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The Effects of Pattern Presentation on Interference
in Backpropagation Networks

Jacob MJ. Murre!
Unit of Experimental and Theoretical Psychology
Leiden University

Abstract

This paper reviews six approaches to solving the
problem of ‘cawastrophic sequential interference’, It is
concluded that all of these methods function by reducing
(or circumventing) hidden-layer overlap. A new method
is presented, called ‘random rehearsal training’, that
further explores an approach introduced by Hetherington
and Seidenberg (1989). A constant number of patterns,
randomly selected from those leamed earlier, is
rehearsed with every newly learned pattern. This scheme
of rehearsing patterns may, perhaps, be compared to the
funcuioning of the "articulatory loop' (Baddeley, 1986).
It is shown that this presentation method may virally
eliminate sequential interference.

Preventing 'Catastrophic Interference’

Both from a psychological and from a practical point of
view, standard backpropagation models (Rumelhart,
Hinton, and Williams, 1986) suffer from an important
weakness: on sequential leamning tasks they exhibit
strong retroactive interference. Newly learned patterns
may erase neariy all existing memories (Grossberg,
1987; McCloskey and Cohen, 1989; Ratcliff, 1990). This
behavioral implausibility has become the subject of
many studies, usually with reference to the name
'catastrophic interference’ coined by McCloskey and
Cohen (1989). Several proposals have been made to
overcome the strong interference in sequential leaming
tasks.

A number of studies approaches the issue by
enhancing the network architecture or the learning rule.
French (1991), for example, uses a method whereby
after prolonged learning only & nodes in the hidden layer
remain active for each pauemn. He calls this method 'k-
node sharpening’. Korige (1990) proposes a new
learning rule, called the 'novelty rule’. With this rule,
the amount of learning is made dependent on the relative
novelty of the input paitern. Sloman and Rumelhart (in
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press) use a network without hidden units, and with
weights that are logically gated by "episodic units’ (i.e.,
representing the leaming context). It seems that
networks without hidden units, in general, are less prone
to sequential interference (Lewandowsky, 1991,
Hetherington, 1990b). Hinton and Plaut (1987) use a
network in which the hidden units have either 'fast’ or
"slow’ weights. Since they focused primarily on the
effects of remraining items earlier in the list, this
approach does not directly address the problem as posed
by either McCloskey and Cohen (1989) or Ratcliff
(1990). We might, finally, mention the model by
Kruschke (1992) in which the receptive fields of the
hidden-layer units are functionally located (restricted)
before learning.

Apart from an alteration of the working of the
backpropagation algorithm, interference may be reduced
by merely changing the representation of the input and
output patterns. Some studies have successfully used
bipolar patiern features (i.e., values -0.5 and 0.5, or
values in this range; Kortge, 1990; Lewandowsky,
1991). Others have argued that normalization of the
pattern length may reduce interference (Kruschke,
personal communication). It may also be noted that the
nature of the patterns used seems to have a strong effect
on sequential interference. For example, Brouse and
Smolensky (1989) and Hetherington (1990b) have
argued that in combinatorial domains (i.e., with a large
number of structured patterns, such as words)
interference is swongly reduced. Also, Hetherington
(1990a) has pointed out that with auto-associative
learning one may expect less interference than with
hetero-associative learning (i.e., inputs differ from
outputs).

As a third general approach we may distinguish
between variations in the method of pattern presentation.
Hetherington and Se: ienberg (1989) trained a network
in overlapping blocks (see Table 1, and below), which
greatly reduced sequential interference. In this paper, we
will focus on another method of presentation, called
‘random rehearsal’, that is akin to their method. After a
brief review of the simulations by McCloskey and
Cohen (1989) and Hetherington and Seidenberg (1989),
we will describe this new method. In the Discussion, we
shall argue that all successful approaches to reducing
interference are based on a single underlying factor:
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orthogonalization of hidden-layer representations across
subsequent patterns or pattern blocks.

Pattern Presentation and Interference

The study by McCloskey and Cohen (1989) aimed at
teaching (by ‘'rote learning’) a model some simple
arithmetic: adding, subtracting, dividing, and multiplying
numbers in the range zero to nine. During training, two
numbers and an arithmetic operator were presented as
input patterns, while the correct answer was presented as
output. The model consisted of a straightforward, three-
layer backpropagation model with fully connected
layers. Numbers (single digits) were represented by
activating three consecutive nodes in the output or input
layer. The number three, for example, was represented
as 0001110000.... and a zero as
1110000 ..... The input layer consisted of 28 input
nodes (two limes twelve nodes for representing the
digits, and four additional nodes for the operators), the
hidden layer consisted of fifty nodes, and the output
layer consisted of 24 nodes (twelve for digits and twelve
for tens).

The network could easily be taught all summed
digit pairs, as well as all multiplied digit pairs. The pairs
were presented for training in blocks with varying
random order. When the network was trained on patterns
drawn from the entire training set, no problems
occurred. But when the network was first taught all
additions with one (e.g., [1+1], [2+1], [3+1], ..., and also
[1+2], [1+3], [144], ...), and only rhen on all additions
with two (except [1+2] and [2+1], which had already
been learned), the newly leamned patterns appeared 10
have washed out all memory of addition with one.
Performance on the ones, dropped from 100% to 57%,
after a single run, and to 30%, after two runs on the
twos.
The simulations by McCloskey and Cohen (1989)
were replicated by Hetherington and Seidenberg (1989)
with essentially similar results. A second simulation by
these authors, however, indicated that leamming the twos
does not completely destroy all memory of the ones. It
appeared that the ones were releamed faster than a
totally novel set of additions (with three). The model
thus showed evidence of 'savings’ (Ebbinghaus, 1985):
the ones were not completely unlearned, which greatly
accelerated relearning. Based on these results (also see
Hinton and Plaut, 1987), Hetherington and Seidenberg
(1989) argue that the catastrophic interference found by
McCloskey and Cohen (1989) is primarily dependent on
the method of pattern presentation. In particular, they
argue that blocking
of learning trials (i.e., first a block of ones, then a block
of twos) may be an important contributing factor, and
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Stage Pattern sets

1. 11

2. 1 1 2

3. 12 23

4. 1 2 23 3 4

s, 23 3 4 405

Table 1. Training scheme used by Hetherington and
Seidenberg (1989). The table shows the sets presented
in each stage. A stage lasted for ten epochs. In each
epoch, patterns were presenled in a different random
order.

that "if, instead of following this strict blocking scheme,
there is some minimal retraining on the ones,
performance will rapidly improve due to savings.” (p.30)
Based on this idea they used a training scheme
intermediate between both strict blocking and fully
concurrent presentation of patierns.

Hetherington and Seidenberg (1989) trained their
model in five stages on addition with ones, twos, threes,
and fours. For each addition, a set was constructed
containing thirteen digit pairs as mentioned above. The
sels were constructed, so that they would not overlap
(i.e., [1+3] occurred in either the set of ones, or the set
of threes, but not in both). The training scheme is shown
in Table 1. Presenting two sets of one type corresponds
to presenting each element of the set twice, in random
order, interleaved with elements from other sets. From
the table it becomes clear that the consecutive stages
overlap: pattens are trained during a number of
consecutive stages. At stage five, the ones are no longer
retrained, so that on the basis of the above cited data we
might expect considerable interference as a result of
rraining the twos, threes, fours, and fives, while not
simultaneously retraining ones. The results, however,
indicate that this is not the case. After training on stage
5, the model is still able to correctly reproduce in
between twelve and thirteen ones (out of a possible
thirteen). The authors further report that after continued
raining for 35 more epochs following stage four, the
mean number of correct responses on the ones was still
91% (11.8 out of 13). Their conclusion, therefore, is that
this method of pattern presentation prevents catastrophic
interference.

We did a series of simulations to investigate further
the effects of pattern presentation schemes on retroactive
interference. Our findings indicate that Hetherington and
Seidenberg's (1989) results on the detrimental effects of
smrict blocking do not directly generalize to other
models. A method similar to their 'method of
overlapping stages’, however, appears to work well on
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Fig.l. Interference in backpropagation as a result of
strict sequential learning. The resulls are averaged over
100 replications.

auto-associative leaming of random pattern vectors. The
patterns used in our simulations consisted of eight
elements. Ten new patierns were generated for each
simulation (and replication). Each of the pattem
elements was assigned a (uniform) random value
between zero and one. The length of the vector was
normalized to 1.0 (this may have reduced sequential
interference, such as between blocks, see discussion
below). The model used was a simple three-layer
backpropagation network. The size of the input and
output layers was eight, the size of the hidden layer was
five nodes (simulations indicated that increasing the
hidden layer beyond this size did not essentally
influence the results, see Figure 6 and the discussion
below). Before every simulation, weights were (uniform)
randomly initialized in the range [-0.5, 0.5]. The
learning rate was (.5, the momentum parameter was set
at 0.9. With these parameters, the networks easily learns
ten random patterns to the criterion described below.
Simulation 1. In this simulation, "strict sequential
leamning’ was used. Each of the patterns was leamed
until the criterion was reached, and not repeated
thereafter. The criterion consisted of a correlation
coefficient (i.e., cosine of the angle between the two
vectors) of more than 0.99 between the (target) pattern
and pattern produced at the output layer. The simulation
was repeated 100 times. For each replicated simulation
both the initial weights and the patterns were generated
anew. The averaged results are shown in Figure 1.
Recall is represented by the correlations remaining after
having learned all patterns. The base rate shown in the
figure is the expected correlation of 0.863 between a
random pattern and its output before the network has
learned anything. It was established by generating 5000
random patterns and averaging the correlations. As can
be seen from Figure 1, strict sequential leaming causes
catastrophic interference to the extent that after learning
the network performs actually worse than before
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Fig.2. Interference in backpropagation as a result of a
strict blocking scheme. The results are averaged over
100 replications.

learning.

Simulation 2. Having established that in this
simulation paradigm strict sequential learning gives rise
to 'more than catastrophic interference’, we trained the
network using ’strict blocking’ of trials. First, five
patterns were simultaneously trained until the criterion
was reached (see above), followed by training on
patterns six to ten. After these had reached the criterion,
the network was tested for recall. The simulation was
repeated 100 times. The results are shown in Figure 2.
Strict blocking also leads to considerable retroactive
interference, although not as bad as strict sequential
leamning.

Simulation 3. To test whether training in
‘overlapping stages', as described by Hetherington and
Seidenberg (1989) is a feasible method for reducing
interference the following training method was used. A
fixed-size 'window’ was moved over the ordered pattem
set. All patterns in the window were trained to the set
criterion. Say, the window can contain three patterns (we
will speak of a depth of 3). Then, the training stages are
as follows. In subsequent stages we train patterns A, B,
C, .., as follows: (A), (A,B), (A,B,C); (B,C,D); (C,D,E),
etc. Simulations were carried out with windows of depth
1, 2, 3, and 4. Network, patterns, and parameters were
as above. For each depth, 100 replications were carried
out. The averaged results are shown in Figure 3. A
depth of 1 leads to strong retroactive interference,
comparable to using zero depth (i.e., strict sequential
learning). Depths of 2, 3, and 4, however, lead a 10
progressively decreasing interference, although even a
depth of 4 performs hardly better than strictly blocked
leamning in this respect.

Simulation 4. According to Hetherington and
Seidenberg (1989), the overlapping stages method leads
to reduced interference, because old patterns are
occasionally rerained. The "windowing method’ of the
previous simulations only rehearses the most recent
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Fig3. [Interference in backpropagation using a

windowed Iraining method. Each point is averaged over
100 replications.

patterns. It would be interesting to see whether an
increase in performance (i.e., a reduction in interference)
could be achieved by rehearsing a constant number of
patterns randomly chosen from the already learmed
patterns. In the method used, the first patterns have a
higher chance of being rehearsed than late patterns in
the list. Exact chances of rehearsal with list size 10 are
shown in Figure 4. With a depth of 1wo, for example,
pattern 3 will on the average be rehearsed about four
times (out of a possible ten). The term depth is
maintained, although here it refers to randomly selected
items. We remark, furthermore, that if depth is 3, it
implies that the first four items will certainly be
rehearsed up until pattern 4.

The results are given in Figure 5. As can be seen,
the 'random rehearsal method’ works successfully.
Especially with depths of 3 and 4 retroactive
interference is strongly reduced. Note, that the toial
number of rehearsals is not greater than that of the
windowed training scheme.

Discussion

Simulations 1 to 4 convincingly demonstrate that pattern
presentation schemes may considerably influence
retroactive interference, from 'more than catastrophic’
for strictly sequential learning to ‘only slightly’ for the
random rehearsal method.

As was argued by Hetherington and Seidenberg
(1989), their method of presentation may be called
plausible from a psychological point of view. Occasional
reminders of items are nearly always given during
prolonged instruction (e.g., in classroom situations). In
our method of 'random rehearsal’, reminders are drawn
from all items learmed, rather that just the most recent
ones. This may or may not be a plausible scheme for
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Fig.d. Expected number of item rehearsals (out of a
possible 10) for depths of 1 to 4. See lext for an
explanation.

classroom instruction. We would rather argue, however,
that it can be viewed as a partial implementation of the
"articulatory loop’ proposed by Baddeley and Hitch
(1974; Baddeley, 1986). While learning a list, a fixed
number of items is drawn from memory and rehearsed
with the new items. As is shown in Figure 4, earlier
items have a high chance of being retrained. The
articulatory loop may thus be seen as a method whereby
occasional 'reminders’ are generated for retraining
(which occurs quickly due to savings, see above). The
proposed method is only a partial implementation,
because it presuposes that all items learned are still fully
available. In a more complete implementation, rehearsal
should be a more self-contained process. Use could, for
instance, be made of a recurrent scheme to implement
the articulatory loop. Such studies have indeed been
carried out recently (Burgess and Hitch, 1991; Nolfi,
Parisi, Vallar, and Burani, 1990; Mul, Phaf, and Wolters,
in preparation). In these models, early items in the list
are recalled better than late items. In a recurrent network
an ‘articulatory loop' may, thus, fully counteract the
effects of retrograde interference. More imponantly,
perhaps, is that this primacy effect is consistent with
well-established experimental findings.

One fact that remains surprising in the simulations
presented above, is that a seemingly imporant
architectural characteristic such as the size of the hidden
layer has a negligible influence on retroactive
interference. In Figure 6, for example, a replication of
Simulation 1 is shown with hidden layers of 5 and 20
nodes. As can be seen, increasing the size of the hidden
layer has only a minor influence on retroactive
interference (this was also found by Hetherington and
Seidenberg, 1989, see their note 3, p.32). In fact,
increasing the hidden layer seems to have a slight
negative effect on recall.

This effect may be explained with reference to the
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Fig.5. Inierference in backpropagation using a random
rehearsal method. Each point is averaged over 100
replications.

nature of hidden-layer representations emerging in
standard backpropagation networks. A detailed analysis
of Ratcliff's (1990) first series of simulations has
revealed that nearly all sequenual interference can be
attributed 1o overlap of hidden-layer representations
(Murre, 1992). Backpropagation is able to develop
sufficiently distinct representations for patterns within a
list (block). The representations between lists, however,
are almost purely random. It can be shown that as few
as two overlapping active hidden units (i.e., in two
sequentially learned patterns) may cause nearly complete
unleamning of the first pattern (Murre, 1992). Normally,
roughly half of the hidden-layer will be active for any
pauern presented. Chances of an overlap of more than
one active unit are, therefore, very high. This is even
more so, if the size of the hidden-layer is increased,
which may explain the effect of Figure 6.

Reducing hidden-layer overlap will decrease
sequential interference (also see French, 1991). In fact,
all swudies cited above that succeed in reducing
interference share this as a common factor:

1. Sharpening (French, 1990). This method is
inroduced explicitly to reduce hidden-layer overlap.
Fewer active nodes results in a lower chance of overlap.
A more detailed analysis of this method, however,
shows that in many situations there is a rather high
chance that leamning will not converge, because within-
list representations may overlap (Murre, 1992).

2. Novelty rule (Kortge, 1990). This method results
in emphasizing the between-partern differences, which
gives rise to more distinct hidden-layer representations.
3. Restricted receptive fields (Kruschke,
1992). Functonally located hidden nodes only respond
10 a restricted part of the pattern space. This results in a
decreased overlap of representations: a unit that responds
to a certain pattern, is less likely to respond to another.
4. Normalizing patterns (Kruschke, personal
communication). Normalization results in more
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Fig.6. The negligible effect of increasing the size of the
hidden layer on retroactive interference. The results are
averaged over 100 replications.

restricted receptive fields. This can be most easily seen
when considering binary nodes. Suppose, that a certain
hidden-unit has weights [1,1] and threshold 1.3. Such a
node will be activated by, for example, the pattern
(0.8,0.6), but also by all patterns (>1.3,>1.3).
Normalization places all patterns on a hypersphere. Afier
normalization, the unit will still be activated by pattern
(0.8,0.6), which already has length one. Patterns in the
area of (2,0), (0,3), etc., however, will be normalized to
(1,0, (0,1), etc., so that the unit is no longer activated
by such patterns. Similarly, a linear-sigmoid node can be
placed so that it ‘carves off’ just a small piece of the
hypersphere. With normalized patterns such nodes
develop more restricted receptive fields, which gives rise
to more distinct hidden-layer representations.

5. Bipolar pattern features (Korige 1990;
Lewandowsky, 1991). With bipolar pattern features, it
can easily be shown that for orthogonal patterns, hidden
units tend to develop orthogonal representations (also
between lists, which is not the case with standard
backpropagation, see Ratcliff, 1990).

6. Windowed training (Hetherington and
Seidenberg, 1989). Windowed training is based on
providing reminders of recent items. This enables the
algorithm to develop representations that are orthogonal
over several subsequent lists rather than just within-lists.
7. Random rehearsal training (Simulation 4,
above). This method functions similarly to windowed
training. It also provides reminders of items leamned
earlier. These reminders enable the model to keep
representations orthogonal.

We conclude from this brief review that all of these
methods derive their succes primarily from making the
hidden-layer representations of patterns between-lists
more orthogonal. One way of circumventing the problem
would be to have a model without hidden layers. This
has indeed been found (Hetherington, 1990b,
Lewandowsky, 1991, and Sloman and Rumelhart, in



press), in particular, if pauerns are orthogonal.

To arrive at a more plausible (and perhaps more
practical) model of human memory it may be
worthwhile (o investigale other types of models. Most
models based on categorization or other forms of
unsupervised leamning are able to develop orthogonal
representations between lists (e.g., Carpenter and
Grossberg, 1987; Grossberg, 1987, Kohonen, 1990;
Rumelhant and Zipser, 1985). Elsewhere, we have
advocated an approach that combines a modular
architecture with intramodular competition. The learmning
rate in these modules is sensitive 10 the novelty of the
incoming pattern (Murre, Phaf, and Wolters, 1989, 1992;
Murre, 1992). This approach combines several partial
solutions to the problem of sequential interference
outlined above. Once this problem has been fully
understood, we may be able to perform detailed
simulations of a more challenging phenomenon: the
forgetting gradient in retrograde amnesia. Severe
disturbance to the brain seems to result in a loss of
recently leammed patterns, with patterns learned earlier
being saved (Squire, 1987). This well-established fact
seems 10 run counter to any neural network model
devised thus far,
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