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Abstract of the Dissertation

New Models for

Multi-party Computation

by

Wutichai Chongchitmate

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2016

Professor Rafail Ostrovsky, Chair

Secure multi-party computation (MPC) is one of the most important primitives in cryp-

tography. Several directions to construct and improve MPC protocols have been studied

over the past decades. The majority of existing MPC protocols rely on assumptions such as

every party communicates with every other party or every party needs to know every other

party and the computation algorithm well in advance. Such assumptions can be difficult

to achieve in modern large scale networks. This thesis explores two distinct lines of work

leading to new practical models in response to these scenarios.

First, we examine communication locality, the total number of other parties that each

party communicates with in the protocol, as a new measure for an MPC protocol. Although

progress has been made, the question of achieving low communication locality and round

complexity at the same time for adaptive adversaries corrupting t < n/2 parties remains

open. We show that by assuming a public-key infrastructure (PKI) and a symmetric-key

infrastructure (SKI) the above question can be answered affirmatively, under standard as-

sumptions. In particular, we describe a protocol with polylogarithmic communication local-

ity and round complexity which tolerates up to t < n/2 adaptive corruptions. Our results

are based on a new model of hidden random graphs obtained from the SKI, and using them

to emulate a complete network in polylogarithmic rounds and polylogarithmic locality.
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We then examine multi-key fully homomorphic encryption (MFHE) schemes, which allow

computation on data encrypted under different public keys chosen independently of each

other. One of the main problems left in MFHE has been on how to deal with malicious users

without trusted setup assumptions. We show how this can be done through circuit privacy,

which guarantees that even if both ciphertexts and public keys are not well-formed, no

information is revealed regarding the computation, other than what follows from the output

on some well-formed inputs. Generalizing the result for circuit-private FHE, we provide a

framework for adding circuit privacy to existing MFHE schemes.

Finally, we incorporate the circuit privacy in a variant of server-assisted MPC, called

on-the-fly MPC, where a server or a “cloud” performs an arbitrary dynamically chosen com-

putation on a subset of data uploaded by multiple clients and encrypted under different keys

on-the-fly. Circuit privacy allows the server to keep the algorithm used in the computation

private even from a malicious adversary corrupting any number of clients. In particular,

we construct a three-round on-the-fly MPC protocol with circuit privacy against malicious

clients without the trusted setup.
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CHAPTER 1

Introduction

An improvement in online technology such as social media and web applications has escalated

in the last decade. Now, our personal data lives online in many forms. Security and privacy

have become more relevant to ordinary people than they were a few years ago. Many

applications rely on external servers or “clouds” to store users’ information and perform

intensive computation such as analyzing or data mining. Users, or even the application

providers, have little control over these external servers. At the same time, the technology

industry has also made an improvement in scaling their applications to an exponentially

larger scale. In order to maintain personal privacy over such an insecure network, we rely

on cryptography.

Cryptography is the study of secure and reliable communication in the presence of ad-

versaries. One of the most fundamental primitives in secure computing is secure multi-party

computation (MPC). An MPC protocol allows multiple distrusted parties to evaluate a cho-

sen function over their inputs without revealing each party’s input to other parties. In order

to compute a function, the parties will engage in a multiple-round protocol, where they com-

municate with other parties. At the end of the protocol, designated parties will obtain an

output of the function evaluated with inputs from the parties involved. Each party should

learn nothing about the other parties’ inputs beyond what they can deduce from the output

they receive. Such a security guarantee needs to hold even in the existence of “corrupted”

parties, possibly colluding with each other, or controlled by a single adversary.

Many directions of MPC have been studied intensively since its introduction by Yao in

1982 including the two-parties case, honest-but-curious parties, static or adaptive adversaries
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who corrupt multiple parties, and different classes of functions being evaluated. Several

efficiency metrics have been considered and improved such as round complexity, the number

of rounds the protocol needs to run before the goal is achieved, communication complexity,

the number and length of messages sent by each party, and computation complexity, the

amount of computation each party need to perform.

Several models of MPC have also been considered such as the setup model where all

parties share common reference string (CRS), public-key infrastructure (PKI) or symmetric-

key infrastructure (SKI). Another direction is server-assisted MPC, where most computation

will be performed asymmetrically by a computationally powerful party, called “server” or

“cloud.” This allows computation of more complicated algorithms on the users’ data without

an increase in the work done by each user. It also coincides with the growing trend of

commercial cloud services for online applications.

One of many directions to construct an MPC protocol is via another cryptographic prim-

itive, called homomorphic encryption (HE). Homomorphic encryption schemes allow compu-

tation to be carried out on encrypted data. The result of such computation is still encrypted.

Upon decryption, the output is as if one performs the same computation of plaintexts. Fully

homomorphic encryption (FHE) allows any functions to be evaluated in this manner.

This thesis contains two distinct lines of work; one based on expansion properties of

undirected random graphs, while another is based on homomorphic encryption. While each

study starts off from a different approach, both result in new practical models for secure

multi-party computation in a large network setting, such as the internet, each with additional

properties that are relevant in real world secure computing.

In chapter three, we study expansion properties of Erdős-Rényi random graphs, in which

each pair of vertices are connected independently with low probability. We then construct a

communication model based on “hidden” random graphs, where any user can securely send

an authenticated message to any other users under the presence of malicious adversaries

who adaptively corrupt a constant fraction of users. In this model, each user only needs to

communicate with a small number of other users over a small number of rounds.
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This results in an improvement over a new efficiency metric for MPC protocols, commu-

nication locality, the number of other parties each party needs to communicate with. While

most MPC protocols assume a complete secure network, where every pair of users can se-

curely communicate with each other, such an assumption may not hold in a large network,

where the number of users can be much larger than the complexity of function evaluated.

We construct an MPC protocol where each user only communicates with polylogarithmic

number of other users in each round over polylogarithmic number of rounds. This protocol is

secure against an adaptive malicious adversary who adaptively chooses to corrupt less than

half of the users.

In chapter four, we first consider two novel properties of homomorphic encryption: multi-

key, where ciphertexts encrypted under different public keys can be securely evaluated, and

circuit privacy, where the encrypted output reveals nothing about the computation even

against unbound malicious adversaries who may provide malformed public keys and cipher-

texts. Homomorphic encryption schemes with one of these properties have been recently

constructed. So, the natural question to ask is “is it possible to have both properties in the

same scheme?” We answer this question affirmatively by constructing the first homomorphic

encryption scheme with both properties. We also give a framework adding circuit privacy

to the existing multi-key FHE (MFHE) schemes without adding further assumption.

We then turn to an application of circuit-private MFHE schemes in the on-the-fly MPC

setting, a variant of server-assisted MPC where the server can compute an arbitrary function

on a chosen subset of users “on-the-fly.” In this setting, a large number of users upload their

encrypted data to the server without any prior knowledge of functions being computed nor

existence of other users. Upon users or application providers’ request, the server performs a

computation on encrypted data while the users can be “offline”. Only the users whose input

are used in the computation need to engage in “online” decryption in order to obtain the out-

put. We construct an on-the-fly MPC protocol with circuit privacy, where even unbounded

malicious adversaries learn nothing about algorithms used to compute on encrypted data.

These new models for MPC protocols can be used in practical settings. The MPC with

3



low communication locality allows secure computation over a large scale network, where

the total number of users is the main concern, which is the case for many global scale web

application. The on-the-fly MPC not only allows a large number of users in the system

(and computation complexity of each user is independent of such number), it also lets the

users to stay offline while the server performs intensive computation. Circuit privacy allows

service or application providers to keep their algorithms secret as intellectual properties or

for security reasons.
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CHAPTER 2

Preliminaries

In this chapter, we give basic notations and define basic cryptographic terminologies we will

use throughout the rest of this thesis.

2.1 Basic Notations

For positive integer n ∈ N, let [n] = {1, . . . , n}. For a string x ∈ {0, 1}∗, let |x| denote its

length. Let ⊕ denote bitwise XOR operation or bitwise addition modulo 2. For a distribution

A, let x← A and A→ x denote x is chosen according to a distribution A. For a finite set S,

let x← S and S → x denote x is chosen uniformly from the set S. Let λ denote a security

parameter. A function f : N→ R+ is negligible if for every constant c > 0, there exists λ0 ∈ N

such that f(λ) ≤ λ−c for all λ ≥ λ0. Let negl(λ) denote an unspecified negligible function.

We say an event occurs with overwhelming probability if it occurs except with negligible

probability. Algorithms may be randomized unless stated otherwise. A PPT algorithm

runs in probabilistic polynomial-time; otherwise, it is unbounded. For an algorithm A, let

y ← A(x; r) and A(x; r) → y denote running A on input x with random coins r. If r is

chosen uniformly at random, we denote y ← A(x). Let log n denote logarithmic base 2. let

polylog(n) denote polylogarithmic function in n, i.e. p(log n) for some polynomial p.

2.2 Definitions

Let X, Y be random variables over a discrete space S.
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Definition 2.2.1. The statistical distance between X and Y , denoted ∆(X, Y ), is defined

as
1

2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|.

We say X and Y are statistically closed or statistically indistinguishable, denoted X 's Y

if ∆(X, Y ) is negligible.

Definition 2.2.2. We say X and Y are computationally indistinguishable, denoted X 'c Y

if for any PPT algorithm D, |Pr[D(X) = 1]− Pr[D(Y ) = 1]| is negligible.

Definition 2.2.3. A cryptosystem (KeyGen,Enc) over a plaintext space M is semantically

secure if for any m,m′ ∈M, for pk ← KeyGen(1λ), Enc(pk,m) and Enc(pk,m′) are compu-

tationally indistinguishable.

2.2.1 Cryptographic Primitives

Representation Models In order to use a function or a program as an input of our

algorithm, we consider a function represented by a string representation C. The cor-

respondence between a program C and a function f it represents must be universally

interpreted by an underlying representation model U . Formally, a representation model

U : {0, 1}∗×{0, 1}∗ → {0, 1}∗ is a PPT algorithm that takes a input (C, x) and returns f(x)

for a function f represented by C. If (C, x) is syntactically malformed, we let U(C, x) = 0

for completeness. We let |C| denote the size of program C as a string representation as

opposed to the number of gates as a boolean circuit.

Homomorphic Encryption A homomorphic encryption (HE) scheme is a public-key

cryptosystem that allows computation on encrypted data. We give the formal description

as follows:

Definition 2.2.4. Let C be a class of circuits. A (leveled) (U, C)-homomorphic encryption

scheme E = (KeyGen,Enc,Eval,Dec) described as follows:

6



• (pk, sk) ← KeyGen(1λ, 1d): Given a security parameter λ (and the circuit depth d),

outputs a public key pk and a secret key sk.

• c← Enc(pk, µ): Given a public key pk and a message µ, outputs a ciphertext c.

• ĉ← Eval(C, pk, c1, . . . , cn): Given a (description of) a boolean circuit C ∈ C (of depth

≤ d), a public key pk and n ciphertexts c1, . . . , cn, outputs an evaluated ciphertext ĉ.

• b := Dec(sk, ĉ): Given a secret key sk and a ciphertext ĉ, outputs a bit b.

has the following properties:

• Semantic security: (KeyGen,Enc) is semantically secure.

• Correctness: Let (pk, sk) ← KeyGen(1λ, 1d). Let x = x1 . . . xn ∈ {0, 1}n and C ∈ C

be a boolean circuit (of depth ≤ d) representing a function f : {0, 1}n → {0, 1}. For

i = 1, . . . , n, let ci ← Enc(pk, xi). Let ĉ ← Eval(C, pk, c1, . . . , cn). Then Dec(sk, ĉ) =

U(C, (x1, . . . , xn)).

E is compact if there exists a polynomial p such that |ĉ| ≤ p(λ, d) independent of |C| and n.

If a scheme is (U, C)-homomorphic for the class C of all circuits (of depth ≤ d), we call it a

(leveled) fully homomorphic (FHE).

Signature Scheme A secure (digital) signature scheme allows a party to sign any given

message with his signing key such that an adversary without signing key cannot forge the

signature with non-negligible probability.

Definition 2.2.5. A digital signature scheme Σ = (KeyGen, Sig,Ver) described as follows:

• (sk, vk)← KeyGen(1λ): Given a security parameter λ, outputs a signing key sk and a

verification key vk.

• σ ← Sig(sk,m): Given a signing key sk and a message m, outputs a signature σ.

7



• Ver(vk,m, σ) ∈ {0, 1}: Given a verification key vk, a message m and a signature σ,

outputs a bit.

has the following properties:

• Correctness: Pr[(sk, vk) ← KeyGen(1λ),Ver(vk,m, Sig(sk,m)) = 1] = 1 for every

message m.

• Security: For any PPT adversary A, let Q be the set of messages A queries, then

Pr[(sk, vk) ← KeyGen(1λ), (m,σ) ← ASig(sk,·)(1λ, vk),m /∈ Q,Ver(vk,m, σ) = 1] <

negl(λ).

Pseudorandom functions A pseudorandom function family is a collection of efficiently-

computable functions such that a function drawn uniformly at random is computation-

ally indistinguishable from a random oracle. Formally, for a polynomial p, a collection of

polynomial-time function F = {fi : {0, 1}p(λ) → {0, 1}p(λ)|i ∈ I} is a pseudorandom function

family if f ← F is computationally indistinguishable from a function drawn from a collection

of all functions {f : {0, 1}p(λ) → {0, 1}p(λ)}.

Trapdoor permutation A trapdoor permutation is a easy-to-compute bijective function

that is hard to invert unless with a special information, called “trapdoor.”

Definition 2.2.6. A collection of trapdoor permutations is a collection of efficiently-computable

bijective functions indexed by I such that each fi : Di → Di can be efficiently sampled by G

together with its trapdoor ti with the following properties:

• Easy to sample domain: there exists PPT algorithm χ such that χ(i) uniformly

sampling from Di

• Hard to invert: for (i, ti)← G(1λ), x← χ(i), for any PPT adversary A, Pr[A(i, fi(x)) =

x] < negl(λ).

8



• Easy to invert with trapdoor: there exists an polynomial-time algorithm T such

that for (i, ti)← G(1λ), T (i, ti, fi(x)) = x for all x ∈ Di.

f has reverse domain sampler if there exists PPT algorithm χ−1 such that for x ← χ(i; r)

and r′ ← χ−1(i, x), (i, x, r) and (i, x, r′) are computationally indistinguishable.

Most known constructions of trapdoor permutations have reverse domain sampler [DN00].

2.2.2 Multi-party Computation Protocol

A standard secure multi-party computation (MPC) protocol allows n parties, P1, . . . , Pn,

each holding a private input xi, to securely compute a function f on their private data,

f(x1, . . . , xn), without revealing xi to other parties.

Behavior of parties in MPC We say a party in an MPC protocol is honest if it strictly

follows the protocol. We say a party is semi-honest or honest-but-curious if it follows the pro-

tocol, but may perform additional computation to learn more information from the protocol.

We say a party is (fully) malicious if it may deviate from the protocol arbitrarily.

Adversaries An adversary A corrupting a subset of parties in the protocol receives all

messages directed to the corrupted parties and controls all messages that they send. The

corrupted parties share all information they have including logs of activities before being

corrupted. We say an adversary is semi-honest (resp. malicious) if the parties it corrupts

behave semi-honestly (resp. maliciously).

A static adversary only learns such information after he chooses all corrupted parties. On

the other hand, an adaptive adversary will learn the information at the time of choosing, and

may use such information to adaptively choose additional parties to corrupt. Moreover, the

adaptive adversary may wait for some period of time before corrupting additional parties.
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Setup vs. Plain Model We say a protocol is in setup model or common reference string

(CRS) model if every party has access to a common random string r that was ideally drawn

from some publicly known distribution prior to the beginning of the protocol. Without such

setup, we say a protocol is in plain model.

2.2.3 Security Models

Here we define some security models for multi-party computation protocols.

Real world/Ideal world paradigm Consider an ideal world where there exists an in-

corruptible trusted party, called functionality F . If such party exists, each party Pi can just

sends its input xi to F . Then F performs the computation, say of a function f , then returns

the output f(x1, . . . , xn) to the designated parties. Clearly, each party knows nothing other

than what it can deduce from the output as long as F keeps everything secret. However, in

the real world, such trusted party does not exist. Instead, the parties need to participate in

a protocol Π to compute f(x1, . . . , xn). Informally, the protocol Π is secure if an adversary

learns no more information from Π in the real world than he would in the ideal world.

Formally, for every (PPT or unbounded) (static or adaptive) adversary A in the real

world, there exists a corresponding simulated adversary S in the ideal world with black-box

access to A satisfying the following: let IDEALF ,S(f, ~x) denote the joint output of the ideal-

world adversary S and parties P1, . . . , Pn; let REALΠ,A(f, ~x) denote the joint output of the

real-world adversary S and parties P1, . . . , Pn; then for all functions f and for all input vectors

~x, IDEALF ,S(f, ~x) and REALΠ,A(f, ~x) are (computationally or statistically) indistinguishable.

Indistinguishability At times, we need to consider a different notion of security for MPC

protocols with small number of rounds. This can be unavoidable as a simulator that can

retrieve an input from adversaries in one round need to “break” the security of a cryptosystem

in order to do so. Such situation is discussed in more details for the case of oblivious transfer

(OT) in [HK12, AIR01]. In this model, a protocol is secure if an adversary cannot distinguish
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the protocol with different inputs as long as the outputs are the same, using only his view

as opposed to every party.

Formally, let ViewΠ,A(f, ~x) denote the collection of messages an adversary A receives

in an execution of protocol Π on a function f and an input vector ~x. We say the proto-

col Π has indistinguishability-based computational privacy against A if for any two input

vectors ~x, ~x′ such that xi = x′i for each corrupted party Pi, [ViewΠ,A(f, ~x)|f(~x) = y] and

[ViewΠ,A(f, ~x′|f(~x′) = y] are computationally indistinguishable for all y.

11



CHAPTER 3

Hidden Graph Model: MPC with Low Communication

Locality

3.1 Introduction

Secure multi-party computation (MPC) [Yao86, GMW87, BGW88, CCD88] is one of the

most fundamental primitives in cryptography. A lot of progress has been made in several

efficiency measures such as communication complexity, round complexity, and computation

complexity. However, most MPC protocols require all parties to communicate directly with

each other over a complete network of point-to-point channels and/or have access to a broad-

cast channel. While this requirement is achievable when the number of participant is small,

in large networks, such as the internet, this assumption can be infeasible.

Boyle, Goldwasser and Tessaro [BGT13] recognize this problem and introduce a new

metric called communication locality. The communication locality of a protocol is the total

number of different point-to-point channels that each party uses in the protocol. In other

words, it is the number of other parties that each party communicate with during the pro-

tocol. The protocols in [BGT13] for computing any polynomial-time function f achieve a

communication locality of polylog(n), assuming a public-key infrastructure (PKI), a com-

mon reference string (CRS), and the existence of a semantically secure public-key encryption

and existentially unforgeable signatures. An example of a scenario where the complexity of

the function may be much smaller than the number of parties, is when securely computing

the output of a sublinear algorithm, which takes inputs from a small subset of q = o(n) of

parties. Sublinear algorithms are particularly useful for computing statistics on large popu-
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lations. By assuming, in addition to the PKI and semantically secure public-key encryption,

the existence of a multi-signature scheme [MOR01, LOS06], a certifiable fully homomorphic

encryption (FHE) scheme [BGV12, BV14], and simulation-sound adaptive non-interactive

zero-knowledge (NIZK) [BFM88, FLS99], [BGT13] also obtains a protocol for computing

sublinear functions, which communicates O((λ+ n)polylog(n))-bit messages.

However, their protocols are only secure against static adversaries corrupting up to t < n
3

parties. Thus, the solution of [BGT13] leaves two open questions:

• Can we achieve low communication locality and round complexity while tolerating

adaptive adversaries?

• Can we achieve low communication locality while tolerating up to t < n
2

corrupted

parties?

In this work, we answer both questions affirmatively. We construct an MPC protocol with

low communication locality and round complexity tolerating adaptive adversaries corrupting

up to t < n
2

parties assuming a PKI, a symmetric-key infrastructure (SKI) and trapdoor

permutations with reverse domain sampler.

3.1.1 Previous Work

Byzantine agreement The problem of Byzantine Agreement (BA) [PSL80, LSP82] is

for n parties, each with initial input vi, to agree on an output v. If, for all honest parties,

vi = v∗, then v = v∗. Such guarantee must hold in the presence of an adversary corrupting

t parties. A BA protocol can be viewed as an MPC protocol for a specific class of functions.

The known optimal bounds of t for BA are t < n
3

for the plain model [PSL80, LSP82], and

t < n for the model where parties share a PKI [DS83].

BA/MPC on incomplete networks Another line of work on BA [DPP88, Upf94, CGO10,

CGO12] and MPC [GO08] protocols has been done over a sparse, public network. In the
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case of BA, Dwork et al. [DPP88] construct various graphs of specific degrees on which one

could run BA protocols. For example, they construct a graph G of degree d = O(nε), for any

constant 0 < ε < 1, along with a BA protocol in which every party in the protocol communi-

cates only with its neighbors in G. Such a protocol could tolerate t = αn corrupt parties for

some constant α < 1
3
. As another example, they also construct a graph of constant degree,

along with a BA protocol, that could tolerate t = O( n
logn

) corrupted parties.

Since in these models, the communication graph is public and chosen prior to the ad-

versary corrupting parties, one cannot hope to achieve BA among all honest parties as an

adversary could always corrupt just the neighbors of an honest party, thereby isolating it.

Hence, Dwork et al. [DPP88] introduce and achieve a notion of almost everywhere (a.e.)

BA protocol which “gives up” a small number of honest parties, i.e., provides no guaran-

tees for them. For the case of MPC, Garay and Ostrovsky [GO08], introduce the notion of

almost-everywhere MPC (similar to a.e. BA) and show how to take any a.e. BA protocol

and convert it into an a.e. MPC with the same (asymptotic) parameters.

We remark that all the above protocols provide information-theoretic security against an

adaptive, computationally-unbounded adversary.

BA/MPC on complete networks with low communication locality There are sev-

eral models where parties are connected by a complete network, but only communicate with

small number of other parties during the protocol. The works of King, Saia, Sanwalani, and

Vee [KSS06a, KSS06b] consider these models and construct protocols for the task of leader

election as well as a.e. BA with communication locality of O(logc n) for some constant c > 1.

In fact, King et al. show a stronger result and construct protocols in which every party only

sends O(logc n) bits in the entire protocol. However, unlike the works on incomplete net-

works, the works of King et al. only consider the case of static adversaries. These works also

provide information-theoretic security.

To overcome the drawback of having to give up some honest parties, Boyle, Goldwasser

and Tessaro et al. [BGT13] consider a computationally bounded adversary, and using cryp-
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tographic assumptions and a PKI, they construct MPC protocols with a communication

locality of O(logcn) for some constant c > 1. They tolerate αn corrupted parties for any

constant α < 1
3
. Similar to King et al.’s, the protocol of Boyle et al. is only secure against

static adversaries.

3.1.2 Our Result

In this paper, we construct a secure multi-party computation protocol with polylogarithmic

communication locality for both static and adaptive adversaries corrupting any t < n/2

parties which is optimal [GMW87, Cle86]. Our constructions assume a PKI and an SKI.

Furthermore, our protocols have polylog(n) round complexity.

In more detail, we show the following:

Theorem 3.1.1 (Informal). Assuming a PKI, an SKI and trapdoor permutations with re-

verse domain sampler, there exists an MPC protocol secure against an adaptive adversary

corrupting up to t < n/2 parties, and satisfying the following conditions with overwhelming

probability:

• (Polylogarithmic communication locality) Every party communicates with at most O(log1+ε n)

other parties, for some constant ε > 0.

• (Polylogarithmic round complexity) The protocol terminates after O(logε
′
n) rounds,

for some constant ε′ > 0.

We note that our protocols do not “give up” any honest party. In this case, the best

communication locality that one can achieve is ω(log n). Otherwise, if a party only com-

municates with O(log n) other parties, an adversary can simply guess with non-negligible

probability, and corrupt them, thereby isolating this honest party. Hence, our protocols are

near optimal in terms of communication locality as well.
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3.1.3 Our Techniques

We now summarize our main techniques and provide a high-level overview of our MPC

construction. Before we do that, let us first describe our model in a bit more detail. All

parties are connected via a complete network of point-to-point channels. For simplicity,

we assume that the channels are secure; however, as we assume a public-key infrastructure

(PKI), these channels can be implemented by encryption and authentication [GMW87]. In

addition, our construction assumes a symmetric-key infrastructure (SKI), where every pair

of parties Pi, Pj shares a uniformly random key ski,j ∈ {0, 1}λ for some security parameter

λ.

SKI as a private graph setup Central to our results is a novel way of interpreting a

symmetric key-infrastructure into a special type of setup, which we refer to as hidden-graph

setup.

Let G = (V,E) be an undirected graph, where V = [n] is the vertex set and E is the set

of edges in G. We let G(n, p) denote the Erdős-Rényi random graph on n vertices where for

every i, j ∈ V , Pr[(i, j) ∈ E] = p. We refer to such a graph as a p-random graph.

We say that the parties Pi, i ∈ [n], hold a hidden p-random graph setup if, after sampling

G = G(n, p), every party i ∈ [n] is given his corresponding neighbor set ΓG(i) ⊆ V and no

other information on E. Thus, if Pi communicates with q other parties, his setup will be of

size q log(n). Throughout this paper we only consider p = log1+ε(n)
n

for some ε > 0. Thus, in

our setting, q = polylog(n) with overwhelming probability. Hence, the private graph setup

is also of size polylog(n) for each party. Whenever p is clear from the context we might omit

p and just refer to the setup as a (hidden) random graph setup.

We now show how such a setup can be efficiently (and locally) computed from a SKI.

Recall that in a SKI every pair of parties Pi and Pj is given a uniformly random key ski,j.

We use this key as a seed to a pseudo-random function (PRF). Parties Pi and Pj will use

the PRF (keyed with ski,j) to (locally) compute the random coins needed to sample (i, j) for
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the graph G; i.e., Pi and Pj will use the output of the PRF as coins in a sampling algorithm

which picks a bit b to be 1 with probability p. If b = 1, then Pi and Pj will communicate

with each other directly in the protocol and (i, j) will be an edge in the communication

graph G. The security of the PRF ensures that the bit b computed as above is distributed

indistinguishably from the output of the sampling algorithm on uniformly random coins.

Without loss of generality, we will henceforth assume that the PRF keys that parties share

can be used to sample as many independent random graphs as needed.

Our adaptively secure construction will make use of several (polylogarithmic) indepen-

dent hidden random graphs. A sequence of D-many hidden random graphs that is indistin-

guishable from a sequence of D independent p-random graphs can be generated as above,

by querying the PRF on distinct (fixed) inputs.

Overview of our construction The main part of our construction is a protocol for

reliable message transmission (RMT) in the communication locality setting. Such a protocol

allows a sender Pi to reliably send a message to a receiver Pj. Note that as we assume a

completely connected network, a trivial way of implementing RMT would be for party i to

use the point-to-point channel he shares with each Pj, j ∈ [n]. However, our goal is to achieve

RMT where each party utilizes only a polylogarithmic number of its direct point-to-point

channels. Clearly, in such a setting we cannot allow an adversary to know which parties an

honest party Pi communicates with, as this would enable the adversary to “cut-off” party

Pi from the rest of the parties by corrupting all of its neighbors.

This is where we utilize the hidden-graph setup: every party will only exchange messages

with its neighbors in each hidden graph and ignore all other parties. We note that the

adversary might try to send messages to honest parties using all the corrupted parties.

However, the honest parties will ignore messages from all parties that are not their neighbors

in their hidden graphs. We show that the adversary who corrupts up to any constant fraction

q < 1 of parties cannot make the length of the shortest honest path between any two honest

parties to be greater than logε
′
(n), for some ε′ > 0, except with negligible probability. In
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particular, if G′ denotes the graph that is obtained by deleting from G all parties/nodes that

such an adversary corrupts, then with overwhelming probability, every two vertices in G′

(i.e., every two honest parties) are connected in G′ by a path of length at most logε
′
n.

Thus, parties can achieve RMT by simply “flooding” the network: Party Pi sends message

m, signed under its signing key, to all its neighbors; then, for logε
′
(n) rounds, all parties in

every round, forward (the first validly signed) message that they receive to all its neighbors.

Since i and j are connected by a path of length D = logε
′
n in G′, then after D rounds, Pj

will receive at least one copy of m that is signed under Pi’s signing key and hence will reliably

receive the message m. Observe that the above RMT protocol tolerates any constant fraction

q < 1 of corruptions (i.e., up to t ≤ qn corrupted parties) and requires a standard PKI for

digital signatures. We assume standard digital signatures secure against chosen-plaintext

attacks. Furthermore, since the message is guaranteed to reach all honest parties within D

rounds, the above RMT protocol can be used to have a message sent to all honest parties.We

note, however, that if the sender is corrupted, there is no guarantee that the message is sent

consistently.

Unfortunately, the above approach only works for a static adversary. The reason is

that, while corrupting parties (even adaptively) and learning their setup, does not reveal

anything about the hidden graph other than the neighbors of corrupted parties themselves,

the protocol itself might reveal whether or not (i, j) ∈ E for honest parties Pi, Pj. For

example, if an adversarial party Pi sends a message to another adversarial party Pj, and

Pj receives this message in 2 rounds, then it must be the case that there exists a path of

length 2 between i and j. If the adversary sends different messages to each neighbor of Pi,

he will know which neighbor of Pi directly connect to a neighbor of Pj. One idea might be

to have Pi randomly delay sending its message; however, the adversary can still learn some

information though less precise. Note that we want to use RMT for every pair of parties;

thus, the adversary might use information on the hidden graph learned in an execution of

RMT with a corrupted sender and/or receiver to attack another RMT with honest sender

and receiver. As a result, constructing an RMT protocol for the adaptive-corruption case
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ends up being much more challenging than in the static case.

The high-level idea behind the protocol in the adaptive case is to sample a new Erdős-

Rényi random graph G = G(n, p), with p = logε n
n

, at every round of the protocol. As

long as the total number of rounds of the protocol is polylogarithmic, so will be the total

number of point-to-point channels that an honest party uses (since in each round, every

honest party might speak to at most polylog(n), potentially new, neighbors). The intuition

for choosing a different hidden random graph for each round is that any corruptions made by

the adversary before round i is independent of the graph selected in round i and hence this

would be equivalent to the static adversary case. However, now proving that honest parties

can communicate reliably (and that there exists a path of polylogarithmic length between

any two honest parties) is more complicated.

Having an RMT, the next step is to design the MPC protocol. Our goal is a protocol with

full security, tolerating optimal t < n
2

corruptions [Cle86, GMW87]. One idea to achieve this,

is as follows: Since we have already established RMT between any two honest parties, we

can invoke any known MPC protocol Π secure for t < n
2

assuming authenticated channels,

over the virtual network induced by RMT. Whenever party Pi is instructed in Π to send a

message m to party Pj, we invoke RMT for this purpose. This approach would give an MPC

protocol tolerating up to t < n
2

corruptions.

Observe that in our adaptively secure protocol, increase of the round complexity implies

the same (asymptotic) increase of the honest parties’ communication locality. Indeed, since

using our RMT, every party communicates with O(logc n) (potentially new) parties in every

round 1 ≤ ρ ≤ D, we can only afford to run a protocol that runs in logc
′
n number of rounds

for some c′ > 0.

Thus, in order for the above idea to work we need an adaptive MPC protocol over point-

to-point authenticated channels which terminates in polylog(n) rounds. Such a protocol

can be obtained by taking any constant-round MPC protocol that utilizes a point-to-point

network of secure channels and a broadcast channel such as the protocol in [BMR90], and

modifying it as follows: transmission over the point-to-point secure channels are emulated
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by calls to our RMT protocol where the message is encrypted using the receiver’s public key;

and transmission over the broadcast channel are emulated by a (randomized, authenticated)

broadcast protocol which terminates in polylog(n) rounds such as the protocol in [KK06].

Our MPC protocol results from emulating these protocols using our RMT.

3.2 Definitions and Background

Public-key and symmetric-key infrastructure A public-key infrastructure (PKI) is a

network with a third-party trusted authority, who can generate and distribute public and

secret keys for encryption, decryption, authentication and verification according to some

public-key cryptosystem. As already mentioned earlier, we assume a PKI setting, where all

parties share a PKI for digital signature scheme. In other words, before the beginning of the

protocol, every party has a private signing key ski and public verification key vki pair for a

secure signature scheme authentically generated and distributed.

Similarly, a symmetric-key infrastructure (SKI) is a network with a third-party trusted

authority, who can generate and distribute secret keys according to some symmetric-key

cryptosystem. Our construction assume an SKI for hidden random graphs generation. In

other words, in addition to signature key pair, every pair of party Pi, Pj share a secret key

ski,j. Additionally, parties are connected by a fully connected synchronous network; however,

in our constructions, every party will only communicate with polylog(n) other parties.

Adversaries and security models In our main result of this chapter, we will consider

adaptive corruption up to t < n
2

parties by a rushing adversary. Such an adversary is allowed

to corrupt parties dynamically during the protocol, and depending on his view, the adversary

may postpone the sending of any given round’s messages until after he receives the messages

from the honest parties. We consider the standard simulation-based notion of security for

multi-party protocols via the real/ideal world paradigm as defined in the previous chapter.

We assume that the number of parties n > λ; thus, our parameter will be based on n.
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We refer to the setting with low communication locality i.e. each party communicates with

polylogarithmic number of other parties as locality model.

Reliable message transmission A reliable message transmission (RMT) protocol allows

any party Pi to reliably send a message to a receiver Pj. For a completely connected network,

this protocol is trivial. However, our protocol only allow each party to communicate with at

most polylog(n) other parties. An RMT protocol can be achieved by flooding the network

with a signed message as discussed earlier. A secure message transmission (SMT) protocol

is an RMT protocol that guarantees that the receiver receives the message authentically and

privately. By establishing an SMT for every pair of parties, we can simulate a complete

network while maintaining polylogarithmic locality.

3.2.1 Cryptographic Building Blocks

Authenticated broadcast We review the definition of authenticated broadcast proto-

col [PSL80, LSP82] below.

Definition 3.2.1. A protocol for parties P = {P1, · · · , Pn}, where a distinguished player

P ∗ ∈ P holds an initial input m, is a broadcast protocol tolerating t malicious parties if the

following conditions hold for any adversary corrupting at most t parties:

• Agreement: All honest parties output the same value v.

• Validity: If P ∗ is honest, then v = m.

Theorem 3.2.2 ([KK06]). Assuming a PKI, there exists a protocol ΠBC which achieves

broadcast with overwhelming probability against t < n/2 adaptive corruptions, running for

logc(n) rounds on a complete network, for some constant c > 0.

Non-committing encryption In order to obtain adaptive security for our SMT protocols,

we require non-committing encryption [CFG96]. We recall the definition of non-committing

(bit) encryption.
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Definition 3.2.3. A non-committing bit encryption scheme is of a tuple of PPT algo-

rithms (NCGen,NCEnc,NCDec,NCSim) where (NCGen,NCEnc,NCDec) is a secure encryption

scheme and NCSim is a simulation algorithm such that on input 1λ, it outputs (e, c, σ0
G, σ

0
E, σ

1
G, σ

1
E)

with the following property: for b ∈ {0, 1}, the following distributions are computationally

indistinguishable:

• The joint view of an honest sender and an honest receiver in a normal encryption of

b:

{(e, c, σG, σE)|(e, d) = NCGen(1λ;σG), c = NCEnc(e, b;σE)}

• The simulated view of an encryption of b:

{(e, c, σbG, σbE)|NCSim(1λ)→ (e, c, σ0
G, σ

0
E, σ

1
G, σ

1
E)}

We note that in order to encrypt a message of length l, l independent public keys are

required, one for each bit of the message.

Theorem 3.2.4 ([DN00]). Assuming trapdoor permutations with reverse domain sampler,

there exists a non-committing bit encryption scheme.

3.2.2 Graphs

As we mention earlier, a Erdős-Rényi random graph or p-random graph on n vertices, denoted

G(n, p), is a graph where each pair of vertices is connected with probability p independently

of other pairs. Unless stated otherwise, we assume that p = d
n

where d = log1+ε n for

some constant ε > 0. It is easy to show using Chernoff bound that, except with negligible

probability, every vertex of G(n, p) will have degree O(d) = O(log1+ε n).

Let G = (V,E) be an undirected graph. Let ΓG(v) denote a set of all neighbors of

v in G. Let S ⊆ V be a subset of vertices with |S| ≤ |V |/2. Denote S = V \ S. Let

ΓG(S) = {v ∈ V |there exists v′ ∈ V \ S such that (v, v′) ∈ E} be the set of all neighbors of

S that are not in S. Let eG(S, S ′) = |{(v, v′) ∈ E|v ∈ S, v′ ∈ S ′}|.
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Definition 3.2.5. The edge expansion of a graph G on V = [n] is

h(G) = min
S⊆V,0<|S|≤n

2

eG(S, S)

|S|
.

Definition 3.2.6. The vertex expansion of a graph G on V = [n] is

hout(G) = min
S⊆V,0<|S|≤n

2

|ΓG(S)|
|S|

.

A graph where every vertex has degree O(d) with O(d) edge or vertex expansion is an

expander graph. For any pair of vertices on such an expander graph, a random walk from

one vertex reaches another within O(log n) steps. Thus, an expander graph has logarithmic

diameter.

3.3 Statically Secure RMT with Low Communication Locality

In this section and the following section, we construct a reliable message transmission pro-

tocol between every pair of honest parties in the locality model, assuming a standard PKI

(for digital signatures) as well as an SKI, against static adversary and adaptive adversary,

respectively. The constructions in both sections tolerate any constant fraction of corrupted

parties. In other words, we allow the number of corrupted parties to be t ≤ qn, for any

constant q < 1. We note that this requirement is weaker than that of fully secure MPC,

which requires majority of parties to be honest.

We first show an RMT protocol that is secure against static corruptions. This will

illustrate some of the ideas that are needed for our adaptively secure construction.

Setup phase. Recall that we work in a model in which parties share a public-key as well

as a symmetric-key infrastructure. That is, in the setup phase, party Pi receives a private

key ski for a signature scheme, and every party Pj receives the public key vki corresponding

to ski, for all i ∈ [n]. The SKI allows for a hidden p-random graph setup, with p = log1+ε n
n

(for appropriately chosen ε > 0), as explained above.
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Construction idea. The hidden graph setup ensures that the adversary does not get to

know whether party Pi communicates with party Pj, unless he corrupts one of them. We

first show that given such a hidden p-random graph, an adversary who (non-adaptively)

corrupts any constant fraction q < 1 of the parties cannot isolate any of the honest parties.

In fact, we show a much stronger property for the graph G′ formed by removing (in the

hidden graph) t ≤ qn corrupted vertices; namely, that with overwhelming probability (in n),

every pair Pi, Pj of honest parties is connected by a path of length at most N = logε
′
(n), for

some ε′ > 0 which depends only on ε.

Note that since parties start with a PKI, we only require that honest parties Pi, Pj are

connected by a path of length N = logε
′
(n), for some ε′ > 0 in graph G′. Parties can then

achieve RMT by simply “flooding” the network; i.e., party Pi will simply send message m,

signed under its signing key, to all its neighbors. Next, all parties in every round simply

forward (the first validly signed) message that they receive to all of its neighbors. If Pi and

Pj are connected by a path of length N in G′, then after N rounds j will receive at least one

copy of m that is signed under i’s signing key, and hence will reliably receive the message m.

3.3.1 Connectivity against Static Adversary

Let G = (V,E) be a hidden p-random graph on n vertices representing a network. Let A be

an adversary who non-adaptively chooses a set of parties to corrupt and by doing so learns

all their neighbors in G. Let U ⊆ V be the set of vertices representing corrupted parties.

Then U is independent of E.

Lemma 3.3.1. Let n be a positive integer, d = log1+ε n for some ε > 0 and p = d
n

= log1+ε n
n

.

Let G = (V,E) be a p-random graph on n vertices. Let U ⊆ V chosen independent of E,

with |U | ≤ qn for some constant q < 1. Let G′ be the induced subgraph on V ′ = V \U . Then

the diameter of G′ is at most O(log n) with overwhelming probability.

Proof. Since each pair of vertices in G′ is connected with probability p independently of U ,

G′ is a p-random graph on n′ = (1− q)n vertices. Let 0 < k < 1−q
2

. Then, for each S ⊆ V ′
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with |S| = r ≤ n′

2
, we have

eG′(S, S) =
∑

v∈S,v′∈S

Xv,v′ ,

where S = V ′ \ S and Xv,v′ is the indicator whether there exists an edge between v and v′.

Then

E[eG′(S, S)] =
∑

v∈S,v′∈S

E[Xv,v′ ] = |S||S|p = r(n′ − r)p.

By the Chernoff bound,

Pr[eG′(S, S) < kd|S|] ≤ e−(1− kn
n′−r )

2
r(n′−r)p =

(
e−

(1− kn
n′−r )

2
(n′−r)

2n

)rd

=

e−
(
n′−r
n −k

)2

2·n
′−r
n


rd

.

Since 0 < r < n′

2
, we have

1− q
2

=
n′

2n
≤ n′ − r

n
≤ n′

n
= 1− q < 1.

Thus, (
n′−r
n
− k
)2

2 · n′−r
n

≥ 1

2
·
(

1− q
2
− k
)2

= c > 0.

For d = log1+ε n, we have

Pr[eG′(S, S) < kd|S|] ≤
(
e−c
)rd

=

(
1

nc′ logε n

)r
,

and by the union bound, the probability that eG′(S, S) < kd|S| for some subset S, |S| ≤

|V ′|/2 is bounded by

n′
2∑

r=1

∑
S,|S|=r

Pr[eG′(S, S) < kd|S|] ≤
n′
2∑

r=1

(
n′

r

)(
1

nc′ logε n

)r

≤
n′
2∑

r=1

nr
(

1

nc′ logε n

)r

=

n′
2∑

r=1

(
1

nc′ logε n−1

)r
<

1
nc′ logε n−1

1− 1
nc′ logε n−1

= negl(n),
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Hence, G′ is an expander with edge expansion kd with overwhelming probability. Thus, G′

has at most O(log n) diameter with overwhelming probability.

For a given graph G = ([n], E), we say that two parties Pi and Pj, i, j ∈ [n] are G-

connected by an honest path of length l if there exists a sequence of connected nodes PATH(i, j)

from i to j in G such that for every node k ∈ PATH(i, j), node k is honest, and |PATH(i, j)| = l.

Corollary 3.3.2. Let ε > 0, p = log1+ε n
n

, and G be a hidden p-random graph on [n]. For any

adversary who (non-adaptively) corrupts at most t = qn parties, then except with negligible

(in n) probability, there exists some ε′ > 0 which depends only on ε such that any two honest

parties are G-connected by an honest path of length at most logε
′
(n).

3.3.2 RMT Construction

Let G be a hidden p-random graph constructed from an SKI. Here we describe a reliable

message transmission protocol based on G, denoted by RMTi,j(m), in the locality model for

a sender Pi to send a message m to a receiver Pj. Let Γ(i) = ΓG(i) denote the set of Pi’s

neighbors in G. We describe the protocol in Figure 3.1.

The security of protocol RMTi,j(m) follows from the above corollary, as no matter how

the (static) adversary chooses the corrupted parties he cannot increase the diameter of the

graph defined by the honest parties and the hidden graph setup to more than polylog(n).

Theorem 3.3.3. Let T ⊆ [n] be the set of (non-adaptively) corrupted parties with |T | =

t ≤ qn for any constant 0 < q < 1. Assuming a PKI and an SKI, RMTi,j is a secure RMT

protocol between any two honest parties Pi, Pj, i, j ∈ [n] \ T satisfying the following two

conditions with overwhelming probability:

• every party communicates with at most O(log1+ε n) other parties;

• the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof. Since Corollary 3.3.2 shows that any message sent by an honest party Pi will reach

any honest Pj within O(logε
′
(n)) rounds, it follows from the unforgeability property of the
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Protocol RMTi,j(m)

Round 1: Pi sends (m, sigski(m)) to all parties in Γ(i).

For each round ρ = 2, . . . , logε
′
(n):

• For every Pk, k ∈ [n] \ {i, j}: If a message (m,σ), where σ is Pi’s valid signature on m,

was received for the first time from some of its neighbors (in Γ(k)) in the previous round,

then Pk sends (m,σ) to all its neighbors and halts. (If multiple validly signed pairs were

received in that round for the first time, then take the first one in a lexicographic order.)

• For the receiver Pj : If a message (m,σ), where σ is party i’s valid signature on m, is

received for the first time from some parties in Γ(j) then output m and halt. (If multiple

validly signed pairs are received in that round for the first time, then take the first one

in a lexicographic order.)

Figure 3.1: Reliable message transmission protocol (static case)

signature scheme that Pj will always accept the message sent by honest Pi. Hence, the above

protocol is a secure RMT protocol. The communication locality of the protocol follows from

the degree of p-random graph G which is O(pn) = O(d) = O(log1+ε n), except with negligible

probability.

3.3.3 Parallel Composition of RMT

In our MPC construction, we will require all parties to execute their respective RMT pro-

tocols in parallel simultaneously. That is, let mi,j be the message that Pi wants to send to

Pj via the RMT protocol, denoted RMTi,j(mi,j) as above. Now, let RMTall(~m) denote the

protocol executed by all parties when RMTi,j(mi,j) for all i, j ∈ [n] are executed in parallel

in the same network graph G. That is, in round k of RMTall(~m), all parties execute the

kth round of protocol RMTi,j(mi,j), for all i, j ∈ [n]. RMTall is composed of n2 individual

RMT protocols. We have the following corollary:
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Corollary 3.3.4. Under the same assumption as Theorem 3.3.3, RMTall is a secure RMT

protocol for sending mi,j from Pi to Pj for every pair of honest parties Pi, Pj, i, j ∈ [n],

satisfying the following properties with overwhelming probability:

1. every party communicates with at most O(log1+ε n) other parties;

2. the protocol terminates after O(logε
′
n) rounds for some ε′ > 0.

Proof. The probability that each RMTi,j(mi,j) fails is negligible for honest Pi, Pj, i, j ∈ [n].

Thus, by the union bound, with overwhelming probability, for every pair of honest Pi, Pj,

i, j ∈ [n], RMTi,j(mi,j) satisfies Theorem 3.3.3. The protocol’s round complexity is equal to

the maximum round complexity of its components, which isO(logε
′
n). Since we use the same

network graph G for all n2 individual RMT protocol, the communication locality of every

party in RMTall(~m) is equal to the communication locality of the party in RMTi,j(mi,j),

for any i, j ∈ [n]. Hence, the corollary follows.

3.4 Adaptively Secure RMT with Low Communication Locality

As discussed in Section 3.1, the above proof technique fails against adaptive adversaries. In-

formally, the issue is that an adversary can use the rounds in which a corrupted party/relayer

receives a message to deduce information on the communication graph. In this section, we

describe an RMT protocol that is secure against such an adaptive adversary. The idea is

have the parties use a different, independent communication graph for each round in the

transmission scheme. As long as the transmission scheme runs in polylog(n) rounds, and

in each round, every party communicates with at most polylog(n) (potentially different)

parties, the overall locality with be polylog(n).

The main challenge in the above idea is to prove that in this dynamically updated com-

munication graph, the message will reach each recipient through an honest path in at most

polylog(n) rounds. Proving this constitute the main technical contribution of our work. The

adaptively secure RMT protocol AdRMT is similar to the protocol in the static case, except
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that in round ρ, parties forward messages received in the previous round to their neighbors

in the communication graph Gρ. We first describe the corresponding setup that it requires.

Setup phase As in the static case, the parties share both a PKI and an SKI. The SKI will

be used here in similar way, except that instead of generating one Erdős-Rényi graph, G =

G(n, p) with p = logε n
n

, it will be used to generate D such graphs, denoted G = (G1, . . . , GD).

These graphs can be sampled using the same PRF key ski,j that parties Pi and Pj share.

As before, every party only knows its own neighbors, and when the adversary corrupts a

party Pj, he only learns Pj’s neighbors in G1, . . . , GD. We shall show that there exists a

path of length at most O(logε
′
(n)) between any two honest parties Pi, Pj when we consider

the collection of communication graphs G that selects graph Gρ as the communication graph

in round ρ.

3.4.1 Reachability against Adaptive Adversary

We formally define when a message sent by an honest party Pi will reach another honest

party Pj in our hidden graphs model against adaptive adversaries. We define the notion of

reachability as follows.

Definition 3.4.1. For a positive integer D and a set V , let G = (G1, . . . , GD) be an ordered

collection of graphs on subsets (V1, . . . , VD) of V . For 1 ≤ l ≤ D and v ∈ V1, we say v′ ∈ Vl

is reachable from v with respect to G by a path of length l if there exist v1, . . . , vl−1 ∈ V ,

such that (vi−1, vi) ∈ E(Gi), for i = 1, . . . , l, where v0 = v and vl = v′. We denote Nl(v) =

NGl (v) ⊆ Vl the subset of all vertices that are reachable from v with respect to G with a path

of length l.

In order to prove the reachability, we start by showing that an adaptive adversary cannot

reduce the size of honest neighbors in the new graph by more than half via the following the

Hoeffding’s Inequality.

Lemma 3.4.2. (Hoeffding’s Inequality [Hoe63]) Let S = {x1, . . . , xN} be a finite set of
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real numbers with a = min
i
xi and b = max

i
xi. Let X1, . . . , Xn be a random sample drawn

from S without replacement. Let X =

n∑
i=1

Xi

n
and µ =

N∑
i=1

xi

N
= E[Xj]. Then for all δ > 0,

Pr[X − µ ≥ δ] ≤ e
− 2nδ2

(b−a)2 .

We show the following lemma.

Lemma 3.4.3. Let V = [n], and C ⊆ V , |C| = m, be a subset chosen uniformly at random.

Let 0 < q < 1 be a constant and U ⊆ V , |U | = qn, be a subset chosen independently of C.

Then, for all 0 < δ < 1−q, |C\U | > (1−q−δ)m except with probability e−2mδ2
. In particular,

for m = log1+ε′ n, |C \ U | >
(

1−q
2

)
m except with negligible probability. Furthermore, for

q = 1
2
− ε, |C \ U | > 1

2
m except with negligible probability.

Proof. Let S = {x1, . . . , xn} where xi = 1 if i ∈ U , 0 otherwise. Then a = min
i
xi = 0,

b = max
i
xi = 1 and µ =

n∑
i=1

xi

n
= q. For each i = 1, . . . ,m, let Xi be the indicator of whether

each element of C is in U . Then Xi is a random sample drawn from S without replacement,

and |C ∩ U | =
m∑
i=1

Xi = mX. By Hoeffding’s Inequality,

Pr[|C ∩ U | ≥ (q + ε)m] = Pr[X − µ ≥ δ] ≤ e−2mδ2

.

Therefore, except with probability e−2mδ2
, |C \ U | = m− |C ∩ U | > (1− q − δ)m.

Now let m = log1+ε′ n and δ = 1−q
2

. We have that |C \ U | >
(

1−q
2

)
m except with

probability

e−2( 1−q
2 )

2
log1+ε′ n =

1

nc logε
′
n

= negl(n),

where c = 1
2
(1− q)2 log e.

Finally, let q = 1
2
− ε and δ = ε. We have that |C \ U | >

(
1−

(
1
2
− ε
)
− ε
)
m = 1

2
m

except with probability 1

nc′ logε
′
n

= negl(n), where c′ = 2ε2 log e.

Next, we show prove that at every step of the protocol, even if an adaptive adversary

corrupts a constant fraction of the nodes in the random graph, the honest neighbors of any

set S of size at most n
d

that are not in S will be at least of size O(d|S|).
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Lemma 3.4.4. Let n be a positive integer, d = log1+ε n for some ε > 0, p = d
n

= log1+ε n
n

.

Let G = (V,E) be a p-random graph on n vertices. Let U ⊆ V such that |U | ≤ qn for some

constant q, chosen adaptively while learning edges connecting to U . Let G′ be the induced

subgraph on V ′ = V \ U . Then, for any constant 0 < k < 1−q
2

, there exists a constant

c > 0 such that, for sufficiently large n and for any S ⊆ V ′ with |S| = r ≤ n
d

= 1
p
, the set

of all neighbors of S that are not in S, Γ(S), has size at least kd|S| except with negligible

probability.

Proof. Let 0 < k < 1−q
2

and S ⊆ V ′ with |S| = r ≤ n
d

= 1
p
. Denote n′ = |V ′| ≥ (1 − q)n.

Since each pair of vertices in G′ is connected with probability p independently of other edges,

an adaptive adversary learns nothing about G′ from edges of U . Thus, G′ is a p-random

graph on n′ vertices. The result follows from vertex expansion of Erdős-Rényi graphs. We

include the proof here for completion.

For each v ∈ V ′ \ S, let Xv be the indicator of whether v ∈ Γ(S) = ΓG′(S). Then

Pr[Xv = 0] = Pr[no edge between v and any vertex in S] = (1− p)r.

Since rp < 1,

E[Xv] = Pr[Xv = 1] = 1− (1− p)r > rp

2
.

Then

E[|Γ(S)|] = E[
∑
v/∈S

Xv] >
(n′ − r)rp

2
.

Since the Xv’s are independent, by the Chernoff Bound,

Pr[|Γ(S)| ≤ (1− δ)(n′ − r)rp
2

] ≤ Pr[|Γ(S)| ≤ (1− δ)E[|Γ(S)|]] ≤ e−
δ2E[|Γ(S)|]

2 ≤ e−
δ2(n′−r)rp

4 .

Now let δ = 1− 2kn
n′−r . Since r ≤ n

d
, we have

(1− q)− 1

d
≤ n′ − r

n
≤ n′

n
< 1.

Let n be large enough such that d = log1+ε n > 2
1−q−2k

. Then

c0 =
1

16
· ((1− q)− 2k)2 ≤ 1

4
·
(

(1− q)− 1

d
− 2k

)2

≤
(
n′−r
n
− 2k

)2

4 · n′−r
n

.
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Thus,

Pr[|Γ(S)| ≤ kdr] ≤ e−
(1− 2kn

n′−r )
2
(n′−r)rp

4 =

e−
(
n′−r
n −2k

)2

4·n
′−r
n


dr

≤
(

1

ec0

)dr
=

(
1

nc logε n

)r
= negl(n).

where c = c0 log e.

Finally, using the above lemmas, we prove our main lemma.

Lemma 3.4.5. Let n be a positive integer, d = log1+ε n for some ε > 0, p = d
n

= log1+ε n
n

and D = O(log n). Let G1, . . . , GD be independent p-random graphs on V = [n]. Let

U1, U2, . . . , UD ⊆ V be disjoint subsets of V with U = ∪Dj=1Uj such that |U | = qn for some

constant q < 1, where Uj is chosen independently from Gj+1, . . . , GD, but adaptively, learning

the neighbors of Ui in Gi for i ≤ j. Let G′i be the induced subgraph on Vi = V \ (∪i−1
j=1Uj) for

i = 1, . . . , D. Then, except with negligible probability, any pair of vertices v, v′ ∈ V ′ = V \U

are reachable with respect to G ′ = (G′1, . . . , G
′
D) by a path of length at most D.

Proof. For each v ∈ V ′, we will show that, except with negligible probability, there exists

l = l(v) < D such that V ′ ⊆ Nl(v)∪Nl+1(v). Hence, by the union bound over |V ′| = (1−q)n

vertices, the proposition holds except with negligible probability.

Let v ∈ V ′ and 0 < k < 1−q
2

. For each i < D, denote ri = |Ni(v) \ Ui| and observe that

ΓG′i+1
(Ni(v) \ Ui) ⊆ Ni+1(v). For i such that ri ≤ n

d
, we have

|Ni+1(v)| ≥ |ΓG′i+1
(Ni(v) \ Ui)| > kd|Ni(v) \ Ui|

except with negligible probability by Lemma 3.4.4.

Since each pair of vertices is connected independently in G′i, Ni(v) is uniform on Vi.

Since Ui is chosen from Vi independently of Ni(v), by Lemma 3.4.3, except with negligible

probability,

|Ni(v) \ Ui| >
(

1− q
2

)
|Ni(v)|.
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Inductively, ri = |Ni(v)\Ui| >
((

1−q
2

)
kd
)i

for all i such that ri−1 ≤ n
d
, except with negligible

probability. Let l0 is the largest integer such that rl0 ≤ n
d
. Since for D = O(log n), dD � n,

l0 � D.

Let n′ = |V ′| = (1− q)n. There are two possibilities for rl0+1 = |Nl0+1(v) \ Ul0+1|: either

1) n
d
< rl0+1 ≤ n′

2
or 2) rl0+1 >

n′

2
.

Case 1: Assume that n
d
< rl0+1 ≤ n′

2
. Denote r = rl0+1 and n0 = |Vl0+1| ≥ n′. Then

n
d

= 1
p
< r ≤ n′

2
≤ n0

2
. As in the proof of Lemma 3.4.4, we apply the Chernoff bound to

E[|Γ(Nl0+1(v) \ Ul0+1)|] = (n0 − r)(1− (1− p)r) ≥ (n0 − r)(1− e−rp),

we have

Pr[|Γ(Nl0+1(v) \ Ul0+1)| ≤ n0

4
] ≤ e−

(
1− n0

4(n0−r)(1−e−rp)

)2
(n0−r)(1−e

−rp)

2

≤

e−
(

(n0−r)(1−e
−rp)

n0
− 1

4

)2

2· (n0−r)(1−e−rp)
n0


n0

≤ 1

cn0
1

≤ 1

cn
′

1

,

where c1 = e
1
2 (1−e−1)− 1

4
2 > 1 as 1− e−1 < 1− e−rp < 1 and 1

2
≤ n0−r

n0
< 1. Thus, except with

negligible probability,

rl0+2 = |Nl0+2(v) \ Ul0+2| ≥
(

1− q
2

)
|Γ(Nl0+1(v) \ Ul0+1)| >

(
1− q

8

)
n0 ≥

(
1− q

8

)
n′

by Lemma 3.4.3. In this case, let l = l0 + 2.

Case 2: rl0+1 >
n′

2
. In this case, let l = l0 + 1.

In both cases, we have |Nl(v) \ Ul| = rl > c2n
′ for some constant 0 < c2 < 1 except with

negligible probability. Then, for each v ∈ V ′ \Nl(v), the probability that v does not connect

to any vertex in Nl(v) \ Ul is (1− p)rl ≤ e−rlp ≤ 1
nc3 logε n , where c3 = c2(1− q) log e. By the

union bound, the probability that any node in V ′ \ Nl(v) is not in Γ(Nl(v) \ Ul) ⊆ Nl+1(v)

is at most 1
nc3 logε n−1 , which is negligible. Hence, except with negligible probability, V ′ =

Nl(v)∪ Γ(Nl(v)) ⊆ Nl(v)∪Nl+1(v). Therefore, any v′ ∈ V ′ is reachable from v by a path of

length at most D.
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Protocol AdRMTi,j(m)

Round 1: Pi sends (m, sigski(m)) to all parties in Γ1(i).

For each round ρ = 2, . . . , logε
′
(n):

• For every Pk, k ∈ [n] \ {i, j}: If a message (m,σ), where σ is Pi’s valid signature on

m, was received for the first time from some of its neighbors in Γρ−1(k) in the previous

round, then Pk sends (m,σ) to all its neighbors in Γρ(k) and halts. (If multiple validly

signed pairs were received in that round for the first time, then take the first one in a

lexicographic order.)

• For the receiver Pj : If a message (m,σ), where σ is party i’s valid signature on m, is

received for the first time from some parties in Γρ(j) then output m and halt. (If multiple

validly signed pairs are received in that round for the first time, then take the first one

in a lexicographic order.)

Figure 3.2: Reliable message transmission protocol (adaptive case)

3.4.2 RMT Construction

Here we describe our RMT protocol secure against adaptive adversaries, denoted by AdRMTi,j(m),

in the locality model. The protocol is similar to the protocol in the static case, except that

in round ρ parties use the communication graph Gρ. Let Γρ(i) = ΓGρ(i) denote the set of

Pi’s neighbors in Gρ. We describe the protocol in Figure 3.2.

Similar to the static case, the security of protocol AdRMTi,j(m) follows from the above

lemma.

Theorem 3.4.6. Let T ⊆ [n] be the set of adaptively corrupted parties with |T | = t ≤ qn for

any constant 0 < q < 1. Assuming a PKI and an SKI, protocol RMTi,j is a adaptively secure

RMT protocol between any two honest parties Pi, Pj, i, j ∈ [n] \ T satisfying the following

two conditions with overwhelming probability:
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• every party communicates with at most O(log1+ε n) other parties, for some ε > 0;

• the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof. First, we may assume that the adaptive adversary corrupts parties at the end of each

round. Let Uj be the set of parties corrupted at the end of round j. Then Lemma 3.4.5 shows

that any message sent by an honest party Pi will reach any honest Pj within O(logε
′
(n))

rounds, it follows from the unforgeability property of the signature scheme that an honest Pj

will always accept the message sent by an honest Pi. Hence, the above protocol is a secure

RMT protocol. The communication locality of the protocol follows from the degree of p-

random graph Gρ which is O(pn) = O(d) = O(log1+ε n), except with negligible probability.

Thus, over O(logε
′
(n)) rounds, each party communicates with O(log1+ε+ε′(n)) other parties.

3.4.3 Parallel Composition of RMT

Once again, we will require all parties to execute their respective RMT protocols in par-

allel simultaneously. Let AdRMTall(~m) denote the protocol executed by all parties when

AdRMTi,j(mi,j) for all i, j ∈ [n] are executed in parallel. That is, in round ρ of AdRMTall(~m),

all parties execute round ρ of protocol AdRMTi,j(mi,j) for all i, j ∈ [n]. Note that the graph

Gρ used in round ρ of the protocol depends only on ρ and not on i and j; i.e., we use the

same graph Gk to send all messages in round ρ of protocol AdRMTall(~m). We have the

following corollary:

Corollary 3.4.7. Under the same assumption as Theorem 3.4.6, AdRMTall is a adaptively

secure RMT protocol for sending mi,j from Pi to Pj for every pair of honest parties Pi, Pj,

i, j ∈ [n], satisfying the following properties with overwhelming probability:

1. every party communicates with at most O(log1+ε n) other parties, for some ε > 0;

2. the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.
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The proof of this corollary is similar to the proof of Corollary 3.3.4 using Theorem 3.4.6

instead of Theorem 3.3.3.

3.5 Secure MPC with Low Communication Locality

In this section, we describe an MPC protocol for securely evaluating any n-party function

in the communication locality model. We use a constant-round adaptively secure MPC

protocol that secure against t < n
2

adaptive corruptions over secure point-to-point channels

and broadcast protocol such as in [BMR90]. We show that our secure RMT protocol can

be used to construct point-to-point channels and broadcast protocol in the communication

locality model.

We let ΠBC denote the authenticated broadcast protocol guaranteed by Theorem 3.2.2.

The protocol achieves broadcast with overwhelming probability against t < n
2

adaptive

corruptions, running for logc n rounds on a complete network, for some constant c > 0.

As pointed out in [KK06], assuming unique process and message ID’s as in [LLR06], ΠBC

remains secure under parallel composition.

Let Π∗BC denote the protocol which results by having the parties execute ΠBC where in

each round instead of using the point-to-point channels for exchanging their messages, the

parties invoke AdRMTall from Section 3.4.3. Then it follows immediately from the security of

AdRMTall (Corollary 3.4.7) and the fact that each message transmission requires polylog(n)

rounds that protocol Π∗BC is also a secure broadcast protocol with polylogarithmic round

complexity and communication locality.

Lemma 3.5.1. The protocol Π∗BC described above is a broadcast protocol secure against an

adaptive adversary corrupting t < n/2 parties, and satisfying the following conditions with

overwhelming probability:

1. each party communicates with at most O(log1+ε n) other parties, for some ε > 0;

2. the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.
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Proof. The security of Π∗BC follows directly from the security of protocols ΠBC and AdRMTall.

First, we compute the asymptotic round complexity. For each round ρ of ΠBC , the protocol

Π∗BC executes AdRMTall to have the parties exchange their round ρ messages. Thus, for each

round in ΠBC we need O(logε
′
n) rounds in Π∗BC . Because ΠBC runs in O(logc n) rounds,

the total round complexity of Π∗BC is O(logc+ε
′
n) rounds. We compute the communication

locality. With overwhelming probability, in each round of Π∗BC , every party might commu-

nicate with at most to O(log1+ε n) (potentially different) parties for executing AdRMTall.

Thus, since the total number of rounds is O(logc+ε
′
n), then with overwhelming probability

(by the union bound) the total number of parties that each i ∈ [n] exchanges messages with

using the point-to-point channels is O(log1+c+ε+ε′ n).

The next step is to construct a secure message transmission protocol (SMT) which will

allow a sender Pi to securely (i.e., authentically and privately) send a message mi,j to a

receiver Pj. Since we have a PKI and an adaptively secure broadcast protocol Π∗BC , we can

use the standard reduction of secure channels to broadcast: the sender Pi encrypts mi,j under

the receiver’s public key and broadcasts the corresponding ciphertext ci,j. Upon receiving

ci,j, party Pj decrypts it using its secret key and recovers mi,j. However, in order for the

above reduction to be secure in a simulation-based manner against an adaptive adversary,

we need to ensure that a simulator can “open” a ciphertext to any message of its choice.

This can be achieved by the use of a non-committing encryption scheme for computing the

ciphertext ci,j [CFG96]. As proved in [DN00], a non-committing encryption scheme can

be constructed assuming the existence of families of trapdoor permutations with reversed

domain sampler. We denote an adaptively secure SMT above by AdSMTi,j, and the protocol

composed of n2 parallel SMT protocol for all i, j ∈ [n] by AdSMTall.

Using the adaptively secure broadcast protocol Π∗BC , the adaptively secure SMT AdSMTall,

and a constant-round MPC protocol over a complete network of point-to-point channels and

broadcast which is secure against an adaptive adversary corrupting corrupting t < n
2

parties,

denoted ΠMPC , we now describe an adaptively secure MPC protocol.
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Theorem 3.5.2. Assuming PKI, SKI and trapdoor permutations with reverse domain sam-

pler, there exists an MPC protocol securely computing any given n-party function against an

adaptive adversary corrupting t < n/2 parties, and satisfying the following conditions with

overwhelming probability:

• each party communicates with at most O(log1+ε n) other parties, for some ε > 0;

• the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof. Let ΠMPC denote a constant-round MPC protocol which is secure against adaptive

corruptions of up to t < n
2

parties, where parties communicate over a complete network of

point-to-point channels and broadcast [BMR90]. Furthermore, let Π∗MPC denote the protocol

that results by instantiating in ΠMPC the calls to the secure channels and broadcast by

invocations of protocols AdSMT and Π∗BC , respectively. We argue that Π∗MPC satisfies all

the properties claimed in the theorem.

Let S be the simulator for ΠMPC . We construct a simulator S∗ for Π∗MPC based on S as

follows: every time S sends a message via point-to-point channels or broadcast protocol, S

sends the message via AdSMT or Π∗BC , respectively. This would also require S∗ to simulate

the honest parties by forwarding messages as require in AdRMTall which is a subprotocol of

AdSMT and Π∗BC . Every time that S∗ generates an encryption of message mi,j on behalf of

honest Pi to be sent to honest Pj in AdRMTall as describe above, S∗ uses non-committing

encryption NCSim to instead generate a simulated encryption of mi,j (as it does not know

the content). When the adversary A chooses to corrupt Pi or Pj, S does so and learns all

of its sent and received messages. S∗ then sends σbG, σbE to A explaining the now opened

messages. Thus, the security of Π∗MPC follows from the security of the underlying protocol

ΠMPC and the security of protocols Π∗BC and AdSMTall.

We compute the round complexity as follows. For each round in ΠMPC , all message

exchanges (i.e., point-to-point transmissions or broadcast calls) are exchanged in Π∗MPC by

appropriate (parallel) executions of protocols Π∗BC and AdSMTall, where the executions

have unique round, protocol, and message IDs. Thus, for every round in ΠMPC we need
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O(logε
′
n) rounds in Π∗MPC , for some given constant ε′ > 0. Because ΠMPC terminates in

a constant number of rounds, the round complexity of Π∗MPC is also O(logε
′
n). In each of

these rounds, every party might communicate with at mostO(log1+ε n) (potentially different)

parties, Thus, the total number of parties that each Pi, i ∈ [n], communicates with is

O(log1+ε+ε′ n).

3.6 Getting Rid of the SKI

In this section, we show how to get rid of the symmetric-key setup assumption, at the cost

of increasing the communication locality (but not the round complexity) by a factor of
√
n.

The idea for getting rid of the SKI is to have the parties compute some kind of an

alternative hidden graph setup. This can be done as follows: each party Pi locally decides

which of his n point-to-point channels it will use; a channel between two (honest) parties

Pi, Pj, i, j ∈ [n], is then used only if both parties choose it. By having each party decide

to use each of its channels with probability p = logδ n√
n

for some given constant δ > 1
2

(and

ignore all other channels) we ensure that, with overwhelming probability, each honest party

uses at most O(
√
n logδ n) of its point-to-point channels. Furthermore, each edge between

two honest parties Pi and Pj is chosen with probability p′ = p2 = log2δ n
n

, thus the resulting

communication graph will include Erdős-Rényi graph G(n, p′) which will allow us to use our

constructions from the previous sections. Note however, that as the corrupted parties might

choose to speak to all their neighbors, the communication locality is no longer guaranteed to

be O(log2δ n). Instead, it is guaranteed to be O(
√
n logδ n) with overwhelming probability.

3.7 Conclusion and Open Questions

We have shown that we can construct an adaptively secure MPC protocol with polylog-

arithmic communication locality and round complexity tolerating up to t < n
2

adaptive

corruptions, assuming PKI, SKI and trapdoor permutations with reversed domain sampler,
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answering opened questions in [BGT13]. We have also shown that we can get rid of the SKI

assumption at the cost of communication locality. So, the natural open question is:

Can we achieve the same communication locality and round complexity under fewer

assumptions?

Our result achieves the communication locality of O(logc n) for some constant c > 1,

which is near optimal. Another open question is:

Can we achieve the optimal round complexity of O(log1+ε n) for any ε > 0?
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CHAPTER 4

On-the-fly MPC with Circuit Privacy via

Circuit-Private MFHE

4.1 Introduction

Multi-key fully homomorphic encryption scheme (MFHE), introduced by López-Alt, Tromer

and Vaikuntanathan [LTV12], allows homomorphic computation on inputs encrypted with

different public keys. In this chapter, we construct a MFHE scheme that satisfies circuit

privacy in the malicious setting, where public keys and ciphertexts are not guaranteed to

be well-formed. We also present a framework for transforming multi-key homomorphic en-

cryption schemes without circuit privacy or fully homomorphic property into maliciously

circuit-private MFHE. We then demonstrate an instantiation of this framework using a

modified scheme based on MFHE in [LTV12] without adding further assumptions.

As in [OPP14], we only consider the plain model. In the common reference string (CRS)

model, the malicious case can be reduced to the semi-honest case by adding non-interactive

zero-knowledge (NIZK) arguments that public key and ciphertext pairs are well-formed.

Though, even in this case, difficulty can arise, as the security needs to hold when the pairs

are in the support of honestly generated ones, but with different distribution as discussed

in [GHV10].

In [LTV12], the MFHE scheme is used to construct on-the-fly multiparty computation

(MPC), which can perform arbitrary, dynamically chosen computation on arbitrary sets of

users chosen on-the-fly. This construction allows each client user to encrypt data without

knowing the identity or the number of other clients in the system. The server can select any
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subset of clients, and perform an arbitrary function on the encrypted data without further

input from the selected clients (and without learning clients’ inputs). The encrypted result is

then broadcasted to the clients to cooperate to retrieve the output using (short) MPC proto-

col. Thus, most computation is done by server while the decryption phase is independent of

both the function computed and the total number of parties in the system. Their resulting

protocol is a 5-round on-the-fly MPC secure against semi-malicious users [AJL12], which

follow the protocol but choose random coins from an arbitrary distribution. The protocol

can be strengthened against malicious adversaries in the CRS model using NIZK arguments

without an increase in the number of rounds.

In this chapter, we construct a 3-round on-the-fly MPC with circuit privacy against

malicious clients in the plain model. Specifically, all parties send their inputs to the server,

who performs the computation and sends his result back to all clients, who then decrypt the

result in one round. Since there is no way to enforce which function the server will compute

in the plain model, we assume that the server is honest-but-curious. As with our MFHE,

the circuit privacy is guaranteed against unbounded malicious adversary corrupting any

number of clients. We also note that a variant of circuit privacy can be achieved in [LTV12]

construction by allowing the server to participate in the decryption phase MPC described

above with its encrypted result as an input. However, our construction allows the server to

minimize its interaction with the clients to only two rounds (i.e. one message from clients

to server and one broadcast back to clients). After the server sends its output back to the

clients, the clients communicate with one another in only 1 additional round in order to

decrypt the output.

To summarize, our main theorems are as follows:

Theorem 4.1.1 (informal). Assuming that there exists a privately expandable multi-hop

multi-key compact somewhat homomorphic encryption scheme, then there exists a maliciously

circuit-private multi-key fully homomorphic encryption scheme.

Theorem 4.1.2 (informal). Assuming RLWE and DSPR assumptions, and circular security,

there exists a maliciously circuit-private multi-key fully homomorphic encryption scheme.
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Theorem 4.1.3 (informal). Assuming the preconditions of Theorem 4.1.1 or Theorem 4.1.2

hold, there exists a 3-round on-the-fly MPC protocol where each client i ∈ [U ] in the system

holds xi, and the server chooses a circuit C with N < U inputs and a subset V ⊆ [U ] with

|V | = N . Only the clients in V learn C({xi}i∈V ) (but nothing else, not even |C|), and the

server learns nothing about {xi}i∈[U ].

1. The privacy guarantee for clients is indistinguishability-based computational privacy

against malicious adversaries corrupting t < N clients and honest-but-curious server.

2. The privacy guarantee for the server is based on unbounded simulation (against possibly

unbounded clients).

We note that condition 2 is incomparable with standard simulation framework, as it

requires stronger (i.e. information-theoretic) guarantees, but also unbounded simulation. As

discussed in [OPP14] this is unavoidable, even for maliciously circuit-private single-key FHE.

4.1.1 Previous Work

Multi-key FHE As stated above, [LTV12] introduces the concept of MFHE and con-

structs this scheme based on a variant of the NTRU encryption scheme under the RLWE

and DSPR assumptions. The work of [CM15] gives an alternate construction based on

[GSW13] FHE scheme under the LWE assumption. While their construction only relies

on standard assumption such as LWE, it requires an additional set up step, equivalent to

the CRS model. A recent work of [MW15] simplifies the construction of [CM15], and adds

threshold decryption protocol, which is used to construct 2-round MPC in the CRS model.

Circuit privacy in FHE In the semi-honest setting, where public keys and ciphertexts

are in the support of properly generated pairs, circuit privacy has been considered in [Gen09,

VGH10] with the latter using Yao’s garbled circuit. The generalization in [GHV10] combines

two HE schemes – one compact fully homomorphic and the other semi-honestly circuit-

private – into compact semi-honestly circuit-private FHE.
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The malicious setting has been addressed in the context of Oblivious Transfer (OT) [AIR01,

HK12]. The work of [IP07] constructs maliciously circuit-private HE for a class of depth-

bounded branching programs by iteration from leaves of a branching program.

Finally, the work of [OPP14] devises a framework for transforming single-key FHE

schemes with no circuit privacy into maliciously circuit-private ones. They use techniques

akin to Gentry’s bootstrapping [Gen09] and semi-honestly circuit-private HE constructions [AIR01,

GHV10] combining FHE schemes with maliciously circuit-private HE schemes.

One-Round OT Several definitions of security of OT have been suggested such as a gen-

eral framework for defining two-party computation [Can00]. The work of [AIR01] proposes

a definition for 1-round (2 messages) OT using unbounded simulation, which implies infor-

mation theoretic security for sender, and demonstrates a construction based on the DDH

assumption. In [IP07], Ishai and Paskin construct a 1-round OT with perfect sender privacy

based on the DJ homomorphic encryption scheme [DJ01] in the semi-honest setting.

On-the-fly MPC In standard MPC protocols, the computational and communication

complexities of each party depend on the circuit being computed. Thus, it is difficult to

construct on-the-fly MPC, where only the server performs most computation while the clients

compute very little and independently from the circuit. This idea is explored in the work

of [KMR11, HLP11]. However, the complexity of clients in the former protocol is still

proportional to the size of the circuit while the latter is only for a small class of functions.

A line of work uses single-key FHE schemes [AJL12, Gen09] by running a short MPC

protocol to compute a joint public key and secretly shared corresponding secret key. How-

ever, this approach does not capture the dynamic and non-interactive properties of no-the-

fly MPC. As mentioned above, López-Alt et al [LTV12] constructed on-the-fly MPC from

multi-key FHE. However, their version is only secure against semi-malicious adversary unless

additional trusted setup assumptions are made.

44



Circuit Privacy in MPC Private function evaluation (PFE) is a special case of MPC,

where one party holds a function or circuit as an input. PFE follows immediately from MPC

by evaluating a universal circuit and taking a circuit one wants to compute as an input.

However, the universal circuits known have high complexity, namely, O(g5) for arithmetic

circuits [Raz08] and O(g log g) for boolean circuits [Val76] for the class of circuits with at

most g gates. This approach also does not hide the size of the circuits evaluated. Previous

work [MS13, MSS14] has constructed more efficient implementation of PFEs even against

an active adversary [MSS14].

Circuit privacy is useful when learning about the function compromises privacy, reveals

security vulnerabilities or intellectual property. Examples of this are in software diagnos-

tic [BPS07], medical applications [BFK09], and intrusion detection systems [NSM13].

4.1.2 Our Techniques

We now give an overview of our main construction of circuit-private MFHE in three steps:

Step 1 The first step is to define the main new ingredient of our construction, privately

expandable multi-key homomorphic encryption scheme. It is a multi-key HE together with

efficient algorithms Expand such that, given a list of public keys and an encryption with

respect to one of the keys, the output is a homomorphic encryption that does not depend on

which key it previously encrypted with. We note that in a standard construction of MFHE,

a ciphertext may reveal which key is used to encrypt it. This information may persist even

after homomorphic evaluation, thus revealing the structure of the evaluating program. Our

new property allows the scheme to hide the source of the encryption used at each node of

branching program from an adversary, therefore hiding the branching program itself when

combining with the technique in [IP07].

We show how to construct a privately expandable multi-key HE scheme from the multi-

key somewhat homomorphic encryption scheme defined in [LTV12]. The main idea is as

follows: first, we re-randomize a given ciphertext to be statistically indistinguishable from
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a fresh ciphertext using algebraic properties of the scheme. We then show how to add

encryptions of zero with respect to each other keys, and show how to homomorphically

decrypt the result to get a “low-level” ciphertext. In fact, we note that our techniques are

applicable to other known multi-key FHE scheme as well, such as in [MW15] to obtain a

privately expandable multi-key FHE.

Step 2 The next step is to construct maliciously circuit-private multi-key HE for a class

of depth-bounded branching programs. A (deterministic binary) branching program is rep-

resented by a directed acyclic graph whose nonterminal nodes, with outdegree 2, are labeled

with indices in [n] while terminal nodes, with outdegree 0, and edges are labeled with 0 or 1.

A input x ∈ {0, 1}n naturally induces a unique path from a distinguished initial nodes to a

terminal node, whose label determines P (x). Any logspace or NC function can be computed

by a polynomial size branching programs. We inductively compute a ciphertext for each

node from terminal nodes upward. Given ciphertext of each bit of x ∈ {0, 1}n, encrypted

with different public keys, we expand the ciphertexts to hide public keys it originally en-

crypted with. We use private expandability to homomorphically compute ciphertext at each

node with a key-hiding ciphertext indistinguishable from fresh one. Thus, each ciphertext

reveals nothing about the path led to its corresponding node along the branching program,

including which bit each node uses to decide its path. Therefore, the output, which is the

ciphertext corresponding to the root contains no information about the program.

The protocol above is secure against semi-honest adversaries. We then show how to

modify the protocol to achieve security against malicious adversaries. We use single-key

malicious circuit-private FHE and a modified validation circuit from [OPP14], generalizing

their techniques. The server (homomorphically) verifies that public keys and ciphertexts

received are well-formed. This guarantees that each corrupted party uses proper public key

and ciphertext, independently of other parties. Since we can verify before expanding the

ciphertexts, we can use single-key FHE instead of multi-key.
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Step 3 In this step, we finally combine the protocol from the previous step with compact

MFHE with no circuit privacy to get maliciously circuit-private MFHE. We modify the

framework in [OPP14] and obtain a framework for multi-key HE. To evaluate a given circuit,

we first use MFHE with no circuit privacy to evaluate. Then we homomorphically decrypt the

output using maliciously circuit-private HE that can evaluate the decryption function. Then

we homomorphically decrypt to the original compact MFHE output, and only return it if

public keys and ciphertexts are well-formed. This can be checked homomorphically similarly

to the previous step. Using MFHE from [LTV12] for instantiation, we get a maliciously

circuit-private MFHE scheme based on RLWE and DSPR assumptions.

Application Finally, we construct an on-the-fly MPC with circuit privacy from the result

of the last step. Unlike in [LTV12], we consider the plain model with no setup assumptions

and malicious adversaries corrupting arbitrary number of clients. Along the way, we also

construct a 1-round 1-out-of-2 OT that secure against malicious receiver with information

theoretic security by augmenting a known construction that only secure against semi-honest

receiver with circuit-private FHE. Finally, by using garbled circuit and our OT protocol,

we can reduce the number of rounds from the construction in [LTV12] to three rounds,

which is optimal even against semi-honest adversaries in the plain model. The idea of the

third round is as follows: instead of having the clients run MPC protocol to decrypt the

output, the server constructs a collection of garbled circuits that decrypts the output for

each user. The clients create an OT query for each bit of their secret keys and send it to the

server along with the ciphertext in the first round. The server then answers those queries

with corresponding garbled input for the garbled circuit. Finally, each client decrypts and

broadcasts their garbled inputs to all other clients to compute the final output from the

garbled circuits by each client.

The security of our protocol is based on unbounded simulation for the server, which is

necessary for circuit privacy as in [IP07, OPP14]. We note that it is impossible to obtain ideal

functionality definition due to the impossibility for any computationally bounded simulators
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to extract the input in one round (without trusted setup). Instead, we show the security for

honest clients based on indistinguishability of the view of the malicious adversaries corrupting

clients and the view of honest-but-curious server.

4.2 Background

4.2.1 Multi-key Homomorphic Encryption

We use the definition similar to the one defined in [LTV12] with some modifications from [MW15]

and [OPP14]. We fix the order of public keys in Eval and secret keys in Dec, and allow the

number of keys to be different from input size of the circuit. This definition better suits our

definition of circuit privacy that we will define in the next section.

Definition 4.2.1 (Multi-key (Leveled) (U, C)-Homomorphic Encryption). Let C be a class of

circuits. A multi-key (leveled) (U, C)-homomorphic encryption scheme E = (KeyGen,Enc,Eval,Dec)

described as follows:

• (pk, sk) ← KeyGen(1λ, 1d): Given a security parameter λ (and the circuit depth d),

outputs a public key pk and a secret key sk.

• c← Enc(pk, µ): Given a public key pk and a message µ, outputs a ciphertext c.

• ĉ ← Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)): Given a (description of) a boolean

circuit C (of depth ≤ d) along with a sequence of N public keys and n couples (Ii, ci),

each comprising of an index Ii ∈ [N ] and a ciphertext ci, outputs an evaluated ciphertext

ĉ.

• b := Dec((sk1, . . . , skN), ĉ): Given a sequence of N secret keys sk1, . . . , skN and a

ciphertext ĉ, outputs a bit b.

has the following properties:

• Semantic security: (KeyGen,Enc) is semantically secure.
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• Correctness: Let (pki, ski) ← KeyGen(1λ, 1d) for i = 1, . . . , N . Let x = x1 . . . xn ∈

{0, 1}n and C ∈ C be a boolean circuit (of depth ≤ d), C : {0, 1}n → {0, 1}. For i =

1, . . . , n, let ci ← Enc(pkIi , xi) for some Ii ∈ [N ]. Let ĉ← Eval(C, (pk1, . . . , pkN), (I1, c1),

. . . , (In, cn)). Then

Dec(sk1, . . . , skN , ĉ) = U(C, (x1, . . . , xn)).

E is compact if there exists a polynomial p such that |ĉ| ≤ p(λ, d,N) independent of C and

n. If a scheme is multi-key (U, C)-homomorphic for the class C of all circuits (of depth

≤ d), we call it a multi-key (leveled) fully homomorphic (MFHE). A scheme E is somewhat

homomorphic if it is leveled (U, C)-homomorphic for d ≤ dmax(λ,N). A scheme E is multi-

hop if an output of Eval can be used as an input as long as the sum of the depths of circuits

evaluated does not exceed d.

4.2.1.1 López-Alt, Tromer and Vaikuntanathan’s Multi-key FHE scheme

Our construction modifies the multi-key leveled somewhat HE scheme constructed in [LTV12]

by López-Alt, Tromer and Vaikuntanathan. Multi-key leveled fully homomorphic scheme can

be obtained by bootstrapping.

Let q = q(λ) be an odd prime integer. Let the ring R = Z[x]/〈φ〉 for polynomial φ ∈ Z[x]

of degree m = m(λ) and Rq = R/qR. Let χ be the B-bounded truncated discrete Gaussian

distribution over R for B = B(λ).

Definition 4.2.2 (Ring Learning With Error (RLWE) Assumption [BV11]). The (deci-

sional) ring learning with error assumption RLWEφ,q,χ states that for any l = poly(λ),

{(ai, ai · s+ ei)}i∈[l] 'c {(ai, ui)}i∈[l]

where s, ei ← χ and ai, ui are sampled uniformly at random over Rq.

Definition 4.2.3 (Decisional Small Polynomial Ratio (DSPR) Assumption [LTV12]). The

decisional small polynomial ration assumption DSPRφ,q,χ says that it is hard to distinguish

the following two distributions:
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• a polynomial h := [2gf−1]q, where f ′, g ← χ such that f := 2f ′ + 1 is invertible over

Rq and f−1 is the inverse of f in Rq.

• a polynomial u sampled uniformly at random over Rq.

We describe the multi-key leveled somewhat HE scheme here as follows.

KeyGenSH(1λ, 1d):

1. For i = 0, 1, . . . , d,

(a) Sample f̃ i, gi ← χ and compute f i := 2f̃ i + 1. If f i is not invertible in Rq,

resample f̃ i.

(b) Let (f i)−1 be the inverse of f i in Rq.

(c) Let hi := [2gi(f i)−1]qi ∈ Rqi .

(d) For i ≥ 1, sample ~siγ, ~e
i
γ, ~s

i
ζ , ~e

i
ζ ← χdlog qie.

(e) Let γi :=
[
hi~siγ + 2~eiγ + Pow(f i−1)

]
qi
∈ Rdlog qie

qi

and ζ i :=
[
hi~siζ + 2~eiζ + Pow ((f i−1)2)

]
qi
∈ Rdlog qie

qi .

2. Output pk = (h0, γ1, . . . , γd, ζ1, . . . , ζd) and sk = fd ∈ Rqd .

EncSH(pk, µ):

1. Parse pk = h. Sample s, e← χ.

2. Output c = [hs+ 2e+ µ]q0 ∈ Rq0 .

EvalSH(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)):

1. For i ∈ [N ], parse pki = (hi, γ
1
i , . . . , γ

d
i , ζ

1
i , . . . , ζ

d
i )
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2. Given two ciphertexts c, c′ ∈ Rqi associated with subsets of the public keys K,K ′,

respectively. Let c0 = [c + c′] ∈ Rqi and K ∪ K ′ = {pki1 , . . . , pkit}. For j = 1, . . . , t,

compute

cj =
[
〈Bit(cj−1), γiij〉

]
qi
∈ Rqi

Then let cadd be the integral vector closest to (qi+1/qi) · ct such that cadd = ct (mod 2).

Output cadd ∈ Rqi+1
and the associated subset K ∪K ′.

3. Given two ciphertexts c, c′ ∈ Rqi associated with subsets of the public keys K,K ′,

respectively. Let c0 = [c · c′] ∈ Rqi and K ∪K ′ = {pki1 , . . . , pkit}. For j = 1, . . . , t,

(a) If pkij ∈ K ∩K ′, compute

cj =
[
〈Bit(cj−1), ζ iij〉

]
qi
∈ Rqi

(b) Otherwise, compute

cj =
[
〈Bit(cj−1), γiij〉

]
qi
∈ Rqi

Then let cmult be the integral vector closest to (qi+1/qi) ·ct such that cmult = ct (mod 2).

Output cmult ∈ Rqi+1
and the associated subset K ∪K ′.

DecSH(sk1, . . . , skN , c):

1. For i ∈ [N ], parse ski = fi.

2. Let µ0 = [f1 . . . fN · c]qd ∈ Rqd .

3. Output µ′ = µ0 (mod 2).

Theorem 4.2.4 ([LTV12]). Assuming the DSPR and RLWE assumptions, and that the

scheme ESH = (KeyGenSH ,EncSH ,EvalSH ,DecSH) described above is weakly circular secure,

then there exists a multi-key compact leveled fully homomorphic encryption scheme for N

keys for any N ∈ N, obtained by bootstrapping ESH .
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4.2.2 Circuit-Private Homomorphic Scheme

We define multi-key variant of circuit privacy defined in [IP07, OPP14].

Definition 4.2.5. Let E = (KeyGen,Enc,Eval,Dec) denote a multi-key (U, C)-homomorphic

encryption scheme. We say E is (maliciously) circuit-private if there exist unbounded al-

gorithms Sim(1λ, (pk∗1, c
∗
1), . . . , (pk∗n, c

∗
n), b) and deterministic Ext(1λ, pk∗, c∗) such that for all

λ, pk∗1, . . . , pk
∗
N , I1, . . . , In, c∗1, . . . , c

∗
n, and all programs C : {0, 1}n → {0, 1} ∈ (U, C), the

following holds:

• for i = 1, . . . , n, x∗i := Ext(1λ, pk∗Ii , c
∗
i )

• Sim(1λ, (pk∗1, . . . , pk
∗
N), (I1, c

∗
1), . . . , (In, c

∗
n), U(C, x∗1, . . . , x

∗
n))

's Eval(1λ, C, (pk∗1, . . . , pk∗N), (I1, c
∗
1), . . . , (In, c

∗
n))

We say the scheme is semi-honestly circuit-private if the above holds only for well-formed

pk∗Ii = pkIi, c
∗
i = ci pairs, i.e. (pkIi , skIi)← KeyGen(1λ) and ci ← Enc(pkIi , xi).

4.2.3 Branching Program

Definition 4.2.6. A (binary) branching program P over x = (x1, . . . , xn) is a tuple (G =

(V,E), v0, T, ψV , ψE) such that

• G is a connected directed acyclic graph. Let Γ(v) denote the set of children of v ∈ V .

• v0 is an initial node of indegree 0.

• T ⊆ V is a set of terminal nodes of outdegree 0. Any node in V \ T has outdegree 2.

• ψV : V → [n] ∪ {0, 1} is a node labeling function with ψV (v) ∈ {0, 1} for v ∈ T , and

ψV (v) ∈ [n] for v ∈ V \ T .

• ψE : E → {0, 1} is an edge labeling function, such that outgoing edges from each vertex

is labeled by different values.
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The height of v ∈ V , denoted height(v), is the length of the longest path from v to a node

in T . The length of P is the height of v0.

On input x, P (x) is defined by following the path induced by x from v0 to a node vl ∈ T ,

where an edge (v, v′) is in the path if xψV (v) ∈ ψE(v, v′). By the last property, such v′ is

unique. Then P (x) = ψV (vl). Similarly, we also define Pv(x) by following that path from

any node v ∈ V instead of v0.

Definition 4.2.7. A layered branching program of length l is a branching program P =

(G = (V,E), v0, T, ψV , ψE) such that for any e = (v, v′) ∈ E, height(v) = height(v′) + 1.

Every path from an initial node to a terminal node in a layered branching program has

the same length. Every branching program can be efficiently transformed into a layered

branching program of the same length [Pip79]. For simplicity, we assume all branching

programs are layered.

4.2.4 Oblivious Transfer

We use statistical indistinguishability definition for OT instead of real/ideal world definition

as simulator for ideal world can break the receiver security for 1-round protocol.

Definition 4.2.8. A 1-round 1-out-of-2 OT protocol is a tuple of PPT algorithms (GOT, QOT,

AOT, DOT) involving two parties, a sender and a receiver. The sender’s input is a pair (s0, s1)

such that |s0| = |s1| = τ . The receiver’s input is a bit b ∈ {0, 1}. The protocol proceeds as

follows:

• The receiver generates (pk, sk)← GOT(1λ), computes q ← QOT(1λ, 1τ , pk, b), and sends

(pk, q) to the sender.

• The sender computes a← AOT(s0, s1, pk, q) and sends a to the receiver.

• The receiver compute DOT(sk, a).

The protocol is correct if DOT(sk, a) = sb.
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Receiver privacy: (GOT, QOT) is semantically secure.

Sender privacy (semi-honest case): There exists an expected polynomial time sim-

ulator SimSH such that for any b ∈ {0, 1}, (pk, sk) ← GOT(1λ), q ← QOT(1λ, 1τ , pk, b) and

s0, s1 ∈ {0, 1}τ ,

AOT(s0, s1, pk, q) 's SimSH(sb, pk, q).

Sender privacy (malicious case): There exists an unbounded simulator SimM such

that for any pk∗, q∗ of appropriate length, and s0, s1 ∈ {0, 1}τ , there exists b∗ = b(pk∗, q∗)

such that

AOT(s0, s1, pk
∗, q∗) 's SimM(sb∗ , pk

∗, q∗).

The protocol has perfect sender privacy if the distributions are the same.

We note that the malicious case implies the semi-honest case as we can construct PPT

SimSH from AOT(sb, sb, pk, q) and the indistinguishability follows from the malicious case.

4.2.5 Garbling Scheme

Definition 4.2.9. A garbling scheme is a tuple of PPT algorithms (GarbCircuit, GarbEval)

such that for any circuit C : {0, 1}n → {0, 1} and x ∈ {0, 1}n, (G, e)← GarbCircuit(1λ, C)

and X = e(x), we have GarbEval(G,X) = C(x).

Security: For any circuits C0, C1 : {0, 1}n → {0, 1} and x ∈ {0, 1}n such that C0(x) =

C1(x), if, for i = 0, 1, (Gi, ei) = GarbCircuit(1λ, Ci) and Xi = ei(x), then (G0, X0) is

computationally indistinguishable from (G1, X1), i.e. for any PPT adversary A,

|Pr[A(G0, X0) = 1]− Pr[A(G1, X1) = 1]| < negl(λ).

A garbling scheme is projective if each bit of the garbled input X = e(x) only depends on

one bit of x. In this case, we may assume that e can be represented by (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)

where e(x1 . . . xn) = Xx1
1 . . . Xxn

n .
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4.3 Privately Expandable Multi-key Homomorphic Encryption

In this section, we will define the property of multi-key homomorphic encryption which are

required for the construction of multi-key circuit private HE for branching programs in the

next section. We also show how to modify the multi-key HE from [LTV12] to achieve such

property. We note that the multi-key HE from [MW15] can be modified to have this property

in a similar way. However, since it only works in setup model, we do not include it here.

4.3.1 Private Expandability

We define an “expanded” ciphertext as a ciphertext that associates with all public keys to

be used in evaluation algorithm. This notion is also used in [MW15]. However, expanded

ciphertext in [MW15] do not hide the original public key is encrypted with. In both our

construction and the one in [MW15], an expanded ciphertext can be thought of as a single-

key homomorphic encryption ciphertext that can be decrypted with some function of all

secret keys. In our case, it is the product of all secret keys while in [MW15] case, it is the

appending of all secret keys.

Definition 4.3.1. A multi-key HE scheme (KeyGen,Enc,Eval,Dec) is privately expand-

able if there exist polynomial time algorithms Ẽxpand, Ẽval, D̃ec such that, for i = 1, . . . , N ,

(pki, ski)← KeyGen(1λ),

• Let c← Enc(pki, µ). Then for any j ∈ [N ],

c̃ := Ẽxpand(pk1, . . . , pkN , i, c) 's Ẽxpand(pk1, . . . , pkN , j,Enc(pkj, µ))

and D̃ec(sk1, . . . , skN , c̃) = µ

• if for i = 1, . . . , N , D̃ec(sk1, . . . , skN , c̃i) = bi, then

D̃ec(sk1, . . . , skN , Ẽval(P, pk1, . . . , pkN , c̃1, . . . , c̃l)) = P (b1, . . . , bl).

We sometimes replace Eval and Dec with Ẽval and D̃ec, respectively, and denote (KeyGen,
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Enc,Expand,Eval,Dec) a privately expandable HE scheme if Expand, Eval and Dec satisfy the

above conditions.

4.3.2 Privately Expandable Multi-key HE based on LTV Encryption Scheme

In [LTV12], Lopez et al. constructed a multi-key FHE scheme with security based on ring

learning with error assumption (RLWE) and decisional small polynomial ration assumption

(DSPR) by further assuming circular security. We will show that we can modify the scheme

be privately expandable by constructing Ẽxpand, Ẽval, D̃ec without extra assumption.

Let ESH = (KeyGenSH ,EncSH ,EvalSH ,DecSH) be the multi-key somewhat homomorphic

scheme given in [LTV12] defined in the previous section.

A ciphertext of ESH is a polynomial in Rq = Zq[x]/(xn + 1) which can be represented

by a vector in Znq . In this scheme, N must be known in advance. We choose n = N1/ε′ ,

q = 2n
ε

for some ε′ < ε. Thus, q = 2N
δ

for δ > 1. We need to use bootstrappable somewhat

homomorphic version instead of bootstrapped FHE as we need its multi-hop property while

we only need to evaluate low depth circuits. Let t ∈ N and Ut be a discrete uniform

distribution on {0, . . . , t}, which can be sampled in time O(log t). We define

Ẽxpand
t

(pk1, . . . , pkN , i, c):

1. For each j ∈ {1, . . . , N}

• Parse pkj = hj.

• Let sj, ej ← Unt .

• Let cj = hjsj + 2ej

2. Output ĉ = c+
N∑
j=1

cj.

The following lemma is a variant of the smudging lemma in [AJL12]:

Lemma 4.3.2. Let a1, a2 ∈ Zn be B-bounded. Then ∆(a1+b, a2+b) ≤ 4nB/t where b← Unt .

If t is superpolynomial in λ, then they are statistically indistinguishable.

56



Proof. Let c1, c2 ∈ Z be corresponding entries in a1 and a2, respectively. Then |a1−a2| ≤ 2B.

Thus, ∆(a1 + Ut, a2 + Ut) ≤ 4B/t. Therefore, ∆(a1 + b, a2 + b) ≤ 4nB/t. Since n and B are

polynomial in λ, ∆(a1 + b, a2 + b) is negligible for superpolynomial t.

We apply the above lemma to get the following result.

Lemma 4.3.3. Let (pkk, skk) ← KeyGenSH(1λ, 1d) for k = 1, . . . , N . For i ∈ [N ], let

c← EncSH(pki, µ). Let t = O( q
N(nB)N

). Then

ĉ := Ẽxpand
t

(pk1, . . . , pkN , i, c) 's Ẽxpand
t

(pk1, . . . , pkN , j,EncSH(pkj, µ))

for any j ∈ [N ], and DecSH(sk1, . . . , skN , ĉ) = µ.

Proof. Suppose t is superpolynomial. Then for any s, e← χ and si, ei ← Unt , [s+ si] 's [si]

and [e+ ei] 's [ei] by Lemma 4.3.2. Thus, for c = his+ 2e+m, we have [c+ (hisi + 2ei)] 's

[m+ (hisi + ei)]. Then

Ẽxpand
t

(pk1, . . . , pkN , i, c) 's [m+
∑
k∈[N ]

(hksk + 2ek)].

By the same reason,

Ẽxpand
t

(pk1, . . . , pkN , j,EncE(pkj, µ)) 's [m+
∑
k∈[N ]

(hksk + 2ek)].

Therefore, they are statistically indistinguishable.

Now let ĉ = m +
∑

j∈[N ](hjsj + 2ej) where sj, ej bounded by t. For each j ∈ [N ],

fj(hjsj + 2ej) = 2(gjsj + fjej) is bounded by E := 2nBt + 2nB(2t + 1) = 2nB(3t + 1) =

O(nBt). Then for f = f1 . . . fN ,

f ĉ = fm+
∑
j∈[N ]

(
∏

k∈[N ]\{j}

fk)fj(hjsj + 2ej)

is bounded by (nB)N + N(nB)N−1E = O(N(nB)N t), which can be decrypted if it is less

than q/2. Thus, for t = O( q
N(nB)N

), the correctness follows from that of LTV scheme. Note

that as q = 2N
δ

= (2N
δ−1

)N , t is still superpolynomial in N and thus λ.
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Lemma 4.3.4 (implied from [LTV12]). For any C > 0, for sufficiently large λ,N = N(λ) ∈

N, there exists a multi-key somewhat homomorphic encryption scheme for N keys and circuits

of depth d ≥ CdDec where dDec is the depth of its decryption circuit.

Now let t satisfy the above condition. Let d0 = dDec and d ≥ 3d0 +2. We define a scheme

F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) as follows:

KeyGenF(1λ, 1d):

1. Let (pk0, sk0)← KeyGenSH(1λ, 1d0) and (pkE , skE)← KeyGenSH(1λ, 1d+d0)

2. Let fsk = EncSH(pkE , sk0)

3. Output pk = (pk0, pkE , fsk) and sk = skE .

EncF(pk, µ):

1. Parse pk = (pk0, pkE , fsk).

2. Output EncSH(pk0, µ).

ExpandF(pk1, . . . , pkN , i, c):

1. Parse pkj = (pk0,j, pkE,j, fsk,j).

2. Let ĉ = Ẽxpand
t

(pk0,1, . . . , pk0,N , i, c)

3. Output c̃ = EvalSH(DecSH(·, ĉ), (pkE,1, fsk,1), . . . , (pkE,N , fsk,N)).

EvalF(P, pk1, . . . , pkN , c̃1, . . . , c̃n):

1. Parse pkj = (pk0,j, pkE,j, fsk,j).

2. Let K = {pk1, . . . , pkN}

3. Output c̃ = EvalSH(P, (K, c̃1), . . . , (K, c̃n)).
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DecF(sk1, . . . , skN , c̃):

1. Parse skj = skE,j.

2. Output µ′ = DecSH(skE,1, . . . , skE,N , c̃).

Note that DecF has the same size as DecSH .

Lemma 4.3.5. The scheme F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) above is privately

expandable multi-key compact somewhat homomorphic scheme that can evaluate circuit up

to depth 2d0 + 2.

Proof. The security and compactness of F follows directly from that of E . By Lemma 4.3.3,

for c = EncF(pki, µ), c̃ = ExpandF(pk1, . . . , pkN , i, c) is a level-d0 encryption of µ associated

with K = {pkE,1, . . . , pkE,N} under scheme E . Thus, the correctness of evaluation and

decryption of F follows from that of E .

Also, by Lemma 4.3.3, ĉ 's Ẽxpand
t

(pk1, . . . , pkN , j,EncE(pkj, µ)). Then the result of

homomorphically decrypting both sides gives c̃ 's ẼxpandF(pk1, . . . , pkN , j,Enc(pkj, µ)).

Since each fsk,j are level 1 encryption under E , the output of ẼxpandF is of level d0. Thus,

we can further evaluate circuit up to depth 2d0 + 2 as required.

4.4 Circuit-Private Multi-key HE for Branching Programs

In this section, we construct a circuit-private multi-key HE for a class of (depth bound)

branching programs. As discussed above, the difficulty in the multi-key setting is that each

decision one makes while traversing a branching program is depended on its corresponding

input bit, which in turn depended on which public key it is encrypted with. Using such en-

cryption may reveal bit position of the path it takes to reach a terminal node. Using privately

expandable multi-key HE scheme from the previous section solves this problem. Another

implication of private expandability is that we can generate a fresh expanded encryption of
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bit b that is indistinguishable from an expanded encryption of any given encryption of b.

This allows us to construct a simulator for circuit privacy, given an output bit.

We first give a construction that secure against semi-honest adversary where each pair of

public key and ciphertext is correctly generated. We show that, in this case, the output can

be simulated knowing the public keys, ciphertext and the output, thus independent of the

program being evaluated. We then show that we can augment it with a single-key circuit-

private FHE as the evaluated output do not depend on the branching program unlike in the

general case.

4.4.1 Semi-Honest Case

Let F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) be a privately expandable multi-hop multi-

key compact somewhat homomorphic scheme that can evaluate circuit up to depth 2d0 + 2

where d0 is the depth of DecF . Let l be the length of branching programs, and let p(λ, l) be a

polynomial to be specified later. Let Dec2
F(sk1, . . . , skN , c) = DecF(sk1, . . . , skN ,DecF(sk1, . . . ,

skN , c)). We describe ES = (KeyGenS,EncS,EvalS,DecS) together with Expand and Ẽnc.

KeyGenS(1λ, 1l):

1. Let d = p(λ, l).

2. Let (pkF , skF)← KeyGenF(1λ, 1d).

3. Output pk = (pkF , fsk := EncF(pkF , skF)) and sk = skF .

EncS(pk, µ):

1. Parse pk = (pkF , fsk)

2. Let cα ← EncF(pkF , µ)

3. Output c
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Expand(pk1, . . . , pkN , i, c):

1. For j = 1, . . . , N , parse pkj = (pkF ,j, fsk,j).

2. Let cα = c and cγ = 1− c

3. Compute c̃α = ExpandF(pkF ,1, . . . , pkF ,N , i, cα)

and c̃γ = ExpandF(pkF ,1, . . . , pkF ,N , i, cγ)

4. Output c̃ = (c̃α, c̃γ).

Ẽnc(pk1, . . . , pkN , µ):

1. For j = 1, . . . , N , parse pkj = (pkF ,j, fsk,j).

2. Let i← [N ] and compute c← Enc(pki, µ).

3. Output c̃ = ExpandF(pkF ,1, . . . , pkF ,N , i, c).

EvalS(P, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. Let P = (G = (V,E), v0, T, ψV , ψE).

2. For j = 1, . . . , N , parse pkj = (pkF ,j, fsk,j).

Let f̃sk,j = ExpandF(pkF ,1, . . . , pkF ,N , j, fsk,j)

3. For i = 1, . . . , n, Let (c̃α,i, c̃γ,i) = Expand(pk1, . . . , pkN , i, ci).

4. For each v ∈ T , let label(v) := ψV (v).

5. For each v ∈ V \ T with both children labeled, let h := height(v), i := ψV (v)

(a) For t = 1, . . . , s = |label(u0)| where Γ(v) = {u0, u1}, ψE(v, u0) = 0, ψE(v, u1) = 1

i. Let r0 = label(u0)[t] and r1 = label(u1)[t].

ii. Let z1, z2 ← Ẽnc(pk1, . . . , pkN , 0)
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iii. Consider 4 cases:

A. if r0 = r1 = 0, at := z1 + z2

B. if r0 = 0; r1 = 1, at := c̃α,i + z1

C. if r0 = 1; r1 = 0, at := c̃γ,i + z1

D. if r0 = r1 = 1, at := c̃α,i + c̃γ,i

(b) av = a1 . . . as; if h = 1, label(v)← av

(c) otherwise, label(v)← EvalF(Dec2
F , pkF ,1, . . . , pkF ,N , f̃sk,1, . . . , f̃sk,N , av)

6. Output c̃ = label(root)

DecS(sk1, . . . , skN , ĉ)

1. Parse ski = skF ,i.

2. Output µ′ := DecF(skF ,1, . . . , skF ,N , ĉ)

4.4.2 Correctness and Security against Semi-Honest Adversaries

The correctness is a direct result of the following lemma:

Lemma 4.4.1. Let x = x1 . . . xn. For i = 1, . . . , N , (pki, ski) ← KeyGen(1λ, 1l). For

i = 1, . . . , n, ci = Enc(pkIi , xi) for some Ii ∈ [N ]. Then for any branching program P =

(G = (V,E), v0, T, ψV , ψE) and for each v ∈ V \ T with i = ψV (v),

1. DecF(skF ,1, . . . , skF ,N , av) = label(uxi);

2. DecF(skF ,1, . . . , skF ,N , label(v)) = Pv(x);

3. DecS(sk1, . . . , skN , ĉ) = P (x).

Proof. Let Γ(v) = {u0, u1}. For each t ∈ [s], consider the value µ = xi that c̃α,i encrypts. If

µ = 0, we get a sum of two encryptions of 0 in the first two cases, and a sum of encryption
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of 1 and encryptions of 0 in the last two cases. If µ = 1, we get a sum of two encryptions

of 0 in the first case and third case, and a sum of encryption of 1 and encryption of 0 in

the second case and the last case. All of which are correct with respect to r0, r1. Thus,

DecF(skF ,1, . . . , skF ,N , av) = label(uxi).

For v with height(v) = 1, we have label(v) = av. Thus, DecF(skF ,1, . . . , skF ,N , label(v)) =

label(uxi) = Pv(x) as uxi ∈ T . Now assume that height(v) > 1. Since label(v) ←

EvalF(Dec2
F , f̃sk,1, . . . , f̃sk,N , av), inductively, by part 1, we have DecF(skF ,1, . . . , skF ,N , label(v))

= Dec2
F(skF ,1, . . . , skF ,N , av) = DecF(skF ,1, . . . , skF ,N , label(uxi)) = Pv(x).

Applying part 2 to the case v = v0, we get

Dec(sk1, . . . , skN , ĉ) = DecF(skF ,1, . . . , skF ,N , label(v0)) = Pv0(x) = P (x).

Now we prove circuit privacy against semi-honest adversaries, i.e. when each public key

and ciphertext pair is generated correctly.

Lemma 4.4.2. Assuming F is privately expandable HE scheme with circular security. Then

the scheme ES is a semi-honestly circuit-private HE scheme for branching program.

Proof. We construct a simulator SimS as follows:

SimS(1λ, 1l, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn), b):

1. For i = 1, . . . , N , parse pki = (pkF ,i, fsk,i).

2. Let out0 = b.

3. For h = 1, . . . , l,

(a) For t = 1, . . . , s = |outh−1|, we construct outh[t] as follows:

i. Let y0, y2 ← Ẽnc(pk1, . . . , pkN , 0) and y1 ← Ẽnc(pk1, . . . , pkN , 1).

ii. Consider 2 cases:
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A. If outh−1[t] = 0, outh[t] := y0 + y2.

B. If outh−1[t] = 1, outh[t] := y1 + y2.

(b) If h ≥ 2, replace outh with EvalF(Dec2
F , pkF ,1, . . . , pkF ,N , f̃sk,1, . . . , f̃sk,N , outh)

4. Output out = outl

Let P = (G = (V,E), vr, T, ψV , ψE). For h = 1, . . . , l, let vh ∈ V be the vertex at height

h along the path indicated by x. We have b = U(P, x∗1, . . . , x
∗
n) = ψV (v0) and vl = v0. The

result follows from the following claim when h = l:

Claim 4.4.3. For h = 0, . . . , l, outh 's label(vh).

Proof. Clearly, out0 = label(v0) = U(P, x1, . . . , xn) = b. Suppose outh−1 = label(vh−1). Let

i = ψV (vh). For each bit b = outh−1[t], if b = 0, we have outh[t] = y0 + y2 and

at =

 z1 + z2 or c̃α,i + z1 if xi = ψE(vh, vh−1) = 0;

c̃γ,i + z1 if xi = ψE(vh, vh−1) = 1

Clearly, z1 and y0 has the same distribution as both are Ẽnc(pk1, . . . , pkN , 0). By private

expandability, c̃α,i, c̃γ,i are statistically indistinguishable from y2 when xi = ψE(vh, vh−1) = 0

and xi = ψE(vh, vh−1) = 1, respectively. We have at 's outh[t]. Similarly, if b = 1, we have

outh[t] = y1 + y2 and

at =

 c̃γ,i + z1 if xi = ψE(vh, vh−1) = 0;

c̃α,i + z1 or c̃α,i + c̃γ,i if xi = ψE(vh, vh−1) = 1

By private expandability, c̃γ,i, c̃α,i are statistically indistinguishable from y1 when xi =

ψE(vh, vh−1) = 0 and xi = ψE(vh, vh−1) = 1, respectively, while c̃γ,i is statistically indistin-

guishable from y2 and z1 when xi = ψE(vh, vh−1) = 1. Again, we have at 's outh[t]. Now

average over the choice of outh−1 's label(vh−1), we have at 's outh, and the result follows

by applying EvalF(Dec2
F , f̃sk,1, . . . , f̃sk,N , ·) to both.

We have SimS((pk1, . . . , pkN), (I1, c1), . . . , (In, cn), b) 's EvalS(P, (pk1, . . . , pkN), (I1, c1),

. . . , (In, cn)).
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4.4.3 Handling Malicious Inputs

Once we have an evaluation algorithm that can hide a branching program when public keys

and ciphertexts are well-formed, we then consider the case when they are not properly gen-

erated. We use a single-key FHE with circuit privacy (such as one constructed in [OPP14])

to homomorphically check validity of each multi-key public key and ciphertext pair. If the

check fails, we ”mask” the output using a random string. The simulator can be constructed

using the extractor guaranteed by circuit privacy of single-key FHE to extract random coins

and verify directly. If the check fails, it returns a random string with the same distribution

as the masked output.

Let P be a circuit-private single-key FHE. We a define a circuit verifying each public key

and corresponding ciphertexts:

Validateλ,d,n(pk, sk, rk, (c1, r1), . . . , (cn, rn), out) =



out if (pk, sk)← KeyGenF(rk)

and for each i ∈ [n],

ci = EncF(pk, µi; ri)

for some µi ∈ {0, 1};

0 otherwise

We add a random string S ∈ {0, 1}s, where s = s(λ, d) = |label(root)|, to the output of Eval

and return an encryption of S only if the verification passes. The original output can be

computed if S can be recovered; otherwise, it is uniformly distributed. We define

vj = EvalP(Validate(pkj, ·, ·, {(ci, ·)}Ii=j, Sj), pkP,j, psk,j, pkr,j, {pre,i}Ii=j)

where pkr,j = EncP(pkP,j, rk,j), psk,j = EncP(pkP,j, skj) and pre,i = EncP(pkP,i, re,i), all of

which are included in the new public key pk or the new ciphertext c. We also include skP in

the new secret key sk. Finally, the new Eval returns (label(root)⊕(S1⊕. . .⊕SN), v1, . . . , vN).

We describe EM = (KeyGenM ,EncM ,EvalM ,DecM) using the above Expand and Ẽnc.
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KeyGenM(1λ, 1l):

1. Let d = p(λ, l).

2. Let (pkF , skF)← KeyGenF(1λ, 1d; rk).

3. Let (pkP , skP)← KeyGenP(1λ).

4. Compute fsk := EncF(pkF , skF ; re), pkr := EncP(pkP , rk) and psk = EncP(pkP , skF).

5. Output pk = (pkF , fsk, pkr, psk) and sk = (skF , skP).

EncM(pk, µ):

1. Parse pk = (pkF , fsk, pkP , pkr, psk).

2. Let cF ← EncF(pkF , µ; re)

3. Compute pre = EncP(pkP , re)

4. Output c = (cF , pre).

EvalM(P, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. Let P = (G = (V,E), v0, T, ψV , ψE).

2. For j = 1, . . . , N ,

(a) Parse pkj = (pkF ,j, fsk,j, pkP,j, pkr,j, psk,j).

(b) Let Sj ← {0, 1}s and vj = EvalP(Validate(pkj, ·, ·, {(ci, ·)}Ii=j, Sj), pkP,j, psk,j,

pkr,j, {pre,i}Ii=j).

(c) Let f̃sk,j = ExpandF(pkF ,1, . . . , pkF ,N , j, fsk,j)

3. For i = 1, . . . , n,

(a) Parse ci = (cF ,i, pre,i).
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(b) Let (c̃α,i, c̃γ,i) = Expand(pk1, . . . , pkN , i, cF ,i).

4. For each v ∈ T , let label(v) := ψV (v).

5. For each v ∈ V \ T with both children labeled, let h := height(v), i := ψV (v)

(a) For t = 1, . . . , s = |label(u0)| where Γ(v) = {u0, u1}, ψE(v, u0) = 0, ψE(v, u1) = 1

i. Let r0 = label(u0)[t] and r1 = label(u1)[t].

ii. Let z1, z2 ← Ẽnc(pk1, . . . , pkN , 0)

iii. Consider 4 cases:

A. if r0 = r1 = 0, at := z1 + z2

B. if r0 = 0; r1 = 1, at := c̃α,i + z1

C. if r0 = 1; r1 = 0, at := c̃γ,i + z1

D. if r0 = r1 = 1, at := c̃α,i + c̃γ,i

(b) av = a1 . . . as; if h = 1, label(v)← av

(c) otherwise, label(v)← EvalF(Dec2
F , pkF ,1, . . . , pkF ,N , f̃sk,1, . . . , f̃sk,N , av)

6. Output ĉ = (label(root)⊕ (S1 ⊕ . . .⊕ SN), v1, . . . , vN)

DecM(sk1, . . . , skN , ĉ)

1. Parse ĉ = (c̃, vk,1, . . . , vk,N).

2. For j = 1, . . . , N ,

(a) Parse skj = (skF ,j, skP,j).

(b) Let Sj = DecP(skP,j, vk,j).

3. Let c̃′ = c̃⊕ (S1 ⊕ . . .⊕ SN)

4. Output µ′ := DecF(skF ,1, . . . , skF ,N , c̃
′)
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4.4.4 Security against Malicious Adversary

Theorem 4.4.4. Assuming F is privately expandable multi-key HE scheme with circular se-

curity and P is maliciously circuit-private FHE. Then the above construction is a maliciously

circuit-private HE scheme for branching program.

Proof. Let ExtP and SimP be the extractor and the simulator guaranteed by circuit privacy

of P . We construct a pair of algorithms Ext and Sim as follows:

ExtM(1λ, 1l, pk∗, c∗):

1. Parse pk∗ = (pk∗F , f
∗
sk, pk

∗
P , p

∗
kr, p

∗
sk). If it is malformed, output 0.

2. Let r∗e = ExtP(pk∗P , p
∗
re) and sk∗F = ExtP(pk∗P , p

∗
sk).

3. If (pk∗F , sk
∗
F) 6= KeyGenF(params∗F ; r∗e), return 0.

4. If c∗ = EncF(pk∗F , µ; r∗e) for some µ ∈ {0, 1}, output µ.

5. Otherwise, output 0.

SimM(1λ, 1l, (pk∗1, . . . , pk
∗
N), (I1, c

∗
1), . . . , (In, c

∗
n), b):

1. For i = 1, . . . , n,

(a) Parse c∗i = (c∗F ,i, p
∗
re,i).

(b) Let c̃∗i = Expand(pk∗1, . . . , pk
∗
N , i, c

∗
i ).

2. For j = 1, . . . , N ,

(a) Parse pk∗j = (pk∗F ,j, f
∗
sk,j, pk

∗
P,j, p

∗
kr,j, p

∗
sk,j).

(b) Do the same test as in Ext for pk∗j and {c∗i }Ii=j. If any of the test fails, let

vk,j = SimP(pk∗P,j, p
∗
sk,j, p

∗
kr,j, {p∗re,i}Ii=j, 0).

(c) Otherwise, let Sj ← {0, 1}s and vj = SimP(pk∗P,j, p
∗
sk,j, p

∗
kr,j, {p∗re,i}Ii=j, Sj).
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(d) Let f̃ ∗sk,j = ExpandF(pk∗F ,1, . . . , pk
∗
F ,N , j, f

∗
sk,j)

3. If any of the tests above fail, let out be a random string of length s and skip to the

last step.

4. Otherwise, let out0 = b.

5. For h = 1, . . . , l,

(a) For t = 1, . . . , s = |outh−1|, we construct outh[t] as follows:

i. Let y0, y2 ← Ẽnc(pk1, . . . , pkN , 0) and y1 ← Ẽnc(pk1, . . . , pkN , 1).

ii. Consider 2 cases:

A. If outh−1[t] = 0, outh[t] := y0 + y2.

B. If outh−1[t] = 1, outh[t] := y1 + y2.

(b) If h ≥ 2, replace outh with EvalF(Dec2
F , pk

∗
F ,1, . . . , pk

∗
F ,N , f̃

∗
sk,1, . . . , f̃

∗
sk,N , outh)

6. Output out = (outl ⊕ (S1 ⊕ . . .⊕ SN), vk,1, . . . , vk,N)

We show that they satisfy the Definition 4.2.5.

Assume there exists j ∈ [N ] such that Validate(pk∗F ,j, sk
∗
F ,j, r

∗
k,j, {(c∗i , r∗e,i)}Ii=j, Sj) = 0 for

sk∗F ,j = ExtP(1λ, pk∗P,j, p
∗
sk,j), r

∗
k,j = ExtP(1λ, pk∗P,j, p

∗
kr,j) and r∗e,i = ExtP(1λ, pk∗P,j, p

∗
re,i) for

Ii = j. Then by circuit privacy of P , vi is statistically indistinguishable from SimP(1λ, pk∗P,j, p
∗
sk,j,

p∗kr,j, {p∗re,i}Ii=j, 0) independent from Sj. Thus, out has the same distribution as a random

string of length s in both Eval and Sim.

Now suppose that all Validate’s are not zero, then pk∗F ,i and c∗F ,i are generated correctly.

Since outl is computed the same way as in SimS, the result follows from Lemma 4.4.2.

Combining the above result with Lemma 4.3.5 results in the following theorem:

Theorem 4.4.5. Let F be a privately expandable multi-hop multi-key compact somewhat

homomorphic encryption scheme that can evaluate circuit up to depth 2d+ 2 where d is the
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depth of DecF . Then the scheme described above is a maliciously circuit-private multi-key

HE scheme for branching program.

Corollary 4.4.6. Assuming RLWE and DSPR assumptions, and circular security for E,

there exists a maliciously circuit-private multi-key HE scheme for branching program.

4.5 Circuit-Private Multi-key FHE

In this section, we devise a framework turning a compact MFHE scheme and a circuit-

private multi-key HE scheme into a circuit-private MFHE. This is a multi-key variant of the

framework in [OPP14]. As we discuss earlier, it is difficult to turn a single-key circuit-private

HE scheme and a MFHE scheme into a circuit-private MFHE in the plain model. When

both homomorphic encryption schemes are multi-key, each pair of public key and secret key

can be generated together, thus allowing homomorphic decryption between two schemes. We

use MFHE evaluation to evaluate a given circuit. We then switch to circuit-private scheme

to verify the input. Finally, we switch it back to the original scheme for compactness. Unlike

in single-key case, we cannot verify all public keys and ciphertexts at once as it would lead to

larger verification circuit. We rely on fully homomorphic property of the former to combine

the result.

Let F = (KeyGenF ,EncF ,EvalF ,DecF) be a leveled compact multi-key FHE scheme

and P = (KeyGenP ,EncP ,EvalP ,DecP) be a leveled multi-key circuit-private homomorphic

scheme. Define the following programs

KValidateλ,dpkF ,out(skF , rFK) =

 out if (pkF , skF) = KeyGenF(1λ, 1d; rFK)

0 otherwise.

CValidateλ,dpkF ,cF ,out(rFE) =

 out if cF = EncF(pkF , bi; rFE) for some bi ∈ {0, 1}

0 otherwise.
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CombineDec(skP,1, . . . , skP,N , c1, . . . , cN+n) =


m if DecP(skP,1, . . . , skP,N , ci) = m

for ∀i = 1, . . . , N + n

0 otherwise.

4.5.1 Construction

KeyGen(1λ, 1d):

1. Let (pkF , skF) = KeyGenF(1λ, 1d; rFK) and (pkP , skP)← KeyGenP(1λ, 1d0) where d0 is

the maximum between the depth of KValidateλ,dpkF ,out, CValidate
λ,d
pkF ,cF ,out

and DecF .

2. Let pskF = EncP(pkP , skF), prFK = EncP(pkP , rFK) and fskP = EncF(pkF , skP).

3. Output pk = (pkP , pkF , pskF , prFK , fskP ), sk = skF .

Enc(pk, µ):

1. Parse pk = (pkP , pkF , pskF , prFK , fskP ).

2. Let cF = EncF(pkF , µ; rFE) and prFE ← EncP(pkP , rFE).

3. Output c = (cF , prFE).

Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. For i = 1, . . . , N , parse pki = (pkP,i, pkF ,i, pskF ,i, prFK ,i, fskP ,i).

2. For i = 1, . . . , n, parse ci = (cF ,i, prFE ,i).

3. If C is syntactically malformed, does not match n, or pki or ci has incorrect size, replace

C with a program returning 0.

4. Let outF = EvalF(C, (pkF ,1, . . . , pkF ,N), (I1, cF ,1), . . . , (In, cF ,n)).

71



5. Let outP = EvalP(DecF(·, outF), (pkP,1, . . . , pkP,N), (1, pskF ,1), . . . , (N, pskF ,N)).

6. For i = 1, . . . , N , let outK,i = EvalP(KValidateλ,dpkF,i,outP , (pkP,1, . . . , pkP,N), (i, pskF ,i), (i, prFK ,i)).

7. For i = 1, . . . , n, let outC,i = EvalP(CValidateλ,dpkF,i,cF,i,outP , (pkP,1, . . . , pkP,N), (i, prFE ,i)).

8. Output ĉ = EvalF(DecP(·,CombineDec(·, outK,1, . . . , outK,N , outC,1, . . . , outC,n)), (pkF ,1, . . . ,

pkF ,N), (1, fskP ,1), . . . , (N, fskP ,N)).

Dec(sk1, . . . , skN , ĉ)

1. For i = 1, . . . , N , parse ski = skF ,i.

2. Output y = DecF(skF ,1, . . . , skF ,N , ĉ).

We now prove that this construction gives a leveled compact circuit-private MFHE.

Theorem 4.5.1. Assume a compact leveled MFHE scheme F and a leveled (U, CF)-homomorphic

circuit-private multi-key HE scheme P exist., where CF includes DecF(·, outF), KValidateλ,dpkF ,outP

and CValidateλ,dpkF ,cF ,outP for all λ, d, pkF , cF , outP , outF . The resulting scheme in the above

construction is a leveled compact circuit-private MFHE.

Proof. Correctness, semantic security and compactness follow from scheme F and P . Let

ExtP and SimP be as in Definition 4.2.5 for circuit private scheme P . We describe a pair of

algorithms

Ext(1λ, pk∗, c∗):

1. Parse pk∗ = (pk∗P , pk
∗
F , p

∗
skF
, p∗rFK , f

∗
skP

) and c∗ = (c∗F , p
∗
rFE

).

2. Let sk∗F = ExtP(1λ, pk∗P , p
∗
skF

), r∗FK = ExtP(1λ, pk∗P , p
∗
rFK

) and r∗FE = ExtP(1λ, pk∗P , p
∗
rFE

).

3. if (pk∗F , sk
∗
F) 6= KeyGenF(1λ; r∗FK), output 0.

4. if c∗F = EncF(pk∗F , b; r
∗
FE) for some b ∈ {0, 1}, output b; otherwise, output 0.
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Sim(1λ, (pk∗1, . . . , pk
∗
N), (I1, c

∗
1), . . . , (In, c

∗
n), b):

1. For i = 1, . . . , N ,

(a) Parse pk∗i = (pk∗P,i, pk
∗
F ,i, p

∗
skF ,i

, p∗rFK ,i, f
∗
skP ,i

).

(b) Let sk∗F ,i = ExtP(1λ, pk∗P,i, p
∗
skF ,i

) and r∗FK,i = ExtP(1λ, pk∗P,i, p
∗
rFK ,i

).

2. Let out∗P = SimP(1λ, (pk∗P,1, . . . , pk
∗
P,N), (1, p∗skF ,1), . . . , (N, p∗skF ,N), b).

3. For i = 1, . . . , n,

(a) Parse c∗i = (c∗F ,i, p
∗
rFE ,i

).

(b) Let r∗FE,i = ExtP(1λ, pk∗P,i, p
∗
rFE ,i

).

(c) If c∗F ,i 6= EncF(pk∗F ,Ii , bi; r
∗
FE,i) for any bi ∈ {0, 1}, let out∗C,i = SimP(1λ, (pk∗P,1, . . . ,

pk∗P,N), (Ii, p
∗
rFE ,i

), 0).

(d) Otherwise, let out∗C,i = SimP(1λ, (pk∗P,1, . . . , pk
∗
P,N), (Ii, p

∗
rFE ,i

), out∗P).

4. For i = 1, . . . , N ,

(a) If (pk∗F ,i, sk
∗
F ,i) 6= KeyGenF(1λ; r∗FK,i) , let out∗K,i = SimP(1λ, (pk∗P,1, . . . , pk

∗
P,N), (i,

p∗skF ,i), (i, p
∗
rFK ,i

), 0).

(b) Otherwise, let out∗K,i = SimP(1λ, (pk∗P,1, . . . , pk
∗
P,N), (i, p∗skF ,i), (i, p

∗
rFK ,i

), out∗P).

5. Output ĉ∗ = EvalF(DecP(·,CombineDec(·, out∗K,1, . . . , out∗K,N , out∗C,1, . . . , out∗C,n)), (pk∗F ,1,

. . . , pk∗F ,N), (1, f ∗skP ,1), . . . , (N, f ∗skP ,N)).

For each i = 1, . . . , N , if VK,i = KValidateλ,dpk∗F,i,out∗P
(sk∗F ,i, rFK,i) = 0, then the test in step

4 of Sim fail. By circuit privacy of P , outK,i 's out∗K,i. Otherwise, VK,i = out∗P . Then

the test in step 3 passes. Thus, by circuit privacy of P , outP 's out∗P . Then outK,i 's

EvalP(KValidateλ,dpk∗F,i,out∗P
, (i, p∗skF ,i), (i, p

∗
rFK ,i

)) 's out∗K,i.

Similar argument can be made for outC,i 's out∗C,i for each i = 1, . . . , n. Therefore ĉ 's ĉ∗

as the last step of Sim is the same as the last step of Eval.
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4.5.2 Instantiation

Finally, we instantiate the result of Theorem 4.5.1 by our construction in Theorem 4.4.5, we

get the following results:

Corollary 4.5.2. Assuming there exists a privately expandable multi-hop multi-key compact

somewhat homomorphic encryption scheme that can evaluate circuit up to depth 2d+2 where

d is the depth of its decryption circuit. Then there exists a maliciously circuit-private multi-

key fully homomorphic encryption scheme.

Corollary 4.5.3. Assuming RLWE and DSPR assumptions, and circular security for E,

there exists a maliciously circuit-private multi-key fully homomorphic encryption scheme.

4.6 Three-Round On-the-Fly MPC with Circuit Privacy

In this section, we consider one application of circuit-private MFHE scheme: on-the-fly MPC

protocol. In this setting, large number of clients Pi uploaded their encrypted inputs to a

server or a cloud, denoted by S. The server selects an N -input function F on a subset of

clients’ input, and performs the computation without further information. Afterward, the

server and the clients whose inputs are chosen run the rest of the protocol. At the end of

an on-the-fly MPC protocol, only those clients learn the output while the server and other

parties learn nothing. Furthermore, the communication complexity and the running time of

clients should be independent of the function F . As in standard MPC, the input of each

client should not be revealed to any other parties including the server. In addition, we require

circuit privacy for the server. Clients should not learn anything about the function other

than its output. We give the formal definition of on-the-fly MPC protocol from [MW15] as

follows:

Definition 4.6.1. Let C be a class of functions with at most U inputs. An on-the-fly multi-

party computation protocol Π for C is a protocol between P1, . . . , PU , S where Pi is given xi

as input, for i ∈ [U ], and S is given an ordered subset V ⊆ [U ] of size N and a function F
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on N inputs. At the end of the protocol, each party Pi for i ∈ V outputs F ({xi}i∈V ) while

Pi for i /∈ V and S output ⊥. The protocol consists of two phases:

• Offline phase is performed before F, V is chosen. All parties participate in this phase.

• Online phase starts after F, V is chosen. Only S and Pi for i ∈ V participate in this

phase, and ignore all messages from Pi, i /∈ V .

We require that the communication complexity of the protocol and the computation time of

P1, . . . , PU is independent of (the complexity of) the function F . Furthermore, the computa-

tion time of Pi for i /∈ V is independent of the output size of F .

We then define security and circuit privacy of on-the-fly MPC protocol in plain model

against malicious adversary.

Definition 4.6.2. An adversary A corrupting a party receives all messages directed to the

corrupted party and controls the messages that it sends. Since the server ignores messages

from parties outside V , we assume w.l.o.g. that an adversary only corrupts computing parties,

i.e. parties in V .

Let ViewΠ,S(F, V, ~x) denote the collection of messages the server S receives in an execution

of protocol Π on a subset V ⊆ [U ] with |V | = N , an N-input function F ∈ C and input vector

~x. Let ViewΠ,A(F, V, ~x) denote the joint collection of messages A receives through corrupted

parties in an execution of protocol Π on V , F and ~x.

An on-the-fly multi-party computation protocol Π for C is secure if

• for every adversary A corrupting parties {Pi}i∈T with |T | = t < N , for all V ⊆ [U ]

with |V | = N , for all N-input function F ∈ C and for all input vectors ~x, ~x′ such that

xi = x′i for any i ∈ T ,

[ViewΠ,A(F, V, ~x)|y = F ({xi}i∈V )] 'c [ViewΠ,A(F, V, ~x′)|y = F ({x′i}i∈V )] .
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• for every server S, for all V ⊆ [U ] with |V | = N , for all N-input function F ∈ C and

for all input vectors ~x, ~x′,

[ViewΠ,S(F, V, ~x)|y = F ({xi}i∈V )] 'c [ViewΠ,S(F, V, ~x′)|y = F ({x′i}i∈V )] .

Let the ideal world protocol be where the computation of F is performed through a trusted

functionality F . Each party Pi sends their input xi to F , the server sends F and V to

F , who performs the computation and sends the output F ({xi}i∈V ) to each Pi, i ∈ V . Let

IDEALF ,S(F, V, x) denote the joint output of the ideal-world adversary S, parties P1, . . . , PU

and the server S. Let REALΠ,A(F, V, x) denote the joint output of the real-world adversary

S, parties P1, . . . , PU and the server S.

The protocol Π has (malicious) circuit privacy if for every malicious (and possibly un-

bounded) adversary A corrupting any number of clients, there exists an unbounded simulator

S with black-box access to A such that for all V ⊆ [U ] with |V | = N , for all N-input function

F ∈ C and for all input vectors ~x, IDEALF ,S(F, V, x) 's REALΠ,A(F, V, x).

Adding circuit privacy to an on-the-fly MPC protocol via circuit-private MFHE scheme

has two implications beyond the definition state above. First, it automatically strengthen

the protocol against malicious adversary without using setup. This is because the evaluated

output only depend on the output and encrypted input even against malformed public keys

and ciphertexts. On the other hand, it implies that the clients do not know the function

being evaluated, which in turn makes it difficult, if possible, to verify against malicious

server. Therefore, we assume that the server is only honest-but-curious, who follows the

protocol, but may try to learn clients’ input data.

Naturally, MFHE scheme leads to server-assisted MPC by having each client generates

keys, encrypts its input and uploads to the server. The server then runs an evaluation

algorithm on the encrypted inputs. However, in order to decrypt the evaluated output, one

needs to have all secret keys. One solution, as in [LTV12], is to run another MPC protocol

with each client’s secret key as input to decrypt. However, this results in multiple rounds in

the plain model. In order to solve this problem, we use projective garbling scheme.
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After the server runs evaluation algorithm, it creates a garbled circuit of MFHE decryp-

tion with secret keys as input. In order to create a garbled input, the server cannot give e

to the clients as it will allow the clients to generate multiple garbled inputs, thus render-

ing the security meaningless. We solve this problem by using 1-out-of-2 oblivious transfer

(OT). In order to minimize the round complexity of our MPC protocol, we would like to use

one-round variant of OT. However, the standard 1-round 1-out-of-2 OT protocols known are

only secure against semi-honest receiver.

Before we describe the protocol, we first show that we can use a circuit-private single-key

FHE to construct a 1-round 1-out-of-2 OT protocol that secure against malicious receiver.

This protocol serves as a building block we will use in the construction of 3-round on-the-fly

MPC protocol.

4.6.1 1-round 1-out-of-2 OT against Malicious Receiver

Let F = (KeyGenF ,EncF ,EvalF ,DecF) be maliciously circuit-private (single-key) FHE. We

define a circuit Cb0,b1(x) = bx. We define OTM = (GOT, QOT, AOT, DOT) as follows:

GOT(1λ):

1. Let (pkF , skF)← KeyGenF(1λ).

2. Output pk = pkF and sk = skF .

QOT(pk, b):

1. Output q = EncF(pk, b).

AOT(s0, s1, pk, q):

1. For i = 1, . . . , τ , let ai = EvalF(Cs0[i],s1[i], pk, q).

2. Output a = (a1, . . . , aτ ).
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DOT(sk, a):

1. Parse a = (a1, . . . , aτ ).

2. For i = 1, . . . , τ , let s[i] = DecF(sk, ai).

3. Output s = (s[1], . . . , s[τ ]).

Lemma 4.6.3. There exists an unbounded algorithm Sim such that for any s0, s1 ∈ {0, 1}τ ,

pk∗, q∗ of appropriate length, there exists b∗ = b(pk∗, q∗) ∈ {0, 1} such that

Sim(sb∗ , pk
∗, q∗) 's AOT(s0, s1, pk

∗, q∗).

Proof. Let ExtF , SimF be the extractor and the simulator guaranteed by circuit privacy. We

define Sim as follows:

Sim(s, pk∗, q∗):

1. Let b∗ = ExtF(pk∗F , q
∗).

2. For i = 1, . . . , τ , let a∗i = ExtF(pk∗, q∗, sb∗[i]).

3. Output a∗ = (a∗1, . . . , a
∗
τ ).

For each i = 1, . . . , τ , we have a∗i 's EvalF(Cs0[i],s1[i], pk
∗, q∗) by circuit privacy of F .

Note that for i = 1, . . . , τ , for fixed pk∗, q∗, the distributions on each side are independent

(only depend on randomness used for EvalF and ExtF). Thus, the joint distributions a∗ 's

AOT(s0, s1, pk
∗, q∗).

Theorem 4.6.4. Assuming a circuit-private single-key FHE, there exists a one-round 1-out-

of-2 oblivious transfer protocol that secure against malicious receiver.
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4.6.2 Construction of On-the-fly MPC

Let E = (KeyGen,Enc,Eval,Dec) be a (leveled) compact maliciously circuit-private MFHE

scheme with secret key length s = s(λ) and using r = r(λ) random bits for key generation.

For simplicity, we assume that each client’s input is 1 bit. The protocol can be easily

generalized to the case where each client holds many bits of input. Compactness of the

MFHE implies that the evaluated output do not depend on the size of the input. Thus, the

rest of our protocol stays the same. Let (GOT, QOT, AOT, DOT) be a 1-round 1-out-of-2 OT

protocol. Let (GarbCircuit,GarbEval) be a projective gabling scheme. Let U be the set of

indices of all clients in the system. We describe an on-the-fly MPC protocol ΠN(V, F, x) as

follows:
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On-the-fly MPC Protocol

Step 1: For i ∈ [U ], client Pi generates a key pair (pki, ski) = KeyGen(1λ; ri) and

encrypts his input ci ← Enc(pki, xi). For each j = 0, . . . , s + r − 1, Pi also generates

(pkjOT,i, sk
j
OT,i)← GOT(1λ). It computes bitwise qji = QOT(pkjOT,i, ski[j]) for j = 0, . . . , s−

1, and qs+ji = QOT(pkjOT,i, ri[j]) for j = 0, . . . , r − 1. It then sends (pki, ci, pkOT,i,
−→q i) to

the server S.

The server S then selects a circuit C representing the function F on inputs {xi}i∈V for

a subset V ⊆ U such that |V | = N . We may assume w.l.o.g. that V = [N ].

Step 2: The server S computes c = Eval(C, pk1, . . . , pkN , c1, . . . , cN). S computes a

garbled circuit (G, e) = GarbCircuit(1λ, gc,pk1,...,pkN ) where

gc,pk1,...,pkN ((sk1, r1), . . . , (skN , rN)) =



Dec(sk1, . . . , skN , c) if (pki, ski) =

KeyGen(1λ; ri)

for all i ∈ [N ];

⊥ otherwise

and e = (X0
0 , X

1
0 , . . . , X

0
N(r+s)−1, X

1
N(r+s)−1). For each i ∈ [N ] and j = 0, . . . , r+ s− 1, it

computes aji = AOT(pkOT,i, q
j
i , X

0
i(r+s)+j, X

1
i(r+s)+j). It sends (G, a0

i , . . . , a
r+s−1
i ) (and V )

to Pi for each i ∈ V .

Step 3: For i ∈ V , client Pi computes its garbled input Xi(r+s)+j = DOT(skOT,i, a
j
i )

for j = 0, . . . , r + s − 1 and broadcasts to other Pi′ ∈ V . Each client computes y =

GarbEval(G,X0, . . . , XN(r+s)−1).

Figure 4.1: On-the-fly multi-party computation protocol with circuit privacy
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Remark

1. The upper bound on the number of clients whose inputs are used in a computation

must be known in advance. This requirement is inherited from López-Alt et al.’s multi-

key homomorphic encryption scheme that we use to construct MFHE. It is also the

case in [LTV12] on-the-fly MPC construction.

2. Private channel (from the server) between clients is required to prevent the server

learning clients’ secret keys. This requirement can be done by honest-but-curious

server passing public keys of all parties in V along with its messages in step 2. The

public key of Pi can be used to encrypted a garbled input from Pj to Pi.

3. We require circular security between MFHE and OT schemes. This can be done with-

out additional assumption by using OT constructed from the same circuit-private ho-

momorphic scheme in section 4.

Theorem 4.6.5. Let E = (KeyGen,Enc,Eval,Dec) be a leveled compact MFHE scheme. Let

OT = (GOT, QOT, AOT, DOT) be an OT protocol. Let Gb = (GarbCircuit, Garb-Eval) be a

projective garbling scheme. If E is maliciously circuit-private, OT is secure against malicious

receiver, and Gb is secure garbling scheme, then the protocol ΠN is a 3-round secure on-the-fly

MPC protocol with circuit privacy.

Proof. First, we will show the privacy for honest clients against malicious adversaries cor-

rupting t < N clients. Let T ( [N ] be the set of corrupted clients.

Lemma 4.6.6. For any y ∈ {0, 1}, x, x′ ∈ {0, 1}N , F : {0, 1}N → {0, 1} and T ( [N ] such

that xi = x′i for any i ∈ T ,

[ViewΠ,A(F, x)|y = F (x)] 'c [ViewΠ,A(F, x′)|y = F (x′)] .

Proof. Let G and G′ be garbled circuits A receives in step 2 with input x and x′, respec-

tively. Note also that by the sender security of OT against malicious adversary, A can
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receive at most one garbled input for each client it controls. Since both circuits evalu-

ate to y on garbled inputs corresponding to valid secret keys and 0 otherwise, (G,X) 'c

(G′, X ′). Since ai and garbled inputs do not depend on x, x′, [ViewΠ,A(F, x)|y = F (x)] 'c

[ViewΠ,A(F, x′)|y = F (x′)].

Now we show the privacy for clients against honest-but-curious server. By the sender

security of OT , we may replace each bit of secret keys and random coins in queries −̃→q i by

a random bit, assuming the circular security. Then by the security of E , we may replace

clients’ input in c̃i by random bits. Thus, the honest-but-curious server learns nothing about

{xi}i∈[U ]. Since this indistinguishability argument can be one separately for each client, the

security for honest clients can be achieved regardless of corrupted clients’ messages.

Lastly, we will show the privacy for the server against unbounded adversaries. Since we

do not guarantee client privacy here, we may assume w.l.o.g. that the adversary corrupts all

clients in V . Let T = V = [N ] be the set of corrupted clients.

Let Ext and Sim be the extractor and the simulator in Definition 4.2.5. We construct an

unbounded simulator Ss as follows:

Step 1: The simulator receives {(p̃ki, c̃i, p̃kOT,i,
−̃→q i)}i∈T from As, and runs Ext for E to

compute corrupted input x̃ = Ext(1λ, p̃ki, c̃i). It then submits to the ideal functionality F to

obtain b = F (x̃1, . . . , x̃N).

Step 2: For i /∈ T , the simulator generates a key pair (pki, ski) ← KeyGen(1λ). The

simulator runs Sim for E to compute c̃ = Sim(1λ, (p̃k1, . . . , p̃kN), (1, c̃1), . . . , (N, c̃N), b). It

then computes a garbled circuit (G′, e′) = GarbCircuit(1λ, gc̃,p̃k1,...,p̃kN
) where

gc̃,p̃k1,...,p̃kN
((sk1, r1), . . . , (skN , rN)) =



Dec(sk1, . . . , skN , c̃) if (p̃ki, ski) =

KeyGen(1λ; ri)

for all i ∈ [N ];

⊥ otherwise
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and e′ = (X0
0 , X

1
0 , . . . , X

0
N(r+s)−1, X

1
N(r+s)−1). For each i ∈ [N ] and j = 0, . . . , r + s − 1, it

computes aji = AOT(pkOT,i, q
j
i , X

0
i(r+s)+j, X

1
i(r+s)+j). It sends (G′, a0

i , . . . , a
r+s−1
i ) (and V ) to

As for each i ∈ T .

Step 3: The simulator receives garbled inputs Xi(r+s)+j for j = 0, . . . , r + s− 1 and i ∈ T

from A and retrieves (s̃ki, r̃i) using e′. It then verifies if (p̃ki, s̃ki) = KeyGen(1λ; r̃i)) for all

i ∈ T . If not, it outputs ⊥ and aborts.

Output: The simulator receives the output of the corrupted parties from As and returns

it as its output.

By Definition 4.2.5, c̃ 's c. Thus, G′ 's G and e′ 's e. We have IDEALF ,Ss(F, V, x) 's

REALΠ,As(F, V, x) by circuit privacy of E .

4.7 Conclusion and Open Questions

We have shown that we can construct circuit-private MFHE from the existing multi-key HE

and single-key circuit-private FHE. We also use it to construct an on-the-fly MPC with circuit

privacy against malicious clients in the plain model. However, our construction inherits the

same assumption as López-Alt et al.’s construction of MFHE including DSPR and RLWE.

So, the main open question is:

Is it possible to construct a multi-key homomorphic encryption (with circuit privacy) under

standard assumptions such as LWE in plain model?

Since our technique only relies on properties that exist in many single-key construction,

we expect that we can apply it to other multi-key HE as well. Moreover, circuit privacy for on-

the-fly MPC requires some degree of trust toward a server party. Our construction assumes

the server to be honest-but-curious. We would like to capture wider range of unintended

behavior of the server while still achieving circuit privacy. So, another open question is:
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Is there a better model for on-the-fly MPC with circuit privacy?
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