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Abstract

Electrocorticogram (ECoG) is a promising longterm signal acquisition platform for brain-

computer interface (BCI) systems such as upper extremity prostheses. Several studies have 

demonstrated decoding of arm and finger trajectories from ECoG high-gamma band (80–160 Hz) 

signals. In this study, we systematically vary the velocity of three elementary movement types 

(pincer grasp, elbow and shoulder flexion/extension) to test whether the high-gamma band 

encodes for the entirety of the movements, or merely the movement onset. To this end, linear 

regression models were created for the durations and amplitudes of high-gamma power bursts and 

velocity deflections. One subject with 8×8 high-density ECoG grid (4 mm center-to-center 

electrode spacing) participated in the experiment. The results of the regression models indicated 

that the power burst durations varied directly with the movement durations (e.g. R2=0.71 and 

slope=1.0 s/s for elbow). The persistence of power bursts for the duration of the movement 

suggests that the primary motor cortex (M1) is likely active for the entire duration of a movement, 

instead of providing a marker for the movement onset. On the other hand, the amplitudes were less 

co-varied. Furthermore, the electrodes of maximum R2 conformed to somatotopic arrangement of 

the brain. Also, electrodes responsible for flexion and extension movements could be resolved on 

the high-density grid. In summary, these findings suggest that M1 may be directly responsible for 

activating the individual muscle motor units, and future BCI may be able to utilize them for better 

control of prostheses.
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I. Introduction

Subdurally-recorded electrocorticogram (ECoG) is a promising long-term signal acquisition 

platform for brain-computer interface (BCI) systems, such as upper extremity prostheses. 

Several studies have shown that arm and finger trajectories [1], [2], [3], [4], [5], [6], [7] can 

be decoded from ECoG signals. However, the performance of these decoders has been 

modest. Thus, a better understanding of ECoG motor control may improve the design of 

trajectory decoders.

Our previous studies [8], [9] have demonstrated that the power of ECoG in the high-γ band 

(80–160 Hz) strongly correlates with kinematic parameters of upper extremity movements. 

Specifically, the high-γ power bursts have waveforms that resemble the velocity of 

elementary arm movements. However, these experiments did not systematically vary the 

movement velocity, and so it remains unclear whether a high-γ power burst is responsible 

for the entire duration of movement or merely encodes for the movement onset. To this end, 

the velocity of various elementary upper extremity movements was systematically varied to 

better characterize motor control strategies in ECoG.

II. Methods

A. Signal Acquisition

This study was approved by the Institutional Review Board of the Rancho Los Amigos 

National Rehabilitation Center. Subjects were recruited from a patient population 

undergoing temporary subdural electrode implantation for epilepsy surgery evaluation. 

Subject selection was limited to those with electrodes covering the primary motor cortex 

(M1) upper extremity representation area. Up to 64 channels of ECoG data were recorded 

using a pair of linked NeXus-32 bioamplifiers (Mind Media, Roermond-Herten, The 

Netherlands), and signals were acquired at a 2048-Hz sample rate with common average 

referencing.

B. Experimental Task

A subset of elementary upper extremity movements [10] was performed on the side 

contralateral to the ECoG electrode implant: 1. pincer grasp and release (PG); 2. elbow 

flexion and extension (E); and 3. shoulder forward flexion and extension (SFE). Prior to 

each movement, an appropriate sensor to measure angular trajectory was mounted and 

calibrated using conventional goniometry. Specifically, the trajectory of PG was measured 

by a custom-made electrogoniometer [11], while E and SFE movements were measured by a 

gyroscope (Wii Motion Plus, Nintendo, Kyoto, Japan). The trajectory signals (position, θ, 
and velocity,θ̇) were acquired using a microcontroller unit (Arduino, Smart Projects, Turin, 

Italy). ECoG data were synchronized with the trajectory signals using a common pulse train 

sent to both acquisition systems.

Each movement type was performed at fast, moderate, and slow speeds (see Table I for 

details) as guided by a video animation representing the moving joint. The video cued the 

subjects to fully flex the joint at the specified speed, followed by holding the joint stationary 

(idling) for a specific duration. This was then followed by a full extension movement and 
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another idling period. The idling periods were introduced to prevent temporal overlapping of 

flexion and extension ECoG features, which we observed in earlier studies when these 

movements were executed in succession. The above cycle was repeated for a total of 40 

times for each elementary movement type. In order to establish a signal baseline, subjects 

held the joint at a neutral position for 30 s before and after these video-guided cycles. Note 

that subjects familiarized themselves with the task by previewing the videos.

C. Analysis

As described in [9], the high γ-band power, Pγ, was obtained by calculating the 

instantaneous power envelope for each ECoG electrode:

Pγ(t) = f xγ
2(t) (1)

where xγ(t) is the bandpass filtered (80–160 Hz) ECoG signal, which is squared and then 

enveloped by a 1.5-Hz low-pass filter, f (·).

The duration and amplitude of Pγ bursts and θ̇ deflections during each flexion and extension 

movement were determined using criteria described in Fig. 1. Four separate linear regression 

models between Pγ and θ̇ were generated for flexion durations, extension durations, flexion 

amplitudes, and extension amplitudes.

III. Results

A 38-year-old male subject undergoing subdural electrode implantation for epilepsy surgery 

evaluation participated in this study. The subject had an 8×8 high-density ECoG electrode 

grid (4 cm × 4 cm, 4 mm center-to-center electrode spacing) placed over the right 

hemisphere covering the arm representation area of M1. While the subject completed all 

movement tasks, he had a tendency to decompose the slow PG movements into multiple 

small movements, and therefore this dataset was excluded from analysis. The ECoG grid 

location is reproduced in Fig. 2. Note that due to the presence of MRI incompatible metal 

inside his body, the ECoG grid could not be visualized using the typical MRI-CT co-

registration procedure [12]. Instead, localization was performed by co-registering the central 

sulcus location using pre- and post-implantation CT scans.

The results of the regression models (summarized in Fig. 2 and Table II) indicated that the 

Pγ burst duration varied directly with the movement duration for E and SFE movements. 

However, this relationship was weaker for the PG movement. Also, the amplitudes of Pγ 
bursts and θ̇ deflections were less co-varied for all movement types. Representative scatter 

plots of these relationships are shown in Figs. 3 and 4.

IV. Discussion

The persistence of Pγ bursts for the duration of the movement suggests that M1 is likely 

active for the entire duration of a movement instead of providing a marker for the movement 

onset. For each individual flexion and extension in the E and SFE movements, the duration 
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of the Pγ burst was approximately equal to the duration of the θ̇ deflection (as evidenced by 

slope of ~1). This relationship was true for a range of velocities (see Table II), including the 

slow speed movements. This raises the possibility that M1 neurons directly activate motor 

units responsible for the movements. Furthermore, the slope of the duration regression line 

was slightly higher for SFE. This suggests that for larger joints, the Pγ activity may encode 

for acceleration or a combination of both velocity and acceleration, whose deflection lasts 

longer than that of θ̇.

On the other hand, even though the R2 values corresponding to the amplitudes of Pγ bursts 

and θ̇ deflections were statistically significant (p=0.0075), the majority of variance was 

unaccounted for. Only the R2 and slopes for E movement supported the original hypothesis 

(Pγ burst amplitude correlates with the movement deflection amplitude). The possibility of 

other variables (e.g. torque, muscle activity) being encoded by this feature may explain the 

remaining variance. The inherent variability of the peak values of the Pγ bursts may be 

another contributing factor.

The spatial distribution (Fig. 2) of the maximum R2 across movement types conformed to a 

somatotopic arrangement in M1, in which proximal to distal movements were represented in 

a medial to lateral manner. In addition, the area of high R2 increased for E and SFE 

movements, compared to PG movements. This can be explained by the stronger Pγ bursts 

(higher Pγ amplitudes, see Table II), leading to a larger spread of movement-modulated 

high-γ ECoG activity by volume conduction. This in turn allowed high R2 values to be 

established over wider brain areas.

The locations of maximum R2 differed between flexion and extension for each movement 

type, suggesting that there exist separate neuronal generators responsible for each movement 

direction. These generators appeared to be sufficiently resolved in space using a high-density 

ECoG grid, which makes it a promising signal acquisition platform for future BCI 

applications. In summary, the strong R2 for durations, the presence of their somatotopic 

arrangement, and the separation of flexion and extension generators further reinforce the 

possibility that M1 cortical neurons are directly responsible for activating muscle motor 

units.

Finally, it can be observed that Pγ bursts did not fully return to the noise threshold between 

flexion and extension movements at fast speed (see Fig. 1). Adjusting future experiments to 

increase the idling period to 2–3 s may better isolate the ECoG signals encoding for these 

movements and may improve the R2 value.

V. Conclusion

This study explored the characteristics of high-γ power bursts at varying movement 

velocities. The results support the hypothesis that M1 is active for the entire duration of a 

movement instead of marking the onset of movement. They also suggest that M1 may be 

directly responsible for activating the individual muscle motor units. our future work will 

focus on corroborating these findings and testing this hypothesis in a larger cohort of 

subjects. Ultimately, this may improve our understanding of physiological processes 
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underlying upper extremity movement, which in conjunction with high-density ECoG grids, 

may lead to the design of better BCI systems for upper extremity prosthesis control.
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Fig. 1. 
Representative time series of the three different speeds for SFE movements. The top traces 

are Pγ at electrode G37, and the bottom traces are θ̇. The Pγ signal from each electrode was 

standardized such that the median = 0 and the median absolute deviation (mad) = 1 during 

the initial 30-s idling period (not shown). The widths (durations) of both the Pγ bursts and θ̇
deflections were determined at the 3-mad threshold (circle and square segments) or between 

local minima. The amplitudes were determined by averaging over 5 points around the 

extremum within each segment and are indicated by triangles.
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Fig. 2. 
Spatial distribution of R2 values between the durations of the Pγ bursts and θ̇ deflections, 

and between the amplitudes of the Pγ bursts and θ̇ deflections. Note that amplitudes during 

PG are not shown since the R2 values are all < 0.23. Abbr.: A = Anterior, P = Posterior, M = 

Medial, L = Lateral, M1 = Primary motor cortex, S1 = Primary sensory cortex, PMA = Pre-

motor area, CS = Central sulcus, PCS = Pre-central sulcus.
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Fig. 3. 
Relationship between the durations of Pγ bursts and θ̇ deflections for SFE movement. Black 

crosses (fast speed), red crosses (moderate speed), green crosses (slow speed). A best-fit line 

is also shown for each regression model.
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Fig. 4. 
Relationship between the amplitudes of Pγ bursts and θ̇ deflections for E movement. Black 

crosses (fast speed), red crosses (moderate speed), green crosses (slow speed). A best-fit line 

is also shown for each regression model.
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TABLE I

Summary of movement types and speeds. Subjects were cued to perform maximum flexion or extension for 

the specified duration, and idling without returning to neutral pisition.

Movement type Fast Moderate Slow

Pincer Grasp (PG) 0.35 s 0.75 s 1.5 s

Elbow (E) 0.65 s 1.30 s 2.6 s

Shoulder F/E (SFE) 0.75 s 1.5 s 3.0 s

Idle 1.0 s 2.0 s 3.0 s
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TABLE II

The maximum coefficient of determination (R2), slopes, and mean Pγ values for each linear regression model 

over the M1 area. Units: s for durations, mad for Pγ amplitudes, mad/(°/s) for slopes of amplitudes. All R2 

values are statistically significant including R2=0.10 (p=0.0075).

Movement Duration Amplitude

Flexion Extension Flexion Extension

PG R2 0.42 0.34 0.10 0.23

Electrode G37 G30 G23 G9

Slope 0.92 0.61 −0.0094 −0.012

Pγ Value 0.74 0.74 3.68 2.63

E R2 0.71 0.62 0.41 0.55

Electrode G37 G37 G36 G19

Slope 1.0 0.85 0.081 −0.080

Pγ Value 1.50 1.55 22.58 15.69

SFE R2 0.69 0.71 0.30 0.33

Electrode G27 G20 G29 G26

Slope 1.0 1.2 −0.085 −0.069

Pγ Value 1.63 1.62 13.99 18.26
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