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ABSTRACT 

A HIGH-RESOLUTION, REGIONAL-SCALE ANALYSIS OF  

STORMWATER RUNOFF IN THE SAN LORENZO RIVER BASIN  

FOR MANAGED AQUIFER RECHARGE DECISION MAKING 

Kyle Young 

 Groundwater resources in the San Lorenzo River Basin (SLRB) are in a state of 

chronic overdraft, requiring well-informed mitigation measures. Distributed Stormwater 

Collection-Managed Aquifer Recharge (DSC-MAR) presents a cost-effective method of 

aquifer replenishment by collecting runoff and infiltrating it as recharge, but its 

successful implementation demands thorough knowledge of the distribution and 

availability of hillslope runoff. We apply a surface hydrology model to analyze the 

dynamics of hillslope runoff at high resolution (0.1 to 1.0 km2) across the 350 km2 SLRB 

watershed. We used a 3 m digital elevation model to create a detailed model grid, which 

we parameterized with high-resolution geologic, hydrologic, and land use data. To 

analyze hillslope runoff under a range of conditions, we developed a catalog of dry, 

normal, and wet climate scenarios from the historic record. Simulation results show high 

spatial variability of hillslope runoff, and indicate opportunities for runoff as potential 

supply for MAR during all climate scenarios. Additionally, our results reveal a consistent 

increase in the spatial and temporal variability of runoff under a wet climate scenario. 

The simulation's high-resolution output enables quantification of hillslope runoff at sub-

watershed scales, commensurate with DSC-MAR catchments, demonstrating this method 

as a viable tool for MAR decision making and site planning. 
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I. Introduction 

 A. Motivation 

 Groundwater is a vital resource for California's Central Coast hydrologic 

region. In the northern Central Coast, where the San Lorenzo River Basin (SLRB) is 

located, 89% of the region's water resource needs are supplied by groundwater 

(Figure I.1) (CA DWR, 2013). There is a similar reliance on groundwater in the 

SLRB, where groundwater meets over 50% of the water demands for the San Lorenzo 

Valley Water District, and nearly 100% for the Scotts Valley Water District (Johnson, 

2015; Kennedy/Jenks Consultants, 2016). The importance of groundwater in the 

Central Coast is influenced by the absence of seasonal snow pack and the lack of 

significant imports from California's water transfer infrastructure (Figure I.2).   

 Groundwater also plays an important role in the ecological health of rivers and 

streams, providing a year-round, temperature-moderated water supply to riverine 

ecosystems (Brauman et al., 2007; Brunke & Gonser, 1997). Additionally, elevated 

groundwater levels and active groundwater recharge are important in coastal aquifers 

as they help prevent the degradation of aquifers due to saltwater intrusion (Werner & 

Simmons, 2009).  

 Given the Central Coast region's dependence on groundwater and 

groundwater's importance to ecosystem health, ensuring groundwater sustainability is 

a critical objective – one that has not yet been achieved. In recent decades aquifers in 

the SLRB have been subject to chronic overdraft, with several aquifers experiencing 

water table declines of over 150 feet since 1986 (Figure I.3) (Kennedy/Jenks 
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Consultants, 2015).  

 Groundwater overdraft is exacerbated by climate change and shifting land use. 

Regional precipitation records indicate that the climate has been trending towards 

increased variability and extremes. For example, within the nearby San Francisco Bay 

region, though average annual precipitation has been relatively static over the past 

120 years, the region has seen an increasing frequency of large intensity storm events 

(Russo et al., 2013). This climatic pattern bears consequences for groundwater in that 

the occurrence of more frequent, large intensity storms tends to increase runoff and 

reduce recharge to aquifers (Russo et al., 2013; Woolhiser & Goodrich, 1988). 

Urbanization and other development in the SLRB also tend to reduce recharge to the 

region's groundwater aquifers. By increasing impervious area through the 

construction of roads, buildings, and other civil infrastructure, urbanization leads to 

increased runoff and reduced opportunities for infiltration and recharge (Tashie et al., 

2016). The combined threats of increasing groundwater demand, climate change, and 

land development pose serious challenges to the SLRB's groundwater resources. 

Well-informed mitigation will be required to replenish the region's aquifers and 

ensure their sustainability.   

 

 B. Managed Aquifer Recharge (MAR) 

 Managed Aquifer Recharge (MAR) is the process of diverting excess surface 

water to an engineered well or basin where it can infiltrate into an underlying aquifer. 

MAR projects can include a range of technologies and methods that operate across a 
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spectrum of scales. At one end of the spectrum include minimally intrusive 

technologies such as low impact development (LID), in which highly pervious 

surfaces and/or infiltration structures are constructed, often amidst urban 

infrastructure. At the other end are regional spreading grounds, where complex 

engineering that includes large land areas are dedicated to water collection, treatment, 

and infiltration (LA DPW, 2016). While LID sites typically provide an infiltration 

benefit on the order of 1 - 10 acre-ft per year (ac-ft/yr), regional spreading grounds 

can facilitate recharge on the order of 104 - 105 ac-ft/yr (LA DPW, 2016; Newcomer 

et al., 2014). Distributed Stormwater Collection linked to MAR (DSC-MAR) is a 

cost-effective solution that avoids the infrastructural challenges associated with 

regional spreading grounds, while still providing relatively high yields (Arshad et al., 

2014; Dillon et al., 2009). DSC-MAR involves the siting and construction of 

infiltration basins, drywells, or other infrastructure so that a fraction of natural runoff 

from hydrologic catchments can be routed to infiltrate and become recharge. 

 Figure I.4 shows an example of a DSC-MAR site in southern Santa Cruz 

County. At this site, stormwater is collected from a 172-ac catchment. The water 

passes first through a small settling basin, where suspended sediment is supposed to 

settle, and then is routed to a 4-ac infiltration basin. The infiltration basin is located 

above what appears to be a paleo-stream channel, having very sandy soils, whereas 

the surrounding area is characterized by finer and less transmissive soils. As a result, 

this catchment supplies considerable runoff for infiltration, even during relatively dry 

water years.  
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 Successful DSC-MAR projects require three main features: an adequate water 

supply, good infiltration characteristics, and an underlying aquifer with space for 

supplemental storage. My research project focuses on the generation of storm runoff 

at a scale that is appropriate for DSC-MAR.  

 

 C. Study Objectives 

 As part of a larger research project to determine locations that are suitable for 

DSC-MAR, this study addresses the "supply" side of site selection. My primary goal 

is to provide a thorough evaluation of the spatial and temporal dynamics of runoff in 

the SLRB, exploring runoff generation during a range of climate conditions. This 

study is linked to a concurrent MAR suitability analysis that seeks to evaluate the 

suitability of locations throughout Santa Cruz and Monterey Counties for promoting 

infiltration and recharge (Figure I.5). The results of these studies will be combined as 

part of a regional analysis to find promising sites for DSC-MAR.  

 The three primary questions that my study seeks to answer are: 

 1. How much runoff is generated over the landscape throughout the SLRB? 

 2. What are the temporal and spatial dynamics of runoff and how are 

 they affected by different climates?  

 3. What are the applications of these results to MAR site placement?  

 

 

 



	5 

II. Runoff 

 A. Types of Runoff 

 Channelized streamflow originates from a variety of hydrologic reservoirs and 

processes, each of which yield different flow characteristics. For this reason, 

streamflow is commonly subdivided into categories, including runoff and baseflow. 

Runoff is those waters that are transmitted through and near the top of the landscape 

in response to precipitation, and can be further divided into a subsurface (interflow), 

and surface components (surface runoff) (Pumo et al., 2014).  

 Baseflow consists of waters supplied from groundwater aquifers adjacent to 

the stream channel. This component of streamflow relies on a gradient in potential 

energy ("head") between the waters in the channel and those of the surrounding 

aquifer. If this head gradient favors flow towards the stream, this process can deliver 

a significant supply of water to the stream channel (Pumo et al., 2014). Because 

baseflow depends on groundwater levels, it can be present in channels even in the 

absence of temporally proximate precipitation events, such as during seasonally dry 

periods or droughts.  

 Interflow (also referred to as "throughflow") is the passage of waters 

downslope through the vadose zone (Chorley, 1969). This type of runoff involves the 

transmission of waters not bound by capillary forces and requires soil moisture to be 

greater than field capacity. It is therefore associated with precipitation events (Pumo 

et al., 2014). Because interflow occurs above the water table, it flows faster than 

groundwater that contributes to baseflow. However, interflow is also subject to 
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tortuosity of pathways through the soil pores, viscous energy losses, and variations in 

soil capillary forces; as a result, it tends to be slower than surface runoff and 

contributes a more attenuated response (Chorley, 1969; Pumo et al., 2014). 

"Preferential flow" is a sub-category of interflow that occurs through large channels, 

conduits, or fractures in the vadose zone, all of which permit significantly faster flow 

rates than typically occur through the soil matrix (Nimmo, 2012). Although interflow 

is often thought to be a short-term response to individual storm events, when 

considered across a drainage basin it can provide significant contributions to 

streamflow (Pumo et al., 2014). 

 Surface runoff can be subdivided into two separate components: Hortonian 

(infiltration excess) runoff, and Dunnian (saturation excess) runoff (Beven, 2004; 

Dunne & Black, 1970; Horton, 1933). Hortonian runoff occurs when the rate of 

precipitation (precipitation intensity) exceeds the soil's maximum rate of infiltration 

(infiltration capacity) (Beven, 2004; Horton, 1933). All else being equal, the 

infiltration capacity of soils tends to decrease with smaller grain size, lower porosity, 

and higher soil moisture content. Thus the precipitation intensity at which Hortonian 

runoff can occur varies with soil moisture content, and can range considerably across 

a catchment and with time at a particular location. For impervious surfaces (such as 

pavement or hardpacked soils in developed regions), any precipitation that falls can 

contribute to Hortonian runoff, regardless of intensity.  

 Dunnian runoff occurs when the soils are saturated at the land surface – either 

due to an elevated water table or saturation in the upper soil layer – preventing 
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infiltration and causing additional precipitation to become runoff (Dunne & Black, 

1970). Return flow is a special type of Dunnian flow in which waters that have 

already infiltrated flow downslope (as interflow) into saturated regions and 

subsequently exfiltrate to the surface (Hibbert & Troendle, 1988). Both Dunnian and 

Hortonian runoff experience fast travel times and therefore can produce a large 

magnitude, short time-scale response to precipitation, often dominating streamflow 

during storm events (Pumo et al., 2014).  

 

 B. Quantifying Runoff  

 Runoff in channels can be quantified by calculating the volumetric flow rate 

corresponding with different stream depths, and developing a correlation plot (rating 

curve) that associates streamflow with water level in the channel. Quantifying runoff 

over and through the landscape, which we'll refer to as "hillslope runoff," is 

significantly more difficult in practice.  

 Numerous studies have quantified hillslope runoff through direct 

measurement (Bartley et al., 2006; McGlynn & McDonnell, 2003; Sheridan et al., 

2007; Wilcox et al., 1997). These studies involve engineered tools that route or trap 

hillslope runoff over small spatial scales and allow for in-situ measurement. Other 

studies have incorporated a mass balance approach by measuring precipitation, 

evapotranspiration, and changes in soil water content, and calculating hillslope runoff 

as the remaining term in the hydrologic mass balance equation (Domingo et al., 

2001). Because of the robust instrumentation required by these empirical studies and 
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the relatively small spatial scales over which they operate, these methods are 

impractical for directly analyzing hillslope runoff across a watershed having an area 

of thousands of acres. More significantly, results of field studies depend on local 

characteristics and generally are not scalable due to heterogeneities in soil and 

vegetation across a watershed. Hydrologic modeling comprises an alternative to site-

specific field studies for characterizing hillslope runoff, being based on a mass 

balance approach, but operating across a range of spatial and temporal scales.  

 Most watershed scale modeling studies of runoff examine basin-wide 

response to precipitation, integrated through simulation of channelized runoff and 

streamflow (Fang et al., 2015; Kirchner, 2009; LaFontaine et al., 2013; Pumo et al., 

2014; Risley et al., 2011; Schumann et al., 2000). Studies on the impact of climate 

change or varying precipitation characteristics on basin hydrology also frequently 

evaluate streamflow at the basin scale (Woolhiser & Goodrich, 1988; Bae et al., 

2008). Watershed studies that examine hillslope runoff, or recharge from hillslope 

runoff, typically evaluate and analyze basin-wide properties and system responses 

(Anbazhagan et al., 2005; Stone et al., 2001).   

 Cherkauer (2004) used the Precipitation Modeling System (PRMS) 

(Leavesley et al., 1983) to quantify recharge at the sub-watershed scale with an 

average spatial discretization of 37 km2. Chang & Jung (2010) used PRMS to analyze 

the impact of climate change on runoff with an average grid cell size of 11 km2. In 

this study, using PRMS and the historic climate record, we explored variations in 

hillslope runoff generated across a watershed area of 350 km2, allowing for variations 
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in properties at a spatial scale ≤1 km2. In the next sections, we present the field area 

where modeling was completed and introduce the formulation and application of 

PRMS to this problem.  

 

III. Study Area 

A. Location, Climate, and Land Use 

 The San Lorenzo River Basin (SLRB) is a 350 km2, topographically defined 

watershed in Santa Cruz County on the central coast of California (Figure III.1). 

Elevation in the SLRB extends from sea level to ~1000 m-msl in the Santa Cruz 

Mountains (Figure III.3).  

 The climate in the San Lorenzo River Basin is strongly seasonal. The majority 

of the region's annual precipitation falls during October through May, with very little 

precipitation occurring during summer months (Figure III.6) (Kennedy/Jenks 

Consultants, 2013; PRISM, 2016). SLRB precipitation varies significantly by 

location, with the inland mountainous regions receiving substantially greater annual 

precipitation than the coastal regions (Figure III.4). Figure III.4a depicts notable 

variability of annual precipitation by location, with the inland mountainous regions 

(Ben Lomond and Felton) experiencing significantly greater precipitation than coastal 

locations (DeLaveaga and Santa Cruz) (CIMIS, 2015; PRISM, 2016; WRCC, 2015a-

c). The moderating effect of the Pacific Ocean ensures a temperate climate year-

round for the entire region, with no seasonal snowmelt and negligible snow occurring 

even at the highest elevations of the SLRB (Kennedy/Jenks Consultants, 2013).  
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 The SLRB has a population of ~100,000 people, with most inhabitants 

residing in the city of Santa Cruz near the southern (coastal) boundary of the basin. 

Other population centers in the SLRB include Scotts Valley, Felton, Ben Lomond, 

and Boulder Creek (Figure III.2a). Development in the SLRB comprises mainly 

urban and suburban infrastructure in the region's two largest population centers of 

Santa Cruz and Scotts Valley (Figure III.2a), in addition to mining (Figure III.2b) and 

logging. The region's vegetation (Figure III.2b), as defined by the CALVEG (2014) 

vegetation and land use dataset, is largely wooded ("CON", "HDW", and "MIX"), 

interspersed with small regions of grass ("HEB") and shrubs ("SHB"), and punctuated 

by several large impervious areas ("URB") at the basin's city centers. Additional 

details on land use and vegetation in the region are depicted in Figure III.2a. 

  

 B. Hydrology 

 The defining waterbody in the SLRB is the San Lorenzo River, which starts in 

the northern headwaters of the basin and flows down the San Lorenzo River Valley, 

exiting the basin by entering the Pacific Ocean (Figure III.3). The SLRB watershed is 

defined as those lands that drain into the San Lorenzo River, and the watershed 

contains numerous contributing tributaries, including Kings, Bear, Newell, and 

Zayante Creeks (Figure III.2a) (Kennedy/Jenks Consultants, 2013). The region's only 

major water body, Loch Lomond Reservoir (Figure III.3), is located on Newell Creek 

and augments municipal water supplies for the San Lorenzo Valley Water District 

and the city of Santa Cruz, in addition to ensuring minimum ecological flows for 
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riverine habitat during periods of low flow in the San Lorenzo (Santa Cruz LAFCO, 

2005). The San Lorenzo River has two gauging stations operated by the U.S. 

Geological Survey: one in Felton (station 11160500 at Big Trees, operating years: 

1936-present) and another in Santa Cruz (station 11161000, operating years: 1952-

1960, 1987-present) (Figure III.4b). Streamflow records are consistent with strongly 

seasonal precipitation in the basin; mean daily discharge typically peaks above 1,000 

cfs in the winter (occasionally above 10,000 cfs), and flows in the summer are 

commonly ~10 cfs in Felton and ~1 cfs in Santa Cruz (Figure III.5). The observation 

that baseflow is commonly lower in Santa Cruz than in Felton indicates that the San 

Lorenzo River is a "losing" stream along this reach. 

 

IV. Methods 

A. Precipitation Runoff Modeling System (PRMS)  

 We used the Precipitation Runoff Modeling System (PRMS) (Leavesley et al., 

1983; Markstrom et al., 2015) to simulate water routing through the SLRB. PRMS is 

a physically based, distributed parameter, continuous simulation watershed model. 

PRMS was selected for this modeling project because it is widely used, connects 

scalable hydrologic processes and their governing equations to physical 

characteristics, represents spatial variability in system properties, generates temporal 

hydrologic response at an appropriate scale, and the source code is publically 

available.  

 PRMS uses a series of linked equations to approximate a variety of hydrologic 
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processes, organized into modules (Knapp et al., 1991; Leavesley et al., 1983; 

Markstrom et al., 2015). The model domain is divided spatially into hydrologic 

response units (HRUs), and water is routed across and within the landscape in 

response to precipitation and other forcing. The fundamental equation used by PRMS 

requires water mass balance at each time step, and other governing equations require 

input associated with hydrologic properties and process rates, many of which are 

assigned independently to individual HRUs (Leavesley et al., 1983; Markstrom et al., 

2015). The use of HRUs to represent spatially variable properties allows PRMS to 

simulate heterogeneity in both hydrologic inputs and system response, including 

precipitation, infiltration, soil moisture, and multiple forms of runoff. We ran PRMS 

using daily time-steps, the highest resolution available with the current model release, 

which should provide sufficient resolution for assessment of monthly runoff, 

including the influence of antecedent moisture on hydrologic routing (Markstrom et 

al., 2015).   

 The parameters assigned to each HRU delineate the geometry and flow 

characteristics of various water reservoirs and routing paths, governing how storage 

and flows are partitioned within HRUs, between HRUs, and between HRUs and 

stream channels (Figure IV.1a). For application of PRMS to the SLRB, we don't need 

to worry about snow/ice precipitation or snowpack storage, which greatly simplifies 

modeling (Figure IV.1b). PRMS considers storage and flow through a series of 

reservoirs, of which the soil is the most complex, comprising capillary, gravity, and 

preferential flow reservoirs (Figure IV.2, CPR, GVR and PFR, respectively). 



	13 

Although the three main soil reservoirs could be interpreted from PRMS 

documentation as being arranged vertically (e.g., Markstrom et al., 2008; their Figure 

19), they are conceived to coexist throughout each HRU (Figure IV.2). During each 

timestep, water is input to an HRU as precipitation and inflow from an adjacent HRU 

(if there is a connection or "cascade," as described later). Some of this water runs off 

immediately, depending on land use and soil characteristics, but remaining water can 

flow into each of the three soil reservoirs, either directly or as a flux between 

reservoirs. The function of the three soil reservoirs is described in greater detail later.   

 

B. HRU Delineation and Property Assignment 

 HRUs represent the spatial discretization of simulation input and hydrologic 

calculation. The basis for HRU delineation was a digital elevation model (DEM) 

having 3 m spatial resolution (USGS, 2014a). A raster DEM with this resolution was 

freely available for most of the SLRB, but small gaps were patched with a 3 m DEM 

developed by the Association of Monterey Bay Area Governments (AMBAG, 2014), 

and (where necessary) with a 10 m DEM (USGS, 2014b) (Figure III.3). We used the 

composite 3 m DEM to construct HRUs having topographic drainage areas of 0.1 to 

1.0 km2. 

 HRUs were produced using standard methods, by calculating the elevation 

gradient vector at every raster cell in the DEM: 

       V
!"
= ∇
!"

E(x, y) = 〈∂E
∂x , ∂E

∂ y〉     (1) 

where E is the elevation, and   V
!"

is the direction of steepest slope (inferred hydrologic 
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flow path) at each DEM location. The gradient vector was rounded to the nearest 

Primary InterCardinal direction (increment of 45-angular degrees) and flow 

accumulation was calculated at each raster cell as the aggregation of upslope raster 

cells along these vector paths. Raster cells whose flow accumulation exceeded a user-

established stream definition threshold were combined to form a continuous stream 

network (Figure IV.3). These are not necessarily real streams that would be found on 

the landscape, but are virtual ("manufactured") streams as defined on the basis of the 

DEM. 

 We compared the manufactured stream network to the USGS streams 

database (USGS, 2014d) for accuracy and edited segments that misrepresented 

natural flow paths. These errors typically occurred in regions with relatively low 

topographic gradients, for which large variations in vegetation or infrastructure 

introduced artifacts in the DEM. The manufactured stream network, subdivided and 

ordered into individual stream segments, was used to delineate the HRUs as the 

catchment areas contributing to each segment in the network (Figure IV.3). 

 As part of the HRU delineation process, we assessed the presence of closed 

topographic depressions that would prohibit outflow. Initial DEM analysis resulted in 

a large number of depressions, most of which were found to be relatively shallow 

(≤7.2 m) and caused by artifacts in the DEM, and were therefore ignored. We 

assessed the remaining 25 depressions based on the existence of waterbodies having 

no outlet, the soil infiltration capacity (IC), and the surface geology. Of 25 

depressions, eight were interpreted to be true depressions, including three quarries 
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(Figure IV.3). These eight depressions were categorized as closed HRUs, or "swales," 

from which there is no surface runoff (Markstrom et al., 2015).  

 HRU sizes are controlled through the stream definition threshold, which 

describes the number of cells from which flow accumulates at any given point 

through the gradient vector calculations. We selected a stream definition threshold 

that would result in most HRUs having an area of 0.1 to 1.0 km2
, then split or 

combined initial HRUs as needed for those falling outside this target range, using a 

script in Python/ArcPy. The resulting map shows 865 HRUs for the SLRB (Figure 

IV.3), with the majority having an area of 0.2 to 0.6 km2, and a mean area of 0.4 km2 

(Figure IV.4). These HRUs are large enough to minimize artifacts and "noise" from 

the 3 m DEM, but small enough to preserve considerable heterogeneity in properties, 

including variations in topography, soils, and vegetation (Molnar & Julien, 2000). 

Moreover, the majority of HRUs are smaller than the typical size range for targeted 

DSC-MAR catchment areas using stormwater collection (100 to 1000 acres, or 0.4 to 

4.0 km2), allowing a regional assessment of potential project sites to achieve larger 

programmatic goals for improving groundwater conditions. Additional information 

on HRU production is presented in the Appendix, "HRU Production Guide."   

 

C. Cascades 

 Large, topographically delineated HRUs common to many PRMS models 

typically contain well-developed stream channels – sections of the watershed's stream 

network – to which they transfer outflow. As a modeling approximation, when the 
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outflows from an HRU are passed to these channels in PRMS (referred to as 

"channelized runoff"), these flows remain confined to the stream network and no 

longer interact with the HRU landscape. In contrast, small HRUs such as those in our 

study might not contain such channels, and the outflows from these HRUs can be 

transferred to downslope HRUs as "hillslope runoff" rather than being transmitted 

directly to the stream network.  

 Through this process of inter-HRU transfers, the connectivity of HRUs 

influences how much runoff an HRU will receive and produce. Accordingly, the 

Cascade Module in PRMS permits flow routing from upslope to downslope HRUs 

within each time step by allowing the user to select the HRU's dominant runoff 

method – whether channelized or hillslope – and to map corresponding HRU-to-HRU 

and HRU-to-stream connections as "cascade links" (Markstrom et al., 2015). By 

aggregating flow between HRUs, the cascade process allows us to determine the total 

runoff available as outflow from each HRU. 

 To assess the dominant modes of runoff across the simulated landscape, we 

checked for the existence of a USGS-delineated ("blue line") stream channel in each 

HRU, pruning the manufactured stream network if there was no blue line stream 

(Figure IV.5) (USGS, 2014d). Manufactured stream segments whose distance from a 

blue line stream exceeded a prescribed tolerance of 50 m (between stream centroids) 

were deleted. HRUs containing a blue line stream were classified as "channelized 

runoff-dominated," whereas others were classified as "hillslope runoff-dominated." 

To determine the cascade links between HRUs and streams, we identified the flow 
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order between segments in the edited stream network. Because every HRU contains a 

manufactured stream segment (developed as part of HRU production), these flow 

connections denote HRU-to-HRU cascade links for HRUs that are "hillslope runoff-

dominated," and HRU-to-stream cascade links for HRUs that are "channelized 

runoff-dominated" (Figure IV.6). 

  

D. PRMS Parameters 

 Each HRU in PRMS is uniquely defined through the assignment of >60 

parameters (Table IV.1, identified in bold font). Parameter values determine the 

behavior of water storage and transfers between reservoirs within each HRUs, 

between HRUs, and from HRUs to stream segments (Figures IV.1 and IV.2). These 

parameters are spatially variable and either temporally static or vary by month-of-the-

year. Some parameter values were specified on a continuous scale, while others were 

assigned based on soil and/or vegetation type, as discussed below.  

 Basic topographic and geospatial parameters, such as HRU area and slope, 

were calculated using the DEM as the average value across each HRU. More complex 

parameter values were calculated from combinations of input data. As one example, 

the parameter soil_moist_max, the maximum soil water volume available for 

transpiration, is a function of available water capacity (AWC) and rooting depth (R) 

(Markstrom et al., 2015): 

      soil_moist_max = AWC × R      (2) 

As another example, the parameter sat_threshold, the maximum soil water volume 
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available for gravity drainage and/or interflow, is a function of soil porosity (n), field 

capacity (FC), and thickness (d) (Markstrom et al., 2015): 

    	 sat_threshold= (n - FC)× d     (3) 

 Many of the soil and vegetation parameters assigned to each HRU were 

derived from the USDA Soil Survey Geographic Database (SSURGO) dataset (Soil 

Survey Staff, 2014) or the USDA's CALVEG (Classification and Assessment with 

Landsat of Visible Ecological Groupings) dataset (CALVEG, 2014). These datasets 

were organized by common characteristics and grouped into spatial polygons. 

Because SSURGO data is also organized into distinct soil layers with depth, we 

calculated input data values for each spatial polygon using weighted averages through 

all layers (Soil Survey Staff, 2014). For example, infiltration capacity (IC) for each 

soil polygon was calculated as an effective conductivity using the harmonic mean of 

the soil layer saturated conductivities: 
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               (4) 

where di is the thickness of each soil layer, Ki is the saturated conductivity of each 

soil layer, and n is the number of soil layers. A minimum and maximum effective 

conductivity was calculated using minimum and maximum conductivity values for 

each soil layer (as reported in the SSURGO database), respectively, and IC was taken 

as the geometric mean of these values (Table IV.2). Additionally, AWC, percentage 

sand, and percentage clay were determined for each polygon as depth-weighted 
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averages (Table IV.2).  

 From the average values of percentage sand/clay, we assigned PRMS soil 

types of sand, loam, or clay to each soil polygon (USGS, 2014c). Similarly, we 

assigned PRMS vegetation types (bare, grasses, shrubs, "trees" or deciduous, 

coniferous) to each vegetation polygon based on CALVEG vegetation categories 

(CALVEG, 2014). Input data that were not represented in SSURGO and CALVEG 

datasets were determined from a survey of published literature and assigned to each 

soil or vegetation polygon according to these PRMS soil/vegetation types (Table 

IV.2).  

 The soil and vegetation input data (defined for polygons that do not 

correspond to HRUs) were assigned to each HRU using area weighted or area-and-

density weighted functions (Equations 5 and 6, respectively):  
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where XHRU is the HRU value, xi is the soil or vegetation polygon value, Ai is the area 

of the soil or vegetation polygon, Di is the vegetation density, and n is the number of 

soil or vegetation polygons within the HRU. The application of these weighting 

functions is depicted in Figure IV.7a and shown with the following examples: 
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Example #1 (Figure IV.7b):    
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where AWCi is the available water content for each soil polygon; Ri is the rooting 

depth for each vegetation polygon; and ns and nv are the number of soil and 

vegetation polygons (respectively) within the HRU.  

Example #2 (Figure IV.7c):  

   

wrain_intcpHRU =
si Ai Di
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∑

Ai Di
iv
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∑
      (8) 

where si is the canopy storage for each vegetation polygon.  

 Additional steps were taken to calculate the potential evapotranspiration 

(PET) coefficient (hamon_coef), imperviousness fraction (hru_percent_imperv), 

and the linear soil zone routing coefficients (fast_coef_lin, slow_coef_lin, and 

ssr2gw_rate). hamon_coef was given a different coefficient value for every month 

of the year, which we scaled proportionately to the mean monthly PET from 1991 to 

2001 (Figure IV.8), as measured at the DeLaveaga climate station (Figure III.4b) 

(Station #104, CIMIS, 2016). hru_percent_imperv was calculated by assigning a 

binary "1.0" or "0.0" imperviousness fraction to each vegetation polygon according to 

its CALVEG (2014) land use type, and then applying the area weighting function 

(Equation 5) to determine the total HRU fractional area that is impervious (Viger et 

al., 2010).  

 For the linear soil zone routing coefficients, we partitioned the range of IC 
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values for all soil polygons (Equation 4) into five quantiles and assigned a 

corresponding IC "index" of 0 through 4 to each soil polygon based on its IC quantile. 

This assignment of IC indices approximates a log-2 scaling of IC (inches/day), where: 

      ICindex ≈ log2(IC) - 2.3              (9) 

We applied the area-weighting function (Equation 5) to calculate a single ICindex for 

each HRU and scaled the PRMS default coefficient for each parameter by the 

ICindex. Because the IC values span more than two orders of magnitude, this log2 

scaling allows us to preserve the variability of IC data across the basin, and prevents 

the highest IC values from overwhelming lower IC values in the area-weighted 

averaging functions. 

  

E. PRMS Variables 

 Whereas PRMS parameters are spatially variable but temporally static (or 

vary by month-of-the-year), PRMS variables (identified in italic font) vary in 

space and change with time. The principal PRMS variables include tmax (maximum 

daily temperature), tmin (minimum daily temperature), precip (total daily 

precipitation), and runoff (daily streamflow at each gauging station) (Table IV.1). 

The first three – tmax, tmin, and precip – serve as daily climate inputs (energy, 

water), whereas runoff1, is used to calibrate and validate the simulation.  

 Parameter-elevation Relationship on Independent Slopes Model (PRISM) 

climate data from WY1982 to WY2014 was used as simulation input (PRISM 
																																																								
1	To align terminology with the PRMS variable "runoff", which refers to observed streamflow (baseflow + interflow + 
surface runoff), this study will also use the term "runoff" (in italic font) to denote simulation "streamflow" (primarily 
for calibration and validation purposes).	
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Climate Group, 2016). PRISM uses data collected from monitoring stations 

throughout the contiguous United States to produce daily precipitation and 

temperature data that is spatially continuous and interpolated on an 800 m, 

rectangular grid (PRISM Climate Group, 2016). We validated the data for our study 

region by plotting PRISM precipitation at grid cells that correlate with local 

precipitation stations at Santa Cruz and Ben Lomond (Figure IV.9) (PRISM Climate 

Group, 2016; WRCC, 2015a; WRCC, 2015c). Although the daily data (Figure IV.9b) 

displays occasional mismatch between PRISM and station data, plots of the daily 

precipitation differences (Figures IV.9c-d, showing station-minus-PRISM 

precipitation) reveal nearly symmetrical, equal and opposite precipitation differences 

between neighboring days. This effect is likely caused by the different times at which 

data sources divide daily precipitation events (e.g., 12:00-to-12:00 versus 00:00-to-

00:00 or 09:00-to-09:00), resulting in an arbitrary separation of events across multiple 

"days." Different climate stations use different data intervals to define days, and it is 

not possible to reassign or shift data between these intervals. An assessment of 

cumulative annual precipitation (Figure IV.9a) suggests that the PRISM data provides 

a reasonably accurate representation of input to the system, particularly when 

considering monthly basin response.  

 Values for tmax, tmin, and precip were assigned to each HRU from the 800 

m PRISM data using the area-weighting function in Equation 5 (Figure IV.10). 

Values were assigned for every day from WY1982 to WY2014, providing a 33-year 

(12,053-day) chronology of daily climate data as input to the model.  
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F. Calibration and Validation 

 The model was run for a 33-year period using the PRISM climate input values 

from WY1982 to WY2014 and commencing on October 1, 1981. Thus the simulation 

period commences with the start of a water year, at the end of the region's seasonal 

dry period. To facilitate model calibration and validation, we divided the study region 

into three subbasins (Figure IV.11) and selected the downstream, Santa Cruz gauging 

station as our primary data reference (USGS, 2015b). This location encompasses 

runoff from two subbasins and maximizes the contributing watershed area for the 

calibration process. We segregated model output into three distinct time periods 

(Table IV.3): a six-year model start-up and stabilization period (WY1982 to 

WY1987), a 14-year calibration period (WY1988 to WY2001), and a 13-year 

validation period (WY2001 to WY2014).  

 For the model's initial conditions we set storage in the soil reservoirs to 

minimums and the groundwater reservoir to 10.0 inches (Table IV.1). The time 

period used for calibration begins with the first year of available data from the Santa 

Cruz gauging station (USGS, 2015b). The model was calibrated by comparing 

simulated and observed runoff2 for monthly and annual time periods, with the goal 

of the study being to provide accurate hillslope runoff volumes on monthly 

timescales. Calibration to the daily hydrograph was not attempted for several reasons. 

Daily time discretization for climate input (the highest resolution available) will 

artificially reduce the magnitude of most precipitation events, because precipitation 

																																																								
2	USGS gauge data reports total streamflow, comprising both runoff and baseflow components. For this reason, calibration and 
validation were conducted using the combination of baseflow, interflow, and surface runoff outputs from the model. 	
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tends to be most intense for minutes or hours at a time. The problem is compounded 

for longer duration events, which are more likely to span adjacent days and thus be 

subdivided into smaller events. This process reduces daily precipitation and soil 

moisture saturation, thereby favoring infiltration and subsurface flows (interflow, 

gravity drainage, and baseflow) over more rapid Dunnian surface runoff. The 

delineation of relatively small HRUs may also tend to favor infiltration and 

subsurface flows over surface runoff, due to increased soilzone routing options. 

Consequently, this representation is conservative from the perspective of assessing 

surface runoff resources available for stormwater collection for managed recharge (a 

primary goal of this study), and will tend to underpredict peak event runoff observed 

in stream channels. As a practical matter, calibrating for daily channel flow would 

require running the model with timesteps of hours or less, and high-resolution input 

data from across the basin are not available at this resolution. In addition, although 

older versions of PRMS had an option for using smaller time steps to assess event 

response (Leavesley et al., 1983), the latest release is limited to daily (or longer) time 

steps (Markstrom et al., 2015).  

 We conducted sensitivity tests to determine the primary tuning parameters for 

monthly and annual calibration (Table IV.4). To calibrate the model, we sequentially 

adjusted these parameters (individually and in combination) and evaluated monthly 

and annual runoff results until the model produced an acceptable match to gauge 

data, with a mixture of under- and over-prediction of observations. We also looked at 

the general shape of daily hydrographs to assess if baseflow recession was adequately 
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represented. Calibration was evaluated at the Santa Cruz gauging station using the 

following metrics: 

1) Cross-plots of simulated versus observed runoff, constructed for both monthly 

and annual data.  

2) Normalized root mean square deviation (NRMSD) metrics between simulated and 

monthly runoff values, calculated as: 

      
NRMSD =

(xi − oi )
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              (10) 

where xi is simulated runoff, and oi is observed runoff, n is the number of data 

points in the sample, and omax and omin are the maximum and minimum observed 

runoff values in the sample. For the monthly calibration, NRMSD was calculated for 

each month of the water year and then averaged over the rainy season months to 

determine a final NRMSD value. As discussed later, the most useful monthly 

NRMSD calculation is for the rainy season in our study area (November through 

April), when most precipitation occurs, so that results are not biased by simulations of 

the dry season. 

3) A mass balance comparison to verify that multi-year simulated runoff matched 

observed, and that soil and groundwater reservoir levels did not systematically 

accumulate or lose water mass over the long term. We were particularly concerned 

with the potential for chronic accumulation of water in the simulated groundwater 

reservoir, which would tend to increase baseflow over time. 
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 Once model calibration was complete, we conducted a validation exercise 

during the subsequent 13-year period, using the same metrics to assess the fit of 

simulation outputs to observed runoff. We also examined simulated and observed 

daily hydrographs (runoff time series) to assess the general pattern and timing of 

event response, for both calibration and validation. However, as described earlier, 

daily hydrographs were not used for quantitative calibration.  

  

G. Climate Scenario Model Run 

 To analyze the temporal and spatial dynamics of hillslope runoff under a 

variety of climate regimes, we created a catalog of "dry," "normal," and "wet" climate 

scenarios using the historic record. To do this, we used PRISM data for the entire 

SLRB (Figure IV.12) to calculate the non-exceedance probabilities, p, of annual 

precipitation from WY1982 to WY2014 as: 

     
  
p = m

n+1
                  (11) 

where m is the rank based on total annual precipitation (from largest to smallest), and 

n is the total number of years examined. We selected water years nearest the 20th, 

50th, and 80th non-exceedance probabilities to represent "dry", "normal", and "wet" 

climate groups, respectively, using five years for each of the dry and wet groups, and 

seven years for the normal group (Figure IV.12). In aggregate, these water years span 

~80% of the PRISM period of record in terms of total annual precipitation, from 10% 

to 90% of non-exceedance probability. We randomized the order of the water years 
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within each of the three climate groups to create three climate scenarios – "dry," 

"normal," and "wet" (Table IV.5). We ran PRMS for a single simulation that 

represented these conditions in sequence, using associated PRISM (climate) values as 

inputs. We inserted two model stabilization periods using "normal" climate 

conditions, one at the start and one between wet and dry climate conditions (Table 

IV.5). By using the historic record to create these climate scenarios, we preserved the 

complex array of natural precipitation characteristics – intensity, duration, 

persistence, and spatial distribution – to the extent available in the observational 

record. This selection of input data should result in a wide and representative range of 

the precipitation and temperature characteristics that are typical of each climate 

scenario. 

 We analyzed model-generated outputs, including precipitation, hillslope 

runoff (Equation 12), and hillslope runoff-precipitation ratio (RPR) (Equation 13), for 

temporal and spatial dynamics and trends.  

    hillslope runoff = interflow +  surface runoff                         (12)

   
  
RPR = hillslope runoff

precipitation
                (13) 

interflow and surface runoff were aggregated to quantify hillslope runoff for this 

study. This was done in recognition of the complex interplay between the two 

hydrologic processes and the difficulty of accurately fixing their ratios in the 

calibration process, making their segregation relatively arbitrary. Additionally, 

combining the two components was deemed appropriate for this study's goals, as 
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DSC-MAR sites will likely result in the collection of both runoff and shallow 

interflow. This is due to the design of MAR infiltration basins as recessions in the 

landscape, having sloped sides and relatively level basin floors (Bouwer, 2002; Dillon 

et al., 2009). These geometries encourage the transition of interflow to return flow (a 

type of Dunnian runoff) by promoting interflow slowdown, saturation, and exit to the 

land surface in the concave regions between basin walls and floor (Dunne & Black, 

1970; Chorley, 1969). Moreover, the absence of a dominant slope on basin floors 

promotes the stagnation of horizontal flow velocities, for both runoff and shallow 

interflow, in favor of ponding and downward movement – a factor additionally 

assisted by the high infiltration capacity characteristic of MAR sites (Bouwer, 2002; 

Chorley, 1969).  

 The baseflow component of runoff was not included in the analysis of 

hillslope runoff, as this component is routed directly into stream channels and thus is 

typically not available to use as a water supply for DSC-MAR. The definition of RPR 

presented above can result in values >1, in contrast to the traditional runoff 

coefficient (RC). An RPR can be >1 because it includes runoff that originated higher 

up in the basin, not just runoff resulting from precipitation falling on a particular area 

of interest. The distinction between RPR and RC is discussed later when results of the 

simulation are presented. To analyze the variability of hillslope runoff, we use mean 

annual and mean monthly data drawn from the HRU population for spatial variability, 

and full basin data drawn from the (rainy season) monthly population for temporal 

variability. For discussion purposes, we refer to the range between the 25th and 75 
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percentiles of these hydrologic data as the interquartile range.  

 

V. Results 

A. Calibration and Validation  

 1. Calibration parameters 

 Results from the calibration are shown in Figures V.1 to V.4, with NRMSDs 

given in Table IV.3. Given the SLRB's strong seasonal precipitation and the study 

goal of analyzing hillslope runoff, the most important NRMSD metric is based on the 

six-month rainy period (November through April) when the majority of precipitation 

occurs (Table IV.3).  

 The primary parameters adjusted for the annual calibration were gwflow_coef, 

and gwsink_coef. For monthly runoff, the primary parameters used in the 

calibration include the horizontal routing (interflow) coefficients (slowcoef_lin, 

slowcoef_sq), the vertical routing (gravity drainage) coefficients (ssr2gw_rate, 

ssr2gw_exp), and the maximum soilzone volumes (soil_moist_max, sat_threshold). 

The horizontal routing coefficients were minimized to match the observed 

hydrograph response, which exhibits minimal runoff during small precipitation 

events and a significant, rapid response with a steep recession during medium to large 

events (Figure III.5). The vertical routing coefficients were then tuned in combination 

with the soilzone volumes to improve the monthly calibration. Due to the strong 

seasonality of precipitation, stabilization routinely occurred after the first simulation 

year and test runs indicated that the simulation results were unaffected by the initial 
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conditions (soil and groundwater content) after stabilization, precluding the need to 

calibrate on initial conditions.  

 

 2. Calibration and validation 

 A list of calibration parameters, including calibration ranges and final values, 

is given in Table IV.4. With the exception of the two largest monthly events during 

the calibration timeframe (January 1997 and February 1998), the simulation did a 

reasonable job of matching observed monthly runoff (Figure V.1a). During these 

two months of extreme precipitation, however, the crossplot (Figure V.1a) shows a 

clear inability of the model to represent channel runoff. Because this phenomenon 

persisted despite parameter adjustments, it is likely due to the model's inability to 

simulate hydrologic processes that are common during the most extreme events, e.g., 

Hortonian runoff due to high precipitation intensities at sub-daily timescales. Once 

again, the fundamental problem is with the input climatological data, which virtually 

always underrepresents event intensity. To avoid calibrating to these extremes at the 

cost of the remaining 166 months, we removed these outlier months and their 

associated years (Figures V.1a-b) and updated the calibration.  

 The updated calibration (Figures V.1c-d) yielded a small improvement in 

NRMSDs (Table IV.3) and an improvement in the multi-year mass balance, for which 

the total difference between simulated and observed runoff was reduced from 18.3 

inches to 7 inches over 14 years. The histogram of monthly differences between 

simulated and observed runoff also shows a good overall match of the data, with a 
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modest bias towards underrepresentation of runoff during lower flow periods (Figure 

V.2). The updated calibration improved the timing and response of simulated runoff 

at monthly timescales, as depicted in Figure V.3 (USGS, 2015b). Presented at finer 

temporal resolutions, the simulation hydrographs show a good approximation of most 

observed runoff data at the Santa Cruz gauging station. However, the simulation 

underestimates most mean daily discharges >1,500 cfs, likely because of input data 

limitations, the use of daily time steps, and fine discretization of the model domain, as 

discussed earlier (Figure V.4) (USGS, 2015b).  

 Model validation was conducted by analyzing the results of monthly and 

annual runoff from WY2002 to WY2014, using the final calibration values 

identified in Table IV.4. The annual NRMSD was lower for the validation period than 

for the calibration period, whereas monthly NRMSDs were somewhat higher (Table 

IV.3). Both annual and monthly runoff values clustered around the one-to-one line 

when comparing simulated to observed values (Figures V.5a-b). There was a 

systematic underestimation of the three largest monthly events and a notable 

misrepresentation of two months having intermediate precipitation totals, December 

2002 and January 2003 (shown as triangles in Figure V.5a). There was a significant 

precipitation event that spanned these two months, generating simulated runoff 

mainly during the second month, but greater observed runoff during the first month. 

This result illustrates an additional challenge in discretization of PRMS output by 

month – a small offset in the timing of event response can lead to a significant 

apparent error. One might attempt to "calibrate" around an error such as this, but it 



	32 

would likely lead to unrepresentative parameter selection. If these two monthly data 

points are omitted from the validation, the NRMSD is significantly improved (Table 

IV.3 and Figure V.6). 

 

B. Climate Scenarios 

 1. Precipitation 

  Mean annual precipitation across the basin ranges from 30.2 inches under the 

dry scenario to 59.2 inches under the wet scenario. Hyetographs for the climate 

scenarios (Figure V.7) show similar seasonal precipitation patterns, with the majority 

of precipitation occurring between November and April and little-to-no precipitation 

during the months of June through September. Additionally, each scenario exhibits a 

similar range of precipitation magnitudes, with the dry scenario producing nearly 

commensurate maximum monthly intensities (20.7 inches per month) as the normal 

and wet scenarios (21.5 inches and 26.9 inches, respectively). All of the climate 

scenarios include months of heavy rainfall, but they are rarer and less persistent 

during the dry scenario. In contrast, months of elevated precipitation are more 

frequent and persistent in the normal and wet scenarios. 

 There is greater temporal and spatial variability of precipitation with the 

wetter climate scenario compared to the normal and dry scenarios (Figures V.8, V.9 

and V.10). Histograms of monthly, rainy-season precipitation for all HRUs show a 

clear increase in precipitation for December, January, and February from dry to wet 

climate scenarios (Figure V.8), with an interesting trade-off between November and 
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March. March precipitation is greatest under the dry and wet scenarios, but is lower 

under the normal scenario. November precipitation shows the opposite pattern, being 

greatest under the normal scenario and lower under both dry and wet scenarios. The 

implications of these shifts are discussed later. 

 

 2. Full basin response  

 To align the results with the project goal of determining runoff availability for 

MAR, hillslope runoff was quantified as the surface runoff plus interflow (Equation 

12) exiting the HRU, which includes the amount of runoff generated by the HRU plus 

runoff received from upslope regions via cascades. For the basin response, hillslope 

runoff (as above) was summed for all HRUs and normalized over the entire basin 

area. 

 The mean monthly hillslope runoff for dry, normal, and wet climate scenarios 

is 0.5 inches, 0.9 inches, and 1.7 inches (Figure V.11), equating to total annual runoff 

volumes for SLRB of approximately 43,000, 78,000, and 147,000 acre-ft/year. The 

maximum monthly hillslope runoff for dry, normal, and wet climate scenarios is 7.0 

inches, 7.2 inches, and 11.7 inches. Comparing the hydrographs to the hyetographs, 

the temporal pattern of hillslope runoff roughly follows that of precipitation (Figure 

V.11). For each climate scenario, significantly less hillslope runoff is produced for 

months having ≤4 inches of precipitation (Figures V.11 and V.19a). Thereafter, 

monthly runoff increases with precipitation, though there is no strong correlation 

between monthly RPR and precipitation values within each climate scenario (Figure 
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V.19).  

 Unlike the runoff coefficient (RC), which accounts only for the runoff 

generated within a region (as a fraction of precipitation), the RPR metric includes 

runoff that flows from upslope areas. As a result, RPR can be greater than 1.0. The 

monthly RPR time series generally emulates the monthly hyetographs for each 

climate scenario, but there are anomalously high RPR values when precipitation 

during one month leads to considerable runoff during the subsequent month. We 

filtered out RPR values >0.5 that occurred during a month of negligible precipitation 

(<0.01 inches) to minimize these artifacts (Figure V.15). The mean monthly basin 

RPR is 0.12, 0.21, and 0.37; whereas the maximum monthly basin RPR is 1.1, 2.8, 

and 8.8 for dry, normal, and wet climate scenarios, respectively. This trend of 

increasing mean monthly and maximum monthly RPR values with wetter climates 

can also be seen in the Box and Whisker Plots of basin monthly RPR (Figure V.17).  

 The variability of basin hillslope runoff (Figure V.13) is considerably less 

than that for precipitation (Figure V.9). The interquartile ranges for precipitation are 

4.6 inches, 6.6 inches, and 9.4 inches (Figure V.9), whereas those for hillslope runoff 

are 0.8 inches, 2.3 inches, and 4.5 inches (for dry, normal, and wet climate scenarios, 

respectively) (Figure V.13). The relatively low temporal variability of hillslope runoff 

is also revealed in the stacked histograms (Figure V.12), showing bin sizes of 

hillslope magnitudes that are very similar for each month of the rainy season.   

 Basin monthly hillslope runoff shows a positive trend in temporal variability 

with wetter climate scenarios, having interquartile ranges of 0.9 inches, 2.3 inches, 
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and 4.5 inches for dry, normal, and wet climate scenarios, respectively (Figure V.13). 

The temporal variability in monthly RPR also increases under wetter climate 

scenarios, having interquartile ranges of 0.19, 0.21, and 0.30 for dry, normal, and wet 

scenarios (Figure V.17).  

 

 3. Spatial distribution of hillslope runoff  

 Much like precipitation, there are consistent spatial patterns of hillslope runoff 

and RPR across the SLRB for each climate scenario (Figure V.20). The spatial 

variability of annual hillslope runoff (Figure V.14) is approximately two to three 

times larger than that of precipitation (Figure V.10), with the former having 

interquartile ranges of 3.9 inches, 4.9 inches, and 8.4 inches, for dry, normal, and wet 

climate scenarios, respectively. This relatively large spatial variability for runoff is 

also apparent in the stacked histograms of runoff and RPR (Figures V.12 and V.16), 

in which there is a wide range of runoff responses for each month.  

  The spatial variability of annual hillslope runoff across SLRB (Figure V.14) 

increases with wetter climates, from 8.2 inches for the dry scenario, to 14.7 and 25.4 

inches normal, and wet climate scenarios, respectively. Similarly, the spatial 

variability of the annual RPR is also greater with progressively wetter climate 

scenarios, having interquartile ranges of 0.27, 0.37, and 0.43 (dry, normal, and wet; 

Figure V.18). Thus the regions that produce disproportionately more runoff as a 

fraction of precipitation are even more important under a wetter climate scenario than 

under a drier climate scenario.  
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VI. Discussion 

A. Calibration and Validation 

 1. Calibration parameters 

 The primary adjustments made during calibration were to those parameters 

that characterize the soilzone (Figure IV.2). Water is delivered to and transferred 

between the three soilzone reservoirs: preferential flow, capillary, and gravity (PFR, 

CPR, and GVR, respectively). Soilzone parameters define the storage capacity and 

basis for routing water between these reservoirs. Before interpreting calibration of 

soilzone parameters, I briefly review how water is routed within this part of PRMS 

(Figure IV.2). 

 Water is delivered to the soil layer as precipitation throughfall and/or 

Hortonian runoff from upslope HRUs. The model first apportions some of this water 

as Hortonian runoff. The remaining water is allowed to infiltrate into the soilzone, 

where it is initially divided between the PFR and the CPR. The PFR is the fraction of 

the soilzone containing preferential flow channels. Water in the PFR is allowed to 

exit either as (fast) interflow or as Dunnian runoff once the PFR becomes saturated. 

The CPR extends to the vegetation rooting depth and accounts for that fraction of soil 

moisture between the wilting point and field capacity, where water is bound in the 

soil matrix by capillary forces and available for evaporation and transpiration (upper 

capillary zone) or transpiration only (lower capillary zone). In addition to infiltration, 

the CPR also receives input as interflow and/or cascading Dunnian runoff. When the 

water content in the CPR reaches field capacity, any additional water is passed onto 
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the GVR, which extends to the full soil depth and comprises the fraction of soil water 

between field capacity and porosity. Water in the GVR is not bound in the soil matrix 

and can exit as (slow) interflow or as gravity drainage to the groundwater reservoir. 

When saturated, additional input to the GVR is delivered to the PFR. Finally, when 

the PFR becomes saturated, any additional water becomes Dunnian runoff (or 

"saturation excess overland flow").  

 The dynamics of these inter-reservoir transfers are complex, and the 

parameters that define the soilzone are strongly interconnected, often requiring more 

than one soilzone parameter to be calibrated in sequence to achieve a desired 

response. Additionally, the ratio of Dunnian runoff to interflow can be modified 

significantly while still assuring monthly and annual mass balance in the calibration 

process, which could lead to non-unique solutions with similar calibration 

performance.  

 Santa Cruz gauging station data (Figure III.5, Figure V.4) shows a subdued 

response during small precipitation events, but a significant, "flashy" response during 

larger events that occur in rapid recession. To match the subdued response during 

small precipitation events we minimized several routing coefficients (fastcoef_lin, 

fastcoef_sq, slowcoef_lin, slowcoef_sq). Larger values for these coefficients resulted 

in excessive basin runoff response to small events. We also found it necessary to 

reduce the pref_flow_den parameter to avoid an immediate runoff response from the 

PFR (via fast interflow). Considered in aggregate, these calibration settings suggest 

that the SLRBs hydrologic response includes relatively little runoff until the soil 
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becomes saturated, consistent with good drainage and high soil storage capacity. 

Once the soil becomes saturated, there can be a large, rapid (Dunnian) runoff 

response. The relatively modest generation of interflow could result from spatial 

variability, including soils with relatively low conductivities. Interflow passing 

downslope within the basin would be limited by areas with the least transmissive 

properties. It might also be that lateral interflow is overwhelmed by preferential flow 

in the vertical direction via macropores such as deep root channels.  

 To match simulated to observed monthly runoff, we adjusted the vertical 

routing coefficients (ssr2gw_rate, ssr2gw_exp) and the maximum soilzone volumes 

(soil_moist_max, sat_threshold). The linear vertical routing coefficients, 

ssr2gw_rate, were calibrated to the lower end of the calibration working range, 

whereas the vertical routing exponents, ssr2gw_exp, were calibrated to the upper end 

of the range (Table IV.4). This is consistent with relatively efficient routing of GVR 

water to groundwater.  

  CPR and GVR soil reservoir water parameters were also modified during 

calibration (Table IV.4). Final values for the maximum water volume in the CPR for 

each HRU, soil_moist_max, were in the range of 0.11-20.95 inches, with a basin 

average of 10.0 inches. The maximum water volume in the GVR for each HRU, 

sat_threshold, included a similar range (Table IV.4), with a basinwide average of 1.5 

inches. Higher values of soil_moist_max allow for more ET from the CPR, limiting 

the short-term runoff response to small precipitation events. Lower values of 

sat_threshold tend to reduce the extent of slow interflow within the GVR, resulting 
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in a more rapid Dunnian response shortly after the GVR receives inflow. 

 These parameters represent geometric characteristics of the soil reservoirs and 

were derived from regional input data, including: vegetation rooting depths and 

available water content for soil_moist_max; and soil thickness, porosity, and field 

capacity for sat_threshold. Adjustments made during calibration suggest that these 

parameters might also account for soil and hydrologic characteristics not represented 

in available field data. In adjusting these parameters during calibration, we multiplied 

original values by a fixed ratio, shifting the averages as needed to match the observed 

runoff response, while preserving the spatial variability given by the data.   

 A CPR that holds more water than the GVR normally requires a rooting depth 

greater than soil depth. For example, given an AWC of 0.1 and a water holding 

capacity (n - FC) of 0.2, the basin average calibrated values for soil_moist_max and 

sat_threshold (Table IV.4) correspond to a rooting depth of 100 inches and a soil 

depth of 7.5 inches, respectively. The important role of deep roots in arid and semi-

arid regions suggests that values used are reasonable for this application (e.g., Devitt 

& Smith, 2002; Seyfried et al., 2005). Additionally, rooting depths of 100 inches have 

been noted in the literature (e.g., Canadell et al., 1996), and may be justified in the 

SLRB because of local zones of deep soils and/or fractured bedrock interspersed 

amidst a predominantly shallow soil layer (Seyfried et al., 2005). Soil and rooting 

heterogeneities in both horizontal and vertical directions can significantly affect 

patterns of infiltration and runoff (Loik et al., 2004). Consequently, deep, localized 

features such as these may provide significant reservoirs for water to become deep 
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recharge or be bound in the soil matrix for transpiration. As these deep zones become 

more saturated during large precipitation events, the surrounding shallow soils would 

become saturated as well, generating Dunnian runoff.  

 Dunnian runoff in PRMS is generated after the saturation of shallow soils. 

Because shallow soils play a dominant role in determining the generation of Dunnian 

runoff, we applied a harmonic mean rule for soil thickness when calculating 

sat_threshold (Tables IV.1 and IV.4). SLRB data indicates soil depths of 9 to 1575 

inches, with a harmonic mean of 30 inches, and the calibrated thickness was ~7.5 

inches. 

 Evapotranspiration (ET) is facilitated through three primary processes in the 

model, the first two of which are heavily influenced by the region's vegetation:  

1) Capture of precipitation by the vegetation canopy (Figure III.2b) and subsequent 

evaporation. The volume of precipitation susceptible to this process is determined by 

the parameters wrain_intcp (Figure IV.7c) and srain_intcp, and is significant in the 

SLRB given the region's dense vegetation.  

2) Infiltration of throughfall into the CPR soilzone (Figure IV.2), where it is bound in 

the soil matrix and subsequently transpired. This soil reservoir, determined by 

soil_moist_max, correlates with the vegetation rooting depth and also constitutes a 

significant volume, as discussed previously.  

3) Evaporation from the Upper CPR (Figure IV.2), which constitutes a relatively 

small volume (soil_rechr_max, Table IV.1) due to shallow evaporation depths in 

soils (Heitman et al., 2008).  
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 Due to the lack of PET data in the region we did not calibrate the model to 

directly match ET or PET, and instead represented the temporal variability, month-to-

month, of PET by scaling the model's PET coefficient (hamon_coef) proportionately 

to the mean monthly PET at the SLRB's nearest CIMIS station. Consequently, 

because our calibration focus was on monthly and annual runoff vice ET, water lost 

from the system due to ET and the groundwater sink (determined by the parameter 

gwsink_coef) may be interchangeable. Nonetheless, the simulation mass balance 

indicates that only about 35-percent of precipitation in the model makes it to the 

stream channels. Given the simulation assumption of a multi-year steady state (multi-

year change in storage ~ 0), this demonstrates that the combined impacts of ET 

(governed by the processes discussed above) and the groundwater sink (e.g. 

anthropogenic withdrawals, flows to deep aquifers and/or directly to the ocean, etc.) 

are significant in the SLRB. 

 

 2. Calibration and validation patterns 

 Although the final monthly calibration and validation statistics are good for 

the simulations overall (NRMSD = 0.137 and 0.212, respectively), and should be 

sufficient for the intended purpose of these simulations (planning for development of 

DSC-MAR systems) there remain systematic differences between simulated and 

observed runoff. In particular, comparisons of simulated and observed monthly runoff 

(Figures V.1 and V.5) show a tendency for simulations to: (a) overestimate runoff 

under moderate precipitation conditions (2–5 inches/month), and (b) underestimate 
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runoff under high precipitation conditions (8-12 inches/month).  

 This pattern proved difficult to resolve during calibration and validation, as 

modifications to parameters that tend to reduce the first effect also exacerbate the 

second, and vice versa. The under-representation of runoff during wet months is 

likely to have resulted in part from how precipitation was applied by the model 

because of the temporal discretization of data. Daily precipitation data and simulation 

time steps have two related impacts on intensity: reduced intensity of precipitation for 

periods lasting less than 24 hours, and reduced intensity for events >24 hours that 

span multiple days. For example, consider a relatively heavy precipitation event 

lasting 30 continuous hours, with the heaviest precipitation (a "cloudburst") occurring 

during one hour within a single calendar day. Daily simulation time steps will reduce 

the mean storm intensity of the full event, dividing it between two or three days, and 

the highest simulated intensity of precipitation during these days will be much lower 

than observed during the cloudburst. As a result of both of these effects, more water 

will be infiltrated in the simulation than occurred in the natural system, and much of 

that infiltrated water will be routed along paths that delay delivery to the channel 

(e.g., slow interflow from the GVR, Dunnian runoff from the PFR, see Figure IV.2). 

This behavior is nonlinear, disproportionately influencing the wettest time periods, 

and influences both monthly and annual water balances as peak flows are reduced and 

delayed and more water leaves the landscape as ET or groundwater recharge. 

 Given this behavior during high precipitation periods, calibration in an 

attempt to match annual water hydrographs may contribute to the over-representation 
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of runoff during moderate precipitation periods. Additionally, there could be a 

contribution related to the fine spatial scale of the HRUs used to define the model 

domain. Creation of many small, heterogeneous HRUs gives the simulated landscape 

more routing options than it would otherwise have with larger HRUs. With many 

small HRUs, inflows are routed to subsurface flow or ET in some HRUs, while 

becoming rapid Dunnian runoff in others. However, if small HRUs were combined 

into one homogenous HRU, the runoff response would be dampened for small-to-

moderate precipitation events during which the GVR doesn't become saturated and 

Dunnian runoff is prevented. Conversely, for large precipitation events during which 

saturation occurs in the larger HRU, Dunnian runoff would be triggered from the 

entire domain, yielding a response of greater magnitude than would be produced by 

numerous, small HRUs. In summary, the use of smaller HRUs (which provides 

insights into local differences in runoff by representing heterogeneous soil and 

vegetation conditions) could cause the full basin to increase simulated runoff for 

moderate precipitation events, while decreasing runoff magnitudes and creating 

runoff time delays for larger events. These are the two main forms of unresolved 

misfit apparent during both calibration and validation simulations (Figures V.1 and 

V.5). 

 It is worth considering whether these explanations might apply to the two 

highest precipitation months of the simulations (Figure V.1a, January 1997 and 

February 1998), which were omitted from analysis during the final stages of 

calibration (Figure V.1c). Simulated runoff during these months was not only below 
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that observed, it was also less than runoff simulated during other months when total 

precipitation was lower. We suspect that this model response resulted from under-

representation of Hortonian runoff. For pervious soils with high infiltration capacities 

(as in much of the SLRB, where sand-rich soils have mapped infiltration capacity 

values >20 ft/day; Table IV.2), Hortonian runoff can only occur when the 

precipitation intensity is extremely high. Precipitation intensities necessary to produce 

Hortonian runoff on high-IC soils do not typically persist over 24-hour periods. Thus 

representation of these events would be required at time scales of hours (or perhaps 

minutes). 

As soil moisture content increases, infiltration capacity decreases, and the 

rainfall intensity required to exceed IC and produce Hortonian runoff decreases as 

well. Based on this relationship, PRMS estimates Hortonian runoff from pervious 

areas using a contributing area approximation, in which Hortonian runoff in each 

HRU is calculated as originating from a fractional area that increases with soil 

moisture content. This approach is not capable of simulating runoff produced by short 

duration, torrential precipitation that exceeds the infiltration capacity. Hortonian 

runoff that is not generated by the model can infiltrate into the CPR where it will be 

lost to ET. As a result, calibration of soil routing parameters to match these extreme 

events either will not be possible, or will result in a gross over-prediction of runoff 

during lower precipitation events. This was the conundrum that led us to avoid trying 

to calibrate the model to match runoff during the highest precipitation periods.  

In summary, we are satisfied with the annual and monthly calibration and 
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validation results for the SLRB, and believe that the resulting PRMS simulation 

provides a reasonable representation of water routing across the landscape for most of 

the period of record. We are less concerned with forcing PRMS to match runoff 

observations during extremely wet periods for several reasons. First, calibrating to 

match runoff observations during wet extremes tends to cause difficulties in matching 

observations during normal to dry periods (in part because of limitations in model 

resolution, as discussed earlier). Second, underestimating runoff during the wettest 

periods will make simulations more conservative from the perspective of assessing 

water supply options for MAR. Finally, we are most interested in assessing the 

relative contributions to runoff from different parts of the basin. For that purpose, in 

the next section we explore runoff generation under dry, normal, and wet 

precipitation conditions, using data from the observational record to drive the model.  

 

B. Climate Scenarios 

 1. Precipitation 

 By using the historic record in the construction of climate scenarios, we were 

able to preserve the diversity of precipitation characteristics that are vital to runoff 

response, including distribution, intensity, duration, and persistence (Figures V.7 and 

V.20a). One such characteristic is the occurrence of months having substantial 

precipitation, even during the dry climate scenario. We also see the persistence of 

precipitation, where months with significant precipitation often occur adjacent to each 

other (especially during the wet climate scenario).  
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 The distribution of monthly precipitation across the HRUs shows some 

interesting patterns (Figure V.8). As expected, there is more precipitation during 

some of the wettest months (December, January, and February) during the wetter 

scenarios. However, we were surprised to see that there is not a monotonic pattern for 

the months of November (wettest under the normal scenario) and March (driest under 

the normal scenario). These shifts are relatively well defined for the period of record, 

but it is not clear if they have persisted over longer time periods.  

 The patterns for mean annual precipitation show a striking consistency in 

spatial distribution (Figure V.20a). All three climate scenarios show the most 

precipitation in the mountainous regions along the northeastern and southwestern 

edges of the SLRB (Figure V.20a and Figure III.3). However, there is also a 

precipitation "low" in the high elevation northwest region, as well as a precipitation 

"high" in the valley just inland/east of the western mountains. These may result from 

the typical pattern(s) of storm tracks across the SLRB and provide good justification 

for modeling precipitation at high resolution.  

 

 2. Full basin response 

 The climate scenario hyetographs and hydrographs (Figure V.11) reveal 

several interesting relationships between precipitation and runoff in the study region. 

First, there are numerous months in all three scenarios for which zero, or nearly zero, 

hillslope runoff is generated despite moderate monthly precipitation. During such 

months, streamflow would be limited to baseflow (or releases from Loch Lomond 
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Reservoir). The soil moisture content remains below field capacity for these months, 

with all water bound in the CPR soil matrix and available only for ET.  

 Second, significant hillslope runoff tends to occur only if there has been 

precipitation during that month and the preceding month. Rarely does a month 

produce significant runoff when the preceding month receives only negligible 

precipitation, mainly because the CPR must be full (at field capacity for the soil) 

before interflow and/or surface runoff can be produced by the GVR. Finally, we see 

that (when considering the basin as a whole) there is runoff generated during some 

months in the dry climate scenario, suggesting that there may be DSC-MAR 

opportunities even during dry years. As in the normal and wet scenarios, significant 

runoff months in the dry scenario (though infrequent) are also preceded by moderate 

precipitation months. In combination, these patterns help to emphasize the importance 

of antecedent soil moisture on runoff generation in the SLRB.  

 A second primary observation is that the runoff response of the basin is 

smoothed and attenuated relative to the variability seen in precipitation input. The 

landscape contains numerous reservoirs where water is sequentially stored and 

released – including canopy storage, soil reservoirs, and the surface of impervious 

hardscapes. As a result, the landscape dampens the basin wide response to 

precipitation. 

 The temporal variability of basin runoff also increases with wetter climate 

(Figure V.13), mainly because of increases in the largest monthly runoff events under 

the wet climate scenario, while the smallest runoff events are similar in magnitude for 
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all scenarios. A more interesting trend is revealed by the relative change in basin 

monthly runoff with changes in monthly precipitation. Although there is a nearly 

linear relationship (with a slope of 0.5) between mean monthly hillslope runoff and 

precipitation for all climate scenarios, mean monthly runoff constitutes a larger 

fraction of precipitation for the wet climate scenario than for dry (Table VI.1, Figure 

V.17). Figure V.17 also illustrates an increase in the temporal variability of basin 

RPR for wetter climates, indicating that the trend of increasing RPR values with 

wetter climates is expressed the most during the largest events. In summary, 

disproportionately more runoff is produced as a fraction of precipitation for the wet 

climate scenario than for the dry climate scenario. By comparison, within each 

climate scenario there is no discernible trend in a cross-plot of basin monthly RPR 

versus monthly precipitation, implying that runoff remains relatively constant as a 

fraction of precipitation for each individual climate scenario (Figure V.19b). This 

finding will be particularly useful for assessing the potential to collect stormwater 

runoff for MAR projects.  

 

 3. Spatial distribution of hillslope runoff 

  By HRU, the spatial distribution of hillslope runoff and RPR spans a wide 

range, with the largest magnitudes of hillslope runoff and RPR being 418 inches and 

6.95, respectively – occurring during the wet climate scenario and for the same HRU 

(Figures V.20b/c). High values such as these result, in part, from use of the PRMS 

cascade module. The cascade module enables hillslope runoff to be transferred from 
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upslope to downslope HRUs before reaching a stream channel. Some of the upslope 

runoff aggregates directly with the runoff generated by the downslope HRU; the rest 

increases the downslope HRU's soil moisture content, contributing to additional 

runoff generation (Figure IV.2). With the use of cascades, if a downslope HRU has an 

area that is smaller than that of upslope/contributing HRUs, a "funneling effect" 

occurs in that the volume of cascading runoff is applied over a smaller area, resulting 

in a larger RPR. Additionally, cascading flows increase the soil moisture content of 

downslope HRUs, boosting their production of runoff. Regions such as these should 

be focal points for assessment of hillslope runoff as potential supply for MAR.  

 The spatial variability of runoff (Figure V.20b) is significantly greater than 

that of precipitation (Figure V.20a), illustrating the importance of soil, vegetation, 

and land use characteristics. Different physical features – depending on land use, 

vegetation, topography, soils, and other characteristics – have different effects on 

runoff response. In combination, these features contribute to the runoff response, 

lending to spatially variable runoff behaviors. In short, heterogeneity and variations in 

the landscape can diversify, magnify, and punctuate spatial sensitivities to 

precipitation, yielding a highly varied response.  

  Figure V.20d shows three important SLRB-wide datasets used by PRMS: 

percent sand in soil, percent impervious area, and vegetation coverage density. Each 

landscape feature shows considerable spatial variability, and each appears to correlate 

(roughly) with patterns of runoff generation. Although a multivariate analysis would 

be required to quantify these correlations, PRMS appears to simulate greater runoff 
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from parts of the landscape having less sandy soils, more impervious area, and less 

vegetation density. That the simulations display such a spatially complex sensitivity 

to precipitation helps to justify the use of high-resolution input data and relatively 

small HRUs. Additionally, these results illustrate the functionality and utility of the 

model – specifically its ability to produce high-resolution output that can support the 

broader project goal of analyzing hillslope runoff at the sub-watershed scale for 

development of MAR projects.  

 The distribution of hillslope runoff indicates an increase in spatial variability 

under a wet climate scenario (Figure V.20b). Similar to the temporal trends discussed 

in section VI.B.2, this is also an expected outcome, caused by a few regions that 

produce proportionately greater runoff during the wet climate scenario, while other 

parts of the SLRB generate little-to-no runoff under all climate scenarios. This 

observation is also apparent in an aggregate analysis of all HRUs in the SLRB (Figure 

V.14). Moreover, there is an increase in the spatial variability of RPR across the basin 

during the wet climate scenario (Figures V.20c and V.18). Thus, areas that generate 

the most runoff are also most responsive to differences in precipitation patterns, 

producing more runoff as a fraction of precipitation during the wet climate scenario.  

 Given the high spatial resolution of hillslope runoff provided by the 

simulation (Figures V.20b/c), these results can be used as a preliminary MAR 

planning and estimation tool. Because our results account for upslope contributions to 

runoff (via cascades), the values for each HRU in Figure V.20b represent hillslope 

runoff derived from a cascading series of HRUs. These "cascading HRU series" can 
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be viewed as individual catchment areas for potential DSC-MAR sites. Consequently, 

resource managers could use Figure V.20b to assess locations that meet runoff targets 

for MAR. For example, using a conservative estimate of 100-acre catchments, if a 

basin goal is to infiltrate 1000 acre-ft/year, 10 project locations might be selected, 

with each located in an HRU that delivers an annual average of 100 acre-ft/100 acres.  

 As another MAR planning tool, we used the simulation of hillslope runoff, by 

HRU, to calculate the cumulative areal distribution of mean annual precipitation 

(Figure VI.1) and hillslope runoff (Figure VI.2). For each climate scenario, Figure 

VI.1 depicts how much of the study region receives at least a particular amount 

annual precipitation. Similarly, Figure VI.2 depicts how much of the study region 

delivers at least a specified amount of annual runoff under a dry, normal, or wet 

climate scenario. For example, consider the same goal of generating 100 ac-ft/yr of 

runoff per 100 ac of drainage area. Under a dry climate scenario, about 15% of the 

SLRB meets this objective, equivalent to ~50 km2. In contrast, about 30% of the 

SLRB meets this target under the normal climate scenario, and 60% meets this target 

under the wet climate scenario. In aggregate, this suggests that there is a lot of 

opportunity within the SLRB to collect stormwater runoff for MAR. Additional work 

is needed to assess many additional factors, include the interest of landowners and 

agencies, availability of space in underlying aquifers, engineering requirements, and 

water rights and permits.  
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VII. Conclusions and Future Work 

A. Conclusions 

 This study demonstrates a method for modeling hydrologic basin response at 

sub-watershed scales to assess the spatial and temporal dynamics of hillslope runoff 

as potential supply for MAR. To assess hillslope runoff over a range of climate 

conditions while preserving the region's characteristic precipitation patterns and 

qualities, we used the historic record to build three climate scenarios based on annual 

precipitation – dry, normal, and wet. By using a fine scale representation of 

topographically defined grid cells (HRUs), and leveraging numerous high-resolution 

data sets, we produced simulation outputs at spatial resolutions of 0.1 to 1.0 km2. 

Because PRMS is discretized to use daily time steps, and there is little climate data 

available across the SLRB at higher temporal resolution, we calibrated the model on 

the basis of monthly and annual timescales. The results show opportunities for 

hillslope runoff as potential supply for MAR during all climate scenarios. The results 

also indicate that a larger fraction of basin precipitation becomes hillslope runoff 

during wetter climates, that this trend is accentuated for the largest monthly events, 

and that both the spatial and temporal variability of runoff increase under a wetter 

climate. 

 For all climate scenarios, the simulation shows that hillslope runoff has a 

smaller temporal variability and a larger spatial variability than does the precipitation 

input. This results from the landscape's ability to dampen and prolong the temporal 

response to precipitation in some areas by absorbing and releasing waters, while 
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delivering runoff quickly in other areas, due to landscape heterogeneities. That our 

simulation can produce such a spatially diverse response is, at least in part, a 

consequence of high-resolution input data and relatively small HRUs.  

 This study's high-resolution results support our project goal of analyzing 

hillslope runoff at the sub-watershed scale, and can be used to determine locations 

throughout SLRB that yield ample supply for MAR (Figure V.20b). Such locations 

(as HRUs) can be further evaluated for potential project sites by combining results of 

runoff simulations with a concurrent MAR site suitability analysis, which analyzes 

soils and geology to determine where water can successfully infiltrate and become 

recharge. Plotted as cumulative areal distribution curves (Figures VI.1 and VI.2) 

runoff model results can also be used for MAR planning and assessment for the entire 

basin.  

 These results will enable resource managers, planners, engineers and 

stakeholders to assess the feasibility of DSC-MAR objectives in the SLRB based on 

hillslope runoff supply under various climates. Additionally, when combined with an 

analysis of MAR soils and geologies, these results should help with screening and 

placement of future field projects.  

 

B. Future Work 

 There are tremendous opportunities for additional analyses related to this 

study. We felt it necessary to conduct a manual calibration in this study, informed by 

careful review of the hydrographs, to prevent an undesired, non-unique match of the 
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monthly and annual mass balance. Given that were able to produce a reasonable 

match to monthly hydrographs during both calibration and validation periods, the 

climate scenario simulation should be indicative of the actual SLRB runoff response. 

However, there is potential to optimize model calibration using a more sophisticated 

procedure. With 865 HRUs, it is prohibitive to manually calibrate parameters by 

individual HRU. Using automation, the primary calibration parameters (identified in 

section V.A.1) could be adjusted independently for all (or selected) HRUs. 

Automation provides no guarantee that the calibration would be improved, and 

because of limitations in input data (both spatial and temporal), there is also the 

potential that refined calibration would result in unrealistic parameters or reveal other 

problems. Still, it would be worth attempting to improve the response of the model.  

 The next step in this study is to overlay PRMS simulation results with those 

from a concurrent MAR suitability study. The MAR suitability study provides a 

spatially continuous assessment of soil and groundwater conditions for infiltration 

and recharge. Identifying how much of the study region might be viable for DSC-

MAR requires a joint analysis that considers where there is ample supply (through 

this study), and where that supply can successfully recharge aquifers. The latter 

analysis includes only about 25% of the SLRB area because of limitations in the 

availability of subsurface data, but it will still prove useful when combined with 

PRMS results.  

 As mentioned in section VI.B.3, the hillslope runoff values in this study 

indicate what is delivered at the HRU outlet point, and contributions from upslope 
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HRUs (via cascades) are focused along the manufactured stream(s) within any given 

HRU. As a result, it would be interesting to combine our high-resolution runoff 

results with a contributing area analysis conducted at the extreme high resolution of 

the DEM raster. This process would involve siting potential DSC-MAR infiltration 

basins, each approximately 1-5 acres in size, and determining the contributing area to 

each basing using the gradient and flow accumulation calculations in section IV.B. 

Then, by rerunning our simulation without cascades, we could calculate runoff 

coefficients for each HRU, RCi, and apply these values to the HRU precipitation 

value, Pi, to determine hillslope runoff for each HRU over the simulation. Finally, for 

each potential DSC-MAR infiltration basin, we would determine the area of each 

HRU, Ai, that overlaps with the infiltration basin's contributing area to calculate the 

total runoff volume to each DSC-MAR site as: 

   
  
hillslope runoffMAR = RCi ×

i

n

∑ Pi × Ai               (14) 

This analysis could be conducted by randomly placing DSC-MAR infiltration basins 

across the study region as a survey of available supply for DSC-MAR sites 

throughout SLRB. Alternatively, we could selectively pick locations that have been 

pre-screened for both hillslope runoff supply and MAR suitability (as previously 

discussed) to enable a higher fidelity assessment of viable DSC-MAR sites and their 

volumetric potential.  

   It would also be valuable to assess SLRB's pre-development runoff response.  

This would require adjusting the model's vegetation and land-use parameter inputs to 
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reflect conditions that existed prior to anthropogenic influence. Though data is limited 

for historic vegetation conditions, we can approximate these conditions by setting the 

vegetation polygons of human-modified areas (e.g. urban, agriculture, non-savannah 

grasslands) to match the vegetation characteristics of their surrounding polygons. We 

would, additionally, set the percent impervious parameter to 0.0 throughout the entire 

region. This analysis would quantify and compare the basin's pre- and post-

development runoff responses, including the impact on naturally occurring recharge. 

It would also enable an assessment of how much recharge to "target" via MAR in 

order to counter the effects of past and future land development on runoff and 

recharge.  

 Lastly, it would be useful to conduct a multivariate statistical analysis, such as 

a Principal Component Analysis (PCA), between several input parameters and 

hillslope runoff. This analysis could reveal the relative influence of parameters and 

parameter combinations on hillslope runoff and help reduce the list of required data 

input to the model. It may also serve as a first step in devising a more tractable, 

simple correlation-based approach at conducting hillslope runoff analyses for MAR 

decision making.  
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