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ABSTRACT OF THE DISSERTATION

On Optimizing the Performance of Interference-Limited i8ss Systems
By
Rana Abdelaziz Mohamed Abdelaal
Doctor of Philosophy in Electrical Engineering and Comp@&eience
University of California, Irvine, 2017

Professor Ahmed Eltawil, Chair

Multi Input Multi Output (MIMO) technology has seen prolificse to achieve higher data rates
and an improved communication experience for cellularesyst However, one of the challeng-
ing problems in MIMO systems is interference. Interferetiogts the system performance in
terms of rate and reliability. In this thesis, we analyzehmoés that provide high performance over
interference-limited wireless networks such as Long Texoliion (LTE) and WiFi. In this the-
sis, we tackle different sources of interference. One oirttesference sources is the neighbouring
interference, we propose methods that include an optinge&dion that models the interference
as correlated noise, and uses its statistical informatigaintly optimize the base station precod-
ing and user receiver design of LTE systems. We study thefibginé exploiting interference in
terms of both probability of error and signal-to-noise gaf6NR). In addition, we compare the

proposed method with the conventional beamforming and maxi ratio combining (MRC).

One of the key challenges to enable high data rates in thelddwof LTE is the precoding and
receiver design. We focus primarily on the UE and the bas®stéBS) processing, particularly on
estimating and using the interference resulting from radgimg stations. We propose a receiver
design that performs well in the presence of interferenagthErmore, we present a precoding
scheme that the BS can use to maximize the signal-to-imégrée plus noise-ratio (SINR). The

proposed algorithm performs well under high speed channgie limitations of the Minimum

Xiii



Mean Square Error (MMSE) receiver are discussed and it g fas&omparison purposes with the
proposed approach. An interference free scenario is usath@schmark to evaluate the proposed

system performance.

Performance of LTE is optimized by tackling practical calesations that affect system perfor-
mance. We present a suboptimal practical way of estimatiagriterference and utilizing this

information on the processing techniques used at both tharidEhe eNodeB sides. We focus on
managing both MU-MIMO interference and other cell inteefere. The proposed study improves
system performance even under non-perfect channel kngejezhabling the throughput gains

promised by MU-MIMO.

Along the theme of enhancing spectral efficiency, we In-BRal-Duplex (IBFD) when used in
conjuction with Mu-MIMO. IBFD is very promising in enhangrwireless LANs, where full-
duplex access points (APs) can support simultaneous uflinkand downlink (DL) flows over
the same frequency channel. One of the key challengesdigniBFD benefits is interference.
We propose a scheduling technique to manage interferenaérétess LANs with full-duplex
capability. We focus primarily on scheduling UL and DL stais (STAS) that can be efficiently

served simultaneously.

Finally, we take a holistic view of performance by considgrpractical issues related to system
performance, namely, a) Interference resulting from the-lineearity of power amplifiers, and

b)the trade-offs between system performance and poweungutfon.

An important topic for practical communication systems andlling the interference due to the
power amplifier nonlinearities, especially in Orthogonaduency-Division Multiple Access (OFDMA)
based communication systems, due to the high peak to aveoag® ratio. This problem becomes
more compounded when a large number of PAs is required, asgsive MIMO for example. In

this thesis, we discuss the impact of PAs on cellular systéives show the constraints that PAs

introduce, and we take these constraints into consideratiole searching for the optimum set of

Xiv



transmitter and receiver filters. Moreover, we highlighiidassive MIMO cellular networks can
relax PAs constraints resulting in low cost PAs, while maiiming high performance. The perfor-
mance is evaluated by showing the probability of error csilased signal-to-noise-ratio curves for

different transmit powers and different number of transmntiennas.

In terms of power consumption we investigate the use of eimgtgchnologies (such as memris-
tors) to enable highly efficient computation kernels foredéiss communication systems. Specifi-
cally, we investigate the use of Associative processorsjAd’perform in-memory computation in

the context of an FFT processor. To reduce power and powsaitglewe investigate approximate

computing in memristive based associative processors.o/iging approach to save energy is
through reducing the bit width, however reducing the bittwiohtroduces errors that may affect
the performance. In this thesis, our goal is to adjust theviith based on the channel SNR, aim-
ing at achieving good performance at reduced energy cortsampl he mathematical approach
that analytically describes the system performance uitdergduced bit width noise is presented.
Based on this model, an adaptive bit width adjustment algoris presented that utilizes the re-
ceived SNR estimates to find the optimal bit width that ackseperformance goals at reduced
energy consumption. Simulation results show that the mepalgorithms can achieve up to 45%

energy savings as compared to wireless communicationrsgstéth conventional FFT.

XV



Chapter 1

Introduction

Mobile data demand has been rapidly rising over the past &awsyand it is expected to continue
along the same trends due to the increase in data-hungregsgments (UES) in their various
form-factors. This is especially problematic in dense arbities which suffer from severe mobile
congestion and network stress, thus requiring advancedfénence management techniques to
better manage the network, improve performance and spefficéency. Multiple input multiple-
output (MIMO) technology, which uses multiple antennas @thlsides of cellular systems, has
emerged as a promising technology for achieving high datss rior wireless systems such as
Long Term Evolution (LTE) and beyond. The key role which MIM€&zhnology plays in the LTE
standards testifies to its significant importance [1]. MIMOniques can be used to their greatest
extent and provide high data rates for negligible interfeezenvironments. However, it is much
more challenging to provide high data rates in the presefc®m-negligible interference. In
other words, one of the main factors that limits the perfarogeof MIMO systems is interference.
The dimensions of the problem increase when MIMO is exteridesimultaneous users in the
Multiuser Multiple Input Multiple Output (MU-MIMO) schenge MU-MIMO refers to serving
multiple UEs on the same time-frequency channel resouradifnynating inter-user interference

via spatial precoding, and advanced receiver designs. ¢foect operation of MU-MIMO, it is



essential that: 1) The transmissions intended to diffetld are well separated at the eNodeB
side, and 2) The UEs receiver design has to be able to expépdtentially available information

about the interference.

1.1 Interference in Wireless Networks

There are several kinds of interference that wireless mss&uffer from, including both inter-cell

and intra-cell interference.

1.1.1 Other cell / Neighboring Interference

Other cell interference is due to users served by neighfaetis over the same time and frequency
resources. Of particular importance are UEs located at éleedge of a wireless system that
receive strong interference from neighboring cells. Initoid to the strong interference that the
cell-edge UEs face, they receive a weak desired signal die foropagation loss from their home
Base station (BS). Thus, in order to enable cell-edge UEstabésh a reliable connection with

their BS, it becomes imperative to design precoding andivecalgorithms that can achieve a

certain desired performance under the conditions merdione

There are several techniques in literature that aim at atitig interference from neighboring cells,
such as [2-9]. Some of these techniques have been proposedificing interference by adding
overhead at the BS side, such as frequency reuse [2] and BSiration [3]. Other techniques
are focused on the receiver design at the UE side such as tkienaildikelihood (ML) receiver
[4, 5], linear minimum mean square error (MMSE) receiver fgJvanced MMSE with successive
interference cancellation (MMSE-SIC) [7], and receiveesdd on nonlinear decision feedback

equalizers (DFE), which perform an iterative interfereoarcellation [8, 9].



Some of these techniques can significantly reduce the @nearte, however, they suffer from one
or more of the following drawbacks: spectral efficiency retthin, inefficient use of the available
bandwidth, high latency, high complexity, performancerdegtion under high interference, and/or
the requirement of a large number of iterations to achiewveliahle solution. Thus, part of this
thesis is motivated to overcome these drawbacks by usiegiénénce statistics to jointly design

the precoder and the receiver at the BS and the UE respgutivalclosed form solution.

1.1.2 Intra-cell / Multi-user MIMO Interference

Intra-cell interference is driven by reusing the same resssifor multiple users within the same
cell, typically referred to as Multi-User MIMO (MU-MIMO). NI-MIMO is a promising wireless

technique where the same time-frequency channel resoareeslowed to be used by multiple
UEs simultaneously through spatial precoding. The peréoree of LTE systems critically depends

on how the interference either across different cells ortdddU-MIMO is managed.

1.1.3 In-band Full Duplex Interference

The explosive growth of wireless data traffic, spurred byadaingry stations (STAS) such as smart
phones and tablets, is draining current wireless LANs nes®, requiring a new paradigm shift
such as in-band full-duplex (IBFD). Recent work [15—-19] ll@snonstrated IBFD, which is the
ability to transmit and receive simultaneously, in the sdraed, via self-interference cancellation
which can be suppressed significantly, enabling near-i@dD capability. To take full advantage
of IBFD, it is essential to carefully select the STAs to bevedrsimultaneously, since IBFD leads
to new network interference scenarios compared to curafitplex (HD) communication based

Wireless LANs described above.



1.2 Interference Challenges in Wireless Networks

1.2.1 Interference Estimation and Mitigation

Estimating interference poses considerable challengeSkn In this thesis, we study estimating
the interference information and utilizing it in both the did the eNodeB processing. We propose
an interference estimation approach for the design of plesoand receivers in LTE. We estimate
the interference covariance matrix and design precodensatimize signal-to-interference plus
noise ratio (SINR). Performance of the proposed approabknshmarked against the precoding

and receiver designs that are currently considered for lyBEess.

Related Work in Literature

Interference in wireless networks has been treated to waudegrees in existing literature. The
current state-of-the-art on interference managemenhigohs encompasses investigations of the
throughput achievable by a number of different joint traission strategies, including Dirty Paper
Coding (DPC) [20, 21], coordinated beamforming (linearcping) [22, 23], and coordinated
scheduling [3, 24]. In [23], coordinated beamforming in tradll scenarios was investigated to
minimize the total power consumption of all eNodeBs to meigh WESs individual signal-to-

interference-plus-noise ratio (SINR) targets, based enufilink-downlink beamforming duality.

In [3, 25], coordinated processing was investigated, witegegference is managed through coor-
dination between several eNodeBs. This imposes restiebo what resources in time and/or fre-
guency are available to each cell, or what transmit power peaysed in a certain time/frequency
resource. In another coordinated approach, antennas fraltiplea eNodeBs act as a single an-
tenna array. This technique requires signal level cootiingexchange of data streams) [26].

This approach is well-known as a solution for strong neighrgpinterference (cell-edge prob-



lem). However, the promising results for cooperative pssagy are only achievable if multiple
eNodeBs can maintain a sufficiently accurate time and phasehsonization for cooperation,
which is generally challenging to implement [27]. A numbérssues remain to be addressed
before realistically considering multicell processingfisture wireless systems, namely: the need
for a high-speed backbone enabling information (data,robaynchronization, and channel state)
exchange between the eNodeBs, the requirement of chariaghiation availability for coherent

methods, and timing/phase synchronization [21].

Interference Alignment (IA) is another interference masragnt approach. IA promises substan-
tial theoretical gains in cellular networks, however, itas with challenges in implementation.
Authors in [28] address interference cancellation usingptdy from one neighboring eNodeB,
which performs well in a two-cell layout. Another interface management technique at the eN-
odeB side is frequency reuse [2]. The concept of frequenageras that each cell divides the
available bandwidth into a group of frequency bands. Eatiitheoses a certain frequency band
to use for its cell-edge users, such that there are no neiigighoells using the same frequency
band for their cell-edge users. Frequency reuse can effctieduce interference by spacing the
competing transmissions farther away. On the other harettisp efficiency is reduced since a
portion of the available spectrum is not used by each ce]l |9 the number of data-hungry users
in a cellular system increases, the demand for bandwidte&ses. Thus, conventional frequency
reuse techniques that are based on spectrum partitiorengpadpromising as a long term solution.
Careful management of interference is important in systemet as LTE, which are designed to

operate with a frequency reuse factor of one.

Other techniques are focused on the receiver design suclkvamom likelihood detection (ML)

[4, 5], which is known to minimize the bit error rate (BER) iruttiple antenna systems. However,
it requires accurate, instantaneous information on tharofla of interference which is not possi-
ble for LTE. Furthermore, the drastically increased corapahal complexity of the ML scheme

makes it prohibitive in practice, especially for UEs. Reellkcomplexity algorithms such as V-



BLAST [30] perform much worse than ML. The sphere decoder)(B&s been proposed as an
alternative to ML [31]. SD can provide ML performance withlueed complexity by providing an
efficient way for generating all candidate solutions. Themndea of the SD algorithm is to enu-
merate lattice points that lie inside a sphere defined by hlarmel matrix and the received signal
vector. In the high signal-to-noise ratio (SNR) region, theéius of the sphere can be chosen small
enough so that only few candidates are found inside the sphHfis search space is therefore

drastically smaller than the ML search space [32].

Although the average complexity of SD algorithms is beltete be polynomial for small array
sizes [33], the actual complexity depends on the channelittons and the noise level, making it
difficult to integrate in an actual system, where data needetprocessed at a constant rate (i.e.
fixed complexity/throughput). Different methods have bperposed to reduce or limit the com-
plexity of the SD, however, most of them still have a variatwenplexity depending on the channel
conditions. They can be classified in the following categgril) Modifications of the algorithm
to marginally reduce the complexity requiring additionpkeacations or the calculation of limiting
thresholds [34, 35]. 2) Simplifications of the algorithm $pecific constellation types [36]. An al-
ternative to SD is the K-best decoders which maintain a fikealighput, at a performance penalty

especially at lower SNRs [37].

Another alternative to the ML receiver is the MMSE receiM@&r [There are two classes of MMSE
receivers, a simple one that only needs to know the averagdarence and an advanced one that
needs to know the accurate interferers channels MMSE-SICTfe linear MMSE receiver with
only average interference knowledge does not perform wtdigs a slight gain compared to the
zero forcing receiver that performs poorly due to noise anbment. In contrast, the advanced
MMSE-SIC has relatively good performance since it is ableanocel the interference. However,
the performance of the advanced MMSE degrades with the nuofilbi@erferers. And in LTE, the
number of interferers can increase dramatically. For mstacell-edge UEs significantly suffer

from strong interference due to non-negligible neighbgprells. If there arg< non-negligible



neighboring BSs, that results MK interfering signals if each BS hag transmit antenna. Such
interference can dramatically affect the performance.tA@otechnique to manage interference is
the use of nonlinear decision feedback equalizers (DFEgwerforms an iterative interference
cancellation as discussed in [8], [9]. Although this tecjug achieves high performance, the
interference is canceled iteratively. Thus, to increaserétiability of the data, a high number of

stages/iterations is required.

A promising technique that has been studied in the LTE catgeke interference rejection com-
bining receiver (IRC). IRC is a linear combining technigbattrelies on estimate of the interfering
channels to project the received signals on a subspace chwie Mean Square Error (MSE) is
minimized [38]. IRC is attractive given that it representstiaightforward add-on to the known
Minimum Mean Square Error (MMSE) receiver, which is now ddesed the baseline receiver in
LTE networks [39]. In order to perform near ideal interfesersuppression, IRC (also known as
MMSE-IRC) requires channel estimation and covariance isnatimation including the interfer-

ence with high accuracy [39], however, accurate interfeeekinowledge is difficult to get at the

UEs due to estimation errors.

To understand this better, we start by making an importas¢ation. The accuracy of the inter-
ference covariance matrix estimation in LTE depends on tbesecovariance between the signal
of the serving cell and the interfering cells. This is beedlr® interference estimation is done over

the data resources.

Managing non-linearity

As for managing the interference due to PA nonlinearitieereé are some techniques that have
been proposed in literature for reducing the PAPR in OFDMesyis such as selected mapping,
coding techniques, and clipping [40—43]. The first two cqtsare not applicable in the context of

LTE. Selected mapping requires additional signaling, hdding techniques are not compatible



with the data scrambling used in the LTE downlink. Clippisgai simple technique, where the
transmitted signal is clipped to a predefined level to avéidiRBtortion. Depending on the linear

region, clipping may lead to significant power loss in ameigiwith narrow linear regions.

1.2.2 IBFD and MU-MIMO

Both IBFD and MU-MIMO are promising technologies that campde rate enhancements in
wireless LANs. MU-MIMO allows an access point (AP) to sendtiple frames to multiple STAs
at the same time over the same frequency resources. Focttoperation of MU-MIMO, it is
essential that the transmissions intended to differentsSJ&well separated via means of spatial

precoding.

Self interference

When the UL receiver and the DL transmitter are active in thmes AP simultaneously, self-
interference is generated. The self-interference prolesuat of this thesis scope since it has been

extensively studied in the literature as will be discussed.

Network Interference

However, when the UL AP is different than the DL AP, networkenfierence is generated. For
example, if we have a STA transmitting a packet to an APs ad dioW, and the AP is transmitting
packets to another DL STA, as the DL flow. In this case, theadigansmitted from the UL STA
can interfere with the DL STA, which intend to receive thensibfrom the AP. If the UL STA is
located close to the DL STA, and the signal transmitted froenWL STA is very strong, the DL

STA will face high interference.



MU-MIMO Challenges

The key challenge for MU-MIMO with IBFD is to coordinate miplie downlink (DL) and uplink

(UL) simultaneous transmissions which are made possibiledfull-duplex capability. This thesis
focuses partially on STAs scheduling at both the DL and theahing at improving the sum rate
in MU-MIMO wireless LANs with IBFD capability. We consideriveless LANs consisting of
APs that are capable of full-duplex communications. We d@imanaging interference, including
interference due to DL MU-MIMO flows and interference duetie UL flow. To overcome the
challenge of interference, we propose a scheduling teakriltat aims at identifying a group of DL
STAs along with an UL STA to be served simultaneously withimi interference. Furthermore,

the UL power is adjusted to maximize the resulting sum thingu.

Related Work in Literature

Managing interference due to IBFD has been studied in th&tiegiliterature. Recently, several
publications [44]-[61] have considered the problem of-g&tiérference cancellation in full-duplex
systems by investigating different self-interferencecedlation techniques to mitigate the self-

interference signal.

Analog cancellation is necessary to obtain preliminaryaigson to avoid RF compression and
saturation of the analog to digital converters [44]. Anabtamcellation uses knowledge of the
transmission to cancel self-interference in the RF sigbefpre it is digitized. One approach
to analog cancellation uses a second transmit chain toece@ainalog cancellation signal from
a digital estimate of the self-interference [45]. Anothepipach is that the transmit signal is
tapped at the transmit antenna feed, processed in the aciatog domain, and subtracted from
the receive-antenna feed in order to cancel self-intanter¢46]. In [47], authors propose a design
that utilizes a copy of the transmitted analog signal and asgansformer in the analog domain

to then create a perfectly inverted copy of the signal. Therted signal is then connected to a



circuit that adjusts the delay and attenuation of the imgedignal to match the self interference

that is being received on the receiver antenna from thertrdtes antenna.

On the other hand, digital domain cancellation is based @stibtraction of the interference signal.
Digital cancellation techniques aim to cancel self-irgeghce after the analog-to-digital converter
(ADC) [48]-[50]. Several experimental and analytical iesshow that the mitigation capability

of digital cancellation techniques is very limited, maiulye to the transmitter and receiver radio

circuits’ impairments [51]-[54].

The self-interference signal could also be suppresseckipithpagation-domain. In propagation-
domain suppression techniques [55]-[59], the self-ieterice signal is suppressed before it is
processed by the receiver circuitry. Propagation-domelfisterference suppression mitigates
both the self-interference signal and the transmitterenagsociated with it. In addition, mitigating
the self-interference signal in the propagation domaimebeses the effect of the receiver noise and
increases the dynamic range allocated for the desiredlsigathors in [60, 61] propose antenna
cancellation techniques that, when combined with digital analog techniques, allow IBFD with
negligible self interference. The above studies consdiénat the STA that is being served on
DL is also the STA that is sending UL packets to the AP. In otherds, the AP will act as a
transmitter to a certain STA and also a receiver to the sarde Bus, the interference in such
situation is purely self interference. Network interfezemmong STAs will occur if different STAs
are considered for DL and UL, which may significantly deteate the throughput performance of
IBFD wireless LANSs since multiple STAs are allowed to tramtsamd/or receive simultaneously.
In order to mitigate the interference problem arising intrsenvironment, some studies have been

performed to coordinate transmissions with the goal of cedunetwork interference [62]-[72].

New medium access control (MAC) protocols proposed in [@2€@pture additional transmission
opportunities created by full-duplex by modifying conientand back-off mechanisms. In [62],
the authors develop a centralized MAC protocol to suppgmnasetric data traffic where network

nodes may transmit data packets of different lengths, amdglopose to mitigate the hidden node
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problem by employing a busy tone. To overcome this hidderemdblem, authors propose to
adapt the 802.11 MAC protocol with the RTS/CTS handshakd70h authors study the power
allocation for IBFD system where STAs operate in the HD modetbe AP communicates by
using the FD mode. In [70], the system model considers aesiagland multiple STAs. The UL

STAis chosen randomly, then a DL STA with low interferenaairthe UL STA and high received
power from the AP is selected. Afterwards, a power contrgbathm is used such that the DL

SINR and UL SINR satisfies a threshold. [70, see section Il1]

In contrast to full-duplex MAC protocols, there have beepw éfforts to redesign the scheduling
algorithms for full-duplex wireless networks while takingtwork interference into consideration.
One approach was studied in [71], such that the AP has a peertieed DL STA and it aims at
scheduling another UL STA simultaneously. The AP randonitkgpan UL STA out of several
ones that achieve a specific signal to interference (SIRsttold at the DL STA. Simulations

presented show throughput gains.

1.2.3 Power Amplifier Nonlinearity

Although there are different multiple access technolog@speting for dominance, cellular net-
work standards prefer Orthogonal Frequency-Division MldtAccess (OFDMA) which is the
multi-user version of the orthogonal frequency-divisioaltiplexing (OFDM) for its well known
advantages. OFDM is highly resistant to frequency sele¢éiding. Moreover, with OFDM tech-
nology channel equalization becomes simple. On the othad,hane of the major drawbacks is
that the OFDM signal has a high Peak-to-Average Power RB#PR). Generally, the OFDM
transmitter can be seen as a linear transform performedeohagge block of independently iden-
tically distributed quadrature amplitude modulation (QABbmplex symbols (in the frequency
domain). From the central limit theorem [10], the time-dom@FDM symbol may be approx-

imated as a Gaussian waveform. The amplitude variationeeofOXFDM modulated signal can
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therefore be very high. However, practical power amplif({@As) of RF transmitters are linear
only within a limited dynamic range. Thus, the OFDM signalikely to suffer from nonlinear
distortion, which results in interference. To avoid sucstalition, PAs have to operate with large
power back-offs, leading to inefficient amplification armdéapensive transmitters. Typically the
power amplifies consumes 50-80% of the power budget of a BSPRrenergy efficiency depends
on the frequency band, modulation and operating environidh Modern BSs are highly inef-
ficient because of their need for PA linearity and high PAPRD®! schemes commonly used in
communication standards such as High Speed Packet Acc&8Ajrand LTE are characterized
by strongly varying signal envelopes with PAPR that exceetldB [12]. Along these lines, the
width of the backoff region needs to be very wide which redube linear region of the PA. Thus
PAs operate well below saturation, resulting in poor poviigeiency, excessive cost, and size [13].
Otherwise, the use of low-cost non-linear PA can result egresence of nonlinear interference
and spectral spreading of the transmitted signal which aaeeadjacent channel interference, and

signal constellation deformation and spreading [14].

1.3 Practical Adaptive Power Management

1.3.1 Adaptive Bit Width Adjustment

Over the last decade, the world has seen a sharp increastitraféic that necessitates robust,
low-power processing cores. However, mobile computingbtas traditional architectures is ap-
proaching its limits in terms of scalability and power comgion. One means of achieving the
desired performance increase is by increasing parallebsher than depending on transistor fea-
ture reduction. This approach also becomes limited if pgsicgy elements cannot consume data
from memory at the desired processing rate, leading to &fisigntly degraded overall perfor-

mance. To address that limitation, new computing paradgarsed to emerge that focus more on
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the memory bottleneck problem. Theoretically, the most wgrefficient paradigm is in-memory
computation. This paradigm simply replaces the logic widmmory structures, virtually eliminates

the need for memory load/store operations during comutati

Associative processo(8P) are promising computational platforms for massivalyremory par-
allel computing. Associative processors can be considesedtype of Single Instruction Multiple
Data (SIMD) processors that combine the memory and proc@ssite same location, so that ev-
ery row in the memory behaves as an individual processoceSn operation can be performed
on all memory words in parallel, the execution time of an afien does not depend on the vector
size. Many parallel systems are uniquely suited to this@ggr due to the vector based nature of
their processing pipelines. This feature largely overcothe memory-wall problem of traditional
Von Neumann architectures since there is no inter-depe&edbetween memory and processor.
Associative processing is not a new topic and numeroustanthres of associative processors
(AP) originated in the 1970’s and 1980’; however, in the pée adoption of APs was limited due
to the unmanageable power and area requirements. Thitytiealhanging with the availability of
new semiconductor technologies and materials that allovextremely dense memory structures
such as memristor and STT-RAM, leading to a resurrectiohefhis approach under the name of

Resistive Associative Procesg®AP).

Another computing paradigm that has become well-known enrdcent years i&\pproximate
Computing In approximate computing, the goal is the exploiting th@seresiliency by relaxing
correctness constraints to achieve the energy efficiengysystem, approximate computation can
be introduced at three different levels: design level, algm-architecture level, and logic-circuit
level. In the circuit level, the most common method is deisigriunctionally approximate circuits
that has lower components than its fully accurate counterpaother ways of hardware approx-
imation are overscaling the circuit timing and/or voltagel @pproximation in memory. At the
architecture level, the significant components in the dieystem is favored over insignificant

ones. In the design level, the approximate computing careakzed by design tools that sup-
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ports the approximate computing. For example, a VLSI desgjtware can include approximate
versions of some arithmetic circuits and these circuitslmamsed in error resilient parts of the

chip.

Even though RAP architectures promise very efficient palrabbmputing achievements, there are
serious problems of large power density and energy consamiptsuch architectures mainly due
to high switching activity and costly memristor energy. &s8 these problems are addressed, it is
likely that these architectures cannot be practical. Orother hand, application of approximate
computing onto the existing computation systems does notredte the aforementioned problems
of the traditional computing fully even though it is a risiatar in low energy computation. For-
tunately, AP architectures inherently facilitates theragpnate computing since all computations
are performed on per bit basis. Regarding the problems &f slacon era, combination of as-
sociative processing with approximate computing can beoenj@ing approach for the future of
computing especially for communication systems. To the beeur knowledge, no prior study

has touched on the approximate in-memory computing.

In this study, we introduce the approximate in-memory cotation by exploiting the resistive
associative processors (RAP) in communication systems.gbhl is to replace logic with mem-
ory structures, virtually eliminating the need for memargd/store operations during computation
together bit dynamic approximate computing in algorithroh&ecture level for both energy and
performance efficiency. The suitability of resistive asateprocessors for approximate comput-
ing is demonstrated through the implementation of FastiEotiransform used in MIMO-based
wireless communication system. Results show that appbeiim-memory computation in RAPs
provides the considerable energy saving by the way of ajmiation in a reasonable level together

with performance gain.
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1.4 Thesis Contribution

MIMO promises higher spectral efficiency for LTE systems][7B order to achieve improved
spectral efficiency, channel state information at the tratisr (CSIT) is needed. If CSIT is un-
available, then finding the optimal precoding is not pogsiahd the transmitter will only have one
of two options, either use its total power for a single anteand turn off the rest of the antennas,
or divide the total power equally over the available antasnd]. In this paper, we assume that
CSIT is available and it can be obtained from the UEs UL pimtoperating in Time-Division

Duplexing (TDD) mode and exploiting the reciprocity of tla@lio channels.

We focus on the processing operations at the base statigrafiiSat the UE. For interference free
transmission, it is well known that singular value deconipas (SVD) beamforming, also known
as maximum ratio transmission (MRT)- maximum ratio comignfMRC) provides the optimum
performance. We consider practical systems where intaréerexists and the UE processing stage
performs interference estimation (due to neighboringsgef order to be used effectively in the
receiver design. In contrast, the BS processing main rdie jgovide precoding that maximizes
the achievable rate for the UE which is through maximizisgsiggnal-to-interference plus noise-
ratio (SINR). Towards that goal, we make the following gahassumptions 1) The transmissions
intended to UEs need to be channel dependent which requiaamel knowledge (TDD reci-
procity), and 2) The UEs receiver design need to be able tersafficient use of the interference

knowledge.

In this thesis, we propose a practical method for interfegegstimation in LTE systems. We study
estimating the interference and utilizing this informatio the processing operations at both the
UE and the eNodeB sides. The UE performs interference etstimia order to be used effectively
in the receiver design. In contrast, the eNodeB processaig role is to spatially separate multiple
DL transmissions while maximizing the SINR. Our contriloutiin this topic can be summarized

as follows:
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A practical framework for interference estimatiovle estimate the interference covariance

matrix in OFDMA-based LTE context through the use of noradasources.

e Utilizing the interference knowledgelNe derive suboptimal simple and non-iterative pre-

coder and receiver aiming at enhancing the system throudgbipMU-MIMO operation.

e Considering the Non-ideality of MU-MIMO precodindVe tackle the effect of non-ideal
precoding for MU-MIMO in LTE networks. The solution aims gidating the interference

covariance matrix to add the effect of the MU-MIMO interfece.

e Evaluation of the proposed framework benefit¥e evaluate the proposed framework by
comparing different designs. We demonstrate the subatagdins compared to existing

approaches.

Moreover, we extend our work to the area on IBFD systems. Aitld thhe aim of improving the
performance even further, we take use of MU-MIMO on top of IBP®ne of the key shortcomings
of the IBFD research noted above is that it does not optinigeSlTAs selection process. In prior
work, any STA that achieve a specific SIR at the DL STA is coei®d a good candidate. Although,
this type of optimization provides a guaranteed minimunodighput, it does not maximize the
throughput. Moreover, in such schemes, finding a STA withstitesfying SIR condition is done
via exhaustive search over all the STAs, which might be tioressaming. Furthermore, none of the
prior work discussed scheduling multiple DL transmissialosig with an UL transmission, which

is needed in practical crowded wireless LANs that serve n&#As simultaneously.

In this thesis, we consider practical wireless LANs in whitls not necessary to perform an
exhaustive search over all the STAs to find good candidatsshtedule. Our main objective here
is to maximize the achievable rate of wireless LANs with-fliplex APs serving multiple DL

STAs via MU-MIMO and an UL STA. Also, we consider that the ULAIE not necessarily one of
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the DL STAs. In other words, each STA may or may not be servadloand DL simultaneously.
Clearly, MAC protocols will be required to support the remuai functionality, however these will

be the subject of future research.

The contributions of this topic can be summarized as follows

STAs CategorizationCategorizing STAs aiming at reducing the search space.

STAs SchedulingScheduling simultaneous UL and DL flows aiming at maximizihg

overall rate via careful STAs selection.

Power Adjustment:Adjusting the UL transmit power that directly affects the 4SIAs,

aiming at reducing the interference over DL flows while acimng reasonable UL rate.

Evaluation of the proposed techniquészaluate the performance by showing the achievable

rate as compared to other IBFD techniques and conventiaifatibplex system.

Recently, there has been significant interest in promotiegcbncept of green communication,
where inefficiencies are reduced across the entire netwuckiding, of course, at the BS. To-
wards that goal, we extend our work and study the PAs behaviblE systems, and jointly

design the BS transmit vectors and the UEs receiver filtepgégent PA distortion, leading to
higher efficiencies. Furthermore, we extend the discudsianclude Massive MIMO, where the

number of antennas is increased. The contributions indipiss are:

e PA effects studyDiscuss the impact of PAs on cellular systems.
e Analyze PAs constraintShow the constraints that PAs introduce.

e Design of transmitter and receiver filtersfake PA constraints into consideration while

searching for the optimum set of transmitter and receivier§l
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¢ Analyze Massive MIMO benefitdighlight how Massive MIMO cellular networks can relax

PAs constraints resulting in low cost PAs, while maintagnimgh performance.

e Evaluation of the proposed framework benefiialuate the performance by showing the
probability of error curves and SNR curves for differentismit powers and different num-

ber of transmit antennas.

Another promising topic is the approximate in-memory cotafian concept with the goal enhanc-

ing both energy and performance efficiency. The contrilmstio this topic are:

e RAP study:ntroducing approximate in-memory computation concepélyloiting the re-

sistive associative processors (RAP) in communicatiotesys.

e Approximate computing for communication systeifige suitability of RAPs for approxi-

mate computing is demonstrated in the field of communicatyatems

e Mathematical analysisA novel mathematical model that characterizes system peeice

of FFT under fractional bits truncation has been derived.

e Adaptive bit width adjustmentAn adaptive bit width adjustment algorithm has been pro-

posed.

e Evaluation of the proposed framework beneff8mulation results show that by using the
proposed adaptive bit width algorithm, we can achieve up5% 4#f energy savings with

very slight performance degradation.
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1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2ptes precoding and receiver design
for LTE system with single user MIMO such that the interferenn this case is always limited
to other cell interference. In chapter 3 we add MU-MIMO opieraand study its effects. We
explain some practical considerations regarding interfee estimation, precoders, and receivers.
In chapter 4 we introduce a new look at distributed MU-MIMQMWIBFD capability. We discuss
the challenges, and provide solutions for users schedalgpower control. Chapter 5 extends
the previous results to include PA constraints to avoid P&adiion. And Chapter 6 includes
the adaptive bit width adjustment algorithm aiming at emdivag the energy/power efficiency of

communication systems.
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Chapter 2

Managing Other Cell Interference in LTE

Networks

2.1 Introduction

A major challenge in the development of next generationles®networks is to design techniques
that can provide high throughput over interference limitetiular networks. This chapter focuses
on designing a technique that utilizes the interferencenrkedge to enhance the system perfor-

mance.

In this chapter, we present a joint precoding and receiieR)design, where each BS does not
need to sacrifice a portion of the available bandwidth as #se presented in [2]. Also, unlike
the algorithm shown in [3], JPR does not require cooperdietwveen BSs which will definitely
reduce the latency. Moreover, the implementation of JPReaUE side has relatively lower com-
plexity than [4, 5]. Furthermore, JPR performance does agtatie with increasing the number of
interferers as the case studied in [6, 7]. Furthermore, JBRdes a closed form solution unlike

the iterative solution presented in [8, 9].
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2.1.1 Contributions

The main results of this chapter are:

1. We develop a model for the interference as correlatedgnois

2. We present a jointly optimized solution for designing givecoder and the receiver with

given interference covariance matrix.
3. We compare our algorithm with the conventional MRT/MREhig@que.
4. We discuss interference covariance matrix estimatidi B systems.

5. We present a jointly optimized solution for designing pinecoder and the receiver for LTE

systems

6. We evaluate the designs in terms of throughput for diffepeactical channel models.

The remainder of the chapter is organized as follows: Se&i@ describes the problem formula-
tion. In Section 2.3, we provide a solution aiming at maximizthe SNR of the received signal.
In Section 2.4, we explain rate maximization for multi-earsystems. In section 2.5, we discuss
system assumptions and discuss the LTE context specifisatim Section 2.6, we reformulate
the problem according to LTE standard. In Section 2.7, Wda@xthe interference covariance
matrix estimation. Section 2.8 provides some remarks atesrabout the interference covariance
matrix and the channel models. Simulation results are gealin Section 2.9 and we conclude

the chapter in Section 2.10.

2.1.2 Notation

We use bold lower case for vectors, suchaasvhile bold capital letters are used for matrices

such asA. Further||A|| stands for the norm of the matrig. Further(-) stands for Hermitian
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transposition| AJ; ; denotes the element in raxand columnyj of matrix A. The cardinality of the

setA is denoted by A|. Also E stands for expectation operator.

2.2 Problem Formulation

2.2.1 System Model

We consider an LTE system where each BS is equippedN\vihtennas and each UE is equipped
with M antennas, and there afeinterfering BSs. The system model is shown in Fig. 2.2, where

I, is the interference power of thié" neighbor BS.

In contrast to the prior work on interference managemein, ghper focuses on using the inter-
ference to enhance performance. We show that by takingenégrce into consideration in jointly
optimizing the BS precoding and the UE receiver design, weazdually achieve higher signal-
to-noise-ratio (SNR) compared to the case of using the edioreal maximum ratio transmission

(MRT) and maximum ratio combining (MRC).

In our algorithm, we first model the interference as coreglatoise, then the optimization problem
for the precoder and the receiver is formulated. The solutiothat optimization problem is not
well-known since most of the previous studies on MIMO systerssume uncorrelated Gaussian
noise. However, noise can be correlated due to the presématiderence [75], as described in

details in the following section, which presents the joiesidn of the precoder and receiver.

2.2.2 Noise Correlation

Since the UE suffers from strong interference in certaireations, JPR plays an essential role

in enhancing the system performance. The received sigrthéddE under consideration can be
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denoted as:

K
y=Hz+) Gjij+n, (2.1)
j=1
where H is the channel between the home BS and the GEjs the channel between thgh
interferer and the UE; is the signal from thegth interferer,y is the received signak: is the
transmitted signal, and is the additive noise with a covariance matrix givenBy = E[nn*|.
The second term in (2.1) represents the interference fkomterferers, and the third term repre-

sents the additive noise. Now we will group those two terngetioer as the following:
y=Hx+n, (2.2)
where,n represents colored noise with the following covariancerixiat
K
R, =E[pn"] =R, + ) Gyi;i"G;". (2.3)
j=1

Although there are many studies that use similar repregenti® (2.2), most of the work in litera-
ture assumes that the noise is uncorrelated at the UE sidee\to, in cellular networks, noise can
be correlated. Noise correlation can arise if noise/ieterice originates from a common source.
For example, as described in LTE systems, UEs are exposeddba neighboring interferers
(inter-cell interference) due to the broadcasting natfieebular networks, resulting in correlated

noise at the UE as shown in Fig. 2.2.

In other words, a portion of the noise received at the UE ar#tethave originated from the same
sources due to the presence of neighboring cells, whichigésihat the noise at the UE anten-
nas is correlated. It is important to note that although waiaee throughout the paper that the

neighboring cells are macro cells (BSs), they can be miclts,d@ico cells, Femto cells, or relay
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nodes.

Consequently, itis not practical to assume that noise ismalated. Therefore, in practical cellular
networks, conventional techniques such as MRT/MRC failedgrm as expected. In this paper,
we aim at exploring the effect of noise correlation in wisseellular networks. Based on that, we
obtain a closed-form solution for the precoding and theivec@®ptimization problem for cellular
networks assuming correlated noise at the UEs. We show BiRuoditperform the conventional

MRT/MRC especially when the noise is highly correlated.

It is important to note that, here we focus on inter-celliféeence as the main reason for noise cor-
relation. However, noise can be correlated due to otheofacsuch as UE close antenna spacing
which results in noise correlation [76]. So our design casiggificantly beneficial for communi-
cation systems suffering from noise correlation whetherproduced solely by interference or by

other factors.

2.3 SNR Maximization

We consider the effect of the BS precoding and the receiverifiy (At the receiver, the signals
from all receive antenna branches are weighted by the mcé&wombining vector). Thus, the

detected signal at the UE with the JPR design is:
y =zl Hox + 2%, (2.4)

Where,z andw are the receiveb! x 1 and precoding vectord x 1 respectively. The use of the
Hermitian transposition of is necessary sinceis a column vector. The objective is to maximize
the SNR of the received signal as:

2" Ho|®

Hv|* , . 9
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WhereE|[|z|?] = o2 and P, is the transmit power. By considering the transmitted sylpbaver

o2 constant, the optimization in (2.5) can be expressed as:

2" Hol? :
Hzli}xﬁ subject tg|v||* = P.. (2.6)

In order to solve this problem, we will initially assume thais known, and solve foe. The
solution will be function ofv, which is still needed to be designed. Then by substitutiotine

main optimization problem, we can design
The optimization in (2.6) assuming thais known can be expressed as:

zH Hol? 2 (Hov? H?) 2
ma St = @)

According to the generalized eigenvalue problem, the swiub (3.5) is:

2 = QUmqe|R: Hov” HY] (2.8)

= aR;'Hv,

Where« adjusts the power of. Note that the scalar can be ignored since it has no effect on the

original objective function in (2.6). Substituting the aeo: into the objective function in (2.6),

the new objective function will be:

max v’ H” RZ' Hv subject tg|v||* = P,. (2.9)

The solution to the above problem is the eigenvector assatigith the highest eigenvalue with a

unit norm of H” R_* H . In other words,

v = 5Umam[HHRi_LlH]7 (210)
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Table 2.1: Comparison of different interference managéreamniques

Technique Pros Cons
Frequency reuse [2] Very simple Waste of bandwidth, i.e. spectral efficiency
Cooperative BSs [3] Higher gain compared to frequency reuse High latency due to cooperation between BSs
ML [4, 5] Optimal Performance Very high complexity
MMSE-SIC [6, 7] Much lower complexity than ML Performancegdades with the number of
interferers and requires knowledge of interference
Iterative IC [8, 9] Better performance than MMSE-SIC Regaitarge number of iterations

and requires knowledge of interference

No waste of bandwidth, lower complexity than ML,

JPR No BS coordination required, closed-form, Requitésorder statistics of interference

No restrictions on the number of interferers

Where 5 is the scalar that adjusts the transmitted power. We compRReto the MRT/MRC

solution where:

UMRT = 'Umaa:[HHH]a (211)

zZmre = Hopgr.

Moreover, Table 2.1 presents a summary comparison betviRiRiadd different interference man-

agement techniques.

2.4 Rate Maximization for Multi-Carrier Systems

In the previous section, we explained the SNR maximizataaten that is applicable for single
carrier systems. Here, we will modify the problem formwatand solution targeting multi-carrier

systems.

The resulting received signal by the UE under consideratsogiven:

y(k) = H;(k)vi(k)z;(k) + Y H;(k)v;(k)z;(k) + n(k), (2.12)
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whereH ;(k) is N, x N, matrix that represents the channel between the home BS andHton
hand over the:!" subcarrier,H ;(k) is the channel due to thgh interferer,z;(k) is the signal
intended to the UE on hand; (k) is the signal from thgth interferer,y(k) is the N, x 1 vector
that represents the received signal by the UE on heytdl) is the N, x 1 vector that represents the
precoding vector ,and (k) is the additive noise witlR,,(k) = En(k)n* (k)].

The first term in (2.12) represents the intended signal, écersd term represents the interference
signal from BSs other than the home BS (other-cell interfee®, and the final term represents the

additive noise.
The received signal with the receiver design is:

yr(k) = zi(k) " y(k), (2.13)

= z,(k)" H(k)v; (k)i (k) + zi(k) w(k)
where,z;(k) is the N, x 1 vector that represents the receiver vector, arné) is the interference
plus noise term.

The objective here is to maximize the rate at the user on hand:

7 k HHZ' k : ]{3 2
|Zii()k)HI§wa)::(§€))| T (2.14)

which results in maximizing the SINR of the received signal:

|zi(k) " Hi(k)vi(F) [ , - 2 _
zi(lfk%i‘))i((k) e Rz (1) s SUDJECt tO |0 (K)[[” = 1. (2.15)

where E||z;(k)|?] = agi(k). By considering the transmitted symbol powéri(k) is unity, the
optimization in (2.15) can be expressed as:

|2i(k)" H ()i (k)|

bject td|v;(k)||* = 1. 2.16
e Rz (W) subject tof|v;(k)|| (2.16)
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Assuming thaw; (k) is known, the optimization in (2.16) can be expressed as:

|zi(k)HHi(k)vi(k)|2 o
o Z)FRuz(k) (2.17)
maxzi(k)H(Hi(k)vi(k)vi(k)HHi(k)H)Zi(k)

z;(k) Zi(k)HRwZi(k}>

According to the generalized eigenvalue problem, the swiub (2.17) is [77, 78, 80, 85]:

2i(k) = ae[Ry Hi(k)v (k)i (k) H (k)" (2.18)

= aR, H;(k)v;(k),

where« adjusts the power of;(k), andv,,.. is the principal eigenvector (i.e. the eigenvector
associated with the highest eigenvalue). Note that theseadan be ignored since it has no effect
on the original objective function in (2.6). Substitutifigetabovez; (k) into the objective function

in (2.6), the new objective function will be:

max vi(K)?H,; (k)" R, H,;(k)v;(k) subject to|v;(k)||* = 1. (2.19)

The solution to the above problem is the eigenvector aswsatiaith the highest eigenvalue of

H,(k)"R*H (k). In other words,

Vi(k) = Bomae [ Hi(k)" R, Hi(k)], (2.20)

wherej is a scalar that is used in the normalization step such fihat)||> = 1.

Thus, the precoding design; (k) is the preferred precoding vector requested byith&E with

the aim of increasing its rate.
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2.5 LTE Specifications and System Assumptions

Before addressing the challenges in LTE, we review some iitapbelements of LTE (Release 10
and beyond). LTE base station is known as eNodeB, and UEstrefaobile terminals or user
end-devices. In LTE, sub-carriers are grouped in non-appihg subsets, called Resource Blocks
(RBs), and is the smallest allocatable resource in the &egyttime domain. Single subcarrier
and singe symbol is called resource element (RE). The uin@ is a 1 msec unit consisting of
14 OFDM symbols. The resource grid shown at Fig 2.2 contaata dlong with other signals.
The Physical Downlink Control Channel (PDCCH) and the cpédgfic RS (CRS) are used to
demodulate the control signaling and perform mobility nuieasients, the Channel State Informa-
tion Reference Signal (CSI-RS) are used for raw channehasitin, it is a reference signal used
by the UEs to estimate the channel. DeModulation Refereigpeats (DM-RS) are used for de-
modulation purposes. Control signaling, the CRS, and CSkR transmitted without performing
precoding, however, DM-RS can be precoded [81]. In somesinéssion modes DM-RS REs are
replaced by data REs. On the other hand, when DM-RS REs ate thecUE is expected to use
them to derive the channel estimate for demodulating tha. dAttypical usage of the DM-RS
signal is to enable beamforming of the data transmissiospéoific UEs. Such a beam will expe-
rience a different channel response between the eNodeB Enithiss requiring the use of DM-RSs

to enable the UE to demodulate the beamformed data cohe[82jl

We consider an LTE network formed by UEs with antennas, served in the DL through a multi-
path channel by BSs withV; antennas. We assume that each BSjhadjacent strong neighbors.
The system parameters are defined according to the LTE sjaeicifis [84]. We further assume
that transmission from different cells are not synchrodizén other words, the sub-frames of

different cells are not aligned with each other.
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2.6 Modified Problem for LTE OFDMA Systems

The received signal of the¥” subcarrier and th&" OFDM symbol, is given:

y(k,t) = H;(k,t)v;(k,t)x;(k,t) (2.21)
J
+ Y H(kty,(k, t)a(k,t) + n(k, 1),
j=1j#i

where H;(k,t) is N, x N, matrix that represents the channel betweenith@NodeB and the
UE under consideratiory(k,t) is the N, x 1 vector that represents the received signal by the
UE on hand, and;(k,t) is the N; X Ny .o Precoding matrix. Note that, while MU-MIMO in
LTE supports only rank-1 transmission [82, Chapter 11], oae stream to each UE, we refer to
v;(k, t) as precoding vector for the purposes of this discussidmeadth in the LTE specifications
the term precoding matrix is used for both SU-MIMO (with rankl) and MU-MIMO (with rank

=1). Furthermoreg;(k, t) is the information signal vector intended to the UE on hand&(%, t)

is N, x 1 vector that represents the additive noise With(k,t) = E[n(k,t)n™ (k,t)].

The first term in (1) represents the intended signal, therseterm represents the interference
signal from eNodeBs other than the home eNodeB (other-tdiference), and the final term

represents the additive noise. The post processed receymeal is:
yr(k,t) = zi(k 6) "y (k, 1), (2:22)

where,z;(k, t) is the N,. x 1 receiver vector. Our main objective is to design the premgpdector

v;(k,t), and the combining vecter; (k, t).
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2.7 Interference Estimation

2.7.1 Interference estimation using REs carrying data

In LTE, the covariance matriR,, is estimated by performing averaging over the receivedasign
at the data signal REsR,, = E[y(k,t)y(k,t)"]. In this case, the estimation error can be ne-
glected when the cross-covariance between the signale afettving cell and the interfering cell:
E[x;(k, t)x;(k,t)H], and E[z;(k, t)x;(k,t)¥] are negligible. However, in a practical situation,
the cross-covariance between the signals of the servihgueelthe interfering cell is not small.

Therefore, the residual cross-covariance incurs perfoceaegradation [83].

2.7.2 Interference estimation using REs carrying DM-RS

If the interference plus noise covariance matrix is comghwtging RESs that are not carrying data
signals, the cross-covariance between the signals of thingeand interfering cell can be elimi-

nated. In this subsection, we discuss the use of REs carBMdRS as a method of estimating
the interference. In this case, the UEs can find the interéer@lus noise covariance matig,,

as follows:

1 PN P
R,=——— k )y, (k t)H, 2.23
|ND]\/]RS| . Z yD( )yD( ) ( )
kteNDMRS

where,y,(k, 1) is the N, x 1 vector that represents the interference and noise vecttteoRE

carrying DM-RSy ,,(k, £) can be found as follows:

>

yp(k, 1) = y(k, 1) — Gi(k,D)d(k, 1), ki€ Npyns, (2.24)
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whereG; ( k, t) is the composite channel at the REs carrying DM-RS sigﬂﬂs,f) is the DM-RS

known sequence of the serving cell aNg , zs is the set of REs carrying DM-RS.

2.8 Remarks

2.8.1 Notes on Interference Estimation Process

Although, the estimation oR,, here is suboptimal, we aim at utilizing this information iptie

mizing the precoder and receiver.

Applicability

This interference estimation technique is broad, and carsbkd in any system where UE-specific

REs that are not carrying data are available.

Fast-Fading and Frequency Selectivity

The interference covariance matrix is interpreted in tinegtuency average sense so that the effect

of fast-fading and frequency selectivity is averaged out.

32



2.8.2 Notes on Channel Modeling

We assume different channel models, one of them is a quatss-8at Rayleigh fading model. We
assume perfect channel knowledge at the UE side throughisuhtesis. This knowledge can be

practically available through various types of channahestion techniques.

2.9 Simulation Results

In this section, the performance of JPR is compared to theertdional method via simulations.
First, we assume a quasi-static flat Rayleigh fading modeihfe channel. Without loss of gen-

erality, in the initial set of results, the covariance mawf the noise is constructed as follows:

[R:)i; = p"! (2.25)

Where,p < 1 is the correlation factor. As shown in the previous set ofagdigns, we designed
the JPR algorithm to take noise correlation into considenaiThe JPR algorithm is also practical
since the only overhead relative to the conventional MRT@/Rthat the covariance matrix of the
noise need to be available. This assumption is reasonablalrtime division duplex (TDD) and
frequency division duplex (FDD) LTE. In TDD-LTE, BS can estite the interference of a certain
UE along with its channel using the uplink by means of chameebprocity. However, in FDD-
LTE, UEs can take interference into account in the chanraé shformation (CSI) feedback to
the home BS. Thus, UEs can feedback the interference infamman other words, each UE can
design its preferable precoding vector and feed it backed8. Thus, the proposed design will
have a low complexity compared to other interference mamage techniques and can achieve
high performance in terms of both throughput and probabdfterror. Consequently, JPR can
be considered practical, efficient, and has low complexitiie system parameters are defined

according to the LTE specifications reported in Table 2.2.[84
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Table 2.2: System Parameters

Parameter Value
Carrier Frequency 2 GHz
Transmission Bandwidth 10 MHz
Number of subcarriers 600
Subcarrier spacing 15 kHz
FFT size 1024
Modulation QPSK, 16 QAM, and 64 QAM
Noise Figure 5dB
Traffic Model Full buffer
Scheduling Proportional fair

Fig. 2.3 shows the output SNR versus the input SNR of the @megsolution for & x 3 MIMO
system using the QPSK modulation technique. It is clear tthatsystem with 0.5 correlation
factor is around 5-dB better than the uncorrelated systeig.. 4 is the same as the previous
figure, but for the conventional MRT/MRC solution. It is cldhat correlated noise reduces the
performance by around 1-dB relative to the uncorrelatetesys Fig. 2.5 shows a comparison
between the proposed and the conventional solution foerdifft correlation factors. As can be
shown, our proposed design results in an increase of arowti®ifér noise correlation of factor
0.5. Figure 2.6 presents the BER performance of the propesédique versus the conventional
approach. It shows a comparison between the proposed ardrkientional solution in terms of
BER in logarithmic scale for a correlation factor of 0.5, ®&nhd zero (uncorrelated). As shown,
our proposed design results in BER reduction as expectedfrevious figures. It can be noticed
that as the correlation factor decreases, the gap betweabrsblutions shrinks until it is elimi-
nated as expected in the case of uncorrelated noise. Whiahskeat our solution reduces to the

conventional MRT/MRC in case of uncorrelated noise.

Now, that we have a good understanding and analysis in nmagielierference as correlated noise
and how to utilize it in both the precoding and receiver, wik @a another set of simulations. The
previous set of simulation was focused on any system wittrfietences. Now, we will focus on

LTE cellular networks as shown in fig. 2.7.
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We assume that each BS haadjacent strong neighbors. Fig. 2.8 shows a network witihahgt

interference neighboring BSs as an example of the systenelmader consideration.

We examine the performance degradation due to the MMSEwercdihe motivation of this work
is to achieve high data rates and improve the spectral eftigieln order to focus on the impact
of interference errors only, we assume non-ideal intenfegeestimation (by using a reasonable
number of DM-RS RES), while we assume ideal TDD reciproaity aoiseless channel estimation.

We use the achievable sum-rates as a performance metric.

We provide a comparison between the MMSE with different pdgag schemes and our scheme.
The simulation setup follows [94]. We perform both a link @dsimulation, and a system based
simulation where, the system consists of seven BSs as showig.i 2.8. Each BS is assumed
to have four antennas, while each UE is assumed to have tworzad. Each cell has five UEs.
The UEs are independently and randomly located with uniferobability over each cell coverage
area. The UEs achievable rates are calculated by averagargeveral realizations of the UEs
locations. The cell radius is assumed to be 500m. The minighstance between the BS and the

UE is assumed to be 35m.

Fig. 2.9 shows the achievable rates obtained by Monte Carlalation whereH; and H ; are
assumed to have i.i.d elements CA/(0, 1) (normalized independent Rayleigh fading channel)
with perfect CSI. The y-axis presents the average througipon 10,000 random channel real-
izations. In the throughput calculations, we account fe $ignaling overhead in terms of the
average number of REs that are not used for data. In this figtedocus on one UE per cell (via
link-based simulation). Subsequently, we consider thgeeaystem performance by performing

system-based simulation.

Fig. 2.10is the same as previous figure, but with typical @) channel. This channel model is

the geometry-based stochastic model, which has been usteftMT-Advanced Self Evaluation
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Report. As can be noticed, JPR provides higher gains in @dianvith high frequency selectivity
such as TU. In order to explain these results, we need toibesitre interference estimation in
more details. Each UE estimates the interference on thelRiEaite reserved for DM-RS and then
these values are interpolated to other REs that containsgtataols. Thus, as the number of REs
reserved for DM-RS increases, the interference estimaiionracy increases. On the other hand,
increasing the DM-RS in the OFDM frame reduces the resowtdsh can be dedicated to data

which implies a capacity loss.

In Rayleigh fading channels, the number of DM-RS seems taffieient for the MMSE algorithm

to provide good results. However, if the channel sufferenftugh selectivity as the TU case, the
number of REs reserved for DM-RS becomes insufficient fougste interference estimation.
Thus, the MMSE performance is degraded, while the JPR pedoce is not in the presence of
inaccurate interference estimation. Motivated by the LTdhdard, we assume th&2 REs are
suitable to be used for DM-RS. Based on the simulation resthie proposed scheme has more

relaxed requirements for interference knowledge accutzany MMSE receiver.

In Fig. 2.11, as a comparison, we show the proposed JPR wikthtbe advanced and the simple

MMSE with both maximum ratio transmission (MRT) precodinglaodebook precoding.

In order to accurately evaluate the system performancs,important to consider both the cell-
edge throughput (5%) and the mean throughput. Fig. 2.12pteshe throughput cumulative
distribution function (CDF) for the 6-tap TU channel. As sl the JPR algorithm enhances the
cell-edge UE throughput from 0.84 Mbps to 0.97 Mbps and thamtleroughput from 1.31 Mbps
to 1.48 Mbps as compared to the advanced MMSE with MRT precpdi

36



2.10 Conclusions

This chapter presents a jointly optimized solution for dasig the precoder and the receiver for
LTE systems as a key enabling technique to make efficientfitbe available interference knowl-
edge. The proposed algorithm can provide high performamderms of both throughput and
probability of error. We first develop a model for the inteeiece, and then we consider it in our
joint design. A sufficient condition for the proposed algiom to work, is that the UE feedback
the interference information along with the CSI to the hong Bince the sufficient condition is
practical, our proposed algorithm is efficient and has lomplexity. As shown in the simulation
section, it can lead to significant increase in throughpapeeially for UEs suffering from highly
correlated noise. We further compare our algorithm withabeventional MRT/MRC technique

that is optimal for uncorrelated noise systems.

Moreover, we have proposed an interference estimatioroappraiming at optimizing the perfor-
mance of LTE network. The proposed scheme can achieve sy&dormance comparable to the
interference free transmission but with extra processirigeaBS and UE sides. Furthermore, the
proposed design is evaluated in terms of throughput fortipalcchannel models. The proposed
algorithm is efficient and performs better than currentlp@edd LTE designs. As shown in the
simulation section, it can lead to higher throughput, eslgdfor practical channel models that

are highly frequency selective[85, 86].
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Chapter 3

Practical Considerations in Multi-user LTE

Networks

3.1 Introduction

MU-MIMO is a promising wireless technique where the sameetinequency channel resources
are allowed to be used by multiple UEs simultaneously thinosgatial precoding. The perfor-
mance of LTE systems critically depends on how the intenfegeeither across different cells or
due to MU-MIMO is managed. In this chapter, we focus prinyagih utilizing the interference
information and considering the MU-MIMO non-ideality. Wis@ study the multi-cell effect. The
performance of the proposed approach is benchmarked afansrecoding and receiver designs

that are currently considered for LTE systems.

3.1.1 Contributions

The main results of this chapter are:
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1. Based on the interference estimation framework predent€hapter 2, we derive subopti-
mal precoder and receiver aiming at enhancing the systeughput for MU-MIMO oper-
ation. The precoder and receiver solution is simple (nerattve) yet enough to account for

LTEs interference patterns.

2. We tackle the effect of non-ideal precoding for MU-MIMO ifE. The solution aims at

updating the interference covariance matrix to accountfdrMIMO interference.

The remainder of the chapter is organized as follows: Se@&i@ describes the problem formu-
lation. In Section 3.3, we discuss the effect of ZF beamfagwith limited channel knowledge.

Simulation results are provided in Section 3.4 and we calecthe chapter in Section 3.5.

3.1.2 Notation

We use bold lower case for vectors, suchaasvhile bold capital letters are used for matrices
such asA. Further||A|| stands for the norm of the matrig. Further(-)? stands for Hermitian
transposition[ A|; ; denotes the element in ravand columry of matrix A. The cardinality of the

setA is denoted by A|. Also E stands for expectation operator.

3.2 Problem Formulation

We consider a network formed by UEs wiifj. antennas, served by eNodeBs with antennas,

using MU-MIMO. We assume that each eNodeB Hasdjacent neighbors. The received signal of
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the k" subcarrier and th&" OFDM symbol, is given:

y(k,t) = H;(k,t)v;(k,t)x;(k,t) (3.1)

+ > Hi(k, tyoy(k, t)ay (k. t)

g=1,9#i

+ EJ: > H(k tyoy(k, )z (k. t) + n(k, t),
j=1,j#i Vi

whereH ;(k, t) is N, x N, matrix that represents the channel betweeri‘theNodeB and the UE on
hand,y(k,t) is the N, x 1 vector that represents the received signal by the UE on lzawald, (&, t)
is the N, x 1 precoding vector. Furthermore;(k, t) is the information signal vector intended to the
UE on handn(k,t) is N, x 1 vector that represents the noise, @it the number of co-scheduled
UEs. The first term in (3.1) represents the intended sighalsécond term represents the multiuser
interference, the third term represents the neighbountegference, and the final term represents
the noise. The number of co-scheduled UE&is< N;,. The post processed received signal is:
yr(k,t) = 2 (k,t)y(k,t), where,z;(k, t) is the N, x 1 combining vector. Our main objective is

to design the precoding vectowg(k, ), and the combining vectoes (k, t), where;i = 1 : G.

Before eNodeBs perform scheduling, each UE will not haveskedge of other UEs that might be
scheduled on the same frequency-time resources. Themrgbeding of each UE is designed with
the objective of maximizing its local SINR!(k,t): The superscript denotes locally optimized
precoding, which will be updated later to accommodate fer MiJ-MIMO effect. Similarly,
z!(k, t) is the locally optimized receiver that will be updated lafémerefore, in the initial analysis,
the second term in (3.1) will be removed and the other-cédirference plus noise terms will be

denoted asv(k, ).
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3.2.1 Maximization of Local SINR
The received signal for the single user scenario can be ex@deas:
y(k.t) = 2" (k. t) [Hi(k, )0l (k, )i (k. 1) + w(k, )] (3.2)

The objective here is to maximize the SINR:

1H ‘ l 2
R O H Lk, ol (k)

(3.3)
Akl 27 (kO Rzl (k1)

subject to||vl(k, t)||* = 1.

The problem in (3.3) is coupled, however, here we presentetipal suboptimal non-iterative

solution. For a specifio!(k), the optimization in (3.3) can be expressed as:

N2 (k) H( ok, )
Ak 27 (k) Ry 2 (K, t)
oy 2 Gk ) (L, ok, ol (k, O HLM (k1) 2L (K 1)
2L (k1) 27 (k) Ry 2L (K, 1)

(3.4)

According to the generalized eigenvalue problem [78], thet®n to (3.4) is:z! (k,t) = aR H,(k, t)vi(k, 1),
wherea adjusts the power of!(k, t). Substituting the above!(k, t) into the objective function in

(3.3), the new objective function will be:

max vl (k, ) H I (k, t) Ry H(k, t)vl (k, ) (3.5)
v, (k,t)

subject to||[v!(k, t)||* = 1.
The solution to the above problem is [78]:

Vi (k,t) = Bomee [ HE (k,t) R H (K, t)], (3.6)
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wherej is a scalar that is used in the normalization step such|tbdtk, t)||> = 1, , andv,,., is
the principal eigenvector. Thus, the precoding desig(¥, t) is the preferred precoding vector
requested by th&” UE. Thus the solution of the local precoding and combiningtees is as

follows:

vi(k,t) = Bumas[H]' (k, t) R, Hi(k, 1)), (3.7)

2 (k,t) = aR " H,(k, t)v(k, 1),

We will use the receiver desigel(k,t) that is given in (3.7) and will compare its performance
against other receivers. It is important to note that eNBsialoneed X2 coordination since the

precoder design only needs,,.

3.2.2 Maximization of Overall SINR

In the previous section, MU-MIMO effect was not taken intc@aant. However, the eNodeB aims
at maximizing the overall sum rate. Thus, the eNodeB willstarct V; x G MU-MIMO precoding
matrix with the aim of spatially separating the concurreanhsmissions. Zero-forcing (ZF) is
considered as an efficient beamforming design for commtinitaystems. In ZF, the weights are
selected such that the co-channel interference is canc@edhe other hand, Maximum Ration
Transmission (MRT) beamforming maximizes the SNR at eackiver and requires only the
knowledge of the direct links. It is worth noting that the Mbes not take into account the
simultaneous transmissions and therefore it results iroagtross-interference. Since, this cross-
interference is a bottleneck for multiuser LTE systems, Zéepding is being studied for current

network implementations. We will drop the subcarrier niotat: and the OFDM symbal notation
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in the equation below for simplicity;’ = [v}...v!...vL].

Ve = VivVIIvhH-in (3.8)

= [v...v;...0¢]

where, I' is a diagonal matrix that ensure that the columnd/gf have unit norm. It is im-
portant to notez,(k,t) can be computed using (3.7)4f(k, ) is being used instead of.(k, t).

In other words,z;(k,t) is a function ofwv;(k,t). Initially, the local precoding is designed as-
suming SU transmission. However, once MU-MIMO precodingriras computed, UEs will
use a different receiver, not the same as the initial one. vdhart to the proposed algorithm
is shown in Figure 3.1. Typically, the MMSE receiver is a wdased due to its simplicity
[96] v(k,t) = {Gi(k,t)G} (k,t)+ Q+012VI}_1Gi(k,t), where G;(k,t) = H;(k,t)v;(k,t)

is the composite channef? is N, x N, diagonal matrix with interference powers on the di-
agonal, andr%, is the noise power. Another receiver is the IRC receiver. R&,l the covari-
ance matrix including interference is obtained by stat@dtaveraging of the received signal [95]

v(k,t) = Bly(k, )y (k,1)] " Gi(k,t).

3.3 Effect of ZF Beamforming With Limited Channel Knowl-

edge

If channel knowledge is perfect, the layers will be well-&eged using ZF. Thus, the multiuser
interference vanishes, and the only interference that tle fdce is the other-cell interference
which was taken into account iR,,. However, in reality this is not the case, aftl, will be
changed ta?,, to include the effect of multiuser interference. This is tu¢he fact that channel
knowledge is not perfect due to limited number of resourcatichted to pilots in LTE. Hence,

each UE might see interference due to other co-scheduled Nt we will explain howR,, can
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Figure 3.1: Algorithm Block Diagram

be updated to account for such interference. The receigedisis:

y(k,t) = Hi(k, 0)oi(k, t)a:(k, 1) (3.9)

+ Z ik, )y (k, )y (k, t) + w(k, 1),
g=1,g#i

Thus, the UE can update the interference plus noise coariaatrix as follows:
R, =0 L AH (k) (k, )} {H (k. t)v,(k, )} + R,
Thus, the final solution to the MU-MIMO receiver filters wileb z;(k) = aRw_lﬂi(k)vi(k).
The interference at each UE depends on the composite chimmmedd by the product of its own
channel and the precoding vectors of other UEs. A signatiieghanism is needed to allow for
successful decoding. An effective means for such sigrpiéinio apply precoding vectors to UE-
specific reference signals, allowing for the training of gasite channels during data transmission.

For more information, we refer readers to [82, Section §.2.2
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3.4 Simulation Results

In this section, we describe the simulations conducted udysthe proposed framework. The
primary goal of our evaluation is to understand the gainsigem by the proposed framework as
compared to other approaches. We perform link-level antésyevel simulations. In link-level,
we assume that all UEs have the same average SNR. We simgagéacoding and decoding at
the bit-level, using randomly generated information seges with the selected modulation and
coding scheme. In system-level, a multi-cell simulatiocdaducted. The interference is generated
in the same way as desired signals, and channel propagpttrdss, shadowing, and multipath)
is taken into consideration. Our simulations follow the L$tandard [94]. Each eNodeB has 4
antennas, and 10 UEs (it co-schedules up to 4 UEs simultaleosing MU-MIMO). UEs are
independently and randomly located. In summary, we uselénél to get an accurate relationship
between SNR and throughput, then we use system-level tegetate set of SNRs. Finally we get
the corresponding accurate system-level throughput. Aleeighput is calculated by randomizing
over several realizations of the UEs locations. Other sathuh parameters are summarized in
Table 3.1. We compare the performance of the designs showahle 3.2 (labeled from A’ to
'F). In LTE designs, UEs choose the precoding vector fromriarpagreed codebook. Thus,
UEs feedback the binary index of the chosen entry. In desighand 'E’, we use the 4-bit
LTE codebook. The remaining designs, we use beamformingidmithe LTE unitary precoding
matrices known as non-codebook based MIMO approaches. Butitodebook based MIMO
approaches are supported by the structure in LTE Releas®, IThppter 11]. Furthermore, we
assume CSI knowledge at the eNodeB via feedback using CRHES in Fig. 1, yielding errors
in the CSI at the eNodeB.
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Table 3.1: Simulation Parameters

Parameter Value
Frequency Band 2 GHz
Transmission Bandwidth 10 MHz
Number of subcarriers 600
Subcarrier spacing 15 kHz
FFT size 1024
Inter-site distance 500 m
Pathloss Model 34.5 + 35log1o(d) dB
Shadowing SD 8dB
Channel Model Typical Urban macro (Uma)
Noise Figure 9dB
Maximum Doppler 5.55 Hz

Table 3.2: Different Precoder and receiver designs

Precoder

Receiver
A ZF over maximized SINRs Maximized SINR
B ZF Beamforming IRC [95]
C ZF Beamforming MMSE [96]
D LTE codebook IRC [95]
E LTE codebook MMSE [96]
F

Iterative CoMP [97]

treat interference as noise [97]
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Figure 3.2: Performance comparison in terms of differentgetiles

3.4.1 Throughput per UE Analysis

In this section, the throughput per UE is evaluated. In Fig2 \Be show the performance in
terms of different throughput %-tiles. Design A’ providdgsoughput improvement over all other
designs except 'F’, since 'F’ uses cooperative resourcealion across eNodeBs. Design 'F’ has
throughput improvement of 28%, 25%, and 10% for 5 %-tile, 5l and 80%-tile as compared
to 'A. Note that, the gain is higher at lower %-tiles, whialmdicates that 'F’ is more beneficial
to UEs toward the cell-edge. Moreover, Design 'A’ that us@4-RS based covariance matrix
estimation and 'B’ that uses data based covariance matiixason are very close in terms of the
5%-tile throughput. This is because cross covariance isfigrsmall for 5%-tile UEs due to the
relatively small received power of the serving eNodeB [8d3pwever, for median and 80%-tile
UEs, the performance of the data signal based covariance&nsadegraded compared to the DM-
RS based covariance matrix estimation, 'A’ has a gain of 25%36% for median and 80%-tile

respectively as compared to 'B’.
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3.4.2 Total Throughput Analysis

In Fig. 4.5 we show the performance of the designs providethliie 3.2. The performance of
Design A’ is slightly worse than 'F’, because Design 'F’ 8S8oMP to optimize resource alloca-
tion which reduces the interference. Although, Design '&tp@rforms the proposed approach, it
is an iterative approach and requires signaling overhead:eMer, Design 'A’ provides high gains
compared to other non-iterative techniques that can beaetiiwithout cooperation and signaling
overhead. Design 'F’ aims at reducing the interferenceediby neighbouring cells, and treating
residual interference as noise [97]. As shown Design 'Abswa 13% worse than Design 'F’,
however, it outperforms all other designs by approxima28%, 94%, and 300% with respect to

Design 'B’, Designs ('C’ and 'D’), and Design 'E’ respectiye

3.5 Conclusions

In this chapter, we present a practical non-iterative metioo designing the precoder and the

receiver for multi-user LTE systems. By comparing to othesigns, we show considerable gains
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to be achieved using our approach [98].
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Chapter 4

Distributed Multi-user MIMO Wireless

Networks With Full-Duplex Capability

4.1 Introduction

In-band full-duplex (IBFD) communication is very promigiim enhancing wireless LANs, where
full-duplex APs can support simultaneous UL and DL flows oter same frequency channel.
One of the key challenges limiting IBFD benefits is interfere. In this chapter, we propose a
scheduling technique to manage interference in wirelesNd #vith full-duplex capability. We

focus primarily on scheduling UL and DL clients that can biecefntly served simultaneously.

A common assumption made in prior work is that the client tedieing served on DL is also
the client that is sending UL packets to the AP. Thus, thaf@tence is purely self interference.
Network interference among clients will occur if differeslients are considered for DL and UL,

which may significantly deteriorate the throughput perfante of IBFD wireless LANS.
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Furthermore, MU-MIMO has also been studied to follow thatref faster Wi-Fi. MU-MIMO has
been considered in a number of wireless standards such &3&E11ac [99] and IEEE 802.11ax
[100]. In MU-MIMO systems, each client can correctly decquekets simultaneously due to
spatial diversity and precoding of channel weights by taagmitter. The total throughput, how-
ever, highly depends on the relationship between the chags@onses and locations of scheduled
clients. None of the prior work discussed scheduling midtipL transmissions along with an UL

transmission.

The problem is further compounded when MU-MIMO is used on@he[89, 105-107], where
APs use beamforming techniques to direct packets simutestgto spatially diverse clients such
as in Figure 4.1. That is, the AP will steer simultaneous Imtordifferent clients, each beam

containing specific packets for its target client.

To illustrate the key challenges of IBFD network interfererronsider Figure 4.2 which shows the
interference signals resulting from having simultaneousad DL flows. When the UL receiver
and the DL transmitter are active at the same AP simultamgosedf-interference is generated
(shown as the solid red arrow). However, when the UL AP isedé#ht than the DL AP, network
interference is generated (shown as the dashed red arrdtws)igure assumes that one client is
transmitting to one of the APs as an UL flow (shown as the sdlid Brrow), and all the APs are
transmitting to a set of DL clients, as DL flows (shown as thedsgreen arrows). The square in
Figure 4.2 denotes the set of clients scheduled for DL MU-I@IMn this case, the signal trans-
mitted from the UL client can interfere with the DL client$the UL client is located close to the
set of the DL clients, and the signal transmitted from the Uént is very strong, the DL clients

will face high interference (shown as the dotted red arrow).

In order to mitigate the interference problem arising intrseavironment, a number of solutions
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Figure 4.1: AP using MU-MIMO beamforming

have been proposed [62]-[71]. Those solutions capturdiadél transmission opportunities cre-
ated by full-duplex by modifying contention and back-off chanisms. In [62], the authors de-
velop a centralized MAC protocol to support asymmetric dedffic where network nodes may
transmit data packets of different lengths, and they preposnitigate the hidden node problem
by employing a busy tone. To overcome this hidden node pnobéithors propose to adapt the
802.11 MAC protocol with the RTS/CTS handshake. In [70]haus study the power allocation
for IBFD system where clients operate in the HD mode but thecAfmunicates by using the
FD mode. In [70], the system model considers a single AP antiptauclients. The UL STA is
chosen randomly, then a DL STA with low interference fromtheSTA and high received power
from the AP is selected. Afterwards, a power control aldgpniis used such that the DL SINR and
UL SINR satisfies a threshold [70].

A scheduling approach was studied for full-duplex wirelassworks in [71], such that the AP
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has a pre-determined DL client and it aims at schedulingreandiL client simultaneously. The
AP randomly picks an UL client out of several ones that adhi@specific signal to interference
(SIR) threshold at the DL client. A key shortcoming of thegmeted prior work is that any client
that achieve a specific SIR at the DL client is considered algamdidate. Although, this type
of optimization provides a guaranteed minimum throughgpaipes not maximize the throughput.
Moreover, in such schemes, finding a client that satisfieStRecondition is done via exhaustive

search over all the clients, which is time consuming.

This chapter focuses on clients scheduling at both the DLthedJL aiming at improving the
sum rate in MU-MIMO wireless LANs with IBFD capability. In ihchapter, we consider wireless
LANs consisting of APs that are capable of full-duplex conmications. We aim at managing
interference, including interference due to DL MU-MIMO flevand interference due to the UL
flow. To overcome the challenge of interference, we propasehaduling technique that aims at
serving a group of DL clients along with an UL client to be szhsimultaneously with minimal

interference. Furthermore, the UL power is adapted to miapeie resulting sum throughput.
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4.1.1 Contributions

Our main objective in this chapter is to maximize the achiwaate of wireless LANs with full-
duplex APs serving multiple DL clients via MU-MIMO and an ULTA. Also, we consider that
the UL client is not necessarily one of the DL clients. In otiverds, each client may or may not

be served on UL and DL simultaneously.

The main results of this chapter are:

1. Clients categorization based on received signal sthandtcator.

2. Channel access mechanism for clients through contemtindow adjustment procedure,
which results in scheduling a group of DL clients along withWL client simultaneously
with minimal interference. We place no restrictions on theice of the UL client, i.e. the

UL client is not necessarily one of the DL clients

3. Power adaptation algorithm, which adjusts the UL tranpaver aiming at maximizing the

throughput.

The remainder of the chapter is organized as follows: Seecti@ describes the problem formu-
lation. In Section 4.3, we provide the scheduling and povdgusiment technique. Section 4.4,
provides the complexity analysis for the proposed techmigsimulation results are provided in

Section 4.5 and we conclude the chapter in Section 4.6.

4.1.2 Notation

We use bold lower case for vectors, suchaasvhile bold capital letters are used for matrices
such asA. Further||A|| stands for the norm of the matrig. Further(-)? stands for Hermitian
transposition[A|; ; denotes the element in ravand columry of matrix A. The cardinality of the

setA is denoted by A|. Also E stands for expectation operator.
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4.2 Problem Formulation

We consider an IBFD office wireless LAN scenario that cossidtfour APs, and comprises 64
cubicles. Each cubicle has four clients [100]. APs are assutm have full-duplex capability. In
other words, we consider that each AP can simultaneousigina and receive. Throughout the
paper, we will refer to the set of clients served on DL MU-MIMOS ;.. Py, refers to the UL

transmit power.

We assume that each client hasantennas, and each AP hasantennasn 4 refers to the number

of APs to perform MU-MIMO multiplied by the number of antersnper AP. The channel gains
are modeled according to TGac channel model D [104] and awnasd to be constant over the
duration of each transmission. Since serving differergnt results in interference in different
directions, Scheduling and Power Adaptation techniquéd)$Rys an essential rule in enhancing

the system performance.

The resulting received signgl! € C" by thei'" DL client is given by:

K
ygl = Hz-sgﬂ + Z Hz'SZl + Fj,iS;Ll + n;, (4.1)
k=1,k#i
where,
_ - T
Hli
_HAi_

H, isn, x n, matrix that represents the channel betweerni‘thelient and all APsH ,; is n, x n,
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sub matrix that represents the channel betweenth&P and thei’” client, F'; ; is n, x n, matrix
that represents the interference channel from the UL ofgetived by the” AP) to the DL client
7 due to the UL fIOW,s]“-l € C™ is the transmit signal of the UL client, and is the noise vector at

theit” client.

The resulting received signal by thé& AP that is serving the UL cliergj“-l € C", is given by:

A K
y]“.l = Hjus}d + Z Z Ea7j8gl + Zj + n;, (43)
a=1,a#j k=1
where,
K
zj =B E;;s{ (4.4)
k=1

H, isn, x ns sub matrix that represents the channel betweenthaP and the scheduled UL
client, E, ; is then, x n, matrix that represents the channel betweenthe\P and thej** AP,
sfl € C" is the transmit signal of thé’" DL client. z; is the self-interferences is the self
interference cancellation coefficient, is the noise vector, anfl is the number of co-scheduled

clients in DL MU-MIMO.

The first term in (4.1) represents the intended signal, tbergkterm represents the co-layer inter-
ference, the third term represents the IBFD network interfee, and the final term represents the
additive noise. In (4.3), the first term is the intended sigmahe UL direction, the second term

is the interference resulting from serving the DL clients third term is the self interference, and

the final term is noise. We define the SINR of an UL and DL flow dlefs:

| H jus)'||?

SINRy, = — - -
> amtazi 2okt [ Ba s 1P + 2 [1BE; sy 11” +

(4.5)
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| H s

SINRp; = (4.6)
St 1 HS2 A+ || F st 2 + g
We define the achievable total sum-rate as follows:
K
Ryt =logy(1+ SINRyr) + Y logy(1+ SINRpy) (4.7)

i=1

wheren; is the noise power at thg" AP andp; is the noise power at thé" client. The first and

second terms denote the UL and DL ratBs, and R, respectively.

4.3 SPA: Scheduling and Power Adaptation

We propose a scheduling and power aadaptation technigég {(&PBFD wireless LANs. Tra-
ditionally, an AP is solely using an exclusive RF channeinatlinterference via frequency reuse
[100]. Theoretically, IBFD can be applied at each AP, thus&\Brnwould support an UL and DL.
However, viable IBFD choices will be limited due to the pnoy of clients resulting in signifi-
cant network interference. To solve the network interfeegoroblem, we propose that all four APs
in the example scenario presented perform distributed MWUHM utilizing the aggregated band-
width. Thus, the network serves multiple clients in the Dladtigher capacity via MU-MIMO
while supporting an UL link via IBFD. The main benefit that da@m earned when this model is
considered in practical environment, is that there is aebettance of finding clients eligible for

IBFD as the physical space that all APs are covering is laigar each AP alone.

The following general system considerations are presented
Syst em Consi derati on 1: The selected UL client should be spatially separated fran th
DL clients to reduce co-channel interference.

Syst em Consi derati on 2: DL clients should be spatially separated to maximize MU-
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MIMO DL rates [89, 105, 106].

Figure 4.3 shows the importance of the system considesatimtussed above. The y-axis repre-
sents the sum rate, where 4 APs are located on the verticesopfaaie with a side length of 10m.
An UL client is chosen randomly and is considered as a ceffiteicocle where 4 DL clients are
equally-spaced on its circumference. By increasing thedtar of the circle, the DL clients gets
further away from the UL client. Besides, the DL clients getlier from each other. An example
for the setup is shown in figure 4.4, where clients on the samke@re scheduled for DL simul-

taneously using MU-MIMO, while the client in the center oéttircle is scheduled on the UL.

In figure 4.3, the sum rate is computed with respect to diffececle diameter values. As shown,
when the circle diameter is higher, i.e when the DL clientsfar from the UL client and are far
from each other, the inter-client interference from the Ulert is weak and the MU-MIMO gain

is higher. Thus the sum rate becomes high, as shown in Fig8reGh the other hand, a small
circle diameter means a strong inter-client interferemomfthe UL client towards the DL clients

and also, DL clients are very close to each other, as a réiselsum rate is reduced.

4.3.1 Clients Categorization

In order to categorize clients we propose the use of coetraliit (CU). One of the APs can act
as the CU. The CU will be responsible of all aspects of MU oppena The CU will store sorted
vectors of the received signal strength indicator (RSSdjces of the APs as measured by the
clients. i.e., a client with:AP,, AP,, AP., AP;, has high RSSI from the'* AP, and low RSSI
from thed™ AP. Since in the office scenario we assume 4 APs, the outcothieera lookup table

with 24 (4!) categories.
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Figure 4.3: Sum rate with DL clients on a circle circumfereaad an UL client on its center

4.3.2 Contention Window Adjustment Procedure

The 802.11 protocol uses a carrier sense multiple acceddALScheme, where channel needs to
be idle for any transmission or reception. When channellés mlbackoff timer is randomly cho-
sen over the interval db, CW], whereCW stands for contention window size. In this paper, we
proposeC'WW adjustment mechanism, the proposed mechanism maintatke/aed compatibility.

The legacy clients will still be able to demodulate and decpdcket headers, and backoff when

the medium is busy.

Initially, an UL client is selected based on CSMA. Dependorgthe category (RSSI vector)
of this UL client, it is better to schedule DL clients belongito categories far from the UL
client. In other words, to reduce interference with the Ulem, it is better to schedule DL
clients with RSSI vector with least significant digit equalthe most significant digit of the UL
client. i.e., if the UL client hasAP,, AP,, AP;, AP,, DL clients is preferred to belong to the
following: (AP, APy, APy, AP,),(APy, APy, AP3, APy),(APs, AP;, APy, APy)

10
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Figure 4.4: Example with DL clients on circle’s circumfecerand an UL client on its center

(AP3, APy, APy, APy),(APy, APy, AP;, APy), (AP, APs, APy, APy).

Thus, using clients categorization, tf€}}) size needs to be designed which controls the backoff
counters, such that clients belonging to the above 6 catesgget the smallest|V size. However,

in some cases, based on the relative differences of sigealgths from APs, this potential client
may not be a good candidate in terms of increasing the DL MMM Irate benefits. Thus, the
potential DL client will only be added to the set of schedul2d clients Sp;, if the condition

below is satisfied:
Rl;fl + RZ;“ + Rpotential > Rﬁl + RZ[? (48)

where, %, is the rate of the scheduled DL clients at #i& iteration, and the>V of all clients
belonging to the same category will increase. However,afrdite condition is not satisfied, that

client will solely increase it€'1. The C'W adjustment procedure is explained in Table 4.1, and
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channel access mechanism is explained in the flow chart id.Big

Table 4.1:C'W Adjustment Procedure

1: Initially, all clients have saméW = C'W;,,;

2: After UL is selectedC'W = aC'W;,;,where,o = -
,a! is the index of the UL AP within the client’'s sorted RSSI vecto
3: If a client fails the rate condition, itSWV is increased.

4: If a client passes the rate condition, thi& of other clients belonging to same category is increased.

4.3.3 Power Adaptation

To improve the performance, the UL power; needs to be adjusted. Initially, the UL client uses
full power. If the rate condition is not satisfie#;;;, is reduced, and same steps are repeated. If
the rate condition fails agairf};, is reduced until reaching a minimum powey,;,, that satisfies

an UL SINR threshold. SPA algorithm is explained in Table 4t2s important to note that, the
selectedP;;;, is based on the rate, however, in wireless networks, it isomant to enhance the
throughput, which takes into account both rate and packetsse Therefore it has become rather

important decision to update th&;; adaptively based on throughput.

Thus, the first transmission/reception event for a set @ntsi will be based on the algorithm
discussed in Table 4.2. However, upon completing eachrresson/reception event, the status
will be checked. The goal is to use the results of every trassion/reception event (i.e packets
are acked or not, etc.) to increase or decrddseaccordingly. After each event, the throughput

can be computed as follows:

T =(1—-PERyL)* Ry +(1—PERpL) * RpL 4.9)

Then, the algorithm needs to decide whether to reduce oeaser; ;. Our ultimate goal is to be

able to estimat&; andT},, which is the throughput at lower and high@y; respectively. Then,
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Table 4.2: SPA Algorithm

1: Categorize clients based on sorted RSSI indices

2: UL client is selected

3: Update CW of clients based on the UL client and step 1

4: Initialize: Spr, = 0 and Py, = Poe

5: while Py > Pon

6: while |[Spr| <na

7. Select a potential DL client

8 if RN+ RE 4 Rovtentia > RY, + RY,

9: Add potential client and update,; accordingly

10: Increase CW of all clients belonging to the same category
11: Select a new potential client

12: else

13: Increase the contention window of this potential client
14: break from while loop

15: end if

16: end while

17. Py =Py — A

18: end while

the algorithm can select;;, accordingly.

However, there is a challenge on computifigand1; before the transmission/reception, since the
PFERs are measured after the event completion. We propose estgiatand7; and using them

in the power adaptation algorithm as explained below.

1. Primary transmission/reception event:

When the link is just established, use the prim&}}; selected by SPA algorithm in Table 4.2.
Upon the completion of the event, use the information suchrasnber of packets that have
been successfully received, total number of packets trareshto compute packet success ratio

(PSR =1— PER). Then compute the primary throughgjt

2. Secondary transmissio/reception event:

CalculateP ERy;;, and PE Ry, and do the following:
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if PERDL > PERUL

Py =P, — A (4.10)

else

P =P+ A (4.11)

Similar to step 1, compute the secondary througfiputhen the event that leads to higher through-

put will be used as a current initial throughputas follows:

T. = max(T,, T}) (4.12)

Pg, is either the primary or the secondafy,; based on the selection @f.

3. Following events:

At this step, we have valuable information from primary aedmdary events. We have rate,
PSR, and throughput for primary and secondary events. Ampbeais shown in Figure 6. Note
that, P, affects throughput, by affecting both rate and PSR. Thecetia rate is known before
transmission/reception. However, the effect on PSR is &ntywn after the completion of the

event. In this step, our target is to tufe;, with a small tunablé, such that:

=P, 40, it T.<T,

where, P}, is the new UL power.

In order to estimaté; andT),, we need to estimatBS Rs at both points. For that purpose, we use

the primary and secondary points as shown in figure 6, andmeihterpolation/extrapolation to

71



Primary

Secondary

PSR

rate

Figure 4.6: Primary and Secondary information

find PSR, and PSR, After doing so, we can géf, and7; and select the one that maximizes the

throughput.

So, in summary, we keep the PSR estimates at four points. \deteiphose points upon each
transmission/reception event, we need to update the P3Rat#s$ according to the exponential

moving average as follows:

PSR = vPSR™ 4 (1 — ~) % 5% (4.14)

Mot

where,PSR" is the new estimatd? SR"~! is the previous estimate, € [0, 1] is the aging factor,

andn,,. is the number of successful packets, ang is the total number of packets.
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Figure 4.7: Office wireless LANs scenario

4.4 Simulation Results

Our simulation follows the office environment described etitn 4.2 and shown in figure 4.7.
The position of the APs is fixed, and clients are randomlyrithisted inside each cubicle. The main
simulation parameters are summarized in Table 4.3 [108. M@ compare the performance of
SPA with that of IBFD with power control that is presented T®], IBFD without power control

and also half-duplex conventional scenario. It is impdrtamote that [70] is only applicable for

a single AP, thus, IBFD in [70] is implemented for each AP safsy.

4.4.1 Rate Comparisons

Figure 4.8 shows the sum rate for different algorithms. Tdte in the y-axis is a sum rate of co-

scheduled clients. As shown, the rate of IBFD without powantol is worse than HD, because
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Table 4.3: Simulation Parameters

Parameter Value
Office Area 20mx 20 m
clients Locations randomly distributed within each cudicl
DL Power Different across APs based on MU-MIMO
UL Power satisfy the lowest UL MCS Level 2
Frequency Band 5 GHz
Channel Bandwidth 80 MHz

the DL rate will be affected by high interference generatedne UL client. In contrast, the rate
of IBFD system increases when power control is added. Homyvélve high gains of IBFD can
not be achieved using the power control algorithm in [70].sAswn, HD and IBFD with power
control [70] are close to each other, which is expected simete/ork interference is limiting the
benefits of IBFD. Thus, the power control algorithm in [7Ohnat utilize IBFD capability in the
office scenario. This is due to the fact that, choices arddidnilue to the proximity of clients. i.e.
the network interference caused by the UL will significanmégduce the SINR at the DL clients.
However, SPA can overcome this problem, since SPA has & lobtiace of finding clients that are
eligible for IBFD. i.e. SPA benefits from spatial separatiéis shown SPA algorithm outperforms
all other algorithms by approximately 150%, 268%, and 101i% vespect to HD, IBFD without
power control, IBFD with power control [70] respectively.i$ important to note that more than
twice the rate is achieved by SPA algorithm compared wittliti@al HD, due to the MU-MIMO

gains.

4.4.2 Fairness Index

Figure 4.9 shows the fairness index for different IBFD aigons. IBFD with SPA achieves com-
parable fairness index to the algorithm in [70]. That is,¢hents under SPA can be provided with
fair scheduling opportunities. Note that, SPA is adapyivelking sure that UL and DL flows are

achieving comparable good throughput.
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Figure 4.8: Rate comparison for office scenario
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Figure 4.9: Fairness index comparison
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4.4.3 Impact of Self Interference

In this paper, APs are equipped with elaborate antennaitpoésand signal processing modules
for self interference cancellation. In previous simulaipwe assumed perfect self interference
cancellation. Here, we show the impact of imperfect seliference on different algorithms.
Figure 4.10 shows average SINR for UL an DL clients with respeeself interference cancellation.
The SINR of both UL and DL of IBFD increase as the self intexfere cancellation increases, since
self interference cancelation directly benefits the ULntli@nd indirectly benefits the DL clients
due to the power adaptation scheme. Also, IBFD with powetrobm [70] can benefit from self
interference cancellation in both UL and DL directions. Hwer, it cannot sufficiently overcome
the problem caused by the proximity of clients resultingigngicant network interference, and
the SINR performance is then deteriorated. On the other,harttie case of the IBFD without
power control, UL SINR increases as self interference déatmmn increases, while DL-SINR does
not change, since the DL flow will suffer from same interferemegardless of self interference

cancellation. Figure 4.11 shows the difference betwee®IB#h SPA and IBFD in [70] in terms
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Figure 4.10: SINR comparison for different self interferertancellation

of total sum rate. In the office scenario, IBFD in [70] can geop to 8 clients, on the other
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hand, IBFD with SPA can only serve up to 5 clients simultas§ouHowever, the sum rate of
SPA exceeds the algorithm in [70] as shown in 4.11. Note ihgf70] the average inter-client
interference between clients increases because the cidb@tween clients shorten, hence the rate
is degraded. Moreover, due to the distributed MU-MIMO mdtat is utilized in SPA, clients can
get higher throughput opportunities.
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Figure 4.11: Sum rate comparison for different self intenfee cancellation

4.4.4 MCS Levels Comparison

Table IV shows the MCS levels of active links. Active link isyascheduled DL or UL flow.
Since SPA utilizes spatial separation, it provides highrajen percentage on high MCS levels(7
and 8) can be achieved approximately with 38.28%, 0.78%,4&¥%0% using IBFD with SPA,
with power control [70], and without power control respeety. The IBFD without power control
achieves higher percentage than SPA, because without mongol, UL clients gets high SINRs

on the expense of DL clients getting very low SINRs. As candt&cad, SPA provides the lowest

percentage of low MCS levels.
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Table 4.4: MCS levels of active links for IBFD

SPA  power control [70] no power control

MCS 7-8 38.28% 0.78% 48.59%
MCS 5-6 30.80% 0.79% 0.65%
MCS 3-4 30.60% 20.04% 0.48%

Lower  0.32% 78.39% 50.28%

4.5 Conclusions

In this chapter, we present scheduling and power adaptegmique to provide higher perfor-
mance in the IBFD environment for office wireless LANs. Thepwsed approach can provide
good IBFD opportunities. Our proposed algorithm aims a¢d@lg clients that can efficiently
be served simultaneously with low interference between biil BL transmissions. At a given
time, an UL client is scheduled and its power is adapted vdglecting multiple DL clients taking
the IBFD interference into account. Simulation resultsvaleate the system performance is pre-
sented, which show significant increase in rate comparegtent proposed scheduling and power

control algorithms for IBFD [111].
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Chapter 5

MIMO Cellular Systems With Power

Amplifiers

5.1 Introduction

OFDMA is the modulation of choice due to its robustness teetulispersive radio channels, low-
complexity receivers, and simple combining of signals fronrdtiple transmitters in broadcast net-
works. However, the transmitter design for OFDMA is moretlyosis the PAPR of an OFDMA

signal is relatively high, resulting in the need for highlydar RF power amplifiers (PA). This prob-
lem becomes more compounded when a large number of PAs iseégas in Massive MIMO. In

this chapter, we discuss the impact of PAs on cellular systafe show the constraints that PAs
introduce, and we take these constraints into consideratiole searching for the optimum set of
transmitter and receiver filters. Moreover, we highlighividassive MIMO cellular networks can

relax PAs constraints resulting in low cost PAs, while maiimihg high performance. The perfor-
mance is evaluated by showing the probability of error csilased signal-to-noise-ratio curves for

different transmit powers and different number of transmntiennas.
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5.1.1 Power Amplifiers

An ideal PA would produce as its output a perfect replica efitiput multiplied by a scalar value.
However, practical PAs exhibit various nonlinearities. nNarous practical PA models exist, a
selection of which can be found in [101]. Here we describestiiel state power amplifier (SSPA)

model presented at [102], where the output signal can béanrés:

r
f(r)= W7 (5.1)

wherer is the input signalQ, is the saturation output, and is a parameter that controls the
smoothness of the transition from linear to nonlinear of@ma Conventionally, a PA with a wide
linear region is preferable, to reduce the effect of digtartTo ensure that, a safety region between
the linear and nonlinear region is required, and is knowrhas'lbackoff region”. The width of
the backoff region depends on the expected PAPR in the comeation system. It is important to
note that there is a tradeoff between the width of the linegion and the cost of the PA. In other
words, PAs with relatively low cost have narrow linear regiwhile PAs with wide linear region

have a high cost. Both the linear region and backoff regidmdehe operating point of the PA

either by its input or its output.

5.1.2 Contributions

In this chapter, we aim at reducing the power consumptiomatBS and optimizing both the
transmitter and receiver filter design to avoid the occureesf nonlinear distortion. First, we aim
at operating within the reduced linear region that will bestoained by the PAs cost. Second, we

aim at improving the efficiency of the PAs by relaxing the sigiotal power constraints.

The main results of this chapter are:
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1. Discuss the impact of PAs on cellular systems.
2. Show the constraints that PAs introduce.

3. Take PA constraints into consideration while searchorglie optimum set of transmitter

and receiver filters.

4. Highlight how Massive MIMO cellular networks can relax$?@onstraints resulting in low

cost PAs, while maintaining high performance.

The remainder of this chapter is organized as follows: 8acti2 describes the problem formula-
tion. In Section 4.3, we explain the transmitter and readiiter design in order to account for PA
non-ideality. Section 4.4, we discuss the relationshigvben the PA linear region operation and
MIMO order. In Section 4.5 we provide remarks and notes orptioposed design. Simulation

results are provided in Section 4.6 and we conclude the ehapSection 4.7.

5.1.3 Notation

We use bold lower case for vectors, suchaasvhile bold capital letters are used for matrices
such asA. Further||A|| stands for the norm of the matrig. Further(-)? stands for Hermitian
transposition[A|; ; denotes the element in ravand columry of matrix A. The cardinality of the

setA is denoted by A|. Also E stands for expectation operator.
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Figure 5.1: System Model

5.2 Problem Formulation

5.2.1 System Model

We consider a cellular network, where each cell consistdoiae BS withN antennas and several
UEs withM antennas each. Hence, the link between the BS and each UEecapresented as
N X M MIMO system. An example of such a model is represented in Bid.. In this paper, we
focus on the effect of PAs on the transmitted signal. As shioviig. 5.1,w is the transmit vector

with N elements ana is the receiver combining vector wit¥l elements.

5.2.2 Maximizing SNR

We design the transmit vectar indirectly through designing the vector at the output of BAev.
Moreover, we design the receiver filterso as to maximize the signal to noise ratio (SNR). The

received signal by the UE will be:

y =z Hvx + zfn, (5.2)
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where H is the channel between the BS and the WHs the transmitted signal, and is the
additive noise with covariance matri®, = E[nn!|, z andv are the receiver and the vector at
the output of the PA respectively. It is important to notet thaise is colored due to interference

from other transmissions. Now, we aim at maximizing the SNEe received signal as:

HH 2
max%ai subject tg|v||* = Pr. (5.3)
zv zHR,z

WhereE||z|*] = 2 and Pr is the transmit power.

5.3 Transmitter and Recelver Filters

According to the generalized eigenvalue problem [78], thatsn to (5.3) is:

z=a R,'Hv (5.4)

V = Unee [H? R, ' H],

wherea and~ adjust the power o andw respectively. Then, by using the PA characteristics,
we can find the vectow at the input of the PA. An example to the characteristics chdeA is
shown in Fig. 5.2, wher®, = § = 1 is assumed. In order to guarantee that each output has a
corresponding input, each element in the designed vectas to be less than the PA operating

point.

5.4 Linear Region Operation

it is important to answer the following question: How likehjll the designed transmit vector

(PA output) be below the operating point? In order to answerduestion above, cumulative
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distribution function (CDF) simulations of the PA outputeebeen conducted. The results can be
summarized as in Table 5.1. Without loss of generality, {herating point here is assumed to be

unity for simplicity.

According to the table, as the number of antennas at thBl Bferease, the transmit power limits
can also be increased while having a relatively high peeggnf PAs operating in the linear
region. It is worth mentioning that also increasing the nemtif antennas at the receividr can

lead to higher system performance due to diversity gain.

It is obvious from Table 5.1 that there are scenarios whezetturrence of nonlinear operation
is extremely rare for example, when the BS, has more than 8nfginas for transmit power of 2
and 4 respectively. For massive MIMO, where the number cdframds at the BS can reach several
hundreds, the probability of operating in the nonlineaiords almost zero even if the transmit
power is relatively high. As will be shown in secti@?, for BSs with 100 antennas, the transmit

power can reach up to around 20 with 100% linear region ojoerat
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Table 5.1: linear region operation percentages

Number of BS antennasPr =2 Pr=4 Pr=38

2 50%  25.1% 12.6%
4 86.9% 54.4% 33.3%
8 99.2% 86.8% 60.5%
16 100% 98.8% 86.5%
32 100% 9%  86.7%

5.5 Remarks and Notes

The main advantage of JTR is that the transmitted signalneillbe distorted by the PA non-
linearity since the number of BS antennas and the total inétexd power shall be designed to
avoid non linear operation. Hence, JTR can be used with tieodisaving energy, where low

cost PAs with smaller linear region are used to reduce theepoansumed to operate the PAs in
the BSs. Also JTR can be used with the aim of enhancing thersyserformance, since the total
transmitted power can be increased leading to highly rgliabmmunication. It is important to

note that JTR puts some constraints on the maximum power tsée for signal transmission,
otherwise nonlinearies may exist. These constraints fadsase of massive MIMO since the

maximum power is very high compared to what is needed foeatigellular networks.

5.6 Simulation Results

In fig. 5.3, we present the CDF of the PA output, assuming 1éranas at the BS and 2 antennas
at the UE. As shown in the figure, although the transmit pow@rdreased to 2 and 4, the PAs are
guaranteed to operate in the linear region for 98.8% and 1@3¥ectively. However, increasing
the transmit power to 8 may lead to a slight degradation asbeishown later. In fig. 5.4, we
present the CDF of the PA output by fixing the transmit poweZ wehile using a different number

of antennas at the BS. As shown in the figure, increasing thhgbeu of antennas increases the
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Figure 5.3: CDF of PA output for 16x2 MIMO system

probability of operating in the linear region. Hence, hav@or 16 antennas at the BS will guaran-
tee that PAs operate in the linear region for 99.2% and 10G{ectively. However, reducing the

BS antennas to 4 may lead to nonlinear operation.

Fig. 5.5 is the same as fig. 5.4 except that the transmit posvéred to 4 instead of 2. As
shown, since the transmit power is increased, then the piidigaf operating in the linear region
will decrease. Thus, having 16 antennas at the BS will gueeatihat PAs operate in the linear
region for 98.8%. However, reducing the BS antennas to 8 oay lead to nonlinear operation.
Based on the previous discussion, it is important to seeehawor of massive MIMO BSs with
a large number of antennas. In fig. 5.6, we show that havingab®nnas at the BS can allow
for increasing the transmit power significantly while ogerg in the linear region. In that figure,
using transmit power of 20, 30, and 40 will guarantee opegati the linear region with probability

100%, 97.3%, and 93.7% respectively.

To summarize, massive MIMO can benefit the most from the ptedgoint transmit and receive

design. Since the number of BS antennas is relatively hingim the probability of operating below
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the operating point is close to one. Along these lines, masdiMO BS can be supported with

low-cost PAs instead of the current LTE adopted high-cost. PA

Figure 5.7 shows the output SNR with = 3 assuming 2 antennas at the UE and 16 antennas at
the BS for the proposed JTR method as compared to an ideal tRrawinfinite linear region. As
shown, the performance of the JTR matches exactly the peafoce of an ideal PA, which clearly
indicates that there is no nonlinear distortion. As showrahble 5.1, JTR in this scenario will lead
to about 99.5% linear operation, thus the performance ig affected by very slight nonlinear

distortion that can be neglected.

As mentioned earlier reducing the number of antennas at $evi also require reducing the
transmitted power, so fig. 5.8 is the same as fig 5.7 excepthbat is only 8 antennas at the
BS and the transmitted power is reduced to 2. The same olisengill holds, that nonlinear
distortion using JTR is minimal at about 99.2% linear ogerat It is worth mentioning that,
increasing the transmit power beyond certain limit thateshe}s on the number of BS antennas

may introduce nonlinear distortion such as in fig. 5.9 wheyestzown thatP; = 2 provides
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Figure 5.5: CDF of PA output foP; = 4

very close performance to the ideal case. However, inargdkie transmit power to 3 leads to an

obvious gap between JTR and the ideal response.

5.7 Conclusions

We present joint transmitter and receiver filter designrtigk?As behavior into account. Further-
more, we show that by using a high number of antennas at thei&%as in massive MIMO, the
presented design can eliminate the effect of nonlineafitye proposed model can be used either
to introduce energy savings in the BSs by using low-cost BA&) achieve higher performance in

terms of rate and/or reliability by relaxing the total tramispower constraints [103].
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Chapter 6

Optimizing Energy Through Adaptive Bit
Width Adjustment

6.1 Introduction

Over the last decade, the world has seen a sharp increastitrafic that necessitates robust,
low-power processing cores. However, mobile computingbtas traditional architectures is ap-
proaching its limits in terms of scalability and power comgion. One means of achieving the
desired performance increase is by increasing parallebsher than depending on transistor fea-
ture reduction [112]. This approach also becomes limitgulotessing elements cannot consume
data from memory at the desired processing rate, leadingitm#icantly degraded overall perfor-
mance. To address that limitation, new computing paradgarsed to emerge that focus more on
the memory bottleneck problem. Theoretically, the most wgrefficient paradigm is in-memory
computation. This paradigm simply replaces the logic widmmory structures, virtually eliminates

the need for memory load/store operations during computati
Associative processor@\Ps) are promising computational platforms for massiielmemory
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parallel computing [113]. APs can be considered as a typar@fl&Instruction Multiple Data
(SIMD) processors that combine the memory and processdreirsame location, so that every
row in the memory behaves as an individual processor. Sinagaration can be performed on
all memory words in parallel, the execution time of an opgeratioes not depend on the vector
size [114]. Many parallel systems are uniquely suited te #pproach due to the vector based
nature of their processing pipelines. This feature largelgrcomes the memory-wall problem of
traditional Von Neumann architectures since there is neridependance between memory and
processor. Associative processing is not a new topic anagemums architectures of APs originated
in the 1970’s and 1980’s [113] [115]; however, in the past,ddoption of APs was limited due to
the unmanageable power and area requirements. This rsatihanging with the availability of
new semiconductor technologies and materials that allovextremely dense memory structures
such as memristor [116] and STT-RAM [117], leading to a resttion of this approach under the

name ofResistive Associative Process®AP) [118].

Another computing paradigm that has become well-known enrétent years id\pproximate
Computing In approximate computing, the goal is exploiting the erasiliency by relaxing cor-
rectness constraints to achieve the energy efficiency. ys@i®, approximate computation can
be introduced at three different levels: design level, algm-architecture level, and logic-circuit
level [119]. In the circuit level, the most common method ésigning functionally approximate
circuits that has lower components than its fully accuratenterpart. Other ways of hardware ap-
proximations are overscaling the circuit timing and/orntagk [120] and approximation in memory
[121] [122]. At the architecture level, the significant coonents in the overall system is favored
over insignificant ones. In the design level, the approxéaimputing can be realized by design
tools that supports the approximate computing [123]. FamngXe, a VLSI design software can
include approximate versions of some arithmetic circuitd these circuits can be used in error

resilient parts of the chip.

Even though RAP architectures promise very efficient palrabmputing achievements, there are
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serious problems of large power density and energy consamiptsuch architectures mainly due
to high switching activity and costly memristor energy [118nless these problems are addressed,
it is likely that these architectures cannot be practicah. tke other hand, applying approximate
computing onto the existing computation systems does Hiyt @iminate the aforementioned
problems of the traditional computing, even though it isséng star in low energy computation.
Fortunately, AP architectures inherently facilitates dipproximate computing since all computa-
tions are performed on per bit basis. Regarding the probtd#rdark silicon era, combination of
associative processing with approximate computing cangreraising approach for the future of
computing especially for communication systems. To the beeur knowledge, no prior study

has touched on the approximate in-memory computing.

In this study, we introduce the approximate in-memory cotagon by exploiting RAP in com-

munication systems. The goal is to replace logic with mensbryctures, virtually eliminating

the need for memory load/store operations during computatigether bit dynamic approximate
computing in algorithm-architecture level for both eneegyd performance efficiency. The suit-
ability of RAP for approximate computing is demonstratecbtigh the implementation of FFT
used in wireless communication system. Results show tl@bapnate in-memory computation
in RAPs provides considerable energy saving by means obappation in a reasonable level

together with performance gain.

6.2 System Architecture

6.2.1 Associative Processor (AP)

The detailed architecture of the AP is shown in Figure 6.1e Plocessor comprises a content
addressable memory (CAM), a controller, an instructiorhea@n interconnection circuit, and

registers. Inside the AP, a CAM stores the data on which ¢ipesare performed in parallel. The
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Figure 6.1: Architecture of an Resistive Associative Pssoe (RAP)

key register is used to present the value that is writtend @M or compared against in the CAM.
The mask register indicates which bits are activated dusimgmparison or a write. The rows
matched by the compare operation are marked in the tag fieddenthe rows tagged with logic-1
means that the corresponding CAM row has been matched vethivien key and mask value. For
example, if the key is set as 110 and the mask as 101, the tagflbite corresponding rows whose
first and third bits are logic-0 and logic-1 respectivelydr@es logic-1. The interconnection matrix
(i.e. crossbar) is a basic circuit switched matrix that@ioows of the AP to communicate bitwise
in parallel. The controller generates the required masklkaydvalues for each corresponding
instruction and manages the data interchange betweenrio@isding units (either CPU or another

RCAM).

As a central part of the AP, the main requirement of a CAM arsay identify the row location
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of matches against a search word. Such requirements carhleyed using various CAM cells.
However, compact and energy efficient implementation ikéygpoint that becomes feasible with
the emerge of new semiconductor technologies. One of thepnasising candidates for a CAM
basic cell is described in [124], and is composed of two msions and two transistors (2T2M).
A memristor device is a nonlinear passive device that chaitgstate according to the net charge
passing through its two terminals, and maintains its sféte the electrical bias is removed. Binary
data is stored in the memristor device is the form of "Hightldhow” resistances. The device
can therefore work as a storage element and a switch at thets@er As pointed in Figure 6.1,
the cells of our AP implementation based on the memristois ffpe of CAM implementation
is calledResistive CAMRCAM) and correspondingly AP implementation is calRédsistive AP
(RAP).

In the figure, gray memristor corresponds to the memristdin Wigh resistance stat®{;) and
white one corresponds to the one with low resistance skatg.(A search operation in RCAM is
carried out in two sequential phases: pre-charge and di@iudn the pre-charge phase, all the
rows of the array which forms a parasitic capacitance arecpaeged concurrently. During the
evaluation phase, a search word is applied to the columadliag one of the pass transistors in
each CAM cell. A CAM cell should connect a path to the grounckise of a mismatch between the
data it is holding and the data assigned to its column. Thegelsaon a row capacitance leak from
the mismatched cell, where the memristor and the seriesistan are of low resistance creating
a path to the ground. Since the data is stored in this "2T2NI"inea complimentary mode, the
high resistance device will not leak charges to the grouresh éw case of mismatch, however its
complement device will do so. For example, the first row infigare shows an RCAM row in
case of a match, where no low-resistance path to the groumdhiable. On the other hand, the
second row leaks the charge since there is a path to grounatihia memristor whose state is low,
so causing mismatch. Writing to the RCAM in an RAP is perfodrmasing a one column at a time
scheme. However, this is translated into two writing stepg;e a complimentary data-column is

electively made of two columns of the CAM array. The bits totevare loaded to the match lines
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of the rows, with a key value of logic-1 to activate the coluafimterest. This eliminates the need

for any modification to the column driving circuitry used feading.

An operation on AP consists of consecutienpare and write phases. During the compare
phase, the matched rows are selected and in write phaseyrtesponding masked key values are
written onto tagged CAM words. Depending on the desiredhir@tic operation, the controller
sets the mask and key values by referencing a lookup tabl&)Uu the compare phase, the key
and mask fields are set and compared with CAM content, whitBenwrite phase, tagged rows
are changed with the key. In other words, the truth table efftimction is applied (in an ordered
sequence) to the CAM to implement the required function.lizitig consecutive compare and
write cycles with a corresponding truth table, any functigth corresponding truth table can be
performed on RAPs. As an example, to perform an XOR operatiamvo input columns and then
write the result on another column initialized as all Os,thk& of XOR operation R = A&B) is
applied to the RCAM where RCAM is searched for "10” in the ihpaolumns (A and B) and "1” is
written to the result column (R) of the tagged rows, and tlenesoperation can be done for "01”
as well, then the operation is completed with an R columresttiie XOR of A and B. Similar to
XOR, any function that can be performed on a sequential gsmdi.e. including but not limited
to addition, subtraction, multiplication, absolute val@&s & 1's complement, logical operations,
etc.) can also be performed on RAPs in parallel by utilizinogsecutive compare and write cycles

in their corresponding LUTS.

6.2.2 Fast Fourier Transform

Equation 6.1 shows the formula of Discrete Fourier Tramsf(DFT). This transform can be im-
plemented faster by interleaving it into butterfly stepsiolihs known as FFT [125]. FFT consists
of the butterfly operations in successive stages. Each stalyeles a number of butterfly opera-

tions depending on input size. Figure 6.3a shows the simiplgterfly diagram consisting of two
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Figure 6.2: Implementation of FFT on pipelined RAPs

inputs, two outputs and one exponential coefficient (tweddttor). Figure 6.3b shows an example
4-point, radix-2 FFT operation in two stages. As shown infitpere, after each stage, the partial
outputs of previous stages are re-arranged as an input aetttéutterfly stage. From RAP-based
point of view, each row can be regarded as a different procegsh their own registers to perform

a butterfly operation, so two input and one exponential fatiast be stored in the same row. After

completion of a butterfly stage, the output of the previoagets rearranged for the next stage.

Xp= ) mpe W (6.1)

In the RAP, all butterfly operations on a CAM are performedwstaneously, so the running time

of one stage does not depend on the number of samples.

For FFT implementation on the RAP, the architecture deedrib Figure 6.2 is used. The architec-
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ture consists of the pipelined RAPs. In the RAP, FFT openatansist of the consecutive butterfly
and data exchange phases. Figure 6.3c shows the butterfbtiopeon a RCAM row step by step.
The correspondence of each step is explained in the algpstiowed in Figure6.3d. In the algo-
rithm, each operation is performed on complex numbers,shaerformed on real and imaginary
parts separately. In the RAP, all butterfly operations on &AMG@re performed simultaneously,
so the running time of one stage does not depend on the nurhbamples. After each stage, the
partial outputs are directed to the corresponding plact®ifollowing RCAM by interconnection
matrix. The interconnection matrix can be implemented adwiaed connection since commu-
nication pattern is know in advance. Combination of onedstiyt and its data exchange phase
(interconnection matrix) constitutes one FFT stage. Iufgd.2 e, stands for the twiddle factor
of corresponding stageand rowr, wherease,; corresponds to the input of a butterfly operation
wheres is the stage number arids the input number. For exampley, corresponds to the first
input of the first butterfly stage. For an n-point FFT opermatibe overall system requirésgs(n)
APs and each AP requires2 rows. For example, the system requires 3 RAPs and 4-rowsn ea
AP for 8-point FFT operation. The exponential coefficients X are assumed to be placed to the
CAM arrays before the operations. It is worth noting thateorof o, values isreverse bitorder of

the real input samples(, x1, ..., z,,).

In associative computing, an arithmetic operation can éetext with any of the bits by disregard-
ing its remaining rightmost bits and go through the most ificant bits since all operations are
performed as bitwise. For this reason, the associative atingpprovides a natural support for ap-
proximate computing. As an example, the figure 6.4a showsed fwint representation of a real
number in the RAP. If the last 4-bits of the number is trimm@@% percent accuracy of the num-
ber is lost (Figure 6.4b). However, this lost in precisioaypdes both run time and energy savings
in performing operations on this number. For the additiotwaf 16-bit fixed point numbers, this

approximation provides 25% decrease in run time and ab&étdicrease in energy consumption.

By carefully setting the degree of approximation seriousyarding the needs of specific applica-
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tions, approximate in-memory computing can provide bothsaterable energy and performance
improvements. In the following section, approximate infmegy computing in OFDM-based wire-

less communication systems is presented.

6.2.3 Error Analysis

The output of a butterfly in th&*" stage can be given as follows:

a, = ay_ + eyb,_1, (6.2)

b, = ay_1 — e;by_4

Where,a;,, b;, are the two outputs of the"stage, ande;, is the coefficient of thé!" stage. The

error varianceg? at the output of stage s given by the simple recursion

Tk = W1 + Bk, (6.3)

where~y, is the propagation scaling factor of the stage due to inpititsumcation , ands, is the
stage specific error variance due to truncating bits. We tetake a closer look at each operation

in the AP aiming at getting; andj,. We will focus on a butterfly of one stage.

The first operation in the AP is the absolute operation, argddperation error will be taken into

consideration along with the multiplication operation.
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Multiplication Operation

In the multiplication operation, the variance of the errepdnds on the precision of the multi-
plication. Multiplying two inputs withB;,, bits, results inB,,; = 2B;,. Thus, there will be an
additional error due to the finite precision at the outpute Tultiplication operation is performed

on complex numbers, with the real part of the output expaeaseng Euler’s formula as follows:

Y, = (br+ep,)(cos b +e.,,) + (b + ey, )(sinby, + e.,) + ey, (6.4)

where,br andb; are the real and imaginary parts|bfrespectivelye;,,, ande,, are the errors due
to the partial truncation of fractional bits frotn; andb; respectivelye.,, ande., are the errors
due to truncating fractional bits frorvs ¢, andsin 6, respectively, ana;,,, is the error due to

truncating the output of the multiplier. Thus, the outputted multiplication can be expressed as:

Y,, =brcosO; + b;sinby + e, (6.5)

:gm + em

where,e,, is the cumulative error at the output of the multiplier, aat e expressed as:

€n = €y, cos O + ey, sinby, + e.,(br + ey,) + e, (b +ep,) + ey, (6.6)

The variance of the error at the output of this sub-stage is

op. =0p_ 4 +2%0p (Pr1+op_)) + 03, (6.7)

where,agm is the variance of the error at the output of the multipliethef " stage.o?_, is the
propagated error, which is the input to thé stage and the output of stage- 1. oj. is the error
in the FFT coefficientP;._, is the signal power of stage— 1, and finally,o}, is the error due to

bit truncation.
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After the multiplication, there is an XOR operation follodvey an absolute operation, both of
these operations are error free. Finally, there is eitheadatition or subtraction operation. The

details of the error analysis is discussed in the next stiosec

Addition/Subtraction Operation

Addition and subtraction operations have the same errdysisas multiplication. We focus on
the addition operation. The variance of the error dependb@bit width of the operation. There
are two cases, 1) The output has the same bit width as the,i@jpén extra bit of precision could
be added at the output of the addition operation. We conbioidr cases. The output of the adder

is as follows:

ya = a+ea+:/y\m _'_em +ekm (68)

where,e, is the error in the input, andey,, is the error due to truncation of the addition operation.

Y, = a+7Y, + eu (6.9)

where,e,; = e, + e, + €y,, .

Error Propagation

Using a uniform random error model:

9—2(Bx—1)
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where By, is the bit width of the FFT coefficient of stage Similarly, we can get the other error
variance of multiplier and adder in terms of the bit width diger the multiplier and the adder

respectively. The variance of the error at the output‘dfstage is

a,z = 0,3_1 + aim + U,%m (6.11)
op =207_1 +2% 0y Py +2% 0} 0p_y + 04, + 0%, (6.12)
op =20;_1(1+0})+2x0; Pr1+o0p, +07. (6.13)

By using (6.13) and (6.3), we can get the following:

e =2(1+0}) (6.14)

p { 2% 07 P+ 0}, 407 . Bow < B
k p—
2% 0} Py 4o}, | B,.; > Bin, (6.15)

where,B,,; and B;,, is the bit width at the output and the input of the additionragien respec-

tively. The the signal-to-quantization noise ratio (SQMR¥tagek is computed as follows:

Py, Py,

—_— = 6.16
O’% ’Ykalz_l + 5k ( )

Pk =

At the beginning of each stage, the SQNR at the output of tigeestan be estimated as follows:

P,
140} )oi_y+ 0} Pr_1+0.5(07, 407 )

PE= T (6.17)
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Note that:

Pk 2 Pr+1 (6.18)

Simulation results confirm that the numerical and theoaétitodels match as shown in figure 6.5.

6.3 Adaptive bit width adjustment

The objective of the adaptive bit width adjustment is toizgilthe knowledge of the channel state
information to minimize the energy consumption by adjugtime bit width of the AP stages such
that a certain performance is achieved. The error variahtimcating bits either at the input or

at subsequent operations will be as follows:

2—2(1)1'—1)
2(p.) —
o2(b;) 5 (6.19)

We can derive the error variance of the real part at the owtjpile FFT as the following:

n—1
op(bi) = v"0”(b;) + Z Y Bo—ji2 (6.20)
§=0
where,
n =logy Nppr, (6.21)

7= 2<1 + az(bi))a

Bk = 2% 0'2(192‘)(Pk_1 + 1)
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Now, by central limit theorem, the real and imaginary paftthe error distribution at the output

of last stage can be modeled as Gaussian, such that:

€real ™ N(O7 O'Z(bl)), €imag ™ N(O7 O'Z(bl)) (622)

The received signal can be expressed as:

y=Hx+ n, (6.23)

where,H is the wireless channet; is the transmitted signal, and,, is the total noise.

Nyt = W + €, (6.24)

where,w is the zero mean AWGN noise, ards the noise due to errors in the AP stages.

oy (b)) = 00 + 02 (b))

whereos? = 2 x g2(b;). The BER can be expressed in terms of the SNR for M QAM as the

following:
2(1- o) ¥
BER((,b;) = Werfc (\/Ufot(bi)(M — 1)> (6.25)

where, the received SNR has an exponential distributioreaseat! in [126].

=<
<

P(¢) = %,é >0 (6.26)
The Rayleigh channel is modeled as finite state markov chasraerived in [127]. In that model,
the range of the channel SNR is portioned idtaon-overlapping intervals denoted Ry I ),

wherej = 0,1,..., J — 1. Thus, the channel is said to be in st#fe if the received SNR is in the
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interval[I;14,). The average BER given the channel stHgis expressed as follows:

2 <1 - L )
v M
( 7 ) ()J *1()g2 1“ ¥ ( )

Ija 1.5¢ et
Lﬁj ”“(Vlawowf—w> T

where,j; is the steady state probability of being in statsuch that:

-1 RS

Sj=eT —e ¢ (6.28)

The solution to (6.27) can be derived as in [128] as the fatow

BER(H, b)) = —2— 9L (6.29)
e ¢ —e ¢
where,
—Tj 1.5« 1%
g:. = f(M)*e < xerfc J
i =7 (V%@MM—D

1.5%C
— JM) \/(M —1)oZ,(b;) + 1.5 f*

1.5 % ( % I;
erfe (\/(M ")z, (br) + 1.5 % g‘) (6.30)

where,
2 (1 _ ﬁ)
f(M) = W (6.31)

The problem of adjusting the bit width is modeled as Markowisien process (MDP), in which
S = {sy,..., sy} are all the possible states. AlsB,= {by, ..., by, } are all the possible actions, an

action means a certain bit width. Since there is two noisérifmrions (channel and bit width), a
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state is defined by these two elements, thus each state wdldraSNR slack. The objective is to

find the optimal action (policy)*(s) that minimizes the utility:
T(s) = argmbin U(s,b) (6.32)
where,U (s, b) denotes the utility, which is the value of taking acttoim states.

U(s,b) = C(s,b) + > _T(s,b,3)V(3) (6.33)

seS

where,V (s) is the value of the state:
V(s)=U(s,m*(s)), (6.34)
andC'(s, b) is the cost, which is defined using Karush Kuhn Tucker (KKT)ditions as follows:

(6.35)

C(s,b0) = E(b) + ju * (BER(S, b) — %om@)

where, E(b) is the energy consumption if bit widthis used. The transition modé&I(s, b, s)
specifies the probability of transition from statdo states on taking bit widthb. The channel
transition probability is derived in [127}; is the KKT multiplier, BER,,(s) is the optimal BER

using maximum bitwidth, and is the performance threshold.

The adaptive bit width algorithm selects the appropriateMuith of the next transmitted packet.

Thus, the objective is to save energy consumption by lowehe bit width of the AP stages.

The solution to MDP can be found using the value iteratiom@igm as shown in Table 6.1. And
the adaptive bit width algorithm can be summarized as inéfé#2. The adaptive bit width algo-

rithm can be summarized as in Fig. 6.6.
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Table 6.1: Value Iteration Algorithm

For each state, initialize the value of the state to zer;(s) = 0
Forl=1:1L
For each state
For each bit widthp
Compute the value of taking actiénn states
Uyfs,b) =C(s,b)+ > ,T(s,b,5)Vi_1(8)
end
Compute the optimal policy for state 7 (s) = argmin, U;(s, b)
Update the value of each stdtgs) = (s, 7/ (s))
end
end
Returnz; (s)

Table 6.2: Adaptive Bit Width Algorithm

Step 1: Initial Learning Phase:

Define and solve the MDP using Table 6.1

Step 2: Populating LUT Phase:

Store the optimal bit width for each state in a LUT
Step 3: Runtime Phase:

Identify the current state and find the optimal action

6.4 Performance Evaluation

6.4.1 Communication system model

In this paper, we use LTE communication system setup. In tR&punit in time is a 1 msec unit
consisting of 14 OFDM symbols. Thus, the processing timelireqnent for FFT :ﬁ msec =
71 usec. The wireless channel is assumed to be Rayleigh fadohgsanodeled as a finite state

Markov channel (FSMC). We aim at tracking the received SNR w@ilizing this information to
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Table 6.3: Simulation Parameters

Parameter Value
Frequency Band 2 GHz
Transmission Bandwidth 10 MHz
Number of subcarriers 600
Subcarrier spacing 15 kHz
FFT size 1024
Channel Model Rayleigh

reduce the energy consumption of the system by reducingithwidth when the errors due to

channel noise dominate. The simulation parameters are aumed in Table 6.3.

6.4.2 CAM/AP

For the evaluation of approximate in-memory computing inrfRAa Matlab-based RAP simulator
is implemented along with a Spice-based cycle-accurateitisimulator. The simulator is capa-
ble of performing pipelined RAP simulations on differenatiegres. All truth tables for required

arithmetic operations to perform FFT (addition, subt@ctiabsolute value, 2's complement, mul-
tiplication) are generated inside the simulator. Outp@ithe functions were compared with their

corresponding Matlab functions to verify their correctes

For circuit implementation, the platform allows plugging any memristor model for any two
terminal resistive devices and we adopt the device modskepted in [129]. The existing FFT
block is replaced with its RAP-based counterpart in an OFCAdeldl MIMO system. This 1024-
point FFT unit consists of 10 pipelined RAPs that can effidiesimulate realistic RAPs. For the
numbers, fixed point representation is used with separgggenand fractional parts. The design
is implemented to allow the largest precision during therapen (i.e. 12 bits for integer and

fractional parts). The reported operating frequency of RNR0 MHz .

In terms of precision, based on system level simulatiora datues are stored as 4 bits for the
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integer part and 4-8 bits (variable) for fractional part.r Bee complex coefficients (eg. twiddle
factors in FFT), we used 2 bit for the integer part and 6-18 piariable) for the fractional part.
Therefore, the RAP is capable of processing up to 12-bitigicacfor data and complex coefficient

values. The operating frequency of RAR¥) MHz .

Figures 6.7 show the change of energy reduction and thraugigy 1K-FFT with respect to the

number of fractional bits. As the precision decreases, teegy saving and the throughput in-
crease. On the other hand, increasing precision resultsonme mun-time to complete one FFT,

and correspondingly a higher energy consumption. As showhme throughput results, the system
throughput is about 80 MS/s which means that the system adorpelK-FFT within 12.92us,

which is well within the 71us for FFT required by LTE frames.

6.4.3 FFT

In this subsection, we justify the benefits and compare tinlpeance of the proposed adaptive
bit width algorithm. We assume Rayleigh channel model. Taetional bit width is selected

adaptively among five levels shown in Table 6.4. Althoughabdth of 14 bits is widely used, we

performed simulations to select a tighter bit width aimindpaving a meaningful comparison. In
this paper, we use a metric "normalized performance”, ddfagethe ratio between the minimum
BER (assuming highest bit width) and the achieved BER. Sarmalized performance close to
unity is desired. As shown in Fig. 6.8, 12 bits provides thmas@erformance as 14 bits. Thus we

select 12 bits as our performance reference.

An important observation is that at low SNRs, decreasingbihevidth leads to very slight per-
formance degradation. However, at high SNRs, reducingitheidith results in large degradation
in the performance. This observation clearly indicatesritbed of SNR dependant adaptive bit
width adjustment. Figure 6.9 shows the performance degfmaeersus energy consumption for

different SNRs. A good solution would be closer to the lefttieal line (consumes low energy)
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and the top horizontal line (closer to no performance deggrad), as shown, the proposed adap-
tive bit width algorithm results in low energy consumptiohilg maintaining slight performance

degradation.

Figure 6.10 shows the performance of the proposed algouitiiliing different bit width levels.
As shown, the algorithm adjusts the bit width adaptively Isat it select the min bit width that

satisfies the performance constraint, which will reduceetiergy consumption.

Table 6.4: Energy consumption for different bit width lesel

Bitwidth 8 9 10 11 12
Energy [%] 55 65 76 87 100

The comparison of RAP-based implementation of FFT progessivh traditional ones is shown in
Table 6.5. The table includes two version of RAP implemeotedf 1K FFT which represent the
fixed 12-bit precision and adaptive precision between 8iti2rbspectively. The table shows the
normalized area, power efficiency numbers and a figure oftimegrms of throughput over power
density . For a fair comparison, the respective numbers@maalized according to the equations
6.36, 6.37, and 6.38 where N corresponds to the FFT size. dversim the table, adaptive bit-width
methodology provides a considerable gain in both energyamdme, thus positively influences
the efficiency of RAP based FFT implementation within CMCs&%éd counterparts in which bit-

scale computing is not possible architecturally.

Table 6.5: Comparison with other ASIC implementations of FF

Normalized Normalized Normalized
Technology Size Word Width Area Throughput | Area Efficiency | Power Efficiency FOM
(nm) (points) (bits) (mm?) (MSIs) (GS/s/mm?) (GS/s/W) (GS/s/W/mm?)
RAP 16 & RRAM 1K 12 0.002 79.28 39.84 0.94 470.41
RAP 16 & RRAM 1K | Adaptive (12-8) 0.002 128.80 62.21 1.52 761.74
[130] 65 1K 16 8.29 240 0.16 252.54 670.34
[131] 90 256 10 5.1 2,400 2.21 652.25 674.43
[132] 45 2K 32 0.973 0.222 0.0002 0.44 20.80
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6.5 Conclusion

degradation [133].
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(6.36)

(6.37)

(6.38)

In this study, the approximate in-memory computation cphdg introduced by exploiting the
resistive associative processors in communication systé&ime goal is to replace logic with mem-
ory structures together bit dynamic approximate compuimdpoth energy and performance ef-
ficiency. The suitability of resistive associate procesdor approximate computing is demon-
strated. As an application, a novel mathematical modeldhatacterizes system performance of
FFT under fractional bits truncation has been derived. 8asethat model, an adaptive bit width
adjustment algorithm has been proposed. Simulation geshitiw that by using the proposed adap-

tive bit width algorithm, we can achieve up to 45% of energyirsgs with very slight performance
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1: procedure BUTTERFLY(z0, 1)

2 |z1| < Abs(z1)

3 le] - [z1] <= Multiply(lel, |z1])

4: t1 + XOR(s(e), s(z1)) > S(X) = sign of X
5: e- b+ Abs(le| - |z1],t1)

6 X1« SubtractOOP (e - x1,x0)

7 Xo < AddIP(e-x1,x0)

8:

end procedure

(d) Butterfly algorithm for RAP

Figure 6.3: FFT and Butterfly Operation in the AP
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