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Abstract

A malignant tumor consists of malignant cells as well as a wide array of normal host tissues 

including stroma, vasculature, and immune infiltrate. The interaction between cancer and these 

host tissues is critical as these host tissues play a variety of roles in supporting or resisting disease 

progression. Radiotherapy (RT) has direct effects on malignant cells, but, also, critically important 

effects on these other components of the tumor microenvironment (TME). Given the growing 

role of immune checkpoint inhibitors and other immunotherapy strategies, understanding how RT 

affects the TME, particularly the immune compartment, is essential to advance RT in this new era 

of cancer therapy. The interactions between RT and the TME are complex, affecting the innate and 

adaptive arms of the immune system. RT can induce both proinflammatory effects and immune 

suppressive effects that can either promote or impede antitumor immunity. It is likely that the 

initial proinflammatory effects of RT eventually lead to rebound immune-suppression as chronic 

inflammation sets in. The exact kinetics and nature of how RT changes the TME likely depends 

on timing, dose, fractionation, site irradiated, and tumor type. With increased understanding of 

the effects of RT on the TME, in the future it is likely that we will be able to personalize RT by 

varying the dose, site, and timing of intervention to generate the desired response to partner with 

immunotherapy strategies.

Introduction

The tumor microenvironment (TME) is defined by a continuous and dynamic interaction 

between the immune system and cancer cells, which are dependent upon immune evasion 

for survival.1 Recently, immune checkpoint inhibitors have been used to shift the balance 

of the TME from a state of immunosuppression to a state of immune activation, allowing 

for a sustained and durable tumor response across multiple disease sites. Increasing use 
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of immune checkpoint blockade has also provided the opportunity for combination with 

radiotherapy (RT) to produce an abscopal effect, in which radiation to 1 site of metastatic 

disease may produce a regression in a distant, nonirradiated site.2 However, the mechanisms 

that underlie the abscopal effect are not well defined, and there have been only limited 

reported cases of abscopal effect.3 Nonetheless, recent advances in our understanding of 

the effect of ionizing radiation on the TME have offered new approaches to unleashing the 

abscopal effect on a broad basis.4 Several ongoing, prospective clinical trials are combining 

RT and immune checkpoint inhibitors using abscopal response as a surrogate endpoint of 

efficiency.5 Here, we review the complex interactions between RT and the TME, including 

both the proinflammatory effects and the immune suppressive effects that can either promote 

or impede antitumor immunity.

The effect of RT on the TME and immune response is highly dependent upon the 

fractionation of radiation delivered. While several preclinical studies have demonstrated 

a synergistic response to combined RT and immunotherapy in a variety of tumor types,2 

there has not been a consensus on the optimal dosing of radiation. Initial studies into dose 

fractionation in breast and colon cancer models found that multiple fractions were superior 

to a single ablative dose in combination with anti-CTLA4.6 However, other preclinical 

studies have demonstrated the induction of antitumor T cells with single ablative dosing.7 

Given conflicting data from preclinical studies, the effect of radiation doses on the immune 

response were examined. Low-dose radiation at 2 Gy was shown to stimulate nitric oxide 

synthase by tumor-associated macrophages and create an immunogenic environment.8 In 

contrast, higher doses of radiation were shown to promote tumorigenic macrophages9 and 

cause severe vascular damage, decreasing recruitment of immune cells to the tumor.10 More 

recent mechanistic studies highlighted the role of radiation in upregulating 3-prime repair 

endonuclease 1 (TREX1), which digests cytosolic DNA and reduces radiation-induced 

immunogenicity.11 Radiation doses above 12-18 Gy were shown to highly induce TREX1, 

as determined by the size of the single dose rather than total dose. Therefore, fractionation 

and dosage can significantly alter the immune response to radiation on the TME.

The immune response to radiation occurs in 5 distinct phases.12 The initial phase is 

characterized by the release of damage-associated molecular patterns (DAMPs), which 

activate the NF-kB pathway, leading to a release of proinflammatory cytokines by innate 

immune cells and initiation of early inflammation.13 Radiation also induces tumor cells 

to release chemokines, creating a positive feedback loop for the recruitment of additional 

immune cells. In the next phase, innate immune cells participate in antigen presentation 

to T-cells. This stage is enhanced by granulocyte-macrophage colony-stimulating factor 

(GM-CSF) secretion following radiation to promote dendritic cell differentiation14 and by 

induction of costimulatory molecules on T-cells following radiation.15,16 Although radiation 

initially induces an antitumor response, radiation also induces chronic inflammation and 

rebound immune suppression. In this stage, protumorigenic macrophages are recruited to 

the tumor in a radiation dose-dependent manner, creating an immunosuppressive TME that 

supports tumor regrowth and/or resistance. Radiation also induces HIF-a, which induces 

the expression of PD-L1 in tumor cells and tumor associate macrophages, which results in 

immune suppression.17 As such, radiation appears to have a temporal effect on the immune 

response of the TME in which there appears to be a window of anti-tumor response.
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In this article we will review the impact of RT on the TME with an emphasis on how 

RT-induced changes in the microenvironment shape the antitumor efficacy of RT. We will 

focus heavily on aspects such as non-T cell lymphoid cells and innate cells which have been 

less comprehensively addressed in other reviews. While any discussion of RT effects on the 

immune compartment of the TME must necessarily describe effects on tumor vasculature 

and tumor stroma, we will not separately discuss the tumor vasculature and endothelium 

but will provide a discussion on the tumor stroma and fibroblasts. We additionally refer the 

reader to a thorough review by Harrington et al18 for a more detailed examination of these 

subjects.

Lymphocytes

There is a growing body of data examining the effects of RT on T cells in the TME. 

These findings have been expertly summarized in a number of recent reviews on the topic 

such as those from Sharabi et al19 and DeMaria/Formenti et al.4,20 We will provide a 

brief review here. The effects of RT on T cells in the TME can be broadly divided into 2 

overlapping categories: the effects on existing T cell responses and the generation of new T 

cell responses.

With regards to the augmentation of existing T cell responses, numerous effects have 

been described. Radiation can sensitize tumor cells to T cell cytotoxicity by increasing 

expression of major histocompatibility complex (MHC) I21 and Fas.22 Radiation can 

induce inflammatory cytokines, such as interleukin-1B, tumor necrosis factor-alpha, 

and interleukin-6, which support the function, expansion, and differentiation of antigen-

experienced T cells.23-25 It should be noted that most of the existing cytokine induction data 

is from analysis of irradiated normal tissues and not the TME. Finally, radiation can induce 

the homing and infiltration of T cells into the TME.

Two studies from Hammerling et al published roughly a decade apart elegantly demonstrate 

that RT can normalize tumor vasculature facilitating T cell homing and infiltration into the 

TME.8,26 Other studies confirm that radiation induces T cell homing and infiltration into the 

TME27,28 and additional contributing mechanisms, such as radiation induced chemokines29 

and vascular adhesion molecules,30 have been described. This induction of tumor infiltrating 

lymphocytes (TILs) is one of the most commonly discussed immune modulatory effects of 

RT.

The idea of transforming a “cold” tumor into a “T cell inflamed” tumor is a common 

rationale for combining RT with immunotherapy. Despite the preclinical data, the clinical 

data validating this notion are relatively sparse. There are some data that suggest an increase 

in T-cell proliferation (Ki-67+ T cells) post-RT without demonstrating an overall increase in 

TILs. An examination of resected oral squamous cell carcinomas revealed that increased 

proliferation of TILs correlated with preoperative RT.31 A recent study of stereotactic 

ablative body radiotherapy combined with cytoreductive nephrectomy in patients with 

metastatic renal cell carcinoma likewise demonstrated an increase in proliferating CD8+ 

T cells post-RT.32 Several studies have demonstrated increased TILs after neoadjuvant 

chemoradiotherapy in esophageal,33 cervical34 and rectal cancer.35-37 It is unclear if the 
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increased TILs are a product of RT, chemotherapy, or the combination of the 2. Another 

study performed in cervical cancer patients reported decreased TILs after RT; it appears 

these biopsies may have occurred during and immediately after radiation not allowing 

sufficient time for infiltration by new lymphocytes.38 To address this gap in the literature, we 

provide here previously unpublished data (courtesy of: Monjazeb AM, Canter RJ, Murphy 

WM, Schalper KA) examining TILs in a cohort of 29 patients with soft tissue sarcomas 

treated with standard neo-adjuvant RT (Fig. 1). Comparing the diagnostic core biopsy with 

the post-RT resection specimen (4-12 weeks post-RT) we see significant increases in CD4+, 

CD8+, and CD20+ TILs post-RT (Fig. 1).

RT also induces well described changes in the TME that can contribute to the activation, 

function, and localization of pre-existing T cell responses, but that also have the capacity to 

prime de novo antitumor T cell responses. RT treated tumor cells undergo immunogenic 

cell death due to radiation induced expression of danger-associated-molecular-patterns 

(DAMPs). The release of HMGB1 by irradiated cells can activate Toll-like receptor 4 and 

induce antigen uptake and cross-presentation by dendritic cells.39 Likewise, translocation of 

calreticulin to the cell surface of irradiated cells can increase phagocytosis of these cells.40 

Finally, DNA from irradiated tumor cells has been shown to be a critical signal, via the 

c-Gas-STING pathway, for type I interferon production by TME dendritic cells.41 Type I 

interferon signaling is one of the major immune modulatory signals induced by RT and is 

central to radiation induced TILs and antitumor effects.42 In fact, it has been suggested that 

suppression of type I interferon signaling may mediate resistance to checkpoint inhibitors 

and that mechanism of resistance can be reversed by RT.43 The immune modulatory effects 

of RT on T-cells in the TME is an active field of study.

Relatively little attention has been given to the effects of RT on other lymphoid cell types. 

Natural Killer (NK) cells are innate lymphocytes first recognized for their ability to kill 

cancer cells without prior sensitization or MHC restriction.44 While traditionally considered 

to play a role in hematologic malignancies growing evidence suggests a role for NK cells in 

solid tumors as well.45 NK cell activity is mediated by cell surface markers such NKG2D 

(activating) and killer cell immunoglobulin like receptors (KIRs; activating and inhibitory). 

The cognate ligands for these receptors are upregulated on cancer cells, virally infected 

cells, and, in general, as part of the cellular stress response. NK cells also play a critical role 

in antibody dependent cell cytotoxicity via the CD16 receptor which binds Fc on antibody 

coated cells. As with other lymphocytes, NK cells may be radiosensitive, and RT has been 

noted to affect the viability and activity of circulating NK cells.

In vitro work suggests that NK cells are radiosensitive and respond like acutely responding 

tissues.46 Clinical data from our lab demonstrated a decrease in circulating total and 

cytotoxic (CD56dimCD16+) NK cells after ablative doses of RT.47 However, some data 

suggests that NK cells may be more radioresistant than other lymphoid populations.48 

In fact, it has been reported that mature NK cells are relatively radioresistant but their 

precursors are radiosensitive.49 In vitro data suggests that RT, at doses >30 Gy, affects the 

cytotoxic function of NK cells before death or apoptosis is observed.50-52
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Patients in 1 clinical study had no difference in the number of circulating CD56+ cells after 

fractionated RT but did demonstrate a modest decrease in NK cell activity.53 Other clinical 

studies corroborate this finding,54 including studies in breast cancer patients after adjuvant 

chemo-radiotherapy55 and in endometrial cancer patients after RT.56 These effects might be 

dose dependent since data suggests that low-dose RT can increase the activity of NK cells57 

and clinical data from cervical cancer patients demonstrated an increase in the cytotoxic 

activity of circulating NK cells after RT of the primary tumor, suggesting systemic activation 

of NK cells.58 Interestingly, in our work described above examining circulating NK cells 

after ablative RT, despite the decrease in circulating NK cells, we observed a robust increase 

in TIM3+ NK cells47 which have been reported to be the most functional NK cells.59

RT also has robust effects on the interaction between NK cells and tumor cells in the 

TME. A number of early studies demonstrated that irradiation targeted cancer cells for 

NK cell mediated cytotoxicity. Irradiation has been reported to increase the NK cell 

killing of 3LL Lewis lung carcinoma and MCA105,60 as well as K562 cells.61 Likewise, 

coculture of human cancer cells with human primary NK cells or the NK-92 cell line 

yielded no cytotoxicity, but NK cell mediated cytotoxicity was observed when tumor cells 

were irradiated.62 The authors suggest that radiation induced release of Smac sensitizes 

cancer cells to granzyme b mediated killing by NK cells. Another study demonstrated 

the ability of NK cells to eradicate murine 4T1 breast cancer.63 The addition of low-dose 

chemoirradiation increased plasma levels of NK cell-activating cytokines. NK cell activity, 

and NK cell mediated elimination of tumors. Thus, RT may not only increase the cytotoxic 

ability of NK cells but may facilitate their translocation into the TME. Another report also 

supports this notion, demonstrating that RT induces NK cell migration into tumors in a 

manner dependent on the CXCL16 chemokine which binds CXCR6 expressed on activated 

NK cells.64

With regards to the increased NK cell cytotoxic activity observed after RT this is most 

likely due to the upregulation of cellular stress markers on irradiated tumor cells sensitizing 

them to NK cell recognition and killing. A seminal study by Raulet et al demonstrated that 

genotoxic stress can upregulate NK cell ligands on the cell surface of nonmalignant cells in 

an ataxia-telangiectasia mutated/ataxia-telangiectasia and Rad3 related-dependent manner.65 

Studies from our lab have demonstrated that RT upregulates the expression of stress induced 

NK cell ligands such as MICA/B and Fas on human and murine cancer cells as well as on 

primary resected human tumors treated with neoadjuvant RT.66 Other studies corroborate the 

increase of NK cell ligands after RT.67 The upregulation of these ligands on radioresistant 

stem-like cells surviving after RT may be critical for NK targeting of this surviving fraction 

and tumor control after RT.66,68

Furthermore, we find that adoptive transfer of NK cells, while having no effect as a single 

modality, drastically increases the efficacy of RT.66 A recent canine study from our group 

demonstrated that RT increased NK cell tumor cytotoxicity in a dose dependent manner 

in vitro.69 Using a patient derived xenograft model with spontaneous canine sarcomas we 

observed that, after focal tumor irradiation, adoptively transferred NK cells homed to tumors 

and induced significant antitumor effects. An ensuing pilot clinical trial of NK cell adoptive 
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transfer and focal RT in companion canines with spontaneous osteosarcomas provided 

preliminary data on the feasibility and efficacy of this approach.

B cells play a critical role both in humoral immunity and antigen presentation and further 

examination of their role in RT induced immune modulation is warranted. RT has been 

demonstrated to induce antitumor humoral immunity in prostate cancer patients.70 Two 

preclinical studies by Sharabi et al and Guha et al have also pointed to B cell activation 

and humoral immunity as important mediators of the antitumor effects of RT combined with 

immunotherapy.71,72 Data examining the effects of RT on TME B cells is extremely sparse. 

Our clinical data above (Fig. 1), however, demonstrates a significant increase in TME B cells 

post-RT. Clearly more studies are needed addressing the effects of RT on B cell infiltration 

and function in the TME.

Rebound Immune Suppression

As with of the other body systems, the immune system functions to maintain homeostasis. 

Too much inflammation can lead to autoimmunity and inflammatory disease whereas 

immune suppression can lead to overwhelming infection and malignancy. Thus, it stands 

to reason that every perturbation made will be met with an opposite reaction to maintain 

balance and homeostasis. We have coined this process “rebound immune suppression”.73 

Indeed, the emerging biology of the PD-1/PD-(L)1 axis demonstrates how finely tuned the 

immune system is and how delicate this balance is. PD-1, although widely considered 

a marker of exhaustion, is an early activation marker74,75 rapidly upregulated after T 

cell receptor engagement presumably as a means to temper T cell activity and maintain 

peripheral tolerance and only mediates exhaustion when engaged by its ligands. Likewise, 

the inflammatory signals induced by RT often trigger counterregulatory immune suppressive 

mechanisms which limit the proinflammatory effects of RT. For example, as outlined above, 

RT induces expression of potent proinflammatory type I and II interferon cytokines. These 

cytokines, in addition to their above described inflammatory effects, can also upregulate 

expression of PD-L1.76 Indeed, it has been reported that radiation induces upregulation of 

PD-L1 in the TME which can mediated resistance to RT.77,78 These findings form the basis 

for the many trials combining RT with PD-(L)1 checkpoint inhibition.

Indolamine 2,3-dioxygenase (IDO) catalyzes the breakdown of tryptophan to kynurenine 

and other downstream catabolites and has been implicated as a master orchestrator 

of immune suppression in the TME. By altering the metabolic landscape of the 

TME through starvation of tryptophan and induction of immune suppressive catabolites 

IDO has been implicated in T cell suppression, T reg induction, and induction of 

immune suppressive myeloid cells (myeloid-derived suppressor cells (MDSCs)) and tumor-

associated macrophages (TAMs). Studies from our lab and corroborated by Welsh et al 

indicate that the inflammatory effects of RT can induce IDO upregulation.73,79 The above 

studies demonstrate post-RT that IDO expression is associated with increased TAMs or 

increased MDSCs and that IDO inhibition improves the efficacy of RT and results in 

reduction of TME immune suppressive elements including Transforming growth factor beta 

(TGFβ), TAMs, MDSCs, and Tregs. As described below, this same process of rebound 

immune suppression can be seen with many innate cell types in the TME after RT, which 
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at first may have an inflammatory function but later switch or are replaced by cells with 

suppressive function.

Overall, our understanding of this process of rebound immune suppression needs to increase 

and it suggests that there may be a window period post-RT where proinflammatory effects 

dominate presenting an opportunity for immune modulation but after which increasing 

immune suppression limits the immune response and in-situ vaccination effect. The clinical 

data from the PACIFIC trial supports this notion as patients who started checkpoint 

inhibition within 14 days of completing RT appeared to have much better outcomes than 

patients who started later.80

Innate Immunity

The innate immune system consists of cells that do not express antigen-specific receptors 

(T cell and B cell receptor) and often serve as the regulators of an immune response 

controlling the initiation and elimination of an inflammatory response. The innate system is 

broadly composed of macrophages, NK cells, and DCs. As early detector of cell damage and 

initiators of inflammation, activation of the innate immune system likely serves as one of the 

main mechanisms driving the extraordinary efficacy of RT. Evidence of the importance of 

innate immunity in the response to RT come from studies that demonstrate reduced efficacy 

for RT in preclinical models of cancer which are deficient in innate immune cells including 

NK cells,81 macrophages,82,83 and DCs.84 These findings are further supported by numerous 

observations from patients; 1 study in hepatocellular carcinoma, for example, showed 

that increased numbers of circulating myeloid cells following RT correlated with poorer 

responses.85 Thus, given that innate immunity has such an important role in determining the 

response to RT, multiple groups have explored the mechanisms by which RT interacts with 

the innate immune system. We discuss the findings from these studies below in the context 

of the different functions of the innate immune system: initiation of inflammation, activation 

of the adaptive immune response, and resolution of an immune response.

When cells of the innate immune system detect that there is a problem, for example an 

infection or tissue damage, they activate a program of inflammation that leads to activation 

of the adaptive response (T and B cells) that requires maturation of dendritic cells or 

macrophages into antigen-presenting cells and appropriate expression of MHC molecules 

and co-stimulatory signals. Interestingly, RT has been shown to upregulate MHC class I and 

stimulate presentation of unique antigens,72,86,87 as well as costimulatory molecules87,88 by 

dendritic cells.

The importance of dendritic cell (DC) in mediating the efficacy of RT was shown by 

Dewan et al, where fractionated RT along with anti-CTLA4 had significant abscopal effects 

in part through the generation of increased numbers of Batf3 DCs.6 Batf3 dependent DC 

cells are an important subset of dendritic cells with their ability to efficiently cross-present 

antigens and regulate tumor growth by enhancing CD8+ T cell migration to the TME and 

fostering effective T cell response.89,90 Abscopal effects were abolished in the Batf3−/− 

mice consistent with other observations demonstrating the critical role of Batf3 DC in 

regulating RT-induced antitumor immune responses.89,91,92 In addition to its effects on DC, 
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RT further contributes to the adaptive immune response by encouraging innate immune 

cells to establish an inflammatory milieu in irradiated tissue in part through stimulating the 

release of complement and proinflammatory cytokines and chemokines by innate immune 

cells.93,94

Several groups have shown that they can improve the response to RT in murine models 

and early human trials by increasing the growth and differentiation of dendritic cells. One 

way to increase the number of DC is the cytokine GM-CSF which has been shown to be a 

crucial pathway for the growth, maturation, and migration of DC.95,96 Several human trials 

of GM-CSF in melanoma and breast cancer have demonstrated the efficacy of GM-CSF 

administration alone with improved survival compared to historical controls97,98 and an 

increase in circulating DC.99 Based on these successful early studies, trials of GM-CSF 

and RT were initiated. In 1 trial of metastatic patients of various histologies, exogenous 

administration of GM-CSF with a course of fractionated RT (35 Gy in 10 fractions) found 

evidence of an abscopal, and hence systemic, anti-tumor immune response in 27% of the 

patients.96

Another cytokine for DC-specific growth similar to GM-CSF that has been shown to 

enhance the response to RT is the Fms-like tyrosine kinase 3 ligand (FLT3L).100-102 

FLT3L binds and activates FLT3 on hematopoetic progenitors and serves a critical role 

in steady-state maintenance of DC103 and increased levels of FLT3L during inflammation 

mobilizes DC.104 Two studies using preclinical models of nonsmall cell lung cancer 

demonstrated reduced tumor growth, metastases, and improved survival with administration 

of RT and FLT3L in a T-cell dependent manner.101,102 Preclinical data in a murine model 

of hepatocellular carcinoma has also shown that the efficacy of RT can be enhanced by 

augmenting DC function through the use of exogenous IL-12 to help DCs better generate 

cytotoxic T cells.105

With the recent recognition of the need to alleviate the intrinsic tumor immunosuppression 

to allow antitumor immunity to progress, much activity has been devoted to targeting 

the pathways and cells that mediate immunosuppression. Interestingly, many of the 

cellular targets are innate immune cells such as macrophages. Since RT generates 

both an antitumor immune response and the corresponding suppressive immune control 

mechanisms, combinations of RT with agents that target intratumoral immune suppression 

are thought to allow for an enhanced antitumor immune response following RT. Preclinical 

models strongly support this notion and clinical data are just emerging that suggests that this 

strategy may be efficacious in the clinical setting.

One of the most successful regimens targeting intratumoral immunosuppression has been 

targeting immune suppression with checkpoint inhibitors, which are agents that target the 

PD-1/PD-L1 and CTLA-4 pathways. Innate immune cells are one of the key sources of 

signal for the PD-1/PD-L1 pathway with dendritic cells and macrophage serving as one 

of the primary, nontumor sources of PD-L1 in the TME. Thus, the underlying mechanism 

of checkpoint blockade likely involves disrupting the effects of innate immune cells on 

immune response in tumors. To date, a large amount of data has demonstrated the efficacy 

of checkpoint inhibitors in the preclinical and clinical setting in combination with RT. As 
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several excellent recent reviews have examined the role of combining checkpoint blockade 

with RT in detail, we will not discuss combinations with checkpoint blockade further 

here though it should be recognized that including one of these agents as a part of any 

immune-directed therapeutic regimen will be an important consideration for the foreseeable 

future.2,106 Likewise, there is a rising interest in immunotherapies that directly activate 

innate immunity. The rationale and potential of combining innate immune system agonists 

with RT has also been recently reviewed.107

Beyond checkpoint blockade, macrophages serve as the main source of immunosuppression 

within the TME following RT. As evidence of the importance of macrophages, various 

studies have revealed a strong negative correlation between the presence of macrophages and 

survival in various solid tumors including breast, colon, bladder, and lung cancer.108-110 As 

described above, macrophages are often associated with resistance to RT and chemotherapy 

by providing both prosurvival signals and tissue repair functions that protect and/or repair 

the damage done by these therapies. Various studies have shown that macrophages, the most 

abundant cells of the TME, are altered by RT to support tumor growth after being damaged 

and sensing damage resulting from irradiation. For example, Leblond et al found an increase 

in density of pro-tumor M2 macrophages in the TME post-RT in glioblastoma.111 Kioi 

et al showed that the RT-recruited macrophages help rectify the damage done by RT by 

promoting vasculogenesis.112

Given, the protumor role of macrophages following RT, multiple groups have shown that 

blocking macrophage recruitment via targeting CD11b,83 CCL2113, or CSF-1R,82,114,115 

enhances the efficacy of RT in preclinical murine models. In a squamous cell carcinoma 

model Ahn et al found that administration of a CD11b antibody enhanced the efficacy of 

RT by blocking myeloid cell recruitment to the tumor site after RT leading to delayed 

regrowth in part through impaired angiogenesis.83 Other studies have revealed that inhibition 

of macrophages following RT increases both the antitumor immune response82 and prevents 

protumor repair mechanisms such as angiogenesis and matrix remodeling.83,112 These 

studies all demonstrate that targeting macrophages can synergize with RT, however, given 

the potentially positive role of macrophages in producing cytotoxic antitumor immune 

responses, other groups have sought to preserve the proinflammatory activation capacity 

of macrophages while preventing their suppressive differentiation to even further synergize 

with RT. Interestingly, agents targeting tumor-associated macrophages such as the CCL2 

inhibitor carlumab have had limited effect as single agents116 and in fact may only have 

efficacy when combined with other agents such as RT that perturb the tumor immune 

microenvironment.82,117

In order to preserve the macrophage capacity to activate antitumor immunity while 

preventing their differentiation into protumor, immunosuppressive phenotypes, several 

groups including our own have examined the potential of targeting the pathways that 

lead to protumor phenotypes in macrophages including IL-4,82 arginase 1,118 TGF-β,119 

and Tyro3/Axl/Mer tyrosine kinases120,121 in combination with RT. Targeting macrophage 

differentiation led to improved antitumor immunity, particularly cytotoxic CD8+ T cells, 

resulting in dramatically enhanced responses to RT. Though each of these strategies 

targets a distinct pathway found in myeloid-macrophages, they result in reduction but 
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likely not elimination of immunosuppressive differentiation suggesting that even modest 

reductions in tumor-associated immunosuppression can have profound effects on therapeutic 

responsiveness to RT.

Transforming Growth Factor Beta

TGFβ is a multipotent cytokine with both tumor suppressive and tumor promoting 

properties. In preinvasive disease, such as carcinoma-in-situ, TGFβ acts as a tumor 

suppressor primarily through its growth inhibitory functions. However, once a tumor 

becomes invasive, TGFβ is tumor promoting via roles in epithelial to mesenchymal 

transition,122 angiogenesis,123 tumor cell motility and metastasis,124 cancer-associated 

fibroblast (CAF) proliferation,125 and immunosuppression.126

TGFβ is produced and released into the TME in its latent form, and can be activated through 

multiple mechanisms (reviewed in127), including radiation. ProTGFβ is synthesized as a 

homodimer consisting of the latent-active peptide (LAP) and the active cytokine TGFβ. The 

LAP is cleaved from the active cytokine in the Golgi by furin-type enzymes, however the 

homodimeric LAP forms a cage around the dimeric TGFβ preventing its association with 

cellular receptors. Disulfide bonds form between LAP and the latent-TGFβ-binding protein 

to form the large latency complex (LLC). The LLC is anchored in the extracellular matrix 

through covalent binding of the N-terminal region of latent-TGFβ-binding protein to matrix 

proteins by transglutaminase.

Release of active TGFβ from the LLC can occur through proteolytic cleavage by matrix 

metalloproteases (ie MMP-2 and MMP-9),127 disruption of the LAP-TGFβ interaction 

by thrombospondin-1,127 or physical force-dependent activation via unfastening of the 

“straightjacket” domain by integrin binding and stretching of LAP resulting in conformation 

change releasing bound TGFβ.128 Radiation-mediated generation of reactive oxygen species 

can also activate TGFβ by modifying LAP causing disruption of its interaction with, and 

therefore activation of, TGFβ.129 Elevated levels of TGFβ can be detected within 1 hour 

of radiation in vivo, related to activation of the LLC already deposited in the extracellular 

matrix.129 Additionally, increased transcription of pro-TGFβ is induced 3-7 days following 

radiation, particularly within macrophages and neutrophils (pending publication), consistent 

with the timing of increased TGFβ during wound healing.130,131

Once activated, dimeric TGFβ binds the heteromeric receptor consisting of 2 copies of the 

type I receptor (TGFβRI) and 2 copies of the type II receptor (TGFβRII). Binding of TGFβ 
to its receptor leads to phosphorylation of the serine/threonine kinase, TGFβRI, leading to 

phosphorylation of the intracellular signaling mediators, Smad2 and Smad3, which are then 

capable of binding the common Smad, Smad4, leading to nuclear translocation of the Smad 

complex. Once in the nucleus, Smad3 and Smad4 bind DNA at Smad-binding elements, 

termed CAGA boxes, and regulate transcription of TGFβ target genes.

TGFβ contributes to an immunosuppressive TME through effects on all immune 

subsets. TGFβ skews innate immune populations towards phagocytic anti-inflammatory 

macrophages,132 while inhibiting dendritic cell activation, maturation, and migration,133,134 
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thereby hampering effective tumor antigen presentation. Furthermore, TGFβ is known 

to suppress T cell effector function, in part, through Smad-mediated downregulation of 

the target genes granzyme, perforin, and interferon.126 TGFβ promotes regulatory T cell 

differentiation, further suppressing effector T cells. TGFβ has also been shown to inhibit 

central memory T cell differentiation by a noncanonical SMAD and mammalian target 

of rapamycin independent mechanism.135 These finding are not universal as other studies 

have suggested that TGFβ is critical for the differentiation and maintenance of memory 

CD8+ T cells.136 TGFβ can have differing effects on different T cell subpopulations and 

these nuances should be noted, as depending on the context TGFβ may play a critical role 

in support of T cells and is not purely immunosuppressive. For example TGFβ has also 

been demonstrated to play a central role in development, migration, and retention of tissue 

resident memory T cells in the gut.137,138

TGFβ promotes stromal fibrosis further contributing to immune escape. TGFβ is a critical 

mediator of wound healing, enhancing fibroblast migration to the site of injury, resulting in 

deposition of collagen, inhibition of MMPs, and aiding the transition from the inflammatory 

phase to the proliferative phase.130 Radiation-related adverse events such as pneumonitis 

and fibrosis may be viewed as impaired wound healing responses, and are associated 

with elevated levels of serum TGFβ139,140 and polymorphisms in TGFβ.141 Recent data 

links TGFβ-mediated fibrosis and immunosuppression. Subsets of patients with metastatic 

cancer, including urothelial and colorectal cancers, who failed to respond to checkpoint 

blockade and exhibited a T cell excluded phenotype, harbored an elevated stromal/fibroblast 

TGFβ gene expression signature.142-144 Together, these data suggest that TGFβ promotes 

a suppressive tumor stroma which may exclude T cell infiltration into tumors rendering 

them resistant to T cell-directed immunotherapy. We and others have previously shown 

that blockade of TGFβ signaling improves response to radiation dependent upon CD8 T 

cells, and synergizes with immune checkpoint blockade.145-149 In addition to the stromal 

exclusion of T cells, TGFβ may also overpower the antitumor effects of infiltrating immune 

cells as observed in certain subtypes of breast cancer.150 Based on these data, we conclude 

that TGFβ contributes to immunosuppression through promotion of fibrosis and collagen 

deposition leading to exclusion of T cells; T cells that are able to infiltrate the tumor are 

rendered less effective by TGFβ mediated suppression of T cell cytotoxicity. Combination 

of radiation, TGFβ inhibition, and immune checkpoint blockade may be more effective than 

radiation and checkpoint blockade alone.

Cancer Associated Fibroblasts and Fibrosis

Radiation efficacy can be limited by alterations in the tumor stroma. For example, 

pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor 

prognosis characterized by a fibrotic stroma and poor immune infiltrate. PDAC is relatively 

radioresistant with poor drug penetrance and elevated levels of hypoxia limiting the efficacy 

of chemoradiotherapy.149 An additional benefit of radiation is its ability to expose tumor 

antigens and create a focal inflammatory response,26,86,151 with efficacy dependent on CD8 

T cells,149,152,153 which is also limited in PDAC. CAFs may be the link between these 

phenomena in PDAC as well as in other cancers. CAFs are a chief source of extracellular 

matrix fibrotic components, such as collagen, hyaluronic acid, and fibronectin, which result 
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in impaired drug penetration, poor immune cell infiltration, and reduced vascular patency.154 

Furthermore, CAFs can secrete cyotkines /chemokines and participate in direct cell to cell 

interactions that govern the functional fate of innate and adaptive immune cells in the 

TME.155 CAFs may also play a metabolic role in the TME. Recent studies demonstrate that 

CAFs may metabolically support malignant cells by secretion of alanine156 but this could 

also have some positive immune consequences as T cell function has also been shown to rely 

on extracellular alanine.157

Recent data suggests 4 CAF subtypes in breast cancer, with the immunosuppressive CAF-S1 

subtype expressing fibroblast activation protein (FAP).158 PDACs express high levels of 

FAP compared to normal pancreas.159,160 Given the dependence of high-dose radiation on 

CD8 T cells, combination radiation with immunotherapy has been attempted to enhance 

PDAC tumor clearance, but with little success, in part attributed to impaired ability of 

immune cells to penetrate the fibrotic stroma and interact with tumor cells.118,142,143,149,161 

As mentioned above, fibroblast derived TGFβ sequesters immune cells outside of tumors 

leading to resistance to immune checkpoint blockade.142,143 Mouse models targeting 

CAFs resulted in improved drug penetrance and CD8 T cell infiltration.162 However, 

tumor infiltrating T cells have impaired efficacy due in part to upregulation of immune 

checkpoint ligand expression on CAFs and other stromal cells.163,164 CAFs polarize the 

tumor immune cells to an immunosuppressive phenotype characterized by M2 macrophages 

expressing Arginase and regulatory T cells, achieved in part via expression of IL-6, 

IL-10, CXCL12, and TGFβ.158,165-167 Depletion of CAFs by targeting FAP, resulted in 

improved antitumor immunity characterized by higher levels of interferon-gamma and 

tumor necrosis factor-alpha.168 Additionally, in a melanoma tumor model, administration 

of a vaccine targeting tumor antigen and FAP resulted in tumor clearance as a result of 

antigen spreading.169 However, combination of radiation, aPD1, and targeting of FAP using 

a highly selective orally bioavailable FAP small molecule inhibitor, or a vaccine strategy to 

deplete FAP expressing cells, failed to improve survival in murine models of PDAC, despite 

increasing CD8 T cell infiltration and polyfunctionality.160 These data suggest additional 

suppressive pathways or key mediators may be contributing to resistance to radiation and 

immunotherapy in fibrotic tumors.

Targeting upstream mediators of fibrosis has shown efficacy in combination with immuno- 

and chemotherapy. Stromal stiffness contributes to tumor progression though mechanical 

forces signaling through integrins and adhesion kinases resulting in enhanced invasion and 

growth via PI3K activity.170 One such adhesion kinase, focal adhesion kinase, is elevated 

in PDAC regulating the fibrotic and immunosuppressive microenvironment. Combination 

focal adhesion kinase inhibition with gemcitabine and αPD1 led to significantly improved 

survival in murine PDAC.171 In addition, immunosuppressive subtypes of B cells have 

been shown to be drivers of fibrosis, and targeting B cells by genetic ablation of IgA+ 

cells or using BTK inhibitors can attenuate carcinogenesis and induce CD8 T cell-mediated 

tumor regression,172 as well as improve the efficacy of chemotherapy.173 Interestingly, 

reprograming CAFs to a less immunosuppressive phenotype shows promise for improving T 

cell function and response to checkpoint blockade using tumor-microenvironment activated 

angiotensin receptor blockers.174
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Radiation fibrosis is a well-characterized deleterious treatment side effect. Radiation 

mediated fibrosis occurs via a feed-forward loop resulting in enhanced TGFβ production. 

Radiation increases lactate dehydrogenase-A activity increasing lactate levels, acidifying 

the extracellular compartment and activating latent TGFβ.175 This leads to myofibroblast 

differentiation and excess deposition of extracellular matrix proteins.175 Therefore, CAF 

differentiation and fibrosis can be driven by radiation, but also contribute to radiation 

resistance and immunosuppression. Further investigation into preventing fibrosis, either at 

baseline or following radiation, may result in improved responses to immunotherapy.

Conclusions

Given the expanding scope of immunotherapy strategies in the treatment of cancer, 

improved characterization of the effects of RT on the TME is needed. The inflammatory 

and immune modulatory effects of RT have been used to rationalize many clinical trials 

combining RT and immunotherapy, but, in many cases, without robust empirical data to 

support these approaches. The equivocal outcomes, to date, of clinical trials combining 

RT and immunotherapy suggest that more learning is required to optimally combine these 

modalities. The data reviewed herein clearly demonstrate that radiation can induce profound 

changes in the TME but the exact nature of these changes requires further investigation.

Radiation can induce inflammatory changes and increase the number and functionality of 

T cells, NK cells, and antigen-presenting cells through numerous mechanisms including 

interferon and toll-like receptor signaling in immune cells and inducing immunogenic cell 

death or upregulation of cellular stress markers and MHC on tumor cells. However, radiation 

can also induce suppressive immune changes in the TME such as induction of TGFβ, IDO, 

and PD-L1 with resultant increase of suppressive cells within the TME such as Tregs and 

TAMs. Overall, it is likely that acutely radiation induces inflammation which can lead to 

antitumor effects but that over time, in response to the sustained/chronic inflammation in 

the TME, counterregulatory immune suppressive mechanisms are activated in a process of 

rebound immune suppression. The time course and extent of each phase of this process are 

likely to vary based on dose, fractionation, tumor type, and site irradiated. With increased 

understanding of the effects of RT on the TME, in the future it is likely that we will be 

able to personalize RT by varying the dose, site, and timing of intervention to generate the 

desired response to partner with immunotherapy strategies.
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Figure 1. 
Tumor infiltrating lymphocytes at baseline and after neoadjuvant radiotherapy in clinical 

sarcoma specimens. (A) An example of multiplexed immunofluorescence staining for tumor 

infiltrating CD8+ or CD4+ T cells and CD20+ B cells. (B) Quantification of tumor 

infiltrating lymphocyte staining before (pre) and after (post) neoadjuvant radiotherapy. 

Paired baseline biopsy preradiotherapy and tumor resection postneoadjuvant radiotherapy 

samples from 30 patients treated at UC Davis were used to generate a tissue microarray. 

Samples were stained with DAPI, anti-CD4, anti-CD8, anti-CD20, and anti-Cytokeratin at 

the Schalper laboratory.
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