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Experimental Demonstration of Frequency
Regulation by Commercial Buildings – Part I:

Modeling and Hierarchical Control Design
Evangelos Vrettos, Student Member, IEEE, Emre C. Kara, Member, IEEE, Jason MacDonald, Student

Member, IEEE, Göran Andersson, Fellow, IEEE, and Duncan S. Callaway, Member, IEEE

Abstract—This paper is the first part of a two-part series in
which we present results from one of the first worldwide exper-
imental demonstrations of frequency regulation in a commercial
building test facility. We demonstrate that commercial buildings
can track a frequency regulation signal with high accuracy
and minimal occupant discomfort in a realistic environment.
In addition, we show that buildings can determine the reserve
capacity and baseline power a priori, and identify the optimal
tradeoff between frequency regulation and energy efficiency.

In Part I, we introduce the test facility and develop relevant
building models. Furthermore, we design a hierarchical controller
for the Heating, Ventilation and Air Conditioning (HVAC) system
that consists of three levels: a reserve scheduler, a building climate
controller, and a fan speed controller for frequency regulation.
We formulate the reserve scheduler as a robust optimization
problem and introduce several approximations to reduce its
complexity. The building climate controller is comprised of a
robust model predictive controller and a Kalman filter. The
frequency regulation controller consists of a feedback and a
feedforward loop, provides fast responses, and is stable.

Part I presents building model identification and controller
tuning results. Specifically, we find out that with an appropriate
formulation of the model identification problem, a two-state
model is accurate enough for use in a reserve scheduler that
runs day-ahead. In Part II, we report results from the operation
of the hierarchical controller under frequency regulation.

Index Terms—ancillary services; frequency control; demand
response; commercial building; HVAC system; MPC.

I. INTRODUCTION

A. Motivation and Related Work

Power system frequency reflects the balance between gen-
eration and demand of electric power. If generation exactly
meets demand, the frequency is at its nominal value (50 Hz in
Europe and 60 Hz in North America). On the other hand, if
generation becomes lower than demand, the frequency drops
and vice versa. Transmission System Operators (TSOs) rely on
frequency control reserves in the form of Ancillary Services
(AS) to stabilize frequency after a sudden disturbance and
recover it to its nominal value.

E. Vrettos and G. Andersson are with the Power Systems Laboratory, ETH
Zurich, Switzerland, e-mails: {vrettos|andersson}@eeh.ee.ethz.ch.

E. C. Kara is with the SLAC National Accelerator Laboratory, California,
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J. MacDonald is with the Grid Integration Group, LBNL, e-mail: jsmac-
donald@lbl.gov.

D. S. Callaway is with the Energy and Resources Group, University of
California, Berkeley, USA, e-mail: dcal@berkeley.edu.

The integration of fluctuating Renewable Energy Sources
(RES) in the grid increases the need for frequency control
reserves [1]. Although these reserves are traditionally provided
by power plants, additional reserve resources will be needed
with large RES shares. Conceptually, loads can provide fre-
quency control by reducing their consumption when frequency
is low and increasing consumption when frequency is high [2].

Heating, Ventilation and Air-Conditioning (HVAC) systems
in commercial buildings are well suited for frequency control
for three main reasons: (i) commercial HVAC systems make up
a large percentage of the total electricity demand of a country
(around 20% in the US [3], [4]), (ii) commercial buildings
often have a large thermal inertia, and (iii) many buildings
(one-third of all buildings in the US [3]) have a Building Au-
tomation System (BAS) that facilitates control implementation.
However, HVAC systems are typically complex with many
control variables and cascaded control loops. Most of the early
work on commercial buildings focused on the development of
building thermal models [5], [6], and on using the building’s
thermal mass for load shifting and peak shedding to minimize
electricity cost and demand charges [7]–[9].

Some works investigated the potential of commercial build-
ings for AS provision. A retail store and an office building
participated in a pilot program for non-spinning reserves
in the California Independent System Operator’s AS market
using global temperature adjustments in [10]. In [11] spinning
reserve with a duration of 15 minutes was offered by curtailing
the air conditioning load of a hotel. Reference [12] used a
detailed model of a Variable Air Volume (VAV) HVAC system
to simulate the provision of spinning reserve with setpoint
adjustments in zone temperature, duct static pressure, Supply
Air Temperature (SAT), and chilled water temperature.

This paper concerns frequency regulation from commercial
buildings, which is also known as secondary (or load) fre-
quency control, automatic generation control, and frequency
restoration reserve. Frequency regulation is activated via a
signal sent from the TSO typically every 2�4 seconds with the
goal of correcting frequency and tie-line power deviations [13].
There is a limited amount of theoretical, simulation-based or
experimental work on frequency regulation with commercial
buildings. In [14] a heat pump was controlled to track a
frequency regulation signal by changing the refrigerant’s flow
rate. Adjustments of the duct static pressure setpoint were
used in a simulation study in [15] for frequency regulation.
References [3] and [16] investigated frequency regulation via
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fan power control and simulations showed that 15% of the
fan power can be offered as reserve, when the frequency band
of the regulation signal is f 2 [1/(10 min), 1/(4 sec)]. The
follow-up work [17] included chiller control enlarging the
frequency band to 1/(60 min).

Since buildings are energy-constrained resources it is impor-
tant to determine the reserve capacity reliably. Model Predic-
tive Control (MPC) was used in [18] to quantify the flexibility
of a commercial building and offer it to a utility. Reference
[19] presented a hierarchical control framework consisting of a
reserve capacity scheduler, an MPC for HVAC system control,
and a feedback controller to track the regulation signal. The
framework of [19] was extended in [20] to include energy-
constrained regulation signals, and in [21] with a chance-
constrained reserve scheduling formulation. Reference [22]
proposed a simulation-based approach to estimate the reserve
capacity neglecting the time-coupling across different schedul-
ing intervals. The energy capacity of a commercial building
was estimated in [23] with a virtual battery model.

Estimating the building’s baseline consumption without
frequency regulation is challenging. Baseline estimation was
performed on-line in [24] using a low-pass filter. If MPC is
used as in [18]–[21] the baseline power is known ahead of
time, which is advantageous because it facilitates the financial
settlement with the TSO.

Apart from simulation-based studies, experimental verifi-
cation of frequency regulation by commercial buildings is
necessary to build confidence for widespread implementation.
Unfortunately, there have been only a few demonstrations
and field tests so far. The feasibility of offering up- and
down-regulation products with global temperature adjustments
and ventilation power control was investigated in [25]. Ref-
erence [26] demonstrated that fans can provide frequency
regulation with open-loop control of the frequency of the
Variable Frequency Drive (VFD) using industry-standard de-
mand response communications. In [24] an auditorium of a
university building provided frequency regulation controlling
the fan speed and air flow rate setpoints. The fan power
was indirectly controlled via static duct pressure setpoint
adjustments in [18].

Frequency regulation experiments with a variable speed heat
pump were reported in [27] in a lab-scale microgrid, using
direct compressor control and adjustments of the supply water
temperature setpoint. Reference [28] developed a Proportional-
Integral-Derivative (PID) controller for frequency regulation
with a chiller, and combined it with a high-pass filter of the
regulation signal and a baseline estimator. The follow-up work
[29] identified the BAS delays and chiller ramp-rates and
minimum cooling power limits as important issues for practi-
cal implementation. Finally, [30] investigated experimentally
the efficiency of fast demand response actions in commercial
buildings.

B. Contribution and Organization of this Paper
The novel contribution of this two-part paper is the first

experimental demonstration of frequency regulation from a
commercial building that simultaneously addresses the follow-
ing challenges: (i) a priori determination of reserve capacity

and bidding in a day-ahead AS market; (ii) a priori declaration
of the short-term operating power around which we provide
frequency regulation (baseline power); (iii) balancing energy
consumption and reserve capacity, such that the net profit is
maximized and the effect on occupant comfort is minimal;
and (iv) accurate tracking of the regulation signal with fan
speed control. Addressing these challenges is important to
gain access to the AS market, but this is hard to achieve
in an experimental demonstration due to various uncertainties
related to model mismatch, forecast error, and communication
delays.

For the purposes of the experiment we adopt the hierarchical
control framework of [19]–[21], and implement it in a way to
avoid conflicts with the existing controller of the HVAC system
and minimize the necessary modifications. The framework has
three levels: the reserve capacity is scheduled in a day-ahead
fashion using robust optimization (level 1), the HVAC system’s
consumption is determined every 15 minutes with a robust
MPC (level 2), and the frequency regulation signal is tracked
every 4 seconds by controlling the HVAC power (level 3).
Although the main idea of the hierarchical controller is taken
from [19]–[21], this paper modifies the optimization problem
formulations of level 1 and level 2, and it proposes a novel
frequency regulation controller for level 3.

In contrast to [19]–[21] that dealt with water-based HVAC
systems with simplified linear dynamics, the proposed reserve
scheduler (level 1) and MPC controller (level 2) formulations
are appropriate for VAV HVAC systems with fans with non-
linear dynamics. Specifically, our contribution with respect
to [19]–[21] is to reformulate and approximate the problem
formulations in order to account for the nonlinearity in a
computationally tractable way, as well the development of a
Kalman filter to provide estimates of unmeasured states to the
controller. On the modeling side, we propose a model identifi-
cation approach that produces two-state building models with
more accurate day-ahead predictions compared with standard
approaches.

The proposed fan controller for frequency regulation (level
3) is a switched controller comprised of a feedforward and
a feedback loop. This is a significant addition to the control
framework of [19]–[21]. Our approach is also different from
[26] that used open-loop control, and from [24] that developed
a standard Proportional-Integral (PI) controller for the fan. The
proposed controller is able to track a frequency regulation
signal very accurately and without compromising stability.

We report experimental results with respect to comparison
of building models, controller tuning, amount of reserve capac-
ity under different conditions, occupant comfort satisfaction,
as well as effect on energy consumption, SAT, and chiller op-
eration. Our results demonstrate that the hierarchical controller
allows commercial buildings to provide frequency regulation
in an AS market with high accuracy.

In Part I of this two-part paper, we introduce the test facility
in Section II, identify and compare different building models
in Section III, and present the hierarchical control design in
Sections IV - VI. Extensive experimental results are reported
in Part II [31].
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Fig. 1. The Facility for Low Energy eXperiments (FLEXLAB) at LBNL.
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Fig. 2. The HVAC system of building cells 1A and 1B of FLEXLAB.

II. TEST FACILITY

A. FLEXLAB: our Test Facility

The experiment was performed at the Facility for Low
Energy eXperiments (FLEXLAB), a new facility for energy ef-
ficiency research in buildings located at the Lawrence Berkeley
National Laboratory (LBNL). The facility (shown in Fig. 1) is
comprised of 4 buildings (called “bays”) and each of them has
2 thermally isolated test “cells”. Each pair of cells is designed
to be thermally identical, constructed with the same materials
and dimensions.

The thermal isolation resulting from the near adiabatic
walls between the two cells allows them to be modeled
independently. This is a unique feature of FLEXLAB that
allows us to perform frequency regulation experiments in one
of the two identical cells (cell “1A”), while using the other one
(cell “1B”) as a benchmark to evaluate the effect of our control
actions in real time and under the same external conditions.
The bay used in our experiment has a south orientation and a
total floor area of 120 m2 (60 m2 per building cell).

Three major cascade control loops are present in a VAV
HVAC system: chilled water temperature control, SAT control,
and zone (room) temperature control. A chiller plant cools
down water that is then piped to the building’s Air Handling
Unit (AHU). The chilled water decreases the temperature of a
mixture of return and outside air in the AHU using a heat
exchanger, and the flow of the chilled water is controlled
to maintain a constant SAT. The cooled air is circulated
to the building zones through the duct system using fans,
which account for approximately 35% of the total energy
consumption of the HVAC system [32]. The temperature of
each zone is maintained close to the desired setpoint by
controlling the damper position of the VAV box.

Typically, an AHU provides several building zones with
cooled air, whereas reheating is performed at the VAV boxes.
As shown in Fig. 2, FLEXLAB differs from this typical mode
of operation in two ways: (i) the cells are served by dedicated
AHUs that contain a heating coil; and (ii) the air volume is
controlled by fan speed alone rather than damper position.

||Power Systems Laboratory, ETH Zürich 19.02.2016Evangelos Vrettos 1

Control sequences

Day d-1 Day d

Level 1: 
reserve scheduler

12:0000:00 24:00
Level 2: 

Supply air flow setpoint

Level 3: 
Fan speed setpoint

15 
min

30 
min

45 
min

4s 8s …

…

Fig. 3. Control sequences of the three levels of the hierarchical controller.

In this respect, the test facility is not very representative of
larger buildings. Nevertheless, the building’s construction (in
terms of materials and insulation) is representative of larger
commercial buildings constructed in the 1980’s.

Note that the presence of separate AHUs in the two identical
cells allowed direct comparisons between the cells, as well as
a thorough investigation of the effect on comfort satisfaction,
energy consumption, SAT, and chiller power. This test facility
provided us with a controlled environment to verify the
controller’s effectiveness in providing frequency regulation.
We believe that this is a necessary step before field testing
in a larger commercial building in the future.

B. Control Approach

FLEXLAB is controlled by a Central Working Station
(CWS) based on an existing control sequence programmed
in LabVIEW. From a TestStand National Instruments user
interface, the operator can monitor the system and modify the
setpoints of various control loops. We develop the hierarchical
controller for frequency regulation externally in order to
minimize potential conflicts with the LabVIEW code, and send
the control commands to the CWS via a scripting environment.

Specifically, we disable the zone temperature PI control
of FLEXLAB and replace it with an MPC-based controller,
which determines the air flow rate setpoints. However, the
hierarchical controller does not substitute the chilled water
temperature and SAT control loops of the HVAC system,
which remain active. The hierarchical controller consists of the
following three levels, and the control sequences are shown in
Fig. 3.

1) Level 1: Reserve Scheduler: The goal of the reserve
scheduler is to determine the reserve capacity that the building
can reliably offer to the TSO by solving a multi-period
robust optimization problem. We assume a day-ahead reserve
scheduling occurring at 12.00 of each day to determine the
reserve capacity for the next day, which is common in several
AS markets [33].

2) Level 2: Room Climate Controller: This zonal controller
calculates the supply air flow rate setpoints that minimize
energy consumption while ensuring occupant comfort under
reserve provision. It is implemented as a robust MPC that
runs every 15 minutes along with a Kalman filter.

3) Level 3: Frequency Regulation Controller: The goal
of this controller is to track the frequency regulation signal
every 4 seconds by modifying the fan power via fan speed
control with a VFD. For this purpose, we designed a switched
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Tr Tm

Cr Cm
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Fig. 4. The resistance-capacitance network of the building thermal model.

controller comprised of a feedforward model-based controller
and a feedback PI controller.

III. MODELING AND IDENTIFICATION

A. Building Thermal Model

We model the building with the 2-state resistance-
capacitance network of Fig. 4. If the heating coil of the AHU
is deactivated, the cooling power of the HVAC system is given
by Qc = ṁcp(Ts � Tr), where Tr is the room temperature, ṁ
is the mass air flow rate, cp is the specific heat capacity of air,
and Ts is the SAT. Let us denote by: Tm the temperature of
the building’s lumped thermal mass; Cr and Cm the thermal
capacitances of the room and the thermal mass; Ta the ambient
temperature; Rra and Rrm the thermal resistances between
the room and the ambient, and between the room and the
thermal mass, respectively; G the solar irradiance; � the solar
irradiance absorption factor; and Ig the internal heat gain. With
this notation, the continuous-time state-space model can be
written as

"
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The model is bilinear between the control input ṁ and the
state Tr. Note that there is no bilinearity between ṁ and Ts
because Ts is fixed in our experiment.

With a first-order Euler discretization, the discrete-time
model maintains the structure of the continuous-time matrices
[34] and can be written as
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where the state, input and disturbance vectors are defined as
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Fig. 5. Identification and comparison of four building thermal models.

We developed the following regression problem to identify
the entries of matrices A, B

u
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using measure-
ments of Tr,k, ṁ
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where x
k

(1) = Tr,k and x
k

(2) = Tm,k

. Since the state
Tm,k

is not directly measured, the regression (4) is a non-
linear optimization problem that involves multiplications of
the optimization variables (the model parameters).

Constraints (4c) represent the fact that the positive elements
of the continuous-time matrices Ac, Bc

u

, and Bc

v

in (1) remain
positive in the the discrete-time matrices A, B

u

, and B
v

due to
the first-order discretization. Indeed, the discrete-time matrices
are computed with A = I + �t · Ac, B

u

= �t · Bc

u

, and
B

v

= �t · Bc

v

, where �t = 15 minutes is the discretization
step and I is the identity matrix. Constraints (4d) are lower and
upper bounds on the estimated unmeasured state x̂

k

(2) =

ˆTm,k

(the bounds ˆTmin
m,k

= 0.01·Tr,k and ˆTmax
m,k

= 2.5·Tr,k were used).
We observed that if the data set is small, or if it does not

have sufficient excitation, problem (4) – without including (4e)
– can lead to an unstable bilinear model, which is unreliable
due to over-fitting. To avoid this, we introduce constraints (4e)
that force the optimizer to identify a stable bilinear model that
matches the data well. Of course, if the data set has sufficient
excitation and is sufficiently large, constraints (4e) will not be
active, i.e., the optimal solution of (4) will satisfy (4e) as strict
inequalities. To ensure sufficient excitation the data set should
include various weather conditions, HVAC setpoints (mainly
SAT and air flow rate), and internal heat gains. Although
excitation was sufficient in our experiment, this might not
be always the case for buildings under normal operation, and
therefore we use constraints (4e) to be on the safe side.

In problem (4), the estimate x̂
k+1(1) =

ˆTr,k+1 at time step
k + 1 depends directly on the measurement x

k

(1) = Tr,k at
time step k. Thus, the model matrices A,B

u

, B
xu

and B
v

are
identified such that the one-step prediction of the model x̂

k+1

(from time step k to time step k+1) is as close as possible to
the actual measurement x

k+1. For this reason, a model identi-
fied using (4) is called model with “1-step ahead prediction”.
Of course, it is also possible to identify a 1

st-order model by
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TABLE I
COMPARISON OF BUILDING MODELS WITH RESPECT TO RMSE

1 state, 1 step 1 state, 1 day 2 states, 1 step 2 states, 1 day
RMSE 0.92�C 0.67�C 0.89�C 0.42�C

TABLE II
PARAMETERS OF THE OLDER MODEL (2 STATES, 1 DAY PREDICTION)

a11 = 0.8665 a12 = 0.0918 a21 = 0.0374 a22 = 0.9703
b = 0.2996 d11 = 0.0230 d12 = 2.016 · 10�4

d13 = 1.424 · 10�4

TABLE III
PARAMETERS OF THE NEW MODEL (2 STATES, 1 DAY PREDICTION)

a11 = 0.6344 a12 = 0.2661 a21 = 0.1021 a22 = 0.9170
b = 0.4716 d11 = 0.0405 d12 = 0.0028 d13 = 3.3686 · 10�4

TABLE IV
FAN MODEL PARAMETERS

↵3 = 2588.2 ↵2 = �1458.0 ↵1 = 630.9 ↵0 = 28.7
�3 = 0.0032 �2 = �0.0151 �1 = 1.4521 �0 = 55.7634

- - �1 = 0.0133 �0 = 0.0606

neglecting the lumped thermal mass of the room. This model
identification approach is more appropriate for standard MPC
applications (for example, energy-efficient building control),
because what matters the most is the one-step prediction.

However, in this experiment the building model is also used
in the reserve scheduler, which runs on a day-ahead basis, and
thus high-quality day-ahead predictions are also important. For
this purpose, we propose to modify the model identification
problem by substituting the measurement x

k

(1) = Tr,k with
the optimization variable x̂

k

(1) =

ˆTr,k in (4b).1 For any
time step k > 0 within each day, the model matrices are
identified such that the estimates x̂

k

(obtained by propagating
the initial state x0 for k time steps) are as close as possible
to the actual measurements. A model identified with this
formulation is called model with “1-day ahead prediction”, and
it is expected to generate more accurate day-ahead predictions
for the building states. Note, however, that this formulation is
more complex due to non-linearities (multiplications between
the model matrices) appearing when propagating x0 until the
end of the day.

Two sets of building model parameters were fitted to
investigate the importance of periodic calibration. The first
set (“older model”) used data from 17 � 25 June and 4 � 5

July 2015, whereas the second set (“new model”) used data
from 12� 18 November 2015. The building was excited with
different combinations of air flow rate, SAT, and internal heat
gains. Four different model variants were compared: (i) 1-state
model with 1-step ahead prediction, (ii) 1-state model with
1-day ahead prediction, (iii) 2-state model with 1-step ahead
prediction, and (iv) 2-state model with 1-day ahead prediction.

The identification results are shown in Fig. 5 and the model
Root Mean Squared Errors (RMSEs) are given in Table I. As
expected, increasing the number of states reduces the RMSE.
Moreover, the models with “1-day ahead prediction” perform

1The only exception is time step k = 0. The measurement x0 is used in
the left hand side of (4b) for initialization purposes.
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Fig. 6. Raw fan measurements and the identified fan models.

better than the ones with “1-step ahead prediction”. We use
the 2-state model with 1-day ahead prediction in the frequency
regulation experiments since it achieves the lowest RMSE. The
identified model parameters are shown in Tables II and III.

B. Fan Model
A steady-state fan model is required in the MPC to map the

air flow setpoint to fan power, and in the frequency regulation
controller to convert the electric power setpoint to a fan speed
reference. According to the fan laws, the mass air flow rate
u is proportional to the fan speed Nf, and the fan power Pf
increases with the cube of the fan speed. Therefore, a steady-
state model can be obtained by fitting the parameters of

Pf = f(u) = ↵3u
3
+ ↵2u

2
+ ↵1u+ ↵0 (5)

Pf = g(Nf) = �3N
3
f + �2N

2
f + �1Nf + �0 (6)

u = h(Nf) = �1Nf + �0 . (7)

For this purpose, we vary the fan speed setpoint from the
minimum value of 10% to the maximum value of 90% of the
rated fan power (with a step of 5%) and record the air flow
rate and electric power. Each setpoint is kept for 6 minutes,
but the first 20 seconds of the data after each step change are
discarded to account for communication delays and the fan
transients. The identified parameters are given in Table IV,
whereas the measurements and identified models are shown
in Fig. 6. The fitting performance is very high: the RMSE is
only 5 W for the speed-to-power model and 21 W for the
flow-to-power model.

IV. LEVEL 1: RESERVE SCHEDULER

A. Robust Reserve Scheduling Formulation
Let Ru,k and Rd,k denote the electric reserve capacities at

time step k for regulation up and down, respectively. 2 It is
convenient to define also the thermal up- and down-reserve
capacities ru,k and rd,k as the maximum changes in the mass
air flow rate due to reserve provision. In cooling operation,
a request for regulation up results in a reduction in air mass
flow rate, such that Ru,k is related to rd,k. On the other hand,
regulation down results in an increase in air mass flow rate
(Rd,k is related to ru,k). Ru,k and Rd,k are coupled to rd,k and
ru,k with the flow-to-power fan model (5) according to

Ru,k = f(u
k

)� f(u
k

� rd,k) (8)
Rd,k = f(u

k

+ ru,k)� f(u
k

) , (9)

2Up-reserve is an increase of generation or decrease of consumption,
whereas down-reserve is a decrease of generation or increase of consumption.
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where u
k

is the operating point of air flow. This nonlinear
relationship is graphically shown in Fig 7.

The objective is to minimize the total cost defined as the
sum of energy consumption cost and reserve profit

c
k

P
k

� �
k

�
Rd,k +Ru,k

�
, (10)

where c
k

is the electricity price and P
k

is the fan power
consumption. Assuming the same payment �

k

for up-reserves
and down-reserves and using (8) and (9), the reserve profit is
given by

�
k

�
Rd,k +Ru,k

�
= �

k

⇥
f(u

k

+ ru,k)� f(u
k

� rd,k)
⇤
. (11)

Typically, the TSO requests the reserve energy as a fraction
of the reserve capacity using a normalized frequency regula-
tion signal w

k

2 [�1, 1] [35]. Thus, the reserve request at time
step k is

R
k

=

8
<

:
w

k

Ru,k, if w
k

< 0

w
k

Rd,k, if w
k

� 0 .
(12)

The electric reserve request can be translated to a perturbation
around u

k

using the fan curve

�u
k

= f�1
(P

k

+R
k

)� u
k

. (13)

With the above notation, the multi-period robust reserve
scheduling problem can be written as

min

u

k

,ru,k,rd,k

X
N1�1

k=0
c
k

f(u
k

)� �
k

�
Rd,k +Ru,k

�
(14a)

s.t. x
k+1 = Ax

k

+B
u

Ts · (uk

+�u
k

)+

B
xu

x
k

· (u
k

+�u
k

) +B
v

v
k

, 8k (14b)
umin,1  u

k

+�u
k

 umax,1, 8w
k

2 [�1, 1], 8k (14c)
xmin,k  x

k

 xmax,k, 8w
k

2 [�wlim, wlim], 8k . (14d)

We minimize the “certainty-equivalent” cost in (14a), i.e.,
the uncertain variable w

k

is fixed to zero, and therefore the
objective function is deterministic. An alternative approach
would be to minimize the worst-case cost in (14a). Equation
(14b) represents the building dynamics, whereas (14c) and
(14d) set upper and lower bounds on the air mass flow rate
and temperature, respectively. The limits umin,1 and umax,1 are
calculated at the fan speeds 20% and 80% with

umin,1 = h
�
20%

�
, umax,1 = h

�
80%

�
. (15)

The comfort zone (temperature) limits xmin,k and xmax,k are
time-varying and different for working and non-working hours.

Formulation (14) builds robustness to the uncertain regula-
tion signal w

k

with the robust input and state constraints (14c)
and (14d). Notice that w

k

appears in the reserve request R
k

in (12), whereas R
k

affects the change in air flow rate �u
k

in (13). The variable �u
k

appears directly in the HVAC input
constraints (14c), whereas it enters the comfort constraints
(14d) through the building dynamics (14b).

Since the input constraints are related to the HVAC power
consumption, the worst case realization of w

k

(normalized
reserve request) for each time instance is either full up-reserve
or full down-reserve activation, thus w

k

can take any value
in [�1, 1] in (14c). In other words, we schedule the HVAC
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Fig. 7. The fan curve linearization for the optimization. The thermal reserves
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power consumption such that it can increase as much as the
down-reserve capacity and decrease as much as the up-reserve
capacity at any point in time.

The state constraints maintain the temperature within the
comfort zone. The effect of frequency regulation on tempera-
ture depends on the net energy stored in (or withdrawn from)
the building via the reserve requests. Note that the (net) energy
content of the frequency regulation signal over 15 minutes is
typically limited; we denote this limit with 0 < wlim  1, and
the corresponding uncertainty set with w

k

2 [�wlim, wlim] in
(14d). Therefore, the worst-case lower temperature must be
higher than the lower boundary of the comfort zone, even in
the worst case positive reserve request with net energy equal
to wlim (fan power increase). Similarly, the worst-case higher
temperature must be lower than the upper boundary of the
comfort zone, even in the worst case negative reserve request
with net energy equal to �wlim (fan power reduction).

Note that (14) is not robust to model mismatch and weather
forecast errors. In practice, one can fix xmin,k (resp. xmax,k)
to a value above (resp. below) the lower (resp. upper) limit
of the comfort zone based on the building model’s accuracy
and experience, in order to build robustness to modeling and
forecast errors. Although this approach does not guarantee
constraint satisfaction, the experimental results of Part II show
that it works well in practice [31].

B. Reformulation and Approximation
Due to the uncertain variable w

k

, problem (14) is not
directly solvable. However, we derive the robust counterpart
problem (16) by formulating the input and state constraints of
(14) only for the boundaries of the uncertainty w

k

. In (16), x
k

and x
k

are the worst case higher and lower state trajectories,
respectively. We show in Proposition 1 that problems (16) and
(14) are equivalent, if the building operates in cooling mode.

min

u

k

,ru,k,rd,k

X
N1�1

k=0
c
k

f(u
k

)� �
k

�
Rd,k +Ru,k

�
(16a)

s.t. x
k+1 = Ax

k

+B
u

Ts · f�1
�
P
k

� wlimRu,k
�
+

B
xu

x
k

· f�1
�
P
k

� wlimRu,k
�
+B

v

v
k

, 8k (16b)
x
k+1 = Ax

k

+B
u

Ts · f�1
�
P
k

+ wlimRd,k
�
+

B
xu

x
k

· f�1
�
P
k

+ wlimRd,k
�
+B

v

v
k

, 8k (16c)
umin,1  u

k

� rd,k, u
k

+ ru,k  umax,1, 8k (16d)
xmin,k  x

k

, x
k

 xmax,k 8k . (16e)
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Lemma 1. Function f(u) is both monotonic and convex.

Proof. It is sufficient to show that the 1

st and 2

nd order deriva-
tives of f are non-negative for the parameters of Table IV. ⌅
Lemma 2. If w

k

2 [�wlim, wlim] with 0 < wlim  1, the
following statements are true:

min

w

k

(u
k

+�u
k

) = f�1
�
P
k

� wlimRu,k
�

for wlim  1 (17)

max

w

k

(u
k

+�u
k

) = f�1
�
P
k

+ wlimRd,k
�

for wlim  1 (18)

min

w

k

(u
k

+�u
k

) = u
k

� rd,k, for wlim = 1 (19)

max

w

k

(u
k

+�u
k

) = u
k

+ ru,k, for wlim = 1 . (20)

Proof. The proof is given in Appendix A. ⌅
Assumption 1. We assume that the building operates in
cooling mode by deactivating the heating coil of the AHU,
and the SAT is controlled to a setpoint Ts that satisfies

Ts  xmin,k  Tr,k, 8k . (21)

Therefore, increasing the air flow rate will always decrease
the room temperature.

Proposition 1. Under Assumption 1, optimization problems
(14) and (16) are equivalent.

Proof. The proof is given in Appendix A. ⌅
The dynamics in (16) involve the inverse of a polynomial

combination of optimization variables and are complex. This
is in contrast to the formulations of [19]–[21] where the
nonlinear fan dynamics were not considered. We propose to
approximate (16) by the simple linearization of the inverse
function shown in Fig. 7, which leads to problem (22). As
shown by Propositions 2 and 3, problems (16) and (22) are
equivalent only for the special case wlim = 1, but not in general
(0 < wlim  1).

min

u

k

,ru,k,rd,k

X
N1�1

k=0
c
k

f(u
k

)� �
k

�
Rd,k +Ru,k

�
(22a)

s.t. x
k+1 = Ax

k

+B
u

Ts · (uk

� wlim · rd,k)+

B
xu

x
k

· (u
k

� wlim · rd,k) +B
v

v
k

, 8k (22b)
x
k+1 = Ax

k

+B
u

Ts · (uk

+ wlim · ru,k)+

B
xu

x
k

· (u
k

+ wlim · ru,k) +B
v

v
k

, 8k (22c)
(16d), (16e) .

Proposition 2. Let x?

k

and x?

k

denote the maximum and
minimum state trajectories of the original problem (16). Fur-
thermore, let x⇤

k

and x⇤
k

denote the maximum and minimum
state trajectories obtained by (22). With 0 < wlim  1,
x⇤
k

� x?

k

and x⇤
k

� x?

k

hold for any time step k, i.e., the
approximation (22) overestimates the maximum and minimum
room temperatures compared with the original problem (16).

Proof. The proof is given in Appendix A. ⌅
Proposition 3. Problems (16), (22) are equivalent if the
energy limit of the regulation signal is neglected, that is if
wlim = 1.
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Fig. 8. Cumulative distribution of RegD signal’s energy content in 15 minutes.

Proof. The proof follows directly by rewriting (16b) and (16c)
using (19), (20) and (32) from Lemma 2. ⌅

Note that the overestimation of the maximum and minimum
room temperature builds additional robustness to temperature
excursions above xmax,k, but it reduces robustness to temper-
ature excursions below xmin,k. This is desirable because the
state trajectory will generally remain closer to xmax,k than
xmin,k due to minimization of energy consumption cost in
(22a).

Problem (22) is a deterministic nonlinear optimization prob-
lem with cubic objective function, bilinear equality constraints
and linear inequality constraints. Although this is a non-
convex problem, it is possible to solve it in due time with
the solver IPOPT due to its relatively small size (the problem
was compiled with YALMIP [36]). The outcome of (22) is
the up-reserve Ru,k and down-reserve Rd,k capacity for each
time slot of the scheduling horizon k 2 [0, N1 � 1]. Although
a schedule for the air mass flow rate u

k

is also obtained, it is
not used because the flow rate setpoint is determined by the
level 2 controller.

C. Energy Limit of Regulation Signal

The energy limit wlim of the regulation signal is the worst
case normalized reserve request. To identify this limit, we
analyze 2-month historical data of the RegD signal from the
Pennsylvania, Jersey, and Maryland Power Market (PJM) (De-
cember 2012 to January 2013). Figure 8 shows the cumulative
distribution of the signal’s energy content over 15 minute
intervals, as well as the actual worst case, the median, 95%,
97.5%, and 99% percentiles. Since the actual worst case of
wlim = 0.88 would lead to very conservative solutions, we
define the worst case as the 97.5% percentile of the distribution
(wlim = 0.25). Therefore, the requested reserve energy by
RegD over 15 minutes will be less than 25% of the reserve
capacity with probability 97.5%.

The worst case reserve request along the prediction hori-
zon is obtained in (14d) by taking the worst case for each
time step independently [19]. Arguably, this is a conservative
approach because the system operator will likely not request
full activation of reserves for several consecutive time steps.
Nevertheless, this conservativeness is used as an empirical
robustness margin to modeling and forecast uncertainties.
Note, however, that there is no guarantee on the satisfaction
of comfort constraints in case of large model mismatch or
forecast errors.
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D. Modeling Reserve Product Constraints

Problem (22) allows us to select different reserve capacities
for each 15-min time slot, as well as different Ru,k and
Rd,k for the same time slot. However, many markets have
requirements on the structure of the reserve product, in partic-
ular reserve blocks with minimum duration and/or symmetric
reserve capacities.

Reserve blocks with minimum duration of Tres 2 N time
steps can be modeled by adding in (22) the constraints Ru,k =

Ru,k+j

and Rd,k = Rd,k+j

8k = nTres +1, 8j 2 {1, . . . Tres},
where n 2 N and n  (N1 � 1)/Tres. We select Tres = 4 to
require the reserve capacities to be constant over periods of 1
hour, which is common in practice.

Symmetric reserve capacities can be enforced by introduc-
ing in (22) the constraint Ru,k = Rd,k 8k, and are expected
to reduce the amount of reserves due to the nonlinear flow-to-
power fan model. In addition, symmetric reserve capacities
and/or reserve blocks with minimum duration increase the
complexity because they are nonlinear equality constraints on
ru,k and rd,k.

Even if symmetric electric reserve capacities are not re-
quired from the resources, we chose to impose symmetry in the
thermal domain to limit the impact of offering reserves on the
room temperature. If the thermal reserves are symmetric, the
electric reserves will be asymmetric due to the nonlinear fan
curve and (8), (9). In this case, a single variable r

k

can replace
ru,k and rd,k, which is expected to reduce the computation
time. We term this type of reserve offering as “asymmetric”
operation.

V. LEVEL 2: ROOM CLIMATE CONTROLLER

A. MPC Formulation

The level 2 controller determines the air mass flow rate
setpoint u

k

with the robust MPC formulation

min

u

k

,ru,k,rd,k

X
N2�1

k=0
c
k

f(u
k

) (23a)

umin,2  u
k

� rd,k, u
k

+ ru,k  umax,2, 8k
(23b)

R⇤
u,k = f(u

k

)� f(u
k

� rd,k), 8k (23c)
R⇤

d,k = f(u
k

+ ru,k)� f(u
k

), 8k (23d)
(16e), (22b), (22c) .

Problem (23) is similar to (22) with the main differences being
(i) the electric reserve capacities R⇤

u,k and R⇤
d,k are fixed from

level 1, and (ii) the only objective is to minimize energy cost.
The MPC selects u

k

, ru,k and rd,k such that the electric re-
serves R⇤

u,k and R⇤
d,k can be provided according to constraints

(23c) and (23d). Weather forecasts are used in (23) and are
updated at every time step. The comfort constraints of (22)
and (23) are modeled as soft constraints with high penalties
to avoid infeasibility due to plant-model mismatch or forecast
errors.

The upper and lower bounds on the air flow rate umin,2 and
umax,2 of the MPC are less tight than those of the reserve

scheduler to facilitate meeting the comfort zone constraints
(but without guarantees on comfort satisfaction)

umin,2 = h
�
10%

�
, umax,2 = h

�
90%

�
. (24)

The selected bounds correspond to the minimum and maxi-
mum acceptable fan speed values suggested by the building
manager of FLEXLAB.

The u
k

values computed by level 2 are generally different
and better than those of level 1 for two reasons. First, level 2
is closer to real-time and has access to more accurate weather
forecasts. Second, in contrast to level 1, level 2 knows the
effect of recent reserve requests on the building (through state
feedback), and can use this information to schedule the air
flow rate setpoints in a more cost-efficient way.

B. Kalman Filter
Since Tm,k

is not measured directly and the measurement
of Tr,k is noisy, we use an extended Kalman filter to obtain a
state estimate x̂

k

for the MPC and the reserve scheduler.
Assuming additive process and measurement noise, the a

priori error covariance P�
e,k, a posteriori error covariance Pe,k

and Kalman gain K
k

are given by [37]

P�
e,k = F

k

Pe,kF
>
k

+Q (25)

K
k

= P�
e,kH

>
k

(H
k

P�
e,kH

>
k

+R)

�1 (26)

Pe,k = (I �K
k

H
k

)P�
e,k , (27)

where F
k

is the Jacobian matrix of system dynamics and
H

k

is the Jacobian matrix of the output y
k

= Cx
k

; Q =

[0.4 0; 0.4 0] and R = 0.1 are the process and measurement
noise covariance matrices, respectively;3 and I is the identity
matrix. Let �

x

denote the partial derivative of bilinear dynam-
ics and '

x

denote the partial derivative of the output equation,
both with respect to the state x

k

. The matrices F
k

and H
k

are
calculated with

F
k

= �
x

(x̂
k�1, uk�1) = A+B

xu

x̂
k�1uk�1 (28)

H
k

= '
x

(x̂
k�1, uk�1) = C . (29)

VI. LEVEL 3: FREQUENCY REGULATION CONTROLLER

Level 3 controls the fan speed (input of the fan controller)
such that the fan power tracks the frequency regulation signal.
Our approach is different from [26] that used the frequency
of the VFD as a control variable, and from [24] where a
fan speed command was superimposed on the output of the
fan controller. Specifically, the authors of [24] used a lag
compensator (similar to a standard PI controller).

There are four requirements for the frequency regulation
controller: fast response, minimal computation effort, accuracy
and stability. A standard PI controller performed poorly due
to the tradeoff between stability and fast response when faced
with large changes to the reference fan power input. Low gain
resulted in slow response, but high gain created significant
oscillations in fan power.

3We set R = 0.1 based on the accuracy of the temperature sensors. Based
on the building model’s RMSE (equal to 0.42�C from Table I), an initial
estimate of the diagonal entries of Q is 0.422 = 0.1764. We chose the larger
value 0.4 because the model’s out-of-sample RMSE will be higher than 0.42.
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Algorithm 1 Implementation of the switched controller
1: initialize old tracking error eold = 0 and fan speed Nf
2: while experiment is running do
3: calculate baseline power: Ps = f(ṁs)
4: compute reserve: R=wRd (if w>0), R=wRu (if w0)
5: calculate desired fan power: Pd = Ps +R
6: repeat
7: measure fan power Pf
8: calculate new tracking error: enew = Pd � Pf
9: if |enew|  " then

10: set PI output: Nf,pi =Nf +Kp(enew�eold)+Ki�tenew
11: cap fan speed: Nf = min[max(Nf,pi, Nf,min), Nf,max]
12: set fan speed to Nf
13: set old tracking error to: eold = enew
14: else
15: set fan speed to: Nf = g(Pd)
16: set old tracking error to: eold = 0
17: end if
18: until elapsed time is equal to control loop duration
19: end while

To improve performance, we developed a novel switched
controller with two loops: (i) Ctrl1: a model-based, feed-
forward controller, and (ii) Ctrl2: a model-free, feedback PI
controller. The feedforward controller uses the static speed-to-
power fan model (6) to track a large power setpoint change,
and it is inherently stable due to the absence of feedback. The
PI controller is used to reduce the steady-state error of the
feedforward controller, but its stability is not guaranteed and
requires gain tuning. The discrete-time implementation of the
switched controller is described by Algorithm 1.

Step 3 of Algorithm 1 uses the flow-to-power fan model
(5) to translate the scheduled flow rate of level 2 to baseline
power consumption. The desired fan power Pd is computed at
step 5 based on the baseline, the reserve capacity of level
1 and the regulation signal. The new control error enew is
calculated at step 8 as the difference between Pd and the
measured fan power Pf. At step 9 the condition |enew|  "
is checked to decide whether Ctrl1 or Ctrl2 will be used ("
is a tolerance that represents the fan model’s accuracy). If
|enew|  " holds, then we activate Ctrl2 (the PI controller’s
discrete time implementation is given from step 10 to step
13). On the other hand, if |enew| > ", we activate Ctrl1 and
determine the fan speed at step 15 according to (6).

After a large power setpoint change, Ctrl1 remains active
for as long as |enew| is larger than ", whereas the controller
switches to Ctrl2 when |enew|  ". When we switch from
Ctrl1 to Ctrl2, we reset the integral error to zero (step 16 of
Algorithm 1) to avoid large overshoots due to accumulated
errors. Furthermore, if the output of Ctrl2 is larger than 90%

or smaller than 10%, we cap or floor the fan speed to these
values.

Due to the nonlinear fan curve, gain scheduling was used
in the PI controller. Five operating regions were defined and
different proportional (K

p

) and integral gains (K
i

) were cal-
culated for each region using the Ziegler-Nichols method [38].
We performed step response tests with K

i

= 0 and gradually
increased K

p

until a critical value with stable and consistent
oscillations in fan power. The critical proportional gain and
the period of oscillations are used to determine K

p

and K
i

.

TABLE V
TUNED GAINS OF THE PI CONTROLLER

Region (kW) [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5)
Kp (proportional) 0.004 0.004 0.004 0.0045 0.004

Ki (integral) 0.01 0.0035 0.003 0.0025 0.002

The gains obtained with the Ziegler-Nichols method served as
an initial guess, whereas the final gains were determined with
trial and error and are presented in Table V. The K

p

gains are
lower and the K

i

gains are higher than those suggested by the
Ziegler-Nichols method because the goal of the PI controller
(Ctrl2) is to correct the steady-state error of Ctrl1, but not to
recover the system after a large setpoint change.

To summarize, the proposed switched controller is advan-
tageous in terms of stability and performance compared with
the a standard PI controller. Ctrl1 allows us to track sudden
power setpoint changes without the need of high gains in Ctrl2,
which would compromise stability.

VII. CONCLUSION AND OUTLOOK

In Part I of this two-part paper, we presented the commercial
building test facility FLEXLAB, which we used for a fre-
quency regulation demonstration project. We developed and
compared different building models for use in a day-ahead
reserve scheduler and an MPC for building climate control.
Specifically, we presented mathematical reformulations to in-
clude the nonlinear fan dynamics in the optimization problems.
Furthermore, we proposed a switched controller for frequency
regulation that is accurate and inherently stable. In Part II
we report extensive experimental results using the developed
models and controllers.

APPENDIX

PROOF OF LEMMA 2
Proof. From the definition of �u

k

in (13) and (12) we get

min

w

k

(u
k

+�u
k

) = min

w

k

2[�wlim,0)

h
f�1

�
P
k

+ w
k

Ru,k
�i

. (30)

Due to monotonicity of function f , argmin[f�1
(P

k

+

w
k

Ru,k)] is equal to

argmin(P
k

+ w
k

Ru,k) = �wlim. (31)

Substituting the minimizer �wlim in (30) we get (17). Equation
(19) is a special case of (17) derived as

f�1
�
P
k

� wlimRu,k
�
= f�1

⇥
f(u

k

)�Ru,k
⇤
=

f�1
⇥
f(u

k

)� f(u
k

) + f(u
k

� rd,k)
⇤
= u

k

� rd,k , (32)

where (8) is used. The maximization case for (18) and (20) can
be proved analogously, but the proof is omitted for brevity. ⌅

PROOF OF PROPOSITION 1
Proof. The objective functions (14a) and (16a) are identical.
Thus, it is sufficient to show that the input constraints (16d) are
equivalent to (14c), and that the set of state constraints (16b),
(16c) and (16e) is equivalent to the set of state constraints
(14b) and (14d).
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Input constraints: The equivalence of input constraints
follows directly from (19) and (20).

State constraints: We first write (14b) as

x
k+1=Ax

k

+(B
u

Ts+B
xu

x
k

)·(u
k

+�u
k

)+B
v

v
k

. (33)

The comfort constraint (14d) is applied only to the first entry
of the state vector Tr,k = Cx

k

(room temperature), which is
obtained from (33) as

Tr,k+1 =CAx
k

+

(CB
u

Ts + CB
xu

x
k

) · (u
k

+�u
k

) + CB
v

v
k

=CAx
k

+ b(Ts � Tr,k) · (uk

+�u
k

) + CB
v

v
k

, (34)

where C = [1 0] is the output matrix and the expressions

CB
u

Ts = bTs, CB
xu

x
k

= �bTr,k (35)

from the definitions of model matrices in (2) were used.
Therefore, constraint (14d) can be written as

min

w

k

h
CAx

k

+ b(Ts � Tr,k) · (uk

+�u
k

)+

CB
v

v
k

i
� xmin,k (36)

max

w

k

h
CAx

k

+ b(Ts � Tr,k) · (uk

+�u
k

)+

CB
v

v
k

i
 xmax,k. (37)

We will now show that (36) is equivalent to xmin,k  x
k

from (16e), where x
k

is given by the system dynamics (16c).
In fact, it suffices to show that the minimization at the left
hand side of (36) results to the trajectory x

k

in (16c). Recall
that x

k

denotes the worst-case lower state trajectory at time
step k, and T r,k the corresponding room temperature.

From assumption 1 we have b(Ts � Tr,k)  0, and thus
the left hand side of (36) is minimized when u

k

+ �u
k

is
maximized. From (18), this is achieved when u

k

+ �u
k

=

f�1
�
P
k

+ wlimRd,k
�

holds. Therefore, the time evolution of
the minimization of (36), i.e., the worst-case lower room
temperature, is expressed as

T r,k+1 =CAx
k

+b(Ts�T r,k)·f�1
�
P
k

+wlimRd,k
�
+CB

v

v
k

=CAx
k

+ CB
u

Ts · f�1
�
P
k

+ wlimRd,k
�
+

CB
xu

x
k

· f�1
�
P
k

+ wlimRd,k
�
+ CB

v

v
k

, (38)

which is essentially (16c). In summary, the left inequality of
the state constraints (14d) is equivalent to (36), which in turn
is equivalent to the left inequality of the state constraints (16e).

Similarly, one can show that the right inequality of (14d)
is equivalent to (37), which in turn is equivalent to the right
inequality of (16e). The derivations are analogous to the ones
above and are omitted for brevity. ⌅

PROOF OF PROPOSITION 2
Proof. Using definition (8) and the convexity of f we get

P
k

� wlimRu,k = f(u
k

)� wlim
⇥
f(u

k

)� f(u
k

� rd,k)
⇤

= (1� wlim)f(uk

) + wlimf(uk

� rd,k)

� f
⇥
(1� wlim)uk

+ wlim(uk

� rd,k)
⇤
. (39)

Using the monotonicity of f in (39) we get

f�1
�
P
k

� wlimRu,k
�
� (1� wlim)uk

+ wlim(uk

� rd,k)

= u
k

� wlimrd,k . (40)

The inequality x⇤
k

� x?

k

is now obtained by combining (40),
(16b), (22b), and using the same arguments related to b(Ts �
Tr,k)  0 as in the proof of Proposition 1. Similarly, one can
show that u

k

+ wlimru,k  f�1
�
P
k

+ wlimRd,k
�

holds and
so that x⇤

k

� x?

k

also holds. Figure 7 provides a graphical
interpretation of (40). ⌅
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