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Abstract: Glaucoma is a chronic optic neuropathy that leads to irreversible vision loss. Aging and
family history are the two most important risk factors of glaucoma. One of the most studied genes
involved in the onset of open-angle glaucoma is myocilin (MYOC). About 105 germline mutations
within MYOC are known to be associated with glaucoma and result in endoplasmic reticulum (ER)
stress, which leads to trabecular meshwork (TM) cell death and subsequent intraocular pressure
(IOP) elevation. However, only about 4% of the population carry these mutations. An analysis of
MYOC somatic cancer-associated mutations revealed a notable overlap with pathogenic glaucoma
variants. Because TM cells have the potential to accumulate somatic mutations at a rapid rate due
to ultraviolet (UV) light exposure, we propose that an accumulation of somatic mutations within
MYOC is an important contributor to the onset of glaucoma.

Keywords: somatic mutation; aging; glaucoma

1. Introduction

Glaucoma is the leading cause of irreversible vision loss and blindness around the
world, with it affecting approximately 68.6 million individuals [1,2]. It has been esti-
mated that by the year 2040, 111.8 million people will be affected by this chronic optic
neuropathy [3], thus emphasizing the importance of studying the underlying mechanisms
associated with its pathophysiology.

Aging is one of the major risk factors of glaucoma; everyone aged 60 and older is at
high risk of glaucoma [1,2]. However, a family history of the disease is also known as a risk
factor [1,2]. Advances in the field of genetic and genomic research have led to extensive
investigations of the genes contributing to glaucoma and have resulted in the identification
of 127 associated genomic regions [4–6]. The majority of the identified loci are linked with
the onset of open-angle glaucoma (OAG), whereas eight genes are associated with primary
angle closure glaucoma [4]. The most frequently occurring subtypes of glaucoma are early-
onset juvenile OAG (JOAG) and late-onset primary OAG (POAG), together accounting
for 74% of all reported incidents [7]. Mutations in the myocilin gene (MYOC) were first
identified in families with an autosomal dominant inheritance of JOAG and were linked
to the GLC1A locus on chromosome 1q24.3-q25.2 [5,8–10]. Ever since, extensive efforts
have been focused on studying myocilin (MYOC), the most associated protein in OAG
development [11,12].

MYOC, a trabecular meshwork-inducible glucocorticoid response protein, is expressed
in various tissue and cell types including the trabecular meshwork (TM), ciliary body, retina,
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myocytes, astrocytes, fibroblasts, endothelial cells, and some epithelial cells [11,13,14]. De-
spite the broad expression profile of MYOC, mutations in the protein are currently known to
cause disease only in the eye. Thermodynamically unstable pathologic germline mutations
in MYOC lead to its overexpression in TM cells [15–18], which initiates a cascade of events
that lead to glaucoma. Recent studies have illustrated that increasing the concentration of
the transforming growth factor-β2 (TGF-β2) induces MYOC expression in TM cells [19],
resulting in changes to the extracellular matrix (ECM) structure [11]. Modulating the ECM
of TM cells has been shown to obstruct aqueous humor outflow and increase intraocular
pressure (IOP), subsequently leading to glaucoma [20].

There are 105 known glaucoma-causing MYOC variants (www.myocilin.com), the
majority of which localize to the olfactomedin (OLF) domain of MYOC [21]. Glaucoma-
associated OLF variants compromise the thermal stability of MYOC [22], leading to protein
misfolding and a decrease in melting temperature (Tm) [23], thus reducing protein folding
efficiency [22] and promoting the formation of aggregates within the endoplasmic reticulum
(ER) of TM cells [20]. This leads to activation of the unfolded protein response (UPR)
pathway and subsequent TM cell death due to elevated ER stress [20]. TM cells play an
essential role in modulating the aqueous humor outflow from the anterior chamber of the
eye, whereas the death of TM cells has been associated with elevated IOP, retinal ganglion
cell death, and irreversible loss of vision through OAG progression [24,25]. Inherited
germline mutations in MYOC are disease-causing in about 4% of POAG and up to 36%
of JOAG cases [26,27], which amount to over 3 million and up to 29 million affected
individuals, respectively. A recent study shows a moderate correlation between the stability
of inherited germline MYOC variants and the age at glaucoma diagnosis [28], which
underlines the importance of the thermodynamic stability of mutated MYOC in activating
the UPR pathway.

Herein, we analyze germline and somatic MYOC mutations obtained from glaucoma
and cancer genomics databases. MYOC genome analysis revealed a remarkable overlap
between glaucoma-causing and cancer-associated mutations. Hence, we reason that somatic
mutations within MYOC may also contribute to glaucoma because an increase in the
frequency of ultraviolet (UV) light exposure to the eye can accelerate the accumulation of
disease-causing somatic mutations within the MYOC of TM cells. This would result in the
aging-related pathogenic phenotype of glaucoma. As mutated C→T variants account for
≥60% of UV-induced mutations [29], when combined with the complement G→A variants,
MYOC may accumulate a large variety of pathogenic mutations due to UV exposure.
Indeed, it has been shown that extended periods of time spent outdoors is associated
with a higher risk of developing exfoliation syndrome glaucoma [30], underscoring the
potential importance of somatic MYOC variants in OAG development. Other studies
have ascertained a link between age-related neurodegeneration and the accumulation
of somatic mutations in neurons [31,32]. Age-associated defects in development and
neurogenesis could result from an elevated frequency of somatic mutations due to a higher
rate of cell division and an increase in oxidative damage [33]. Thus, we propose that
age-related MYOC somatic mutations are also major contributors to the onset of glaucoma,
and the mechanisms driving the emergence of glaucoma have both hereditary and crucial
environmental components.

2. Materials and Methods
2.1. Methods for the Mutation Diagram in Figure 1 and Protein Structure Assembly

We obtained 278 known MYOC variants that exhibit Mendelian inheritance from the
MYOC allele-specific glaucoma phenotype online database (www.myocilin.com, accessed
on 10 June 2018); of the 278 MYOC germline mutations, 105 manifest a glaucoma phenotype,
while 173 were identified as neutral polymorphisms or mutations with unknown pathogenic-
ity. We also found 155 somatic cancer-associated MYOC missense and nonsense mutations
acquired from the cancer genomics online database cBioPortal (www.cbioportal.org, accessed
on 10 June 2018). All of the mutations are listed in the file Glaucoma-Cancer Myocilin Mutation

www.myocilin.com
www.myocilin.com
www.cbioportal.org
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Correlation—Colorcoded.xlsx (Supplementary Information). We utilized the mutation dia-
gram generated through the cBioPortal for Cancer Genomics MutationMapper and modified
it using the Hypertext Markup Language (HTML).
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Figure 1. Schematic diagrams of MYOC germline and somatic mutations color-coded based on the
additive color model. (a–c) Diagrams depicting MYOC missense and nonsense mutations that are
color-coded based on the additive color wheel and represent glaucoma-causing mutations (a), neutral
polymorphisms or variants of uncertain pathogenicity (b), and cancer-associated variants (c). SS is
defined as the signal sequence and CC is the coiled-coil domain. (d) Venn diagram of the additive color
model representing mutation phenotypes assigned to a specific color. The overlap of colored cylindrical
slices illustrates respective mutation types that are consistent on the mutation diagrams (a–c).

2.2. Methods for Energy-Based Analysis

The MYOC structure (PDB entry 4WXQ) was generated using PyMOL 2.5 computer
software for molecular visualization.

Python programming language and the PyRosetta-166 program (www.pyrosetta.org,
accessed on 10 June 2018) were used for the Rosetta energy calculations. After obtaining an
initial score for the relaxed wild-type protein, the mutate_residue() function within PyRosetta
was used to introduce a mutation of interest, and the fast relax on this mutation was also
applied. Then, a Cartesian version of Rosetta’s ∆∆G protocol with the β_nov16_cart energy
score function was used to calculate the ∆∆G values of the mutations from the wild type.

3. Results

The MYOC gene is mapped to chromosome 1q24.3-q25.2 and comprises three exons
that encode a 58 kD, 504 amino acid polypeptide with a leucine zipper motif within a
coiled-coil domain at the N-terminus and an OLF domain at the C-terminal fragment [34]
(Figure 1a–c). The N-terminal segment includes a signal sequence at amino acid position
1–32, which is cleaved off at the ER [11,35] during protein synthesis. Recent evidence sug-
gests that the homo-oligomerizing coiled-coil domains at amino acids 74–102 and 118–180
assemble into a Y-shaped tripartite parallel dimer of dimers structure [36]. Glaucoma-
causing variants within the tetramer modulate the structure without altering stability [36].
MYOC undergoes proteolytic cleavage between residues R226 and I227, which produces a
35 kD secreted C-terminal OLF domain and a 20 kD N-terminal tetramer fragment with
coiled-coil domains [37]. The OLF domain comprises amino acids 244–503 and contains
two cysteine residues that participate in disulfide bond formation, C245 and C433 [11,38].

We obtained 278 known MYOC variants that exhibit Mendelian inheritance from
the MYOC allele-specific glaucoma phenotype database [21]; of the 278 MYOC germline
mutations, 105 manifest a glaucoma phenotype, while 173 were identified as neutral
polymorphisms or mutations with unknown pathogenicity [21]. Using small cycles, all of
the mutations are summarized in Figure 1. The colors of those cycles are defined in the Venn
diagram (Figure 1d). The overlaps between glaucoma-causing and neutral polymorphisms
(cyan cycles) are the residue positions where the mutated amino acids are different.

www.pyrosetta.org
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We also found 155 somatic cancer-associated MYOC missense and nonsense muta-
tions acquired from the cancer genomics online database, cBioPortal (www.cbioportal.
org) [39,40]; the most frequent cancer types associated with these mutations are cuta-
neous melanoma, glioblastoma multiforme, and uterine endometrioid carcinoma. Notably,
38 glaucoma-causing germline mutations (36%) [21] and 38 melanoma somatic variants
(83% of the total melanoma mutants) [39,40] arise from C→T or G→A nucleotide tran-
sitions. There are 11 MYOC somatic mutations that precisely overlap with glaucoma-
inducing germline mutations (R91STOP, G246R, L255P, T285M, R296C, A363T, G367R,
T377M, D384N, A427T, and R470C). All white circles within the mutation diagrams demon-
strate varying amino acid changes at the same position with exact overlaps between either
cancer and glaucoma variants or cancer mutations and neutral polymorphisms.

Somatic cancer-associated variants and germline neutral polymorphisms are spread
evenly across the entire protein with frequent overlap; glaucoma-causing germline muta-
tions largely localize to the OLF domain of MYOC (Figure 1a,b). All except one glaucoma
and cancer overlapping variant localized to the OLF domain. To investigate the ther-
modynamic parameters of MYOC and determine the effect of each mutation on protein
stability, we utilized the Rosetta energy function and calculated the change in free energy
(∆∆G) of individual cancer and glaucoma mutations [41] (online methods) with refinement
(β_nov16_cart), which provided a very efficient sampling of the global minimum [41]. As
expected, stabilizing mutations were predominantly located on the exterior of the MYOC
OLF domain. These variants are schematically illustrated as dotted sidechain structures
for glaucoma-causing (Figure 2a) and cancer-associated (Figure 2b) mutations. Amino
acid changes are color-coded based on the Venn diagram additive color model (Figure 1a).
The stable and unstable variants of glaucoma-causing and cancer-linked mutations within
the MYOC OLF domain are also shown in Figure 2c and Figure 2d, respectively; in the
figures, variants with positive and negative ∆∆G values are plotted on the bottom and top
row, respectively. The ratio of cancer to glaucoma-stabilizing variants was significant;
31 cancer-associated and four glaucoma-inducing mutations exhibited negative ∆∆G
values. Five of these mutations overlapped with the germline neutral polymorphisms
(T293K, T325M, E414K, A447V, and R470H), and one variant (A427T) overlapped with a
germline glaucoma-causing mutation observed in older individuals (61 ± 21.1 years of
age) [21]. A427T was previously reported to possess a relatively high Tm (48.3 ± 0.3 ◦C)
compared to other glaucoma-causing mutations [23]. Additionally, the other three stabiliz-
ing glaucoma-inducing mutations, Q297H, E300K, and N450D, also had a late age onset
between 60–75 years of age [21,42].

G367R, a germline glaucoma-causing variant with an early age of onset (13–23 years
of age) and a high maximum IOP (40 mmHg) [43] was observed in the tumors of patients
with esophageal adenocarcinoma. Interestingly, this variant was not stabilizing according
to Rosetta calculations with a ∆∆G value of +4.23 kcal/mol. Several glaucoma pathogenic
mutations manifested similar characteristics (i.e., overlap with somatic variants, early age
of onset, and destabilizing properties) including G246R, L255P, T285M, R296C, A363T,
P370L, T377M, D384N, and R470C, thus recapitulating the likelihood that these pathogenic
mutations accumulate within the MYOC of TM cells and largely contribute to the onset
of glaucoma.

www.cbioportal.org
www.cbioportal.org
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MYOC mutations can either be detrimental or stabilizing depending on the thermo-
dynamic properties of the mutated residues’ biochemical environment. Deleterious mu-
tations, such as MYOC glaucoma-causing variants, reduce the folding efficiency of a pro-
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Figure 2. Graphical representation of MYOC cancer-associated somatic and glaucoma-causing
germline variants color-coded according to the Venn diagram additive color model (Figure 1d).
(a,b) Cartoon molecular structures of the MYOC OLF domain portraying glaucoma—(a) and cancer-
associated (b) mutations as α-carbon spheres. Stabilizing mutations are illustrated as dotted Van der
Waals structures. (c,d) MYOC OLF domain diagrams depicting glaucoma-causing (c) and cancer-
linked (d) variants with positive ∆∆G and negative ∆∆G values plotted on the bottom (unstable
variants) and top row (stable variants), respectively. The stabilizing R470H cancer-linked and neutral
variant, illustrated as a white circle with a thicker lining (c), overlaps with a glaucoma-causing and
cancer-inducing R470C mutation, which did not exhibit favorable thermodynamic properties.

4. Discussion

In this study, we present a collection of known somatic and germline MYOC variants
and demonstrate that a significant level of overlap exists between the two types of muta-
tions. We propose that an accumulation of pathogenic MYOC somatic mutations within the
TM of the eye by means of UV radiation throughout aging can lead to protein aggregation,
induced ER stress, TM cell death, and subsequent IOP elevation, which are attributes of the
glaucoma phenotype induced by the known germline MYOC glaucoma-causing variants.
In particular, UV-induced somatic C→T or G→A transition mutations within the MYOC
coding region that lead to pathogenic MYOC missense or nonsense glaucoma variants
are likely to be overexpressed in glaucomatous TM cells. Therefore, age-related glaucoma
onset may be influenced by somatic mutation buildup within key genes associated with
its pathophysiology.
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MYOC mutations can either be detrimental or stabilizing depending on the ther-
modynamic properties of the mutated residues’ biochemical environment. Deleterious
mutations, such as MYOC glaucoma-causing variants, reduce the folding efficiency of a
protein and can induce protein aggregation, among other harmful responses. Genome
editing using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9
technology has been shown to accomplish the alleviation of the glaucomatous phenotype
by knocking down the expression of mutant MYOC, reducing ER stress, and ultimately
decreasing IOP [44]. With the advent of genetic modification, it may soon be feasible to
reverse the harmful mutations within the genome and prevent the onset of age-related
neurodegenerative diseases. On the other hand, stabilizing mutations can enhance mutated
protein’s stability, resulting in a product that can sustain its desired native structure to a
higher degree. Indeed, many cancer-associated variants that lead to more stable protein
products likely have gain-of-function properties, thereby leading to cancer progression.
For example, MYOC mutations that were determined to be stabilizing have been found
in prostate neuroendocrine, cervical squamous cell, uterine endometrioid, bladder urothe-
lial, and lung squamous cell carcinomas; colon, endocervical, colorectal, prostate, and
lung adenocarcinomas; and acral and desmoplastic melanomas, uterine carcinosarcoma,
anaplastic astrocytoma, and diffuse glioma [39,40]. The most stabilizing E253Q variant is
associated with endocervical adenocarcinoma, with the next stabilizing A447V mutation
linked to colon adenocarcinoma [39,40]. Four of the glaucoma-causing mutations are stabi-
lizing MYOC variants (Figure 2c), and two of them overlap with cancer somatic mutations
(Figure 2d). Those mutations may have an alternative pathway for glaucoma progression
and are likely not involved in the activation of the UPR pathway. Further studies on
those stabilizing glaucoma-causing variants may explore the possibility of uncovering a
secondary pathological mechanism of multifaceted glaucoma progression.

5. Conclusions

In summary, our analysis suggests that the accumulation of pathogenic somatic vari-
ants within individual cells may also contribute to other age-related diseases, as observed
in the development of cancers [45]. Additionally, glaucoma-causing MYOC stabilizing
mutations may contribute to its pathogenesis via an alternative pathway not involved in
ER stress induction. Furthermore, stabilizing MYOC cancer-associated variants could be
cancer risk factors for those who carry the mutations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15020203/s1. Glaucoma-Cancer Myocilin Mutation Correlation—
Colorcoded.xlsx.
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