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ABSTRACT OF THE DISSERTATION

On Optimizing the Performance of Interference-Limited Wireless Systems

By

Rana Abdelaziz Mohamed Abdelaal

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2017

Professor Ahmed Eltawil, Chair

Multi Input Multi Output (MIMO) technology has seen prolificuse to achieve higher data rates

and an improved communication experience for cellular systems. However, one of the challeng-

ing problems in MIMO systems is interference. Interferencelimits the system performance in

terms of rate and reliability. In this thesis, we analyze methods that provide high performance over

interference-limited wireless networks such as Long Term Evolution (LTE) and WiFi. In this the-

sis, we tackle different sources of interference. One of theinterference sources is the neighbouring

interference, we propose methods that include an optimizedsolution that models the interference

as correlated noise, and uses its statistical information to jointly optimize the base station precod-

ing and user receiver design of LTE systems. We study the benefits of exploiting interference in

terms of both probability of error and signal-to-noise ratio (SNR). In addition, we compare the

proposed method with the conventional beamforming and maximum ratio combining (MRC).

One of the key challenges to enable high data rates in the downlink of LTE is the precoding and

receiver design. We focus primarily on the UE and the base station (BS) processing, particularly on

estimating and using the interference resulting from neighboring stations. We propose a receiver

design that performs well in the presence of interference. Furthermore, we present a precoding

scheme that the BS can use to maximize the signal-to-interference plus noise-ratio (SINR). The

proposed algorithm performs well under high speed channels. The limitations of the Minimum

xiii



Mean Square Error (MMSE) receiver are discussed and it is used for comparison purposes with the

proposed approach. An interference free scenario is used asa benchmark to evaluate the proposed

system performance.

Performance of LTE is optimized by tackling practical considerations that affect system perfor-

mance. We present a suboptimal practical way of estimating the interference and utilizing this

information on the processing techniques used at both the UEand the eNodeB sides. We focus on

managing both MU-MIMO interference and other cell interference. The proposed study improves

system performance even under non-perfect channel knowledge, enabling the throughput gains

promised by MU-MIMO.

Along the theme of enhancing spectral efficiency, we In-BandFull-Duplex (IBFD) when used in

conjuction with Mu-MIMO. IBFD is very promising in enhancing wireless LANs, where full-

duplex access points (APs) can support simultaneous uplink(UL) and downlink (DL) flows over

the same frequency channel. One of the key challenges limiting IBFD benefits is interference.

We propose a scheduling technique to manage interference inwireless LANs with full-duplex

capability. We focus primarily on scheduling UL and DL stations (STAs) that can be efficiently

served simultaneously.

Finally, we take a holistic view of performance by considering practical issues related to system

performance, namely, a) Interference resulting from the non-linearity of power amplifiers, and

b)the trade-offs between system performance and power consumption.

An important topic for practical communication systems is handling the interference due to the

power amplifier nonlinearities, especially in Orthogonal Frequency-Division Multiple Access (OFDMA)

based communication systems, due to the high peak to averagepower ratio. This problem becomes

more compounded when a large number of PAs is required, as in Massive MIMO for example. In

this thesis, we discuss the impact of PAs on cellular systems. We show the constraints that PAs

introduce, and we take these constraints into consideration while searching for the optimum set of

xiv



transmitter and receiver filters. Moreover, we highlight how Massive MIMO cellular networks can

relax PAs constraints resulting in low cost PAs, while maintaining high performance. The perfor-

mance is evaluated by showing the probability of error curves and signal-to-noise-ratio curves for

different transmit powers and different number of transmitantennas.

In terms of power consumption we investigate the use of emerging technologies (such as memris-

tors) to enable highly efficient computation kernels for wireless communication systems. Specifi-

cally, we investigate the use of Associative processors (APs) to perform in-memory computation in

the context of an FFT processor. To reduce power and power density, we investigate approximate

computing in memristive based associative processors. A promising approach to save energy is

through reducing the bit width, however reducing the bit width introduces errors that may affect

the performance. In this thesis, our goal is to adjust the bitwidth based on the channel SNR, aim-

ing at achieving good performance at reduced energy consumption. The mathematical approach

that analytically describes the system performance under the reduced bit width noise is presented.

Based on this model, an adaptive bit width adjustment algorithm is presented that utilizes the re-

ceived SNR estimates to find the optimal bit width that achieves performance goals at reduced

energy consumption. Simulation results show that the proposed algorithms can achieve up to 45%

energy savings as compared to wireless communication systems with conventional FFT.
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Chapter 1

Introduction

Mobile data demand has been rapidly rising over the past few years and it is expected to continue

along the same trends due to the increase in data-hungry userequipments (UEs) in their various

form-factors. This is especially problematic in dense urban cities which suffer from severe mobile

congestion and network stress, thus requiring advanced interference management techniques to

better manage the network, improve performance and spectral efficiency. Multiple input multiple-

output (MIMO) technology, which uses multiple antennas at both sides of cellular systems, has

emerged as a promising technology for achieving high data rates for wireless systems such as

Long Term Evolution (LTE) and beyond. The key role which MIMOtechnology plays in the LTE

standards testifies to its significant importance [1]. MIMO techniques can be used to their greatest

extent and provide high data rates for negligible interference environments. However, it is much

more challenging to provide high data rates in the presence of non-negligible interference. In

other words, one of the main factors that limits the performance of MIMO systems is interference.

The dimensions of the problem increase when MIMO is extendedto simultaneous users in the

Multiuser Multiple Input Multiple Output (MU-MIMO) schemes. MU-MIMO refers to serving

multiple UEs on the same time-frequency channel resource byeliminating inter-user interference

via spatial precoding, and advanced receiver designs. For correct operation of MU-MIMO, it is
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essential that: 1) The transmissions intended to differentUEs are well separated at the eNodeB

side, and 2) The UEs receiver design has to be able to exploit the potentially available information

about the interference.

1.1 Interference in Wireless Networks

There are several kinds of interference that wireless networks suffer from, including both inter-cell

and intra-cell interference.

1.1.1 Other cell / Neighboring Interference

Other cell interference is due to users served by neighboring cells over the same time and frequency

resources. Of particular importance are UEs located at the cell edge of a wireless system that

receive strong interference from neighboring cells. In addition to the strong interference that the

cell-edge UEs face, they receive a weak desired signal due tothe propagation loss from their home

Base station (BS). Thus, in order to enable cell-edge UEs to establish a reliable connection with

their BS, it becomes imperative to design precoding and receiver algorithms that can achieve a

certain desired performance under the conditions mentioned.

There are several techniques in literature that aim at mitigating interference from neighboring cells,

such as [2–9]. Some of these techniques have been proposed for reducing interference by adding

overhead at the BS side, such as frequency reuse [2] and BS coordination [3]. Other techniques

are focused on the receiver design at the UE side such as the maximal likelihood (ML) receiver

[4, 5], linear minimum mean square error (MMSE) receiver [6], Advanced MMSE with successive

interference cancellation (MMSE-SIC) [7], and receivers based on nonlinear decision feedback

equalizers (DFE), which perform an iterative interferencecancellation [8, 9].
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Some of these techniques can significantly reduce the interference, however, they suffer from one

or more of the following drawbacks: spectral efficiency reduction, inefficient use of the available

bandwidth, high latency, high complexity, performance degradation under high interference, and/or

the requirement of a large number of iterations to achieve a reliable solution. Thus, part of this

thesis is motivated to overcome these drawbacks by using interference statistics to jointly design

the precoder and the receiver at the BS and the UE respectively in a closed form solution.

1.1.2 Intra-cell / Multi-user MIMO Interference

Intra-cell interference is driven by reusing the same resources for multiple users within the same

cell, typically referred to as Multi-User MIMO (MU-MIMO). MU-MIMO is a promising wireless

technique where the same time-frequency channel resourcesare allowed to be used by multiple

UEs simultaneously through spatial precoding. The performance of LTE systems critically depends

on how the interference either across different cells or dueto MU-MIMO is managed.

1.1.3 In-band Full Duplex Interference

The explosive growth of wireless data traffic, spurred by data-hungry stations (STAs) such as smart

phones and tablets, is draining current wireless LANs resources, requiring a new paradigm shift

such as in-band full-duplex (IBFD). Recent work [15–19] hasdemonstrated IBFD, which is the

ability to transmit and receive simultaneously, in the sameband, via self-interference cancellation

which can be suppressed significantly, enabling near-idealIBFD capability. To take full advantage

of IBFD, it is essential to carefully select the STAs to be served simultaneously, since IBFD leads

to new network interference scenarios compared to current half-duplex (HD) communication based

Wireless LANs described above.
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1.2 Interference Challenges in Wireless Networks

1.2.1 Interference Estimation and Mitigation

Estimating interference poses considerable challenges inLTE. In this thesis, we study estimating

the interference information and utilizing it in both the UEand the eNodeB processing. We propose

an interference estimation approach for the design of precoders and receivers in LTE. We estimate

the interference covariance matrix and design precoders tomaximize signal-to-interference plus

noise ratio (SINR). Performance of the proposed approach isbenchmarked against the precoding

and receiver designs that are currently considered for LTE systems.

Related Work in Literature

Interference in wireless networks has been treated to various degrees in existing literature. The

current state-of-the-art on interference management techniques encompasses investigations of the

throughput achievable by a number of different joint transmission strategies, including Dirty Paper

Coding (DPC) [20, 21], coordinated beamforming (linear precoding) [22, 23], and coordinated

scheduling [3, 24]. In [23], coordinated beamforming in multicell scenarios was investigated to

minimize the total power consumption of all eNodeBs to meet with UEs individual signal-to-

interference-plus-noise ratio (SINR) targets, based on the uplink-downlink beamforming duality.

In [3, 25], coordinated processing was investigated, whereinterference is managed through coor-

dination between several eNodeBs. This imposes restrictions on what resources in time and/or fre-

quency are available to each cell, or what transmit power maybe used in a certain time/frequency

resource. In another coordinated approach, antennas from multiple eNodeBs act as a single an-

tenna array. This technique requires signal level coordination (exchange of data streams) [26].

This approach is well-known as a solution for strong neighboring interference (cell-edge prob-
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lem). However, the promising results for cooperative processing are only achievable if multiple

eNodeBs can maintain a sufficiently accurate time and phase synchronization for cooperation,

which is generally challenging to implement [27]. A number of issues remain to be addressed

before realistically considering multicell processing for future wireless systems, namely: the need

for a high-speed backbone enabling information (data, control/synchronization, and channel state)

exchange between the eNodeBs, the requirement of channel information availability for coherent

methods, and timing/phase synchronization [21].

Interference Alignment (IA) is another interference management approach. IA promises substan-

tial theoretical gains in cellular networks, however, it comes with challenges in implementation.

Authors in [28] address interference cancellation using IAonly from one neighboring eNodeB,

which performs well in a two-cell layout. Another interference management technique at the eN-

odeB side is frequency reuse [2]. The concept of frequency reuse is that each cell divides the

available bandwidth into a group of frequency bands. Each cell chooses a certain frequency band

to use for its cell-edge users, such that there are no neighboring cells using the same frequency

band for their cell-edge users. Frequency reuse can effectively reduce interference by spacing the

competing transmissions farther away. On the other hand, spectral efficiency is reduced since a

portion of the available spectrum is not used by each cell [29]. As the number of data-hungry users

in a cellular system increases, the demand for bandwidth increases. Thus, conventional frequency

reuse techniques that are based on spectrum partitioning are not promising as a long term solution.

Careful management of interference is important in systemssuch as LTE, which are designed to

operate with a frequency reuse factor of one.

Other techniques are focused on the receiver design such as maximum likelihood detection (ML)

[4, 5], which is known to minimize the bit error rate (BER) in multiple antenna systems. However,

it requires accurate, instantaneous information on the channels of interference which is not possi-

ble for LTE. Furthermore, the drastically increased computational complexity of the ML scheme

makes it prohibitive in practice, especially for UEs. Reduced-complexity algorithms such as V-
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BLAST [30] perform much worse than ML. The sphere decoder (SD) has been proposed as an

alternative to ML [31]. SD can provide ML performance with reduced complexity by providing an

efficient way for generating all candidate solutions. The main idea of the SD algorithm is to enu-

merate lattice points that lie inside a sphere defined by the channel matrix and the received signal

vector. In the high signal-to-noise ratio (SNR) region, theradius of the sphere can be chosen small

enough so that only few candidates are found inside the sphere. This search space is therefore

drastically smaller than the ML search space [32].

Although the average complexity of SD algorithms is believed to be polynomial for small array

sizes [33], the actual complexity depends on the channel conditions and the noise level, making it

difficult to integrate in an actual system, where data needs to be processed at a constant rate (i.e.

fixed complexity/throughput). Different methods have beenproposed to reduce or limit the com-

plexity of the SD, however, most of them still have a variablecomplexity depending on the channel

conditions. They can be classified in the following categories: 1) Modifications of the algorithm

to marginally reduce the complexity requiring additional operations or the calculation of limiting

thresholds [34, 35]. 2) Simplifications of the algorithm forspecific constellation types [36]. An al-

ternative to SD is the K-best decoders which maintain a fixed throughput, at a performance penalty

especially at lower SNRs [37].

Another alternative to the ML receiver is the MMSE receiver [6]. There are two classes of MMSE

receivers, a simple one that only needs to know the average interference and an advanced one that

needs to know the accurate interferers channels MMSE-SIC [7]. The linear MMSE receiver with

only average interference knowledge does not perform well,it has a slight gain compared to the

zero forcing receiver that performs poorly due to noise enhancement. In contrast, the advanced

MMSE-SIC has relatively good performance since it is able tocancel the interference. However,

the performance of the advanced MMSE degrades with the number of interferers. And in LTE, the

number of interferers can increase dramatically. For instance, cell-edge UEs significantly suffer

from strong interference due to non-negligible neighboring cells. If there areK non-negligible
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neighboring BSs, that results inNK interfering signals if each BS hasN transmit antenna. Such

interference can dramatically affect the performance. Another technique to manage interference is

the use of nonlinear decision feedback equalizers (DFE), which performs an iterative interference

cancellation as discussed in [8], [9]. Although this technique achieves high performance, the

interference is canceled iteratively. Thus, to increase the reliability of the data, a high number of

stages/iterations is required.

A promising technique that has been studied in the LTE context is the interference rejection com-

bining receiver (IRC). IRC is a linear combining technique that relies on estimate of the interfering

channels to project the received signals on a subspace in which the Mean Square Error (MSE) is

minimized [38]. IRC is attractive given that it represents astraightforward add-on to the known

Minimum Mean Square Error (MMSE) receiver, which is now considered the baseline receiver in

LTE networks [39]. In order to perform near ideal interference suppression, IRC (also known as

MMSE-IRC) requires channel estimation and covariance matrix estimation including the interfer-

ence with high accuracy [39], however, accurate interference knowledge is difficult to get at the

UEs due to estimation errors.

To understand this better, we start by making an important observation. The accuracy of the inter-

ference covariance matrix estimation in LTE depends on the cross-covariance between the signal

of the serving cell and the interfering cells. This is because the interference estimation is done over

the data resources.

Managing non-linearity

As for managing the interference due to PA nonlinearities, there are some techniques that have

been proposed in literature for reducing the PAPR in OFDM systems such as selected mapping,

coding techniques, and clipping [40–43]. The first two concepts are not applicable in the context of

LTE. Selected mapping requires additional signaling, while coding techniques are not compatible
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with the data scrambling used in the LTE downlink. Clipping is a simple technique, where the

transmitted signal is clipped to a predefined level to avoid PA distortion. Depending on the linear

region, clipping may lead to significant power loss in amplifiers with narrow linear regions.

1.2.2 IBFD and MU-MIMO

Both IBFD and MU-MIMO are promising technologies that can provide rate enhancements in

wireless LANs. MU-MIMO allows an access point (AP) to send multiple frames to multiple STAs

at the same time over the same frequency resources. For correct operation of MU-MIMO, it is

essential that the transmissions intended to different STAs be well separated via means of spatial

precoding.

Self interference

When the UL receiver and the DL transmitter are active in the same AP simultaneously, self-

interference is generated. The self-interference problemis out of this thesis scope since it has been

extensively studied in the literature as will be discussed.

Network Interference

However, when the UL AP is different than the DL AP, network interference is generated. For

example, if we have a STA transmitting a packet to an APs as an UL flow, and the AP is transmitting

packets to another DL STA, as the DL flow. In this case, the signal transmitted from the UL STA

can interfere with the DL STA, which intend to receive the signal from the AP. If the UL STA is

located close to the DL STA, and the signal transmitted from the UL STA is very strong, the DL

STA will face high interference.
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MU-MIMO Challenges

The key challenge for MU-MIMO with IBFD is to coordinate multiple downlink (DL) and uplink

(UL) simultaneous transmissions which are made possible bythe full-duplex capability. This thesis

focuses partially on STAs scheduling at both the DL and the ULaiming at improving the sum rate

in MU-MIMO wireless LANs with IBFD capability. We consider wireless LANs consisting of

APs that are capable of full-duplex communications. We aim at managing interference, including

interference due to DL MU-MIMO flows and interference due to the UL flow. To overcome the

challenge of interference, we propose a scheduling technique that aims at identifying a group of DL

STAs along with an UL STA to be served simultaneously with minimal interference. Furthermore,

the UL power is adjusted to maximize the resulting sum throughput.

Related Work in Literature

Managing interference due to IBFD has been studied in the existing literature. Recently, several

publications [44]-[61] have considered the problem of self-interference cancellation in full-duplex

systems by investigating different self-interference cancellation techniques to mitigate the self-

interference signal.

Analog cancellation is necessary to obtain preliminary isolation to avoid RF compression and

saturation of the analog to digital converters [44]. Analogcancellation uses knowledge of the

transmission to cancel self-interference in the RF signal,before it is digitized. One approach

to analog cancellation uses a second transmit chain to create an analog cancellation signal from

a digital estimate of the self-interference [45]. Another approach is that the transmit signal is

tapped at the transmit antenna feed, processed in the analog-circuit domain, and subtracted from

the receive-antenna feed in order to cancel self-interference [46]. In [47], authors propose a design

that utilizes a copy of the transmitted analog signal and uses a transformer in the analog domain

to then create a perfectly inverted copy of the signal. The inverted signal is then connected to a
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circuit that adjusts the delay and attenuation of the inverted signal to match the self interference

that is being received on the receiver antenna from the transmitter antenna.

On the other hand, digital domain cancellation is based on the subtraction of the interference signal.

Digital cancellation techniques aim to cancel self-interference after the analog-to-digital converter

(ADC) [48]-[50]. Several experimental and analytical results show that the mitigation capability

of digital cancellation techniques is very limited, mainlydue to the transmitter and receiver radio

circuits’ impairments [51]-[54].

The self-interference signal could also be suppressed in the propagation-domain. In propagation-

domain suppression techniques [55]-[59], the self-interference signal is suppressed before it is

processed by the receiver circuitry. Propagation-domain self-interference suppression mitigates

both the self-interference signal and the transmitter noise associated with it. In addition, mitigating

the self-interference signal in the propagation domain decreases the effect of the receiver noise and

increases the dynamic range allocated for the desired signal. Authors in [60, 61] propose antenna

cancellation techniques that, when combined with digital and analog techniques, allow IBFD with

negligible self interference. The above studies considered that the STA that is being served on

DL is also the STA that is sending UL packets to the AP. In otherwords, the AP will act as a

transmitter to a certain STA and also a receiver to the same STA. Thus, the interference in such

situation is purely self interference. Network interference among STAs will occur if different STAs

are considered for DL and UL, which may significantly deteriorate the throughput performance of

IBFD wireless LANs since multiple STAs are allowed to transmit and/or receive simultaneously.

In order to mitigate the interference problem arising in such environment, some studies have been

performed to coordinate transmissions with the goal of reducing network interference [62]-[72].

New medium access control (MAC) protocols proposed in [62–70] capture additional transmission

opportunities created by full-duplex by modifying contention and back-off mechanisms. In [62],

the authors develop a centralized MAC protocol to support asymmetric data traffic where network

nodes may transmit data packets of different lengths, and they propose to mitigate the hidden node
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problem by employing a busy tone. To overcome this hidden node problem, authors propose to

adapt the 802.11 MAC protocol with the RTS/CTS handshake. In[70], authors study the power

allocation for IBFD system where STAs operate in the HD mode but the AP communicates by

using the FD mode. In [70], the system model considers a single AP and multiple STAs. The UL

STA is chosen randomly, then a DL STA with low interference from the UL STA and high received

power from the AP is selected. Afterwards, a power control algorithm is used such that the DL

SINR and UL SINR satisfies a threshold. [70, see section III]

In contrast to full-duplex MAC protocols, there have been a few efforts to redesign the scheduling

algorithms for full-duplex wireless networks while takingnetwork interference into consideration.

One approach was studied in [71], such that the AP has a pre-determined DL STA and it aims at

scheduling another UL STA simultaneously. The AP randomly picks an UL STA out of several

ones that achieve a specific signal to interference (SIR) threshold at the DL STA. Simulations

presented show throughput gains.

1.2.3 Power Amplifier Nonlinearity

Although there are different multiple access technologiescompeting for dominance, cellular net-

work standards prefer Orthogonal Frequency-Division Multiple Access (OFDMA) which is the

multi-user version of the orthogonal frequency-division multiplexing (OFDM) for its well known

advantages. OFDM is highly resistant to frequency selective fading. Moreover, with OFDM tech-

nology channel equalization becomes simple. On the other hand, one of the major drawbacks is

that the OFDM signal has a high Peak-to-Average Power Ratio (PAPR). Generally, the OFDM

transmitter can be seen as a linear transform performed overa large block of independently iden-

tically distributed quadrature amplitude modulation (QAM) complex symbols (in the frequency

domain). From the central limit theorem [10], the time-domain OFDM symbol may be approx-

imated as a Gaussian waveform. The amplitude variations of the OFDM modulated signal can
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therefore be very high. However, practical power amplifiers(PAs) of RF transmitters are linear

only within a limited dynamic range. Thus, the OFDM signal islikely to suffer from nonlinear

distortion, which results in interference. To avoid such distortion, PAs have to operate with large

power back-offs, leading to inefficient amplification and/or expensive transmitters. Typically the

power amplifies consumes 50-80% of the power budget of a BS. The PA energy efficiency depends

on the frequency band, modulation and operating environment [11]. Modern BSs are highly inef-

ficient because of their need for PA linearity and high PAPR. OFDM schemes commonly used in

communication standards such as High Speed Packet Access (HSPA) and LTE are characterized

by strongly varying signal envelopes with PAPR that exceeds10 dB [12]. Along these lines, the

width of the backoff region needs to be very wide which reduces the linear region of the PA. Thus

PAs operate well below saturation, resulting in poor power efficiency, excessive cost, and size [13].

Otherwise, the use of low-cost non-linear PA can result in the presence of nonlinear interference

and spectral spreading of the transmitted signal which can cause adjacent channel interference, and

signal constellation deformation and spreading [14].

1.3 Practical Adaptive Power Management

1.3.1 Adaptive Bit Width Adjustment

Over the last decade, the world has seen a sharp increase in data traffic that necessitates robust,

low-power processing cores. However, mobile computing based on traditional architectures is ap-

proaching its limits in terms of scalability and power consumption. One means of achieving the

desired performance increase is by increasing parallelismrather than depending on transistor fea-

ture reduction. This approach also becomes limited if processing elements cannot consume data

from memory at the desired processing rate, leading to a significantly degraded overall perfor-

mance. To address that limitation, new computing paradigmsstarted to emerge that focus more on
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the memory bottleneck problem. Theoretically, the most memory efficient paradigm is in-memory

computation. This paradigm simply replaces the logic with memory structures, virtually eliminates

the need for memory load/store operations during computation.

Associative processors(AP) are promising computational platforms for massively in-memory par-

allel computing. Associative processors can be consideredas a type of Single Instruction Multiple

Data (SIMD) processors that combine the memory and processor in the same location, so that ev-

ery row in the memory behaves as an individual processor. Since an operation can be performed

on all memory words in parallel, the execution time of an operation does not depend on the vector

size. Many parallel systems are uniquely suited to this approach due to the vector based nature of

their processing pipelines. This feature largely overcomes the memory-wall problem of traditional

Von Neumann architectures since there is no inter-dependance between memory and processor.

Associative processing is not a new topic and numerous architectures of associative processors

(AP) originated in the 1970’s and 1980’; however, in the past, the adoption of APs was limited due

to the unmanageable power and area requirements. This reality is changing with the availability of

new semiconductor technologies and materials that allow for extremely dense memory structures

such as memristor and STT-RAM, leading to a resurrection of the this approach under the name of

Resistive Associative Processor(RAP).

Another computing paradigm that has become well-known in the recent years isApproximate

Computing. In approximate computing, the goal is the exploiting the error resiliency by relaxing

correctness constraints to achieve the energy efficiency. In a system, approximate computation can

be introduced at three different levels: design level, algorithm-architecture level, and logic-circuit

level. In the circuit level, the most common method is designing functionally approximate circuits

that has lower components than its fully accurate counterpart. Another ways of hardware approx-

imation are overscaling the circuit timing and/or voltage and approximation in memory. At the

architecture level, the significant components in the overall system is favored over insignificant

ones. In the design level, the approximate computing can be realized by design tools that sup-
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ports the approximate computing. For example, a VLSI designsoftware can include approximate

versions of some arithmetic circuits and these circuits canbe used in error resilient parts of the

chip.

Even though RAP architectures promise very efficient parallel computing achievements, there are

serious problems of large power density and energy consumption in such architectures mainly due

to high switching activity and costly memristor energy. Unless these problems are addressed, it is

likely that these architectures cannot be practical. On theother hand, application of approximate

computing onto the existing computation systems does not eliminate the aforementioned problems

of the traditional computing fully even though it is a risingstar in low energy computation. For-

tunately, AP architectures inherently facilitates the approximate computing since all computations

are performed on per bit basis. Regarding the problems of dark silicon era, combination of as-

sociative processing with approximate computing can be a promising approach for the future of

computing especially for communication systems. To the best of our knowledge, no prior study

has touched on the approximate in-memory computing.

In this study, we introduce the approximate in-memory computation by exploiting the resistive

associative processors (RAP) in communication systems. The goal is to replace logic with mem-

ory structures, virtually eliminating the need for memory load/store operations during computation

together bit dynamic approximate computing in algorithm-architecture level for both energy and

performance efficiency. The suitability of resistive associate processors for approximate comput-

ing is demonstrated through the implementation of Fast Fourier Transform used in MIMO-based

wireless communication system. Results show that approximate in-memory computation in RAPs

provides the considerable energy saving by the way of approximation in a reasonable level together

with performance gain.
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1.4 Thesis Contribution

MIMO promises higher spectral efficiency for LTE systems [73]. In order to achieve improved

spectral efficiency, channel state information at the transmitter (CSIT) is needed. If CSIT is un-

available, then finding the optimal precoding is not possible, and the transmitter will only have one

of two options, either use its total power for a single antenna and turn off the rest of the antennas,

or divide the total power equally over the available antennas [74]. In this paper, we assume that

CSIT is available and it can be obtained from the UEs UL pilotsby operating in Time-Division

Duplexing (TDD) mode and exploiting the reciprocity of the radio channels.

We focus on the processing operations at the base station (BS) and at the UE. For interference free

transmission, it is well known that singular value decomposition (SVD) beamforming, also known

as maximum ratio transmission (MRT)- maximum ratio combining (MRC) provides the optimum

performance. We consider practical systems where interference exists and the UE processing stage

performs interference estimation (due to neighboring cells) in order to be used effectively in the

receiver design. In contrast, the BS processing main role isto provide precoding that maximizes

the achievable rate for the UE which is through maximizing its signal-to-interference plus noise-

ratio (SINR). Towards that goal, we make the following general assumptions 1) The transmissions

intended to UEs need to be channel dependent which requires channel knowledge (TDD reci-

procity), and 2) The UEs receiver design need to be able to make sufficient use of the interference

knowledge.

In this thesis, we propose a practical method for interference estimation in LTE systems. We study

estimating the interference and utilizing this information in the processing operations at both the

UE and the eNodeB sides. The UE performs interference estimation in order to be used effectively

in the receiver design. In contrast, the eNodeB processing main role is to spatially separate multiple

DL transmissions while maximizing the SINR. Our contribution in this topic can be summarized

as follows:
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• A practical framework for interference estimation:We estimate the interference covariance

matrix in OFDMA-based LTE context through the use of non-data resources.

• Utilizing the interference knowledge:We derive suboptimal simple and non-iterative pre-

coder and receiver aiming at enhancing the system throughput for MU-MIMO operation.

• Considering the Non-ideality of MU-MIMO precoding:We tackle the effect of non-ideal

precoding for MU-MIMO in LTE networks. The solution aims at updating the interference

covariance matrix to add the effect of the MU-MIMO interference.

• Evaluation of the proposed framework benefits:We evaluate the proposed framework by

comparing different designs. We demonstrate the substantial gains compared to existing

approaches.

Moreover, we extend our work to the area on IBFD systems. And with the aim of improving the

performance even further, we take use of MU-MIMO on top of IBFD. One of the key shortcomings

of the IBFD research noted above is that it does not optimize the STAs selection process. In prior

work, any STA that achieve a specific SIR at the DL STA is considered a good candidate. Although,

this type of optimization provides a guaranteed minimum throughput, it does not maximize the

throughput. Moreover, in such schemes, finding a STA with thesatisfying SIR condition is done

via exhaustive search over all the STAs, which might be time consuming. Furthermore, none of the

prior work discussed scheduling multiple DL transmissionsalong with an UL transmission, which

is needed in practical crowded wireless LANs that serve manySTAs simultaneously.

In this thesis, we consider practical wireless LANs in whichit is not necessary to perform an

exhaustive search over all the STAs to find good candidates toschedule. Our main objective here

is to maximize the achievable rate of wireless LANs with full-duplex APs serving multiple DL

STAs via MU-MIMO and an UL STA. Also, we consider that the UL STA is not necessarily one of
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the DL STAs. In other words, each STA may or may not be served onUL and DL simultaneously.

Clearly, MAC protocols will be required to support the required functionality, however these will

be the subject of future research.

The contributions of this topic can be summarized as follows:

• STAs Categorization:Categorizing STAs aiming at reducing the search space.

• STAs Scheduling:Scheduling simultaneous UL and DL flows aiming at maximizingthe

overall rate via careful STAs selection.

• Power Adjustment:Adjusting the UL transmit power that directly affects the DL-STAs,

aiming at reducing the interference over DL flows while achieving reasonable UL rate.

• Evaluation of the proposed techniques:Evaluate the performance by showing the achievable

rate as compared to other IBFD techniques and conventional half-duplex system.

Recently, there has been significant interest in promoting the concept of green communication,

where inefficiencies are reduced across the entire network,including, of course, at the BS. To-

wards that goal, we extend our work and study the PAs behaviorin LTE systems, and jointly

design the BS transmit vectors and the UEs receiver filters toprevent PA distortion, leading to

higher efficiencies. Furthermore, we extend the discussionto include Massive MIMO, where the

number of antennas is increased. The contributions in this topics are:

• PA effects study:Discuss the impact of PAs on cellular systems.

• Analyze PAs constraints:Show the constraints that PAs introduce.

• Design of transmitter and receiver filters:Take PA constraints into consideration while

searching for the optimum set of transmitter and receiver filters.
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• Analyze Massive MIMO benefits:Highlight how Massive MIMO cellular networks can relax

PAs constraints resulting in low cost PAs, while maintaining high performance.

• Evaluation of the proposed framework benefits:Evaluate the performance by showing the

probability of error curves and SNR curves for different transmit powers and different num-

ber of transmit antennas.

Another promising topic is the approximate in-memory computation concept with the goal enhanc-

ing both energy and performance efficiency. The contributions in this topic are:

• RAP study:Introducing approximate in-memory computation concept byexploiting the re-

sistive associative processors (RAP) in communication systems.

• Approximate computing for communication systems:The suitability of RAPs for approxi-

mate computing is demonstrated in the field of communicationsystems

• Mathematical analysis:A novel mathematical model that characterizes system performance

of FFT under fractional bits truncation has been derived.

• Adaptive bit width adjustment:An adaptive bit width adjustment algorithm has been pro-

posed.

• Evaluation of the proposed framework benefits:Simulation results show that by using the

proposed adaptive bit width algorithm, we can achieve up to 45% of energy savings with

very slight performance degradation.
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1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents a precoding and receiver design

for LTE system with single user MIMO such that the interference in this case is always limited

to other cell interference. In chapter 3 we add MU-MIMO operation and study its effects. We

explain some practical considerations regarding interference estimation, precoders, and receivers.

In chapter 4 we introduce a new look at distributed MU-MIMO with IBFD capability. We discuss

the challenges, and provide solutions for users schedulingand power control. Chapter 5 extends

the previous results to include PA constraints to avoid PA distortion. And Chapter 6 includes

the adaptive bit width adjustment algorithm aiming at enhancing the energy/power efficiency of

communication systems.
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Chapter 2

Managing Other Cell Interference in LTE

Networks

2.1 Introduction

A major challenge in the development of next generation wireless networks is to design techniques

that can provide high throughput over interference limitedcellular networks. This chapter focuses

on designing a technique that utilizes the interference knowledge to enhance the system perfor-

mance.

In this chapter, we present a joint precoding and receiver (JPR) design, where each BS does not

need to sacrifice a portion of the available bandwidth as the case presented in [2]. Also, unlike

the algorithm shown in [3], JPR does not require cooperationbetween BSs which will definitely

reduce the latency. Moreover, the implementation of JPR at the UE side has relatively lower com-

plexity than [4, 5]. Furthermore, JPR performance does not degrade with increasing the number of

interferers as the case studied in [6, 7]. Furthermore, JPR provides a closed form solution unlike

the iterative solution presented in [8, 9].
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2.1.1 Contributions

The main results of this chapter are:

1. We develop a model for the interference as correlated noise.

2. We present a jointly optimized solution for designing theprecoder and the receiver with

given interference covariance matrix.

3. We compare our algorithm with the conventional MRT/MRC technique.

4. We discuss interference covariance matrix estimation inLTE systems.

5. We present a jointly optimized solution for designing theprecoder and the receiver for LTE

systems

6. We evaluate the designs in terms of throughput for different practical channel models.

The remainder of the chapter is organized as follows: Section 2.2 describes the problem formula-

tion. In Section 2.3, we provide a solution aiming at maximizing the SNR of the received signal.

In Section 2.4, we explain rate maximization for multi-carrier systems. In section 2.5, we discuss

system assumptions and discuss the LTE context specifications. In Section 2.6, we reformulate

the problem according to LTE standard. In Section 2.7, We explain the interference covariance

matrix estimation. Section 2.8 provides some remarks and notes about the interference covariance

matrix and the channel models. Simulation results are provided in Section 2.9 and we conclude

the chapter in Section 2.10.

2.1.2 Notation

We use bold lower case for vectors, such asa, while bold capital letters are used for matrices

such asA. Further||A|| stands for the norm of the matrixA. Further(·)H stands for Hermitian
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transposition.[A]i,j denotes the element in rowi and columnj of matrixA. The cardinality of the

setA is denoted by|A|. AlsoE stands for expectation operator.

2.2 Problem Formulation

2.2.1 System Model

We consider an LTE system where each BS is equipped withN antennas and each UE is equipped

with M antennas, and there areK interfering BSs. The system model is shown in Fig. 2.2, where

Ik is the interference power of thekth neighbor BS.

In contrast to the prior work on interference management, this paper focuses on using the inter-

ference to enhance performance. We show that by taking interference into consideration in jointly

optimizing the BS precoding and the UE receiver design, we can actually achieve higher signal-

to-noise-ratio (SNR) compared to the case of using the conventional maximum ratio transmission

(MRT) and maximum ratio combining (MRC).

In our algorithm, we first model the interference as correlated noise, then the optimization problem

for the precoder and the receiver is formulated. The solution to that optimization problem is not

well-known since most of the previous studies on MIMO systems assume uncorrelated Gaussian

noise. However, noise can be correlated due to the presence of interference [75], as described in

details in the following section, which presents the joint design of the precoder and receiver.

2.2.2 Noise Correlation

Since the UE suffers from strong interference in certain directions, JPR plays an essential role

in enhancing the system performance. The received signal atthe UE under consideration can be
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denoted as:

y = Hx+

K∑

j=1

Gjij + n, (2.1)

whereH is the channel between the home BS and the UE,Gj is the channel between thejth

interferer and the UE,ij is the signal from thejth interferer,y is the received signal,x is the

transmitted signal, andn is the additive noise with a covariance matrix given byRn = E[nnH ].

The second term in (2.1) represents the interference fromK interferers, and the third term repre-

sents the additive noise. Now we will group those two terms together as the following:

y = Hx+ ñ, (2.2)

where,ñ represents colored noise with the following covariance matrix:

Rñ = E[ññH ] = Rn +
K∑

j=1

Gjijij
HGj

H . (2.3)

Although there are many studies that use similar representation to (2.2), most of the work in litera-

ture assumes that the noise is uncorrelated at the UE side. However, in cellular networks, noise can

be correlated. Noise correlation can arise if noise/interference originates from a common source.

For example, as described in LTE systems, UEs are exposed to aset of neighboring interferers

(inter-cell interference) due to the broadcasting nature of cellular networks, resulting in correlated

noise at the UE as shown in Fig. 2.2.

In other words, a portion of the noise received at the UE antennas have originated from the same

sources due to the presence of neighboring cells, which implies that the noise at the UE anten-

nas is correlated. It is important to note that although we assume throughout the paper that the

neighboring cells are macro cells (BSs), they can be micro cells, Pico cells, Femto cells, or relay
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nodes.

Consequently, it is not practical to assume that noise is uncorrelated. Therefore, in practical cellular

networks, conventional techniques such as MRT/MRC fail to perform as expected. In this paper,

we aim at exploring the effect of noise correlation in wireless cellular networks. Based on that, we

obtain a closed-form solution for the precoding and the receiver optimization problem for cellular

networks assuming correlated noise at the UEs. We show that JPR outperform the conventional

MRT/MRC especially when the noise is highly correlated.

It is important to note that, here we focus on inter-cell interference as the main reason for noise cor-

relation. However, noise can be correlated due to other factors, such as UE close antenna spacing

which results in noise correlation [76]. So our design can besignificantly beneficial for communi-

cation systems suffering from noise correlation whether itis produced solely by interference or by

other factors.

2.3 SNR Maximization

We consider the effect of the BS precoding and the receiver filtering (At the receiver, the signals

from all receive antenna branches are weighted by the receiver /combining vector). Thus, the

detected signal at the UE with the JPR design is:

y = zHHvx+ zHñ, (2.4)

Where,z andv are the receiverM × 1 and precoding vectorsN × 1 respectively. The use of the

Hermitian transposition ofz is necessary sincez is a column vector. The objective is to maximize

the SNR of the received signal as:

max
z,v

|zHHv|2

zHRñz
σ2
x subject to||v||2 = Pt. (2.5)
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WhereE[|x|2] = σ2
x andPt is the transmit power. By considering the transmitted symbol power

σ2
x constant, the optimization in (2.5) can be expressed as:

max
z,v

|zHHv|2

zHRñz
subject to||v||2 = Pt. (2.6)

In order to solve this problem, we will initially assume thatv is known, and solve forz. The

solution will be function ofv, which is still needed to be designed. Then by substitution in the

main optimization problem, we can designv.

The optimization in (2.6) assuming thatv is known can be expressed as:

max
z

|zHHv|2

zHRñz
= max

z

zH(HvvHHH)z

zHRñz
(2.7)

According to the generalized eigenvalue problem, the solution to (3.5) is:

z = αvmax[R
−1
ñ HvvHHH ] (2.8)

= αR−1ñ Hv,

Whereα adjusts the power ofz. Note that the scalarα can be ignored since it has no effect on the

original objective function in (2.6). Substituting the above z into the objective function in (2.6),

the new objective function will be:

max
v

vHHHR−1ñ Hv subject to||v||2 = Pt. (2.9)

The solution to the above problem is the eigenvector associated with the highest eigenvalue with a

unit norm ofHHR−1n H. In other words,

v = βvmax[H
HR−1ñ H ], (2.10)
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Table 2.1: Comparison of different interference management techniques

Technique Pros Cons

Frequency reuse [2] Very simple Waste of bandwidth, i.e. Lowspectral efficiency
Cooperative BSs [3] Higher gain compared to frequency reuse High latency due to cooperation between BSs

ML [4, 5] Optimal Performance Very high complexity
MMSE-SIC [6, 7] Much lower complexity than ML Performance degrades with the number of

interferers and requires knowledge of interference
Iterative IC [8, 9] Better performance than MMSE-SIC Requires large number of iterations

and requires knowledge of interference
No waste of bandwidth, lower complexity than ML,

JPR No BS coordination required, closed-form, Requires2
nd order statistics of interference

No restrictions on the number of interferers

Whereβ is the scalar that adjusts the transmitted power. We compareJPR to the MRT/MRC

solution where:

vMRT = vmax[H
HH ], (2.11)

zMRC = HvMRT.

Moreover, Table 2.1 presents a summary comparison between JPR and different interference man-

agement techniques.

2.4 Rate Maximization for Multi-Carrier Systems

In the previous section, we explained the SNR maximization solution that is applicable for single

carrier systems. Here, we will modify the problem formulation and solution targeting multi-carrier

systems.

The resulting received signal by the UE under consideration, is given:

y(k) = H i(k)vi(k)xi(k) +
J∑

j=1

H j(k)vj(k)xj(k) + n(k), (2.12)
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whereH i(k) is Nr × Nt matrix that represents the channel between the home BS and the UE on

hand over thekth subcarrier,Hj(k) is the channel due to thejth interferer,xi(k) is the signal

intended to the UE on handxj(k) is the signal from thejth interferer,y(k) is theNr × 1 vector

that represents the received signal by the UE on hand,vi(k) is theNt×1 vector that represents the

precoding vector ,andn(k) is the additive noise withRn(k) = E[n(k)nH(k)].

The first term in (2.12) represents the intended signal, the second term represents the interference

signal from BSs other than the home BS (other-cell interference), and the final term represents the

additive noise.

The received signal with the receiver design is:

yR(k) = zi(k)
H
y(k), (2.13)

= zi(k)
H
H i(k)vi(k)xi(k) + zi(k)

H
w(k)

where,zi(k) is theNr × 1 vector that represents the receiver vector, andw(k) is the interference

plus noise term.

The objective here is to maximize the rate at the user on hand:

Ri(k) = log2(1 +
|zi(k)

HH i(k)vi(k)|2

zi(k)HRwzi(k)
σ2
xi(k)

), (2.14)

which results in maximizing the SINR of the received signal:

max
zi(k),vi(k)

|zi(k)
HH i(k)vi(k)|

2

zi(k)HRwzi(k)
σ2
xi(k)

subject to||vi(k)||
2 = 1. (2.15)

whereE[|xi(k)|2] = σ2
xi(k)

. By considering the transmitted symbol powerσ2
xi(k)

is unity, the

optimization in (2.15) can be expressed as:

max
zi(k),vi(k)

|zi(k)
HH i(k)vi(k)|2

zi(k)HRwzi(k)
subject to||vi(k)||

2 = 1. (2.16)
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Assuming thatvi(k) is known, the optimization in (2.16) can be expressed as:

max
zi(k)

|zi(k)
HH i(k)vi(k)|2

zi(k)HRwzi(k)
= (2.17)

max
zi(k)

zi(k)
H(H i(k)vi(k)vi(k)

HH i(k)
H)zi(k)

zi(k)HRwzi(k)

According to the generalized eigenvalue problem, the solution to (2.17) is [77, 78, 80, 85]:

zi(k) = αvmax[R
−1
w H i(k)vi(k)vi(k)

HH i(k)
H ] (2.18)

= αR−1w H i(k)vi(k),

whereα adjusts the power ofzi(k), andvmax is the principal eigenvector (i.e. the eigenvector

associated with the highest eigenvalue). Note that the scalarα can be ignored since it has no effect

on the original objective function in (2.6). Substituting the abovezi(k) into the objective function

in (2.6), the new objective function will be:

max
vi(k)

vi(k)
HH i(k)

HR−1w H i(k)vi(k) subject to||vi(k)||
2 = 1. (2.19)

The solution to the above problem is the eigenvector associated with the highest eigenvalue of

H i(k)
HR−1w H i(k). In other words,

vi(k) = βvmax[H i(k)
HR−1w H i(k)], (2.20)

whereβ is a scalar that is used in the normalization step such that||vi(k)||2 = 1.

Thus, the precoding design,vi(k) is the preferred precoding vector requested by theith UE with

the aim of increasing its rate.

28



2.5 LTE Specifications and System Assumptions

Before addressing the challenges in LTE, we review some important elements of LTE (Release 10

and beyond). LTE base station is known as eNodeB, and UEs refer to mobile terminals or user

end-devices. In LTE, sub-carriers are grouped in non-overlapping subsets, called Resource Blocks

(RBs), and is the smallest allocatable resource in the frequency-time domain. Single subcarrier

and singe symbol is called resource element (RE). The unit intime is a 1 msec unit consisting of

14 OFDM symbols. The resource grid shown at Fig 2.2 contains data along with other signals.

The Physical Downlink Control Channel (PDCCH) and the cell specific RS (CRS) are used to

demodulate the control signaling and perform mobility measurements, the Channel State Informa-

tion Reference Signal (CSI-RS) are used for raw channel estimation, it is a reference signal used

by the UEs to estimate the channel. DeModulation Reference Signals (DM-RS) are used for de-

modulation purposes. Control signaling, the CRS, and CSI-RS are transmitted without performing

precoding, however, DM-RS can be precoded [81]. In some transmission modes DM-RS REs are

replaced by data REs. On the other hand, when DM-RS REs are used, the UE is expected to use

them to derive the channel estimate for demodulating the data. A typical usage of the DM-RS

signal is to enable beamforming of the data transmissions tospecific UEs. Such a beam will expe-

rience a different channel response between the eNodeB and UE, thus requiring the use of DM-RSs

to enable the UE to demodulate the beamformed data coherently [82].

We consider an LTE network formed by UEs withNr antennas, served in the DL through a multi-

path channel by BSs withNt antennas. We assume that each BS hasj adjacent strong neighbors.

The system parameters are defined according to the LTE specifications [84]. We further assume

that transmission from different cells are not synchronized. In other words, the sub-frames of

different cells are not aligned with each other.
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2.6 Modified Problem for LTE OFDMA Systems

The received signal of thekth subcarrier and thetth OFDM symbol, is given:

y(k, t) = H i(k, t)vi(k, t)xi(k, t) (2.21)

+

J∑

j=1,j 6=i

Hj(k, t)vj(k, t)xl(k, t) + n(k, t),

whereH i(k, t) is Nr × Nt matrix that represents the channel between theith eNodeB and the

UE under consideration,y(k, t) is theNr × 1 vector that represents the received signal by the

UE on hand, andvi(k, t) is theNt × Nstream precoding matrix. Note that, while MU-MIMO in

LTE supports only rank-1 transmission [82, Chapter 11], i.e., one stream to each UE, we refer to

vi(k, t) as precoding vector for the purposes of this discussion, although in the LTE specifications

the term precoding matrix is used for both SU-MIMO (with rank≥ 1) and MU-MIMO (with rank

=1). Furthermore,xi(k, t) is the information signal vector intended to the UE on hand, andn(k, t)

isNr × 1 vector that represents the additive noise withRn(k, t) = E[n(k, t)nH(k, t)].

The first term in (1) represents the intended signal, the second term represents the interference

signal from eNodeBs other than the home eNodeB (other-cell interference), and the final term

represents the additive noise. The post processed receivedsignal is:

yR(k, t) = zi(k, t)
H
y(k, t), (2.22)

where,zi(k, t) is theNr × 1 receiver vector. Our main objective is to design the precoding vector

vi(k, t), and the combining vectorzi(k, t).
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2.7 Interference Estimation

2.7.1 Interference estimation using REs carrying data

In LTE, the covariance matrixRyy is estimated by performing averaging over the received signal

at the data signal REs:Ryy = E[y(k, t)y(k, t)H ]. In this case, the estimation error can be ne-

glected when the cross-covariance between the signals of the serving cell and the interfering cell:

E[xi(k, t)xl(k, t)
H ], andE[xl(k, t)xi(k, t)

H ] are negligible. However, in a practical situation,

the cross-covariance between the signals of the serving cell and the interfering cell is not small.

Therefore, the residual cross-covariance incurs performance degradation [83].

2.7.2 Interference estimation using REs carrying DM-RS

If the interference plus noise covariance matrix is computed using REs that are not carrying data

signals, the cross-covariance between the signals of the serving and interfering cell can be elimi-

nated. In this subsection, we discuss the use of REs carryingDM-RS as a method of estimating

the interference. In this case, the UEs can find the interference plus noise covariance matrixRw

as follows:

Rw =
1

|NDMRS|

∑

k̂,t̂∈NDMRS

yD(k̂, t̂)yD(k̂, t̂)
H , (2.23)

where,yD(k̂, t̂) is theNr × 1 vector that represents the interference and noise vector onthe RE

carrying DM-RS.yD(k̂, t̂) can be found as follows:

yD(k̂, t̂) = y(k̂, t̂)−Gi(k̂, t̂)d(k̂, t̂), k̂, t̂ ∈ NDMRS, (2.24)
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where,Gi(k̂, t̂) is the composite channel at the REs carrying DM-RS signals,d(k̂, t̂) is the DM-RS

known sequence of the serving cell andNDMRS is the set of REs carrying DM-RS.

2.8 Remarks

2.8.1 Notes on Interference Estimation Process

Although, the estimation ofRw here is suboptimal, we aim at utilizing this information in opti-

mizing the precoder and receiver.

Applicability

This interference estimation technique is broad, and can beused in any system where UE-specific

REs that are not carrying data are available.

Fast-Fading and Frequency Selectivity

The interference covariance matrix is interpreted in time-frequency average sense so that the effect

of fast-fading and frequency selectivity is averaged out.
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2.8.2 Notes on Channel Modeling

We assume different channel models, one of them is a quasi-static flat Rayleigh fading model. We

assume perfect channel knowledge at the UE side throughout this thesis. This knowledge can be

practically available through various types of channel estimation techniques.

2.9 Simulation Results

In this section, the performance of JPR is compared to the conventional method via simulations.

First, we assume a quasi-static flat Rayleigh fading model for the channel. Without loss of gen-

erality, in the initial set of results, the covariance matrix of the noise is constructed as follows:

[Rñ]i,j = ρ|i−j| (2.25)

Where,ρ < 1 is the correlation factor. As shown in the previous set of equations, we designed

the JPR algorithm to take noise correlation into consideration. The JPR algorithm is also practical

since the only overhead relative to the conventional MRT/MRC is that the covariance matrix of the

noise need to be available. This assumption is reasonable inboth time division duplex (TDD) and

frequency division duplex (FDD) LTE. In TDD-LTE, BS can estimate the interference of a certain

UE along with its channel using the uplink by means of channelreciprocity. However, in FDD-

LTE, UEs can take interference into account in the channel state information (CSI) feedback to

the home BS. Thus, UEs can feedback the interference information. In other words, each UE can

design its preferable precoding vector and feed it back to the BS. Thus, the proposed design will

have a low complexity compared to other interference management techniques and can achieve

high performance in terms of both throughput and probability of error. Consequently, JPR can

be considered practical, efficient, and has low complexity.The system parameters are defined

according to the LTE specifications reported in Table 2.2 [84].

33



Table 2.2: System Parameters

Parameter Value

Carrier Frequency 2 GHz
Transmission Bandwidth 10 MHz
Number of subcarriers 600

Subcarrier spacing 15 kHz
FFT size 1024

Modulation QPSK, 16 QAM, and 64 QAM
Noise Figure 5 dB
Traffic Model Full buffer
Scheduling Proportional fair

Fig. 2.3 shows the output SNR versus the input SNR of the proposed solution for a3 × 3 MIMO

system using the QPSK modulation technique. It is clear thatthe system with 0.5 correlation

factor is around 5-dB better than the uncorrelated system. Fig. 2.4 is the same as the previous

figure, but for the conventional MRT/MRC solution. It is clear that correlated noise reduces the

performance by around 1-dB relative to the uncorrelated system. Fig. 2.5 shows a comparison

between the proposed and the conventional solution for different correlation factors. As can be

shown, our proposed design results in an increase of around 6-dB for noise correlation of factor

0.5. Figure 2.6 presents the BER performance of the proposedtechnique versus the conventional

approach. It shows a comparison between the proposed and theconventional solution in terms of

BER in logarithmic scale for a correlation factor of 0.5, 0.25 and zero (uncorrelated). As shown,

our proposed design results in BER reduction as expected from previous figures. It can be noticed

that as the correlation factor decreases, the gap between both solutions shrinks until it is elimi-

nated as expected in the case of uncorrelated noise. Which means that our solution reduces to the

conventional MRT/MRC in case of uncorrelated noise.

Now, that we have a good understanding and analysis in modeling interference as correlated noise

and how to utilize it in both the precoding and receiver, we will do another set of simulations. The

previous set of simulation was focused on any system with interferences. Now, we will focus on

LTE cellular networks as shown in fig. 2.7.
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We assume that each BS hasj adjacent strong neighbors. Fig. 2.8 shows a network with 3 strong

interference neighboring BSs as an example of the system model under consideration.

We examine the performance degradation due to the MMSE receiver. The motivation of this work

is to achieve high data rates and improve the spectral efficiency. In order to focus on the impact

of interference errors only, we assume non-ideal interference estimation (by using a reasonable

number of DM-RS REs), while we assume ideal TDD reciprocity and noiseless channel estimation.

We use the achievable sum-rates as a performance metric.

We provide a comparison between the MMSE with different precoding schemes and our scheme.

The simulation setup follows [94]. We perform both a link based simulation, and a system based

simulation where, the system consists of seven BSs as shown in Fig. 2.8. Each BS is assumed

to have four antennas, while each UE is assumed to have two antennas. Each cell has five UEs.

The UEs are independently and randomly located with uniformprobability over each cell coverage

area. The UEs achievable rates are calculated by averaging over several realizations of the UEs

locations. The cell radius is assumed to be 500m. The minimumdistance between the BS and the

UE is assumed to be 35m.

Fig. 2.9 shows the achievable rates obtained by Monte Carlo simulation whereH i andHj are

assumed to have i.i.d elements∼ CN (0, 1) (normalized independent Rayleigh fading channel)

with perfect CSI. The y-axis presents the average throughput from 10,000 random channel real-

izations. In the throughput calculations, we account for the signaling overhead in terms of the

average number of REs that are not used for data. In this figure, we focus on one UE per cell (via

link-based simulation). Subsequently, we consider the entire system performance by performing

system-based simulation.

Fig. 2.10 is the same as previous figure, but with typical urban (TU) channel. This channel model is

the geometry-based stochastic model, which has been used for the IMT-Advanced Self Evaluation
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Report. As can be noticed, JPR provides higher gains in channels with high frequency selectivity

such as TU. In order to explain these results, we need to describe the interference estimation in

more details. Each UE estimates the interference on the REs that are reserved for DM-RS and then

these values are interpolated to other REs that contain datasymbols. Thus, as the number of REs

reserved for DM-RS increases, the interference estimationaccuracy increases. On the other hand,

increasing the DM-RS in the OFDM frame reduces the resourceswhich can be dedicated to data

which implies a capacity loss.

In Rayleigh fading channels, the number of DM-RS seems to be sufficient for the MMSE algorithm

to provide good results. However, if the channel suffers from high selectivity as the TU case, the

number of REs reserved for DM-RS becomes insufficient for accurate interference estimation.

Thus, the MMSE performance is degraded, while the JPR performance is not in the presence of

inaccurate interference estimation. Motivated by the LTE standard, we assume that12 REs are

suitable to be used for DM-RS. Based on the simulation results, the proposed scheme has more

relaxed requirements for interference knowledge accuracythan MMSE receiver.

In Fig. 2.11, as a comparison, we show the proposed JPR with both the advanced and the simple

MMSE with both maximum ratio transmission (MRT) precoding and codebook precoding.

In order to accurately evaluate the system performance, it is important to consider both the cell-

edge throughput (5%) and the mean throughput. Fig. 2.12 presents the throughput cumulative

distribution function (CDF) for the 6-tap TU channel. As shown, the JPR algorithm enhances the

cell-edge UE throughput from 0.84 Mbps to 0.97 Mbps and the mean throughput from 1.31 Mbps

to 1.48 Mbps as compared to the advanced MMSE with MRT precoding.
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2.10 Conclusions

This chapter presents a jointly optimized solution for designing the precoder and the receiver for

LTE systems as a key enabling technique to make efficient use of the available interference knowl-

edge. The proposed algorithm can provide high performance in terms of both throughput and

probability of error. We first develop a model for the interference, and then we consider it in our

joint design. A sufficient condition for the proposed algorithm to work, is that the UE feedback

the interference information along with the CSI to the home BS. Since the sufficient condition is

practical, our proposed algorithm is efficient and has low complexity. As shown in the simulation

section, it can lead to significant increase in throughput, especially for UEs suffering from highly

correlated noise. We further compare our algorithm with theconventional MRT/MRC technique

that is optimal for uncorrelated noise systems.

Moreover, we have proposed an interference estimation approach aiming at optimizing the perfor-

mance of LTE network. The proposed scheme can achieve systemperformance comparable to the

interference free transmission but with extra processing at the BS and UE sides. Furthermore, the

proposed design is evaluated in terms of throughput for practical channel models. The proposed

algorithm is efficient and performs better than currently adopted LTE designs. As shown in the

simulation section, it can lead to higher throughput, especially for practical channel models that

are highly frequency selective[85, 86].
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Figure 2.3: Output SNR for JPR design for a 3x3 system with correlated noise
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Figure 2.4: Output SNR for Conventional solution for 3x3 system with correlated noise
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Figure 2.5: Output SNR Comparison for 3x3 system with correlated noise

40



−10 −5 0 5 10 15
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

BER for 3x3 system comparison

 

 

Conventional, ρ = 0.5
JPR, ρ = 0.5
Conventional, ρ = 0.25
JPR, ρ = 0.25
Conventional, uncorrelated 
JPR, uncorrelated 

Figure 2.6: Average BER Comparison for 3x3 system with different correlation factors

hN

h1

x1

xN

y1

yN

Home BS
Neighboring BS

Neighboring BS

Figure 2.7: Cellular System Example

41



Strong Interfererence Neighbor
Weak Interfererence Neighbor

Home BS

Cell edge UE

Figure 2.8: Network Example

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

SNR  [dB] 

T
hr

ou
gh

pu
t [

M
bp

s]

 

 

JPR with DM−RS
Advanced MMSE − MRT

Figure 2.9: Throughput comparison for Rayleigh fading channel
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Figure 2.10: Throughput comparison for TU channel
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Chapter 3

Practical Considerations in Multi-user LTE

Networks

3.1 Introduction

MU-MIMO is a promising wireless technique where the same time-frequency channel resources

are allowed to be used by multiple UEs simultaneously through spatial precoding. The perfor-

mance of LTE systems critically depends on how the interference either across different cells or

due to MU-MIMO is managed. In this chapter, we focus primarily on utilizing the interference

information and considering the MU-MIMO non-ideality. We also study the multi-cell effect. The

performance of the proposed approach is benchmarked against the precoding and receiver designs

that are currently considered for LTE systems.

3.1.1 Contributions

The main results of this chapter are:
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1. Based on the interference estimation framework presented in Chapter 2, we derive subopti-

mal precoder and receiver aiming at enhancing the system throughput for MU-MIMO oper-

ation. The precoder and receiver solution is simple (non-iterative) yet enough to account for

LTEs interference patterns.

2. We tackle the effect of non-ideal precoding for MU-MIMO inLTE. The solution aims at

updating the interference covariance matrix to account forMU-MIMO interference.

The remainder of the chapter is organized as follows: Section 3.2 describes the problem formu-

lation. In Section 3.3, we discuss the effect of ZF beamforming with limited channel knowledge.

Simulation results are provided in Section 3.4 and we conclude the chapter in Section 3.5.

3.1.2 Notation

We use bold lower case for vectors, such asa, while bold capital letters are used for matrices

such asA. Further||A|| stands for the norm of the matrixA. Further(·)H stands for Hermitian

transposition.[A]i,j denotes the element in rowi and columnj of matrixA. The cardinality of the

setA is denoted by|A|. AlsoE stands for expectation operator.

3.2 Problem Formulation

We consider a network formed by UEs withNr antennas, served by eNodeBs withNt antennas,

using MU-MIMO. We assume that each eNodeB hasJ adjacent neighbors. The received signal of
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thekth subcarrier and thetth OFDM symbol, is given:

y(k, t) = H i(k, t)vi(k, t)xi(k, t) (3.1)

+

G∑

g=1,g 6=i

H i(k, t)vg(k, t)xg(k, t)

+
J∑

j=1,j 6=i

∑

∀l
Hj(k, t)vl(k, t)xl(k, t) + n(k, t),

whereH i(k, t) isNr×Nt matrix that represents the channel between theith eNodeB and the UE on

hand,y(k, t) is theNr×1 vector that represents the received signal by the UE on hand,andvi(k, t)

is theNt×1 precoding vector. Furthermore,xi(k, t) is the information signal vector intended to the

UE on hand,n(k, t) isNr×1 vector that represents the noise, andG is the number of co-scheduled

UEs. The first term in (3.1) represents the intended signal, the second term represents the multiuser

interference, the third term represents the neighbouring interference, and the final term represents

the noise. The number of co-scheduled UEs isG ≤ Nt. The post processed received signal is:

yR(k, t) = zH
i (k, t)y(k, t), where,zi(k, t) is theNr × 1 combining vector. Our main objective is

to design the precoding vectorsvi(k, t), and the combining vectorszi(k, t), where,i = 1 : G.

Before eNodeBs perform scheduling, each UE will not have knowledge of other UEs that might be

scheduled on the same frequency-time resources. Then, the precoding of each UE is designed with

the objective of maximizing its local SINRvl
i(k, t): The superscriptl denotes locally optimized

precoding, which will be updated later to accommodate for the MU-MIMO effect. Similarly,

zl
i(k, t) is the locally optimized receiver that will be updated later. Therefore, in the initial analysis,

the second term in (3.1) will be removed and the other-cell interference plus noise terms will be

denoted asw(k, t).

47



3.2.1 Maximization of Local SINR

The received signal for the single user scenario can be expressed as:

y(k, t) = zl
i

H
(k, t)

[
H i(k, t)v

l
i(k, t)xi(k, t) +w(k, t)

]
(3.2)

The objective here is to maximize the SINR:

max
zl
i(k,t),v

l
i(k,t)

|zl
i
H
(k, t)H i(k, t)v

l
i(k, t)|

2

zl
i
H
(k, t)Rwz

l
i(k, t)

(3.3)

subject to||vl
i(k, t)||

2 = 1.

The problem in (3.3) is coupled, however, here we present a practical suboptimal non-iterative

solution. For a specificvl
i(k), the optimization in (3.3) can be expressed as:

max
zl
i(k,t)

|zl
i
H
(k, t)H i(k, t)v

l
i(k, t)|

2

zl
i
H
(k, t)Rwz

l
i(k, t)

= (3.4)

max
zl
i
(k,t)

zl
i
H
(k, t)(Hi(k, t)v

l
i(k, t)v

l
i
H
(k, t)H i

H(k, t))zl
i(k, t)

zl
i
H
(k, t)Rwz

l
i(k, t)

According to the generalized eigenvalue problem [78], the solution to (3.4) is:zl
i(k, t) = αR−1w H i(k, t)v

l
i(k, t),

whereα adjusts the power ofzl
i(k, t). Substituting the abovezl

i(k, t) into the objective function in

(3.3), the new objective function will be:

max
vl
i(k,t)

vl
i

H
(k, t)HH

i (k, t)R
−1
w H i(k, t)v

l
i(k, t) (3.5)

subject to||vl
i(k, t)||

2 = 1.

The solution to the above problem is [78]:

vl
i(k, t) = βvmax[H

H
i (k, t)R

−1
w H i(k, t)], (3.6)
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whereβ is a scalar that is used in the normalization step such that||vl
i(k, t)||

2 = 1, , andvmax is

the principal eigenvector. Thus, the precoding design,vl
i(k, t) is the preferred precoding vector

requested by theith UE. Thus the solution of the local precoding and combining vectors is as

follows:

vl
i(k, t) = βvmax[H

H
i (k, t)R

−1
w H i(k, t)], (3.7)

zl
i(k, t) = αR−1w H i(k, t)v

l
i(k, t),

We will use the receiver designzl
i(k, t) that is given in (3.7) and will compare its performance

against other receivers. It is important to note that eNBs donot need X2 coordination since the

precoder design only needsRw.

3.2.2 Maximization of Overall SINR

In the previous section, MU-MIMO effect was not taken into account. However, the eNodeB aims

at maximizing the overall sum rate. Thus, the eNodeB will constructNt x G MU-MIMO precoding

matrix with the aim of spatially separating the concurrent transmissions. Zero-forcing (ZF) is

considered as an efficient beamforming design for communication systems. In ZF, the weights are

selected such that the co-channel interference is canceled. On the other hand, Maximum Ration

Transmission (MRT) beamforming maximizes the SNR at each receiver and requires only the

knowledge of the direct links. It is worth noting that the MRTdoes not take into account the

simultaneous transmissions and therefore it results in a strong cross-interference. Since, this cross-

interference is a bottleneck for multiuser LTE systems, ZF precoding is being studied for current

network implementations. We will drop the subcarrier notationk and the OFDM symbolt notation
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in the equation below for simplicity:V l = [vl
1...v

l
i...v

l
G].

V ZF = V l(V lHV l)−1Γ (3.8)

= [v1...vi...vG]

where,Γ is a diagonal matrix that ensure that the columns ofVZF have unit norm. It is im-

portant to note,zi(k, t) can be computed using (3.7) ifvi(k, t) is being used instead ofvl
i(k, t).

In other words,zi(k, t) is a function ofvi(k, t). Initially, the local precoding is designed as-

suming SU transmission. However, once MU-MIMO precoding matrix is computed, UEs will

use a different receiver, not the same as the initial one. A flowchart to the proposed algorithm

is shown in Figure 3.1. Typically, the MMSE receiver is a widely used due to its simplicity

[96] v(k, t) =
{
Gi(k, t)G

H
i (k, t) +Ω + σ2

NI
}−1

Gi(k, t), whereGi(k, t) = H i(k, t)vi(k, t)

is the composite channel,Ω is Nr × Nr diagonal matrix with interference powers on the di-

agonal, andσ2
N is the noise power. Another receiver is the IRC receiver. In IRC, the covari-

ance matrix including interference is obtained by statistical averaging of the received signal [95]

v(k, t) = E[y(k, t)yH(k, t)]
−1
Gi(k, t).

3.3 Effect of ZF Beamforming With Limited Channel Knowl-

edge

If channel knowledge is perfect, the layers will be well-separated using ZF. Thus, the multiuser

interference vanishes, and the only interference that the UEs face is the other-cell interference

which was taken into account inRw. However, in reality this is not the case, andRw will be

changed toR̃w to include the effect of multiuser interference. This is dueto the fact that channel

knowledge is not perfect due to limited number of resources dedicated to pilots in LTE. Hence,

each UE might see interference due to other co-scheduled UEs. Now, we will explain howR̃w can
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Figure 3.1: Algorithm Block Diagram

be updated to account for such interference. The received signal is:

y(k, t) = H i(k, t)vi(k, t)xi(k, t) (3.9)

+
G∑

g=1,g 6=i

H i(k, t)vg(k, t)xg(k, t) +w(k, t),

Thus, the UE can update the interference plus noise covariance matrix as follows:

R̃w =
∑G

g=1,g 6=i {H i(k, t)vg(k, t)} {H i(k, t)vg(k, t)}
H +Rw

Thus, the final solution to the MU-MIMO receiver filters will be: zi(k) = αR̃w
−1
H i(k)vi(k).

The interference at each UE depends on the composite channelformed by the product of its own

channel and the precoding vectors of other UEs. A signallingmechanism is needed to allow for

successful decoding. An effective means for such signalling is to apply precoding vectors to UE-

specific reference signals, allowing for the training of composite channels during data transmission.

For more information, we refer readers to [82, Section 8.2.2].
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3.4 Simulation Results

In this section, we describe the simulations conducted to study the proposed framework. The

primary goal of our evaluation is to understand the gains provided by the proposed framework as

compared to other approaches. We perform link-level and system-level simulations. In link-level,

we assume that all UEs have the same average SNR. We simulate the encoding and decoding at

the bit-level, using randomly generated information sequences with the selected modulation and

coding scheme. In system-level, a multi-cell simulation isconducted. The interference is generated

in the same way as desired signals, and channel propagation (pathloss, shadowing, and multipath)

is taken into consideration. Our simulations follow the LTEstandard [94]. Each eNodeB has 4

antennas, and 10 UEs (it co-schedules up to 4 UEs simultaneously using MU-MIMO). UEs are

independently and randomly located. In summary, we use link-level to get an accurate relationship

between SNR and throughput, then we use system-level to get accurate set of SNRs. Finally we get

the corresponding accurate system-level throughput. The throughput is calculated by randomizing

over several realizations of the UEs locations. Other simulation parameters are summarized in

Table 3.1. We compare the performance of the designs shown inTable 3.2 (labeled from ’A’ to

’F’). In LTE designs, UEs choose the precoding vector from a priori agreed codebook. Thus,

UEs feedback the binary index of the chosen entry. In designs’D’ and ’E’, we use the 4-bit

LTE codebook. The remaining designs, we use beamforming, outside the LTE unitary precoding

matrices known as non-codebook based MIMO approaches. Suchnon-codebook based MIMO

approaches are supported by the structure in LTE Release 10 [8, Chapter 11]. Furthermore, we

assume CSI knowledge at the eNodeB via feedback using CSI-RSpilots in Fig. 1, yielding errors

in the CSI at the eNodeB.
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Table 3.1: Simulation Parameters

Parameter Value

Frequency Band 2 GHz
Transmission Bandwidth 10 MHz
Number of subcarriers 600

Subcarrier spacing 15 kHz
FFT size 1024

Inter-site distance 500 m
Pathloss Model 34.5 + 35log10(d) dB
Shadowing SD 8 dB
Channel Model Typical Urban macro (Uma)
Noise Figure 9 dB

Maximum Doppler 5.55 Hz

Table 3.2: Different Precoder and receiver designs

Precoder Receiver

A ZF over maximized SINRs Maximized SINR
B ZF Beamforming IRC [95]
C ZF Beamforming MMSE [96]
D LTE codebook IRC [95]
E LTE codebook MMSE [96]
F Iterative CoMP [97] treat interference as noise [97]
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Figure 3.2: Performance comparison in terms of different percentiles

3.4.1 Throughput per UE Analysis

In this section, the throughput per UE is evaluated. In Fig. 3.2 we show the performance in

terms of different throughput %-tiles. Design ’A’ providesthroughput improvement over all other

designs except ’F’, since ’F’ uses cooperative resource allocation across eNodeBs. Design ’F’ has

throughput improvement of 28%, 25%, and 10% for 5 %-tile, 50%-tile, and 80%-tile as compared

to ’A’. Note that, the gain is higher at lower %-tiles, which indicates that ’F’ is more beneficial

to UEs toward the cell-edge. Moreover, Design ’A’ that uses DM-RS based covariance matrix

estimation and ’B’ that uses data based covariance matrix estimation are very close in terms of the

5%-tile throughput. This is because cross covariance is partially small for 5%-tile UEs due to the

relatively small received power of the serving eNodeB [83].However, for median and 80%-tile

UEs, the performance of the data signal based covariance matrix is degraded compared to the DM-

RS based covariance matrix estimation, ’A’ has a gain of 25% and 35% for median and 80%-tile

respectively as compared to ’B’.
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Figure 3.3: Throughput comparison

3.4.2 Total Throughput Analysis

In Fig. 4.5 we show the performance of the designs provided inTable 3.2. The performance of

Design ’A’ is slightly worse than ’F’, because Design ’F’ uses CoMP to optimize resource alloca-

tion which reduces the interference. Although, Design ’F’ outperforms the proposed approach, it

is an iterative approach and requires signaling overhead. However, Design ’A’ provides high gains

compared to other non-iterative techniques that can be achieved without cooperation and signaling

overhead. Design ’F’ aims at reducing the interference caused by neighbouring cells, and treating

residual interference as noise [97]. As shown Design ’A’ is about 13% worse than Design ’F’,

however, it outperforms all other designs by approximately20%, 94%, and 300% with respect to

Design ’B’, Designs (’C’ and ’D’), and Design ’E’ respectively.

3.5 Conclusions

In this chapter, we present a practical non-iterative method for designing the precoder and the

receiver for multi-user LTE systems. By comparing to other designs, we show considerable gains
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to be achieved using our approach [98].
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Chapter 4

Distributed Multi-user MIMO Wireless

Networks With Full-Duplex Capability

4.1 Introduction

In-band full-duplex (IBFD) communication is very promising in enhancing wireless LANs, where

full-duplex APs can support simultaneous UL and DL flows overthe same frequency channel.

One of the key challenges limiting IBFD benefits is interference. In this chapter, we propose a

scheduling technique to manage interference in wireless LANs with full-duplex capability. We

focus primarily on scheduling UL and DL clients that can be efficiently served simultaneously.

A common assumption made in prior work is that the client thatis being served on DL is also

the client that is sending UL packets to the AP. Thus, the interference is purely self interference.

Network interference among clients will occur if differentclients are considered for DL and UL,

which may significantly deteriorate the throughput performance of IBFD wireless LANs.
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Furthermore, MU-MIMO has also been studied to follow the trend of faster Wi-Fi. MU-MIMO has

been considered in a number of wireless standards such as IEEE 802.11ac [99] and IEEE 802.11ax

[100]. In MU-MIMO systems, each client can correctly decodepackets simultaneously due to

spatial diversity and precoding of channel weights by the transmitter. The total throughput, how-

ever, highly depends on the relationship between the channel responses and locations of scheduled

clients. None of the prior work discussed scheduling multiple DL transmissions along with an UL

transmission.

The problem is further compounded when MU-MIMO is used on theDL [89, 105–107], where

APs use beamforming techniques to direct packets simultaneously to spatially diverse clients such

as in Figure 4.1. That is, the AP will steer simultaneous beams to different clients, each beam

containing specific packets for its target client.

To illustrate the key challenges of IBFD network interference consider Figure 4.2 which shows the

interference signals resulting from having simultaneous UL and DL flows. When the UL receiver

and the DL transmitter are active at the same AP simultaneously, self-interference is generated

(shown as the solid red arrow). However, when the UL AP is different than the DL AP, network

interference is generated (shown as the dashed red arrows).The figure assumes that one client is

transmitting to one of the APs as an UL flow (shown as the solid blue arrow), and all the APs are

transmitting to a set of DL clients, as DL flows (shown as the solid green arrows). The square in

Figure 4.2 denotes the set of clients scheduled for DL MU-MIMO. In this case, the signal trans-

mitted from the UL client can interfere with the DL clients. If the UL client is located close to the

set of the DL clients, and the signal transmitted from the UL client is very strong, the DL clients

will face high interference (shown as the dotted red arrow).

In order to mitigate the interference problem arising in such environment, a number of solutions
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AP

Figure 4.1: AP using MU-MIMO beamforming

have been proposed [62]-[71]. Those solutions capture additional transmission opportunities cre-

ated by full-duplex by modifying contention and back-off mechanisms. In [62], the authors de-

velop a centralized MAC protocol to support asymmetric datatraffic where network nodes may

transmit data packets of different lengths, and they propose to mitigate the hidden node problem

by employing a busy tone. To overcome this hidden node problem, authors propose to adapt the

802.11 MAC protocol with the RTS/CTS handshake. In [70], authors study the power allocation

for IBFD system where clients operate in the HD mode but the APcommunicates by using the

FD mode. In [70], the system model considers a single AP and multiple clients. The UL STA is

chosen randomly, then a DL STA with low interference from theUL STA and high received power

from the AP is selected. Afterwards, a power control algorithm is used such that the DL SINR and

UL SINR satisfies a threshold [70].

A scheduling approach was studied for full-duplex wirelessnetworks in [71], such that the AP
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Figure 4.2: Interference in IBFD environment

has a pre-determined DL client and it aims at scheduling another UL client simultaneously. The

AP randomly picks an UL client out of several ones that achieve a specific signal to interference

(SIR) threshold at the DL client. A key shortcoming of the presented prior work is that any client

that achieve a specific SIR at the DL client is considered a good candidate. Although, this type

of optimization provides a guaranteed minimum throughput,it does not maximize the throughput.

Moreover, in such schemes, finding a client that satisfies theSIR condition is done via exhaustive

search over all the clients, which is time consuming.

This chapter focuses on clients scheduling at both the DL andthe UL aiming at improving the

sum rate in MU-MIMO wireless LANs with IBFD capability. In this chapter, we consider wireless

LANs consisting of APs that are capable of full-duplex communications. We aim at managing

interference, including interference due to DL MU-MIMO flows and interference due to the UL

flow. To overcome the challenge of interference, we propose ascheduling technique that aims at

serving a group of DL clients along with an UL client to be served simultaneously with minimal

interference. Furthermore, the UL power is adapted to maximize the resulting sum throughput.
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4.1.1 Contributions

Our main objective in this chapter is to maximize the achievable rate of wireless LANs with full-

duplex APs serving multiple DL clients via MU-MIMO and an UL STA. Also, we consider that

the UL client is not necessarily one of the DL clients. In other words, each client may or may not

be served on UL and DL simultaneously.

The main results of this chapter are:

1. Clients categorization based on received signal strength indicator.

2. Channel access mechanism for clients through contentionwindow adjustment procedure,

which results in scheduling a group of DL clients along with an UL client simultaneously

with minimal interference. We place no restrictions on the choice of the UL client, i.e. the

UL client is not necessarily one of the DL clients

3. Power adaptation algorithm, which adjusts the UL transmit power aiming at maximizing the

throughput.

The remainder of the chapter is organized as follows: Section 4.2 describes the problem formu-

lation. In Section 4.3, we provide the scheduling and power adjustment technique. Section 4.4,

provides the complexity analysis for the proposed technique. Simulation results are provided in

Section 4.5 and we conclude the chapter in Section 4.6.

4.1.2 Notation

We use bold lower case for vectors, such asa, while bold capital letters are used for matrices

such asA. Further||A|| stands for the norm of the matrixA. Further(·)H stands for Hermitian

transposition.[A]i,j denotes the element in rowi and columnj of matrixA. The cardinality of the

setA is denoted by|A|. AlsoE stands for expectation operator.
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4.2 Problem Formulation

We consider an IBFD office wireless LAN scenario that consists of four APs, and comprises 64

cubicles. Each cubicle has four clients [100]. APs are assumed to have full-duplex capability. In

other words, we consider that each AP can simultaneously transmit and receive. Throughout the

paper, we will refer to the set of clients served on DL MU-MIMOasSDL. PUL refers to the UL

transmit power.

We assume that each client hasns antennas, and each AP hasna antennas.nA refers to the number

of APs to perform MU-MIMO multiplied by the number of antennas per AP. The channel gains

are modeled according to TGac channel model D [104] and are assumed to be constant over the

duration of each transmission. Since serving different clients results in interference in different

directions, Scheduling and Power Adaptation technique (SPA) plays an essential rule in enhancing

the system performance.

The resulting received signalydl
i ∈ C

ns by theith DL client is given by:

ydl
i = H is

dl
i +

K∑

k=1,k 6=i

H is
dl
k + F j,is

ul
j + ni, (4.1)

where,

H i =




H1i

...

Hai

...

HAi




T

(4.2)

H i isns×nA matrix that represents the channel between theith client and all APs,Hai is na×ns
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sub matrix that represents the channel between theath AP and theith client,F j,i is ns × ns matrix

that represents the interference channel from the UL client(served by thejth AP) to the DL client

i due to the UL flow,sulj ∈ Cns is the transmit signal of the UL client, andni is the noise vector at

theith client.

The resulting received signal by thejth AP that is serving the UL clientyul
j ∈ Cna , is given by:

yul
j = H jus

ul
j +

A∑

a=1,a6=j

K∑

k=1

Ea,js
dl
k + zj + nj , (4.3)

where,

zj = β
K∑

k=1

Ej,js
dl
k (4.4)

Hju is na × ns sub matrix that represents the channel between thejth AP and the scheduled UL

client,Ea,j is thena × na matrix that represents the channel between theath AP and thejth AP,

sdlk ∈ Cna is the transmit signal of thekth DL client. zj is the self-interference,β is the self

interference cancellation coefficient,nj is the noise vector, andK is the number of co-scheduled

clients in DL MU-MIMO.

The first term in (4.1) represents the intended signal, the second term represents the co-layer inter-

ference, the third term represents the IBFD network interference, and the final term represents the

additive noise. In (4.3), the first term is the intended signal in the UL direction, the second term

is the interference resulting from serving the DL clients, the third term is the self interference, and

the final term is noise. We define the SINR of an UL and DL flow as follows:

SINRUL =
||Hjus

ul
j ||

2

∑A
a=1,a6=j

∑K
k=1 ||Ea,js

dl
k ||

2 +
∑K

k=1 ||βEj,js
dl
k ||

2 + ηj
(4.5)
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SINRDL =
||His

dl
i ||

2

∑K
k=1,k 6=i ||H is

dl
k ||

2 + ||F j,is
ul
j ||

2 + ηi
(4.6)

We define the achievable total sum-rate as follows:

Rtot = log2(1 + SINRUL) +

K∑

i=1

log2(1 + SINRDL) (4.7)

whereηj is the noise power at thejth AP andηi is the noise power at theith client. The first and

second terms denote the UL and DL rates,Rul andRdl respectively.

4.3 SPA: Scheduling and Power Adaptation

We propose a scheduling and power aadaptation technique (SPA) for IBFD wireless LANs. Tra-

ditionally, an AP is solely using an exclusive RF channel to limit interference via frequency reuse

[100]. Theoretically, IBFD can be applied at each AP, thus anAP would support an UL and DL.

However, viable IBFD choices will be limited due to the proximity of clients resulting in signifi-

cant network interference. To solve the network interference problem, we propose that all four APs

in the example scenario presented perform distributed MU-MIMO utilizing the aggregated band-

width. Thus, the network serves multiple clients in the DL ata higher capacity via MU-MIMO

while supporting an UL link via IBFD. The main benefit that canbe earned when this model is

considered in practical environment, is that there is a better chance of finding clients eligible for

IBFD as the physical space that all APs are covering is largerthan each AP alone.

The following general system considerations are presented:

System Consideration 1: The selected UL client should be spatially separated from the

DL clients to reduce co-channel interference.

System Consideration 2: DL clients should be spatially separated to maximize MU-
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MIMO DL rates [89, 105, 106].

Figure 4.3 shows the importance of the system considerations discussed above. The y-axis repre-

sents the sum rate, where 4 APs are located on the vertices of asquare with a side length of 10m.

An UL client is chosen randomly and is considered as a center of a circle where 4 DL clients are

equally-spaced on its circumference. By increasing the diameter of the circle, the DL clients gets

further away from the UL client. Besides, the DL clients get further from each other. An example

for the setup is shown in figure 4.4, where clients on the same circle are scheduled for DL simul-

taneously using MU-MIMO, while the client in the center of the circle is scheduled on the UL.

In figure 4.3, the sum rate is computed with respect to different circle diameter values. As shown,

when the circle diameter is higher, i.e when the DL clients are far from the UL client and are far

from each other, the inter-client interference from the UL client is weak and the MU-MIMO gain

is higher. Thus the sum rate becomes high, as shown in Figure 4.3. On the other hand, a small

circle diameter means a strong inter-client interference from the UL client towards the DL clients

and also, DL clients are very close to each other, as a result,the sum rate is reduced.

4.3.1 Clients Categorization

In order to categorize clients we propose the use of controller unit (CU). One of the APs can act

as the CU. The CU will be responsible of all aspects of MU operation. The CU will store sorted

vectors of the received signal strength indicator (RSSI) indices of the APs as measured by the

clients. i.e., a client with:APa, APb, APc, APd, has high RSSI from theath AP, and low RSSI

from thedth AP. Since in the office scenario we assume 4 APs, the outcome will be a lookup table

with 24 (4!) categories.
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Figure 4.3: Sum rate with DL clients on a circle circumference and an UL client on its center

4.3.2 Contention Window Adjustment Procedure

The 802.11 protocol uses a carrier sense multiple access (CSMA) scheme, where channel needs to

be idle for any transmission or reception. When channel is idle, a backoff timer is randomly cho-

sen over the interval of[0, CW ], whereCW stands for contention window size. In this paper, we

proposeCW adjustment mechanism, the proposed mechanism maintains backward compatibility.

The legacy clients will still be able to demodulate and decode packet headers, and backoff when

the medium is busy.

Initially, an UL client is selected based on CSMA. Dependingon the category (RSSI vector)

of this UL client, it is better to schedule DL clients belonging to categories far from the UL

client. In other words, to reduce interference with the UL client, it is better to schedule DL

clients with RSSI vector with least significant digit equal to the most significant digit of the UL

client. i.e., if the UL client hasAP1, AP2, AP3, AP4, DL clients is preferred to belong to the

following:(AP4, AP3, AP2, AP1),(AP4, AP2, AP3, AP1),(AP3, AP4, AP2, AP1)
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UL Client DL Client

Figure 4.4: Example with DL clients on circle’s circumference and an UL client on its center

,(AP3, AP2, AP4, AP1),(AP2, AP4, AP3, AP1),(AP2, AP3, AP4, AP1).

Thus, using clients categorization, the(CW ) size needs to be designed which controls the backoff

counters, such that clients belonging to the above 6 categories, get the smallestCW size. However,

in some cases, based on the relative differences of signal strengths from APs, this potential client

may not be a good candidate in terms of increasing the DL MU-MIMO rate benefits. Thus, the

potential DL client will only be added to the set of scheduledDL clientsSDL, if the condition

below is satisfied:

Rp+1
ul +Rp+1

dl +Rpotential ≥ Rp
ul +Rp

dl, (4.8)

where,Rp
dl is the rate of the scheduled DL clients at thepth iteration, and theCW of all clients

belonging to the same category will increase. However, if the rate condition is not satisfied, that

client will solely increase itsCW . TheCW adjustment procedure is explained in Table 4.1, and
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channel access mechanism is explained in the flow chart in Fig4.5:

Table 4.1:CW Adjustment Procedure

1: Initially, all clients have sameCW = CWint

2: After UL is selected,CW = αCWint,where,α = 1
au
i

,au
i is the index of the UL AP within the client’s sorted RSSI vector

3: If a client fails the rate condition, itsCW is increased.
4: If a client passes the rate condition, theCW of other clients belonging to same category is increased.

4.3.3 Power Adaptation

To improve the performance, the UL powerPUL needs to be adjusted. Initially, the UL client uses

full power. If the rate condition is not satisfied,PUL is reduced, and same steps are repeated. If

the rate condition fails again,PUL is reduced until reaching a minimum powerPmin that satisfies

an UL SINR threshold. SPA algorithm is explained in Table 4.2. It is important to note that, the

selectedPUL is based on the rate, however, in wireless networks, it is important to enhance the

throughput, which takes into account both rate and packets errors. Therefore it has become rather

important decision to update thePUL adaptively based on throughput.

Thus, the first transmission/reception event for a set of clients will be based on the algorithm

discussed in Table 4.2. However, upon completing each transmission/reception event, the status

will be checked. The goal is to use the results of every transmission/reception event (i.e packets

are acked or not, etc.) to increase or decreasePUL accordingly. After each event, the throughput

can be computed as follows:

T = (1− PERUL) ∗RUL + (1− PERDL) ∗RDL (4.9)

Then, the algorithm needs to decide whether to reduce or increasePUL. Our ultimate goal is to be

able to estimateTl andTh, which is the throughput at lower and higherPUL respectively. Then,
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Figure 4.5: Channel Access Algorithm
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Table 4.2: SPA Algorithm

1: Categorize clients based on sorted RSSI indices
2: UL client is selected
3: Update CW of clients based on the UL client and step 1
4: Initialize: SDL = 0 andPUL = Pmax

5: while PUL > Pmin

6: while |SDL| < nA

7: Select a potential DL client
8: if Rp+1

ul +Rp+1
dl +Rpotential ≥ Rp

ul +Rp
dl

9: Add potential client and updateSDL accordingly
10: Increase CW of all clients belonging to the same category
11: Select a new potential client
12: else
13: Increase the contention window of this potential client
14: break from while loop
15: end if
16: end while
17: PUL = PUL −∆
18: end while

the algorithm can selectPUL accordingly.

However, there is a challenge on computingTh andTl before the transmission/reception, since the

PERs are measured after the event completion. We propose estimating Th andTl and using them

in the power adaptation algorithm as explained below.

1. Primary transmission/reception event:

When the link is just established, use the primaryP p
UL selected by SPA algorithm in Table 4.2.

Upon the completion of the event, use the information such as: number of packets that have

been successfully received, total number of packets transmitted to compute packet success ratio

(PSR = 1− PER). Then compute the primary throughputTp

2. Secondary transmissio/reception event:

CalculatePERUL andPERDL and do the following:
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if PERDL > PERUL

P s
UL = P p

UL −∆ (4.10)

else

P s
UL = P p

UL +∆ (4.11)

Similar to step 1, compute the secondary throughputTs, then the event that leads to higher through-

put will be used as a current initial throughputTc as follows:

Tc = max(Tp, Ts) (4.12)

P c
UL is either the primary or the secondaryPUL based on the selection ofTc.

3. Following events:

At this step, we have valuable information from primary and secondary events. We have rate,

PSR, and throughput for primary and secondary events. An example is shown in Figure 6. Note

that,PUL affects throughput, by affecting both rate and PSR. The effect on rate is known before

transmission/reception. However, the effect on PSR is onlyknown after the completion of the

event. In this step, our target is to tunePUL with a small tunableδ, such that:

P n
UL = P c

UL − δ, if Tc < Tl (4.13)

= P c
UL + δ, if Tc < Th

where,P n
UL is the new UL power.

In order to estimateTl andTh, we need to estimatePSRs at both points. For that purpose, we use

the primary and secondary points as shown in figure 6, and perform interpolation/extrapolation to
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find PSRl andPSRh. After doing so, we can getTh andTl and select the one that maximizes the

throughput.

So, in summary, we keep the PSR estimates at four points. We update those points upon each

transmission/reception event, we need to update the PSR estimates according to the exponential

moving average as follows:

PSRn = γPSRn−1 + (1− γ) ∗
nsuc

ntot
, (4.14)

where,PSRn is the new estimate,PSRn−1 is the previous estimate,γ ∈ [0, 1] is the aging factor,

andnsuc is the number of successful packets, andntot is the total number of packets.
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Figure 4.7: Office wireless LANs scenario

4.4 Simulation Results

Our simulation follows the office environment described in Section 4.2 and shown in figure 4.7.

The position of the APs is fixed, and clients are randomly distributed inside each cubicle. The main

simulation parameters are summarized in Table 4.3 [108, 109]. We compare the performance of

SPA with that of IBFD with power control that is presented in [70], IBFD without power control

and also half-duplex conventional scenario. It is important to note that [70] is only applicable for

a single AP, thus, IBFD in [70] is implemented for each AP separately.

4.4.1 Rate Comparisons

Figure 4.8 shows the sum rate for different algorithms. The rate in the y-axis is a sum rate of co-

scheduled clients. As shown, the rate of IBFD without power control is worse than HD, because
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Table 4.3: Simulation Parameters

Parameter Value
Office Area 20 m× 20 m

clients Locations randomly distributed within each cubicle
DL Power Different across APs based on MU-MIMO
UL Power satisfy the lowest UL MCS Level 2

Frequency Band 5 GHz
Channel Bandwidth 80 MHz

the DL rate will be affected by high interference generated by the UL client. In contrast, the rate

of IBFD system increases when power control is added. However, the high gains of IBFD can

not be achieved using the power control algorithm in [70]. Asshown, HD and IBFD with power

control [70] are close to each other, which is expected sincenetwork interference is limiting the

benefits of IBFD. Thus, the power control algorithm in [70] cannot utilize IBFD capability in the

office scenario. This is due to the fact that, choices are limited due to the proximity of clients. i.e.

the network interference caused by the UL will significantlyreduce the SINR at the DL clients.

However, SPA can overcome this problem, since SPA has a better chance of finding clients that are

eligible for IBFD. i.e. SPA benefits from spatial separation. As shown SPA algorithm outperforms

all other algorithms by approximately 150%, 268%, and 101% with respect to HD, IBFD without

power control, IBFD with power control [70] respectively. It is important to note that more than

twice the rate is achieved by SPA algorithm compared with traditional HD, due to the MU-MIMO

gains.

4.4.2 Fairness Index

Figure 4.9 shows the fairness index for different IBFD algorithms. IBFD with SPA achieves com-

parable fairness index to the algorithm in [70]. That is, theclients under SPA can be provided with

fair scheduling opportunities. Note that, SPA is adaptively making sure that UL and DL flows are

achieving comparable good throughput.
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Figure 4.9: Fairness index comparison

75



4.4.3 Impact of Self Interference

In this paper, APs are equipped with elaborate antenna techniques and signal processing modules

for self interference cancellation. In previous simulations, we assumed perfect self interference

cancellation. Here, we show the impact of imperfect self-interference on different algorithms.

Figure 4.10 shows average SINR for UL an DL clients with respect to self interference cancellation.

The SINR of both UL and DL of IBFD increase as the self interference cancellation increases, since

self interference cancelation directly benefits the UL client, and indirectly benefits the DL clients

due to the power adaptation scheme. Also, IBFD with power control in [70] can benefit from self

interference cancellation in both UL and DL directions. However, it cannot sufficiently overcome

the problem caused by the proximity of clients resulting in significant network interference, and

the SINR performance is then deteriorated. On the other hand, in the case of the IBFD without

power control, UL SINR increases as self interference cancellation increases, while DL-SINR does

not change, since the DL flow will suffer from same interference regardless of self interference

cancellation. Figure 4.11 shows the difference between IBFD with SPA and IBFD in [70] in terms
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Figure 4.10: SINR comparison for different self interference cancellation

of total sum rate. In the office scenario, IBFD in [70] can serve up to 8 clients, on the other
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hand, IBFD with SPA can only serve up to 5 clients simultaneously. However, the sum rate of

SPA exceeds the algorithm in [70] as shown in 4.11. Note that,in [70] the average inter-client

interference between clients increases because the distance between clients shorten, hence the rate

is degraded. Moreover, due to the distributed MU-MIMO modelthat is utilized in SPA, clients can

get higher throughput opportunities.
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Figure 4.11: Sum rate comparison for different self interference cancellation

4.4.4 MCS Levels Comparison

Table IV shows the MCS levels of active links. Active link is any scheduled DL or UL flow.

Since SPA utilizes spatial separation, it provides high operation percentage on high MCS levels(7

and 8) can be achieved approximately with 38.28%, 0.78%, and48.59% using IBFD with SPA,

with power control [70], and without power control respectively. The IBFD without power control

achieves higher percentage than SPA, because without powercontrol, UL clients gets high SINRs

on the expense of DL clients getting very low SINRs. As can be noticed, SPA provides the lowest

percentage of low MCS levels.
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Table 4.4: MCS levels of active links for IBFD

SPA power control [70] no power control
MCS 7-8 38.28% 0.78% 48.59%
MCS 5-6 30.80% 0.79% 0.65%
MCS 3-4 30.60% 20.04% 0.48%
Lower 0.32% 78.39% 50.28%

4.5 Conclusions

In this chapter, we present scheduling and power adaptationtechnique to provide higher perfor-

mance in the IBFD environment for office wireless LANs. The proposed approach can provide

good IBFD opportunities. Our proposed algorithm aims at selecting clients that can efficiently

be served simultaneously with low interference between UL and DL transmissions. At a given

time, an UL client is scheduled and its power is adapted whileselecting multiple DL clients taking

the IBFD interference into account. Simulation results to evaluate the system performance is pre-

sented, which show significant increase in rate compared to recent proposed scheduling and power

control algorithms for IBFD [111].
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Chapter 5

MIMO Cellular Systems With Power

Amplifiers

5.1 Introduction

OFDMA is the modulation of choice due to its robustness to time-dispersive radio channels, low-

complexity receivers, and simple combining of signals frommultiple transmitters in broadcast net-

works. However, the transmitter design for OFDMA is more costly, as the PAPR of an OFDMA

signal is relatively high, resulting in the need for highly linear RF power amplifiers (PA). This prob-

lem becomes more compounded when a large number of PAs is required, as in Massive MIMO. In

this chapter, we discuss the impact of PAs on cellular systems. We show the constraints that PAs

introduce, and we take these constraints into consideration while searching for the optimum set of

transmitter and receiver filters. Moreover, we highlight how Massive MIMO cellular networks can

relax PAs constraints resulting in low cost PAs, while maintaining high performance. The perfor-

mance is evaluated by showing the probability of error curves and signal-to-noise-ratio curves for

different transmit powers and different number of transmitantennas.
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5.1.1 Power Amplifiers

An ideal PA would produce as its output a perfect replica of the input multiplied by a scalar value.

However, practical PAs exhibit various nonlinearities. Numerous practical PA models exist, a

selection of which can be found in [101]. Here we describe thesolid state power amplifier (SSPA)

model presented at [102], where the output signal can be written as:

f(r) =
r

[1 + ( r
Os
)2β]

1

2β

, (5.1)

wherer is the input signal,Os is the saturation output, andβ is a parameter that controls the

smoothness of the transition from linear to nonlinear operation. Conventionally, a PA with a wide

linear region is preferable, to reduce the effect of distortion. To ensure that, a safety region between

the linear and nonlinear region is required, and is known as the ”backoff region”. The width of

the backoff region depends on the expected PAPR in the communication system. It is important to

note that there is a tradeoff between the width of the linear region and the cost of the PA. In other

words, PAs with relatively low cost have narrow linear region, while PAs with wide linear region

have a high cost. Both the linear region and backoff region define the operating point of the PA

either by its input or its output.

5.1.2 Contributions

In this chapter, we aim at reducing the power consumption at the BS and optimizing both the

transmitter and receiver filter design to avoid the occurrence of nonlinear distortion. First, we aim

at operating within the reduced linear region that will be constrained by the PAs cost. Second, we

aim at improving the efficiency of the PAs by relaxing the signal total power constraints.

The main results of this chapter are:
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1. Discuss the impact of PAs on cellular systems.

2. Show the constraints that PAs introduce.

3. Take PA constraints into consideration while searching for the optimum set of transmitter

and receiver filters.

4. Highlight how Massive MIMO cellular networks can relax PAs constraints resulting in low

cost PAs, while maintaining high performance.

The remainder of this chapter is organized as follows: Section 4.2 describes the problem formula-

tion. In Section 4.3, we explain the transmitter and receiver filter design in order to account for PA

non-ideality. Section 4.4, we discuss the relationship between the PA linear region operation and

MIMO order. In Section 4.5 we provide remarks and notes on theproposed design. Simulation

results are provided in Section 4.6 and we conclude the chapter in Section 4.7.

5.1.3 Notation

We use bold lower case for vectors, such asa, while bold capital letters are used for matrices

such asA. Further||A|| stands for the norm of the matrixA. Further(·)H stands for Hermitian

transposition.[A]i,j denotes the element in rowi and columnj of matrixA. The cardinality of the

setA is denoted by|A|. AlsoE stands for expectation operator.
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Figure 5.1: System Model

5.2 Problem Formulation

5.2.1 System Model

We consider a cellular network, where each cell consists of ahome BS withN antennas and several

UEs withM antennas each. Hence, the link between the BS and each UE can be represented as

N X M MIMO system. An example of such a model is represented in Fig.5.1. In this paper, we

focus on the effect of PAs on the transmitted signal. As shownin Fig. 5.1,w is the transmit vector

with N elements andz is the receiver combining vector withM elements.

5.2.2 Maximizing SNR

We design the transmit vectorw indirectly through designing the vector at the output of thePA v.

Moreover, we design the receiver filterz so as to maximize the signal to noise ratio (SNR). The

received signal by the UE will be:

y = zHHvx+ zHn, (5.2)
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whereH is the channel between the BS and the UE,x is the transmitted signal, andn is the

additive noise with covariance matrixRn = E[nnH ], z andv are the receiver and the vector at

the output of the PA respectively. It is important to note that noise is colored due to interference

from other transmissions. Now, we aim at maximizing the SNR of the received signal as:

max
z,v

|zHHv|2

zHRnz
σ2
x subject to||v||2 = PT . (5.3)

WhereE[|x|2] = σ2
x andPT is the transmit power.

5.3 Transmitter and Receiver Filters

According to the generalized eigenvalue problem [78], the solution to (5.3) is:

z = α R−1n Hv (5.4)

v = γ vmax[H
HR−1n H ],

whereα andγ adjust the power ofz andv respectively. Then, by using the PA characteristics,

we can find the vectorw at the input of the PA. An example to the characteristics of such PA is

shown in Fig. 5.2, whereOs = β = 1 is assumed. In order to guarantee that each output has a

corresponding input, each element in the designed vectorv has to be less than the PA operating

point.

5.4 Linear Region Operation

it is important to answer the following question: How likelywill the designed transmit vector

(PA output) be below the operating point? In order to answer the question above, cumulative
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distribution function (CDF) simulations of the PA output have been conducted. The results can be

summarized as in Table 5.1. Without loss of generality, the operating point here is assumed to be

unity for simplicity.

According to the table, as the number of antennas at the BSN increase, the transmit power limits

can also be increased while having a relatively high percentage of PAs operating in the linear

region. It is worth mentioning that also increasing the number of antennas at the receiverM can

lead to higher system performance due to diversity gain.

It is obvious from Table 5.1 that there are scenarios where the occurrence of nonlinear operation

is extremely rare for example, when the BS, has more than 8, 16antennas for transmit power of 2

and 4 respectively. For massive MIMO, where the number of antennas at the BS can reach several

hundreds, the probability of operating in the nonlinear region is almost zero even if the transmit

power is relatively high. As will be shown in section??, for BSs with 100 antennas, the transmit

power can reach up to around 20 with 100% linear region operation.
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Table 5.1: linear region operation percentages

Number of BS antennasPT = 2 PT = 4 PT = 8

2 50% 25.1% 12.6%
4 86.9% 54.4% 33.3%
8 99.2% 86.8% 60.5%
16 100% 98.8% 86.5%
32 100% 99% 86.7%

5.5 Remarks and Notes

The main advantage of JTR is that the transmitted signal willnot be distorted by the PA non-

linearity since the number of BS antennas and the total transmitted power shall be designed to

avoid non linear operation. Hence, JTR can be used with the aim of saving energy, where low

cost PAs with smaller linear region are used to reduce the power consumed to operate the PAs in

the BSs. Also JTR can be used with the aim of enhancing the system performance, since the total

transmitted power can be increased leading to highly reliable communication. It is important to

note that JTR puts some constraints on the maximum power to beused for signal transmission,

otherwise nonlinearies may exist. These constraints fade in case of massive MIMO since the

maximum power is very high compared to what is needed for current cellular networks.

5.6 Simulation Results

In fig. 5.3, we present the CDF of the PA output, assuming 16 antennas at the BS and 2 antennas

at the UE. As shown in the figure, although the transmit power is increased to 2 and 4, the PAs are

guaranteed to operate in the linear region for 98.8% and 100%respectively. However, increasing

the transmit power to 8 may lead to a slight degradation as will be shown later. In fig. 5.4, we

present the CDF of the PA output by fixing the transmit power to2 while using a different number

of antennas at the BS. As shown in the figure, increasing the number of antennas increases the
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Figure 5.3: CDF of PA output for 16x2 MIMO system

probability of operating in the linear region. Hence, having 8 or 16 antennas at the BS will guaran-

tee that PAs operate in the linear region for 99.2% and 100% respectively. However, reducing the

BS antennas to 4 may lead to nonlinear operation.

Fig. 5.5 is the same as fig. 5.4 except that the transmit power is fixed to 4 instead of 2. As

shown, since the transmit power is increased, then the probability of operating in the linear region

will decrease. Thus, having 16 antennas at the BS will guarantee that PAs operate in the linear

region for 98.8%. However, reducing the BS antennas to 8 or 4 may lead to nonlinear operation.

Based on the previous discussion, it is important to see the behavior of massive MIMO BSs with

a large number of antennas. In fig. 5.6, we show that having 100antennas at the BS can allow

for increasing the transmit power significantly while operating in the linear region. In that figure,

using transmit power of 20, 30, and 40 will guarantee operating in the linear region with probability

100%, 97.3%, and 93.7% respectively.

To summarize, massive MIMO can benefit the most from the presented joint transmit and receive

design. Since the number of BS antennas is relatively high, then the probability of operating below
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Figure 5.4: CDF of PA output withPT = 2

the operating point is close to one. Along these lines, massive MIMO BS can be supported with

low-cost PAs instead of the current LTE adopted high-cost PAs.

Figure 5.7 shows the output SNR withPT = 3 assuming 2 antennas at the UE and 16 antennas at

the BS for the proposed JTR method as compared to an ideal PA with an infinite linear region. As

shown, the performance of the JTR matches exactly the performance of an ideal PA, which clearly

indicates that there is no nonlinear distortion. As shown inTable 5.1, JTR in this scenario will lead

to about 99.5% linear operation, thus the performance is only affected by very slight nonlinear

distortion that can be neglected.

As mentioned earlier reducing the number of antennas at the BS will also require reducing the

transmitted power, so fig. 5.8 is the same as fig 5.7 except thatthere is only 8 antennas at the

BS and the transmitted power is reduced to 2. The same observation still holds, that nonlinear

distortion using JTR is minimal at about 99.2% linear operation. It is worth mentioning that,

increasing the transmit power beyond certain limit that depends on the number of BS antennas

may introduce nonlinear distortion such as in fig. 5.9 where as shown thatPT = 2 provides
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Figure 5.5: CDF of PA output forPT = 4

very close performance to the ideal case. However, increasing the transmit power to 3 leads to an

obvious gap between JTR and the ideal response.

5.7 Conclusions

We present joint transmitter and receiver filter design taking PAs behavior into account. Further-

more, we show that by using a high number of antennas at the BS such as in massive MIMO, the

presented design can eliminate the effect of nonlinearity.The proposed model can be used either

to introduce energy savings in the BSs by using low-cost PAs,or to achieve higher performance in

terms of rate and/or reliability by relaxing the total transmit power constraints [103].
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Figure 5.6: CDF of PA output for massive MIMO BS with 100 antennas
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Figure 5.7: Output SNR for 16x2 system withPT = 3
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Figure 5.8: Output SNR for 8x2 system withPT = 2
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Chapter 6

Optimizing Energy Through Adaptive Bit

Width Adjustment

6.1 Introduction

Over the last decade, the world has seen a sharp increase in data traffic that necessitates robust,

low-power processing cores. However, mobile computing based on traditional architectures is ap-

proaching its limits in terms of scalability and power consumption. One means of achieving the

desired performance increase is by increasing parallelismrather than depending on transistor fea-

ture reduction [112]. This approach also becomes limited ifprocessing elements cannot consume

data from memory at the desired processing rate, leading to asignificantly degraded overall perfor-

mance. To address that limitation, new computing paradigmsstarted to emerge that focus more on

the memory bottleneck problem. Theoretically, the most memory efficient paradigm is in-memory

computation. This paradigm simply replaces the logic with memory structures, virtually eliminates

the need for memory load/store operations during computation.

Associative processors(APs) are promising computational platforms for massivelyin-memory
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parallel computing [113]. APs can be considered as a type of Single Instruction Multiple Data

(SIMD) processors that combine the memory and processor in the same location, so that every

row in the memory behaves as an individual processor. Since an operation can be performed on

all memory words in parallel, the execution time of an operation does not depend on the vector

size [114]. Many parallel systems are uniquely suited to this approach due to the vector based

nature of their processing pipelines. This feature largelyovercomes the memory-wall problem of

traditional Von Neumann architectures since there is no inter-dependance between memory and

processor. Associative processing is not a new topic and numerous architectures of APs originated

in the 1970’s and 1980’s [113] [115]; however, in the past, the adoption of APs was limited due to

the unmanageable power and area requirements. This realityis changing with the availability of

new semiconductor technologies and materials that allow for extremely dense memory structures

such as memristor [116] and STT-RAM [117], leading to a resurrection of this approach under the

name ofResistive Associative Processor(RAP) [118].

Another computing paradigm that has become well-known in the recent years isApproximate

Computing. In approximate computing, the goal is exploiting the errorresiliency by relaxing cor-

rectness constraints to achieve the energy efficiency. In a system, approximate computation can

be introduced at three different levels: design level, algorithm-architecture level, and logic-circuit

level [119]. In the circuit level, the most common method is designing functionally approximate

circuits that has lower components than its fully accurate counterpart. Other ways of hardware ap-

proximations are overscaling the circuit timing and/or voltage [120] and approximation in memory

[121] [122]. At the architecture level, the significant components in the overall system is favored

over insignificant ones. In the design level, the approximate computing can be realized by design

tools that supports the approximate computing [123]. For example, a VLSI design software can

include approximate versions of some arithmetic circuits and these circuits can be used in error

resilient parts of the chip.

Even though RAP architectures promise very efficient parallel computing achievements, there are
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serious problems of large power density and energy consumption in such architectures mainly due

to high switching activity and costly memristor energy [118]. Unless these problems are addressed,

it is likely that these architectures cannot be practical. On the other hand, applying approximate

computing onto the existing computation systems does not fully eliminate the aforementioned

problems of the traditional computing, even though it is a rising star in low energy computation.

Fortunately, AP architectures inherently facilitates theapproximate computing since all computa-

tions are performed on per bit basis. Regarding the problemsof dark silicon era, combination of

associative processing with approximate computing can be apromising approach for the future of

computing especially for communication systems. To the best of our knowledge, no prior study

has touched on the approximate in-memory computing.

In this study, we introduce the approximate in-memory computation by exploiting RAP in com-

munication systems. The goal is to replace logic with memorystructures, virtually eliminating

the need for memory load/store operations during computation together bit dynamic approximate

computing in algorithm-architecture level for both energyand performance efficiency. The suit-

ability of RAP for approximate computing is demonstrated through the implementation of FFT

used in wireless communication system. Results show that approximate in-memory computation

in RAPs provides considerable energy saving by means of approximation in a reasonable level

together with performance gain.

6.2 System Architecture

6.2.1 Associative Processor (AP)

The detailed architecture of the AP is shown in Figure 6.1. The processor comprises a content

addressable memory (CAM), a controller, an instruction cache, an interconnection circuit, and

registers. Inside the AP, a CAM stores the data on which operations are performed in parallel. The
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Figure 6.1: Architecture of an Resistive Associative Processor (RAP)

key register is used to present the value that is written to the CAM or compared against in the CAM.

The mask register indicates which bits are activated duringa comparison or a write. The rows

matched by the compare operation are marked in the tag field where the rows tagged with logic-1

means that the corresponding CAM row has been matched with the given key and mask value. For

example, if the key is set as 110 and the mask as 101, the tag bits of the corresponding rows whose

first and third bits are logic-0 and logic-1 respectively becomes logic-1. The interconnection matrix

(i.e. crossbar) is a basic circuit switched matrix that allows rows of the AP to communicate bitwise

in parallel. The controller generates the required mask andkey values for each corresponding

instruction and manages the data interchange between the surrounding units (either CPU or another

RCAM).

As a central part of the AP, the main requirement of a CAM arrayis to identify the row location
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of matches against a search word. Such requirements can be achieved using various CAM cells.

However, compact and energy efficient implementation is thekey point that becomes feasible with

the emerge of new semiconductor technologies. One of the most promising candidates for a CAM

basic cell is described in [124], and is composed of two memristors and two transistors (2T2M).

A memristor device is a nonlinear passive device that changes its state according to the net charge

passing through its two terminals, and maintains its state after the electrical bias is removed. Binary

data is stored in the memristor device is the form of ”High” and ”Low” resistances. The device

can therefore work as a storage element and a switch at the same time. As pointed in Figure 6.1,

the cells of our AP implementation based on the memristor. This type of CAM implementation

is calledResistive CAM(RCAM) and correspondingly AP implementation is calledResistive AP

(RAP).

In the figure, gray memristor corresponds to the memristor with high resistance state (Roff) and

white one corresponds to the one with low resistance state (Ron). A search operation in RCAM is

carried out in two sequential phases: pre-charge and evaluation. In the pre-charge phase, all the

rows of the array which forms a parasitic capacitance are pre-charged concurrently. During the

evaluation phase, a search word is applied to the columns, enabling one of the pass transistors in

each CAM cell. A CAM cell should connect a path to the ground incase of a mismatch between the

data it is holding and the data assigned to its column. The charges on a row capacitance leak from

the mismatched cell, where the memristor and the series transistor are of low resistance creating

a path to the ground. Since the data is stored in this ”2T2M” cell in a complimentary mode, the

high resistance device will not leak charges to the ground even in case of mismatch, however its

complement device will do so. For example, the first row in thefigure shows an RCAM row in

case of a match, where no low-resistance path to the ground isavailable. On the other hand, the

second row leaks the charge since there is a path to ground through a memristor whose state is low,

so causing mismatch. Writing to the RCAM in an RAP is performed using a one column at a time

scheme. However, this is translated into two writing steps,since a complimentary data-column is

electively made of two columns of the CAM array. The bits to write are loaded to the match lines

95



of the rows, with a key value of logic-1 to activate the columnof interest. This eliminates the need

for any modification to the column driving circuitry used forreading.

An operation on AP consists of consecutivecompare andwrite phases. During the compare

phase, the matched rows are selected and in write phase, the corresponding masked key values are

written onto tagged CAM words. Depending on the desired arithmetic operation, the controller

sets the mask and key values by referencing a lookup table (LUT). In the compare phase, the key

and mask fields are set and compared with CAM content, while inthe write phase, tagged rows

are changed with the key. In other words, the truth table of the function is applied (in an ordered

sequence) to the CAM to implement the required function. Utilizing consecutive compare and

write cycles with a corresponding truth table, any functionwith corresponding truth table can be

performed on RAPs. As an example, to perform an XOR operationon two input columns and then

write the result on another column initialized as all 0s, theLUT of XOR operation (R = A&B) is

applied to the RCAM where RCAM is searched for ”10” in the input columns (A and B) and ”1” is

written to the result column (R) of the tagged rows, and then same operation can be done for ”01”

as well, then the operation is completed with an R column stores the XOR of A and B. Similar to

XOR, any function that can be performed on a sequential processor (i.e. including but not limited

to addition, subtraction, multiplication, absolute value, 2’s & 1’s complement, logical operations,

etc.) can also be performed on RAPs in parallel by utilizing consecutive compare and write cycles

in their corresponding LUTs.

6.2.2 Fast Fourier Transform

Equation 6.1 shows the formula of Discrete Fourier Transform (DFT). This transform can be im-

plemented faster by interleaving it into butterfly steps, which is known as FFT [125]. FFT consists

of the butterfly operations in successive stages. Each stageincludes a number of butterfly opera-

tions depending on input size. Figure 6.3a shows the simplest butterfly diagram consisting of two
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Figure 6.2: Implementation of FFT on pipelined RAPs

inputs, two outputs and one exponential coefficient (twiddle factor). Figure 6.3b shows an example

4-point, radix-2 FFT operation in two stages. As shown in thefigure, after each stage, the partial

outputs of previous stages are re-arranged as an input of thenext butterfly stage. From RAP-based

point of view, each row can be regarded as a different processor with their own registers to perform

a butterfly operation, so two input and one exponential factor must be stored in the same row. After

completion of a butterfly stage, the output of the previous stage is rearranged for the next stage.

Xk =

N−1∑

n=0

xne
−i2πk n

N (6.1)

In the RAP, all butterfly operations on a CAM are performed simultaneously, so the running time

of one stage does not depend on the number of samples.

For FFT implementation on the RAP, the architecture described in Figure 6.2 is used. The architec-
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ture consists of the pipelined RAPs. In the RAP, FFT operation consist of the consecutive butterfly

and data exchange phases. Figure 6.3c shows the butterfly operation on a RCAM row step by step.

The correspondence of each step is explained in the algorithm showed in Figure6.3d. In the algo-

rithm, each operation is performed on complex numbers, thatis, performed on real and imaginary

parts separately. In the RAP, all butterfly operations on a RCAM are performed simultaneously,

so the running time of one stage does not depend on the number of samples. After each stage, the

partial outputs are directed to the corresponding places inthe following RCAM by interconnection

matrix. The interconnection matrix can be implemented as hardwired connection since commu-

nication pattern is know in advance. Combination of one butterfly and its data exchange phase

(interconnection matrix) constitutes one FFT stage. In Figure 6.2,esr stands for the twiddle factor

of corresponding stages and rowr, whereasxsi corresponds to the input of a butterfly operation

wheres is the stage number andi is the input number. For example,x00 corresponds to the first

input of the first butterfly stage. For an n-point FFT operation, the overall system requireslog2(n)

APs and each AP requiresn/2 rows. For example, the system requires 3 RAPs and 4-rows in each

AP for 8-point FFT operation. The exponential coefficients (exy) are assumed to be placed to the

CAM arrays before the operations. It is worth noting that order ofx0i values isreverse bitorder of

the real input samples (x0, x1, ..., xn).

In associative computing, an arithmetic operation can be started with any of the bits by disregard-

ing its remaining rightmost bits and go through the most significant bits since all operations are

performed as bitwise. For this reason, the associative computing provides a natural support for ap-

proximate computing. As an example, the figure 6.4a shows a fixed point representation of a real

number in the RAP. If the last 4-bits of the number is trimmed,0.2% percent accuracy of the num-

ber is lost (Figure 6.4b). However, this lost in precision provides both run time and energy savings

in performing operations on this number. For the addition oftwo 16-bit fixed point numbers, this

approximation provides 25% decrease in run time and about 25% decrease in energy consumption.

By carefully setting the degree of approximation seriouslyregarding the needs of specific applica-
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tions, approximate in-memory computing can provide both considerable energy and performance

improvements. In the following section, approximate in-memory computing in OFDM-based wire-

less communication systems is presented.

6.2.3 Error Analysis

The output of a butterfly in thekth stage can be given as follows:

ak = ak−1 + ekbk−1, (6.2)

bk = ak−1 − ekbk−1

Where,ak, bk are the two outputs of thekthstage, andek is the coefficient of thekth stage. The

error variance,σ2
k at the output of stagek is given by the simple recursion

σ2
k = γkσ

2
k−1 + βk, (6.3)

whereγk is the propagation scaling factor of the stage due to inputs bit truncation , andβk is the

stage specific error variance due to truncating bits. We needto take a closer look at each operation

in the AP aiming at gettingγk andβk. We will focus on a butterfly of one stage.

The first operation in the AP is the absolute operation, and this operation error will be taken into

consideration along with the multiplication operation.
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Multiplication Operation

In the multiplication operation, the variance of the error depends on the precision of the multi-

plication. Multiplying two inputs withBin bits, results inBout = 2Bin. Thus, there will be an

additional error due to the finite precision at the output. The multiplication operation is performed

on complex numbers, with the real part of the output expressed using Euler’s formula as follows:

ym = (bR + ebR)(cos θk + eeR) + (bI + ebI )(sin θk + eeI ) + ektm (6.4)

where,bR andbI are the real and imaginary parts of|b| respectively,ebR andebI are the errors due

to the partial truncation of fractional bits frombR andbI respectively,eeR andeeI are the errors

due to truncating fractional bits fromcos θk andsin θk respectively, andektm is the error due to

truncating the output of the multiplier. Thus, the output ofthe multiplication can be expressed as:

ym =bR cos θk + bI sin θk + em (6.5)

=ŷm + em

where,em is the cumulative error at the output of the multiplier, and can be expressed as:

em = ebR cos θk + ebI sin θk + eeR(bR + ebR) + eeI (bI + ebI ) + ektm (6.6)

The variance of the error at the output of this sub-stage is

σ2
km = σ2

k−1 + 2 ∗ σ2
ke(P k−1 + σ2

k−1) + σ2
ktm (6.7)

where,σ2
km

is the variance of the error at the output of the multiplier ofthekth stage.σ2
k−1 is the

propagated error, which is the input to thekth stage and the output of stagek − 1. σ2
ke

is the error

in the FFT coefficient,P k−1 is the signal power of stagek − 1, and finally,σ2
ktm

is the error due to

bit truncation.
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After the multiplication, there is an XOR operation followed by an absolute operation, both of

these operations are error free. Finally, there is either anaddition or subtraction operation. The

details of the error analysis is discussed in the next subsection.

Addition/Subtraction Operation

Addition and subtraction operations have the same error analysis as multiplication. We focus on

the addition operation. The variance of the error depends onthe bit width of the operation. There

are two cases, 1) The output has the same bit width as the input, 2) An extra bit of precision could

be added at the output of the addition operation. We considerboth cases. The output of the adder

is as follows:

ya = a+ ea + ŷm + em + ekta (6.8)

where,ea is the error in the inputa, andekta is the error due to truncation of the addition operation.

ya = a+ ŷm + ead (6.9)

where,ead = ea + em + ekta .

Error Propagation

Using a uniform random error model:

σ2
k =

2−2(Bk−1)

12
(6.10)
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whereBk is the bit width of the FFT coefficient of stagek. Similarly, we can get the other error

variance of multiplier and adder in terms of the bit width used for the multiplier and the adder

respectively. The variance of the error at the output ofkth stage is

σ2
k = σ2

k−1 + σ2
km + σ2

kta (6.11)

σ2
k = 2σ2

k−1 + 2 ∗ σ2
keP k−1 + 2 ∗ σ2

keσ
2
k−1 + σ2

ktm + σ2
kta (6.12)

σ2
k = 2σ2

k−1(1 + σ2
ke) + 2 ∗ σ2

keP k−1 + σ2
ktm + σ2

kta (6.13)

By using (6.13) and (6.3), we can get the following:

γk = 2(1 + σ2
ke) (6.14)

βk =

{
2 ∗ σ2

ke
P k−1 + σ2

ktm
+ σ2

kta
, Bout ≤ Bin

2 ∗ σ2
ke
P k−1 + σ2

ktm
, Bout > Bin (6.15)

where,Bout andBin is the bit width at the output and the input of the addition operation respec-

tively. The the signal-to-quantization noise ratio (SQNR)of stagek is computed as follows:

ρk =
P k

σ2
k

=
P k

γkσ2
k−1 + βk

(6.16)

At the beginning of each stage, the SQNR at the output of the stage can be estimated as follows:

ρk =
P k−1

(1 + σ2
ke
)σ2

k−1 + σ2
ke
P k−1 + 0.5(σ2

ktm
+ σ2

kta
)

(6.17)
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Note that:

ρk ≥ ρk+1 (6.18)

Simulation results confirm that the numerical and theoretical models match as shown in figure 6.5.

6.3 Adaptive bit width adjustment

The objective of the adaptive bit width adjustment is to utilize the knowledge of the channel state

information to minimize the energy consumption by adjusting the bit width of the AP stages such

that a certain performance is achieved. The error variance of truncating bits either at the input or

at subsequent operations will be as follows:

σ2(bi) =
2−2(bi−1)

12
(6.19)

We can derive the error variance of the real part at the outputof the FFT as the following:

σ2
n(bi) = γnσ2(bi) +

n−1∑

j=0

γjβn−j+2 (6.20)

where,

n = log2NFFT , (6.21)

γ = 2(1 + σ2(bi)),

βk = 2 ∗ σ2(bi)(P k−1 + 1).
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Now, by central limit theorem, the real and imaginary parts of the error distribution at the output

of last stage can be modeled as Gaussian, such that:

ereal ∼ N (0, σ2
n(bi)), eimag ∼ N (0, σ2

n(bi)) (6.22)

The received signal can be expressed as:

y = Hx+ ntot (6.23)

where,H is the wireless channel,x is the transmitted signal, andntot is the total noise.

ntot = w + e, (6.24)

where,w is the zero mean AWGN noise, ande is the noise due to errors in the AP stages.

σ2
tot(bi) = σ2

w + σ2
e(bi)

whereσ2
e = 2 ∗ σ2

n(bi). The BER can be expressed in terms of the SNR for M QAM as the

following:

BER(ζ, bi) =
2
(
1− 1√

M

)

log2M
erfc

(√
1.5ζ

σ2
tot(bi)(M − 1)

)
(6.25)

where, the received SNR has an exponential distribution as derived in [126].

P (ζ) =
e

−ζ

ζ̄

ζ̄
, ζ ≥ 0 (6.26)

The Rayleigh channel is modeled as finite state markov channel as derived in [127]. In that model,

the range of the channel SNR is portioned intoJ non-overlapping intervals denoted by[ΓjΓj+1),

wherej = 0, 1, ..., J − 1. Thus, the channel is said to be in stateHj if the received SNR is in the
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interval[ΓjΓj+1). The average BER given the channel stateHj is expressed as follows:

BER(Hj , bi) =
2
(
1− 1√

M

)

δj ∗ log2M
∗ (6.27)

∫ Γj+1

Γj

erfc

(√
1.5ζ

σ2
tot(bi)(M − 1)

)
e

−ζ

ζ̄

ζ̄
dζ

where,δj is the steady state probability of being in statej, such that:

δj = e
−Γj

ζ̄ − e
−Γj+1

ζ̄ (6.28)

The solution to (6.27) can be derived as in [128] as the following:

BER(Hj , bi) =
gj − gj+1

e
−Γj

ζ̄ − e
−Γj+1

ζ̄

(6.29)

where,

gj = f(M) ∗ e
−Γj

ζ̄ ∗ erfc

(√
1.5 ∗ Γj

σ2
tot(bi)(M − 1)

)

− f(M) ∗

√
¯1.5 ∗ ζ

(M − 1)σ2
tot(bi) + 1.5 ∗ ζ̄

∗

erfc

(√
¯1.5 ∗ ζ ∗ Γj

(M − 1)σ2
tot(bi) + 1.5 ∗ ζ̄

)
(6.30)

where,

f(M) =
2
(
1− 1√

M

)

log2M
(6.31)

The problem of adjusting the bit width is modeled as Markov decision process (MDP), in which

S = {s1, ..., sN} are all the possible states. Also,B = {b1, ..., bM} are all the possible actions, an

action means a certain bit width. Since there is two noise contributions (channel and bit width), a
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state is defined by these two elements, thus each state will have an SNR slack. The objective is to

find the optimal action (policy)π∗(s) that minimizes the utility:

π∗(s) = argmin
b

U(s, b) (6.32)

where,U(s, b) denotes the utility, which is the value of taking actionb in states.

U(s, b) = C(s, b) +
∑

ŝǫS

T (s, b, ŝ)V (ŝ) (6.33)

where,V (s) is the value of the state:

V (s) = U(s, π∗(s)), (6.34)

andC(s, b) is the cost, which is defined using Karush Kuhn Tucker (KKT) conditions as follows:

C(s, b) = E(b) + µ ∗

(
BER(s, b)−

BERopt(s)

λ

)
(6.35)

where,E(b) is the energy consumption if bit widthb is used. The transition modelT (s, b, ŝ)

specifies the probability of transition from states to stateŝ on taking bit widthb. The channel

transition probability is derived in [127].µ is the KKT multiplier,BERopt(s) is the optimal BER

using maximum bitwidth, andλ is the performance threshold.

The adaptive bit width algorithm selects the appropriate bit width of the next transmitted packet.

Thus, the objective is to save energy consumption by lowering the bit width of the AP stages.

The solution to MDP can be found using the value iteration algorithm as shown in Table 6.1. And

the adaptive bit width algorithm can be summarized as in Table 6.2. The adaptive bit width algo-

rithm can be summarized as in Fig. 6.6.
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Table 6.1: Value Iteration Algorithm

For each states, initialize the value of the state to zero:V0(s) = 0
For l = 1 : L

For each states
For each bit widthb

Compute the value of taking actionb in states
Ul(s, b) = C(s, b) +

∑
ŝ
T (s, b, ŝ)Vl−1(ŝ)

end
Compute the optimal policy for states: π∗l (s) = argminb Ul(s, b)
Update the value of each stateVl(s) = Ul(s, π

∗
l (s))

end
end
Returnπ∗L(s)

Table 6.2: Adaptive Bit Width Algorithm

Step 1: Initial Learning Phase:
Define and solve the MDP using Table 6.1
Step 2: Populating LUT Phase:
Store the optimal bit width for each state in a LUT
Step 3: Runtime Phase:
Identify the current state and find the optimal action

6.4 Performance Evaluation

6.4.1 Communication system model

In this paper, we use LTE communication system setup. In LTE,the unit in time is a 1 msec unit

consisting of 14 OFDM symbols. Thus, the processing time requirement for FFT = 1
14

msec =

71 µsec. The wireless channel is assumed to be Rayleigh fading and is modeled as a finite state

Markov channel (FSMC). We aim at tracking the received SNR and utilizing this information to
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Table 6.3: Simulation Parameters

Parameter Value

Frequency Band 2 GHz
Transmission Bandwidth 10 MHz
Number of subcarriers 600

Subcarrier spacing 15 kHz
FFT size 1024

Channel Model Rayleigh

reduce the energy consumption of the system by reducing the bit width when the errors due to

channel noise dominate. The simulation parameters are summarized in Table 6.3.

6.4.2 CAM/AP

For the evaluation of approximate in-memory computing in RAPs, a Matlab-based RAP simulator

is implemented along with a Spice-based cycle-accurate circuit simulator. The simulator is capa-

ble of performing pipelined RAP simulations on different features. All truth tables for required

arithmetic operations to perform FFT (addition, subtraction, absolute value, 2’s complement, mul-

tiplication) are generated inside the simulator. Outputs of the functions were compared with their

corresponding Matlab functions to verify their correctness.

For circuit implementation, the platform allows plugging in any memristor model for any two

terminal resistive devices and we adopt the device model presented in [129]. The existing FFT

block is replaced with its RAP-based counterpart in an OFDM based MIMO system. This 1024-

point FFT unit consists of 10 pipelined RAPs that can efficiently simulate realistic RAPs. For the

numbers, fixed point representation is used with separate integer and fractional parts. The design

is implemented to allow the largest precision during the operation (i.e. 12 bits for integer and

fractional parts). The reported operating frequency of RAPis 500MHz .

In terms of precision, based on system level simulation, data values are stored as 4 bits for the
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integer part and 4-8 bits (variable) for fractional part. For the complex coefficients (eg. twiddle

factors in FFT), we used 2 bit for the integer part and 6-10 bits (variable) for the fractional part.

Therefore, the RAP is capable of processing up to 12-bit precision for data and complex coefficient

values. The operating frequency of RAP is500MHz .

Figures 6.7 show the change of energy reduction and throughput per 1K-FFT with respect to the

number of fractional bits. As the precision decreases, the energy saving and the throughput in-

crease. On the other hand, increasing precision results in more run-time to complete one FFT,

and correspondingly a higher energy consumption. As shown in the throughput results, the system

throughput is about 80 MS/s which means that the system can perform 1K-FFT within 12.92µs,

which is well within the 71µs for FFT required by LTE frames.

6.4.3 FFT

In this subsection, we justify the benefits and compare the performance of the proposed adaptive

bit width algorithm. We assume Rayleigh channel model. The fractional bit width is selected

adaptively among five levels shown in Table 6.4. Although bitwidth of 14 bits is widely used, we

performed simulations to select a tighter bit width aiming at having a meaningful comparison. In

this paper, we use a metric ”normalized performance”, defined as the ratio between the minimum

BER (assuming highest bit width) and the achieved BER. So, a normalized performance close to

unity is desired. As shown in Fig. 6.8, 12 bits provides the same performance as 14 bits. Thus we

select 12 bits as our performance reference.

An important observation is that at low SNRs, decreasing thebit width leads to very slight per-

formance degradation. However, at high SNRs, reducing the bit width results in large degradation

in the performance. This observation clearly indicates theneed of SNR dependant adaptive bit

width adjustment. Figure 6.9 shows the performance degradation versus energy consumption for

different SNRs. A good solution would be closer to the left vertical line (consumes low energy)
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and the top horizontal line (closer to no performance degradation), as shown, the proposed adap-

tive bit width algorithm results in low energy consumption while maintaining slight performance

degradation.

Figure 6.10 shows the performance of the proposed algorithmutilizing different bit width levels.

As shown, the algorithm adjusts the bit width adaptively so that it select the min bit width that

satisfies the performance constraint, which will reduce theenergy consumption.

Table 6.4: Energy consumption for different bit width levels

Bit width 8 9 10 11 12
Energy [%] 55 65 76 87 100

The comparison of RAP-based implementation of FFT processors with traditional ones is shown in

Table 6.5. The table includes two version of RAP implementation of 1K FFT which represent the

fixed 12-bit precision and adaptive precision between 8-12 bits respectively. The table shows the

normalized area, power efficiency numbers and a figure of merit in terms of throughput over power

density . For a fair comparison, the respective numbers are normalized according to the equations

6.36, 6.37, and 6.38 where N corresponds to the FFT size. As shown in the table, adaptive bit-width

methodology provides a considerable gain in both energy andrun time, thus positively influences

the efficiency of RAP based FFT implementation within CMOS-based counterparts in which bit-

scale computing is not possible architecturally.

Table 6.5: Comparison with other ASIC implementations of FFT

Normalized Normalized Normalized
Technology Size Word Width Area Throughput Area Efficiency Power Efficiency FOM

(nm) (points) (bits) (mm2) (MS/s) (GS/s/mm2) (GS/s/W ) (GS/s/W/mm2)
RAP 16 & RRAM 1K 12 0.002 79.28 39.84 0.94 470.41
RAP 16 & RRAM 1K Adaptive (12-8) 0.002 128.80 62.21 1.52 761.74
[130] 65 1K 16 8.29 240 0.16 252.54 670.34
[131] 90 256 10 5.1 2,400 2.21 652.25 674.43
[132] 45 2K 32 0.973 0.222 0.0002 0.44 20.80
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Normalized

Area

=
Area

(
Tech
16 nm

)2
·
(
Wordlength

12

)
·
(
N ·log2N
10240

) (6.36)

Normalized

Power

=
Power

(
Tech
16 nm

)
·
(
Wordlength

12

)
·
(

VDD

0.7 V

)2
·
(
N ·log2N
10240

) (6.37)

Normalized

Throughput

=
Throughput

(
16 nm
Tech

)
·
(

12
Wordlength

)
·
(
N ·log2N
10240

) (6.38)

6.5 Conclusion

In this study, the approximate in-memory computation concept is introduced by exploiting the

resistive associative processors in communication systems. The goal is to replace logic with mem-

ory structures together bit dynamic approximate computingfor both energy and performance ef-

ficiency. The suitability of resistive associate processors for approximate computing is demon-

strated. As an application, a novel mathematical model thatcharacterizes system performance of

FFT under fractional bits truncation has been derived. Based on that model, an adaptive bit width

adjustment algorithm has been proposed. Simulation results show that by using the proposed adap-

tive bit width algorithm, we can achieve up to 45% of energy savings with very slight performance

degradation [133].
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(c) Butterfly on a RAP row

1: procedure BUTTERFLY(x0, x1)
2: |x1| ← Abs(x1)

3: |e| · |x1| ←Multiply(|e|, |x1|)
4: t1← XOR(s(e), s(x1)) ⊲ s(x) = sign of x
5: e · b← Abs(|e| · |x1|, t1)
6: X1 ← SubtractOOP (e · x1, x0)

7: X0 ← AddIP (e · x1, x0)

8: end procedure

(d) Butterfly algorithm for RAP

Figure 6.3: FFT and Butterfly Operation in the AP
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Figure 6.4: Approximation in the RAP where some least signification bits are trimmed
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