial Middle Parity 0 1 1 0

Final Middle Parity 0 1 0 1 1 0 1 0

Resulting State Φ−
E Ψ+

E Φ+
E Ψ−

E Φ−
O Ψ+

O Φ+
O Ψ−

O

Any of the maximally entangled states can be used to demonstrate the violation

of the Bell and CHSH inequalities, but with different rotation angles. For example,

quantum mechanics predicts that 〈L,R〉, the expectation value of the combined parity

of the left and right qubits after being rotated by angles L and R, respectively, for Φ+
E

is cos(L+R) rather than cos(L−R) for Φ−
E . Clearly the CHSH quantity in Eq. (4.10)

is the same except with R → −R, which can be returned to the case in Sec. 4.3 by

substituting {L1, L2, R1, R2} → {L1, L2,−R1,−R2}. The relevant probabilities and

angle transformations for the Bell and CHSH inequalities are listed in Table 4.2 for

each maximally entangled state. These changes can be accounted for by designing the

experiment to perform different rotations depending on the middle parity measurement

outcomes found during the preparation of the maximally entangled states.

Table 4.2: Probabilities and expectation values predicted by quantum mechanics for
the various maximally entangled states. The set of angles that corresponds to the case
in the body of the paper for the CHSH violation is given as well. The results are the
same for even and odd parity, so we suppress the corresponding subscript.

State P=(L,R) 〈L,R〉 CHSH Angles

Φ− cos2
(
L−R
2

)
cos(L−R) L1, L2, R1, R2

Φ+ cos2
(
L+R
2

)
cos(L+R) L1, L2,−R1,−R2

Ψ− sin2
(
L−R
2

)
− cos(L−R) L1, L2, R1, R2

Ψ+ sin2
(
L+R
2

)
− cos(L+R) L1, L2,−R1,−R2
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4.7 Majorana Wire Proposal Summary

The motion of domain walls in a Majorana wire system was analyzed with

three separate topological regions using a simple Hamiltonian analogous to Kitaev’s toy

model [61]. Using the occupation number parity of the Majorana bound states in each

region, a three qubit basis was defined with two logical qubits and one qubit forfeited

to total parity conservation. In this basis, x-axis rotations are performed by extending

the outer topological regions to isolate a single coupling between different topological

regions. While these rotations are not topologically protected from local perturbations,

they can demonstrate entanglement by testing the Bell and CHSH inequalities.

With the simpler model as a guide, the domain wall motion was simulated

using a more realistic semiconductor Hamiltonian. Results indicate that the topological

regions can be well separated in wires of length ∼ 5 − 10µm with reasonable parame-

ters compared to recent experiments. Adiabatic changes in the chemical potential were

simulated with operation times on the order of 0.5ns, consistent with the Landau-Zener

condition applied to excitations from zero-energy to the bulk. Extending the topologi-

cal regions results in the rotations predicted by the simpler model. Finally, the CHSH

experiment was simulated and the expected inconsistency with hidden variable theories

predicted by Bell’s theorem was found, indicating that the simpler Majorana Hamilto-

nian approximates the Majorana wire system well.

A simplified version of the CHSH experiment was introduced that only requires

projective measurement and repeated use of two π/4 rotations, finding a wide range of

operation angles from π/8 to 3π/8 violate the entanglement inequalities. Thus a key-

board gating setup needs to be relatively precise, but moderate inaccuracy is tolerable.

Calibrating methods were provided for the rotations and potential hurdles for an ex-
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perimental realization were discussed. The analysis and simulation indicate that there

is a large window of operation times, spanning three orders of magnitude, that satisfy

the adiabatic and quasi-particle poisoning constraints. Hence this proposal is viable for

demonstrating entanglement in Majorana wires if methods for projective measurement

and precise gate tuning are available.

While there have been proposals to test entanglement [57, 17, 100, 6, 67], ob-

serving entanglement by directly testing Bell’s theorem would be a novel opportunity

in solid state systems in general, and an important advance for Majorana wire systems

specifically. In addition to being a crucial ingredient for quantum information, entangle-

ment may rule out alternative explanations inconsistent with non-local effects, providing

a useful tool beyond local measurements. More so, experimental work on gate tuning

is already required for braiding operations, and this proposal could serve as a useful

benchmark towards that goal. Thus, the observation of entanglement would support

current models of Majorana wires and provide a significant piece of evidence supporting

the presence of Majorana bound states.
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Chapter 5

Conclusion

This dissertation considered two proposals for fault-tolerant qubits: pairs of

electron spins in semiconductor double quantum dots and Majorana zero modes bound to

the ends of semiconductor nanowires coupled to conventional superconductors. Analysis

and simulation of these systems showed that both proposals are viable and could enable

further advances in the construction of quantum information systems.

In particular, the additional spin-orbit effects that result from the motion of

double quantum dots do not outweigh the benefits of suppressing the hyperfine dephas-

ing. Thus it is possible to incorporate adiabatic motion into quantum dot proposals,

providing another avenue for decreasing the infidelity of quantum operations closer to

the quantum error correction threshold. Similarly, the adiabatic motion of Majorana

bound states in nanowires can be used to perform quantum operations within the con-

straints of quasiparticle poisoning. Aside from the potential for braiding operations,

these operations are important since they allow one to both setup and demonstrate

entanglement, a crucial ingredient to any quantum information system.
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Rather than depending solely on experimental advances, these proposals aim

to prevent decoherence by building on qubit schemes that are fundamentally immune

to certain local errors. Furthermore, these proposals are constructed from conventional

materials and are within reach of current experiments. While these fault-tolerant de-

signs require additional complications such as adiabatic motion and novel particles, the

included analysis and simulations indicate that these added complexities are not pro-

hibitive. In summary, the use of adiabatic motion to implement and operate on qubits

is a viable method for getting closer to the ambitious goal of realizing a quantum com-

puter.
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Appendix A

Double Quantum Dots Simulation

Code

1 /∗
2 ∗ RK4 program wr i t t en by David Drummond
3 ∗/
4

5 #inc lude <iostream>
6 #inc lude <c s t d l i b>
7 #inc lude <s t r i ng>
8 #inc lude <fstream>
9 #inc lude <complex>

10 #inc lude <Eigen/Dense>
11 #inc lude ” grev rnd . h”
12

13 #de f i n e PI 3.1415926535897932
14

15 us ing namespace std ;
16 us ing namespace Eigen ;
17

18 // g l oba l v a r i a b l e s
19 Matrix2cd U1 , U2 , B0 , I , sx , sy , sz ,
20 H1 , H2 , k1 , k2 , k3 , k4 ;
21 double chi=0.5; // approximate percentage o f time spent moving
22 double T=400.0; // t o t a l time to complete 1 c i r c l e , i n c l ud ing r e s t time
23 double tau=T∗chi /2 ; // time spent to make one semi−c i r c l e
24 i n t steps=400∗3200; //good convergence at 3200
25 i n t tt=0;
26 double TT=40000.0;
27 double stepSize=T/steps ;
28 double beta = 0 . 0 7 5 ;
29 double b=2∗PI/∗+0.001∗/ ;
30 double t1=0.0;
31 double t2=TT /2 ;
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32 double t3=TT ;
33

34 // prototypes
35 void plotOriginal ( ) ;
36 double angle ( double t , i n t dir , i n t dot ) ;
37 double velx ( double t , i n t dir , i n t dot ) ;
38 double vely ( double t , i n t dir , i n t dot ) ;
39 double nonStatic ( double t , i n t dir , i n t dot , i n t field ) ;
40 Matrix2cd Ham ( double t , i n t dir , i n t dot ) ;
41 void plotAngle ( i n t dir , i n t reps , i n t dot ) ;
42 void plotVel ( i n t dir , i n t reps , i n t dot ) ;
43 void plotSpli ( ) ;
44 void plotField ( i n t dir , i n t reps , i n t dot ) ;
45 void plotPhi ( i n t dir , i n t reps ) ;
46 void display ( i n t dir , i n t reps ) ;
47 double infid ( Matrix2cd & u1 , Matrix2cd & u2 ) ;
48 Matrix4cf kronProd ( Matrix2cd & A , Matrix2cd & B ) ;
49 void initMatrices ( ) ;
50 void rk4 ( i n t dir , i n t reps ) ;
51 void repeatSim ( i n t cycles , i n t dir , i n t reps ) ;
52

53 // p lo t o r i g i n a l f i e l d from d o f i e l d
54 void plotOriginal ( )
55 {
56 cout<<endl<<endl ;
57 cout<<”# Plo t t i ng o r i g i n a l f i e l d ”<<endl ;
58 f o r ( i n t i=0; i<256∗2;i++)
59 cout<< i∗0.5<<”\ t ”<<do_field (i ∗0 . 5 , 0 )
60 <<”\ t ”<<do_field (i ∗0 . 5 , 1 )
61 <<”\ t ”<<do_field (i ∗0 . 5 , 2 )
62 <<”\ t ”<<do_field (i ∗0 . 5 , 3 )
63 <<”\ t ”<<do_field (i ∗0 . 5 , 4 )
64 <<”\ t ”<<do_field (i ∗0 . 5 , 5 )
65 <<”\ t ”<<do_field (i ∗0 . 5 , 6 )
66 <<”\ t ”<<do_field (i ∗0 . 5 , 7 )
67 <<”\ t ”<<do_field (i ∗0 . 5 , 8 )
68 <<endl ;
69 cout<<endl<<endl ;
70 }
71

72 // r e tu rn s number between 0 and 256 r ep r e s en t i ng ang le between 0 and 2∗ pi
73 // f o r dot going in d i r e c t i o n d i r − a l l ows t>T us ing fmod func t i on
74 double angle ( double t , i n t dir , i n t dot )
75 {
76 re turn 64∗(2+ dir∗tanh (5∗ ( fmod (t+dot∗T/2 ,T )−T/4) /tau )
77 + dir∗tanh (5∗ ( fmod (t+dot∗T /2 ,T )−3∗T/4) /tau ) ) ;
78 }
79

80 double velx ( double t , i n t dir , i n t dot )
81 {
82 re turn dir∗sin (2∗ PI∗fmod (t+dot∗T/2 ,T ) /T ) ∗( pow ( cosh (5∗ ( fmod (t+dot∗T/2 ,T←↩

)−T/4) /tau ) , −2)
83 + pow ( cosh (5∗ ( fmod (t+dot∗T/2 ,T )−3∗T/4) /tau ) ,−2) ) ;
84 }
85

86 double vely ( double t , i n t dir , i n t dot )
87 {
88 re turn 3 .5∗ dir∗cos (2∗ PI∗fmod (t+dot∗T/2 ,T ) /T ) ∗( pow ( cosh (5∗ ( fmod (t+dot∗T←↩

/2 ,T )−T/4) /tau ) , −2)
89 + pow ( cosh (5∗ ( fmod (t+dot∗T/2 ,T )−3∗T/4) /tau ) ,−2) ) ;
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90 }
91

92 i n l i n e
93 double nonStatic ( double t , i n t dir , i n t dot , i n t field )
94 {
95 /∗ re turn ( t /TT) ∗ d o f i e l d ( ang le ( t , d i r , dot ) , f i e l d )
96 +((TT−t ) /TT) ∗ d o f i e l d ( ang le ( t , d i r , dot ) , f i e l d +3) ;
97 ∗/
98 re turn ( (t−t2 ) ∗(t−t3 ) / ( ( t1−t2 ) ∗(t1−t3 ) ) ) ∗do_field ( angle (t , dir , ←↩

dot ) , field )
99 + ( (t−t1 ) ∗(t−t3 ) / ( ( t2−t1 ) ∗(t2−t3 ) ) ) ∗do_field ( angle (t , dir , dot ) , ←↩

field+3)
100 + ( (t−t2 ) ∗(t−t1 ) / ( ( t3−t2 ) ∗(t3−t1 ) ) ) ∗do_field ( angle (t , dir , dot ) , ←↩

field+6) ;
101

102

103 }
104

105 i n l i n e
106 Matrix2cd Ham ( double t , i n t dir , i n t dot )
107 {
108 /∗ re turn B0
109 + sx∗ d o f i e l d ( ang le ( t , d i r , dot ) ,0 )
110 + sy∗ d o f i e l d ( ang le ( t , d i r , dot ) ,1 ) ;
111 + sz ∗ d o f i e l d ( ang le ( t , d i r , dot ) ,2 ) ;
112 // + sx∗beta ∗(−1.0∗ ve lx ( t , d i r , dot )+ve ly ( t , d i r , dot ) )
113 // + sy∗beta ∗(−1.0∗ ve lx ( t , d i r , dot )+ve ly ( t , d i r , dot ) ) ;
114 ∗/
115 re turn B0

116 + sx∗beta ∗(−1.0∗ velx (t , dir , dot )+vely (t , dir , dot ) )
117 + sy∗beta ∗(−1.0∗ velx (t , dir , dot )+vely (t , dir , dot ) )
118 + sx∗nonStatic (t , dir , dot , 0 )
119 + sy∗nonStatic (t , dir , dot , 1 )
120 + sz∗nonStatic (t , dir , dot , 2 ) ;
121

122 }
123

124 void plotAngle ( i n t dir , i n t reps , i n t dot )
125 {
126 cout<<endl<<endl ;
127 cout<<”# Plo t t i ng ang le f o r dot ”<<dot+1<<” with d i r e c t i o n ”<<dir<<←↩

endl ;
128 tt=0;
129 i n t tempDir=1; //used to r e v e r s e d i r e c t i o n i f d i r=−1
130 f o r ( i n t j=0; j<reps ; j++)
131 {
132 f o r ( i n t i=0; i<steps ; i++)
133 {
134 tt++;
135 cout<< tt∗stepSize<<”\ t ”<<angle ( tt∗stepSize , tempDir , dot )<<endl←↩

;
136 }
137 tempDir∗=dir ; // changes d i r e c t i o n i f d i r=−1
138 }
139 }
140

141 void plotVel ( i n t dir , i n t reps , i n t dot )
142 {
143 cout<<endl<<endl ;
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144 cout<<”# Plo t t i ng v e l o c i t y f o r ”<<dot+1<<” with d i r e c t i o n ”<<dir<<endl←↩
;

145 tt=0;
146 i n t tempDir=1; //used to r e v e r s e d i r e c t i o n i f d i r=−1
147 f o r ( i n t j=0; j<reps ; j++)
148 {
149 f o r ( i n t i=0; i<steps ; i++)
150 {
151 tt++;
152 cout<< tt∗stepSize<<”\ t ”<<velx ( tt∗stepSize , tempDir , dot )
153 <<”\ t ”<<vely ( tt∗stepSize , tempDir , dot )<<endl ;
154 }
155 tempDir∗=dir ; // changes d i r e c t i o n i f d i r=−1
156 }
157 }
158

159 void plotSpli ( )
160 {
161 cout<<endl<<endl ;
162 f o r ( i n t t=0;t<TT ; t++)
163 cout << t << ' \ t ' <<( (t−t2 ) ∗(t−t3 ) / ( ( t1−t2 ) ∗(t1−t3 ) ) )
164 << ' \ t '<<( (t−t1 ) ∗(t−t3 ) / ( ( t2−t1 ) ∗(t2−t3 ) ) )
165 << ' \ t ' <<( (t−t2 ) ∗(t−t1 ) / ( ( t3−t2 ) ∗(t3−t1 ) ) )<<endl ;
166 }
167

168 void plotField ( i n t dir , i n t reps , i n t dot )
169 {
170 cout<<endl<<endl ;
171 cout<<”# Plo t t i ng ang le f o r dot ”<<dot+1<<” with d i r e c t i o n ”<<dir<<←↩

endl ;
172 tt=0;
173 i n t tempDir=1; //used to r e v e r s e d i r e c t i o n i f d i r=−1
174 f o r ( i n t j=0; j<reps ; j++)
175 {
176 f o r ( i n t i=0; i<steps ; i++)
177 {
178 tt++;
179 // cout<< t t ∗ s t epS i ze <<”\t”<<d o f i e l d ( ang le ( t t ∗ s t epS i ze , tempDir ,←↩

dot ) ,2 )<<endl ;
180 cout<< tt∗stepSize<<”\ t ”<<nonStatic ( tt∗stepSize , tempDir , dot , 2 )<<←↩

endl ;
181 }
182 tempDir∗=dir ; // changes d i r e c t i o n i f d i r=−1
183 }
184 }
185

186 void plotPhi ( i n t dir , i n t reps )
187 {
188 cout<<endl<<endl ;
189 cout<<”# Plo t t i ng phi with d i r e c t i o n ”<<dir<<endl ;
190 tt=0;
191 double phi1=0.0;
192 double phi2=0.0;
193 i n t tempDir=1; //used to r e v e r s e d i r e c t i o n i f d i r=−1
194 f o r ( i n t j=0; j<reps ; j++)
195 {
196 f o r ( i n t i=0; i<steps ; i++)
197 {
198 tt++;
199 phi1+=do_field ( angle ( tt∗stepSize , tempDir , 0) , 2 ) ;
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200 phi2+=do_field ( angle ( tt∗stepSize , tempDir , 1) , 2 ) ;
201 cout<< tt∗stepSize<<”\ t ”<<phi1<<”\ t ”<<phi2<<endl ;
202 }
203 tempDir∗=dir ; // changes d i r e c t i o n i f d i r=−1
204 }
205 }
206

207 void display ( i n t dir , i n t reps )
208 {
209 plotOriginal ( ) ;
210 plotAngle ( dir , reps , 0) ;
211 plotAngle ( dir , reps , 1) ;
212 plotField ( dir , reps , 0) ;
213 plotField ( dir , reps , 1) ;
214 plotSpli ( ) ;
215 plotVel ( dir , reps , 1) ;
216 // plotPhi ( d ir , r eps ) ;
217 }
218

219 // i n i t i a l i z e matr i ce s be f o r e rk4 i t e r a t i o n s
220 void initMatrices ( )
221 {
222 U1 << 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ; // I n i t i a l i z e U to 1 f o r dot 1
223 U2 << 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ; // I n i t i a l i z e U to 1 f o r dot 2
224 I ( 0 , 0 )=complex<double >(0.0 ,−stepSize ) ; //Eigen doesn ' t l i k e to mix ←↩

complex numbers with matr i ce s
225 I ( 1 , 1 )=complex<double >(0.0 ,−stepSize ) ; // so an i=sq r t (−1) matrix i s ←↩

cons t ruc ted
226 // a l s o in c lude −s tep from the ←↩

d i f f e r e n t i a l equat ion f o r e f f i c i e n c y
227 sx << 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ;
228 sz << 1 . 0 , 0 . 0 , 0 . 0 , −1 . 0 ;
229 B0 << b , 0 . 0 , 0 . 0 , − b ; //Applied B f i e l d
230 sy ( 0 , 1 )=complex<double >(0.0 ,−1.0) ;
231 sy ( 1 , 0 )=complex<double > ( 0 . 0 , 1 . 0 ) ;
232 }
233

234 // r e tu rn s the kronecker product o f 2x2 matr i ce s A and B
235 Matrix4cf kronProd ( Matrix2cd & A , Matrix2cd & B )
236 {
237 Matrix4cf K ;
238 f o r ( i n t i=0; i<4; i++)
239 {
240 f o r ( i n t j=0; j<4; j++)
241 K (i , j )=A ( floor (i/2) , floor (j/2) ) ∗B (i%2,j%2) ;
242 }
243 re turn K ;
244 }
245

246 // outputs the average i n f i d e l i t y o f u1 and u2
247 double infid ( Matrix2cd & u1 , Matrix2cd & u2 )
248 {
249 Matrix4cf U=kronProd (u1 , u2 ) ; // forms kronecker product o f the ←↩

matr i ce s
250 U ( 0 , 0 ) =0; U ( 3 , 0 ) =0; U ( 0 , 3 ) =0; U ( 3 , 3 ) =0; // p r o j e c t onto l o g i c a l ←↩

subspace
251 Matrix4cf UUdag=U∗U . adjoint ( ) ;
252 re turn (1−real ( abs (U . trace ( ) ) ∗abs (U . trace ( ) ) + UUdag . trace ( ) ) /6) ;
253 }
254
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255 // performs RK4
256 void rk4 ( i n t dir , i n t reps )
257 {
258 cout<<endl<<endl ;
259 tt=0;
260 i n t tempDir=1; //used to r e v e r s e d i r e c t i o n i f d i r=−1
261 H1 = Ham (0 , tempDir , 0 ) ; // i n i t i a l H value
262 H2 = Ham (0 , tempDir , 1 ) ;
263 f o r ( i n t j=0; j<reps ; j++)
264 {
265 f o r ( i n t i=0; i<steps ; i++)
266 {
267 k1 = I∗H1∗U1 ; // eva luate k1 us ing the prev ious H value
268 H1 = Ham ( ( tt+tempDir ∗0 . 5 ) ∗stepSize , tempDir , 0) ; // update f o r ←↩

ha l f s tep
269 k2 = I∗H1 ∗( U1+0.5∗k1 ) ;
270 k3 = I∗H1 ∗( U1+0.5∗k2 ) ;
271 H1 = Ham ( ( tt+tempDir ) ∗stepSize , tempDir , 0) ; // update H f o r next←↩

s tep
272 k4 = I∗H1 ∗( U1+k3 ) ;
273 U1+=(1/6.0) ∗( k1+2∗k2+2∗k3+k4 ) ;
274

275 k1 = I∗H2∗U2 ; //same f o r dot 2
276 H2 = Ham ( ( tt+tempDir ∗0 . 5 ) ∗stepSize , tempDir , 1) ;
277 k2 = I∗H2 ∗( U2+0.5∗k1 ) ;
278 k3 = I∗H2 ∗( U2+0.5∗k2 ) ;
279 H2 = Ham ( ( tt+tempDir ) ∗stepSize , tempDir , 1) ;
280 k4 = I∗H2 ∗( U2+k3 ) ;
281 U2+=(1/6.0) ∗( k1+2∗k2+2∗k3+k4 ) ;
282

283 tt++;
284 i f ( (i<16000) | | ( i>(steps−16000) ) ) // i f 16000 s t ep s with in ←↩

commensurate time
285 { i f ( tt%10==1)
286 printf ( ”%10.9g \ t %10.9g \n” , tt∗stepSize , infid (U1 , U2 ) ) ;
287 }
288 e l s e
289 i f ( tt%3200==1)
290 printf ( ”%10.9g \ t %10.9g \n” , tt∗stepSize , infid (U1 , U2 ) ) ;
291 }
292 tempDir∗=dir ; // changes d i r e c t i o n i f d i r=−1
293 }
294 }
295

296 // r epea t s sim cy c l e s times , each with d i f f e r e n t steps , or TT
297 void repeatSim ( i n t cycles , i n t dir , i n t reps )
298 {
299 f o r ( i n t i=0;i<cycles ; i++)
300 {
301 cout<<”#TT=”<<TT<<endl ;
302 rk4 ( dir , reps ) ;
303 // s t ep s ∗=2;
304 TT−=2000;
305 t2=TT /2 ;
306 t3=TT ;
307 tt=0;
308 stepSize=T/steps ;
309 initMatrices ( ) ;
310 }
311 }
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312

313 i n t main ( i n t argc , const char ∗argv [ ] )
314 {
315 initMatrices ( ) ;
316 do_init ( argc , argv ) ;
317 i n t reps=40;
318 i n t dir=−1;
319 cout<<”# Running rk4 with step s i z e : ”<<stepSize<<endl

320 <<”# ”<<reps<<” Reps with d i r e c t i o n=”<<dir<<” with TT=”<<TT<<endl ;
321 rk4 ( dir , reps ) ;
322 // repeatSim (5 , d ir , r eps ) ;
323 kill_spline ( ) ;
324 re turn 0 ;
325 }
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Appendix B

Majorana Wire Simulation Code

1 /∗ Author − David Drummond
2 ∗ Majorana program to s imulate Hamiltonian o f semiconductor wire
3 ∗ Note that un i t t e s t s are commented out , r a the r than de l e t ed
4 ∗
5 ∗ ve rbo s i t y key
6 ∗ v=0 nothing
7 ∗ v=1 parameter comment
8 ∗ v=2 matr i ce s comment
9 ∗ v=4 domain wa l l s

10 ∗ v=8 chemica l p o t e n t i a l − animation compatible i f TT!=0
11 ∗ v=16 e i g enva lu e s f o r zero−energy and lowest bulk s t a t e
12 ∗ v=32 Zero−energy s p a t i a l d i s t r i b u t i o n − animation compatible i f TT!=0
13 ∗ v=64 non−ad i aba t i c l eakage
14 ∗/
15 #inc lude ”c−major . h”
16 /∗ t Vx Vy Vz de l t a mu alpha lambda AL AR durL ←↩

durR TauL TauR L1 L2 L3 o r i g1 o r i g2 o r i g3 tSteps TT dispRate←↩
nx ny nz step per mN v ∗/

17

18 params prm={11.3 , 0 . 0 , 0 . 0 , 0 . 9 , 0 . 5 , 2 . 12 , 2 , 0 . 06 , 0 . 11 , 0 . 115 , 496 .6 ,←↩
442 , 200 , 200 , 0 . 13 , 0 . 09 , 0 .1355 , 0 . 0 , 0 . 5 , 1 . 0 , 100 , 800 , 4 , ←↩
400 , 0 , 0 , 3 , 0 , 3 , 56} ;

19 i n t NMAX=1000; /∗ matrix i s i n i t i a l i z e d with s i z e 4∗NMAX, but reduced to ←↩
ac tua l s i z e

20 ∗ a f t e r prm are i n i t i a l i z e d 4nn by 4nn hami ltonian o f dynamic s i z e X ←↩
by X of

21 ∗ complex double c o e f f i c i e n t s i n i t i a l l y f u l l o f z e r o s . 4nn f o r ←↩
c r e a t i on ( c ∗) and

22 ∗ ann i h i l a t i o n ( c ) , as we l l as spin ,
23 ∗ ope ra to r s ba s i s i s c1u , c1d , c2u , c2d , . . . c (nn )u , c (nn)d , c∗1u , c∗1d ,←↩

c∗2u , c∗2d , . . . c ∗(nn )u , c ∗(nn )d
24 ∗/
25 MatrixXcd ham , evec , maj , Usub , Iden , Uinit , Td , projMat1L , projMat2L , ←↩

projMat3L , projMat1R , projMat2R , projMat3R ;
26 MatrixXcd addMat1 , addMat2 , addMat3 , /∗addMat1R , addMat2R , addMat3R , ∗/ ←↩

locL , locR , symL , symR , tempMaj ;
27 MatrixXcd maj1L , maj2L , maj3L , maj1R , maj2R , maj3R , fixMat1L , fixMat2L , ←↩

fixMat3L , fixMat1R , fixMat2R , fixMat3R ;
28 VectorXd chem , Vx , Vy , Vz , eval ;
29 VectorXcd del , initState , prob ;
30 SelfAdjointEigenSolver<MatrixXcd> sol ; //workspace to s o l v e e i gen ←↩

equat ions
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31 std : : vector<T> tripletList ; // vec to r to hold t r i p l e t s o f row , co l , ←↩
e lements f o r spar s e Matrix

32 SparseMatrix<complex<double> > sparseHam ;
33 double latSize , stepSize , startL , startR ;
34 i n t nn , mN , size ;
35 IOFormat comMat (7 , 0 , ”” , ”\n” , ”# [ ” , ” ] ” ) ;
36 // p r e c i s i on , alignRows , coe f fSep , rowSep , rowPref ix , rowSuf f ix , ←↩

matPrefix , matSuf f ix
37

38 void init_params ( i n t argc , char ∗argv [ ] ) { /∗ read cmd l i n e params ∗/
39 i n t i , ok=1;
40 f o r (i=1;i<argc;++i ) {
41 i f (
42 sscanf ( argv [ i ] , ” t=%lg ” ,&prm . t ) | |
43 sscanf ( argv [ i ] , ”Vx=%lg ” ,&prm . Vx ) | |
44 sscanf ( argv [ i ] , ”Vy=%lg ” ,&prm . Vy ) | |
45 sscanf ( argv [ i ] , ”Vz=%lg ” ,&prm . Vz ) | |
46 sscanf ( argv [ i ] , ” d e l t a=%lg ” ,&prm . delta ) | |
47 sscanf ( argv [ i ] , ”mu=%lg ” ,&prm . mu ) | |
48 sscanf ( argv [ i ] , ” alpha=%lg ” ,&prm . alpha ) | |
49 sscanf ( argv [ i ] , ” lambda=%lg ” ,&prm . lambda ) | |
50 sscanf ( argv [ i ] , ”AL=%lg ” ,&prm . AL ) | |
51 sscanf ( argv [ i ] , ”AR=%lg ” ,&prm . AR ) | |
52 sscanf ( argv [ i ] , ”durL=%lg ” ,&prm . durL ) | |
53 sscanf ( argv [ i ] , ”durR=%lg ” ,&prm . durR ) | |
54 sscanf ( argv [ i ] , ”TauL=%lg ” ,&prm . TauL ) | |
55 sscanf ( argv [ i ] , ”TauR=%lg ” ,&prm . TauR ) | |
56 sscanf ( argv [ i ] , ”L1=%lg ” ,&prm . L1 ) | |
57 sscanf ( argv [ i ] , ”L2=%lg ” ,&prm . L2 ) | |
58 sscanf ( argv [ i ] , ”L3=%lg ” ,&prm . L3 ) | |
59 sscanf ( argv [ i ] , ” o r i g 1=%lg ” ,&prm . orig1 ) | |
60 sscanf ( argv [ i ] , ” o r i g 2=%lg ” ,&prm . orig2 ) | |
61 sscanf ( argv [ i ] , ” o r i g 3=%lg ” ,&prm . orig3 ) | |
62 sscanf ( argv [ i ] , ” tSteps=%d”,&prm . tSteps ) | |
63 sscanf ( argv [ i ] , ”TT=%d”,&prm . TT ) | |
64 sscanf ( argv [ i ] , ” dispRate=%d”,&prm . dispRate ) | |
65 sscanf ( argv [ i ] , ”nx=%d”,&prm . nx ) | |
66 sscanf ( argv [ i ] , ”ny=%d”,&prm . ny ) | |
67 sscanf ( argv [ i ] , ”nz=%d”,&prm . nz ) | |
68 sscanf ( argv [ i ] , ” s tep=%d”,&prm . step ) | |
69 sscanf ( argv [ i ] , ” per=%d”,&prm . per ) | |
70 sscanf ( argv [ i ] , ”mN=%d”,&prm . mN ) | |
71 sscanf ( argv [ i ] , ”v=%d”,&prm . v )
72 )
73 {
74 i f ( prm . v&1)
75 printf ( ”# main : scanned arg [%d]=\”%s \”\n” ,i , argv [ i ] ) ;
76 ok++;
77 }
78 }
79 i f ( ( prm . nx+prm . ny+prm . nz )>NMAX )
80 cout<<”ERROR: Number o f l a t t i c e s i t e s i s l a r g e r than NMAX”<<endl ;
81 i f ( ok !=argc )
82 cout<<” i n v a l i d input ”<<endl

83 <<”USAGE: [ t=#] [Vx=#] [Vy=#] [Vz=#] [ d e l t a=#] [mu=#] [ alpha=#] ←↩
[ lambda=#] [AL=#] [AR=#] [ durL=#] [ durR=#] [TauL=#] [TauR=#]←↩
[ L1=#] [ L2=#] [ L3=#] [ o r i g 1=#] [ o r i g2=#] [ o r i g3=#] [ tSteps←↩

=#] [TT=#] [ dispRate=#] [ n?=#] [ per=#] [mN=#] [ s tep=#] [ v=#]←↩
”

84 <<endl<<”where ?=x , y , z”<<endl ;
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85 i f ( prm . v&1)
86 {
87 printf ( ”# params : t=%g Vx=%g Vy=%g Vz=%g de l t a=%g mu=%g alpha=%g ←↩

lambda=%g AL=%g AR=%g durL=%g durR=%g TauL=%g TauR=%g L1=%g L2←↩
=%g L3=%g or i g1=%g or i g2=%g or i g3=%g tSteps=%d TT=%d dispRate=%←↩
d nx=%d ny=%d nz=%d step=%d per=%d mN=%d v=%d\n” ,

88 prm . t , prm . Vx , prm . Vy , prm . Vz , prm . delta , prm . mu , prm . alpha , prm←↩
. lambda , prm . AL , prm . AR , prm . durL , prm . durR , prm . TauL , prm .←↩
TauR , prm . L1 , prm . L2 , prm . L3 , prm . orig1 , prm . orig2 , prm .←↩
orig3 , prm . tSteps , prm . TT , prm . dispRate , prm . nx , prm . ny , prm←↩
. nz , prm . step , prm . per , prm . mN , prm . v ) ;

89 cout<<”# ve rbo s i t y key : v=0 nothing , v=1 parameter comment , v=2 ←↩
matr i ce s comment , v=4 domain wal l s , v=8 chemical po t en t i a l , v←↩
=16 e igenva lue s , v=32 Zero−energy s p a t i a l d i s t r i bu t i o n , v=64 ←↩
non−ad i aba t i c l eakage ”<<endl ;

90 }
91 nn=prm . nx+prm . ny+prm . nz ;
92 mN=prm . mN ;
93 size=powInt (2 , mN ) ;
94 latSize=1.0/nn ;
95 stepSize=1.0/prm . tSteps ;
96 chem = VectorXd : : Zero ( nn ) ;
97 del = VectorXcd : : Zero ( nn ) ;
98 Vx = VectorXd : : Zero ( nn ) ;
99 Vy = VectorXd : : Zero ( nn ) ;

100 Vz = VectorXd : : Zero ( nn ) ;
101 prob = VectorXcd : : Zero ( size ) ;
102 initState = VectorXcd : : Zero ( size ) ;
103 // i n i t S t a t e (0 ) =0.5∗ s q r t (2 ) ;
104 initState (0 ) =1;
105 initState (1 ) =0;
106 initState (2 ) =0;
107 initState (3 ) =0;
108 // i n i t S t a t e (3 )=−0.5∗ s q r t (2 ) ;
109 initState (4 ) =0;
110 initState (5 ) =0;
111 initState (6 ) =0;
112 initState (7 ) =0;
113 ham = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ;
114 maj = MatrixXcd : : Zero (4∗nn , mN ) ;
115 maj1L = MatrixXcd : : Zero (4∗nn , 1 ) ; maj2L = MatrixXcd : : Zero (4∗nn , 1 ) ; ←↩

maj3L = MatrixXcd : : Zero (4∗nn , 1 ) ;
116 maj1R = MatrixXcd : : Zero (4∗nn , 1 ) ; maj2R = MatrixXcd : : Zero (4∗nn , 1 ) ; ←↩

maj3R = MatrixXcd : : Zero (4∗nn , 1 ) ;
117 tempMaj = MatrixXcd : : Zero (4∗nn , 1 ) ;
118 locL = MatrixXcd : : Zero (4∗nn , mN ) ; locR = MatrixXcd : : Zero (4∗nn , mN ) ;
119 symL = MatrixXcd : : Zero (4∗nn , mN ) ; symR = MatrixXcd : : Zero (4∗nn , mN ) ;
120

121 //#inc lude ”savedMaj400 . dat”
122 projMat1L = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ; projMat2L = MatrixXcd : : Zero (4∗←↩

nn , 4∗ nn ) ; projMat3L = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ;
123 projMat1R = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ; projMat2R = MatrixXcd : : Zero (4∗←↩

nn , 4∗ nn ) ; projMat3R = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ;
124 fixMat1L = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ; fixMat2L = MatrixXcd : : Zero (4∗nn←↩

, 4∗ nn ) ; fixMat3L = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ;
125 fixMat1R = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ; fixMat2R = MatrixXcd : : Zero (4∗nn←↩

, 4∗ nn ) ; fixMat3R = MatrixXcd : : Zero (4∗nn , 4∗ nn ) ;
126 i n t cut = nn ∗ 0 . 2 ;
127 f o r ( i n t i=0; i<nn ; i++){
128 i f (i <= cut ) {

112



129 projMat1L (2∗i , 2∗i ) = 1 ;
130 projMat1L (2∗i + 1 , 2∗i + 1) = 1 ;
131 projMat1L (2∗i + 2∗nn , 2∗i + 2∗nn ) = 1 ;
132 projMat1L (2∗i + 2∗nn + 1 , 2∗i + 2∗nn + 1) = 1 ;
133 }
134 i f (i > cut && i <= 2∗cut + 0.2∗ nn ) {
135 projMat2L (2∗i , 2∗i ) = 1 ;
136 projMat2L (2∗i + 1 , 2∗i + 1) = 1 ;
137 projMat2L (2∗i + 2∗nn , 2∗i + 2∗nn ) = 1 ;
138 projMat2L (2∗i + 2∗nn + 1 , 2∗i + 2∗nn + 1) = 1 ;
139 }
140 i f (i > 2∗cut + 0.2∗ nn ) {
141 projMat3L (2∗i , 2∗i ) = 1 ;
142 projMat3L (2∗i + 1 , 2∗i + 1) = 1 ;
143 projMat3L (2∗i + 2∗nn , 2∗i + 2∗nn ) = 1 ;
144 projMat3L (2∗i + 2∗nn + 1 , 2∗i + 2∗nn + 1) = 1 ;
145 }
146 }
147 cut = nn ∗ 0 . 4 ;
148 f o r ( i n t i=0; i<nn ; i++){
149 i f (i <= cut ) {
150 projMat1R (2∗i , 2∗i ) = 1 ;
151 projMat1R (2∗i + 1 , 2∗i + 1) = 1 ;
152 projMat1R (2∗i + 2∗nn , 2∗i + 2∗nn ) = 1 ;
153 projMat1R (2∗i + 2∗nn + 1 , 2∗i + 2∗nn + 1) = 1 ;
154 }
155 i f (i > cut && i <= 2∗cut ) {
156 projMat2R (2∗i , 2∗i ) = 1 ;
157 projMat2R (2∗i + 1 , 2∗i + 1) = 1 ;
158 projMat2R (2∗i + 2∗nn , 2∗i + 2∗nn ) = 1 ;
159 projMat2R (2∗i + 2∗nn + 1 , 2∗i + 2∗nn + 1) = 1 ;
160 }
161 i f (i > 2∗cut ) {
162 projMat3R (2∗i , 2∗i ) = 1 ;
163 projMat3R (2∗i + 1 , 2∗i + 1) = 1 ;
164 projMat3R (2∗i + 2∗nn , 2∗i + 2∗nn ) = 1 ;
165 projMat3R (2∗i + 2∗nn + 1 , 2∗i + 2∗nn + 1) = 1 ;
166 }
167 }
168 addMat1 = MatrixXcd : : Zero (mN , mN ) ; addMat2 = MatrixXcd : : Zero (mN , mN ) ;←↩

addMat3 = MatrixXcd : : Zero (mN , mN ) ;
169 f o r ( i n t i=0; i<mN ; i++){
170 addMat1 (i , 0 ) = 1 ;
171 addMat2 (i , 1 ) = 1 ;
172 addMat3 (i , 2 ) = 1 ;
173 }
174

175 Usub = MatrixXcd : : Zero (4∗nn , 2∗ mN ) ;
176 Uinit = MatrixXcd : : Zero (4∗nn , 2∗ mN ) ;
177 Td = MatrixXcd : : Identity (2∗mN , 2∗ mN ) ;
178 Iden = MatrixXcd : : Identity (2∗mN , 2∗ mN ) ;
179 sparseHam . resize (4∗nn , 4∗ nn ) ;
180 tripletList . reserve (28∗nn−16∗prm . per ) ;
181 /∗ r e s e r v e s space f o r the number o f non−zero e lements in spar s e Ham nn←↩

on−s i t e h ,
182 ∗ nn on−s i t e V, nn on−s i t e Delta . . . ∗ 2 f o r sp in p lus nn−1 t , nn−1 ←↩

alpha . . . ∗ 2 f o r
183 ∗ l e f t and r i gh t movers and ∗2 f o r sp in g i v e s 6∗nn+8∗(nn−1)=14∗nn←↩

−8 . . .∗2 f o r Nambu
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184 ∗ ”symmetry” = 28∗nn−16 i f p e r i o d i c a l l movers have nn terms in s t ead ←↩
o f nn−1

185 ∗/
186 prm . TauL=5000∗max ( prm . AL , prm . AR ) ;
187 prm . TauR=prm . TauL ;
188 startL=prm . TauL ;
189 startR=prm . TauR ;
190 prm . TT=2∗max ( prm . TauL , prm . TauR )+max ( prm . durL , prm . durR ) ;
191 // prm . dispRate=prm .TT/20 ; // d i sp l ay 20 t imes
192 }
193

194 void disp ( double t )
195 {
196 i f ( prm . v&2) //Display hami l tonian matrix
197 {
198 cout<<”# Hamiltonian ”<<endl<<ham . format ( comMat )<<endl ;
199 cout<<”# Multi−Pa r t i c l e Bas i s ”<<endl ;
200 multBasis ( ) ;
201 }
202 i f ( prm . v&4) // p l o t domain wa l l s with the time
203 {
204 cout<<t<< ' \ t ' ;
205 i f ( prm . step==1) // i f 1 t o p o l o g i c a l reg ion , L2 and o r i g2 used f o r ←↩

the middle
206 cout<<(prm . orig2−prm . L2 /2)<< ' \ t '<<(prm . orig2+prm . L2/2+moveWallL (←↩

t ) )<<endl ;
207 i f ( prm . step==2) // i f 2 reg ions , L1 and L3 are used t y i p i c a l l y ←↩

toward the ends
208 cout<<(prm . orig1−prm . L1 )<< ' \ t '<<(prm . orig1+prm . L1+moveWallL (t ) )←↩

<< ' \ t '
209 <<(prm . orig3−prm . L3−moveWallR (t ) )<< ' \ t '<<(prm . orig3+prm . L3 )<<←↩

endl ;
210 i f ( prm . step==3) // i f 3 reg ions , a l l are used
211 cout<<(prm . orig1−prm . L1 )<< ' \ t '<<(prm . orig1+prm . L1+moveWallL (t ) )←↩

<< ' \ t '
212 <<(prm . orig2−prm . L2/2−moveWallL (t ) )<< ' \ t '<<(prm . orig2+prm . L2/2+←↩

moveWallR (t ) )<< ' \ t '
213 <<(prm . orig3−prm . L3−moveWallR (t ) )<< ' \ t '<<(prm . orig3+prm . L3 )<<←↩

endl ;
214 }
215 i f ( prm . v&8) // output chemical p o t e n t i a l s p a t i a l d i s t r i b u t i o n
216 {
217 f o r ( i n t i=0;i<nn ; i++)
218 {
219 cout<<i∗latSize<< ' \ t '<<chem (i )<<endl ;
220 }
221 cout<<endl<<endl ; //new index
222 }
223 i f ( prm . v&16) // output mN e i g enva lu e s + 1 bulk e i g enva lue
224 {
225 cout<<”# Eigenva lues ”<<endl ;
226 f o r ( i n t i=0;i<mN+1;i++)
227 {
228 cout<<eval (2∗ nn+i )<< ' \ t ' ;
229 }
230 cout<<endl<<endl<<endl ; //new index
231 }
232 i f ( prm . v&32) //Majorana s p a t i a l d i s t r i b u t i o n
233 {
234 cout<<”# Locat ion ”<< ' \ t '<<”u−Spin Up”<< ' \ t '<<”u−Spin Down”<< ' \ t '

114



235 <<”v−Spin Up”<< ' \ t '<<”v−Spin Down”<<endl ;
236 f o r ( i n t i=0; i<nn ; i++) // i i t e r a t e s thru the s p a t i a l coo rd ina te
237 {
238 cout<<i∗latSize ;
239 f o r ( i n t j=0; j<mN ; j++) // j i t e r a t e s thru the lowest energy ←↩

l e v e l e i g env e c t o r s
240 {
241 printf ( ”\ t %10.9g \ t %10.9g \ t %10.9g \ t %10.9g” ,
242 real ( symL (2∗i , j ) ) , real ( symL (2∗i+1,j ) ) , real ( symL (2∗ nn←↩

+2∗i , j ) ) , real ( symL (2∗ nn+2∗i+1,j ) ) ) ;
243 }
244 cout<<endl ;
245 }
246 cout<<endl<<endl ; //new index
247

248 cout<<”# Locat ion ”<< ' \ t '<<”u−Spin Up”<< ' \ t '<<”u−Spin Down”<< ' \ t '
249 <<”v−Spin Up”<< ' \ t '<<”v−Spin Down”<<endl ;
250 f o r ( i n t i=0; i<nn ; i++) // i i t e r a t e s thru the s p a t i a l coo rd ina te
251 {
252 cout<<i∗latSize ;
253 f o r ( i n t j=0; j<mN ; j++) // j i t e r a t e s thru the lowest energy ←↩

l e v e l e i g env e c t o r s
254 {
255 printf ( ”\ t %10.9g \ t %10.9g \ t %10.9g \ t %10.9g” ,
256 real ( symR (2∗i , j ) ) , real ( symR (2∗i+1,j ) ) , real ( symR (2∗ nn←↩

+2∗i , j ) ) , real ( symR (2∗ nn+2∗i+1,j ) ) ) ;
257 }
258 cout<<endl ;
259 }
260 cout<<endl<<endl ; //new index
261

262 cout<<”# Locat ion ”<< ' \ t '<<”u−Spin Up”<< ' \ t '<<”u−Spin Down”<< ' \ t '
263 <<”v−Spin Up”<< ' \ t '<<”v−Spin Down”<<endl ;
264 f o r ( i n t i=0; i<nn ; i++) // i i t e r a t e s thru the s p a t i a l coo rd ina te
265 {
266 cout<<i∗latSize ;
267 f o r ( i n t j=0; j<mN ; j++) // j i t e r a t e s thru the lowest energy ←↩

l e v e l e i g env e c t o r s
268 {
269 printf ( ”\ t %10.9g \ t %10.9g \ t %10.9g \ t %10.9g” ,
270 norm ( locL (2∗i , j ) ) , norm ( locL (2∗i+1,j ) ) , norm ( locL (2∗ nn←↩

+2∗i , j ) ) , norm ( locL (2∗ nn+2∗i+1,j ) ) ) ;
271 }
272 cout<<endl ;
273 }
274 cout<<endl<<endl ; //new index
275

276 cout<<”# Locat ion ”<< ' \ t '<<”u−Spin Up”<< ' \ t '<<”u−Spin Down”<< ' \ t '
277 <<”v−Spin Up”<< ' \ t '<<”v−Spin Down”<<endl ;
278 f o r ( i n t i=0; i<nn ; i++) // i i t e r a t e s thru the s p a t i a l coo rd ina te
279 {
280 cout<<i∗latSize ;
281 f o r ( i n t j=0; j<mN ; j++) // j i t e r a t e s thru the lowest energy ←↩

l e v e l e i g env e c t o r s
282 {
283 printf ( ”\ t %10.9g \ t %10.9g \ t %10.9g \ t %10.9g” ,
284 norm ( locR (2∗i , j ) ) , norm ( locR (2∗i+1,j ) ) , norm ( locR (2∗ nn←↩

+2∗i , j ) ) , norm ( locR (2∗ nn+2∗i+1,j ) ) ) ;
285 }
286 cout<<endl ;
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287 }
288 cout<<endl<<endl ; //new index
289

290 cout<<”# Locat ion ”<< ' \ t '<<”u−Spin Up”<< ' \ t '<<”u−Spin Down”<< ' \ t '
291 <<”v−Spin Up”<< ' \ t '<<”v−Spin Down”<<endl ;
292 f o r ( i n t i=0; i<nn ; i++) // i i t e r a t e s thru the s p a t i a l coo rd ina te
293 {
294 cout<<i∗latSize ;
295 f o r ( i n t j=0; j<mN ; j++) // j i t e r a t e s thru the lowest energy ←↩

l e v e l e i g env e c t o r s
296 {
297 printf ( ”\ t %10.9g \ t %10.9g \ t %10.9g \ t %10.9g” ,
298 norm ( maj (2∗i , j ) ) , norm ( maj (2∗i+1,j ) ) , norm ( maj (2∗ nn+2∗i←↩

, j ) ) , norm ( maj (2∗ nn+2∗i+1,j ) ) ) ;
299 }
300 cout<<endl ;
301 }
302 cout<<endl<<endl ; //new index
303

304 }
305 i f ( prm . v&64) // check whether subgap space i s un i tary to t e s t l eakage
306 {
307 printf ( ”%10.16g \ t ” , ( Iden−(Td . adjoint ( ) ∗Td ) ) . norm ( ) ) ;
308 // p r i n t f (”%10.16g \ t ” , r e a l (Usub (0 , 0 ) ) ) ; // check step s i z e f o r RK4
309 }
310 }
311

312 // f i n d s s i gn o f maximum abso lu t e c o e f f i c i e n t o f vec
313 i n t maxSign ( VectorXcd vec ) {
314 i n t sign = 1 ;
315 double max = 0 ;
316 f o r ( i n t i=0; i<nn ; i++){
317 i f ( ( norm ( vec (2∗i ) ) + norm ( vec (2∗i+1) ) ) > max ) {
318 max = ( norm ( vec (2∗i ) ) + norm ( vec (2∗i+1) ) ) ;
319 i f ( ( real ( vec (2∗i ) ) + real ( vec (2∗i+1) ) ) > 0 )
320 sign = 1 ;
321 e l s e
322 sign = −1;
323 }
324 }
325 re turn sign ;
326 }
327

328 i n t maxLoc ( VectorXcd vec ) {
329 i n t loc = 0 ;
330 double max = 0 ;
331 f o r ( i n t i=0; i<nn ; i++){
332 i f ( ( norm ( vec (2∗i ) ) + norm ( vec (2∗i+1) ) ) > max ) {
333 max = ( norm ( vec (2∗i ) ) + norm ( vec (2∗i+1) ) ) ;
334 loc = i ;
335 }
336 }
337 re turn loc ;
338 }
339

340 double moveWallL ( double t )
341 {
342 re turn ( prm . AL ∗0 . 5 ) ∗( tanh ( (5/ prm . TauL ) ∗(t−startL ) )−tanh ( (5/ prm . TauL ) ∗(←↩

t−startL−prm . durL ) ) ) ;
343 }

116



344

345 double moveWallR ( double t )
346 {
347 re turn ( prm . AR ∗0 . 5 ) ∗( tanh ( (5/ prm . TauR ) ∗(t−startR ) )−tanh ( (5/ prm . TauR ) ∗(←↩

t−startR−prm . durR ) ) ) ;
348 }
349

350 // r e tu rn s a step that goes from 0 to 1 , over l ength lambda , and i s ←↩
cente red at o r i g i n

351 double step ( double x , double lambda , double origin )
352 {
353 re turn 0 . 5∗ ( tanh ( (5/ lambda ) ∗(x − origin ) ) + 1) ;
354 }
355 double delFunction ( double x , double t )
356 {
357 re turn prm . delta+x∗0.0+t ∗ 0 . 0 ; // r ep l a c e with po s i t i o n and/ or time ←↩

dependent de l t a i f d e s i r ed
358 }
359 double magXFunction ( double x , double t )
360 {
361 re turn prm . Vx+x∗0.0+t ∗ 0 . 0 ; // r ep l a c e with po s i t i o n and/ or time ←↩

dependent i f d e s i r ed
362 }
363 double magYFunction ( double x , double t )
364 {
365 re turn prm . Vy+0.0∗t+0.0∗x ; // r ep l a c e with po s i t i o n and/ or time ←↩

dependent i f d e s i r ed
366 }
367 double magZFunction ( double x , double t )
368 {
369 re turn prm . Vz+0.0∗t+0.0∗x ; // r ep l a c e with po s i t i o n and/ or time ←↩

dependent i f d e s i r ed
370 }
371

372 void update_chem ( double t ) // t i s the percentage o f time e lapsed
373 {
374 f o r ( i n t i=0;i<nn ; i++)
375 {
376 i f ( prm . step==0) // i f constant
377 chem (i )=prm . mu ;
378 i f ( prm . step==1) // i f 1 t o p o l o g i c a l reg ion , L2 and o r i g2 used f o r ←↩

the middle
379 chem (i )=prm . mu∗(1+(
380 −1∗step (i∗latSize , prm . lambda , prm . orig2−prm . L2 /2)
381 +1∗step (i∗latSize , prm . lambda , prm . orig2+prm . L2/2+←↩

moveWallL (t ) )
382 ) ) ;
383 i f ( prm . step==2) // i f 2 reg ions , L1 and L3 are used t y i p i c a l l y ←↩

toward the ends
384 chem (i )=prm . mu∗(1+(
385 −step (i∗latSize , prm . lambda , prm . orig1−prm . L1 )
386 +step (i∗latSize , prm . lambda , prm . orig1+prm . L1+moveWallL (t )←↩

)
387 −step (i∗latSize , prm . lambda , prm . orig3−prm . L3−moveWallR (t )←↩

)
388 +step (i∗latSize , prm . lambda , prm . orig3+prm . L3 )
389 ) ) ;
390 i f ( prm . step==3) // i f 3 reg ions , a l l are used
391 chem (i )=prm . mu∗(1+(
392 −step (i∗latSize , prm . lambda , prm . orig1−prm . L1 )
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393 +step (i∗latSize , prm . lambda , prm . orig1+prm . L1+moveWallL (t )←↩
)

394 −step (i∗latSize , prm . lambda , prm . orig2−prm . L2/2−moveWallL (←↩
t ) )

395 +step (i∗latSize , prm . lambda , prm . orig2+prm . L2/2+moveWallR (←↩
t ) )

396 −step (i∗latSize , prm . lambda , prm . orig3−prm . L3−moveWallR (t )←↩
)

397 +step (i∗latSize , prm . lambda , prm . orig3+prm . L3 )
398 ) ) ;
399 }
400 }
401

402 void update_del ( double t )
403 {
404 f o r ( i n t i=0;i<nn ; i++)
405 {
406 del (i )=delFunction ( double (i ) ,t ) ;
407 }
408 }
409 void update_V ( double t )
410 {
411 f o r ( i n t i=0;i<nn ; i++)
412 {
413 Vx (i )=magXFunction ( double (i ) ,t ) ;
414 Vy (i )=magYFunction ( double (i ) ,t ) ;
415 Vz (i )=magZFunction ( double (i ) ,t ) ;
416 }
417 }
418 void init_ham ( double t ) // i n i t the Hamiltonian matrix
419 {
420 i n t j ;
421 double temp ; // used f o r e f f i c i e n c y
422 update_chem (t ) ;
423 update_del (t ) ;
424 update_V (t ) ;
425 /∗ Help fu l key f o r Hamiltonian ba s i s
426 ∗
427 ∗ +1 changes sp in
428 ∗ +2 moves to the r i g h t in r e a l space
429 ∗ +2nn swi t che s p a r t i c l e to ho le
430 ∗
431 ∗/
432 f o r ( i n t i=0; i<nn ; i++) //on−s i t e term , chemica l po t en t i a l , and Z ←↩

Zeeman term
433 {
434 temp=2.0∗prm . t−chem (i ) ;
435 ham (2∗i , 2∗ i )=temp+prm . Vz ;
436 ham (2∗i+1,2∗i+1)=temp−prm . Vz ;
437 ham (2∗i+2∗nn , 2∗ i+2∗nn )=−1.0∗temp−prm . Vz ;
438 ham (2∗i+2∗nn+1,2∗i+2∗nn+1)=−1.0∗temp+prm . Vz ;
439 }
440 f o r ( i n t i=0; i<nn−1; i++) //hopping terms
441 {
442 j=2∗i+2;
443 ham (2∗i , j )=−1.0∗prm . t ;
444 ham (j , 2∗ i )=−1.0∗prm . t ;
445 ham (2∗i+1,j+1)=−1.0∗prm . t ;
446 ham (j+1,2∗i+1)=−1.0∗prm . t ;
447 ham (2∗i+2∗nn , j+2∗nn )=prm . t ;
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448 ham (j+2∗nn , 2∗ i+2∗nn )=prm . t ;
449 ham (2∗i+2∗nn+1,j+2∗nn+1)=prm . t ;
450 ham (j+2∗nn+1,2∗i+2∗nn+1)=prm . t ;
451 }
452 f o r ( i n t i=0; i<nn ; i++) //X and Y Zeeman terms
453 {
454 j=2∗i+1;
455 ham (2∗i , j )=complex<double>(Vx (i ) ,−1.0∗Vy (i ) ) ;
456 ham (j , 2∗ i )=complex<double>(Vx (i ) , 1 . 0∗ Vy (i ) ) ;
457 ham (2∗i+2∗nn , j+2∗nn )=complex<double>(−1.0∗Vx (i ) ,−1.0∗Vy (i ) ) ;
458 ham (j+2∗nn , 2∗ i+2∗nn )=complex<double>(−1.0∗Vx (i ) , 1 . 0∗ Vy (i ) ) ;
459 //Eigen i s n ' t over loaded to handle r e a l s c a l a r mu l t i p l i c a t i o n by ←↩

complex ve c to r s
460 }
461 f o r ( i n t i=0; i<nn−1; i++) //Spin−o rb i t terms
462 {
463 j=2∗i+2;
464 temp=0.5∗prm . alpha ;
465 ham (2∗i+1,j )=temp ;
466 ham (j , 2∗ i+1)=temp ;
467 ham (2∗i , j+1)=−1.0∗temp ;
468 ham (j+1,2∗i )=−1.0∗temp ;
469 ham (2∗i+1+2∗nn , j+2∗nn )=−1.0∗temp ;
470 ham (j+2∗nn , 2∗ i+1+2∗nn )=−1.0∗temp ;
471 ham (2∗i+2∗nn , j+1+2∗nn )=temp ;
472 ham (j+1+2∗nn , 2∗ i+2∗nn )=temp ;
473 }
474 f o r ( i n t i=0; i<nn ; i++) // Superconductor pa i r i n g terms
475 {
476 j=2∗i+2∗nn ;
477 ham (2∗i , j+1)=del (i ) ;
478 ham (j+1,2∗i )=del (i ) ;
479 ham (2∗i+1,j )=complex<double >(−1.0 ,0)∗del (i ) ;
480 ham (j , 2∗ i+1)=complex<double >(−1.0 ,0)∗del (i ) ;
481 }
482 }
483

484 void init_ham_sparse ( double t ) // i n i t the Hamiltonian matrix as a ←↩
spar s e matrix

485 {
486 i n t j ;
487 double temp ; // used f o r e f f i c i e n c y
488 update_chem (t ) ;
489 update_del (t ) ;
490 update_V (t ) ;
491 f o r ( i n t i=0; i<nn ; i++) //on−s i t e term , chemica l po t en t i a l , and Z ←↩

Zeeman term
492 {
493 temp=2.0∗prm . t−chem (i ) ;
494 tripletList . push_back (T (2∗i , 2∗ i , temp+prm . Vz ) ) ;
495 tripletList . push_back (T (2∗i+1,2∗i+1,temp−prm . Vz ) ) ;
496 tripletList . push_back (T (2∗i+2∗nn , 2∗ i+2∗nn ,−1.0∗ temp−prm . Vz ) ) ;
497 tripletList . push_back (T (2∗i+2∗nn+1,2∗i+2∗nn+1,−1.0∗temp+prm . Vz ) ) ;
498 }
499 f o r ( i n t i=0; i<nn−1; i++) //hopping terms
500 {
501 j=2∗i+2;
502 tripletList . push_back (T (2∗i , j ,−1.0∗ prm . t ) ) ;
503 tripletList . push_back (T (j , 2∗ i ,−1.0∗ prm . t ) ) ;
504 tripletList . push_back (T (2∗i+1,j+1,−1.0∗prm . t ) ) ;
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505 tripletList . push_back (T (j+1,2∗i+1,−1.0∗prm . t ) ) ;
506 tripletList . push_back (T (2∗i+2∗nn , j+2∗nn , prm . t ) ) ;
507 tripletList . push_back (T (j+2∗nn , 2∗ i+2∗nn , prm . t ) ) ;
508 tripletList . push_back (T (2∗i+2∗nn+1,j+2∗nn+1,prm . t ) ) ;
509 tripletList . push_back (T (j+2∗nn+1,2∗i+2∗nn+1,prm . t ) ) ;
510 }
511 f o r ( i n t i=0; i<nn ; i++) //X and Y Zeeman terms
512 {
513 j=2∗i+1;
514 tripletList . push_back (T (2∗i , j , complex<double>(Vx (i ) ,−1.0∗Vy (i ) ) ) ) ;
515 tripletList . push_back (T (j , 2∗ i , complex<double>(Vx (i ) , 1 . 0∗ Vy (i ) ) ) ) ;
516 tripletList . push_back (T (2∗i+2∗nn , j+2∗nn , complex<double>(−1.0∗Vx (i )←↩

,−1.0∗Vy (i ) ) ) ) ;
517 tripletList . push_back (T (j+2∗nn , 2∗ i+2∗nn , complex<double>(−1.0∗Vx (i )←↩

, 1 . 0∗ Vy (i ) ) ) ) ;
518 //Eigen i s n ' t over loaded to handle r e a l s c a l a r mu l t i p l i c a t i o n by ←↩

complex ve c to r s
519 }
520 f o r ( i n t i=0; i<nn−1; i++) //Spin−o rb i t terms
521 {
522 j=2∗i+2;
523 temp=0.5∗prm . alpha ;
524 tripletList . push_back (T (2∗i+1,j , temp ) ) ;
525 tripletList . push_back (T (j , 2∗ i+1,temp ) ) ;
526 tripletList . push_back (T (2∗i , j+1,−1.0∗temp ) ) ;
527 tripletList . push_back (T (j+1,2∗i ,−1.0∗ temp ) ) ;
528 tripletList . push_back (T (2∗i+1+2∗nn , j+2∗nn ,−1.0∗ temp ) ) ;
529 tripletList . push_back (T (j+2∗nn , 2∗ i+1+2∗nn ,−1.0∗ temp ) ) ;
530 tripletList . push_back (T (2∗i+2∗nn , j+1+2∗nn , temp ) ) ;
531 tripletList . push_back (T (j+1+2∗nn , 2∗ i+2∗nn , temp ) ) ;
532 }
533 f o r ( i n t i=0; i<nn ; i++) // Superconductor pa i r i n g terms
534 {
535 j=2∗i+2∗nn ;
536 tripletList . push_back (T (2∗i , j+1,del (i ) ) ) ;
537 tripletList . push_back (T (j+1,2∗i , del (i ) ) ) ;
538 tripletList . push_back (T (2∗i+1,j , complex<double >(−1.0 ,0)∗del (i ) ) ) ;
539 tripletList . push_back (T (j , 2∗ i+1,complex<double >(−1.0 ,0)∗del (i ) ) ) ;
540 }
541 }
542

543 void per_ham ( double k ) //add p e r i o d i c terms i f prm . per=1
544 {
545 double temp ; // Pe r i od i c SO terms
546 temp=0.5∗prm . alpha ;
547 ham (0 ,2∗ nn−1)=polar ( temp , k ) ;
548 ham (2∗nn−1 ,0)=polar ( temp ,−1.0∗k ) ;
549 ham (1 ,2∗ nn−2)=polar (−1.0∗temp , k ) ;
550 ham (2∗nn−2 ,1)=polar (−1.0∗temp ,−1.0∗k ) ;
551 ham (2∗nn , 4∗ nn−1)=polar (−1.0∗temp ,−1.0∗k ) ;
552 ham (4∗nn−1 ,2∗nn )=polar (−1.0∗temp , k ) ;
553 ham (2∗ nn+1,4∗nn−2)=polar ( temp ,−1.0∗k ) ;
554 ham (4∗nn−2 ,2∗nn+1)=polar ( temp , k ) ;
555

556 temp=−1.0∗prm . t ; // Pe r i od i c hopping terms
557 ham (0 ,2∗ nn−2)=polar ( temp , k ) ;
558 ham (2∗nn−2 ,0)=polar ( temp ,−1.0∗k ) ;
559 ham (1 ,2∗ nn−1)=polar ( temp , k ) ;
560 ham (2∗nn−1 ,1)=polar ( temp ,−1.0∗k ) ;
561 ham (2∗nn , 4∗ nn−2)=polar (−1.0∗temp ,−1.0∗k ) ;
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562 ham (4∗nn−2 ,2∗nn )=polar (−1.0∗temp , k ) ;
563 ham (2∗ nn+1,4∗nn−1)=polar (−1.0∗temp ,−1.0∗k ) ;
564 ham (4∗nn−1 ,2∗nn+1)=polar (−1.0∗temp , k ) ;
565

566 temp=0.5∗prm . alpha ; // Pe r i od i c SO terms
567 tripletList . push_back (T (0 ,2∗ nn−1,polar ( temp , k ) ) ) ;
568 tripletList . push_back (T (2∗nn−1 ,0 , polar ( temp ,−1.0∗k ) ) ) ;
569 tripletList . push_back (T (1 ,2∗ nn−2,polar (−1.0∗temp , k ) ) ) ;
570 tripletList . push_back (T (2∗nn−2 ,1 , polar (−1.0∗temp ,−1.0∗k ) ) ) ;
571 tripletList . push_back (T (2∗nn , 4∗ nn−1,polar (−1.0∗temp ,−1.0∗k ) ) ) ;
572 tripletList . push_back (T (4∗nn−1 ,2∗nn , polar (−1.0∗temp , k ) ) ) ;
573 tripletList . push_back (T (2∗ nn+1,4∗nn−2,polar ( temp ,−1.0∗k ) ) ) ;
574 tripletList . push_back (T (4∗nn−2 ,2∗nn+1,polar ( temp , k ) ) ) ;
575

576 temp=−1.0∗prm . t ; // Pe r i od i c hopping terms
577 tripletList . push_back (T (0 ,2∗ nn−2,polar ( temp , k ) ) ) ;
578 tripletList . push_back (T (2∗nn−2 ,0 , polar ( temp ,−1.0∗k ) ) ) ;
579 tripletList . push_back (T (1 ,2∗ nn−1,polar ( temp , k ) ) ) ;
580 tripletList . push_back (T (2∗nn−1 ,1 , polar ( temp ,−1.0∗k ) ) ) ;
581 tripletList . push_back (T (2∗nn , 4∗ nn−2,polar (−1.0∗temp ,−1.0∗k ) ) ) ;
582 tripletList . push_back (T (4∗nn−2 ,2∗nn , polar (−1.0∗temp , k ) ) ) ;
583 tripletList . push_back (T (2∗ nn+1,4∗nn−1,polar (−1.0∗temp ,−1.0∗k ) ) ) ;
584 tripletList . push_back (T (4∗nn−1 ,2∗nn+1,polar (−1.0∗temp , k ) ) ) ;
585 }
586

587 void update_ham ( double t ) // update the Hamiltonian matrix in r e a l space
588 {
589 double temp ; // used f o r e f f i c i e n c y
590 update_chem (t ) ;
591 f o r ( i n t i=0; i<nn ; i++) //on−s i t e term , chemica l po t en t i a l , and Z ←↩

Zeeman terms
592 {
593 temp=2.0∗prm . t−chem (i ) ;
594 sparseHam . coeffRef (2∗i , 2∗ i )=temp+prm . Vz ;
595 sparseHam . coeffRef (2∗i+1,2∗i+1)=temp−prm . Vz ; // spar s e ve r s i on
596 sparseHam . coeffRef (2∗i+2∗nn , 2∗ i+2∗nn )=−1.0∗temp−prm . Vz ;
597 sparseHam . coeffRef (2∗i+2∗nn+1,2∗i+2∗nn+1)=−1.0∗temp+prm . Vz ;
598 }
599 }
600

601 void do_solve ( void )
602 {
603 sol . compute ( ham ) ;
604 evec = sol . eigenvectors ( ) ;
605 eval = sol . eigenvalues ( ) ;
606 maj = evec . block (0 ,2∗ nn , 4∗ nn , mN ) ; // s t a r t i n g row , s t a r t i n g co l , row ←↩

l ength , c o l l ength
607 // maj vec to r corresponds to lowest 3 p o s i t i v e e i g env e c t o r s
608 // which are s to r ed in a 4∗nn x mN matrix , with the lowest energy ←↩

e i g enve c t o r on the l e f t
609 //
610

611 //make the pa r t i c l e−ho le symmetric s t a t e s
612 maj1L = evec . col (2∗ nn − 1) + evec . col (2∗ nn ) ;
613 maj2L = evec . col (2∗ nn − 2) + evec . col (2∗ nn + 1) ;
614 maj3L = evec . col (2∗ nn − 3) + evec . col (2∗ nn + 2) ;
615 maj1R = evec . col (2∗ nn − 1) − evec . col (2∗ nn ) ;
616 maj2R = evec . col (2∗ nn − 2) − evec . col (2∗ nn + 1) ;
617 maj3R = evec . col (2∗ nn − 3) − evec . col (2∗ nn + 2) ;
618
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619 // check to which i s more to the r ight , switch i f needed
620 i f ( maxLoc ( maj1L ) > maxLoc ( maj1R ) ) {
621 tempMaj = maj1L ;
622 maj1L = maj1R ;
623 maj1R = tempMaj ;
624 }
625 i f ( maxLoc ( maj2L ) > maxLoc ( maj2R ) ) {
626 tempMaj = maj2L ;
627 maj2L = maj2R ;
628 maj2R = tempMaj ;
629 }
630 i f ( maxLoc ( maj3L ) > maxLoc ( maj3R ) ) {
631 tempMaj = maj3L ;
632 maj3L = maj3R ;
633 maj3R = tempMaj ;
634 }
635

636 fixMat1L = projMat1L ∗ maxSign ( projMat1L∗maj1L )
637 + projMat2L ∗ maxSign ( projMat2L∗maj1L )
638 + projMat3L ∗ maxSign ( projMat3L∗maj1L ) ;
639 fixMat2L = projMat1L ∗ maxSign ( projMat1L∗maj2L )
640 + projMat2L ∗ maxSign ( projMat2L∗maj2L )
641 + projMat3L ∗ maxSign ( projMat3L∗maj2L ) ;
642 fixMat3L = projMat1L ∗ maxSign ( projMat1L∗maj3L )
643 + projMat2L ∗ maxSign ( projMat2L∗maj3L )
644 + projMat3L ∗ maxSign ( projMat3L∗maj3L ) ;
645 fixMat1R = projMat1R ∗ maxSign ( projMat1R∗maj1R )
646 + projMat2R ∗ maxSign ( projMat2R∗maj1R )
647 + projMat3R ∗ maxSign ( projMat3R∗maj1R ) ;
648 fixMat2R = projMat1R ∗ maxSign ( projMat1R∗maj2R )
649 + projMat2R ∗ maxSign ( projMat2R∗maj2R )
650 + projMat3R ∗ maxSign ( projMat3R∗maj2R ) ;
651 fixMat3R = projMat1R ∗ maxSign ( projMat1R∗maj3R )
652 + projMat2R ∗ maxSign ( projMat2R∗maj3R )
653 + projMat3R ∗ maxSign ( projMat3R∗maj3R ) ;
654

655 symL << fixMat1L∗maj1L , fixMat2L∗maj2L , fixMat3L∗maj3L ;
656 symR << fixMat1R∗maj1R , fixMat2R∗maj2R , fixMat3R∗maj3R ;
657

658 // symL << maj1L , maj2L , maj3L ;
659 // symR << maj1R , maj2R , maj3R ;
660

661 //below are the l o c a l i z e d v e r s i on s o f the maj
662 locL += projMat1L∗symL∗addMat1 ;
663 locL += projMat2L∗symL∗addMat2 ;
664 locL += projMat3L∗symL∗addMat3 ;
665

666 locR += projMat1R∗symR∗addMat1 ;
667 locR += projMat2R∗symR∗addMat2 ;
668 locR += projMat3R∗symR∗addMat3 ;
669

670 maj = 0 .5∗ ( locL + locR ) ;
671

672 // re−normal ize
673 MatrixXcd norms = MatrixXcd : : Identity ( 3 , 3 ) ;
674 double sum ;
675 f o r ( i n t i=0; i<mN ; i++) // i i t e r a t e s thru the s p a t i a l coo rd ina te
676 {
677 sum = 0 ;
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678 f o r ( i n t j=0; j<nn ; j++) // j i t e r a t e s thru the lowest energy ←↩
l e v e l e i g env e c t o r s

679 {
680 sum += norm ( maj (2∗j , i ) ) + norm ( maj (2∗j+1,i ) ) + norm ( maj (2∗ nn←↩

+2∗j , i ) ) + norm ( maj (2∗ nn+2∗j+1,i ) ) ;
681 }
682 norms (i , i ) = 1 .0 / sqrt ( sum ) ;
683 }
684 maj = maj ∗ norms ;
685 }
686

687 i n t orderStates ( i n t parity ) // re−orde r s the maj vec to r to p lace pa r i t y ←↩
s t a t e f i r s t , then r i gh t to l e f t

688 {
689 i n t rowCount=0, j=1;
690 double weight , threshold=0.02; // value o f e i g e n s t a t e which c l e a r l y ←↩

marks majorana l o c a t i o n
691 MatrixXcd reOrder = MatrixXcd : : Zero (mN , mN ) ; //matrix to r eo rde r s t a t e←↩

vec to r s
692 // i i s cur r ent l o c a t i o n o f s t a t e and j i s f i n a l l o c a t i o n s
693 reOrder ( parity , 0)=1; //makes the pa r i t y s t a t e the new 0
694 f o r ( i n t i=nn−1;i>=0;i−−) // goes thru the wire from r i gh t to l e f t
695 {
696 f o r ( i n t state=0; state<mN ; state++) // checks i f each s t a t e h i t s ←↩

th r e sho ld
697 {
698 weight=(norm ( maj (2∗i , state ) )+norm ( maj (2∗i+1,state ) ) //weight ←↩

o f s t a t e at cur r ent s i t e
699 +norm ( maj (2∗ nn+2∗i , state ) )+norm ( maj (2∗ nn+2∗i+1,state ) ) ) ;
700 i f ( ( threshold<weight )&&(weight<threshold+0.003) ) //upper bound←↩

to reduce s i t e s with−in th r e sho ld
701 {
702 // cout<<”Mode found at s i t e ”<< i ∗1 .0/nn<<” f o r s t a t e ”<<s ta te<<←↩

endl ;
703 rowCount=0; // r e s e t s rowCount
704 f o r ( i n t k=0; k<mN ; k++)
705 {
706 i f ( reOrder ( state , k )==complex<double >(1 ,0) ) // counts ←↩

c o e f f i c i e n t s in row o f s t a t e
707 rowCount++;
708 }
709 i f ( rowCount==0) //makes sure s t a t e i s n ' t a l r eady used by ←↩

check ing the matrix row and co l
710 {
711 reOrder ( state , j )=1; //makes the r ight−most s t a t e next ←↩

s t a t e
712 j++; //move to new row
713 i f (j==mN ) // once matrix i s done , re−order maj and ex i t ←↩

f unc t i on
714 {
715 maj=maj∗reOrder ;
716 re turn 0 ;
717 }
718 }
719 }
720 }
721 }
722 re turn 1 ;
723 }
724
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725 MatrixXcd makeU ( void ) // r e tu rn s zero−energy s t a t e s with Nambu−symmetry
726 {
727 MatrixXcd temp = MatrixXcd : : Zero (4∗nn , 2∗ mN ) ;
728 f o r ( i n t i=0; i<2∗nn ; i++)
729 {
730 f o r ( i n t j=0; j<mN ; j++)
731 {
732 temp (i , mN+j )=maj (i , j ) ; // top r i gh t comes from top
733 temp (2∗ nn+i , mN+j )=maj (2∗ nn+i , j ) ; //bottom r i gh t comes from ←↩

bottom
734 temp (i , mN−1−j )=conj ( maj (2∗ nn+i , j ) ) ; // top l e f t comes from ←↩

bottom
735 temp (2∗ nn+i , mN−1−j )=conj ( maj (i , j ) ) ; //bottom l e f t comes from ←↩

top
736 }
737 }
738 re turn temp ;
739 }
740

741 // performs RK4 with mN vec to r s
742 void rk4 ( void )
743 {
744 MatrixXcd k1 = MatrixXcd : : Zero (4∗nn , mN ) ;
745 MatrixXcd k2 = MatrixXcd : : Zero (4∗nn , mN ) ;
746 MatrixXcd k3 = MatrixXcd : : Zero (4∗nn , mN ) ;
747 MatrixXcd k4 = MatrixXcd : : Zero (4∗nn , mN ) ;
748 complex<double> I (0 .0 ,−1.0∗ stepSize ) ; //− i and step s i z e combined f o r←↩

e f f i c i e n c y
749 i n t dur=prm . tSteps∗prm . TT ;
750 f o r ( i n t tt=0; tt<dur ; tt+=2)
751 {
752 k1 = I∗sparseHam∗maj ;
753 update_ham ( ( tt+1.0)∗stepSize ) ;
754 k2 = I∗sparseHam ∗( maj+k1 ) ;
755 k3 = I∗sparseHam ∗( maj+k2 ) ;
756 update_ham ( ( tt+2.0)∗stepSize ) ;
757 k4 = I∗sparseHam ∗( maj+2.0∗k3 ) ;
758 maj=maj+(k1+2.0∗k2+2.0∗k3+k4 ) / 3 . 0 ;
759 i f ( ( tt+2)%(prm . tSteps∗prm . dispRate )==0) // only d i sp l ay every ←↩

time un i t
760 {
761 Usub=makeU ( ) ;
762 Td=(Uinit . adjoint ( ) ) ∗Usub ;
763 disp ( ( tt+2.0)∗stepSize ) ;
764 }
765 }
766 }
767

768 i n t powInt ( i n t x , i n t y ) // over load pow f o r i n t e g e r s
769 {
770 i f (x==0)
771 re turn 0 ;
772 i f (y==0)
773 re turn 1 ;
774 i n t temp=x ;
775 f o r ( i n t i=1;i<y ; i++)
776 temp∗=x ;
777 re turn temp ;
778 }
779

124



780 i n t biForm ( i n t i ) // conver t s decimal to binary
781 {
782 i n t x=0;
783 f o r ( i n t j=mN ; j>0;j−−)
784 {
785 i f (i>=powInt (2 , j−1) )
786 {
787 x+=powInt (10 ,j−1) ;
788 i−=powInt (2 , j−1) ;
789 }
790 }
791 re turn x ;
792 }
793

794 void dispBi ( i n t i )
795 {
796 printf ( ”%0∗d” , mN , i ) ; //% f l a g to pad with 0 ' s to form ∗ d i g i t s with←↩

∗=mN
797 }
798

799 i n t decForm ( i n t i , i n t length ) // conver t s binary with l ength b i t s to ←↩
decimal

800 {
801 i n t x=0;
802 f o r ( i n t j=length ; j>0;j−−)
803 {
804 i f (i>=powInt (10 ,j−1) )
805 {
806 x+=powInt (2 , j−1) ;
807 i−=powInt (10 ,j−1) ;
808 }
809 }
810 re turn x ;
811 }
812

813 i n t partNum ( i n t i , i n t length ) // r e tu rn s number o f p a r t i c l e s in the ←↩
f i r s t l ength b i t s

814 {
815 i n t p=0;
816 f o r ( i n t j=mN ; j>(mN−length ) ; j−−) // runs loop to check l ength d i g i t s on←↩

the l e f t
817 {
818 i f (i>=powInt (2 , j−1) )
819 {
820 p++;
821 i−=powInt (2 , j−1) ;
822 }
823 // cout<<powInt (2 , j−1)<<'\t '<<x<<'\t '<< i<<endl ;
824 }
825 re turn p ;
826 }
827

828 void multBasis ( void ) // d i s p l a y s mu l t i p a r t i c l e ba s i s
829 {
830 MatrixXcd temp = MatrixXcd : : Zero ( size , size ) ;
831 i n t rowE=0, colE=0, rowO=size /2 , colO=size /2 ;
832 i n t c , r ;
833 f o r ( i n t i=0;i<size ; i++)
834 {
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835 i f ( partNum (i , mN )%2==0) // checks i f the bra o f matrix element i s ←↩
even

836 {
837 r=rowE ;
838 rowE++;
839 }
840 e l s e
841 {
842 r=rowO ;
843 rowO++;
844 }
845 f o r ( i n t j=0;j<size ; j++)
846 {
847 i f ( partNum (j , mN )%2==0) // checks i f the ket o f matrix element i s←↩

even
848 {
849 c=colE ;
850 colE++;
851 }
852 e l s e
853 {
854 c=colO ;
855 colO++;
856 }
857 // cout<<”c i s ”<<c<<” and r i s ”<<r<<endl ;
858 temp (r , c )=complex<double>(biForm (i ) , biForm (j ) ) ;
859 // p r i n t f (”%0∗d,%0∗d ” , mN, biForm ( i ) , mN, biForm ( j ) ) ; ←↩

//% f l a g to pad with 0 ' s to form ∗ d i g i t s with ∗=mN
860 }
861 colE=0; // r e s e t the column count f o r next row
862 colO=size /2 ;
863 } //no need to r e s e t s i n c e matrix i s done
864 f o r ( i n t i=0;i<size ; i++)
865 {
866 cout<<”# [ ” ;
867 f o r ( i n t j=0;j<size ; j++)
868 {
869 printf ( ”%0∗d,%0∗d ” , mN , i n t ( real ( temp (i , j ) ) ) , mN , i n t ( imag (←↩

temp (i , j ) ) ) ) ; //% f l a g to pad with 0 ' s to form ∗ d i g i t s with←↩
∗=mN

870 }
871 cout<<” ]\n” ;
872 }
873 }
874

875 i n t movesNeeded ( i n t b , i n t k ) // r e tu rn s number o f ope ra to r s needed to ←↩
match bra with ket

876 {
877 i n t xB , xK , x=0;
878 f o r ( i n t j=mN ; j>0;j−−)
879 {
880 xB=0;
881 xK=0;
882 i f (b>=powInt (2 , j−1) )
883 {
884 xB=1;
885 b−=powInt (2 , j−1) ;
886 }
887 i f (k>=powInt (2 , j−1) )
888 {
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889 xK=1;
890 k−=powInt (2 , j−1) ;
891 }
892 i f ( xB !=xK )
893 x+=powInt (10 ,j−1) ;
894 }
895 re turn partNum ( decForm (x , mN ) , mN ) ;
896 }
897

898 complex<double> multDiag ( i n t k , i n t i ) // c a l c u l a t e s d iagona l terms f o r ←↩
mu l t i p a r t i c l e ba s i s

899 {
900 complex<double> x=0.0;
901 /∗ dispBi ( biForm ( i ) ) ;
902 cout<<'\t ' ;
903 dispBi ( biForm ( i ) ) ;
904 ∗/
905 f o r ( i n t j=mN ; j>0;j−−) // j i t e r a t e s thru the b i t form l e f t to r i g h t
906 {
907 i f (i>=powInt (2 , j−1) )
908 {
909 x+=conj ( Td (k , mN−1+j ) ) ∗Td (k , mN−1+j ) ;
910 i−=powInt (2 , j−1) ;
911 // cout<<'\t '<<conj (Td(k ,mN−1+j ) ) ∗Td(k ,mN−1+j ) ;
912 }
913 e l s e
914 {
915 x+=conj ( Td (k , mN−j ) ) ∗Td (k , mN−j ) ;
916 // cout<<'\t '<<conj (Td(k ,mN−j ) ) ∗Td(k ,mN−j ) ;
917 }
918 }
919 // cout<<endl<<endl ;
920 re turn x ;
921 }
922

923 // c a l c u l a t e s c o e f f i c i e n t s f o r normal ordered term x , and complement y o f ←↩
mu l t i p a r t i c l e ba s i s

924 void checkCre ( complex<double> &x , complex<double> &y , i n t k , i n t bra , i n t←↩
ket )

925 {
926 i n t xKet , xBra ; // i n t to hold the b i t s o f the bra and ket
927 i n t secCreate=0;
928 i n t secAnn=0;
929 i n t tempBra=bra ;
930 i n t tempKet=ket ; // use temp i n t s to keep bra and ket f o r second use ←↩

i f needed
931 /∗ dispBi ( biForm ( bra ) ) ;
932 cout<<'\t ' ;
933 dispBi ( biForm ( ket ) ) ;
934 cout<<endl ;
935 ∗/
936 f o r ( i n t j=mN ; j>0;j−−) // s t a r t i n g from the l e f t
937 {
938 xBra=0; // d e f au l t binary d i g i t i s 0 , unoccupied
939 xKet=0;
940 i f ( tempBra>=powInt (2 , j−1) ) // check i f the b i t o f bra s t a t e i s ←↩

occupied
941 {
942 xBra=1; // i f so , change the d i g i t to 1
943 tempBra−=powInt (2 , j−1) ; //and change tempBra f o r next b i t t e s t
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944 }
945 i f ( tempKet>=powInt (2 , j−1) )
946 {
947 xKet=1;
948 tempKet−=powInt (2 , j−1) ;
949 }
950 i f ( ( xBra−xKet )==1) // check i f bra i s occupied and ket i s n ' t
951 {
952 i f ( ( partNum ( bra , mN−j )%2)==1) // change s i gn i f odd number o f ←↩

fermion exhanges needed
953 {
954 x∗=−1; // i . e number o f 1 ' s to the l e f t o f the po s i t i o n ←↩

being checked in the bra
955 y∗=−1;
956 }
957 i f ( secCreate==0) // i f f i r s t c r e a t i on operator used
958 {
959 x∗=conj ( Td (k , mN+j−1) ) ; // p o s i t i v e matrix entry f o r T i ∗
960 y∗=Td (k , mN−j ) ; // corre spond ing negat ive entry f o r T −i
961 secCreate++;
962 bra−=powInt (2 , j−1) ;
963 /∗ cout<<”Bra\ tKet\ tx\ ty\ tT i ∗\ tT −i ”<<endl ;
964 dispBi ( biForm ( bra ) ) ;
965 cout<<'\t ' ;
966 dispBi ( biForm ( ket ) ) ;
967 cout<<'\t '<<x<<'\t '<<y<<'\t '<<conj (Td(k ,mN+j−1) )<<'\t '<<Td(k ,←↩

mN−j )<<endl ;
968 ∗/
969 }
970 e l s e // i f second c r e a t i on operator
971 {
972 x∗=Td (k , mN−j ) ; // negat ive entry T −j
973 y∗=conj ( Td (k , mN+j−1) ) ; //T j ∗
974 bra−=powInt (2 , j−1) ;
975 /∗ cout<<”Bra\ tKet\ tx\ ty\tT −j \ tT j∗”<<endl ;
976 dispBi ( biForm ( bra ) ) ;
977 cout<<'\t ' ;
978 dispBi ( biForm ( ket ) ) ;
979 cout<<'\t '<<x<<'\t '<<y<<'\t '<<Td(k ,mN−j )<<'\t '<<conj (Td(k ,mN+←↩

j−1) )<<endl ;
980 ∗/
981 }
982 }
983 i f ( ( xKet−xBra )==1) // check i f ket i s occupied and bra i s n ' t
984 {
985 i f ( ( partNum ( ket , mN−j )%2)==1) // change s i gn i f odd number o f ←↩

fermion exhanges needed
986 {
987 x∗=−1; // i . e number o f 1 ' s to the l e f t o f the po s i t i o n ←↩

being checked in the ket
988 y∗=−1;
989 }
990 i f ( secAnn==0) // i f f i r s t a nn i h i l a t i o n operator used
991 {
992 x∗=Td (k , mN+j−1) ; // p o s i t i v e matrix entry f o r T j
993 y∗=conj ( Td (k , mN−j ) ) ; // corre spond ing negat ive entry f o r T −j ∗
994 ket−=powInt (2 , j−1) ;
995 secAnn++;
996 /∗ cout<<”Bra\ tKet\ tx\ ty\ tT j \tT −j∗”<<endl ;
997 dispBi ( biForm ( bra ) ) ;
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998 cout<<'\t ' ;
999 dispBi ( biForm ( ket ) ) ;

1000 cout<<'\t '<<x<<'\t '<<y<<'\t '<<Td(k ,mN+j−1)<<'\t '<<conj (Td(k ,←↩
mN−j ) )<<endl ;

1001 ∗/
1002 }
1003 e l s e // i f second ann i h i l a t i o n operator
1004 {
1005 x∗=conj ( Td (k , mN−j ) ) ; // negat ive entry T −i ∗
1006 y∗=Td (k , mN+j−1) ; //T i
1007 ket−=powInt (2 , j−1) ;
1008 /∗ cout<<”Bra\ tKet\ tx\ ty\tT −i ∗\ tT i”<<endl ;
1009 dispBi ( biForm ( bra ) ) ;
1010 cout<<'\t ' ;
1011 dispBi ( biForm ( ket ) ) ;
1012 cout<<'\t '<<x<<'\t '<<y<<'\t '<<conj (Td(k ,mN−j ) )<<'\t '<<Td(k ,mN←↩

+j−1)<<endl ;
1013 ∗/
1014 }
1015 }
1016 }
1017 }
1018

1019 MatrixXcd multProj ( i n t k ) // r e tu rn s N matrix in mu l t i p a r t i c l e ba s i s
1020 {
1021 MatrixXcd temp = MatrixXcd : : Zero ( size , size ) ;
1022 i n t rowE=0, colE=0, rowO=size /2 , colO=size /2 ;
1023 i n t c , r ;
1024 complex<double> x ;
1025 complex<double> y ;
1026 f o r ( i n t i=0;i<size ; i++)
1027 {
1028 i f ( partNum (i , mN )%2==0) // checks i f the bra o f matrix element i s ←↩

even
1029 {
1030 r=rowE ;
1031 rowE++;
1032 }
1033 e l s e
1034 {
1035 r=rowO ;
1036 rowO++;
1037 }
1038 f o r ( i n t j=0;j<size ; j++)
1039 {
1040 x=1.0; // r e s e t x and y f o r each bra and ket
1041 y=1.0;
1042 i f ( partNum (j , mN )%2==0) // checks i f the ket o f matrix element i s←↩

even
1043 {
1044 c=colE ;
1045 colE++;
1046 }
1047 e l s e
1048 {
1049 c=colO ;
1050 colO++;
1051 }
1052 // cout<<”c i s ”<<c<<” and r i s ”<<r<<endl ;
1053 i f (i==j )
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1054 {
1055 temp (r , c )=multDiag (k , i ) ;
1056 }
1057 e l s e i f ( movesNeeded (i , j )==2)
1058 {
1059 checkCre (x , y , k , i , j ) ;
1060 // cout<<endl ;
1061 temp (r , c )=x−y ;
1062 }
1063 e l s e
1064 temp (r , c )=0;
1065 }
1066 colE=0; // r e s e t the column count f o r next row
1067 colO=size /2 ;
1068 } //no need to r e s e t s i n c e matrix i s done
1069 re turn temp ;
1070 }
1071

1072 void findProb ( void ) // f i n d s p r o b a b i l i t i e s us ing a l l combos o f p r o j e c t o r s←↩
and i n i t S t a t e

1073 {
1074 MatrixXcd temp ; //matrix to hold p r o j e c t o r product
1075 i n t rowE=0, rowO=size /2 ; // p l a c e s even p r o b ab i l t i e s in top ha l f
1076 i n t r ; // ho lds the row a f t e r ad ju s t i ng f o r even and odd s e c t o r s
1077 i n t tempI ; //temp i t e r a t o r to s t o r e va lue o f i
1078 f o r ( i n t i=0;i<size ; i++) // i i t e r a t e s thru the
1079 {
1080 temp = MatrixXcd : : Identity ( size , size ) ; // i n i t i a l i z e matrix
1081 i f ( partNum (i , mN )%2==0) // checks i f the row i s even
1082 {
1083 r=rowE ;
1084 rowE++;
1085 }
1086 e l s e
1087 {
1088 r=rowO ;
1089 rowO++;
1090 }
1091 // cout<<”i=”<<i<<'\t '<<”r=”<<r<<endl ;
1092 tempI=i ;
1093 // determine p r o j e c t o r s f o r each s t a t e
1094 f o r ( i n t j=mN ; j>0;j−−) // s t a r t s from the l e f t
1095 {
1096 i f ( tempI>=powInt (2 , j−1) ) // determine i f j t h b i t i s 1
1097 {
1098 // cout<<”tempI=”<<tempI<<” j=1”<<'\t '<<mN−1+j<<endl ;
1099 temp∗=multProj (mN−1+j ) ; // i f 1 , use p o s i t i v e p r o j e c t o r
1100 tempI−=powInt (2 , j−1) ; // dec r ea s e s i to f i nd binary form , ←↩

but doesn ' t a f f e c t i
1101 }
1102 e l s e // i f j t h b i t i s 0
1103 {
1104 temp∗=multProj (mN−j ) ; // i f 0 , use negat ive p r o j e c t o r
1105 // cout<<”tempI=”<<tempI<<” j=0”<<'\t '<<mN−j<<endl ;
1106 }
1107 }
1108 // cout<<endl ;
1109 prob (r )=( ( initState . adjoint ( ) ) ∗temp∗initState ) ;
1110 }
1111 }

130



1112

1113 /∗ p r i n t s maj f o r fu tu r e use so d i a g ona l i z a t i o n i s n ' t repeated f o r the ←↩
same parameters

1114 ∗ then f i l e i s i n s e r t e d as a header
1115 ∗/
1116 void copyMaj ( void )
1117 {
1118 f o r ( i n t i=0; i<4∗nn ; i++)
1119 {
1120 f o r ( i n t j=0; j<mN ; j++)
1121 {
1122 printf ( ”maj(%d,%d)=%13.12g ; ” , i , j , real ( maj (i , j ) ) ) ;
1123 }
1124 }
1125 cout<<endl ;
1126 }
1127

1128 i n t main ( i n t argc , char ∗argv [ ] )
1129 {
1130 init_params ( argc , argv ) ;
1131 init_ham ( 0 . 0 ) ;
1132 init_ham_sparse ( 0 . 0 ) ;
1133 i f ( prm . per==1)
1134 per_ham ( 0 . 0 ) ;
1135 sparseHam . setFromTriplets ( tripletList . begin ( ) , tripletList . end ( ) ) ;
1136 i f ( prm . v>3)
1137 {
1138 do_solve ( ) ;
1139 orderStates (1 ) ; //argument i s the column number o f the pa r i t y ←↩

e i g enve c t o r
1140 copyMaj ( ) ;
1141 }
1142 disp ( 0 . 0 ) ;
1143 i f ( prm . v>4)
1144 Uinit=makeU ( ) ;
1145 i f ( prm . v>3)
1146 rk4 ( ) ;
1147 i f ( prm . v&128)
1148 {
1149 findProb ( ) ;
1150 f o r ( i n t i=0;i<size /2 ; i++)
1151 {
1152 cout<<real ( prob (i ) )<< ' \ t ' ;
1153 }
1154 }
1155 cout<<endl ;
1156 re turn 0 ;
1157 }
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