Lawrence Berkeley National Laboratory

LBL Publications

Title Nuclear Data Sheets for A=193

Permalink https://escholarship.org/uc/item/9g93z7dh

Author Basunia, M Shamsuzzoha

Publication Date 2017-07-01

DOI 10.1016/j.nds.2017.08.001

Peer reviewed

Available online at www.sciencedirect.com

Nuclear Data Sheets

Nuclear Data Sheets 143 (2017) 1-381

www.elsevier.com/locate/nds

Nuclear Data Sheets for A=193*

M. Shamsuzzoha Basunia

Nuclear Science Division Lawrence Berkeley National Laboratory MS 88R0192 I Cyclotron Road Berkeley, California 94720

(Received 10 June 2016; Revised 15 June 2017)

Abstract: Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for ¹⁹³Ta, ¹⁹³W, ¹⁹³Re, ¹⁹³Os, ¹⁹³Ir, ¹⁹³Pt, ¹⁹³Au, ¹⁹³Hg, ¹⁹³Hg, ¹⁹³Pb, ¹⁹³Bi, ¹⁹³Po, ¹⁹³At, and ¹⁹³Rn. This evaluation for A=193 supersedes the earlier one by E. Achterberg, *et. al.* (2006Ac01).

Highlights of this evaluation are the following:

Based on $\gamma\gamma$ -coincidence measurements by 2005Za15, excited levels 848.93 and 849.083 in ¹⁹³Ir have been merged.

Proposed new spin-parity assignments for 2213.8+x ($J^{\pi}=23/2^+$), 2426.7+x ($J^{\pi}=25/2^+$), and 2584.8+x ($J^{\pi}=27/2^+$) by 2011Ba02 (²⁸Si,5n γ) indicate 1 \hbar lower spin assignments for many of the excited levels in the ¹⁹³Pb Adopted

Levels including the Magnetic dipole band 1 based on 2584.8+x level.

- 2015He27 identified many new structures in ¹⁹³Bi close to the yrast line. Many new states have been added, significantly extending the previously known level scheme of ¹⁹³Bi, including several new rotational bands.
- **Cutoff Date:** All data received by March 31, 2017 have been evaluated. The NSR database (2014Pr09) (www.nndc.bnl.gov/nsr/) is the primary source for the bibliography.
- **General Policies and Organization of Material:** See the January issue of the *Nuclear Data Sheets* or http:// www.nndc.bnl.gov/nds/NDSPolicies.pdf.
- Acknowledgements: The evaluator would like to thank the compilers of XUNDL data sets [B. Singh, S. Geraedts, B. Karamy, M. Birch, M. Walters (McMaster); E.A. McCutchan (NNDC,BNL); W. Murrey, F.G. Kondev (ANL); D.M Symochko (IEP, NAS, Ukraine)] for initial entry from references: 2005Ca02, 2007Ok05, 2009Al30, 2011Ba02, 2011Fa07, 2011St21, 2012Dr02, 2012Kr05, 2014Ga14, 2014Ka23, 2014Th02, 2015He27, 2016Ba42. This evaluation benefits from earlier evaluations by E. Achterberg, et. al. (2006Ac01), Agda Artna-Cohen (1998Ar07), and V.S. Shirley (1990Sh30, 1981Sh13). The evaluator is also thankful to B. Singh and M. Birch (McMaster) for evaluations of ¹⁹³Ta (30-Sep-2013), 193W (31-May-2011), ¹⁹³Po (30-Nov-2015), and ¹⁹³Rn (30-Nov-2015) nuclides in the ENSDF database. Finally, the evaluator is thankful to the reviewer of this manuscript for an in-depth review and constructive feedback.

^{*} This work was supported by the Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231

NUCLEAR DATA SHEETS

Index for A=193

Nuclide	Data Type	Page
	Skeleton Scheme for A=193	3
$^{193}_{73}$ Ta ₁₂₀		7
100	Adopted Levels	7
$^{193}_{74}W_{119}$		8
	Adopted Levels	8
$^{193}_{75}$ Re $_{118}$		9
75 110	Adopted Levels, Gammas	9
	${}^{9}\text{Be}({}^{208}\text{Pb},X\gamma)$	10
$^{193}_{76}\text{Os}_{117}$		12
/0 11/	Adopted Levels, Gammas	12
	${}^{9}\text{Be}({}^{208}\text{Pb},X\gamma)$	29
	¹⁹² Os(n,γ) E=thermal	30
	192 Os(n, γ) E=res	54
	$^{192}Os(d,p)$	55
	192 Os $(^{7}$ Li $,^{6}$ Li $\gamma)$	56
$^{193}_{77}$ Ir ₁₁₆		57
// 110	Adopted Levels, Gammas	57
	¹⁹³ Os β^- decay	69
	193 Ir IT decay (10.53 d)	83
	Muonic atom	85
	¹⁹³ Pt ε decay (50 y)	86
	Inelastic scattering	87
	$\lim_{t \to 0} \operatorname{Ir}(t,p) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	88
	192 Os(d,n γ)	89
	192 Os(3 He,d), (α ,t)	92
	192 Os(⁷ Li, $\alpha 2n\gamma$)	94
	192 Ir(n, γ) E=TH	95
	¹⁹³ Ir(γ, γ):Mossbauer	100
	¹⁹³ Ir(γ, γ'):res fluorescence	102
	¹⁹³ Ir(n,n' γ)	104
	Coulomb excitation	110
	194 Pt(d, ³ He)	116
	¹⁹⁴ Pt(pol t, α), (t, α)	117
103-	$(HI,xn\gamma)$	119
$^{195}_{78}$ Pt $_{115}$		121
	Adopted Levels, Gammas $\dots \dots \dots \dots$	121
	193 Pt IT decay (4.33 d)	128
	¹⁹⁵ Au ε decay (17.65 h)	130
	193 Au ε decay (3.9 s)	137
	$192 \text{Os}(\alpha, 3n\gamma)$	139
	192 Pt(n, γ) E=res	141
	$194p_{4}(3u_{2})$	142
	$195 \operatorname{pt}(\pi, \epsilon)$	144
193 •	$\mathbf{P}(\mathbf{p},\mathbf{i}) \dots \dots$	143
⁷⁹ Au ₁₁₄	Adapted Lavala Commos	140
	Adopted Levels, Gammas \dots \dots \dots 193 Au IT decey (2.0 -)	140
	Au 11 decay (5.9 s)	102

Nuclide	Data Type								Page
	¹⁹³ Hg ε decay (3.80 h) . ¹⁹³ Hg ε decay (11.8 h) .		•	•	•	•	•	•	. 165 . 171
	$^{180}W(^{11}B,4n\gamma)$	• •	·	·	·	·	·	·	. 189
	192 Os('Li,6n γ)	• •	·	·	·	·	·	·	. 192
	194 Pt(p,2n γ)	• •	•	•	·	•	·	·	. 193
102	$Ir(\alpha, xn\gamma)$	• •	•	•	·	•	·	·	. 199
$^{195}_{80}$ Hg ₁₁₃ .	•••••••••••	• •	•	•	·	·	·	·	. 203
	Adopted Levels, Gammas	• •	•	•	·	•	·	·	. 203
	$^{193}_{102}$ Hg IT decay (11.8 h)	• •	•	•	·	•	·	•	. 224
	193 Tl ε decay (21.6 min)	• •	•	•	·	•	•	•	. 226
	¹⁹³ Tl ε decay (2.11 min)	• •	•	•			•		. 230
	$Pt(\alpha,xn\gamma)$						•		. 231
	$(HI,xn\gamma)$:SD								. 233
	$(HI,xn\gamma)$							•	. 240
$^{193}_{81}\text{Tl}_{112}$. 256
01 112	Adopted Levels, Gammas								. 256
	¹⁹³ Tl IT decay (2.11 min)								. 267
	¹⁹³ Pb ε decay (5.8 min).								. 269
	¹⁹⁷ Bi α decay (5.15 min)								. 273
	$(HI,xn\gamma)$. 274
	$(HI,xn\gamma)$:SD								. 281
¹⁹³ Pb ₁₁₁ .									. 286
82 111	Adopted Levels, Gammas								. 286
	193 Bi ε decay								. 306
	197 Po α decay (53.6 s)								307
	197 Po α decay (25.8 s)								. 308
	$^{168}\mathrm{Fr}(^{30}\mathrm{Si}5\mathrm{n}_2)$								310
	$170 \text{ Er}(^{28}\text{Si}, 5\text{n}_2)$	•••	·	·	·	•	·	·	. 310
	$174 Vh(^{24}Mg 5pa)$	•••	·	·	·	·	·	·	. 317
	182W(160.5m)	•••	·	·	·	·	·	·	. 519
	(100, 50, 7)	• •	·	·	·	·	·	·	. 320
193	$(HI,xn\gamma)$:SD	•••	·	·	·	·	·	·	. 329
${}^{1}_{83}B_{110}$.		• •	·	·	·	·	·	·	. 335
	Adopted Levels, Gammas	• •	·	·	·	·	·	·	. 335
	197 At α decay (381 ms) .	• •	·	·	·	·	·	·	. 346
	107 At α decay (2.0 s)	• •	·	·	·	·	·	·	. 347
102	103 Ho(32 S,4n γ)	• •	•	•	·	·	·	·	. 348
$^{193}_{84}Po_{109}$.			•	•	·	•	·	·	. 360
	Adopted Levels, Gammas	• •	•	•	·	•	•	•	. 360
	197 Rn α decay (55 ms) .	• •	•	•			•		. 363
	^{19/} Rn α decay (24 ms) .	• •	•	•			•		. 364
	160 Dy(36 Ar, $3n\gamma$)								. 365
$^{193}_{95}At_{108}$.									. 367
05 100	Adopted Levels								. 367
$^{193}_{86} Rn_{107}$.	-								. 368
00 107	Adopted Levels								. 368
References	• • • • • • • • • • • • • • • • • •								. 369

NUCLEAR DATA SHEETS

Skeleton Scheme for A=193

Skeleton Scheme for A=193 (continued)

S(n)

S(p)

100%

NUCLEAR DATA SHEETS

Ground-State and Isomeric-Level Properties												
Nuclide	Level	<u>J</u> <i>π</i>	T _{1/2}	Decay Mode								
¹⁹³ Ta	0.0		<u> </u>	$\sqrt[\infty]{\beta^{-}=100}; \sqrt[\infty]{\beta^{-}n=?}$								
¹⁹³ W	0.0			$\%\beta^{-}=100$								
¹⁹³ Re	0+x	(5/2+)										
193Os	0.0	3/2-	29.830 h 18	$\%\beta^{-}=100$								
¹⁹³ Ir	0.0	3/2+	stable									
¹⁹³ Pt	0.0	1/2-	50 y 6	%ε=100								
¹⁹³ Au	0.0	3/2+	17.65 h 15	$\% \epsilon + \% \beta^{+} = 100$								
¹⁹³ Hg	0.0	3/2(-)	3.80 h 15	$\% \varepsilon + \% \beta^+ = 100$								
193Tl	0.0	1/2(+)	21.6 min 8	$\% \varepsilon + \% \beta^+ = 100$								
¹⁹³ Pb	0.0	(3/2-)		$\% \varepsilon + \% \beta^+ = ?$								
¹⁹³ Bi	0.0	(9/2-)	63.6 s 30	$\%\alpha = 3.5\ 15;\ \%\epsilon + \%\beta^+ = 96.5\ 15$								
¹⁹³ Po	0.0	(3/2-)	399 ms 34	%α≤100 ·								
¹⁹³ At	0.0	(1/2+)	28 ms +5-4	% <i>α</i> ≈100								
¹⁹³ Rn	0.0		1.15 ms 27	% <i>α</i> ≈100								
¹⁹⁷ Bi	533	(1/2+)	5.15 min 55	$\%\alpha = 6. \times 10^{1} 4$								
¹⁹⁷ Po	0.0	(3/2-)	53.6 s 10	%α=44 7								
¹⁹⁷ Po	230	(13/2+)	25.8 s 1	%α=84 9								
¹⁹⁷ At	0.0	(9/2-)	381 ms 6	%α=96.1 <i>12</i>								
¹⁹⁷ At	52	(1/2+)	2.0 s 2	$\% \alpha \leq 100$								
¹⁹⁷ Rn	0.0	(3/2-)	55 ms +7-5	%α≤100								
¹⁹⁷ Rn	199	(13/2+)	24 ms $+3-2$	%α≤100								

 $^{193}_{73}$ Ta $_{120}$ -1

Adopted Levels

$Q(\beta^{-})=5420 SY; S(n)=5880 SY;$ 2017Wa10

 $\Delta Q(\beta^{-})=450$ (syst), $\Delta S(n)=570$ (syst) (2017Wa10).

2012Ku26: ¹⁹³Ta produced and identified in ⁹Be(²³⁸U,F), E=1 GeV/nucleon, reaction using SIS-18 synchrotron facility at GSI. Target=1.6 g/cm² ⁹Be placed at the entrance of projectile Fragment Separator (FRS). Particle identification was achieved by event-by-event in-flight analysis of time-of-flight, energy loss measurement, and magnetic rigidity (TOF- Δ E-B ρ). Time-of-flight measured using two plastic scintillation detectors, energy loss or deposit by ionization chambers (MUSIC), and magnetic rigidity by four time-projection chambers (TPC), which also provided energy deposit information. Isomer tagging method for known μ s isomers was used to verify event-by-event identification and in-flight separation of new isotopes. Gamma rays from the known isomers were recorded in coincidence with the incoming ions using either the RISING array of Ge detectors at GSI or only two Ge detectors, a stopper foil and a scintillator for veto signal. Measured production cross section. Comparison of measured σ with predictions from ABRABLA model and EPAX-3 model.

¹⁹³Ta Levels

Production $\sigma = 0.017$ nb 5 (2012Ku26) and $\sigma > 0.43$ nb (²⁰⁸Pb fragmentation, E=1 GeV/nucleon, on Be target – 2014Ku02).

 $^{193}_{74}W_{119}$ -1

Adopted Levels

 $Q(\beta^{-})=3950 SY; S(n)=4710 SY; S(p)=1.051\times 10^{4} SY; Q(\alpha)=-1.55\times 10^{3} SY$ 2017Wa10

 $\Delta Q(\beta^{-})=200$ (syst), $\Delta S(n)=280$ (syst), $\Delta S(p)=450$ (syst), $\Delta Q(\alpha)=360$ (syst) (2017Wa10).

2009St16, 2008StZY thesis: ¹⁹³W nuclide identified in the reaction ${}^{9}Be({}^{208}Pb,X)$ with a beam energy of 1 GeV/nucleon produced by the SIS-18 accelerator at GSI facility. Target thickness=2.5 g/cm². Fragments identified in flight by the Fragment Separator (FRS) operated in achromatic mode based on time-of-flight, B ρ and energy loss. Data collected on six FRS magnetic rigidity settings centered on: ${}^{206}Hg$, ${}^{203}Ir$, ${}^{202}Os$, ${}^{199}Os$, ${}^{192}W$, and ${}^{185}Lu$. Nuclides halted in a passive stopper surrounded by the RISING array in "Stopped Beam" configuration.

Experimental identification using a similar setup is reported in 2009A130.

¹⁹³W Levels

E(level)

Comments

 $0.0 \qquad \%\beta^{-}=100$

The β^- decay is the only decay mode expected.

Approximate number of nuclei implanted in the plastic stopper reported to be 9400 100 (2009St16,2008StZY).

E(level): the observed fragments are assumed to be in the ground state of 193 W nuclei.

 $T_{1/2}$: >300 ns from approximate time-of-flight as given in 2008StZY. Calculated value 18.7 s for β decay (1997Mo25) and the systematic value of 3 s (2017Au03).

 J^{π} : 1/2⁺ predicted in 1997Mo25.

Production σ =42 nb 9 (²⁰⁸Pb fragmentation, E=1 GeV/nucleon, on Be target – 2014Ku02).

Adopted Levels, Gammas

 $Q(\beta^{-})=3160 \ 40; \ S(n)=6710 \ 80; \ S(p)=7870 \ SY; \ Q(\alpha)=-830 \ SY$ 2017Wa10 $\Delta S(p)=200 \ (syst), \ \Delta Q(\alpha)=200 \ (2017Wa10).$

¹⁹³Re was produced by fragmentation of a ¹⁹⁷Au beam (E=187 GeV) (1999Be63), and a ²⁰⁸Pb beam (E=208 GeV) (2005Ca02) on beryllium targets. ¹⁹³Re was identified with the GSI Fragment Separator.

¹⁹³Re Levels

Cross Reference (XREF) Flags

A ${}^{9}\text{Be}({}^{208}\text{Pb},X\gamma)$

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0+x	$(5/2^+)$		A	
146.1+x <i>3</i>	(9/2-)	69 µs 8	Α	$T_{1/2}$: From (²⁰⁸ Pb,X γ).

[†] Proposed in 2011St21, based on systematics of ^{187,189}Re g.s., low lying 9/2⁻ state, and BCS calculations.

$\gamma(^{193}\text{Re})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\underline{\mathbf{E}_f}$ \mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
146.1+x	$(9/2^{-})$	146.1 3	100	$\overline{0+x}$ (5/2 ⁺)	[M2]	11.42 19	B(M2)(W.u.)=0.0163 20

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{193}_{75}$ Re $_{118}$ -2

⁹Be(²⁰⁸Pb,Xγ) 2011St21,2009Al30,2005Ca02

2011St21: ¹⁹³Re nuclide formed by in-flight fragmentation of ²⁰⁸Pb beam at 1 GeV/nucleon from the GSI UNILAC and SIS-18 accelerator complex. Target thickness=2.526 g/cm², backed by ⁹³Nb foil of thickness=0.223 g/cm². Fragments identified in flight by the Fragment Separator (FRS) operated in achromatic mode based on time-of-flight, B ρ and energy loss. Transmitted ions slowed in Al degraders and stopped in a plastic catcher. The stopper was surrounded by the RISING γ -ray spectrometer. Measured E γ , I γ , delayed γ rays, isomer lifetime, x-ray.

2009Al30,2009Al16: RISING array of 15 seven-element Ge cluster detectors used for γ ray detection. Measured isomer half-life.

2005Ca02: Nuclide was produced by fragmentation of ²⁰⁸Pb beam (E=208GeV) (2005Ca02) on beryllium target. ¹⁹³Re was identified with the GSI Fragment Separator; delayed γ events were recorded by 4 clover composite Ge detectors. 2005Ca02 also observed delayed Re K α x ray and K β x ray, with intensities 1.05 8 and 0.29 6 relative to γ 146.1 keV assigned to the decay of the isomeric level.

x-ray energy	Intensity	(relative	and arbit	rary)	(2005Ca02)	
60.6 2 69.5 3	989 247	58 35				

¹⁹³Re Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0+x	$(5/2^+)$		
146.1+x <i>3</i>	$(9/2^{-})$	69 µs 8	$T_{1/2}$: Weighted average of 65 μ s 9 (2011St21) and 72 μ s 8 (2009Al30, 2009Al16). Uncertainty
			lower input value. Other: 75 μ s +450–40, upper-limit corresponds to 100% isomeric formation
			ratio (2005Ca02).
			Experimental isometric state population ratio= $16\% + 4 - 5$ (2011St21).

[†] Proposed in 2011St21, based on systematics of ^{187,189}Re g.s., low lying 9/2⁻ state, and BCS calculations.

$\gamma(^{193}\text{Re})$

Eγ	Ιγ	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
146.1 <i>3</i>	135 26	146.1+x	(9/2 ⁻)	0+x	(5/2+)	[M2]	 E_γ,I_γ: From 2005Ca02. Other: 145.2 keV and Iγ=100 <i>11</i> (2011St21). 2011St21 propose that 145-keV transition connects the (9/2⁻) and (5/2⁺) states. The intensity (not listed) of the observed x rays is in agreement for this connection, noted in 2011St21. Mult.: Proposed in 2011St21. 2005Ca02 deduced hindrance factors for isomeric transition: HF=70 for M2 and 1000 for E2 (2005Ca02).

⁹Be(²⁰⁸Pb,Xγ) 2011St21,2009Al30,2005Ca02

 $^{193}_{75}\mathrm{Re}_{118}$

Adopted Levels, Gammas

 $Q(\beta^{-})=1141.9\ 24;\ S(n)=5583.42\ 20;\ S(p)=9090\ 70;\ Q(\alpha)=-200\ 40$ 2017Wa10

Other studies:

1969Bi01 observed a 17-min activity in products from $^{192}Os(n,\gamma)$, which they assigned to an isomer of ^{193}Os , but 1972Lo06 later attributed that to ^{80}Br . Another unsuccessful attempt was made to confirm the original assignment by 1971MaYD.

¹⁹³Os Levels

Cross Reference (XREF) Flags

		A B C	⁹ Be(¹⁹² C ¹⁹² C	$ \begin{array}{ccc} 2^{208} \text{Pb}, X\gamma) & \text{D} & {}^{192} \text{Os}(d,p) \\ \hline s(n,\gamma) \text{ E=thermal} & \text{E} & {}^{192} \text{Os}({}^7 \text{Li}, {}^6 \text{Li}\gamma) \\ \hline s(n,\gamma) \text{ E=res} & \end{array} $
E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
0.04	3/2-	29.830 h <i>18</i>	BCDE	$ % \beta^{-}=100 μ=+0.730 2 (2014StZZ,1989Ed01,1991Sc28); Q=+0.48 6 (2014StZZ) Jπ: primary γ from 1/2+ in average neutron resonance capture; log ft=7.52 and 7.70 for β decay to 139-keV (Jπ=5/2+) and 740-keV (Jπ=5/2-) levels in 193Ir, respectively. T1/2: From 2012Kr05. Other values: 30.11 h I (1992An13), 30.0 h 3 (1969Co08), 31.5 h 5 (1958Na15), 30.6 h 4 (1950Ch11), 31.9 h I0 (1947Go01), and 2010ZaZX report 30.05 h I4, 29.952 h I7, 29.953 h 8 averaging 75 data points (25 5-mg enriched 192Os target for 3 γ rays) using averaging methods of Limitation of Relative Statistical Weight, the Rajeval Technique, and the Normalized Residuals, respectively. Evaluator recommends 2012Kr05 value over the other precise measurement of 1992An13 due to possible influence of higher 193Os irradiation-end activity, as noted in 2012Kr05 and comparing values in 2010ZaZX. Evaluator's note: Irradiation end 193Os activity was six times higher in 1992An13 compared to 150 kBq of 2012Kr05. Note 1969Co08 value is statistically in agreement with the recomended value, which was measured using enriched (98.7%) target and 280- and 460-keV K lines. μ: NMR-ON (1989Ed01), sign from γ-ray circular polarization from oriented nuclei decay (1991Sc28). Other: +0.75 3 (2014StZZ) recalculated value, from low temperature I(θ) and Mossbauer effect (1985Be03); 0.78 7 (2014StZZ) recalculated value, from static low-temperature nuclear orientation (1984Gh01). Q: 2014StZZ evaluation of 1979Er09 low temperature dependence of γ-anisotropy data reanalyzed by 1985Be03.$
41.4844 ^b 22	(1/2 ⁻)		BC	J^{π} : primary γ from $1/2^+$ in (n,γ) ; absence of (d,p) strength and position of level, relative to that for $3/2[512]$ orbital, consistent with $1/2[510]$ Nilsson assignment.
72.903^{a} 4	$(5/2)^{-}$		B DE	J^{π} : L=3 in ¹⁹² Os(d,p); 5/2 ⁻ consistent with band assignment.
102.7326 ^b 10	(3/2)-		BCD	J^{π} : L=1 in ¹⁹² Os(d,p); 3/2 ⁻ consistent with band assignment.
233.8558 20	$1/2^{-},3/2^{-}$		BCD	J^{n} : L=1 in ¹⁵² Os(d,p).
295.6812 19	$(5/2)^{\infty}$ $1/2^{-} 3/2^{-}$		BCD	I^{π} : I = 1 in ¹⁹² Os(d n)
315.6 3	(9/2 ⁻)	121 ns 28	E	Configuration=9/2 ⁻ [505]. J^{π} : from configuration assignment in 2014Ga14. $T_{1/2}$: Weighted average of 110 ns 28 (2014Ga14 – (⁷ Li, ⁶ Li γ)) and 132 ns 29 (2011St21 – (²⁰⁸ Pb,X γ)). Uncertainty – lower input value.
399.018 <i>4</i> 434.9606 <i>25</i>	(5/2) ⁻ 1/2 ⁻ ,3/2 ⁻		B D BCD	J ^{π} : L=3 in ¹⁹² Os(d,p); γ to (1/2) ⁻ . J ^{π} : L=1 in ¹⁹² Os(d,p).

¹⁹³Os Levels (continued)

E(level) [†]	J ^{π#}	XREF	Comments
455.773 5	(5/2)-	B D	J^{π} : L=3 in ¹⁹² Os(d,p); γ to (1/2) ⁻ .
544.552 <i>4</i>	$(5/2^{-},7/2^{-})^{\&}$	ΒD	
550.9 [‡] 10		В	
558.3 5		Е	
573.2 [‡] 10		В	
587.6 [‡] 10		В	
675.2 [‡] 7		В	
709.200 10	$(5/2^-, 7/2^-)^{\&}$	В	
762	5/2-,7/2-	D	J^{π} : L=3 in ¹⁹² Os(d,p).
788.5 [‡] 10		В	
867.7 6		E	
888.624 21		Вс	J^{*} : $1/2^{-}$, $3/2^{-}$ can be assigned to at least one member of the 888.6-889.5 doublet on the basis of population in average resonance capture.
889.462 7		Bc	J^{π} : see comment with 888.62 level.
904.8 0	5/2- 7/2-	E	I_{1} , $I_{1} = 2$ in $\frac{192}{12} O_{12}(d_{1}n)$
952	5/2 ,1/2	D D	$J : L=S III \to OS(u,p).$
970.5 6		ь Е	
1053.856.7	$1/2^{-}.3/2^{-}$	BC -	
1085.385 11	$(1/2^-, 3/2^-)$	B D	J^{π} : L=1 in ¹⁹² Os(d,p); assignment uncertain (level should be, but is not, populated in
			average resonance capture).
1170.860 8	$(1/2^+, 3/2^+)$	В	J^{π} : probable primary M1 γ from $1/2^+$ (level seen in thermal, but not in average resonance capture).
1178.655 <i>14</i>	1/2-,3/2-	BCD	J^{π} : L=1 in ¹⁹² Os(d,p).
1185.4 [‡] <i>10</i>		В	
1195.9 6		E	
1205.2 [‡] 7		В	
1216.927 8	$1/2^{(-)}, 3/2^{(-)}$	BC	
1225.7 [‡] 6		В	
1244.6 [‡] 7		В	
1267.3 [‡] 10		В	
1281.469 19	1/2-,3/2-@	BC	
1288.468 8	1/2-,3/2-@	BC	
1333.5 4		В	
1359.6 4		В	
1383.6* 10	1/2(-) 2/2(-)	В	
1386.0 4	1/2(),3/2(-)	BC	
1398.24 7		В	
1400.0+ 5		В	
1418.0+ 5		В	
1434.0+ 10		В	
1437.4 9	$1/2^{(-)}, 3/2^{(-)}$	C	
1446.5+ 10	510- 710-	B	
1459.513 10	$5/2$, $1/2^{-}$	вD	$J^{*}: L=5 \text{ in } V^{*}Os(d,p).$
1490	5/2 ,1/2	ע	$J \cdot L = J \prod OS(u,p).$
1497.4* 10 1501 5		в R	
1504 1 5		R	
1507.11 5		U	

¹⁹³Os Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
1515.6 4	1/2-,3/2-@	BC	
1517	5/2-,7/2-	D	J^{π} : L=3 in ¹⁹² Os(d,p).
1523.5 5		В	
1530.3 5		В	
1555.8# 7		В	I_{π} , I_{π} , I_{π} , I_{π}^{2} , $I_$
1500 0 4	1/2-2/2-@	D PC	$J : L < J III \to Os(d,p).$
1603.2 4	1/2 ,3/2	B	
1644		D	
1660.3 [‡] 10		В	
1668		D	J^{π} : L<5 in ¹⁹² Os(d,p).
1680.3 [‡] 10		В	
1683.3 <i>4</i>		В	
1097		ע	
$1722.5^{\circ} 0$		B	
$1737.6^{\ddagger} 10$		B	
$1737.0^{+}10$		B	
$1754 2^{\ddagger} 7$		R	
1760.4^{\ddagger} 7		B	
1765.1 4		B	
1783.8 [‡] 4		В	
1785.2 5		В	
1795.8 7		В	
1798.9 [‡] 10		В	
1802.04 10		В	
1805.1+ 10		В	
1826.7+7		B	
1830.05		D	
1838.3 5		B	
1847.1 [‡] 4		В	
1848.6 5		В	
1853.6 [‡] 10		В	
1862.7 [‡] 10		В	
1874.6 [‡] 10		В	
1888.9 [‡] 5		В	
1892.6 [‡] 5		В	
1908.6+ 6		B	
1915.34		В	
1921.2^{+} / 1032 1 \ddagger 7		D	
1932.1 /		D	
1938 6 7		B	
1949 0 10		B	
1954.8 [‡] 5		B	
1977.4 [‡] 5		B	
->		2	

¹⁹³Os Levels (continued)

E(level) [†]	XREF	E(level) [†]	XREF	E(level) [†]	XREF	E(level) [†]	XREF
1983.4 [‡] 5	В	2222.0 [‡] 7	В	2467.7 [‡] 4	В	2708.9 [‡] 7	В
1989.8 [‡] <i>10</i>	В	2225.1 [‡] 7	В	2470.4 [‡] 7	В	2714.8 [‡] 7	В
2002.1 [‡] 4	В	2230.6 [‡] 7	В	2484.3 [‡] 6	В	2716.9 [‡] 10	В
2013.6 [‡] 4	В	2234.6 [‡] 10	В	2486.7 [‡] 10	В	2720.2^{\ddagger} 4	В
2020.8 [‡] 7	В	2239.9 [‡] 10	В	2489.6 [‡] 5	В	2723.6 [‡] 7	В
2024.3 [‡] 10	В	2243.0 5	В	2495.0 [‡] 5	В	2728.2 [‡] 7	В
2037.4 [‡] 5	В	2246.3 [‡] 10	В	2499.7 [‡] 4	В	2732.1 [‡] 10	В
2039.9 [‡] 7	В	2249.1 [‡] 5	В	2503.5 [‡] 10	В	2734.3 [‡] 7	В
2048.1 5	В	2250.9 [‡] 7	В	2506.3 [‡] 10	В	2738.4 [‡] 6	В
2050.8^{\ddagger} 6	В	2255.9 [‡] 7	В	2508.3^{\ddagger} 4	В	2741.9 [‡] 5	В
2053.5 [‡] 10	В	2258.4 [‡] 7	В	2511.8 [‡] 4	В	2746.7 [‡] 10	В
2059.7 [‡] 10	В	2278.7 [‡] 6	В	2514.1 [‡] 5	В	2749.8 [‡] 6	В
2064.1 4	В	2285.4 [‡] 10	В	2519.2 [‡] 5	В	2752.9 [‡] 7	В
2067.6 [‡] 5	В	2290.5 [‡] 7	В	2528.4 [‡] 5	В	2758.2 [‡] 10	В
2077.0	В	2294.3 [‡] 10	В	2530.9 [‡] 10	В	2761.7 [‡] 10	В
2078.3 [‡] 4	В	2297.3 [‡] 6	В	2533.7 [‡] 7	В	2764.9 [‡] 10	В
2081.1 [‡] 4	В	$2310.0^{\ddagger} 6$	В	2541.8 [‡] 4	В	2773.9 [‡] 5	В
2090.0	В	2315.9 [‡] 5	В	2548.2 [‡] 6	В	2779.4 [‡] 10	В
2092.9 [‡] 4	В	2320.5 [‡] 5	В	2551.3 [‡] 10	В	2782.1 [‡] 4	В
2098.0 4	В	2326.1 [‡] 5	В	2554.6 [‡] 7	В	2784.1 [‡] 7	В
2103.4 [‡] 7	В	2332.6 [‡] 7	В	2558.1 [‡] 7	В	2792.0 [‡] 6	В
2108.1 [‡] 10	В	2340.1 [‡] 10	В	$2560.4^{\ddagger} 5$	В	2797.9 [‡] 5	В
2111.7 [‡] 7	В	2342.9 [‡] 7	В	2567.1 [‡] 4	В	2805.5 [‡] 5	В
2115.9 [‡] 10	В	2348.0 [‡] 5	В	2578.0 [‡] 10	В	2811.6 [‡] 7	В
2124.1 [‡] 7	В	2350.4 [‡] 10	В	2580.1 [‡] 4	В	2822.8 [‡] 10	В
2126.4 [‡] 7	В	2360.9 [‡] 10	В	2585.0 [‡] 7	В	2830.3 [‡] 7	В
2131.3	В	2364.2 [‡] 7	В	2597.4 [‡] 7	В	2834.3 [‡] 10	В
2133.0 [‡] 4	В	2368.0 [‡] 5	В	2602.8 [‡] 5	В	2856.3 [‡] 6	В
2134.2 [‡] 6	В	2373.1 [‡] 10	В	2606.9 [‡] 10	В	2863.8 [‡] 5	В
2143.5 [‡] 10	В	2381.0 [‡] 5	В	2611.3 [‡] 5	В	$2870.0^{\ddagger} 6$	В
2150.6 [‡] 7	В	2389.1 [‡] 4	В	2614.7 [‡] 10	В	2875.8 [‡] 6	В
2153.8 [‡] 7	В	2396.3 [‡] 10	В	2629.3 [‡] 7	В	2880.0 [‡] 7	В
2157.1 [‡] 7	В	2407.0 [‡] 5	В	$2632.3^{\ddagger} 6$	В	$2887.0^{\ddagger} 6$	В
2163.7 [‡] 6	В	2414.0 [‡] 10	В	2637.8 [‡] 6	В	2904.1 [‡] 10	В
2168.7 [‡] 4	В	$2421.0^{\ddagger} 6$	В	2656.6 [‡] 6	В	2909.0 [‡] 4	В
2178.1 [‡] 10	В	2426.8 [‡] 6	В	2661.8 [‡] 10	В	2913.3 [‡] 7	В
2181.3 [‡] 7	В	2431.3 [‡] 7	В	2671.4 [‡] 4	В	2918.0 [‡] 7	В
2185.4 [‡] 5	В	2432.8 [‡] 5	В	2679.6 [‡] 5	В	2972.4 [‡] 7	В
2190.0	В	2437.7 [‡] 10	В	2687.1 [‡] 7	В	2979.9 [‡] 7	В
2192.4 [‡] 6	В	2442.5 [‡] 10	В	2690.2 [‡] 7	В	2986.9 [‡] 10	В
2195.0 [‡] 5	В	2447.0 [‡] 7	В	2693.9 [‡] 7	В	3001.7 [‡] 7	В
2205.1 [‡] 7	В	2450.1 [‡] 7	В	2697.0 [‡] 5	В	3006.6 [‡] 5	В
2218.6 [‡] 5	В	2458.5 [‡] 7	В	2699.5 [‡] 4	В	3010.4 [‡] 7	В
2220.1	В	2461.7 [‡] 6	В	2703.7 [‡] 5	В		

[†] From least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.5$ keV for missing γ -ray uncertainty. Intermediate levels from

¹⁹³Os Levels (continued)

summed $\gamma\gamma$ cascade (primary+secondary) reported in 2002Ba66 identified by footnotes.

- [‡] From summed $\gamma\gamma$ cascade (primary+secondary) (n, γ) E=thermal in 2002Ba66. Should be taken with caution because of random coincidence possibilities.
- [#] J^{π}'s for levels populated by primary gammas are limited to 1/2, 3/2, 5/2⁺ considering that transitions are dipole or E2 from 1/2⁺ capture state.
- [@] From intense population, suggesting E1 (or probable E1) multipolarity, by primary transition in average resonance capture $(1/2^+$ states).
- & From γ -ray decay pattern, coupled with lack of population in average resonance capture and expectation of no positive-parity states below ≈ 1 MeV.

^a Band(A): 3/2(512) band.

^b Band(B): 1/2(510) band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α ^{&}	Comments
41.4844	$(1/2^{-})$	41.49 6	100	0.0	$3/2^{-}$			
72.903	$(5/2)^{-}$	(72.901)		0.0	3/2-			
102.7326	$(3/2)^{-}$	102.733 <i>1</i>	100	0.0	$3/2^{-}$			
233.8558	$1/2^{-}, 3/2^{-}$	131.124 2	100.0 15	102.7326	$(3/2)^{-}$			
		192.365 14	1.1 2	41.4844	$(1/2^{-})$			
		233.857 15	1.7 2	0.0	3/2-			
295.6812	$(5/2^{-})$	192.952 <i>3</i>	11 <i>1</i>	102.7326	$(3/2)^{-}$			
		222.778 5	51.0 14	72.903	$(5/2)^{-}$			
		254.193 4	100.0 19	41.4844	$(1/2^{-})$			
		295.676 <i>3</i>	64 <i>1</i>	0.0	3/2-			
307.0838	1/2-,3/2-	204.349 2	84.0 16	102.7326	$(3/2)^{-}$			
		234.170 12	1.8 <i>1</i>	72.903	$(5/2)^{-}$			
		265.601 2	100.0 7	41.4844	$(1/2^{-})$			
		307.083 <i>3</i>	18.9 4	0.0	3/2-			
315.6	$(9/2^{-})$	242.7 [‡] 3	100	72.903	$(5/2)^{-}$	[E2]	0.176	B(E2)(W.u.)=0.071 17
399.018	$(5/2)^{-}$	91.920 7	100 22	307.0838	$1/2^{-}, 3/2^{-}$			
		165.23 [@] 3	<45 [@]	233.8558	$1/2^{-}.3/2^{-}$			
		326.117.5	89 4	72.903	$(5/2)^{-}$			
		357.518 19	27 4	41.4844	$(1/2^{-})$			
		$399.022^{@}.5$	<447 [@]	0.0	3/2-			
434.9606	$1/2^{-}.3/2^{-}$	127.879 7	20.2	307.0838	$1/2^{-}.3/2^{-}$			
	1)-1	201.105 2	100 2	233.8558	$1/2^{-}.3/2^{-}$			
		393.471 6	99.0 19	41.4844	$(1/2^{-})$			
		434.954 8	43.4 14	0.0	3/2-			
455.773	$(5/2)^{-}$	148.689 7	40.3 25	307.0838	$1/2^{-},3/2^{-}$			
		160.102 20	14.3 25	295.6812	$(5/2^{-})$			
		221.906 16	6.7 8	233.8558	$1/2^{-}, 3/2^{-}$			
		353.042 11	16.8 17	102.7326	$(3/2)^{-}$			
		382.862 8	78.2 25	72.903	$(5/2)^{-}$			
		414.276 20	38.7 17	41.4844	$(1/2^{-})$			
		455.754 12	100.0 25	0.0	3/2-			
544.552	$(5/2^{-},7/2^{-})$	145.533 6	23 5	399.018	$(5/2)^{-}$			
		237.473 5	83.7 <i>23</i>	307.0838	$1/2^{-}, 3/2^{-}$			
		248.859 6	26.7 12	295.6812	$(5/2^{-})$			
		441.835 17	28 5	102.7326	$(3/2)^{-}$			
		471.662 10	26 <i>3</i>	72.903	$(5/2)^{-}$			
		544.53 <i>3</i>	100 <i>3</i>	0.0	$3/2^{-}$			

 γ ⁽¹⁹³Os)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	J_f^π
550.9		448.17 [§]	100	102.7326	$(3/2)^{-}$
558.3		242.7 [‡] 3	100	315.6	$(9/2^{-})$
573.2		266.12 [§]	100	307.0838	1/2-,3/2-
587.6		353.74 [§]	100	233.8558	$1/2^{-}, 3/2^{-}$
675.2		572.47 [§]	76 24	102.7326	$(3/2)^{-}$
		633.72 [§]	100 24	41.4844	$(1/2^{-})$
709.200	$(5/2^-, 7/2^-)$	413.479 20	10.6 16	295.6812	(5/2-)
		606.459 24	22 2	102.7326	$(3/2)^{-}$
		636.290 22 709 231 16	33.3 24 100 4	72.903	(5/2) $3/2^{-}$
788 5		788 5 [§]	100	0.0	3/2-
867.7		$309.4^{\ddagger}.3$	100	558.3	572
888.624		785.96 4	100 5	102.7326	$(3/2)^{-}$
		815.66 6	23 <i>3</i>	72.903	(5/2)-
000 4/2		888.55 5	42 5	0.0	3/2-
889.462		582.400 <i>24</i> 655.614 <i>15</i>	21.7 13	307.0838	1/2, $3/21/2^{-} 3/2^{-}$
		786.764 11	85 3	102.7326	$(3/2)^{-}$
		816.63 5	15.3 13	72.903	(5/2)-
		847.92 [§]		41.4844	$(1/2^{-})$
		889.484 13	100 4	0.0	3/2-
904.8		346.5 [‡] 3	100	558.3	
966.9		567.88 <mark>8</mark>	79 21	399.018	$(5/2)^{-}$
		671.22 ⁸	100 29	295.6812	$(5/2^{-})$
970.5		412.2 ⁴ 3	100	558.3	
1053.856	1/2-,3/2-	165.23 ^{^w} 3	2.8 11	888.624	1/2- 2/2-
		618.895 <i>14</i> 746 753 9	8.94 874	434.9606	1/2, $3/21/2^{-} 3/2^{-}$
		951.172 15	100 6	102.7326	$(3/2)^{-}$
		980.8 [§]		72.903	(5/2)-
		1012.22 [§]		41.4844	$(1/2^{-})$
		1053.7 [§]		0.0	3/2-
1085.385	$(1/2^{-}, 3/2^{-})$	788.82 [§]		295.6812	$(5/2^{-})$
		982.26 4	100	102.7326	$(3/2)^{-}$
1170.860	$(1/2^+, 3/2^+)$	1043.02 [§] 281.397 4	100 <i>3</i>	41.4844 889.462	(1/2 ⁻)
		461.5 [§]		709.200	$(5/2^-, 7/2^-)$
		714.93 [§]		455.773	(5/2)-
		863.62 [§]		307.0838	$1/2^{-}, 3/2^{-}$
		875.02 [§]		295.6812	(5/2 ⁻)
		936.84 [§]		233.8558	1/2-,3/2-
		1067.97 [§]		102.7326	$(3/2)^{-}$
		1097.8 [§]		72.903	(5/2)-
		1129.49 6	42 5	41.4844	$(1/2^{-})$
1170 655	1/2- 2/2-	1170.7 ⁸	100 70	0.0	$3/2^{-}$
11/8.655	1/2 ,3/2	122.03 4 743 52 4	100 10	433.// <i>3</i> 434 9606	(3/2) $1/2^{-} 3/2^{-}$
		779.28	100 25	300 018	$(5/2)^{-}$
		117.20		577.010	(J/2)

γ ⁽¹⁹³Os) (continued)</sup>

				γ ⁽¹⁹³ Os)	(continued)
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^\dagger$	${\rm I}_{\gamma}^{\dagger}$	\mathbf{E}_{f}	${ m J}_f^\pi$
1178.655	$1/2^{-}.3/2^{-}$	871.22 [§]		307.0838	1/23/2-
	1 7-1	1075.57 [§]		102.7326	(3/2)-
		1105.4 [§]		72.903	(5/2)-
		1136.82 [§]		41.4844	$(1/2^{-})$
		1178.3 [§]		0.0	3/2-
1185.4		1082.67 [§]	100	102.7326	$(3/2)^{-}$
1195.9		328.2 [‡] 3	100	867.7	
1205.2		1102.47 [§]	100 6	102.7326	$(3/2)^{-}$
		1163.72 [§]	78 <i>9</i>	41.4844	$(1/2^{-})$
1216.927	$1/2^{(-)}, 3/2^{(-)}$	327.464 4	37.5 12	889.462	
		761.73 [§]		455.773	$(5/2)^{-}$
		818.48 [§]		399.018	(5/2)-
		910.42 [§]		307.0838	1/2-,3/2-
		921.82 [§]		295.6812	(5/2 ⁻)
		983.14 6	100 10	233.8558	1/2-,3/2-
		1114.778		102.7326	$(3/2)^{-}$
		1144.68		72.903	$(5/2)^{-}$
		1176.028		41.4844	$(1/2^{-})$
		1217.58		0.0	3/2-
1225.7		769.938	100 10	455.773	$(5/2)^{-}$
		1152.88	4.5 13	72.903	(5/2)-
		1184.228	5.8 13	41.4844	$(1/2^{-})$
1244.6		788.838	100 10	455.773	(5/2)-
		1203.128	24 10	41.4844	$(1/2^{-})$
1267.3	1/2-3/2-	1164.578	100	102.7326	$(3/2)^{-}$
1201.409	1/2 ,3/2	573 7	54 10	700 200	(5/2 - 7/2 -)
		825.702 20	100 6	455.773	$(5/2)^{-}$
		883.88 [§]		399.018	$(5/2)^{-}$
		987.22 [§]		295.6812	$(5/2^{-})$
		1180.17 [§]		102.7326	$(3/2)^{-}$
		1210.0 [§]		72.903	$(5/2)^{-}$
		1241.42 [§]		41.4844	$(1/2^{-})$
		1282.9 [§]		0.0	3/2-
1288.468	1/2-,3/2-	109.763 14	28 8	1178.655	1/2-,3/2-
		203.067 8	26 2	1085.385	$(1/2^-, 3/2^-)$
		399.022 ^w 5	<402 @	889.462	
		579.4 ⁸	100.8	709.200	$(5/2^{-},7/2^{-})$
		832.40 4	100 8	455.775	(5/2)
		002.200		299.018	(3/2) $(5/2^{-})$
		772.72°		102 7226	$(3/2)^{-}$
		1215 7		72 002	(3/2) $(5/2)^{-}$
		1213.70		12.905	(3/2) $(1/2^{-})$
		1241.120		41.4844	(1/2)
1222 5		1200.00	6507	0.0	$\frac{3}{2}$
1333.5		8/1.130	0.5 2/	455.775	(3/2)

				<u>/(</u>	(continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _f	\mathbf{J}_f^{π}
1333.5		934.48 [§]	5.8 20	399.018	$(5/2)^{-}$
		1037.82 [§]	4.7 16	295.6812	$(5/2^{-})$
		$1099.64^{\$}$	25.3	233.8558	$1/2^{-}.3/2^{-}$
		1230.77 [§]	100 4	102.7326	$(3/2)^{-}$
		1260.6 [§]	3.8 9	72.903	$(5/2)^{-}$
		1292.02 [§]	18.5 <i>13</i>	41.4844	$(1/2^{-})$
		1333.5 [§]	13.4 11	0.0	3/2-
1359.6		903.83 [§]	11.2 17	455.773	$(5/2)^{-}$
		960.58 [§]	16.9 <i>18</i>	399.018	$(5/2)^{-}$
		1052.52 [§]	7.7 7	307.0838	$1/2^{-}, 3/2^{-}$
		1063.92 [§]	5.5 6	295.6812	$(5/2^{-})$
		1125.74 [§]	100 5	233.8558	$1/2^{-}, 3/2^{-}$
		1256.87 [§]	12.7 12	102.7326	$(3/2)^{-}$
		1286.7 [§]	4.1 5	72.903	(5/2)-
		1318.12 [§]	6.9 6	41.4844	$(1/2^{-})$
		1359.6 [§]	5.3 6	0.0	3/2-
1383.6		1076.52 [§]	100	307.0838	1/2-,3/2-
1386.0	$1/2^{(-)}, 3/2^{(-)}$	1078.92 [§]	12.7 9	307.0838	1/2-,3/2-
		1090.32 [§]	3.6 7	295.6812	$(5/2^{-})$
		1283.27 [§]	2.5 5	102.7326	$(3/2)^{-}$
		1313.1 [§]	3.9 7	72.903	$(5/2)^{-}$
		1344.52 [§]	18.6 12	41.4844	$(1/2^{-})$
		1386.0 [§]	100.0 24	0.0	3/2-
1398.2		1325.3 [§]	46 7	72.903	(5/2)-
		1398.2 [§]	100 12	0.0	3/2-
1400.0		1092.92 [§]	22 3	307.0838	$1/2^{-}, 3/2^{-}$
		1297.27 [§]	100 4	102.7326	(3/2)-
		1358.52 [§]	8 <i>3</i>	41.4844	$(1/2^{-})$
		1400.0 [§]	17 3	0.0	3/2-
1418.0		1122.32 [§]	33 8	295.6812	(5/2 ⁻)
		1345.1 [§]	68 8	72.903	(5/2)-
		1376.52 [§]	24 8	41.4844	$(1/2^{-})$
		1418.0 [§]	100 9	0.0	3/2-
1434.0		1434.0 [§]	100	0.0	3/2-
1446.5		1373.6 [§]	100	72.903	(5/2)-
1459.513	5/2-,7/2-	242.586 7	100 15	1216.927	$1/2^{(-)}, 3/2^{(-)}$
		405.67 4	4.6 12	1053.856	1/2-,3/2-
1497.4		1497.48	100	0.0	3/2-
1504.1		1048.33 ⁸	54 13	455.773	$(5/2)^{-}$
		1270.248	100 9	233.8558	1/2-,3/2-
		1401.37 ⁸	36 9	102.7326	$(3/2)^{-}$
		1504.18	34 7	0.0	3/2-
1515.6	1/2-,3/2-	1059.838	30 5	455.773	$(5/2)^{-}$
		1116.588	42 6	399.018	$(5/2)^{-}$
		1208.52 [§]	100 6	307.0838	$1/2^{-}, 3/2^{-}$

$\gamma(^{193}Os)$ (continued)

E.(laval)	īπ	р†	т †	Е.	īπ
$\underline{\mathbf{E}_{l}(\text{level})}$	J _i	Εγ	lγ	Ef	 <i>f</i>
1515.6	1/2-,3/2-	1219.92	27 4	295.6812	$(5/2^{-})$
		1412.878	43 4	102.7326	(3/2)-
		1474.128	26 3	41.4844	$(1/2^{-})$
		1515.68	11 3	0.0	3/2-
1523.5		1216.428	100 5	307.0838	1/2-,3/2-
		1420.778	100 5	102.7326	$(3/2)^{-}$
		1482.028	32 3	41.4844	$(1/2^{-})$
		1523.58	33 3	0.0	3/2-
1530.3		1131.288	11 3	399.018	(5/2)-
		1223.228	18.9 <i>18</i>	307.0838	1/2-,3/2-
		1234.62	11.3 24	295.6812	$(5/2^{-})$
		1427.578	100 4	102.7326	(3/2)-
		1488.828	76 3	41.4844	$(1/2^{-})$
1555.8		1248.728	58 10	307.0838	1/2-,3/2-
		1514.328	100 10	41.4844	$(1/2^{-})$
1590.9	1/2-,3/2-	1283.828	63 5	307.0838	1/2-,3/2-
		1295.228	21 3	295.6812	$(5/2^{-})$
		1488.178	39 4	102.7326	(3/2)-
		1518.08	22 2	72.903	$(5/2)^{-}$
		1549.428	18 2	41.4844	$(1/2^{-})$
		1590.98	100 5	0.0	3/2-
1603.2		1147.438	23.1 21	455.773	$(5/2)^{-}$
		1204.188	31.6 24	399.018	$(5/2)^{-}$
		1296.128	40.5 24	307.0838	1/2-,3/2-
		1307.528	26.5 15	295.6812	$(5/2^{-})$
		1369.348	4.3 9	233.8558	1/2-,3/2-
		1500.478	90.9 25	102.7326	$(3/2)^{-}$
		1530.38	3.4 8	72.903	$(5/2)^{-}$
		1561.728	100.0 25	41.4844	$(1/2^{-})$
		1603.28	6.9 9	0.0	3/2-
1660.3		1618.82	100	41.4844	$(1/2^{-})$
1680.3		1373.228	100	307.0838	1/2-,3/2-
1683.3		974.18	9.44 14	709.200	$(5/2^-, 7/2^-)$
		1376.228	16.18 20	307.0838	1/2-,3/2-
		1387.628	31.0 20	295.6812	$(5/2^{-})$
		1449.448	57 3	233.8558	1/2-,3/2-
		1580.578	100 3	102.7326	$(3/2)^{-}$
		1610.48	4.7 11	72.903	(5/2)-
		1641.828	79 3	41.4844	$(1/2^{-})$
		1683.38	20 2	0.0	3/2-
1722.5		1426.82	95 32	295.6812	$(5/2^{-})$
		1619.77 ⁸	89 32	102.7326	$(3/2)^{-}$
		1722.58	100 26	0.0	3/2-
1731.6		842.12 ⁸	100	889.462	
1737.6		1634.87 ^{\$}	100	102.7326	$(3/2)^{-}$

 $\gamma(^{193}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	${f J}_f^\pi$
1744.9	_	1289.13 [§]	100 31	455.773	(5/2)-	1847.1	_	1551.42 [§]	24 6	295.6812	(5/2 ⁻)
		1672.0 [§]	100 31	72.903	(5/2)-			1744.37 [§]	100 10	102.7326	$(3/2)^{-}$
1754.2		1520.34 [§]	100 25	233.8558	1/2-,3/2-			1774.2 [§]	30 6	72.903	$(5/2)^{-}$
		1754.2 [§]	100 31	0.0	3/2-			1805.62 [§]	81 8	41.4844	$(1/2^{-})$
1760.4		1526.54 [§]	30 9	233.8558	1/2-,3/2-			1847.1 [§]	33 8	0.0	3/2-
		1657.67 [§]	100 17	102.7326	$(3/2)^{-}$	1853.6		1619.74 [§]	100	233.8558	1/2-,3/2-
1765.1		1055.9 [§]	21 5	709.200	$(5/2^-, 7/2^-)$	1862.7		1759.97 [§]	100	102.7326	$(3/2)^{-}$
		1309.33 [§]	41 4	455.773	$(5/2)^{-}$	1874.6		1874.6 [§]	100	0.0	3/2-
		1366.08 [§]	48 4	399.018	(5/2)-	1888.9		1179.7 [§]	100 24	709.200	$(5/2^-, 7/2^-)$
		1458.02 [§]	100 7	307.0838	1/2-,3/2-			1489.88 [§]	65 14	399.018	(5/2)-
		1531.24 [§]	87 5	233.8558	1/2-,3/2-			1786.17 [§]	86 22	102.7326	$(3/2)^{-}$
		1662.37 [§]	92 7	102.7326	$(3/2)^{-}$			1816.0 [§]	78 14	72.903	(5/2)-
		1692.2 [§]	23 4	72.903	(5/2)-	1892.6		1436.83 [§]	53 15	455.773	(5/2)-
		1723.62 [§]	63 5	41.4844	$(1/2^{-})$			1819.7 [§]	100 13	72.903	$(5/2)^{-}$
1783.8		1328.03 [§]	23 4	455.773	$(5/2)^{-}$			1851.12 [§]	100 13	41.4844	$(1/2^{-})$
		1384.78 [§]	27 4	399.018	$(5/2)^{-}$			1892.6	63 25	0.0	3/2-
		1476.72 [§]	27 5	307.0838	1/2-,3/2-	1908.6		1452.83	78 19	455.773	$(5/2)^{-}$
		1488.128	19 4	295.6812	$(5/2^{-})$			1509.58 <mark>8</mark>	100 19	399.018	$(5/2)^{-}$
		1549.94 ⁸	100 5	233.8558	1/2-,3/2-			1867.12 ⁸	47 16	41.4844	$(1/2^{-})$
		1710.98	26 4	72.903	$(5/2)^{-}$	1915.3		1459.53 ⁸	5.3 14	455.773	$(5/2)^{-}$
		1742.328	87 5	41.4844	$(1/2^{-})$			1516.28	4.6 14	399.018	$(5/2)^{-}$
		1783.88	50 5	0.0	3/2-			1608.228	100 4	307.0838	1/2-,3/2-
1795.8		1561.948	90 19	233.8558	1/2-,3/2-			1681.448	70.7 24	233.8558	1/2-,3/2-
		1693.078	100 29	102.7326	(3/2)-			1812.578	7.2 14	102.7326	$(3/2)^{-}$
1798.9		1565.048	100	233.8558	1/2 ⁻ ,3/2 ⁻			1873.828	99 <i>3</i>	41.4844	$(1/2^{-})$
1802.0		1760.528	100	41.4844	$(1/2^{-})$	1001 0		1915.3 ⁸	7.0 24	0.0	3/2-
1805.1		1805.18	100	0.0	3/2-	1921.2		1818.47	100 20	102.7326	$(3/2)^{-}$
1826.7		1753.88	78 28	72.903	(5/2)	1022 1		1848.38	43 17	72.903	(5/2)
1021 1		1826.78	100 28	0.0	3/2	1932.1		1859.28	100.6	/2.903	(5/2)
1831.1		13/5.33	59 14	455.775	(5/2)	1025 1		1890.62°	31.0	41.4844	(1/2)
		1432.08 ³	54 11 49 16	207.0229	(5/2)	1955.1		1922.27	28.0	399.018 102.7226	(3/2)
		1524.02 ³	48 10	307.0838	1/2, $3/2$			1852.57° 1025 18	100 /	102.7320	(3/2)
		1507.24	100 11	293.0012	(3/2)	1028.6		1955.10	20 12 15 0 16	0.0	$\frac{5}{2}$
		1758 28	86 14	233.0330	$\frac{1}{2}, \frac{3}{2}$	1936.0		1038 6	100.7	41.4044	(1/2)
		1780.62	00 14 100 14	12.905	(3/2) $(1/2^{-})$	1040.0		1641.02	100 7	207 0929	3/2 1/2- 2/2-
		1/09.02	100 14 78 14	41.4644	(1/2)	1949.0		1/100 03	100	307.0838 455 773	$\frac{1}{2}, \frac{3}{2}$
1838 3		1120 1	12 8 23	709.200	$(5/2^{-} 7/2^{-})$	1954.0		1499.03° 1647.72§	4.0 14	307 0838	(3/2) $1/2^{-} 3/2^{-}$
1030.5		1531.22	12.8 25	307.0838	(3/2, 7/2) $1/2^{-} 3/2^{-}$			1720.94	4.517	233 8558	1/2, $3/21/2^{-} 3/2^{-}$
		1604 44	18 3 13	233 8558	1/2, $3/21/2^{-} 3/2^{-}$			1852.07	100.3	102 7326	$(3/2)^{-}$
		1735 57	63.15	102 7326	$(3/2)^{-}$	1977 4		1087.92	50.9	889.462	(3/2)
		$1765.4^{\$}$	5313	72 903	$(5/2)^{-}$	1711.7		1578 38	20.5	309.402	$(5/2)^{-}$
1847 1		1137 Q§	59 11	709 200	$(5/2^{-} 7/2^{-})$			1670 32 [§]	100 7	307 0838	$1/2^{-} 3/2^{-}$
101/11		1448 08	91.6	399.018	$(5/2)^{-}$			1743 54	28.4	233 8558	$1/2^{-} 3/2^{-}$
		1540.02	35 8	307 0838	1/2-3/2-			1935 92	35 5	41 4844	$(1/2^{-})$
		10.02	55 0	201.0020	-1- ,512	1		1/00.74	55 5	11.1014	(-/-)

γ (¹⁹³Os) (continued)

γ ⁽¹⁹³Os) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
1983.4		1687.72 [§]	13 4	295.6812	(5/2 ⁻)	2067.6		1760.52 [§]	52 6	307.0838	1/2-,3/2-
		1749.54 [§]	9 <i>3</i>	233.8558	1/2-,3/2-			1833.74 [§]	100 7	233.8558	1/2-,3/2-
		1880.67 [§]	44 <i>4</i>	102.7326	$(3/2)^{-}$			2067.6 [§]	37 6	0.0	3/2-
		1910.5 [§]	42 3	72.903	$(5/2)^{-}$	2078.3		1188.82 [§]	11 3	889.462	
		1983.4 [§]	100 10	0.0	3/2-			1369.1 [§]	92	709.200	$(5/2^-, 7/2^-)$
1989.8		1755.94 [§]	100	233.8558	$1/2^{-}, 3/2^{-}$			1622.53 [§]	15 2	455.773	$(5/2)^{-}$
2002.1		1603.08 [§]	12 3	399.018	$(5/2)^{-}$			1679.28 [§]	9.2 17	399.018	$(5/2)^{-}$
		1695.02 [§]	19 <i>3</i>	307.0838	$1/2^{-}, 3/2^{-}$			1771.22 [§]	39 2	307.0838	$1/2^{-}, 3/2^{-}$
		1706.42 [§]	19 <i>3</i>	295.6812	$(5/2^{-})$			1782.62 [§]	72	295.6812	$(5/2^{-})$
		1768.24 [§]	23 3	233.8558	1/2-,3/2-			1844.44 [§]	18 2	233.8558	$1/2^{-}, 3/2^{-}$
		1929.2 [§]	41 3	72.903	(5/2)-			2005.4 [§]	11 2	72.903	$(5/2)^{-}$
		1960.62 [§]	100 5	41.4844	$(1/2^{-})$			2036.82 [§]	100 4	41.4844	$(1/2^{-})$
2013.6		1124.12 [§]	76 8	889.462				2078.3 [§]	13 2	0.0	3/2-
		1557.83 [§]	14 5	455.773	$(5/2)^{-}$	2081.1		1625.33 [§]	46 11	455.773	$(5/2)^{-}$
		1706.52 [§]	41 5	307.0838	1/2-,3/2-			1682.08 [§]	96 11	399.018	$(5/2)^{-}$
		1779.74 [§]	12 3	233.8558	1/2-,3/2-			1774.02 [§]	65 9	307.0838	$1/2^{-}, 3/2^{-}$
		1910.87 [§]	26 5	102.7326	$(3/2)^{-}$			1785.42 [§]	50 11	295.6812	$(5/2^{-})$
		1972.12 [§]	100 7	41.4844	$(1/2^{-})$			1978.37 <mark>§</mark>	78 15	102.7326	$(3/2)^{-}$
2020.8		1713.72 [§]	95 27	307.0838	$1/2^{-}, 3/2^{-}$			2008.2 [§]	100 9	72.903	$(5/2)^{-}$
		1786.94 [§]	100 18	233.8558	$1/2^{-}, 3/2^{-}$	2092.9		1203.42 [§]	25 7	889.462	
2024.3		1982.82 [§]	100	41.4844	$(1/2^{-})$			1693.88 [§]	100 6	399.018	$(5/2)^{-}$
2037.4		1581.63 [§]	100 20	455.773	$(5/2)^{-}$			1797.22 [§]	34 5	295.6812	(5/2 ⁻)
		1730.32 [§]	60 17	307.0838	1/2-,3/2-			1859.04 [§]	29 5	233.8558	1/2-,3/2-
		1741.72 [§]	73 20	295.6812	(5/2-)			1990.17 [§]	34 7	102.7326	$(3/2)^{-}$
		1803.54 [§]	100 17	233.8558	1/2-,3/2-			2020.0 [§]	20 5	72.903	$(5/2)^{-}$
2039.9		1732.82 [§]	49 12	307.0838	1/2-,3/2-			2092.9 [§]	18 5	0.0	3/2-
		2039.9 [§]	100 12	0.0	3/2-	2098.0		1208.52 [§]	96 17	889.462	
2048.1		1741.02 [§]	28 4	307.0838	1/2-,3/2-			1388.8 [§]	100 15	709.200	(5/2 ⁻ ,7/2 ⁻)
		1814.24 [§]	35 4	233.8558	1/2-,3/2-			1790.92 [§]	42 10	307.0838	1/2-,3/2-
		1945.37 [§]	35 6	102.7326	$(3/2)^{-}$			1802.32 [§]	49 <i>13</i>	295.6812	(5/2 ⁻)
		2048.1 [§]	100 6	0.0	3/2-			1864.14 [§]	96 11	233.8558	1/2-,3/2-
2050.8		1651.78 [§]	100 11	399.018	$(5/2)^{-}$			1995.27 [§]	45 17	102.7326	$(3/2)^{-}$
		1755.12 [§]	100 13	295.6812	(5/2-)			2056.52 [§]	45 13	41.4844	$(1/2^{-})$
		1816.94 [§]	50 11	233.8558	1/2-,3/2-			2098.0 [§]	51 11	0.0	3/2-
2053.5		1950.77 [§]	100	102.7326	$(3/2)^{-}$	2103.4		1807.72 [§]	100 33	295.6812	(5/2-)
2059.7		2018.22 [§]	100	41.4844	$(1/2^{-})$			2061.92 [§]	100 33	41.4844	$(1/2^{-})$
2064.1		1354.9 [§]	20 7	709.200	$(5/2^-, 7/2^-)$	2108.1		1874.24 [§]	100	233.8558	1/2-,3/2-
		1608.33 [§]	51 6	455.773	$(5/2)^{-}$	2111.7		1222.22 [§]	100 23	889.462	
		1665.08 [§]	61 6	399.018	$(5/2)^{-}$			2111.7 [§]	71 15	0.0	3/2-
		1757.02 [§]	55 5	307.0838	1/2-,3/2-	2115.9		2074.42 [§]	100	41.4844	$(1/2^{-})$
		1961.37 [§]	100 10	102.7326	$(3/2)^{-}$	2124.1		1890.24 [§]	48 9	233.8558	1/2-,3/2-
		1991.2 [§]	78 6	72.903	$(5/2)^{-}$			2021.37 [§]	100 17	102.7326	$(3/2)^{-}$
		2022.62 [§]	53 7	41.4844	$(1/2^{-})$	2126.4		1819.32 [§]	100 16	307.0838	1/2-,3/2-
		2064.1 [§]	40 5	0.0	3/2-			2084.92 [§]	100 19	41.4844	$(1/2^{-})$
2067.6		1178.12 [§]	63 10	889.462		2133.0		1243.52 [§]	100 5	889.462	

$I_\gamma^{\,\dagger}$ I_{γ}^{\dagger} $E_\gamma{}^\dagger$ \mathbf{J}_i^{π} E_{γ}^{\dagger} J_{f}^{π} \mathbf{J}_i^{π} \mathbf{J}_{f}^{π} E_i(level) \mathbf{E}_{f} E_i(level) \mathbf{E}_{f} 1677.23[§] 1988.14[§] 233.8558 1/2-,3/2-2133.0 32 4 455.773 $(5/2)^{-}$ 2222.0 100 21 1733.98[§] 2222.0[§] 22 3 399.018 58 21 0.0 $(5/2)^{-}$ $3/2^{-}$ 1837.32[§] 22 3 295.6812 (5/2-) 2225.1 1929.42[§] 10 2 295.6812 (5/2-) 1899.14[§] 32 4 233.8558 1/2-,3/2-2183.62[§] 100 5 $41.4844 (1/2^{-})$ 2030.27[§] 2127.87[§] 2230.6 100 14 10.4102.7326 (3/2)-102.7326 (3/2)-2133.0[§] 2230.6[§] 18 3 0.0 $3/2^{-}$ 55 12 0.0 $3/2^{-}$ 2234.6[§] 2134.2 1827.12 100 7 307.0838 1/2-,3/2-2234.6 100 0.0 $3/2^{-}$ 1900.34[§] 233.8558 1/2-,3/2-2198.42[§] 56 7 2239.9 100 41.4844 (1/2-) 2134.2[§] 24 6 0.0 2204.82[§] $3/2^{-}$ 2246.3 100 41.4844 (1/2-) 2143.5 2040.77[§] 100 102.7326 (3/2)-2249.1 1359.62[§] 889.462 15 3 1854.92[§] 1850.08[§] 295.6812 (5/2-) 2150.6 100 22 23 2 399.018 $(5/2)^{-}$ 2109.12[§] 1942.02[§] 78 30 41.4844 (1/2-) 100 66 307.0838 1/2-,3/2-1858.12[§] 2146.37[§] 2153.8 64 8 295.6812 (5/2-) 18.2 102.7326 (3/2)-2051.07[§] 2176.2[§] 100 13 102.7326 (3/2)-40 2 72.903 $(5/2)^{-}$ 1850.02[§] 2209.42[§] 2157.1 93 17 307.0838 1/2-,3/2-2250.9 4.7 10 41.4844 (1/2-) 2157.1[§] 100 17 0.0 $3/2^{-}$ 2250.9[§] 100 5 0.0 $3/2^{-}$ 1707.93[§] 2163.7 50 14 455.773 $(5/2)^{-}$ 2255.9 1948.82[§] 100 35 307.0838 1/2-,3/2-1929.84[§] 233.8558 1/2-,3/2-2153.17[§] 62 10 68 19 102.7326 (3/2)-2090.8[§] 100 12 72.903 $(5/2)^{-}$ 2258.4 1859.38[§] 92 21 399.018 $(5/2)^{-}$ 1769.68[§] 399.018 2258.4[§] 2168.7 26 3 $(5/2)^{-}$ 100 38 0.0 $3/2^{-}$ 1861.62[§] 307.0838 1/2-,3/2-1983.02[§] 14 3 2278.7 71 21 295.6812 (5/2-) 1873.02[§] 12 3 295.6812 (5/2-) 2175.97[§] 75 21 102.7326 (3/2)-2065.97[§] 93 102.7326 (3/2)-2205.8[§] 100 18 72.903 $(5/2)^{-}$ 2127.22[§] 41.4844 (1/2-) 100 6 2285.4 2182.67[§] 100 102.7326 (3/2)-2168.7[§] 2249.02[§] 59 4 0.0 2290.5 100 15 41.4844 (1/2-) $3/2^{-}$ 2290.5[§] 2178.1 1288.62 100 889.462 61 24 0.0 $3/2^{-}$ 2294.3[§] 2181.3 2108.4 34 9 72.903 2294.3 100 0.0 $3/2^{-}$ $(5/2)^{-}$ 2139.82[§] 100 13 41.4844 (1/2⁻) 2297.3 2194.57[§] 52 18 102.7326 (3/2)-2185.4 1295.92[§] 33 8 889.462 2224.4[§] 100 15 72.903 $(5/2)^{-}$ 1878.32[§] 307.0838 1/2-,3/2-2255.82[§] 168 97 15 41.4844 (1/2⁻) 2076.14[§] 2082.67[§] 100 7 102.7326 (3/2)-2310.0 67 31 233.8558 1/2-,3/2-2143.92[§] 2268.52[§] 12 4 87 10 $41.4844 (1/2^{-})$ $41.4844 (1/2^{-})$ 2192.4 1483.2[§] 37 10 709.200 $(5/2^-, 7/2^-)$ 2310.0 100 27 0.0 $3/2^{-}$ 2089.67[§] 1860.13[§] 100 10 102.7326 (3/2)-2315.9 100 13 455.773 $(5/2)^{-}$ 2150.92[§] 819 2008.82[§] 41.4844 (1/2-) 31 13 307.0838 1/2-,3/2-2020.22[§] 2195.0 1305.52 38 5 889.462 34 9 295.6812 (5/2-) 1795.98 72 399.018 $(5/2)^{-}$ 2274.42^{\$} 88.8 41.4844 (1/2⁻) 1887.92[§] 100 9 2315.9[§] 0.0 307.0838 1/2-,3/2-41 14 $3/2^{-}$ 2092.27[§] 2320.5 2024.82[§] 21 4 102.7326 (3/2)-196 295.6812 (5/2-) 2205.1 1806.08[§] 399.018 2086.64 45 13 $(5/2)^{-}$ 73 7 233.8558 1/2-,3/2-2102.37 2217.77[§] 102.7326 (3/2)-100 15 102.7326 (3/2)-716 1819.58[§] 2320.5[§] 100 12 2218.6 197 399.018 0.0 $3/2^{-}$ $(5/2)^{-}$ 1922.92[§] 2030.42[§] 45 7 295.6812 (5/2-) 2326.1 92 295.6812 (5/2-) 233.8558 1/2-,3/2-1984.74[§] 100 8 2223.37[§] 100 4 102.7326 (3/2)-2284.62[§] 2218.6[§] 41 7 0.0 $3/2^{-}$ 16 2 $41.4844 (1/2^{-})$

 γ (¹⁹³Os) (continued)

γ ⁽¹⁹³Os) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
2326.1		2326.1	23 <i>3</i>	0.0	3/2-	2431.3		2328.57 [§]	100 11	102.7326	$(3/2)^{-}$
2332.6		2229.87 [§]	100 35	102.7326	$(3/2)^{-}$			2431.3 [§]	51 6	0.0	3/2-
		2291.12 [§]	94 29	41.4844	$(1/2^{-})$	2432.8		2033.78 [§]	12 3	399.018	$(5/2)^{-}$
2340.1		2298.62 [§]	100	41.4844	$(1/2^{-})$			2125.72 [§]	24 6	307.0838	1/2-,3/2-
2342.9		2240.17 [§]	100 11	102.7326	$(3/2)^{-}$			2330.07 [§]	12 5	102.7326	$(3/2)^{-}$
		2301.42 [§]	53 9	41.4844	$(1/2^{-})$			2391.32 [§]	100 6	41.4844	$(1/2^{-})$
2348.0		2114.14 [§]	26 5	233.8558	1/2-,3/2-			2432.8 [§]	12 3	0.0	3/2-
		2245.27 [§]	50 <i>5</i>	102.7326	$(3/2)^{-}$	2437.7		2396.22 [§]	100	41.4844	$(1/2^{-})$
		2306.52 [§]	100 5	41.4844	$(1/2^{-})$	2442.5		2442.5 [§]	100	0.0	3/2-
		2348.0 [§]	29 5	0.0	3/2-	2447.0		2151.32 [§]	37 12	295.6812	$(5/2^{-})$
2350.4		2043.32 [§]	100	307.0838	1/2-,3/2-			2405.52 [§]	100 12	41.4844	$(1/2^{-})$
2360.9		2127.04 [§]	100	233.8558	1/2-,3/2-	2450.1		2347.37 [§]	100 32	102.7326	$(3/2)^{-}$
2364.2		2261.47 [§]	100 24	102.7326	$(3/2)^{-}$			2377.2 [§]	79 26	72.903	$(5/2)^{-}$
		2364.2 [§]	96 20	0.0	3/2-	2458.5		2151.42 [§]	63 22	307.0838	1/2-,3/2-
2368.0		1478.52 [§]	37 5	889.462				2355.77 [§]	100 22	102.7326	$(3/2)^{-}$
		2060.92 [§]	11 5	307.0838	1/2-,3/2-	2461.7		2154.62 [§]	28 5	307.0838	1/2-,3/2-
		2134.14 [§]	100 6	233.8558	1/2-,3/2-			2227.84 [§]	100 6	233.8558	1/2-,3/2-
		2265.27 [§]	54 5	102.7326	$(3/2)^{-}$			2461.7 [§]	25 5	0.0	3/2-
		2326.52 [§]	30 <i>3</i>	41.4844	$(1/2^{-})$	2467.7		2011.93 [§]	48 19	455.773	$(5/2)^{-}$
2373.1		2373.1 [§]	100	0.0	3/2-			2068.68 [§]	38 10	399.018	$(5/2)^{-}$
2381.0		1491.52 [§]	77 19	889.462				2160.62 [§]	37 12	307.0838	1/2-,3/2-
		2073.92 [§]	47 19	307.0838	1/2-,3/2-			2233.84 [§]	42 10	233.8558	1/2-,3/2-
		2308.1 [§]	44 12	72.903	$(5/2)^{-}$			2364.97 [§]	40 12	102.7326	(3/2)-
		2381.0 [§]	100 12	0.0	3/2-			2426.22 [§]	100 12	41.4844	$(1/2^{-})$
2389.1		1499.62 [§]	42 5	889.462		2470.4		2163.32 [§]	100 24	307.0838	1/2-,3/2-
		1933.33 [§]	18 7	455.773	$(5/2)^{-}$			2470.4 [§]	100 32	0.0	$3/2^{-}$
		1990.08 [§]	14 6	399.018	$(5/2)^{-}$	2484.3		2250.44 [§]	61 9	233.8558	1/2-,3/2-
		2093.42 [§]	15 4	295.6812	$(5/2^{-})$			2381.57 [§]	40 11	102.7326	$(3/2)^{-}$
		2155.24 [§]	13 <i>3</i>	233.8558	1/2-,3/2-			2442.82 [§]	100 11	41.4844	$(1/2^{-})$
		2286.37 [§]	36 4	102.7326	$(3/2)^{-}$	2486.7		2179.62 [§]	100	307.0838	1/2-,3/2-
		2347.62 [§]	17 4	41.4844	$(1/2^{-})$	2489.6		2090.58 [§]	75 11	399.018	$(5/2)^{-}$
		2389.1 [§]	100 7	0.0	3/2-			2182.52 [§]	55 14	307.0838	1/2-,3/2-
2396.3		2396.3 [§]	100	0.0	3/2-			2386.87 [§]	48 18	102.7326	$(3/2)^{-}$
2407.0		2007.98 [§]	39 11	399.018	$(5/2)^{-}$			2489.6 [§]	100 14	0.0	3/2-
		2111.32 [§]	519	295.6812	$(5/2^{-})$	2495.0		2039.23 [§]	90 10	455.773	$(5/2)^{-}$
		2304.27 [§]	100 10	102.7326	$(3/2)^{-}$			2187.92 [§]	34 7	307.0838	1/2-,3/2-
		2365.52 [§]	90 8	41.4844	$(1/2^{-})$			2261.14 [§]	21 7	233.8558	1/2-,3/2-
		2407.0 [§]	30 6	0.0	3/2-			2422.1 [§]	100 7	72.903	$(5/2)^{-}$
2414.0		2372.52 [§]	100	41.4844	$(1/2^{-})$	2499.7		2204.02 [§]	66 8	295.6812	(5/2 ⁻)
2421.0		1531.52 [§]	60 <i>13</i>	889.462				2265.84 [§]	32 6	233.8558	1/2-,3/2-
		2021.98 [§]	24 7	399.018	$(5/2)^{-}$			2396.97 [§]	27 10	102.7326	$(3/2)^{-}$
		2379.52 [§]	100 10	41.4844	$(1/2^{-})$			2426.8 [§]	35 6	72.903	(5/2)-
2426.8		2192.94 [§]	31 9	233.8558	1/2-,3/2-			2458.22 [§]	100 19	41.4844	$(1/2^{-})$
		2324.07 [§]	65 11	102.7326	$(3/2)^{-}$			2499.7 [§]	35 8	0.0	3/2-
		2426.8 [§]	100 11	0.0	3/2-	2503.5		2503.5 [§]	100	0.0	3/2-

$\gamma(^{193}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
2506.3		2433.4 [§]	100	72.903	$(5/2)^{-}$	2560.4		2253.32 [§]	100 15	307.0838	1/2-,3/2-
2508.3		2052.53 [§]	53 7	455.773	$(5/2)^{-}$			2326.54 [§]	88 <i>13</i>	233.8558	1/2-,3/2-
		2109.28 [§]	24 6	399.018	(5/2)-			2457.67 [§]	75 20	102.7326	$(3/2)^{-}$
		2201.22 [§]	27 6	307.0838	1/2-,3/2-			2487.5 [§]	75 <i>13</i>	72.903	$(5/2)^{-}$
		2274.44 [§]	88 7	233.8558	1/2-,3/2-	2567.1		2111.33 [§]	679	455.773	(5/2)-
		2405.57 [§]	33 10	102.7326	(3/2)-			2168.08 [§]	49 9	399.018	$(5/2)^{-}$
		2466.82 [§]	41 8	41.4844	$(1/2^{-})$			2260.02 [§]	60 9	307.0838	1/2-,3/2-
		2508.3 [§]	100 10	0.0	3/2-			2494.2 [§]	81 9	72.903	$(5/2)^{-}$
2511.8		2056.03 [§]	33 7	455.773	$(5/2)^{-}$			2525.62 [§]	579	41.4844	$(1/2^{-})$
		2112.78 [§]	100 7	399.018	$(5/2)^{-}$			2567.1 [§]	100 13	0.0	3/2-
		2204.72 [§]	27 7	307.0838	1/2-,3/2-	2578.0		2344.14 [§]	100	233.8558	1/2-,3/2-
		2409.07 [§]	81 <i>12</i>	102.7326	(3/2)-	2580.1		2124.33 [§]	23 4	455.773	$(5/2)^{-}$
		2438.9 [§]	47 6	72.903	(5/2)-			2284.42 [§]	15 4	295.6812	$(5/2^{-})$
		2511.8 [§]	36 7	0.0	3/2-			2346.24 [§]	33 6	233.8558	1/2-,3/2-
2514.1		2207.02 [§]	69 15	307.0838	1/2-,3/2-			2477.37 [§]	100 6	102.7326	$(3/2)^{-}$
		2218.42 [§]	51 15	295.6812	$(5/2^{-})$			2507.2 [§]	28 <i>3</i>	72.903	$(5/2)^{-}$
		2280.24 [§]	100 13	233.8558	1/2-,3/2-			2538.62 [§]	20 4	41.4844	$(1/2^{-})$
		2472.62 [§]	59 18	41.4844	$(1/2^{-})$	2585.0		2543.52 [§]	100 2	41.4844	$(1/2^{-})$
		2514.1 [§]	67 15	0.0	3/2-			2585.0 [§]	60 2	0.0	3/2-
2519.2		2063.43 [§]	100 17	455.773	(5/2)-	2597.4		2363.54 [§]	28 7	233.8558	1/2-,3/2-
		2416.47 [§]	97 <i>23</i>	102.7326	(3/2)-			2597.4 [§]	100 13	0.0	3/2-
		2446.3 ⁸	51 14	72.903	$(5/2)^{-}$	2602.8		2147.03 ⁸	51 14	455.773	$(5/2)^{-}$
		2477.72 [§]	91 20	41.4844	$(1/2^{-})$			2203.78 ⁹	65 14	399.018	$(5/2)^{-}$
		2519.2 ⁸	91 <i>17</i>	0.0	3/2-			2529.9 [§]	100 12	72.903	$(5/2)^{-}$
2528.4		2072.63 [§]	87 20	455.773	(5/2)-			2561.32 ⁸	67 16	41.4844	$(1/2^{-})$
		2425.67 ⁸	63 27	102.7326	$(3/2)^{-}$			2602.88	49 <i>14</i>	0.0	3/2-
		2455.58	100 17	72.903	$(5/2)^{-}$	2606.9		2504.17 ⁸	100	102.7326	$(3/2)^{-}$
		2528.48	50 20	0.0	3/2-	2611.3		1902.18	13 3	709.200	$(5/2^-, 7/2^-)$
2530.9		2223.828	100	307.0838	1/2-,3/2-			2315.628	21 3	295.6812	$(5/2^{-})$
2533.7		2299.848	55 5	233.8558	1/2-,3/2-			2508.578	21 3	102.7326	$(3/2)^{-}$
		2533.7 ⁸	100 9	0.0	3/2-			2569.82 ⁸	100 6	41.4844	$(1/2^{-})$
2541.8		2086.038	678	455.773	$(5/2)^{-}$	0414 5		2611.38	93	0.0	3/2-
		2234.728	678	307.0838	1/2 ,3/2	2614.7		2380.84*	100	233.8558	1/2 ,3/2
		2307.948	68 /	233.8558	1/2, $3/2$	2629.3		2522.228	34 14	307.0838	1/2, $3/2$
		2439.07	100 13	102.7326	(3/2)			2526.578	100 14	102.7326	(3/2)
		2468.9 ³	29.8	/2.903	(5/2)	2632.3		2529.57	61 <i>12</i>	102.7326	(3/2)
25 49 2		2541.8°	20.8	0.0	3/2			2590.82°	84 14	41.4844	(1/2)
2548.2		2252.52°	31 ð	295.0812	(5/2)	2627.9		2032.3°	100 10	0.0	$\frac{3}{2}$
		2314.343	100 0	233.8558	1/2, $3/2$	2637.8		2535.07°	38 15	102.7326	(3/2)
2551.2		$2445.4/^{3}$	479 100	102.7326	(3/2)			2390.328 2627 08	100 15	41.4844	(1/2)
2001.0 2554 6		2001.00 2047.50	100 22	0.0	$\frac{3}{2}$	2656 6		2051.8°	40 13	0.0	$\frac{3}{2}$
2334.0		2241.32° 2554 6	100 32 84 22	307.0838	1/2, $3/2$	2030.0		2333.87°	100 12	102./320	(3/2) $(1/2^{-})$
2550 1		2004.0°	04 <i>32</i> 27 7	0.0	$\frac{3}{2}$			2013.12° 2656.68	75 11	41.4844	(1/2) $3/2^{-}$
2330.1		2251.02°	277 100.0	11 1914	$(1/2^{-})$	2661.8		2050.00	100	0.0	$\frac{3}{2}$ $\frac{1}{2} \frac{3}{2}$
		2010.02°	100 9	71.4044	(1/2)	2001.0		2004.12°	100	201.0020	1/2 ,3/2

γ ⁽¹⁹³Os) (continued)</sup>

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}
2671.4		2364.32 [§]	48 5	307.0838	$1/2^{-}, 3/2^{-}$	2728.2		2625.47 [§]	51 <i>11</i>	102.7326	$(3/2)^{-}$
		2437.54 [§]	28 5	233.8558	1/2-,3/2-			2686.72 [§]	100 12	41.4844	$(1/2^{-})$
		2568.67 [§]	46 9	102.7326	$(3/2)^{-}$	2732.1		2732.1 [§]	100	0.0	3/2-
		2598.5 [§]	32 5	72.903	$(5/2)^{-}$	2734.3		2500.44 [§]	44 10	233.8558	1/2-,3/2-
		2629.92 [§]	62 6	41.4844	$(1/2^{-})$			2734.3 [§]	100 16	0.0	3/2-
		2671.4 [§]	100 9	0.0	3/2-	2738.4		2504.54 [§]	100 <i>3</i>	233.8558	1/2-,3/2-
2679.6		2280.58 [§]	100 8	399.018	$(5/2)^{-}$			2635.67 [§]	100 4	102.7326	$(3/2)^{-}$
		2445.74 [§]	31 8	233.8558	1/2-,3/2-			2696.92 [§]	86 5	41.4844	$(1/2^{-})$
		2638.12 [§]	49 8	41.4844	$(1/2^{-})$	2741.9		2434.82 [§]	38 11	307.0838	1/2-,3/2-
		2679.6 [§]	42 11	0.0	3/2-			2508.04 [§]	36 11	233.8558	1/2-,3/2-
2687.1		2614.2 [§]	81 <i>19</i>	72.903	$(5/2)^{-}$			2639.17 [§]	54 14	102.7326	$(3/2)^{-}$
		2645.62 [§]	100 19	41.4844	$(1/2^{-})$			2741.9 [§]	100 11	0.0	3/2-
2690.2		2456.34 [§]	100 21	233.8558	1/2-,3/2-	2746.7		2643.97 [§]	100	102.7326	$(3/2)^{-}$
		2648.72 [§]	85 18	41.4844	$(1/2^{-})$	2749.8		2647.07 [§]	68 14	102.7326	$(3/2)^{-}$
2693.9		2591.17 [§]	73 <i>23</i>	102.7326	$(3/2)^{-}$			2676.9 [§]	100 11	72.903	$(5/2)^{-}$
		2621.0 [§]	100 23	72.903	$(5/2)^{-}$			2749.8 [§]	45 11	0.0	3/2-
2697.0		2389.92 [§]	37 12	307.0838	$1/2^{-}, 3/2^{-}$	2752.9		2445.82 [§]	100 22	307.0838	$1/2^{-}, 3/2^{-}$
		2401.32 [§]	100 16	295.6812	$(5/2^{-})$			2519.04 [§]	59 22	233.8558	$1/2^{-}, 3/2^{-}$
		2463.14 [§]	59 14	233.8558	1/2-,3/2-	2758.2		2524.34 [§]	100	233.8558	1/2-,3/2-
		2594.27 [§]	92 16	102.7326	$(3/2)^{-}$	2761.7		2761.7 [§]	100	0.0	3/2-
2699.5		2300.48 [§]	26 5	399.018	$(5/2)^{-}$	2764.9		2457.82 [§]	100	307.0838	1/2-,3/2-
		2465.64 [§]	24 7	233.8558	1/2-,3/2-	2773.9		2466.82 [§]	479	307.0838	$1/2^{-}, 3/2^{-}$
		2596.77 [§]	100 <i>1</i>	102.7326	$(3/2)^{-}$			2540.04 [§]	31 9	233.8558	1/2-,3/2-
		2626.6 [§]	24 6	72.903	$(5/2)^{-}$			2671.17 [§]	100 11	102.7326	(3/2)-
		2658.02 [§]	41 7	41.4844	$(1/2^{-})$			2732.42 [§]	26 9	41.4844	$(1/2^{-})$
		2699.5 [§]	75 8	0.0	3/2-			2773.9 [§]	579	0.0	3/2-
2703.7		2304.68 [§]	21 7	399.018	$(5/2)^{-}$	2779.4		2545.54 [§]	100	233.8558	$1/2^{-}, 3/2^{-}$
		2396.62 [§]	59 8	307.0838	1/2-,3/2-	2782.1		2326.33 [§]	100 19	455.773	$(5/2)^{-}$
		2469.84 [§]	100 12	233.8558	1/2-,3/2-			2475.02 [§]	72 19	307.0838	1/2-,3/2-
		2600.97 [§]	42 11	102.7326	$(3/2)^{-}$			2548.24 [§]	91 <i>3</i>	233.8558	1/2-,3/2-
		2662.22 [§]	61 9	41.4844	$(1/2^{-})$			2679.37 [§]	94 <i>19</i>	102.7326	$(3/2)^{-}$
2708.9		2413.22 [§]	33 11	295.6812	$(5/2^{-})$			2709.2 [§]	100 19	72.903	$(5/2)^{-}$
		2475.04 [§]	100 12	233.8558	1/2-,3/2-			2740.62 [§]	72 19	41.4844	$(1/2^{-})$
2714.8		2407.72 [§]	100 19	307.0838	1/2-,3/2-			2782.1 [§]	78 <i>19</i>	0.0	3/2-
		2480.94 [§]	69 <i>19</i>	233.8558	1/2-,3/2-	2784.1		2477.02 [§]	100 15	307.0838	1/2-,3/2-
2716.9		2409.82 [§]	100	307.0838	1/2-,3/2-			2550.24 [§]	66 22	233.8558	1/2-,3/2-
2720.2		2264.43 [§]	42 12	455.773	$(5/2)^{-}$	2792.0		2484.92 [§]	100 12	307.0838	1/2-,3/2-
		2321.18 ⁹	37 9	399.018	$(5/2)^{-}$			2496.32 [§]	49 <i>14</i>	295.6812	$(5/2^{-})$
		2413.12 [§]	49 11	307.0838	1/2-,3/2-			2750.52 [§]	31 12	41.4844	$(1/2^{-})$
		2486.34 [§]	46 11	233.8558	1/2-,3/2-	2797.9		2490.82 [§]	45 7	307.0838	1/2-,3/2-
		2647.3 [§]	46 11	72.903	$(5/2)^{-}$			2564.04 [§]	25 7	233.8558	1/2-,3/2-
		2678.72 [§]	100 21	41.4844	$(1/2^{-})$			2695.17 [§]	100 9	102.7326	$(3/2)^{-}$
		2720.2 [§]	44 11	0.0	3/2-			2797.9 [§]	43 7	0.0	3/2-
2723.6		2489.74 [§]	100 13	233.8558	$1/2^{-}, 3/2^{-}$	2805.5		2349.73 [§]	39 7	455.773	$(5/2)^{-}$
		2650.7 [§]	48 <i>13</i>	72.903	$(5/2)^{-}$			2702.77 [§]	88 7	102.7326	$(3/2)^{-}$

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	J_f^{π}
2805.5		2764.02 [§]	100 9	41.4844	$(1/2^{-})$	2887.0		2814.1 [§]	100 7	72.903	(5/2)-
		2805.5 [§]	33 7	0.0	3/2-	2904.1		2597.02 [§]	100	307.0838	1/2-,3/2-
2811.6		2504.52 [§]	100 21	307.0838	1/2-,3/2-	2909.0		2509.98 [§]	18 <i>3</i>	399.018	$(5/2)^{-}$
		2738.7 [§]	83 21	72.903	$(5/2)^{-}$			2601.92 [§]	20 5	307.0838	1/2-,3/2-
2822.8		2113.6 [§]	100	709.200	(5/2-,7/2-)			2675.14 [§]	45 <i>4</i>	233.8558	1/2-,3/2-
2830.3		2596.44 [§]	100 7	233.8558	$1/2^{-}, 3/2^{-}$			2806.27 [§]	76 5	102.7326	$(3/2)^{-}$
		2727.57 [§]	37 6	102.7326	$(3/2)^{-}$			2867.52 [§]	100 8	41.4844	$(1/2^{-})$
2834.3		2731.57 [§]	100	102.7326	$(3/2)^{-}$			2909.0 [§]	17 5	0.0	3/2-
2856.3		2549.22 [§]	23 4	307.0838	1/2-,3/2-	2913.3		2606.22 [§]	100 16	307.0838	1/2-,3/2-
		2753.57 <mark>\$</mark>	26 4	102.7326	$(3/2)^{-}$			2871.82 [§]	86 16	41.4844	$(1/2^{-})$
		2856.3 [§]	100 7	0.0	3/2-	2918.0		2610.92 [§]	100 3	307.0838	1/2-,3/2-
2863.8		2154.6 [§]	55 9	709.200	$(5/2^-, 7/2^-)$			2918.0 [§]	100 3	0.0	3/2-
		2408.03 [§]	100 9	455.773	$(5/2)^{-}$	2972.4		2516.63 [§]	39 5	455.773	$(5/2)^{-}$
		2761.07 [§]	67 7	102.7326	$(3/2)^{-}$			2930.92 [§]	100 8	41.4844	$(1/2^{-})$
		2822.32 [§]	50 7	41.4844	$(1/2^{-})$	2979.9		2877.17 [§]	57 <i>13</i>	102.7326	$(3/2)^{-}$
2870.0		2767.27 <mark>\$</mark>	100 5	102.7326	(3/2)-			2938.42 [§]	100 12	41.4844	$(1/2^{-})$
		2828.52 [§]	52 5	41.4844	$(1/2^{-})$	2986.9		2914.0 [§]	100	72.903	(5/2)-
		2870.0 [§]	37 4	0.0	3/2-	3001.7		2898.97 [§]	100 24	102.7326	$(3/2)^{-}$
2875.8		2641.94 [§]	44 13	233.8558	1/2-,3/2-			3001.7 [§]	96 24	0.0	3/2-
		2773.07 [§]	42 13	102.7326	$(3/2)^{-}$	3006.6		2772.74 [§]	21 8	233.8558	1/2-,3/2-
		2875.8 [§]	100 13	0.0	3/2-			2903.87 [§]	100 11	102.7326	$(3/2)^{-}$
2880.0		2646.14 [§]	93 22	233.8558	1/2-,3/2-			2965.12 [§]	34 9	41.4844	$(1/2^{-})$
		2807.1 [§]	100 22	72.903	$(5/2)^{-}$			3006.6 [§]	92 11	0.0	3/2-
2887.0		2487.98 [§]	22 5	399.018	$(5/2)^{-}$	3010.4		2937.5 [§]	100 12	72.903	(5/2)-
		2579.92 [§]	15 5	307.0838	$1/2^{-}, 3/2^{-}$			3010.4 [§]	83 19	0.0	$3/2^{-}$

γ ⁽¹⁹³Os) (continued)

[†] From ¹⁹²Os(n, γ) E=thermal, except otherwise noted. γ -rays from 2002Ba66 ($\gamma\gamma$ cascade) identified by footnote. For some levels there was no common γ -ray to scale the $\gamma\gamma$ intensities with single measurements to deduce branching ratio and so not listed.

[‡] From (⁷Li, ⁶Li γ).

§ From 2002Ba66 ($\gamma\gamma$ cascade) in (n, γ) E=thermal.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

Adopted Levels, Gammas

¹⁹³₇₆Os₁₁₇

9 Be(208 Pb,X γ) 2011St21

Target thickness= 2.526 g/cm^2 , backed by ⁹³Nb foil of thickness= 0.223 g/cm^2 .

Fragments identified in flight by the Fragment Separator (FRS) operated in achromatic mode based on time-of-flight, B ρ and energy loss. Transmitted ions slowed in Al degraders and stopped in a plastic catcher. The stopper was surrounded by the RISING γ -ray spectrometer. Measured E γ , I γ , delayed γ rays, isomer lifetime.

Beam was fully-stripped or mixture of H- or He-like nuclei.

¹⁹³Os Levels

E(level)	T _{1/2}	Comment	is					
x	132 ns 29	E(level): 315.9 keV in Adopted Levels. Experimental isomeric state population ratio $\geq 7\%$ 4. T _{1/2} : from decay curve of 242-keV transition (2011St21).						
		γ ⁽¹⁹³ Os)						
Ex	L	E:(level)	Comments					

x242.0 5100 26 E_{γ} : from Table I of 2011St21. Uncertainty of 0.5 keV assigned in consultation with Zs. Podolyak. This γ deexcites 132-ns isomer.

 $x \gamma$ ray not placed in level scheme.

¹⁹²Os(n, γ) E=thermal 1979Wa04,1978Be22,2002Ba66

1979Wa04: Osmium metal targets enriched to 99.06% in ¹⁹²Os; measured E γ , I γ (curved-crystal spectrometer system). 1978Be22: isotope separated ¹⁹²Os targets (\geq 99% pure); measured E γ , I γ (Ge(Li) pair spectrometer for high-energy γ 's,

FWHM=6-7 keV; Ge(Li) anti-Compton spectrometer for intermediate-energy γ 's, FWHM=3 keV; Si(Li) for low-energy γ 's, FWHM=0.5-0.9 keV).

2002Bo66: ¹⁹²Os enriched target, sum-coincidence γ -ray spectra with 2 HPGe detectors.

¹⁹³Os Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	3/2-	
41.4842 22	$(1/2^{-})$	
102 7325 10	$(5/2)^{-}$	
233.8558 20	$\frac{(3/2)}{1/2^{-}.3/2^{-}}$	
295.6810 18	$(5/2^{-})$	
307.0837 16	1/2-,3/2-	
399.018 3	$(5/2)^{-}$ $1/2^{-} 3/2^{-}$	
455.773 5	$(5/2)^{-}$	
544.552 <i>4</i>	$(5/2^-, 7/2^-)$	
550.9 [@] 4		
573.2 [@] 4		
587.6 [@] 4		
675.2 [@] 3		
709.199 10	$(5/2^-, 7/2^-)$	
788.5 [@] 4		
888.625 21		J^{π} : see ¹⁹³ Os Adopted Levels for comment.
889.462 7		J^{π} : see ¹⁹³ Os Adopted Levels for comment.
966.9 ^{^w 3}		
1053.856 7	1/2-,3/2-	
1085.385 ^{&} 11	$(1/2^{-},3/2^{-})$	
1170.860 [∞] 8	$(1/2^+, 3/2^+)$	
1178.654 [∞] 14	1/2-,3/2-	
1185.4 4		
1205.2 3		
1216.927 8	$1/2^{(-)}, 3/2^{(-)}$	
1225.7 3		
$1244.6 \overset{\circ}{} 3$		
1267.3 4	1/0= 2/0=	
1281.480° 19	1/2, $3/2$	
$1288.408 \approx 8$	1/2 ,3/2	
1355.35 = 17 1250.52 # & 16		
1339.32 - 10 1292.6 ^(a) 1		
1385.04	1/2(-) $3/2(-)$	
1303.90 19 1308.2 [@] 3	1/2***,3/2**	
$1400\ 00^{@}\ 23$		
$1418\ 00^{@}\ 23$		
$1434.0^{@} 4$		
$1446.5^{@} 4$		
1.10.0 /		

¹⁹³₇₆Os₁₁₇-20

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

¹⁹³Os Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]
1459.514 10	$5/2^{-}.7/2^{-}$	$1977.40^{@} 21$
1497.4 [@] 4	-1).1	1983.41 [@] 21
1501.8 [#] 5		$1989.8^{@}$ 4
$1504.10^{@} 23$		$2002.11^{@}$ 19
$1515\ 52^{\#\&}\ 18$	$1/2^{-} 3/2^{-}$	$2013\ 60^{@}\ 19$
$1573.64^{\#\&} 23$	1/2 ,5/2	$2020 8^{@} 3$
1529.01 23 1530 34 ^{#&} 21		2020.0 3 $2024 3^{\textcircled{0}} 4$
$1555.8^{@}$ 3		$2037 41^{@} 23$
$1590.93^{\#\&}$ 19	1/2-3/2-	$2039.9^{@}3$
$1603 21^{\#\&} 16$	1/2 ,5/2	2039.9 3 2048 21 ^{#&} 23
$1660.3^{@} 4$		$2050.8^{@}3$
$1680.3^{@} 4$		$2053.5^{@}4$
$1683.28^{\#\&}$ 17		$2059.5 7^{@} 4$
$17225^{@}3$		2059.1 + 12
1722.5 5 1731 6 [@] 4		2007.12 17 2067.60 [@] 23
$1737.6^{@} 4$		2007.00 23 2077 3 [#] 5
$1744.9^{@}3$		$2077.3 \ 9$ $2078 \ 31^{@} \ 15$
$1754.2^{@}3$		2070.31 19 $2081.11^{@}$ 19
$1760.4^{@}$ 3		2090.3 [#] 5
1765.13 ^{#&} 17		2092.90 [@] 18
1783.81 [@] 17		2098.05 ^{#&} 17
1785.2 [#] 5		2103.4 [@] 3
1795.8 [@] 3		2108.1 [@] 4
1798.9 [@] 4		2111.7 [@] 3
1802.0 [@] 4		2115.9 [@] 4
1805.1 [@] 4		2124.1 [@] 3
$1826.7 \overset{@}{=} 3$		$2126.4^{\textcircled{0}}_{\#}3$
1830.6# 5		2131.6# 5
1831.11 18		2133.00 18
1838.40 ^m 21		2134.2 3
1847.11 7		2143.5 5
1848.6" 5		2150.6 3
1853.6 4		2153.8 3
1862.7 [®] 4		2157.1 3
1874.6 4		2163.7 3
1888.90 23		2168.71 19
$1892.61 \ 23$		2178.1 4
$1908.6 \overset{\odot}{} 3$		2181.3 3
$1915.28^{m} \le 18$		2185.41 = 23
$1921.2 \overset{\circ}{=} 3$		$2190.3^{"}5$
1932.1 = 3 1025.1 @ 3		$2192.4 \stackrel{\circ}{}_{3}$
1933.1 - 3 1028 6@ 2		2195.00 - 23 2205.1 [@] 2
1930.0 - 3 1040.0 - 4		2203.1 - 3 2218 61 @ 22
1749.0 - 4 1054.91 = 22		2210.01 - 23
1934.81 ° <i>23</i>		2220.4" J

	$\frac{^{192}\text{Os}(n,\gamma)}{\text{E=thermal}} \qquad 1979\text{Wa04,1978Be22,2002Ba66 (continued)}$									
	¹⁹³ Os Levels (continued)									
E(level) [†]	Comments									
$2222 0^{@} 3$										
2222.0 3										
$2225.1 \ 3$ $2230.6^{@} 3$										
2230.0 3 $2234.6^{@}.4$										
2234.0 + 2234.0 + 2230.0 @ 1										
$2239.9 + 2243.0^{\#} 5$										
$2245.0^{\circ}5$										
2240.5 4										
2249.11 21 2249.2 [@] 4	E(level): Level established based on 3334.7 primary and 1540.0 γ coincidence by 2002Ba66. The other closeby level established based on $\gamma\gamma$ coin of almost comparable energy of 3334.80 primary with five other secondary transitions. Considering the possibility of random coincidences – not adopted by evaluator.									
2250.9 [@] 3										
2255.9 ^{<i>@</i>} 3										
2258.4 [@] 3										
2278.7 [@] 3										
2285.4 [@] 4										
2290.5 ^{^w} 3										
2294.3 [@] 4										
2297.3 [@] 3										
2310.0 [@] 3										
2315.91 [@] 21										
2320.51 [@] 23										
2326.11 [@] 23										
2332.6 [@] 3										
2340.1 [@] 4										
2342.9 [@] 3										
2348.01 [@] 23										
$2350.4^{\textcircled{0}}{4}$										
$2360.9^{\textcircled{0}}{4}$										
2364.2 [@] 3										
2368.01 [@] 21										
2373.1 [@] 4										
2381.01 [@] 23										
2389.11 [@] 17										
2396.3 [@] 4										
2407.01 [@] 21										
$2414.0^{\textcircled{0}}4$										
2421.0 [@] 3										
2426.8 [@] 3										
2431.3 [@] 3										
$2432.81^{@} 21$										
2+31.1 = 4										
2442.3 = 4										
$24501^{@}3$										

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

¹⁹³Os Levels (continued)

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

¹⁹³Os Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
$270372^{@}21$		
$2708.9^{@}$ 3		
$2714.8^{@}$ 3		
$2716.9^{@}4$		
2710.9 7 $2720.22^{@}$ 18		
2720.22 10 $2723.6^{@} 3$		
$2723.0^{\circ}3$		
2720.2 5 2732 1 [@] 4		
2732.1 + 27343 = 3		
2734.5 3		
$2730.4 \ 3$ $2741.02^{\circ}23$		
2741.92 23 $2746.7^{@} A$		
$2740.8^{@}$ 3		
27+9.8 3		
2752.9 5 2758 2 [@] 4		
2750.2 + 4		
2761.7 + 4		
270+.9 + 2709 + 2709 + 2709		
2779.92 21		
2779.4 4 2782 12 [@] 18		
2782.12 10 2784 1 [@] 3		
$2792.0^{@}3$		
$2792.0 \ 3$		
2197.92 23 2805 52 [@] 23		
2805.52 25		
$2811.0 \ 3$ 2822 8 ^{<i>@</i>} 4		
2822.0 + 7		
$2830.5 \ 3$		
$2856.3^{@}.3$		
$2850.5 \circ 5$ 2863 82 [@] 23		
2809.02 23 2870 0 [@] 3		
$2875.8^{@}3$		
$2880.0^{@}$ 3		
$2887.0^{@}3$		
$2904 1^{@} 4$		
$2909.02^{@}.19$		
$2913.3^{@}.3$		
$2918.0^{@}$ 3		
$29724^{@}3$		
$2979.9^{@}3$		
$2986.9^{@}4$		
$3001.7^{@}.3$		
3006.62 [@] 23		
3010.4 [@] 3		
(5583.93 4)	$1/2^{+}$	E(level): From least squares fit to primary γ 's. S(n)=5583.42 20 (AME 2017Wa10).
		J^{π} : s-wave capture by even-even nucleus.

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

¹⁹³Os Levels (continued)

[†] From least squares fit to $E\gamma$, assuming $\Delta E\gamma$ =0.5 keV for missing γ -ray uncertainties.

- [‡] From Adopted Levels.
- [#] From energy of primary transition in 1978Be22.
- [@] From cascade γ decay (primary and secondary) in 2002Bo66.
- & Also reported in 2002Ba66.

$\gamma(^{193}\text{Os})$

I(K x ray), relative to $I\gamma$ =100 for 265.6 γ (1978Be22). I $\gamma(\gamma^{\pm})$ =134, relative to I γ =100 for 265.6 γ (1978Be22).

К х гау		E(x-ray)	I(x-ray)							
Os K α_2 x ray Os K α_1 x ray + Ir K α_2 x ray Ir K α_1 x ray Os K β_1 x ray Os K β_2 x ray + Pb K α_2 x ray Pb K α_1 x ray			61.5 1 3.0 2 64.9 2 71.3 1 73.2 4 75.0 3	279 310 10 92 64 27						
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments				
41.49 [§] 6 (72.901 2)	49 [§]	41.4842 72.9015	$(1/2^{-})$ $(5/2)^{-}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	3/2 ⁻ 3/2 ⁻	E_{γ} : from energy difference between 72.9 and 0.0 levels.				
x84.9 [§] 3 91.920 7 102.733 1 109.763 14	7.6 [§] 4.5 10 32.1 6 1.4 4	399.018 102.7325 1288.468	(5/2) ⁻ (3/2) ⁻ 1/2 ⁻ ,3/2 ⁻	307.0837 0.0 1178.654	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻ 1/2 ⁻ ,3/2 ⁻					
123.824 13 127.879 7 131.124 2 145.533 6 148.689 7 160.102 20	1.74 4.24 46.07 2.04 4.83	434.9606 233.8558 544.552 455.773 455.773	$1/2^{-},3/2^{-}$ $1/2^{-},3/2^{-}$ $(5/2^{-},7/2^{-})$ $(5/2)^{-}$ $(5/2)^{-}$	307.0837 102.7325 399.018 307.0837 295.6810	$1/2^{-},3/2^{-}$ (3/2) ⁻ (5/2) ⁻ $1/2^{-},3/2^{-}$ (5/2 ⁻)					
$165.23^{b} 3$ $165.23^{b} 3$ 192.365 14 192.952 3 $x_{195} 611 16$	$1.7^{b} 5$ $1.5^{b} 5$ $0.5^{l} 1$ $2.2^{3} 0^{4} l$	399.018 1053.856 233.8558 295.6810	$(5/2)^{-}$ $1/2^{-},3/2^{-}$ $1/2^{-},3/2^{-}$ $(5/2^{-})$	233.8558 888.625 41.4842 102.7325	$(3/2^{-})$ $1/2^{-}, 3/2^{-}$ $(1/2^{-})$ $(3/2)^{-}$					
^x 199.54 6 201.105 2 203.067 8 204.349 2 ^x 207.81 3	1.2 4 20.5 5 1.3 1 84.1 16 0.5 2	434.9606 1288.468 307.0837	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	233.8558 1085.385 102.7325	1/2 ⁻ ,3/2 ⁻ (1/2 ⁻ ,3/2 ⁻) (3/2) ⁻					
x208.493 4 221.906 16 222.778 5 233.857 15 234.170 12 237.473 5 x241 132 17	4.0 2 0.8 <i>I</i> 10.7 3 0.8 <i>I</i> 1.8 <i>I</i> 7.2 2 0.7 <i>I</i>	455.773 295.6810 233.8558 307.0837 544.552	(5/2) ⁻ (5/2 ⁻) 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ (5/2 ⁻ ,7/2 ⁻)	233.8558 72.9015 0.0 72.9015 307.0837	1/2 ⁻ ,3/2 ⁻ (5/2) ⁻ 3/2 ⁻ (5/2) ⁻ 1/2 ⁻ ,3/2 ⁻					
241.132 17 242.586 7	28.1 7	1459.514	5/2-,7/2-	1216.927	$1/2^{(-)}, 3/2^{(-)}$					
		¹⁹² O	$s(n,\gamma)$ E=thern	nal 1979V	Va04,1978Be2	22,2002Ba66 (co				
------------------------------	-------------------------	-------------------------	---------------------------	-----------------------------	--	---------------------	--	--	--	--
				γ ⁽¹⁹³ Os	γ ⁽¹⁹³ Os) (continued)					
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E _f	${ m J}_f^\pi$	Ιγ ^{&}				
248.859 6	2.3 1	544.552	$(5/2^-, 7/2^-)$	295.6810	(5/2 ⁻)					
254.193 4	20.8 4	295.6810	$(5/2^{-})$	41.4842	$(1/2^{-})$					
265.601 2	100.0 7	307.0837	1/2-,3/2-	41.4842	$(1/2^{-})$					
266.12 [@]		573.2		307.0837	$1/2^{-}, 3/2^{-}$	0.055 12				
^x 276.575 6	2.0 1									
281.397 4	23.3 8	1170.860	$(1/2^+, 3/2^+)$	889.462						
287.81 3	0.4 I	205 6810	$(5/2^{-})$	0.0	2/2-					
293.070 3 x297.632.6	13.22 231	295.0810	(3/2)	0.0	5/2					
x298.057.9	2.5 1									
x303.589 9	1.3 1									
307.083 3	18.9 4	307.0837	$1/2^{-}, 3/2^{-}$	0.0	3/2-					
326.117 5	4.0 2	399.018	$(5/2)^{-}$	72.9015	$(5/2)^{-}$					
327.464 4	6.3 2	1216.927	$1/2^{(-)}, 3/2^{(-)}$	889.462						
353.042 11	2.0 2	455.773	$(5/2)^{-}$	102.7325	$(3/2)^{-}$					
353.74 [@]		587.6		233.8558	$1/2^{-}, 3/2^{-}$	0.041 6				
357.518 19	1.2 2	399.018	$(5/2)^{-}$	41.4842	$(1/2^{-})$					
x375.359 13	1.6 2									
^x 382.476 21	2.2 2									
382.862 8	9.3 3	455.773	$(5/2)^{-}$	72.9015	$(5/2)^{-}$					
391.96 4	2.4 /	1281.480	1/2, $3/21/2^{-} 2/2^{-}$	889.462	$(1/2^{-})$					
393.4/1 0	20.54	434.9000	1/2 ,5/2	41.4642	(1/2)					
399.022° 5	19.70 4	399.018	(5/2)	0.0	3/2					
399.022 ⁰ 5	19.7° 4	1288.468	$1/2^{-}, 3/2^{-}$	889.462						
^x 400.917 25	2.0 4									
401.404 23	2.73	1450 514	5/2- 7/2-	1053 856	1/2-3/2-					
403.07 4	1.3 2	709 199	$(5/2^{-},7/2^{-})$	295 6810	$(5/2^{-})$					
414.276.20	4.6.2	455.773	$(5/2)^{-}$	41.4842	$(1/2^{-})$					
^x 432.49 4	1.1 2		(-1-)		(-/-)					
434.954 8	8.9 <i>3</i>	434.9606	$1/2^{-}, 3/2^{-}$	0.0	3/2-					
^x 441.05 5	1.1 2									
441.835 17	2.4 4	544.552	$(5/2^-, 7/2^-)$	102.7325	$(3/2)^{-}$					
448.17 [@]		550.9		102.7325	$(3/2)^{-}$	0.032 4				
455.754 12	11.9 <i>3</i>	455.773	$(5/2)^{-}$	0.0	3/2-					
461.5 [@]		1170.860	$(1/2^+, 3/2^+)$	709.199	$(5/2^-, 7/2^-)$	0.083 7				
471.662 10	2.2 3	544.552	$(5/2^-, 7/2^-)$	72.9015	$(5/2)^{-}$					
^x 517.18 5	7.8 <i>3</i>									
544.53 3	8.6 <i>3</i>	544.552	$(5/2^{-},7/2^{-})$	0.0	3/2-					
^560.914 16	1.9 2									
567.88		966.9		399.018	$(5/2)^{-}$	0.011 3				
572.47 [@]		675.2		102.7325	$(3/2)^{-}$	0.013 4				
573.7 [@]		1281.480	$1/2^{-}, 3/2^{-}$	709.199	$(5/2^-, 7/2^-)$	0.031 6				
579.4 [@]		1288.468	$1/2^{-}, 3/2^{-}$	709.199	$(5/2^{-},7/2^{-})$	0.063 6				
582.400 24	3.4 2	889.462		307.0837	1/2-,3/2-	0.21 5				
^x 584.70 <i>3</i>	2.2 2				-					
606.459 24	2.7 2	709.199	$(5/2^-, 7/2^-)$	102.7325	$(3/2)^{-}$					
618.895 14	4.8 2	1053.856	$1/2^{-}, 3/2^{-}$	434.9606	$1/2^{-}, 3/2^{-}$					
633.72 [@]		675.2		41.4842	$(1/2^{-})$	0.017 4				
^x 635.789 21	6.0 3									
636.290 22	4.1 3	709.199	$(5/2^-, 7/2^-)$	72.9015	$(5/2)^{-}$					
~649.594 <i>25</i>	1.8 2									

ontinued)

¹⁹² Os(n, γ) E=thermal	1979Wa04,1978Be22,2002Ba66 (continued)
---	--

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}^{π}_i	\mathbf{E}_{f}	J_f^π	Ι _γ &
655.614 15	3.1 2	889.462		233.8558	1/2-,3/2-	0.183 16
^x 667.824 21	3.0 2					
671.22 [@]		966.9		295.6810	$(5/2^{-})$	0.014 4
709.231 16	12.3 5	709.199	$(5/2^-, 7/2^-)$	0.0	3/2-	
^x 714.17 4	1.5 2					
714.93 [@]		1170.860	$(1/2^+, 3/2^+)$	455.773	$(5/2)^{-}$	0.030 6
722.65 4	2.1 3	1178.654	1/2-,3/2-	455.773	$(5/2)^{-}$	
^x 734.80 <i>3</i>	0.8 1					
^x 735.11 5	1.9 <i>3</i>					
743.52 4	2.1 2	1178.654	$1/2^{-}, 3/2^{-}$	434.9606	$1/2^{-}, 3/2^{-}$	
746.753 9	4.7 2	1053.856	$1/2^{-}, 3/2^{-}$	307.0837	$1/2^{-}, 3/2^{-}$	
x749.17 4	1.0 1					
761.73 [@]		1216.927	$1/2^{(-)}, 3/2^{(-)}$	455.773	$(5/2)^{-}$	0.072 6
769.93 @		1225.7		455.773	$(5/2)^{-}$	0.448 16
779.28 [@]		1178.654	$1/2^{-}, 3/2^{-}$	399.018	$(5/2)^{-}$	0.020 7
785.96 4	9.5 5	888.625	, , ,	102.7325	$(3/2)^{-}$	
786.764 11	13.4 5	889.462		102.7325	$(3/2)^{-}$	
$788.5^{@}$		788.5		0.0	$3/2^{-}$	0.025 5
^x 788.542 25	7.6 4					
$788.82^{@}$		1085.385	$(1/2^{-}, 3/2^{-})$	295.6810	$(5/2^{-})$	0.070 9
788 83@		1244 6		455 773	$(5/2)^{-}$	0.062.6
815.66.6	2.2.3	888.625		72.9015	$(5/2)^{-}$	0.002 0
816.63 5	2.4 2	889.462		72.9015	$(5/2)^{-}$	
818 48@		1216 927	$1/2^{(-)} 3/2^{(-)}$	399.018	$(5/2)^{-}$	0 094 10
825.702 20	7.04	1281.480	$1/2^{-}.3/2^{-}$	455.773	$(5/2)^{-}$	0.09110
^x 830.47 7	3.4 4		-/- ,-/-		(-,-)	
^x 831.39 6	5.3 4					
832.46 4	5.0 4	1288.468	$1/2^{-}, 3/2^{-}$	455.773	$(5/2)^{-}$	
842.12 [@]		1731.6		889.462		0.058 9
^x 847.31 3	8.7 4					
847.92 [@]		889.462		41.4842	$(1/2^{-})$	0.087 9
^x 850.87 9	2.0 3					
863.62 [@]		1170.860	$(1/2^+, 3/2^+)$	307.0837	$1/2^{-}.3/2^{-}$	0.034 11
871 22@		1178 654	$1/2^{-} 3/2^{-}$	307 0837	$1/2^{-} 3/2^{-}$	0.097.15
875.02@		1170.860	$(1/2^+, 3/2^+)$	205 6810	$(5/2^{-})$	0.161 12
875.02		1222.52	(1/2, 3/2)	455 772	(3/2)	0.101 12
8/1./3		1333.53		455.773	(5/2)	0.029 12
883.88 °	10.2	1281.480	$1/2^{-},3/2^{-}$	399.018	$(5/2)^{-}$	0.119 14
*883.98 9	1.9 3	000 (75		0.0	2/2-	
000.33 J 000 404 12	4.05	000.023 990.462		0.0	$\frac{3}{2}$	1 021 70
009.404 13	13.77	009.402	1 10- 2 10-	0.0	5/2	1.031 19
889.58		1288.468	1/2 ,3/2	399.018	(5/2)	0.081 11
903.83		1359.52		455.773	$(5/2)^{-}$	0.095 14
910.42 [@]		1216.927	$1/2^{(-)}, 3/2^{(-)}$	307.0837	$1/2^{-}, 3/2^{-}$	0.066 12
921.82 [@]		1216.927	$1/2^{(-)}, 3/2^{(-)}$	295.6810	(5/2 ⁻)	0.024 7
^x 924.68 6	3.0 <i>3</i>					
934.48 [@]		1333.53		399.018	$(5/2)^{-}$	0.026 9
936.84 [@]		1170.860	$(1/2^+, 3/2^+)$	233.8558	$1/2^{-}, 3/2^{-}$	0.176 16
951.172 <i>15</i>	54 <i>3</i>	1053.856	1/2-,3/2-	102.7325	$(3/2)^{-1}$	
960.58 [@]		1359.52		399.018	$(5/2)^{-}$	0.144 15

$\gamma(^{193}\text{Os})$ (continued)

1125.74@

1129.1@

1129.49 6

1131.28@

1136.82@

1137.9[@]

1144.6@

1147.43@

1152.8@

1163.72[@]

1164.57[@]

1170.7

 $1176.02^{\textcircled{0}}$

1359.52

1838.40

1170.860

1530.34

1178.654

1847.11

1216.927

1603.21

1225.7

1205.2

1267.3

1170.860

1216.927

 $(1/2^+, 3/2^+)$

1/2-,3/2-

 $1/2^{(-)}, 3/2^{(-)}$

 $(1/2^+, 3/2^+)$

 $1/2^{(-)}, 3/2^{(-)}$

9.8 11

			U 5(I , <i>y</i>) E = t	neimai	1777 (104,17	700022,200204			
				γ (¹⁹³ Os) (continued)					
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	$I_{\gamma}^{\&}$			
974.1 [@]		1683.28		709.199	$(5/2^-, 7/2^-)$	0.042 6			
980.8 [@]		1053.856	$1/2^{-}.3/2^{-}$	72.9015	$(5/2)^{-}$	0.065 5			
982.26 4	16.8 14	1085.385	$(1/2^{-}, 3/2^{-})$	233.8558	1/2-,3/2-				
983.14 6 x983.96 6	16.8 <i>16</i> 13.1 <i>15</i>	1216.927	$1/2^{(-)}, 3/2^{(-)}$	233.8558	1/2-,3/2-				
987.22 [@]		1281.480	1/2-,3/2-	295.6810	$(5/2^{-})$	0.032 7			
992.92 [@]		1288.468	1/2-,3/2-	295.6810	$(5/2^{-})$	0.064 7			
1012.22@		1053.856	1/2-,3/2-	41.4842	$(1/2^{-})$	0.688 15			
1037.82 [@]		1333.53		295.6810	(5/2 ⁻)	0.021 7			
1043.02 [@]		1085.385	$(1/2^{-}, 3/2^{-})$	41.4842	$(1/2^{-})$	0.033 4			
1048.33 [@]		1504.10		455.773	$(5/2)^{-}$	0.038 9			
1052.52 [@]		1359.52		307.0837	1/2-,3/2-	0.065 6			
1053.7 [@]		1053.856	1/2-,3/2-	0.0	3/2-	0.312 8			
1055.9 [@]		1765.13		709.199	$(5/2^-, 7/2^-)$	0.025 6			
1059.83 [@]		1515.52	1/2-,3/2-	455.773	(5/2)-	0.06 1			
1063.92 [@]		1359.52		295.6810	(5/2-)	0.047 5			
1067.97 [@]		1170.860	$(1/2^+, 3/2^+)$	102.7325	$(3/2)^{-}$	0.226 10			
1075.57 [@]		1178.654	$1/2^{-}, 3/2^{-}$	102.7325	$(3/2)^{-}$	0.342 11			
1076.52 [@]		1383.6		307.0837	1/2-,3/2-	0.029 6			
1078.92 [@]		1385.96	$1/2^{(-)}, 3/2^{(-)}$	307.0837	$1/2^{-}, 3/2^{-}$	0.096 7			
1082.67 [@]		1185.4		102.7325	$(3/2)^{-}$	0.023 6			
1087.92 [@]		1977.40		889.462		0.054 10			
1090.32 [@]		1385.96	$1/2^{(-)}, 3/2^{(-)}$	295.6810	(5/2-)	0.027 5			
1092.92 [@]		1400.00		307.0837	1/2-,3/2-	0.043 6			
1097.8 [@]		1170.860	$(1/2^+, 3/2^+)$	72.9015	$(5/2)^{-}$	0.171 10			
1099.64@		1333.53		233.8558	1/2-,3/2-	0.112 14			
1102.47@		1205.2		102.7325	$(3/2)^{-}$	0.097 6			
1105.4 [@]		1178.654	1/2-,3/2-	72.9015	$(5/2)^{-}$	0.107 8			
1114.77 [@]		1216.927	$1/2^{(-)}, 3/2^{(-)}$	102.7325	$(3/2)^{-}$	0.433 13			
1116.58@		1515.52	1/2-,3/2-	399.018	$(5/2)^{-}$	0.083 11			
1122.32 [@]		1418.00		295.6810	(5/2 ⁻)	0.022 5			
1124.12@		2013.60		889.462		0.094 10			

¹⁹² Os (\mathbf{n}, γ) E=thermal	1979Wa04,1978Be22,2002Ba66	(continued)
· · · ·		

Continued on next page (footnotes at end of table)

0.85 4

0.051 9

0.035 11

0.029 6

0.047 9

0.090 8

0.155 14

0.020 6

0.076 9

0.093 10

0.097 8

0.593 21

233.8558 1/2-,3/2-

41.4842 (1/2⁻)

399.018 (5/2)-

41.4842 (1/2⁻)

72.9015 (5/2)-

455.773 (5/2)-

72.9015 (5/2)-

41.4842 (1/2-)

102.7325 (3/2)-

41.4842 (1/2-)

 $3/2^{-}$

0.0

709.199 (5/2⁻,7/2⁻)

709.199 (5/2⁻,7/2⁻)

					γ ⁽¹⁹³ Os) (con	tinued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Ι _γ &
1178.12 [@]		2067.60		889.462		0.052 8
1178.3 [@]		1178.654	$1/2^{-}.3/2^{-}$	0.0	3/2-	0.717 19
1179.7		1888.90	1 7-1	709.199	$(5/2^{-},7/2^{-})$	0.037 9
$1180.17^{@}$		1281.480	$1/2^{-}.3/2^{-}$	102.7325	$(3/2)^{-}$	0.068 8
1184.22		1225.7	1 7-1	41.4842	$(1/2^{-})$	0.026 6
1185.87 [@]		1288.468	$1/2^{-}.3/2^{-}$	102.7325	$(3/2)^{-}$	0.040 8
$1188.82^{@}$		2078.31	1 7-1	889.462	(-1)	0.032 8
^x 1200.7 [§] 8	34 <mark>\$</mark>					
1203.12@		1244.6		41.4842	$(1/2^{-})$	0.015 6
1203.42 [@]		2092.90		889.462		0.028 8
1204.18@		1603.21		399.018	$(5/2)^{-}$	0.212 16
1208.52 [@]		1515.52	$1/2^{-}, 3/2^{-}$	307.0837	$1/2^{-}, 3/2^{-}$	0.200 11
1208.52 [@]		2098.05		889.462		0.045 8
1210.0		1281.480	$1/2^{-}, 3/2^{-}$	72.9015	$(5/2)^{-}$	0.036 4
1215.7 [@]		1288.468	1/2-,3/2-	72.9015	(5/2)-	0.014 4
1216.42 [@]		1523.64		307.0837	$1/2^{-}, 3/2^{-}$	0.207 11
1217.5 [@]		1216.927	$1/2^{(-)}, 3/2^{(-)}$	0.0	3/2-	0.176 9
1219.92 [@]		1515.52	$1/2^{-}, 3/2^{-}$	295.6810	$(5/2^{-})$	0.054 8
1222.22 [@]		2111.7		889.462		0.034 8
1223.22 [@]		1530.34		307.0837	$1/2^{-}, 3/2^{-}$	0.062 6
1230.77@		1333.53		102.7325	$(3/2)^{-}$	0.448 17
1234.62 [@]		1530.34		295.6810	(5/2 ⁻)	0.037 8
1241.42 [@]		1281.480	$1/2^{-}, 3/2^{-}$	41.4842	$(1/2^{-})$	0.100 6
1243.52 [@]		2133.00		889.462		0.168 9
1247.12 [@]		1288.468	1/2-,3/2-	41.4842	$(1/2^{-})$	0.127 6
1248.72 [@]		1555.8		307.0837	$1/2^{-}, 3/2^{-}$	0.035 6
1256.87 [@]		1359.52		102.7325	$(3/2)^{-}$	0.108 10
1260.6 [@]		1333.53		72.9015	$(5/2)^{-}$	0.017 4
1270.24 [@]		1504.10		233.8558	1/2-,3/2-	0.070 6
1282.9 [@]		1281.480	1/2-,3/2-	0.0	3/2-	0.170 9
1283.27 [@]		1385.96	$1/2^{(-)}, 3/2^{(-)}$	102.7325	$(3/2)^{-}$	0.019 4
1283.82 [@]		1590.93	1/2-,3/2-	307.0837	1/2-,3/2-	0.139 12
1286.7 [@]		1359.52		72.9015	(5/2)-	0.035 4
1288.6 [@]		1288.468	$1/2^{-}, 3/2^{-}$	0.0	3/2-	0.630 18
1288.62 [@]		2178.1		889.462		0.042 11
1289.13 [@]		1744.9		455.773	$(5/2)^{-}$	0.016 5
1292.02 [@]		1333.53		41.4842	$(1/2^{-})$	0.083 6
1295.22 [@]		1590.93	1/2-,3/2-	295.6810	(5/2-)	0.046 6
1295.92 [@]		2185.41		889.462		0.048 11
1296.12 [@]		1603.21		307.0837	1/2-,3/2-	0.272 16
1297.27 [@]		1400.00		102.7325	(3/2)-	0.199 8
1305.52 [@]		2195.00		889.462		0.082 11
1307.52 [@]		1603.21		295.6810	(5/2 ⁻)	0.178 10
1309.33 [@]		1765.13		455.773	(5/2)-	0.048 5
1313.1 [@]		1385.96	$1/2^{(-)}, 3/2^{(-)}$	72.9015	(5/2)-	0.029 5

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

1452.83

 $1458.02^{\textcircled{0}}$

1459.53[@]

1474.12[@]

1476.72[@]

1478.52@

1482.02[@]

1483.2[@]

1488.12[@]

1488.17@

1908.6

1765.13

1915.28

1515.52

1783.81

2368.01

1523.64

2192.4

1783.81

1590.93

1/2-,3/2-

1/2-,3/2-

1979Wa04,1978Be22,2002Ba66 (continued)

γ ⁽¹⁹³Os) (continued)</sup> $I_{\gamma}^{\&}$ E_{γ}^{\dagger} E_i(level) J_i^{π} J_f^{π} \mathbf{E}_{f} 1318.12@ 41.4842 (1/2⁻) 0.059 5 1359.52 1325.3[@] 1398.2 72.9015 (5/2)-0.032 5 1328.03@ 1783.81 455.773 $(5/2)^{-}$ 0.030 5 1333.5@ 1333.53 0.0 $3/2^{-}$ 0.060 5 1344.52 1385.96 $1/2^{(-)}, 3/2^{(-)}$ 41.4842 (1/2-) 0.140 9 1345.1@ 1418.00 72.9015 (5/2)-0.045 5 1354.9[@] 2064.12 709.199 0.019 7 $(5/2^{-},7/2^{-})$ 1358.52[@] 41.4842 (1/2-) 1400.00 0.017 6 1359.6@ 1359.52 0.0 $3/2^{-}$ 0.045 5 1359.62@ 2249.11 889.462 0.058 11 1366.08@ 1765.13 399.018 0.056 5 $(5/2)^{-}$ 1369.1@ 2078.31 709.199 $(5/2^-, 7/2^-)$ 0.026 7 1369.34[@] 1603.21 $1/2^{-}, 3/2^{-}$ 233.8558 0.029 6 1373.22@ 1680.3 307.0837 1/2-,3/2-0.024 8 1373.6 1446.5 72.9015 (5/2)-0.112 6 1375.33[@] 1831.11 0.022 5 455.773 $(5/2)^{-}$ 1376.22@ 1683.28 307.0837 1/2-,3/2-0.072 9 1376.52[@] 1418.00 41.4842 (1/2-) 0.016 5 1384.78 1783.81 399.018 $(5/2)^{-}$ 0.035 5 1386.0 $1/2^{(-)}, 3/2^{(-)}$ 1385.96 0.0 $3/2^{-}$ 0.754 18 1387.62@ 1683.28 295.6810 (5/2-) 0.138 9 1388.8@ 2098.05 709.199 $(5/2^-, 7/2^-)$ 0.047 7 1398.2@ 1398.2 0.0 $3/2^{-}$ 0.069 8 1400.0 1400.00 0.0 $3/2^{-}$ 0.034 6 1401.37 1504.10 0.025 6 102.7325 (3/2)-1412.87 1515.52 $1/2^{-}, 3/2^{-}$ 102.7325 $(3/2)^{-}$ 0.085 8 1418.0@ 1418.00 0.0 $3/2^{-}$ 0.066 6 1420.77 1523.64 102.7325 (3/2)-0.207 11 1426.82@ 1722.5 295.6810 (5/2-) 0.018 6 1427.57[@] 1530.34 102.7325 (3/2)-0.327 13 1432.08 1831.11 399.018 $(5/2)^{-}$ 0.020 4 1434.0 1434.0 0.0 $3/2^{-}$ 0.014 5 1436.83[@] 1892.61 455.773 $(5/2)^{-}$ 0.021 6 1448.08@ 1847.11 399.018 $(5/2)^{-}$ 0.073 5 1449.44 1683.28 233.8558 1/2-,3/2-0.250 12

455.773

455.773

889.462

709.199

 $(5/2)^{-}$

 $(5/2)^{-}$

 $(5/2^-, 7/2^-)$

307.0837 1/2-,3/2-

41.4842 (1/2-)

 $41.4842\ \ (1/2^-)$

295.6810 (5/2-)

102.7325 (3/2)-

307.0837 1/2-,3/2-

¹⁹²Os(n, γ) E=thermal

Continued on next page (footnotes at end of table)

0.025 6

0.117 8

0.022 6

0.051 6

0.035 6

0.064 8

0.067 6

0.029 8

0.025 5

0.087 8

			$\frac{192}{\mathbf{Os}(\mathbf{n},\boldsymbol{\gamma})} \mathbf{E}$	=thermal	1979Wa04,1978Be22,2002Ba66 (continued)
					γ ⁽¹⁹³ Os) (continued)
E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Ι _γ &
1488.82 [@]	1530.34		41.4842	$(1/2^{-})$	0.248 10
1489.88@	1888.90		399.018	$(5/2)^{-}$	0.024 5
1491.52 [@]	2381.01		889.462		0.033 8
1497.4 [@]	1497.4		0.0	3/2-	0.018 5
1499.03@	1954.81		455.773	$(5/2)^{-}$	0.017 5
1499.62 [@]	2389.11		889.462		0.065 8
1500.47 [@]	1603.21		102.7325	$(3/2)^{-}$	0.610 17
1504.1@	1504.10		0.0	3/2-	0.024 5
1509.58 [@]	1908.6		399.018	(5/2)-	0.032 6
1514.32 [@]	1555.8		41.4842	$(1/2^{-})$	0.060 6
1515.6 [@]	1515.52	1/2-,3/2-	0.0	3/2-	0.021 5
1516.28 [@]	1915.28		399.018	$(5/2)^{-}$	0.019 6
1518.0 [@]	1590.93	1/2-,3/2-	72.9015	$(5/2)^{-}$	0.049 5
1520.34 [@]	1754.2		233.8558	1/2-,3/2-	0.016 4
1523.5 [@]	1523.64		0.0	3/2-	0.069 6
1524.02 [@]	1831.11		307.0837	1/2-,3/2-	0.018 6
1526.54 [@]	1760.4		233.8558	1/2-,3/2-	0.014 4
1530.3 [@]	1603.21		72.9015	$(5/2)^{-}$	0.023 5
1531.22 [@]	1838.40		307.0837	1/2-,3/2-	0.399 15
1531.24 [@]	1765.13		233.8558	1/2-,3/2-	0.102 6
1531.52 [@]	2421.0		889.462		0.042 9
1535.42 [@]	1831.11		295.6810	$(5/2^{-})$	0.027 5
1536.08@	1935.1		399.018	$(5/2)^{-}$	0.023 5
1540.0 [@]	2249.2		709.199	$(5/2^{-},7/2^{-})$) 0.061 12
1540.02 [@]	1847.11		307.0837	1/2-,3/2-	0.028 6
1549.42 [@]	1590.93	1/2-,3/2-	41.4842	$(1/2^{-})$	0.040 5
1549.94 [@]	1783.81		233.8558	1/2-,3/2-	0.129 7
1551.42 [@]	1847.11		295.6810	$(5/2^{-})$	0.019 5
1557.83 [@]	2013.60		455.773	$(5/2)^{-}$	0.017 6
1561.72 [@]	1603.21		41.4842	$(1/2^{-})$	0.671 17
1561.94 [@]	1795.8		233.8558	$1/2^-, 3/2^-$	0.019 4
1565.04 [@]	1798.9		233.8558	1/2-,3/2-	0.030 4
1578.38 [@]	1977.40		399.018	$(5/2)^{-}$	0.021 5
1580.57 [@]	1683.28		102.7325	$(3/2)^{-}$	0.445 15
1581.63 [@]	2037.41		455.773	$(5/2)^{-}$	0.030 6
1590.9 [@]	1590.93	1/2-,3/2-	0.0	3/2-	0.222 11
1597.24 [@]	1831.11		233.8558	1/2-,3/2-	0.037 4
1603.08 [@]	2002.11		399.018	$(5/2)^{-}$	0.025 6
1603.2 [@]	1603.21		0.0	3/2-	0.046 6
1604.44 [@]	1838.40		233.8558	1/2-,3/2-	0.073 5
1608.22 [@]	1915.28		307.0837	1/2-,3/2-	0.416 16
1608.33 [@]	2064.12		455.773	$(5/2)^{-}$	0.049 6
1610.4 [@]	1683.28		72.9015	$(5/2)^{-}$	0.021 5
1618.82 [@]	1660.3		41.4842	$(1/2^{-})$	0.017 5
1619.74 [@]	1853.6		233.8558	1/2-,3/2-	0.016 4

¹⁹² Os(n y) E=thermal	1979Wa04 1978Re22 2002Ra66 (continued)
Us(ii, y) E-titel mai	1979 Wa04,1970DC22,2002Da00 (Continueu)

γ ⁽¹⁹³Os) (continued)</sup>

E_{γ}^{\dagger}	E _i (level)	J_i^{π}	E_f	J_f^{π}	Ι _γ &	E_{γ}^{\dagger}	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Ιγ ^{&}
1619.77 [@]	1722.5		102.7325	$(3/2)^{-}$	0.017 6	1757.02 [@]	2064.12		307.0837	$1/2^{-}, 3/2^{-}$	0.053 5
1622.53 [@]	2078.31		455.773	$(5/2)^{-}$	0.043 6	1758.2 [@]	1831.11		72.9015	$(5/2)^{-}$	0.032 5
1625.33 [@]	2081.11		455.773	$(5/2)^{-}$	0.025 6	1759.97 [@]	1862.7		102.7325	$(3/2)^{-}$	0.029 6
1634.87 [@]	1737.6		102.7325	$(3/2)^{-}$	0.025 6	1760.52 [@]	1802.0		41.4842	$(1/2^{-})$	0.022 5
1641.82 [@]	1683.28		41.4842	$(1/2^{-})$	0.350 12	1760.52 [@]	2067.60		307.0837	1/2-,3/2-	0.043 5
1641.92 [@]	1949.0		307.0837	1/2-,3/2-	0.018 6	1765.4 [@]	1838.40		72.9015	$(5/2)^{-}$	0.021 5
1647.72 [@]	1954.81		307.0837	1/2-,3/2-	0.016 6	1768.24 [@]	2002.11		233.8558	1/2-,3/2-	0.048 5
1651.78 [@]	2050.8		399.018	$(5/2)^{-}$	0.046 5	1769.68 [@]	2168.71		399.018	$(5/2)^{-}$	0.049 5
1657.67 [@]	1760.4		102.7325	$(3/2)^{-}$	0.047 8	1771.22 [@]	2078.31		307.0837	1/2-,3/2-	0.115 7
1662.37 [@]	1765.13		102.7325	$(3/2)^{-}$	0.108 8	1774.02 [@]	2081.11		307.0837	$1/2^{-}, 3/2^{-}$	0.035 5
1665.08 [@]	2064.12		399.018	$(5/2)^{-}$	0.059 6	1774.2 [@]	1847.11		72.9015	$(5/2)^{-}$	0.024 5
1670.32 [@]	1977.40		307.0837	$1/2^{-}, 3/2^{-}$	0.107 8	1779.74 [@]	2013.60		233.8558	1/2-,3/2-	0.015 4
1672.0 [@]	1744.9		72.9015	$(5/2)^{-}$	0.016 5	1782.62@	2078.31		295.6810	$(5/2^{-})$	0.020 6
1677.23 [@]	2133.00		455.773	$(5/2)^{-}$	0.054 6	1783.8	1783.81		0.0	3/2-	0.065 6
1679.28 [@]	2078.31		399.018	$(5/2)^{-}$	0.027 5	1785.42@	2081.11		295.6810	$(5/2^{-})$	0.027 6
1681.44 [@]	1915.28		233.8558	1/2-,3/2-	0.294 10	1786.17	1888.90		102.7325	$(3/2)^{-}$	0.032 8
1682.08	2081.11		399.018	$(5/2)^{-}$	0.052 6	1786.94	2020.8		233.8558	$1/2^{-}, 3/2^{-}$	0.022 4
1683.3 [@]	1683.28		0.0	3/2-	0.091 9	1789.62	1831.11		41.4842	$(1/2^{-})$	0.037 5
1687.72 [@]	1983.41		295.6810	(5/2 ⁻)	0.020 6	1790.92 [@]	2098.05		307.0837	1/2-,3/2-	0.020 5
1692.2 [@]	1765.13		72.9015	$(5/2)^{-}$	0.027 5	1795.98	2195.00		399.018	$(5/2)^{-}$	0.016 5
1693.07 [@]	1795.8		102.7325	$(3/2)^{-}$	0.021 6	1797.22 [@]	2092.90		295.6810	(5/2 ⁻)	0.038 6
1693.88 [@]	2092.90		399.018	$(5/2)^{-}$	0.111 7	1802.32	2098.05		295.6810	$(5/2^{-})$	0.023 6
1695.02 [@]	2002.11		307.0837	1/2-,3/2-	0.040 6	1803.54 [@]	2037.41		233.8558	1/2-,3/2-	0.030 5
1706.42 [@]	2002.11		295.6810	$(5/2^{-})$	0.039 6	1805.1	1805.1		0.0	$3/2^{-}$	0.026 5
1706.52 [@]	2013.60		307.0837	1/2-,3/2-	0.051 6	1805.62 [@]	1847.11		41.4842	$(1/2^{-})$	0.065 6
1707.93 ^w	2163.7		455.773	$(5/2)^{-}$	0.021 6	1806.08	2205.1		399.018	$(5/2)^{-}$	0.018 5
1710.9	1783.81		72.9015	$(5/2)^{-}$	0.033 5	1807.72	2103.4		295.6810	$(5/2^{-})$	0.018 6
1713.72	2020.8		307.0837	1/2-,3/2-	0.021 6	1812.57	1915.28		102.7325	$(3/2)^{-}$	0.030 6
1720.94	1954.81		233.8558	1/2-,3/2-	0.022 4	1814.24	2048.21		233.8558	1/2-,3/2-	0.049 6
1722.5	1722.5		0.0	3/2-	0.019 5	1816.0	1888.90		72.9015	(5/2)-	0.029 5
1723.62	1765.13		41.4842	$(1/2^{-})$	0.074 6	1816.94	2050.8		233.8558	1/2-,3/2-	0.023 5
1730.32	2037.41		307.0837	1/2-,3/2-	0.018 5	1818.47	1921.2		102.7325	$(3/2)^{-}$	0.030 6
1732.82	2039.9		307.0837	1/2 ,3/2	0.021 5	1819.32	2126.4		307.0837	1/2 ,3/2	0.032 5
1733.98	2133.00		399.018	(5/2)	0.037 5	1819.58	2218.61		399.018	(5/2)	0.014 5
1735.57	1838.40		102.7325	$(3/2)^{-}$	0.025 6	1819.7	1892.61		72.9015	$(5/2)^{-}$	0.040 5
1741.02	2048.21		307.0837	$1/2^{-}, 3/2^{-}$	0.040 5	1826.7	1826.7		0.0	3/2-	0.018 5
1741.72	2037.41		295.6810	(5/2)	0.022 6	1827.12	2134.2		307.0837	1/2 ,3/2	0.086 6
1742.32	1/83.81		41.4842	(1/2)	0.112 7	1831.1	1831.11		0.0	3/2	0.029 5
1743.54	1977.40		233.8558	1/2, $3/2$	0.030 4	1832.37	1935.1		102.7325	(3/2)	0.082 6
1/44.3/	1847.11		102.7325	(3/2)	0.080 8	1833.74	2067.60		233.8558	1/2, $3/2$	0.082.6
1/49.54 [~]	1983.41		233.8338	1/2, $3/2$	0.015 4	1857.52	2155.00		295.6810	(3/2)	0.03/ 5
1/55.8	1826.7		/2.9015	(5/2)	0.014 5	1844.44 ~	20/8.31		255.8558	1/2 ,3/2	0.052.5
1/54.2°	1/54.2		0.0	5/2	0.016 5	1847.1	184/.11		0.0	3/2 (5/2)=	0.026 6
1/55.12	2050.8		295.6810	(5/2)	0.046 6	1848.3	1921.2		/2.9015	(3/2)	0.013 5
1/33.94 🐃	1989.8		255.8558	1/2 ,3/2	0.020 4	1850.02	2157.1		507.0857	1/2 ,3/2	0.028 5

192 O ((a) E (b) (a)	107011-04 1070D - 22 2002D - (((
$V^2Os(n,\gamma)$ E=thermal	19/9wa04,19/8Be22,2002Ba66 (continued)

					<u>/((</u>	<i>(continued</i>	- <u>/</u>				
E_{γ}^{\dagger}	E_i (level)	J_i^{π}	E _f	J_f^{π}	Ι _γ &	${\rm E_{\gamma}}^{\dagger}$	$\underline{\mathrm{E}_i(\mathrm{level})}$	J_i^{π}	E _f	J_f^{π}	Ι _γ &
1850.08@	2249.11		399.018	(5/2)-	0.088 7	1982.82 [@]	2024.3		41.4842	$(1/2^{-})$	0.027 6
1851.12 [@]	1892.61		41.4842	$(1/2^{-})$	0.040 5	1983.02 [@]	2278.7		295.6810	$(5/2^{-})$	0.020 6
1852.07 [@]	1954.81		102.7325	$(3/2)^{-}$	0.355 11	1983.4 [@]	1983.41		0.0	3/2-	0.160 16
1854.92 [@]	2150.6		295.6810	$(5/2^{-})$	0.023 5	1984.74 [@]	2218.61		233.8558	1/2-,3/2-	0.073 6
1858.12 [@]	2153.8		295.6810	$(5/2^{-})$	0.039 5	1988.14 [@]	2222.0		233.8558	1/2-,3/2-	0.024 5
1859.04 [@]	2092.90		233.8558	1/2-,3/2-	0.032 5	1990.08@	2389.11		399.018	$(5/2)^{-}$	0.022 9
1859.2 [@]	1932.1		72.9015	$(5/2)^{-}$	0.089 5	1990.17@	2092.90		102.7325	$(3/2)^{-}$	0.038 8
1859.38 [@]	2258.4		399.018	$(5/2)^{-}$	0.022 5	1991.2 [@]	2064.12		72.9015	$(5/2)^{-}$	0.076 6
1860.13 [@]	2315.91		455.773	$(5/2)^{-}$	0.064 8	1995.27 [@]	2098.05		102.7325	$(3/2)^{-}$	0.021 8
1861.62 [@]	2168.71		307.0837	1/2-,3/2-	0.026 5	$2005.4^{@}$	2078.31		72.9015	$(5/2)^{-}$	0.031 5
1864.14 [@]	2098.05		233.8558	1/2-,3/2-	0.045 5	$2007.98^{@}$	2407.01		399.018	$(5/2)^{-}$	0.031 9
1867.12 [@]	1908.6		41.4842	$(1/2^{-})$	0.015 5	$2008.2^{@}$	2081.11		72.9015	$(5/2)^{-}$	0.054 5
1873.02 [@]	2168.71		295.6810	(5/2 ⁻)	0.023 5	2008.82 [@]	2315.91		307.0837	1/2-,3/2-	0.020 8
1873.82 [@]	1915.28		41.4842	$(1/2^{-})$	0.411 12	2011.93 [@]	2467.71		455.773	(5/2)-	0.025 10
1874.24 [@]	2108.1		233.8558	1/2-,3/2-	0.022 6	2018.22 [@]	2059.7		41.4842	$(1/2^{-})$	0.018 6
1874.6 [@]	1874.6		0.0	3/2-	0.031 10	2020.0 [@]	2092.90		72.9015	$(5/2)^{-}$	0.022 5
1878.32 [@]	2185.41		307.0837	1/2-,3/2-	0.023 11	2020.22 [@]	2315.91		295.6810	$(5/2^{-})$	0.022 6
1880.67 [@]	1983.41		102.7325	$(3/2)^{-}$	0.070 6	2021.37@	2124.1		102.7325	$(3/2)^{-}$	0.046 8
1887.92 [@]	2195.00		307.0837	1/2-,3/2-	0.216 19	2021.98	2421.0		399.018	$(5/2)^{-}$	0.017 5
1890.24 [@]	2124.1		233.8558	1/2-,3/2-	0.022 4	2022.62 [@]	2064.12		41.4842	$(1/2^{-})$	0.051 7
1890.62 [@]	1932.1		41.4842	$(1/2^{-})$	0.028 5	2024.82 [@]	2320.51		295.6810	$(5/2^{-})$	0.020 6
1892.6	1892.61		0.0	3/2-	0.025 10	2030.27	2133.00		102.7325	$(3/2)^{-}$	0.017 6
1897.12 [@]	1938.6		41.4842	$(1/2^{-})$	0.048 5	2030.42 [@]	2326.11		295.6810	$(5/2^{-})$	0.027 6
1899.14 [@]	2133.00		233.8558	1/2-,3/2-	0.054 7	2033.78 [@]	2432.81		399.018	$(5/2)^{-}$	0.019 5
1900.34 [@]	2134.2		233.8558	1/2-,3/2-	0.048 6	2036.82 [@]	2078.31		41.4842	$(1/2^{-})$	0.295 12
1902.1	2611.31		709.199	$(5/2^-, 7/2^-)$	0.030 8	2039.23 [@]	2495.01		455.773	$(5/2)^{-}$	0.063 7
1910.5 [@]	1983.41		72.9015	$(5/2)^{-}$	0.067 5	2039.9 [@]	2039.9		0.0	3/2-	0.043 5
1910.87 [@]	2013.60		102.7325	$(3/2)^{-}$	0.032 6	2040.77 [@]	2143.5		102.7325	$(3/2)^{-}$	0.015 6
1915.3 [@]	1915.28		0.0	3/2-	0.029 10	2043.32	2350.4		307.0837	1/2-,3/2-	0.019 8
1922.92 ^w	2218.61		295.6810	$(5/2^{-})$	0.033 5	2048.1	2048.21		0.0	3/2-	0.141 8
1929.2 [®]	2002.11		72.9015	(5/2)-	0.087 6	2051.07	2153.8		102.7325	(3/2)-	0.061 8
1929.42 [@]	2225.1		295.6810	(5/2 ⁻)	0.026 5	2052.53	2508.31		455.773	$(5/2)^{-}$	0.044 6
1929.84 [®]	2163.7		233.8558	1/2-,3/2-	0.026 4	2056.03	2511.81		455.773	$(5/2)^{-}$	0.028 6
1933.33	2389.11		455.773	$(5/2)^{-}$	0.028 10	2056.52 [®]	2098.05		41.4842	$(1/2^{-})$	0.021 6
1935.1	1935.1		0.0	3/2-	0.023 10	2060.92 [®]	2368.01		307.0837	1/2-,3/2-	0.019 8
1935.92°	1977.40		41.4842	$(1/2^{-})$	0.037 5	2061.92	2103.4		41.4842	$(1/2^{-})$	0.018 6
1938.6	1938.6		0.0	3/2	0.321 24	2063.43	2519.21		455.773	(5/2)	0.035 6
1942.02 °	2249.11		307.0837	1/2 ,3/2	0.380 25	2064.1	2064.12		0.0	3/2	0.039 5
1945.37°	2048.21		102.7325	(3/2)	0.049 8	2065.97°	2168.71		102.7325	(3/2)	0.017 6
1948.82°	2255.9		307.0837	1/2, $3/2$	0.031 11	2067.6°	2067.60		0.0	3/2 (5/2)-	0.030 5
1950.//	2053.5		102.7325	(3/2)	0.08 1	2008.68	240/./1		399.018	(5/2)	0.020 5
1960.62	2002.11		41.4842	(1/2)	0.210 11	2072.03°	2528.41		455.//5	(3/2)	0.026.6
$1901.3/ \sim$	2004.12		102.7325	(3/2)	0.09/10	2073.92°	2381.01		307.0837	1/2, $3/2$	0.020 8
$19/2.12^{\circ}$	2013.60		41.4842	(1/2)	0.123 9	$20/4.42^{\circ}$	2115.9		41.4842	(1/2)	0.032.0
19/8.3/	2081.11		102.7325	(3/2)	0.042 8	2076.14	2310.0		235.8558	1/2 ,3/2	0.035 16

$\gamma(^{193}\text{Os})$ (continued)

			¹⁹² Os	$s(\mathbf{n}, \gamma)$ E=ther	mal 197 9	Wa04,1978B	e22,2002Ba	<mark>66</mark> (co	ontinued)		
			γ ⁽¹⁹³ Os) (continued)								
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Iγ ^{&}	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Ι _γ &
2078.3@	2078.31		0.0	3/2-	0.039 5	2168.7@	2168.71	_	0.0	3/2-	0.111 8
2082.67 [@]	2185.41		102.7325	$(3/2)^{-}$	0.146 10	2175.97@	2278.7		102.7325	$(3/2)^{-}$	0.021 6
2084.92 [@]	2126.4		41.4842	$(1/2^{-})$	0.032 6	2176.2 [@]	2249.11		72.9015	$(5/2)^{-}$	0.152 9
2086.03@	2541.81		455.773	$(5/2)^{-}$	0.051 6	2179.62	2486.7		307.0837	1/2-,3/2-	0.016 6
2086.64 [@]	2320.51		233.8558	$1/2^{-}, 3/2^{-}$	0.078 7	2182.52 [@]	2489.61		307.0837	$1/2^{-}, 3/2^{-}$	0.024 6
2089.67 [@]	2192.4		102.7325	$(3/2)^{-}$	0.078 8	2182.67	2285.4		102.7325	$(3/2)^{-}$	0.055 6
2090.58 [@]	2489.61		399.018	$(5/2)^{-}$	0.033 5	2183.62 [@]	2225.1		41.4842	$(1/2^{-})$	0.251 12
2090.8 [@]	2163.7		72.9015	$(5/2)^{-}$	0.042 5	2187.92 [@]	2495.01		307.0837	$1/2^{-}, 3/2^{-}$	0.024 5
2092.27 [@]	2195.00		102.7325	$(3/2)^{-}$	0.046 8	2192.94@	2426.8		233.8558	$1/2^{-}, 3/2^{-}$	0.017 5
2092.9 [@]	2092.90		0.0	3/2-	0.020 5	2194.57 [@]	2297.3		102.7325	$(3/2)^{-}$	0.017 6
2093.42 [@]	2389.11		295.6810	$(5/2^{-})$	0.023 6	2198.42@	2239.9		41.4842	$(1/2^{-})$	0.021 6
$2098.0^{@}$	2098.05		0.0	3/2-	0.024 5	2201.22 [@]	2508.31		307.0837	$1/2^{-}.3/2^{-}$	0.022 5
2102.37@	2205.1		102.7325	$(3/2)^{-}$	0.040 6	2203.78@	2602.81		399.018	$(5/2)^{-}$	0.028 6
$2108.4^{@}$	2181.3		72.9015	$(5/2)^{-}$	0.019.5	2204.02 [@]	2499.71		295.6810	$(5/2^{-})$	0.051 6
2109.12	2150.6		41.4842	$(1/2^{-})$	0.018 7	2204.72@	2511.81		307.0837	$1/2^{-}.3/2^{-}$	0.023 6
2109.28@	2508.31		399.018	$(5/2)^{-1}$	0.020.5	2204.82@	2246.3		41.4842	$(1/2^{-})$	0.029 6
2111.32@	2407.01		295.6810	$(5/2^{-})$	0.041 7	2205.8@	2278.7		72.9015	$(5/2)^{-}$	0.028.5
2111.33@	2567.11		455.773	$(5/2)^{-}$	0.047 6	2207.02@	2514.11		307.0837	$1/2^{-}.3/2^{-}$	0.027 6
2111.7 [@]	2111.7		0.0	3/2-	0.024.5	2209.42@	2250.9		41.4842	$(1/2^{-})$	0.028 6
2112.78@	2511.81		399.018	$(5/2)^{-}$	0.086 6	2217.77@	2320.51		102.7325	$(3/2)^{-}$	0.076 6
2113.6 [@]	2822.8		709,199	$(5/2^{-},7/2^{-})$	0.030 7	2218.42@	2514.11		295.6810	$(5/2^{-})$	0.020 6
2114.14@	2348.01		233.8558	$1/2^{-}.3/2^{-}$	0.029 6	2218.6@	2218.61		0.0	$3/2^{-}$	0.030 5
2124.33@	2580.11		455.773	$(5/2)^{-}$	0.037 6	2222.0@	2222.0		0.0	$3/2^{-}$	0.014 5
2125.72 [@]	2432.81		307.0837	$1/2^{-}.3/2^{-}$	0.037 9	2223.37@	2326.11		102.7325	$(3/2)^{-}$	0.291 11
$2127.04^{@}$	2360.9		233.8558	$1/2^{-}, 3/2^{-}$	0.021 6	2223.82@	2530.9		307.0837	$1/2^{-}.3/2^{-}$	0.021.6
$2127.22^{@}$	2168.71		41.4842	$(1/2^{-})$	0.187 11	2224.4@	2297.3		72.9015	$(5/2)^{-}$	0.033.5
2127.87@	2230.6		102.7325	$(3/2)^{-}$	0.042 6	2227.84@	2461.7		233.8558	$1/2^{-}.3/2^{-}$	0.110 7
2133.0 [@]	2133.00		0.0	3/2-	0.030.5	2229.87@	2332.6		102.7325	$(3/2)^{-}$	0.017 6
2134.14	2368.01		233.8558	$1/2^{-}.3/2^{-}$	0.172 11	2230.6 [@]	2230.6		0.0	$3/2^{-}$	0.023 5
2134.2	2134.2		0.0	3/2-	0.021.5	2233.84@	2467.71		233.8558	$1/2^{-}.3/2^{-}$	0.022 5
2139.82@	2181.3		41.4842	$(1/2^{-})$	0.056 7	2234.6@	2234.6		0.0	3/2-	0.021 5
2143.92 [@]	2185.41		41.4842	$(1/2^{-})$	0.017 6	2234.72 [@]	2541.81		307.0837	$1/2^{-}.3/2^{-}$	0.051 6
2146.37	2249.11		102.7325	$(3/2)^{-}$	0.067 8	2240.17@	2342.9		102.7325	$(3/2)^{-}$	0.055 6
$2147.03^{@}$	2602.81		455.773	$(5/2)^{-}$	0.022.6	2245.27@	2348.01		102.7325	$(3/2)^{-}$	0.055.6
$2150.92^{@}$	2192.4		41.4842	$(1/2^{-})$	0.063 7	2247.52@	2554.6		307.0837	$1/2^{-}.3/2^{-}$	0.019 6
$2151.32^{@}$	2447.0		295.6810	$(5/2^{-})$	0.019 6	2249.02@	2290.5		41.4842	$(1/2^{-})$	0.033 5
$2151.42^{@}$	2458.5		307.0837	$1/2^{-}.3/2^{-}$	0.017 6	2250.44@	2484.3		233.8558	$1/2^{-}.3/2^{-}$	0.035 5
$2153.17^{@}$	2255.9		102 7325	$(3/2)^{-}$	0.021.6	2250.9@	2250.9		0.0	$3/2^{-}$	0.60.3
2155.17 $2154.6^{@}$	2863.82		709 199	$(5/2^{-} 7/2^{-})$	0.045 7	2250.9 $2251.02^{@}$	2558.1		307 0837	$1/2^{-} 3/2^{-}$	0.022.6
2151.0 $2154.62^{@}$	2003.02		307 0837	$(3/2^{-}, 7/2^{-})$ $1/2^{-} 3/2^{-}$	0.031.6	2252.52@	2548.2		295 6810	$(5/2^{-})$	0.022.0
2151.02 $2155.24^{@}$	2389.11		233 8558	$1/2^{-}$ $3/2^{-}$	0.020.5	2253 32@	2560.41		307 0837	$1/2^{-} 3/2^{-}$	0.040.6
2157.1	2157.1		0.0	3/2-	0.030 5	2255 82@	2297 3		41,4842	$(1/2^{-})$	0.032 5
$2160.62^{@}$	2467 71		307 0837	$1/2^{-} 3/2^{-}$	0.019 G	2258.4@	2258.4		0.0	3/2-	0.024 9
$2163.32^{@}$	24704		307 0837	$1/2^{-} 3/2^{-}$	0.025.6	2260.02@	2567 11		307 0837	$1/2^{-} 3/2^{-}$	0.042.6
2168.08@	2567.11		300.018	$(5/2)^{-}$	0.034.6	2261 14@	2495.01		233 8558	$1/2^{-} 3/2^{-}$	0.015 5

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

					$\gamma(^{193})$	³ Os) (continue	ed)				
${E_\gamma}^\dagger$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	I _γ &	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Ι _γ &
2261.47@	2364.2		102.7325	$(3/2)^{-}$	0.025 6	2355.77 [@]	2458.5	_	102.7325	$(3/2)^{-}$	0.027 6
2264.43 [@]	2720.22		455.773	$(5/2)^{-}$	0.024 7	2363.54 [@]	2597.4		233.8558	$1/2^{-}, 3/2^{-}$	0.019 5
2265.27 [@]	2368.01		102.7325	$(3/2)^{-}$	0.093 8	2364.2 [@]	2364.2		0.0	3/2-	0.024 5
2265.84 [@]	2499.71		233.8558	1/2-,3/2-	0.025 5	2364.32 [@]	2671.42		307.0837	1/2-,3/2-	0.060 6
2268.52 [@]	2310.0		41.4842	$(1/2^{-})$	0.045 5	2364.97 [@]	2467.71		102.7325	$(3/2)^{-}$	0.021 6
2274.42 [@]	2315.91		41.4842	$(1/2^{-})$	0.056 5	2365.52 [@]	2407.01		41.4842	$(1/2^{-})$	0.072 6
2274.44 [@]	2508.31		233.8558	1/2-,3/2-	0.073 6	2372.52 [@]	2414.0		41.4842	$(1/2^{-})$	0.021 6
2280.24 [@]	2514.11		233.8558	$1/2^{-}, 3/2^{-}$	0.039 5	2373.1@	2373.1		0.0	3/2-	0.016 5
2280.58 [@]	2679.61		399.018	$(5/2)^{-}$	0.072 6	2377.2 [@]	2450.1		72.9015	(5/2)-	0.015 5
2284.42 [@]	2580.11		295.6810	$(5/2^{-})$	0.024 6	2379.52 [@]	2421.0		41.4842	$(1/2^{-})$	0.070 7
2284.62 [@]	2326.11		41.4842	$(1/2^{-})$	0.048 5	2380.84 [@]	2614.7		233.8558	1/2-,3/2-	0.028 5
2286.37 [@]	2389.11		102.7325	$(3/2)^{-}$	0.055 6	2381.0@	2381.01		0.0	3/2-	0.043 5
2290.5 [@]	2290.5		0.0	3/2-	0.020 8	2381.57 [@]	2484.3		102.7325	$(3/2)^{-}$	0.023 6
2291.12 [@]	2332.6		41.4842	$(1/2^{-})$	0.016 5	2386.87 [@]	2489.61		102.7325	$(3/2)^{-}$	0.021 8
2294.3 [@]	2294.3		0.0	3/2-	0.021 8	2389.1@	2389.11		0.0	3/2-	0.153 10
2298.62 [@]	2340.1		41.4842	$(1/2^{-})$	0.026 5	2389.92 [@]	2697.01		307.0837	1/2-,3/2-	0.019 6
2299.84@	2533.7		233.8558	1/2-,3/2-	0.058 5	2391.32 [@]	2432.81		41.4842	$(1/2^{-})$	0.155 9
2300.48@	2699.52		399.018	$(5/2)^{-}$	0.026 5	2396.22 [@]	2437.7		41.4842	$(1/2^{-})$	0.017 6
2301.42	2342.9		41.4842	$(1/2^{-})$	0.029 5	2396.3 [@]	2396.3		0.0	3/2-	0.046 5
2304.27	2407.01		102.7325	$(3/2)^{-}$	0.080 8	2396.62 [@]	2703.72		307.0837	1/2-,3/2-	0.045 6
2304.68	2703.72		399.018	$(5/2)^{-}$	0.016 5	2396.97 [@]	2499.71		102.7325	$(3/2)^{-}$	0.021 8
2306.52 [@]	2348.01		41.4842	$(1/2^{-})$	0.110 6	2401.32 [@]	2697.01		295.6810	(5/2-)	0.051 8
2307.94@	2541.81		233.8558	1/2-,3/2-	0.052 5	2405.52 [@]	2447.0		41.4842	$(1/2^{-})$	0.051 6
2308.1	2381.01		72.9015	$(5/2)^{-}$	0.019 5	2405.57 [@]	2508.31		102.7325	$(3/2)^{-}$	0.027 8
2310.0	2310.0		0.0	3/2-	0.052 14	$2407.0^{@}$	2407.01		0.0	3/2-	0.024 5
2314.34	2548.2		233.8558	1/2-,3/2-	0.093 6	2407.72 [@]	2714.8		307.0837	1/2-,3/2-	0.032 6
2315.62 [@]	2611.31		295.6810	(5/2-)	0.048 6	2408.03 [@]	2863.82		455.773	$(5/2)^{-}$	0.082 7
2315.9 [@]	2315.91		0.0	3/2-	0.026 9	$2409.07^{@}$	2511.81		102.7325	$(3/2)^{-}$	0.07 1
2320.5 [@]	2320.51		0.0	3/2-	0.107 13	$2409.82^{@}$	2716.9		307.0837	1/2-,3/2-	0.029 6
2321.18@	2720.22		399.018	$(5/2)^{-}$	0.021 5	2413.12 [@]	2720.22		307.0837	1/2-,3/2-	0.028 6
2322.22 [@]	2629.3		307.0837	1/2-,3/2-	0.015 6	2413.22 [@]	2708.9		295.6810	$(5/2^{-})$	0.022 7
2324.07 [@]	2426.8		102.7325	$(3/2)^{-}$	0.036 6	2416.47 [@]	2519.21		102.7325	$(3/2)^{-}$	0.034 8
2326.1	2326.11		0.0	3/2-	0.066 10	2422.1 [@]	2495.01		72.9015	$(5/2)^{-}$	0.070 5
2326.33 [@]	2782.12		455.773	$(5/2)^{-}$	0.026 7	2425.67 [@]	2528.41		102.7325	$(3/2)^{-}$	0.019 8
2326.52 [@]	2368.01		41.4842	$(1/2^{-})$	0.052 6	2426.22 [@]	2467.71		41.4842	$(1/2^{-})$	0.052 6
2326.54 [@]	2560.41		233.8558	1/2-,3/2-	0.035 5	2426.8 [@]	2426.8		0.0	3/2-	0.055 6
2328.57 [@]	2431.3		102.7325	$(3/2)^{-}$	0.093 10	2426.8 [@]	2499.71		72.9015	$(5/2)^{-}$	0.027 5
2330.07@	2432.81		102.7325	$(3/2)^{-}$	0.019 8	2431.3 [@]	2431.3		0.0	3/2-	0.047 6
2344.14	2578.0		233.8558	1/2-,3/2-	0.027 9	2432.8 [@]	2432.81		0.0	3/2-	0.019 5
2346.24@	2580.11		233.8558	1/2-,3/2-	0.052 9	2433.4 [@]	2506.3		72.9015	(5/2)-	0.045 5
2347.37 [@]	2450.1		102.7325	$(3/2)^{-}$	0.019 6	2434.82 [@]	2741.92		307.0837	1/2-,3/2-	0.021 6
2347.62 [@]	2389.11		41.4842	$(1/2^{-})$	0.026 6	2437.54 [@]	2671.42		233.8558	1/2-,3/2-	0.035 6
2348.0 [@]	2348.01		0.0	3/2-	0.032 5	2438.9 [@]	2511.81		72.9015	$(5/2)^{-}$	0.040 5
2349.73 [@]	2805.52		455.773	$(5/2)^{-}$	0.032 6	2439.07 [@]	2541.81		102.7325	$(3/2)^{-}$	0.076 10
2354.72 [@]	2661.8		307.0837	1/2-,3/2-	0.020 6	2442.5 [@]	2442.5		0.0	3/2-	0.032 5

¹⁹² Os(n, γ) E=thermal	1979Wa04,1978Be22,2002Ba66 (continued)
---	--

γ ⁽¹⁹³Os) (continued)</sup>

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π}	Ι _γ &
2442.82 [@]	2484.3		41.4842	$(1/2^{-})$	0.057 6
2445.47 [@]	2548.2		102.7325	$(3/2)^{-}$	0.044 8
2445.74 [@]	2679.61		233.8558	1/2-,3/2-	0.022 6
2445.82 [@]	2752.9		307.0837	1/2-,3/2-	0.027 6
2446.3 [@]	2519.21		72.9015	$(5/2)^{-}$	0.018 5
2455.5 [@]	2528.41		72.9015	$(5/2)^{-}$	0.030 5
2456.34 [@]	2690.2		233.8558	1/2-,3/2-	0.033 7
2457.67 [@]	2560.41		102.7325	$(3/2)^{-}$	0.030 8
2457.82 [@]	2764.9		307.0837	1/2-,3/2-	0.026 6
2458.22 [@]	2499.71		41.4842	$(1/2^{-})$	0.077 15
2461.7 [@]	2461.7		0.0	3/2-	0.027 5
2463.14 [@]	2697.01		233.8558	1/2-,3/2-	0.030 7
2465.64 [@]	2699.52		233.8558	1/2-,3/2-	0.024 7
2466.82 [@]	2508.31		41.4842	$(1/2^{-})$	0.034 7
2466.82 [@]	2773.92		307.0837	1/2-,3/2-	0.033 6
2468.9 [@]	2541.81		72.9015	$(5/2)^{-}$	0.022 6
2469.84 [@]	2703.72		233.8558	1/2-,3/2-	0.076 9
2470.4 [@]	2470.4		0.0	3/2-	0.025 8
2472.62 [@]	2514.11		41.4842	$(1/2^{-})$	0.023 7
2475.02 [@]	2782.12		307.0837	1/2-,3/2-	0.023 6
2475.04 [@]	2708.9		233.8558	1/2-,3/2-	0.066 8
2477.02 [@]	2784.1		307.0837	$1/2^-, 3/2^-$	0.041 6
2477.37 [@]	2580.11		102.7325	$(3/2)^{-}$	0.158 10
2477.72 [@]	2519.21		41.4842	$(1/2^{-})$	0.032 7
2480.94 [@]	2714.8		233.8558	$1/2^-, 3/2^-$	0.022 6
2484.92 [@]	2792.0		307.0837	$1/2^{-}, 3/2^{-}$	0.049 6
2486.34 [@]	2720.22		233.8558	$1/2^-, 3/2^-$	0.026 6
2487.5 [@]	2560.41		72.9015	$(5/2)^{-}$	0.030 5
2487.98 [@]	2887.0		399.018	$(5/2)^{-}$	0.028 6
2489.6 [@]	2489.61		0.0	3/2-	0.044 6
2489.74 [@]	2723.6		233.8558	1/2-,3/2-	0.048 6
2490.82 [@]	2797.92		307.0837	1/2-,3/2-	0.039 6
2494.2 [@]	2567.11		72.9015	$(5/2)^{-}$	0.057 6
2496.32 [@]	2792.0		295.6810	$(5/2^{-})$	0.024 7
2499.7 [@]	2499.71		0.0	3/2-	0.027 6
2500.44 [@]	2734.3		233.8558	$1/2^-, 3/2^-$	0.027 6
2503.5 [@]	2503.5		0.0	3/2-	0.019 6
2504.17 [@]	2606.9		102.7325	$(3/2)^{-}$	0.023 6
2504.52 [@]	2811.6		307.0837	1/2-,3/2-	0.029 6
2504.54 [@]	2738.4		233.8558	1/2-,3/2-	0.021 6
2507.2 [@]	2580.11		72.9015	$(5/2)^{-}$	0.045 5
2508.04 [@]	2741.92		233.8558	1/2-,3/2-	0.020 6
2508.3 [@]	2508.31		0.0	3/2-	0.083 8
2508.57 [@]	2611.31		102.7325	$(3/2)^{-}$	0.049 6
2509.98 [@]	2909.02		399.018	$(5/2)^{-}$	0.028 5

			¹⁹² Os ($\mathbf{n}, \boldsymbol{\gamma}$)	E=thermal	1979Wa04,1978Be22,2002Ba66 (continued)
					γ ⁽¹⁹³ Os) (continued)
E_{γ}^{\dagger}	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Ι _γ &
2511.8 [@]	2511.81		0.0	$3/2^{-}$	0.031 6
2514.1 [@]	2514.11		0.0	3/2-	0.026 6
2516.62 [@]	2558.1		41.4842	$(1/2^{-})$	0.081 7
2516.63 [@]	2972.4		455.773	$(5/2)^{-}$	0.047 6
2519.04 [@]	2752.9		233.8558	1/2-,3/2-	0.016 6
2519.2 [@]	2519.21		0.0	3/2-	0.032 6
2524.34 [@]	2758.2		233.8558	1/2-,3/2-	0.044 6
2525.62 [@]	2567.11		41.4842	$(1/2^{-})$	0.040 6
2526.57 [@]	2629.3		102.7325	$(3/2)^{-}$	0.044 6
2528.4 [@]	2528.41		0.0	3/2-	0.015 6
2529.57 [@]	2632.3		102.7325	$(3/2)^{-}$	0.030 6
2529.9 [@]	2602.81		72.9015	$(5/2)^{-}$	0.043 5
2533.7 [@]	2533.7		0.0	3/2-	0.105 9
2535.07 [@]	2637.8		102.7325	$(3/2)^{-}$	0.015 6
2538.62 [@]	2580.11		41.4842	$(1/2^{-})$	0.032 6
2540.04 [@]	2773.92		233.8558	$1/2^{-}, 3/2^{-}$	0.022 6
2541.8 [@]	2541.81		0.0	3/2-	0.015 6
2543.52 [@]	2585.0		41.4842	$(1/2^{-})$	0.030 6
2545.54 [@]	2779.4		233.8558	$1/2^{-}, 3/2^{-}$	0.018 6
2548.24 [@]	2782.12		233.8558	1/2-,3/2-	0.029 9
2549.22 [@]	2856.3		307.0837	$1/2^{-}, 3/2^{-}$	0.032 6
2550.24 [@]	2784.1		233.8558	1/2-,3/2-	0.027 9
2551.3 [@]	2551.3		0.0	3/2-	0.144 10
2553.87 [@]	2656.6		102.7325	$(3/2)^{-}$	0.040 8
2554.6 [@]	2554.6		0.0	3/2-	0.016 6
2561.32 [@]	2602.81		41.4842	$(1/2^{-})$	0.029 7
2564.04 [@]	2797.92		233.8558	1/2-,3/2-	0.022 6
2567.1@	2567.11		0.0	$3/2^{-}$	0.070 9
2568.67 [@]	2671.42		102.7325	$(3/2)^{-}$	0.057 11
2569.82 [@]	2611.31		41.4842	$(1/2^{-})$	0.233 13
2573.5 [#]	(5583.93)	$1/2^{+}$	3010.4		
2577.3 [#]	(5583.93)	$1/2^{+}$	3006.62		
2579.92 [@]	2887.0		307.0837	1/2-,3/2-	0.019 6
2582.2 [#]	(5583.93)	$1/2^{+}$	3001.7		
$2585.0^{@}$	2585.0		0.0	3/2-	0.018 6
2590.82 [@]	2632.3		41.4842	$(1/2^{-})$	0.041 7
2591.17 [@]	2693.9		102.7325	$(3/2)^{-}$	0.019 6
2594.27 [@]	2697.01		102.7325	$(3/2)^{-}$	0.047 8
2596.32 [@]	2637.8		41.4842	$(1/2^{-})$	0.039 6
2596.44 [@]	2830.3		233.8558	1/2-,3/2-	0.097 7
2596.77 [@]	2699.52		102.7325	(3/2)-	0.101 10
2597.0 [#]	(5583.93)	$1/2^{+}$	2986.9		
2597.02 [@]	2904.1		307.0837	1/2-,3/2-	0.034 6
2597.4 [@]	2597.4		0.0	3/2-	0.067 9
2598.5 [@]	2671.42		72.9015	(5/2)-	0.040 6

			¹⁹² Os(n, γ)) E=thermal	1979Wa04,1978Be22,2002Ba66 (con
					γ ⁽¹⁹³ Os) (continued)
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	${ m J}_f^\pi$	
2600.97 [@]	2703.72		102.7325	$(3/2)^{-}$	0.032 8
2601.92 [@]	2909.02		307.0837	$1/2^{-}, 3/2^{-}$	0.030 7
2602.8 [@]	2602.81		0.0	3/2-	0.021 6
2604.0 [#]	(5583.93)	$1/2^{+}$	2979.9		
2606.22 [@]	2913.3		307.0837	$1/2^{-}, 3/2^{-}$	0.043 7
2610.92 [@]	2918.0		307.0837	$1/2^{-}, 3/2^{-}$	0.021 6
2611.3 [@]	2611.31		0.0	3/2-	0.020 6
2611.5 [#]	(5583.93)	$1/2^{+}$	2972.4		
2614.2 [@]	2687.1		72.9015	(5/2)-	0.026 6
2615.12 [@]	2656.6		41.4842	$(1/2^{-})$	0.057 7
2621.0 [@]	2693.9		72.9015	$(5/2)^{-}$	0.026 6
2625.47 [@]	2728.2		102.7325	$(3/2)^{-}$	0.029 6
2626.6 [@]	2699.52		72.9015	$(5/2)^{-}$	0.024 6
2629.92 [@]	2671.42		41.4842	$(1/2^{-})$	0.077 7
2632.3 [@]	2632.3		0.0	3/2-	0.049 8
2635.67 [@]	2738.4		102.7325	$(3/2)^{-}$	0.021 8
2637.8 [@]	2637.8		0.0	3/2-	0.018 6
2638.12 [@]	2679.61		41.4842	$(1/2^{-})$	0.035 6
2639.17 [@]	2741.92		102.7325	$(3/2)^{-}$	0.030 8
2641.94 [@]	2875.8		233.8558	$1/2^{-}, 3/2^{-}$	0.020 6
2643.97 [@]	2746.7		102.7325	$(3/2)^{-}$	0.053 8
2645.62 [@]	2687.1		41.4842	$(1/2^{-})$	0.032 6
2646.14 [@]	2880.0		233.8558	$1/2^{-}, 3/2^{-}$	0.025 6
2647.07 [@]	2749.8		102.7325	$(3/2)^{-}$	0.038 8
2647.3 [@]	2720.22		72.9015	$(5/2)^{-}$	0.026 6
2648.72 [@]	2690.2		41.4842	$(1/2^{-})$	0.028 6
2650.7 [@]	2723.6		72.9015	$(5/2)^{-}$	0.023 6
2656.6 [@]	2656.6		0.0	3/2-	0.043 6
2658.02 [@]	2699.52		41.4842	$(1/2^{-})$	0.041 7
2662.22 [@]	2703.72		41.4842	$(1/2^{-})$	0.046 7
2665.9 [#]	(5583.93)	$1/2^{+}$	2918.0		
2670.6 [#]	(5583.93)	$1/2^+$	2913.3		
2671.17 [@]	2773.92	,	102.7325	$(3/2)^{-}$	0.070 8
2671.4 [@]	2671.42		0.0	3/2-	0.125 11
2674.9 [#]	(5583.93)	$1/2^{+}$	2909.02	,	
2675.14 [@]	2909.02	1	233.8558	$1/2^{-}, 3/2^{-}$	0.069 6
2676.9 [@]	2749.8		72.9015	$(5/2)^{-}$	0.056 6
$2678.72^{@}$	2720.22		41.4842	$(1/2^{-})$	0.057 12
2679.37 [@]	2782.12		102.7325	$(3/2)^{-}$	0.030 6
2679.6 [@]	2679.61		0.0	3/2-	0.030 8
2679.8 [#]	(5583.93)	$1/2^{+}$	2904.1	1	
2686.72	2728.2	-, -	41.4842	$(1/2^{-})$	0.057 7
2695.17 [@]	2797.92		102.7325	$(3/2)^{-}$	0.087 8
2696.9 [#]	(5583.93)	$1/2^{+}$	2887.0	(-)-)	
2696.92 [@]	2738.4	-/-	41.4842	$(1/2^{-})$	0.018 10
				<- <i>i</i> = <i>i</i>	

ntinued)

			$\frac{192}{\text{Os}(n,\gamma)}$) E=thermal	1979Wa04,1978Be22,2002Ba66 (continued)
					γ ⁽¹⁹³ Os) (continued)
E_{γ}^{\dagger}	E _i (level)	J_i^{π}	E_f	J_f^{π}	
$2699.5^{@}$	2699.52		0.0	3/2-	0.076 8
$2702.77^{@}$	2805.52		102.7325	$(3/2)^{-}$	0.072 6
2703.9 [#]	(5583.93)	$1/2^{+}$	2880.0	(-1-)	
2708.1#	(5583.93)	$1/2^{+}$	2875.8		
$2709.2^{@}$	2782.12	,	72.9015	$(5/2)^{-}$	0.032 6
2713.9 [#]	(5583.93)	$1/2^{+}$	2870.0	(-1)	
2720.1 [#]	(5583.93)	$1/2^{+}$	2863.82		
$2720.2^{@}$	2720.22	,	0.0	3/2-	0.025 6
2727.57 [@]	2830.3		102.7325	$(3/2)^{-}$	0.036 6
2727.6#	(5583.93)	$1/2^{+}$	2856.3		
2731.57 [@]	2834.3		102.7325	$(3/2)^{-}$	0.042 6
2732.1 [@]	2732.1		0.0	3/2-	0.062 11
2732.42 [@]	2773.92		41.4842	$(1/2^{-})$	0.018 6
2734.3 [@]	2734.3		0.0	3/2-	0.062 10
2738.7 [@]	2811.6		72.9015	$(5/2)^{-}$	0.024 6
2740.62 [@]	2782.12		41.4842	$(1/2^{-})$	0.023 6
2741.9 [@]	2741.92		0.0	3/2-	0.056 6
2749.6 [#]	(5583.93)	$1/2^{+}$	2834.3	- 1	
$2749.8^{@}$	2749.8	,	0.0	3/2-	0.025 6
$2750.52^{@}$	2792.0		41.4842	$(1/2^{-})$	0.015 6
2753.57 [@]	2856.3		102.7325	$(3/2)^{-}$	0.036 6
2753.6#	(5583.93)	$1/2^{+}$	2830.3	(-1)	
2761.07 [@]	2863.82		102.7325	$(3/2)^{-}$	0.055 6
2761.1 [#]	(5583.93)	$1/2^{+}$	2822.8		
2761.7 [@]	2761.7	,	0.0	3/2-	0.030 6
2764.02 [@]	2805.52		41.4842	$(1/2^{-})$	0.082 7
2767.27 [@]	2870.0		102.7325	$(3/2)^{-}$	0.19 1
2772.3 [#]	(5583.93)	$1/2^{+}$	2811.6		
2772.74 [@]	3006.62	,	233.8558	$1/2^{-}, 3/2^{-}$	0.016 6
2773.07 [@]	2875.8		102.7325	$(3/2)^{-}$	0.019 6
2773.9 [@]	2773.92		0.0	3/2-	0.040 6
2778.4 [#]	(5583.93)	$1/2^{+}$	2805.52		
2782.1 [@]	2782.12	,	0.0	3/2-	0.025 6
2786.0 [#]	(5583.93)	$1/2^{+}$	2797.92	,	
2791.9 [#]	(5583.93)	$1/2^{+}$	2792.0		
2797.9 [@]	2797.92	,	0.0	3/2-	0.037 6
2799.8 [#]	(5583.93)	$1/2^{+}$	2784.1	,	
2801.8 [#]	(5583.93)	$1/2^{+}$	2782.12		
2804.5 [#]	(5583.93)	$1/2^{+}$	2779.4		
2805.5 [@]	2805.52	,	0.0	3/2-	0.027 6
2806.27@	2909.02		102.7325	$(3/2)^{-}$	0.116 8
2807.1	2880.0		72.9015	$(5/2)^{-}$	0.027 6
2810.0 [#]	(5583.93)	$1/2^{+}$	2773.92	X-1 7	
2814.1	2887.0	,=	72.9015	$(5/2)^{-}$	0.127 9
2819.0 [#]	(5583.93)	$1/2^{+}$	2764.9	ST 7	

¹⁹² Os(n, γ) E=thermal	1979Wa04,1978Be22,2002Ba66 (continued)	
---	--	--

					$\gamma(1)$	Ds) (continue	<u>d)</u>				
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Iγ ^{&}	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Ι _γ &
2822.2 [#]	(5583.93)	$1/2^{+}$	2761.7			2969.2 [#]	(5583.93)	$1/2^{+}$	2614.7		
2822.32 [@]	2863.82		41.4842	$(1/2^{-})$	0.041 6	2972.6#	(5583.93)	$1/2^+$	2611.31		
2825.7 [#]	(5583.93)	$1/2^{+}$	2758.2	,		2977.0 [#]	(5583.93)	$1/2^+$	2606.9		
2828.52 [@]	2870.0		41.4842	$(1/2^{-})$	0.099 9	2981.1 [#]	(5583.93)	$1/2^+$	2602.81		
2831.0 [#]	(5583.93)	$1/2^{+}$	2752.9			2986.5 [#]	(5583.93)	$1/2^{+}$	2597.4		
2834.1 [#]	(5583.93)	$1/2^{+}$	2749.8			2998.9 [#]	(5583.93)	$1/2^{+}$	2585.0		
2837.2 [#]	(5583.93)	$1/2^{+}$	2746.7			3001.7 [@]	3001.7		0.0	$3/2^{-}$	0.024 6
2842.0 [#]	(5583.93)	$1/2^{+}$	2741.92			3003.8 [#]	(5583.93)	$1/2^{+}$	2580.11		
2845.5 [#]	(5583.93)	$1/2^{+}$	2738.4			3005.9 [#]	(5583.93)	$1/2^{+}$	2578.0		
2849.6 [#]	(5583.93)	$1/2^{+}$	2734.3			3006.6 [@]	3006.62		0.0	3/2-	0.070 8
2851.8 [#]	(5583.93)	$1/2^{+}$	2732.1			3010.4 [@]	3010.4		0.0	3/2-	0.035 8
2855.7 [#]	(5583.93)	$1/2^{+}$	2728.2			3016.8 [#]	(5583.93)	$1/2^{+}$	2567.11		
2856.3 [@]	2856.3		0.0	3/2-	0.138 9	3023.5 [#]	(5583.93)	$1/2^{+}$	2560.41		
2860.3 [#]	(5583.93)	$1/2^{+}$	2723.6			3025.8 [#]	(5583.93)	$1/2^{+}$	2558.1		
2863.7 [#]	(5583.93)	$1/2^{+}$	2720.22			3029.3 [#]	(5583.93)	$1/2^{+}$	2554.6		
2867.0 [#]	(5583.93)	$1/2^{+}$	2716.9			3032.6 [#]	(5583.93)	$1/2^{+}$	2551.3		
2867.52 [@]	2909.02		41.4842	$(1/2^{-})$	0.153 12	3035.7 [#]	(5583.93)	$1/2^{+}$	2548.2		
2869.1 [#]	(5583.93)	$1/2^{+}$	2714.8			3042.1 [#]	(5583.93)	$1/2^{+}$	2541.81		
$2870.0^{@}$	2870.0		0.0	$3/2^{-}$	0.071 8	3050.2 [#]	(5583.93)	$1/2^{+}$	2533.7		
2871.82 [@]	2913.3		41.4842	$(1/2^{-})$	0.037 7	3053.0 [#]	(5583.93)	$1/2^{+}$	2530.9		
2875.0 [#]	(5583.93)	$1/2^{+}$	2708.9			3055.5 [#]	(5583.93)	$1/2^{+}$	2528.41		
2875.8 [@]	2875.8		0.0	3/2-	0.045 6	3064.7 [#]	(5583.93)	$1/2^{+}$	2519.21		
2877.17 [@]	2979.9		102.7325	$(3/2)^{-}$	0.034 8	3069.8 [#]	(5583.93)	$1/2^{+}$	2514.11		
2880.2 [#]	(5583.93)	$1/2^{+}$	2703.72			3072.1 [#]	(5583.93)	$1/2^{+}$	2511.81		
2884.4 [#]	(5583.93)	$1/2^{+}$	2699.52			3075.6 [#]	(5583.93)	$1/2^{+}$	2508.31		
2886.9 [#]	(5583.93)	$1/2^{+}$	2697.01			3077.6 [#]	(5583.93)	$1/2^{+}$	2506.3		
2890.0 [#]	(5583.93)	$1/2^{+}$	2693.9			3080.4 [#]	(5583.93)	$1/2^{+}$	2503.5		
2893.7 [#]	(5583.93)	$1/2^{+}$	2690.2			3084.2 [#]	(5583.93)	$1/2^{+}$	2499.71		
2896.8 [#]	(5583.93)	$1/2^{+}$	2687.1			3088.9 [#]	(5583.93)	$1/2^{+}$	2495.01		
2898.97 [@]	3001.7		102.7325	$(3/2)^{-}$	0.025 6	3094.3 [#]	(5583.93)	$1/2^{+}$	2489.61		
2903.87 [@]	3006.62		102.7325	$(3/2)^{-}$	0.076 8	3097.2 [#]	(5583.93)	$1/2^{+}$	2486.7		
2904.3 [#]	(5583.93)	$1/2^{+}$	2679.61			3099.6 [#]	(5583.93)	$1/2^{+}$	2484.3		
2909.0 [@]	2909.02		0.0	3/2-	0.026 8	3113.5 [#]	(5583.93)	$1/2^{+}$	2470.4		
2912.5 [#]	(5583.93)	$1/2^{+}$	2671.42			3116.2 [#]	(5583.93)	$1/2^{+}$	2467.71		
2914.0 [@]	2986.9		72.9015	$(5/2)^{-}$	0.025 6	3122.2 [#]	(5583.93)	$1/2^{+}$	2461.7		
2918.0 [@]	2918.0		0.0	3/2-	0.021 6	3125.4 [#]	(5583.93)	$1/2^{+}$	2458.5		
2922.1 [#]	(5583.93)	$1/2^{+}$	2661.8			3133.8#	(5583.93)	$1/2^{+}$	2450.1		
2927.3 [#]	(5583.93)	$1/2^{+}$	2656.6			3136.9 [#]	(5583.93)	$1/2^{+}$	2447.0		
2930.92 [@]	2972.4		41.4842	$(1/2^{-})$	0.121 10	3141.4 [#]	(5583.93)	$1/2^{+}$	2442.5		
2937.5 [@]	3010.4		72.9015	$(5/2)^{-}$	0.042 5	3146.2 [#]	(5583.93)	$1/2^{+}$	2437.7		
2938.42 [@]	2979.9		41.4842	$(1/2^{-})$	0.060 7	3151.1 [#]	(5583.93)	$1/2^{+}$	2432.81		
2946.1 [#]	(5583.93)	$1/2^{+}$	2637.8			3152.6#	(5583.93)	$1/2^{+}$	2431.3		
2951.6#	(5583.93)	$1/2^{+}$	2632.3			3157.1 [#]	(5583.93)	$1/2^{+}$	2426.8		
2954.6#	(5583.93)	$1/2^{+}$	2629.3			3162.9#	(5583.93)	$1/2^{+}$	2421.0		
2965.12 [@]	3006.62		41.4842	$(1/2^{-})$	0.026 7	3169.9 [#]	(5583.93)	$1/2^{+}$	2414.0		

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

					<u>y(</u>	08) (00	itiliueu)		
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E_f	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E_f
3176.9 [#]		(5583.93)	$1/2^{+}$	2407.01	3426.8#		(5583.93)	$1/2^{+}$	2157.1
3187.6 [#]		(5583.93)	$1/2^+$	2396.3	3430.1#		(5583.93)	$1/2^{+}$	2153.8
3194.8 [#]		(5583.93)	$1/2^{+}$	2389.11	3433.3#		(5583.93)	$1/2^{+}$	2150.6
3202.9 [#]		(5583.93)	$1/2^+$	2381.01	3449.7 [#]		(5583.93)	$1/2^{+}$	2134.2
3210.8 [#]		(5583.93)	$1/2^+$	2373.1	3450.9#		(5583.93)	$1/2^{+}$	2133.00
3215.9 [#]		(5583.93)	$1/2^+$	2368.01	3452.3 [§]	7.4 [§]	(5583.93)	$1/2^+$	2131.6
3219.7 [#]		(5583.93)	$1/2^+$	2364.2	3457.5#		(5583.93)	$1/2^+$	2126.4
3223.0 [#]		(5583.93)	$1/2^+$	2360.9	3459.8#		(5583.93)	$1/2^+$	2124.1
3233.5 [#]		(5583.93)	$1/2^+$	2350.4	3468.0#		(5583.93)	$1/2^{+}$	2115.9
3235.9 [#]		(5583.93)	$1/2^{+}$	2348.01	3472.2 [#]		(5583.93)	$1/2^{+}$	2111.7
3241.0 [#]		(5583.93)	$1/2^{+}$	2342.9	3475.8 [#]		(5583.93)	$1/2^{+}$	2108.1
3243.8 [#]		(5583.93)	$1/2^{+}$	2340.1	3480.5 [#]		(5583.93)	$1/2^{+}$	2103.4
3251.3 [#]		(5583.93)	$1/2^{+}$	2332.6	3485.5 ^{§a}	6.1 [§]	(5583.93)	$1/2^{+}$	2098.05
3257.8 [#]		(5583.93)	$1/2^{+}$	2326.11	3491.0 [#]		(5583.93)	$1/2^{+}$	2092.90
3263.4 [#]		(5583.93)	$1/2^{+}$	2320.51	3493.6 [§]	5.7 [§]	(5583.93)	$1/2^{+}$	2090.3
3268.0 [#]		(5583.93)	$1/2^{+}$	2315.91	3502.8#		(5583.93)	$1/2^{+}$	2081.11
3273.9 [#]		(5583.93)	$1/2^{+}$	2310.0	3505.6#		(5583.93)	$1/2^{+}$	2078.31
3286.6 [#]		(5583.93)	$1/2^+$	2297.3	3506.6 [§]	12.1 [§]	(5583.93)	$1/2^{+}$	2077.3
3289.6 [#]		(5583.93)	$1/2^{+}$	2294.3	3516.3 [#]		(5583.93)	$1/2^{+}$	2067.60
3293.4 [#]		(5583.93)	$1/2^{+}$	2290.5	3519.7 ^{§a}	11.1 [§]	(5583.93)	$1/2^{+}$	2064.12
3298.5 [#]		(5583.93)	$1/2^{+}$	2285.4	3524.2 [#]		(5583.93)	$1/2^{+}$	2059.7
3305.2 [#]		(5583.93)	$1/2^{+}$	2278.7	3530.4 [#]		(5583.93)	$1/2^{+}$	2053.5
3325.5 [#]		(5583.93)	$1/2^{+}$	2258.4	3533.1 [#]		(5583.93)	$1/2^{+}$	2050.8
3328.0 [#]		(5583.93)	$1/2^{+}$	2255.9	3535.3 ^{§a}	7.4 [§]	(5583.93)	$1/2^{+}$	2048.21
3333.0 [#]		(5583.93)	$1/2^{+}$	2250.9	3544.0 [#]		(5583.93)	$1/2^{+}$	2039.9
3334.7 [#]		(5583.93)	$1/2^{+}$	2249.2	3546.5 [#]		(5583.93)	$1/2^{+}$	2037.41
3334.8 [#]		(5583.93)	$1/2^{+}$	2249.11	3559.6 [#]		(5583.93)	$1/2^{+}$	2024.3
3337.6 [#]		(5583.93)	$1/2^{+}$	2246.3	3563.1#		(5583.93)	$1/2^{+}$	2020.8
3340.9 ^{§a}	24 [§]	(5583.93)	$1/2^{+}$	2243.0	3570.3 [#]		(5583.93)	$1/2^{+}$	2013.60
3344.0 [#]		(5583.93)	$1/2^{+}$	2239.9	3581.8 [#]		(5583.93)	$1/2^{+}$	2002.11
3349.3 [#]		(5583.93)	$1/2^{+}$	2234.6	3594.1 [#]		(5583.93)	$1/2^{+}$	1989.8
3353.3 [#]		(5583.93)	$1/2^{+}$	2230.6	3600.5 [#]		(5583.93)	$1/2^{+}$	1983.41
3358.8 [#]		(5583.93)	$1/2^{+}$	2225.1	3606.5 [#]		(5583.93)	$1/2^{+}$	1977.40
3361.9 [#]		(5583.93)	$1/2^{+}$	2222.0	3629.1 [#]		(5583.93)	$1/2^{+}$	1954.81
3363.5 [§]	10.1 [§]	(5583.93)	$1/2^{+}$	2220.4	3634.9 [#]		(5583.93)	$1/2^{+}$	1949.0
3365.3 [#]		(5583.93)	$1/2^{+}$	2218.61	3645.3 [#]		(5583.93)	$1/2^{+}$	1938.6
3378.8 [#]		(5583.93)	$1/2^{+}$	2205.1	3648.8 [#]		(5583.93)	$1/2^{+}$	1935.1
3388.9 [#]		(5583.93)	$1/2^{+}$	2195.00	3651.8 [#]		(5583.93)	$1/2^{+}$	1932.1
3391.5 [#]		(5583.93)	$1/2^{+}$	2192.4	3662.7 [#]		(5583.93)	$1/2^{+}$	1921.2
3393.6 [§]	11.4 [§]	(5583.93)	$1/2^{+}$	2190.3	3668.8 ^{§a}	14.5 [§]	(5583.93)	$1/2^{+}$	1915.28
3398.5 [#]		(5583.93)	$1/2^{+}$	2185.41	3675.3 [#]		(5583.93)	$1/2^{+}$	1908.6
3402.6 [#]		(5583.93)	$1/2^{+}$	2181.3	3691.3 [#]		(5583.93)	$1/2^{+}$	1892.61
3405.8 [#]		(5583.93)	$1/2^{+}$	2178.1	3695.0 [#]		(5583.93)	$1/2^{+}$	1888.90
3415.2 [#]		(5583.93)	$1/2^{+}$	2168.71	3709.3 [#]		(5583.93)	$1/2^{+}$	1874.6
3420.2 [#]		(5583.93)	$1/2^{+}$	2163.7	3721.2 [#]		(5583.93)	$1/2^{+}$	1862.7

$\gamma(^{193}\text{Os})$ (continued)

¹⁹² Os(n, γ) E=thermal	1979Wa04,1978Be22,2002Ba66	(continued)
---	----------------------------	-------------

γ ⁽¹⁹³Os) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	J_i^{π}	E _f	J_f^{π}
3730.3 [#]		(5583.93)	$1/2^{+}$	1853.6	
3735.3 <mark>§</mark>	5.4 [§]	(5583.93)	$1/2^{+}$	1848.6	
3736.8 [#]		(5583.93)	$1/2^{+}$	1847.11	
3745.0 ^{§a}	13.5 [§]	(5583.93)	$1/2^{+}$	1838.40	
3753.3 ^{§a}	3.7 <mark>\$</mark>	(5583.93)	$1/2^{+}$	1830.6	
3757.2 [#]		(5583.93)	$1/2^{+}$	1826.7	
3778.8#		(5583.93)	$1/2^{+}$	1805.1	
3781.9 [#]		(5583.93)	$1/2^{+}$	1802.0	
3785.0 [#]		(5583.93)	$1/2^{+}$	1798.9	
3788.1 [#]		(5583.93)	$1/2^{+}$	1795.8	
3798.7 <mark>\$</mark>	8.1 <mark>\$</mark>	(5583.93)	$1/2^{+}$	1785.2	
3800.1 [#]		(5583.93)	$1/2^{+}$	1783.81	
3818.6 <mark>§a</mark>	8.4 <mark></mark>	(5583.93)	$1/2^{+}$	1765.13	
3823.5 [#]		(5583.93)	$1/2^+$	1760.4	
3829.7 [#]		(5583.93)	$1/2^+$	1754.2	
3839.0#		(5583.93)	$1/2^+$	1744.9	
3846.3 [#]		(5583.93)	$1/2^{+}$	1737.6	
3852.3 [#]		(5583.93)	$1/2^+$	1731.6	
3861.4 [#]		(5583.93)	$1/2^+$	1722.5	
3900.8 ^{§a}	16.8 [§]	(5583.93)	$1/2^{+}$	1683.28	
3903.6 [#]		(5583.93)	$1/2^{+}$	1680.3	
3923.6 [#]		(5583.93)	$1/2^{+}$	1660.3	
3980.6 ^{§a}	24 [§]	(5583.93)	$1/2^{+}$	1603.21	
3992.8 ^{§a}	3.4 [§]	(5583.93)	$1/2^{+}$	1590.93	1/23/2-
4028.1 ^{#a}		(5583.93)	$1/2^+$	1555.8	1)-1
4053.4 ^{§a}	8.8 [§]	(5583.93)	$1/2^{+}$	1530.34	
4059.7 ^{§a}	7.7 [§]	(5583.93)	$1/2^{+}$	1523.64	
4069.0 <mark>§a</mark>	7.7 <mark>\$</mark>	(5583.93)	$1/2^{+}$	1515.52	1/2-,3/2-
4079.8		(5583.93)	$1/2^+$	1504.10	1)-1
4082.1 [§]	5.7 [§]	(5583.93)	$1/2^{+}$	1501.8	
4086.5 [#]		(5583.93)	$1/2^{+}$	1497.4	
4137.4 [#]		(5583.93)	$1/2^{+}$	1446.5	
4149.9 [#]		(5583.93)	$1/2^{+}$	1434.0	
4165.9 [#]		(5583.93)	$1/2^{+}$	1418.00	
4183.9 [#]		(5583.93)	$1/2^{+}$	1400.00	
4185.7 [#]		(5583.93)	$1/2^{+}$	1398.2	
4198.2 ^{§a}	11.4 [§]	(5583.93)	$1/2^{+}$	1385.96	$1/2^{(-)}, 3/2^{(-)}$
4200.3 [#]		(5583.93)	$1/2^{+}$	1383.6	
4225.1 ^{§a}	13.8 [§]	(5583.93)	$1/2^{+}$	1359.52	
4250.1 ^{§a}	8.1 [§]	(5583.93)	$1/2^{+}$	1333.53	
4295.5 ^{§a}	13.5 [§]	(5583.93)	$1/2^{+}$	1288.468	1/2-,3/2-
4301.5 ^{§a}	7.1 [§]	(5583.93)	$1/2^{+}$	1281.480	$1/2^{-}, 3/2^{-}$
4316.6 [#]		(5583.93)	1/2+	1267.3	
4339.3 [#]		(5583.93)	$1/2^{+}$	1244.6	
4358.2 [#]		(5583.93)	$1/2^{+}$	1225.7	

¹⁹²Os(n,γ) E=thermal 1979Wa04,1978Be22,2002Ba66 (continued)

γ ⁽¹⁹³ O	s) (con	tinued)
-	., (,

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^π	Comments
4366.7 ^{§a}	18.2 [§]	(5583.93)	$1/2^{+}$	1216.927	1/2 ⁽⁻⁾ ,3/2 ⁽⁻⁾	
4378.7 [#]		(5583.93)	$1/2^{+}$	1205.2		
4398.5 [#]		(5583.93)	$1/2^{+}$	1185.4		
4405.7 ^{§a}	20 [§]	(5583.93)	$1/2^{+}$	1178.654	1/2-,3/2-	
4413.5 ^{§a}	23 [§]	(5583.93)	$1/2^{+}$	1170.860	$(1/2^+, 3/2^+)$	
4499.4 [#]		(5583.93)	$1/2^{+}$	1085.385	$(1/2^-, 3/2^-)$	
4530.7 ^{§a}	78 [§]	(5583.93)	$1/2^{+}$	1053.856	1/2-,3/2-	
4617.0 [#]		(5583.93)	$1/2^{+}$	966.9		
4694.9 ^{§a}	25 [§]	(5583.93)	$1/2^{+}$	889.462		
4795.4 [#]		(5583.93)	$1/2^{+}$	788.5		
4908.7 [#]		(5583.93)	$1/2^{+}$	675.2		
4996.3 [#]		(5583.93)	$1/2^{+}$	587.6		
5010.7 [#]		(5583.93)	$1/2^{+}$	573.2		
5033.0 [#]		(5583.93)	$1/2^{+}$	550.9		
5276.0 [§]	116 [§]	(5583.93)	$1/2^{+}$	307.0837	1/2-,3/2-	E_{γ} : Other: 5277.0 (2002Ba66).
5348.3 [§]	3.7 <mark>\$</mark>	(5583.93)	$1/2^{+}$	233.8558	1/2-,3/2-	
5481.0 [§]	5.1 [§]	(5583.93)	$1/2^{+}$	102.7325	$(3/2)^{-}$	
5542.0 [§]	6.1 [§]	(5583.93)	$1/2^{+}$	41.4842	$(1/2^{-})$	
5583.3 [§]	79 [§]	(5583.93)	$1/2^{+}$	0.0	3/2-	

[†] From 1979Wa04, unless otherwise noted; uncertainties do not include absolute calibration errors. Calibration (secondary γ 's): E(Os K α_2 x ray)=61.488.

[‡] From 1979Wa04, unless otherwise noted. Units are arbitrary, relative to $I\gamma$ =100 for 265.6 γ . 1978Be22 report 263 mb for the partial cross section of 265.6 γ and total cross section \geq 1.9 b (from summation of $I\gamma$ (high energy)). Uncertainties are statistical only, and do not include estimated systematic errors of<15%.

§ From 1978Be22.

& From 2002Ba66. γ -ray intensity from $\gamma\gamma$ coincidence measurement and reported value for 100 neutron capture (per 100 decay).

[@] From 2002Ba66.

[#] Primary transition from 2002Ba66.

^{*a*} Also reported in 2002Ba66.

^b Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

¹⁹²**Os**(n, γ) **E=res 1979Wa04**

E(res)=2 keV (mean energy of neutron beam (scandium filter used to spread beam over 20 to 30 resonances); FWHM=800 eV); osmium metal targets enriched to 99.03% in ¹⁹²Os; measured averaged intensities of primary transitions (3-crystal pair spectrometer system); determined full set of 1/2⁻ or 3/2⁻ states below 1700 keV.

1974Be78 observed resonances at energies (in eV): 26.03 9; 36.17 15; 43.9 2; 95.7 7; 115.8 11; 126.0 12 transmission through enriched targets, time-of-flight method.

See 2006MuZX for properties of neutron resonances.

¹⁹³Os Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	1/2-,3/2-	
41.2 2	$1/2^{-}, 3/2^{-}$	
102.4 2	$1/2^{-}, 3/2^{-}$	
233.7 <i>3</i>	$1/2^{-}, 3/2^{-}$	
307.3 <i>3</i>	$1/2^{-}, 3/2^{-}$	
434.8 2	$1/2^{-}, 3/2^{-}$	
888.9 <i>3</i>	1/2-,3/2-	At least one member of the 888.6 – 889.5 doublet has $J^{\pi}=1/2^{-},3/2^{-}$.
1053.3 6	$1/2^{-}, 3/2^{-}$	
1178.3 <i>3</i>	$1/2^{-}, 3/2^{-}$	
1218.0 6	$1/2^{(-)}, 3/2^{(-)}$	
1282.4 4	$1/2^{-}, 3/2^{-}$	
1288.0 4	1/2-,3/2-	
1385.6 12	$1/2^{(-)}, 3/2^{(-)}$	
1437.4 9	$1/2^{(-)}, 3/2^{(-)}$	
1515.2 6	$1/2^{-}, 3/2^{-}$	
1589.67	$1/2^{-}, 3/2^{-}$	
(5587.1)	1/2+	E(level): approximate energy of 2-keV resonance capture states (E(level)=S(n) + 2 keV). J^{π} : s-wave capture dominant; target $J^{\pi}=0^+$.

[†] From $E\gamma(g.s.) - E\gamma$ (1979Wa04); uncertainties do not include calibration errors (estimated to be 1.0 keV for absolute energies, 0.3-0.8 keV for relative energies).

[‡] From intense population, suggesting E1 (or probable E1) multipolarity, by primary transitions (1/2⁺ capture states).

¹⁹²Os(d,p) 1978Be22

E(d)=12.0 MeV, θ=20°, 30°, 40°, 55°, 75°, 90°, 95°, 125°; isotope separated ¹⁹²Os targets (≥99% pure); measured E(level) (mag spect, FWHM=12-17 keV), angular distributions.

¹⁹³Os Levels

E(level) [†]	L‡	$\sigma(\theta = 55^\circ)^{\#}$	E(level) [†]	L‡	$\overline{\sigma(\theta = 55^\circ)^{\#}}$
0.0		0.02	952	3	0.04
72	3	0.17	1086	1	0.27
102.8	1	0.45	1178	1	0.10
234	1	0.46	1461	3	0.04
307	1	0.21	1496	3	0.03
399	3	0.08	1517	3	0.05
434	1	0.20	1566	<5	0.39
455	3	0.08	1644		0.03
544		0.03	1668	<5	0.24
762	3	0.08	1697		0.19

[†] Weighted mean values from measurements at all angles, uncertainties not given. Energies were measured relative to 102.8 level, except those at 30°, which were measured relative to 307 level (calibration energies are from ¹⁹²Os(n, γ) E=thermal (1978Be22)).

[‡] Inferred from angular distributions.

[#] In mb/sr. Assumed Q = 3 MeV. Uncertainties not given; evaluated relative uncertainties in the range 5-20%.

192 Os(7 Li, 6 Li γ) 2014Ga14

¹⁹³Os produced via the one neutron transfer ¹⁹²Os(⁷Li,⁶Li) reaction with a E(⁷Li)=44 MeV beam provided by the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). Target consisted of a 1.7 mg/cm² isotopically enriched ¹⁹²Os metallic foil on a 1.1 mg/cm² carbon backing. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$ and x-ray- $\gamma(t)$ coincidences using 14 Compton-suppressed HPGe detectors. Coincidence spectra were analyzed with two time ranges: prompt coincidences defined as t < 50 ns and delayed coincidences defined as 150 ns < t < 400 ns.

Includes data from the ¹⁹²Os(⁸²Se,⁸¹Se) reaction with $E(^{82}Se)=460$ MeV carried out at the Laboratori Nazionali di Legnaro, Italy; used as a cross check of the ¹⁹²Os(⁷Li,⁶Li) results. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ using the GASP array consisting of 40 Compton-suppressed HPGe detectors and an inner BGO ball. Assignment of new gamma rays to ¹⁹³Os was supported by cross coincidences with the 191-keV transition in the partner nucleus ⁸¹Se.

¹⁹³Os Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$\frac{3/2^{-}}{(5/2)^{-}}$		
315.9 4	(9/2 ⁻)	110 ns 28	 Configuration=9/2⁻[505]. Configuration: from a comparison of the hindrance factor per degree of K forbiddenness in the neighboring ¹⁸⁷W and ¹⁹¹Os nuclei, configurations of 9/2⁻[505] and 9/2⁺[624] are suggested. Systematics of these configurations in lighter odd-A Os isotopes suggest the 9/2⁻[505] configuration is most likely. T_{1/2}: from γ(t) of 242.7γ (2014Ga14). T^π from configuration assignment in 2014Ga14.
558.6 5			
868.0 6			
905.1 6			
970.8 6			
1196.2 7			
† From 1	Εν.		

[‡] From Adopted Levels, except where noted.

 $\gamma(^{193}\text{Os})$

R_{ADO} ratios are from the ¹⁹²Os(⁸²Se,⁸¹Se) experiment.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
73.2 3		73.2	(5/2)-	0.0	3/2-		E_{γ} : from Table 1 of 2014Ga14. A value of 72.9 keV is given in the authors' Figure 3.
242.7 ^{&} 3		315.9	$(9/2^{-})$	73.2	$(5/2)^{-}$	[E2]	
242.7 ^{&} 3	100 15	558.6		315.9	(9/2 ⁻)		
309.4 [§] 3	27 4	868.0		558.6			R _{ADO} =0.74 10.
328.2 [§] 3	17 <i>3</i>	1196.2		868.0			R _{ADO} =0.74 <i>13</i> .
346.5 [§] 3	19 <i>3</i>	905.1		558.6			R _{ADO} =0.63 10.
412.2 [§] 3	40 6	970.8		558.6			R _{ADO} =1.63 15.

[†] Authors provide a general statement that systematic uncertainties are 0.1 to 0.6 keV depending on the energy region. Evaluator assigns $\Delta E\gamma=0.3$ keV.

^{\ddagger} From the ¹⁹²Os(⁸²Se,⁸¹Se) experiment.

§ Observed only in the 192 Os(82 Se, 81 Se) experiment.

[&] Multiply placed.

Adopted Levels, Gammas

 $Q(\beta^{-})=-56.6 \ 3; \ S(n)=7771.99 \ 20; \ S(p)=5943.0 \ 24; \ Q(\alpha)=1018 \ 8 \ 2017Wa10$

¹⁹³Ir Levels

The rotational bands of ¹⁹³Ir with axially asymmetric core are discussed in 1979Vi06, 1983Ci01, 1987Pr10 and 1997Dr04. The band assignments are based on assignments in ¹⁹³Ir(n,n' γ) (1987Pr10), ¹⁹⁴Pt(t, α) (1983Ci01), ¹⁹²Os(³He,d) (1971Pr13) and ¹⁹²Ir(n, γ) (1997Dr04). Spin(6) symmetry and U(6/4), U(6/20) supersymmetry are used to describe ¹⁹³Ir (1983Ci01, 1984Mu19, 1987Mc01, 2000Be07).

Cross Reference (XREF) Flags

А	¹⁹³ Os β^- decay	G	$^{192}Os(^{3}He,d), (\alpha,t)$	М	Coulomb excitation
В	¹⁹³ Ir IT decay (10.53 d)	Н	192 Os(⁷ Li, α 2n γ)	Ν	194 Pt(d, ³ He)
С	¹⁹³ Pt ε decay (50 y)	I	¹⁹³ Ir(γ, γ):Mossbauer	0	¹⁹⁴ Pt(pol t, α), (t, α)
D	191 Ir(t,p)	J	¹⁹³ Ir(γ, γ'):res fluorescence	Р	Muonic atom
E	192 Ir(n, γ) E=TH	K	193 Ir(n,n' γ)	Q	(HI,xnγ)
F	192 Os(d,n γ)	L	Inelastic scattering		

E(level) [†]	J^{π}	T _{1/2}		XREF	Comments
0.0@	3/2+	stable	ABC	DEFGHIJKLMNOPQ	$\begin{split} & \mu = +0.1637 \ 6; \ Q = +0.751 \ 9 \\ J^{\pi}: \ optical \ spectroscopy \ (1976Fu06), \ L(^{3}He,d) = 2, \ L(d,^{3}He) = 2. \\ & \mu: \ Atomic \ beam \ (direct) \ (2014StZZ, 1984Bu15). \ Other: \ +0.1591 \ 6 \\ & (NMR \ 2014StZZ, 1968Na01). \\ Q: \ Hyperfine \ structure \ of \ muonic \ x \ rays \ (2014StZZ, 1984Ta04); \\ & Others: \ +0.7 \ 2 \ Atomic \ beam \ (1978Bu17), \ +0.73 \ 7 \ Laser \\ & spectroscopy \ (2006Ve10). \\ Isotope \ shift: \ \Delta < r^{2} > (^{191}Ir, ^{193}Ir) = 0.044 \ fm^{2} \ 4 \ (1989Sa31); \\ & < r^{2} > ^{1/2} = 5.40 \ fm \ 11 \ (2004An14). \end{split}$
73.041 5	1/2+	6.09 ns <i>15</i>	Α	EFG I KLMNO	 μ=+0.519 2 J^π: J=1/2 from ¹⁹³Ir(γ,γ): Mossbauer; π from M1+E2 γ to 3/2⁺ level. T_{1/2}: from ¹⁹³Os β⁻ decay; other: 4.1 ns 3 (B(E2) in Coulomb excitation). μ: Mossbauer (2014StZZ,1969Pe05). 2005Ki01 observed nuclear excitation by electron transitions (NEET) of 2.8×10⁻⁹ 4 times the K-shell photoelectric cross section at energy: Ir K-edge + 128 eV (76.229 keV); synchrotron radiation, internal conversion electron time spectroscopy using Si avalanche photodiode.
80.238 ^{<i>a</i>} 6	11/2-	10.53 d 4	AB	EFGH JK M O Q	% $\dot{I}T=100$ J ^{π} : M4 γ to 3/2 ⁺ . T _{1/2} : from ¹⁹³ Ir IT decay (10.53 d) (1987Li16).
138.941 [@] 5	5/2+	69.7 ps <i>10</i>	A	EFG I KLMNOP	$ \begin{array}{l} \mu = +0.89 \ 4 \\ J^{\pi}: \ M1 + E2 \ \gamma \ to \ 3/2^+ \ level, \ M1 + E2 \ \gamma \ from \ 7/2^+ \ level; \\ T_{1/2}: \ from \ recoil-distance \ method \ in \ Coulomb \ excitation \\ (2000Be07). \ Other: \ 80 \ ps \ 5 \ (^{193} Os \ \beta^- \ decay); \ 80 \ ps \ 2 \\ (^{193} Ir(\gamma, \gamma): Mossbauer). \\ \mu: \ From \ transient \ field \ IMPAC \ measurement \ ((^{58} Ni, ^{58} Ni') \ and \\ (^{65} Cu, ^{65} Cu') \ - \ 2000Be07). \ Others: \ +0.53 \ 3 \ transient \ field \ IMPAC \\ measurement \ ((^{32} S, ^{32} S') \ (Coulomb \ excitation) \\ 2014StZZ, 1986Ko20); \ +0.93 \ 5 \ (1996St22) \ (transient \ field \ IMPAC \\ measurement) \ (1996St22) \ (the \ reason \ for \ discrepancy \ with \ the \\ datum \ from \ 1986Ko20 \ is \ not \ clear \ (1996St22)). \end{array}$

¹⁹³Ir Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XF	REF	Comments
180.069 ^{&} 4	3/2+	44 ps 15	A	EFG	KLMNO	$\mu = 1.1 \ 4 \ (2014StZZ, 1973II02)$ J ^{π} : M1+E2 γ to 1/2 ⁺ level.
						T _{1/2} : unweighted average of 59 ps 7 (¹⁹³ Os β^- decay) and 28 ps 4 (B(E2) in Coulomb excitation). μ : from integral perturbed angular correlation.
299.396 ^b 7	7/2-	0.19 ns <i>3</i>	A	EFG	K MNO	J^{π} : L=3 in ¹⁹⁴ Pt(d, ³ He); J=L+1/2 ¹⁹⁴ Pt(pol t, α); E2 γ to 11/2 ⁻ level.
	= /o+	10 5 5				$T_{1/2}$: from $\gamma\gamma(t)$ in 155 Os β decay.
357.768 5	1/2"	18.7 ps 7	A	EFG	KLM O	μ =+1.54 6 J ^{π} : $\gamma\gamma(\theta)$ in Coulomb excitation (1958Mc02) is consistent only with J=7/2; M1+E2 γ to π =+ level; L=2 in inelastic scattering.
						$T_{1/2}$: from recoil-distance method in Coulomb excitation (2000Be07,1986Ko20).
						μ : From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni') and (⁶⁵ Cu, ⁶⁵ Cu') – 2014StZZ, 2000Be07, 1996St22). Others: +1.7 <i>3</i> (transient field IMPAC measurement in Coulomb Excitation – relative to μ (138.9 level)=+0.528 <i>30</i> - 2014StZZ,1986Ko20).
361.857 ^{&} 5	5/2+‡	27 ps 3	Α	EFG	K MNo	J^{π} : L=2 in ¹⁹⁴ Pt(d, ³ He), (E2) to $1/2^+$.
						$T_{1/2}$: weighted average of 36 ps 7 (¹⁹³ Os β^- decay) and 25 ps 3 (B(E2) in Coulomb excitation).
460.538 ^c 4	$3/2^{+}$	13.4 ps 10	А	EF	JKLMNO	J^{π} : M1+E2 γ to 1/2 ⁺ level, band structure.
	·	·				T _{1/2} : Weighted average of 17 ps 4 (¹⁹³ Os β^- decay), 13.8 ps 10 (B(E2) in Coulomb excitation), 11 ps 2 (¹⁹³ Ir(γ,γ'):res fluorescence).
469.384 ^a 11	$(13/2^{-})^{\#}$			EF H	K Q	J^{π} : (M1) γ to $11/2^{-}$ level. Band structure.
478.988 ^a 14	$(15/2^{-})^{\#}$			EF H	K Q	J^{π} : (E2) γ to $11/2^{-}$ level. Band structure.
516.414 ^{&} 6	$(7/2)^+$		Α	EF	ΚM	J^{π} : (E2) γ to $3/2^+$ level, γ from $(11/2^+)$ level; band structure.
521.926 [@] 6	$(9/2)^+$	13.2 ps 19		EF	KLM	$\mu = +2.2 2$
	(F				J^{π} : (M1) γ to 7/2 ⁺ level, (E2) γ to 5/2 ⁺ level; band structure.
						μ : From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni') - 2014StZZ, 1996St22). Other: +3.8 <i>11</i> (relative to μ (138.9 level)=+0.528 <i>30</i> , transient field IMPAC in Coulomb
557 1126 6	$(1/2)^{+}$	21 mg 8		EE	א ער	excitation (1986Ko20)). M_1 , M_1 , E_2 at the $2/2^+$ leavely $1/2^+$ consistent with hand
557.415 0	(1/2)	54 ps o	A	EF	JK II	J: M1+E2 γ to 5/2 level; 1/2 consistent with band assignment
						$T_{1/2}$: from ¹⁹³ Os β^- decay.
559.298 5	5/2+‡	1.08 ps 16	А	EFG	JK MNO	XREF: G(562).
	,	I				J^{π} : L=2 in ¹⁹⁴ Pt(d, ³ He); M1 γ to 5/2 ⁺ level.
						T _{1/2} : from ¹⁹³ Ir(γ, γ') res fluorescence. configuration: assigned as 5/2 ⁺ 5/2[402] state by 1971Pr13 (¹⁹³ Os(³ He,d), (α ,t)).
563.402 ^b 7	$(9/2^{-})^{\#}$		Α	EF	ΚM	J ^{π} : (M1) γ 's to 7/2 ⁻ and 11/2 ⁻ levels; band structure.
598.220 ^d 6	3/2-	2.8 ps +28-9	Α	EF	JKLM	J ^{π} : M1 γ from 5/2 ⁻ level; γ to 1/2 ⁺ level. Band structure.
						T _{1/2} : from ¹⁹⁴ Ir(γ, γ'): res fluorescence.
620.991 ^e 7	7/2+	4.3 ps <i>3</i>	A	EFG	KLMNO	μ =+1.16 <i>14</i> J ^{π} : L=4 in ¹⁹⁴ Pt(d, ³ He) and ¹⁹² Os(³ He,d), (α ,t); J=L-1/2 in ¹⁹⁴ Pt(pol t, α); γ to 3/2 ⁺ .
						$1_{1/2}$: from recoil distance method and B(E2) in Coulomb

¹⁹³Ir Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XR	EF	Comments
						excitation.
						μ: From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni') - 2014StZZ, 1996St22). Other: +0.5 <i>4</i> (relative to $μ(138.9 level)=+0.528$ <i>30</i> transient field IMPAC measurement in Coulomb excitation 2014StZZ, 1986Ko20).
695.142 ^c 5	5/2+‡		A	EF	KLMNO	J ^{π} : 234.6 γ M1+E2 to 3/2 ⁺ level, 337.3 γ to 7/2 ⁺ level. Band structure.
712.180 5	3/2+‡	15 ps 14	A	EF	K MNO	J ^{π} : M1+E2 γ 's to 3/2 ⁺ and 5/2 ⁺ levels. T _{1/2} : from ¹⁹³ Os β^- decay.
740.380 ^d 6 806.902 8	$5/2^{-}$ (5/2) ⁺		A A	EF EF	KLM K M	J^{π} : M1+E2 γ to 7/2 ⁻ level; M1 γ to 3/2 ⁻ level. J^{π} : (M1) γ to 7/2 ⁺ level, γ to 1/2 ⁺ level.
828.92 9	$(9/2^{-})^{\#}$				Кo	J^{π} : γ to $11/2^{-}$ level.
832.893 ^b 10	$(11/2^{-})^{\#}$			EF	Ко	J^{π} : (M1) γ to (9/2 ⁻) level, (E2) γ to 7/2 ⁻ level; band structure.
838.918 ^{&} 8	(9/2+)			EF	М	J^{π} : (M1) γ to (7/2) ⁺ level, (E2) γ to 5/2 ⁺ level; band structure.
848.967 13	$3/2^{(+)}, 5/2^{(+)}$		A	Еg	K nO	J ^{π} : 388.60 γ (M1) to 3/2 ⁺ level, 487.217 γ (E2) to 5/2 ⁺ level, 491.26 γ to 7/2 ⁺ .
857.027 [@] 7	(11/2)+	4.2 ps 4		EFg	KLM	μ =+2.7 7 J ^{π} : (E2) γ to 7/2 ⁺ level, (M1) γ to (9/2) ⁺ level; band structure. T _{1/2} : From B(E2) to 357.8 level in Coulomb excitation.
						μ: From transient field IMPAC measurement ((³⁸ Ni, ³⁸ Ni') - 2014StZZ, 1996St22).
874.290 8	3/2+,5/2+		A	EF	K nO	J^{π} : γ 's to $1/2^+$ and $7/2^+$. Assigned $7/2^+$ member of the second $K^{\pi}=1/2$ band in $(n,n'\gamma)$; however, this assignment is inconsistent with observed transitions to $1/2^+$ levels.
879.49 17			Α			
882.19 7			Α			
890.41 7 802.260 ^e 11	$(0/2^+)$		A	FF	V M	I^{π} , a's to $5/2^+$ and $(0/2)^+$ levels; hand structure
018363d 7	$(\frac{3}{2})^{\#}$			FF	K II K	π^{-1} (M1) α to $5/2^{-1}$ level. (E2) α to $3/2^{-1}$ level: band
918.303 7	(1/2)			LI	K	structure.
930.429 ^a 16 959.73 3	$(17/2^{-})^{\#}$		А	EF H	K Q	J^{π} : γ to $(15/2^{-})$ level; band structure.
964.41 3	1/2+		A	G	K N	XREF: G(969). J^{π} : L=0 in ¹⁹⁴ Pt(d, ³ He).
972.872 11	$(5/2^+)^{\#}$			EF	к о	J^{π} : γ 's to $1/2^+$, $5/2$ and $7/2^+$ levels.
975.330 <i>13</i>	$(11/2^{-})^{\ddagger}$			Е	0	J^{π} : (E2) γ to (15/2 ⁻) level, (M1) γ to (13/2 ⁻) level.
1009.354 10	$(11/2^+)^{\#}$			Е	K	J^{π} : (E2) γ to $(7/2)^+$ level, γ to $(13/2^-)$ level.
1019.589 ^{&} 10	$(11/2^+)^{\#}$			Е	K	J^{π} : (E2) γ to $(7/2)^+$ level; band structure.
1026.0 ^{<i>a</i>} 3	(19/2 ⁻)			Н	Q	J^{π} : 545.7 γ Q to (17/2 ⁻), band structure.
1035.465 [@] 8	(13/2 ⁺)			EF	Μ	J ^{π} : (M1) γ to (11/2) ⁺ level, (E2) γ to (9/2) ⁺ level; band structure.
1035.855 25	3/2+,5/2(+),7/2+			EF	K o	XREF: o(1032).

¹⁹³Ir Levels (continued)

E(level) [†]	\mathbf{J}^{π}		XR	EF		Comments
						J ^{π} : γ 's to 3/2 ⁺ and 7/2 ⁺ levels; 5/2 ⁻ not consistent with ¹⁹³ Ir(n,n' γ) data.
1038.054 10	$(5/2^+, 7/2^+)^{\#}$		E	K	0	XREF: $o(1032)$. I^{π} : γ'_{s} to $(9/2)^{+}$ and $3/2^{+}$ levels
1065.89 6	1/2+,3/2(+),5/2+		g	K	0	J^{π} : γ 's to $1/2^+$ and $5/2^+$ levels; $3/2^-$ not consistent with 193 Ir(n,n' γ) data; multiply placed γ to $7/2^+$ level would rule out $1/2^+$.
1076.47 8	$(3/2^+)^{\#}$		g	K	0	XREF: $o(1080)$. J ^{π} : γ 's to 5/2 ⁺ and 7/2 ⁺ levels.
1077.99 14	(3/2 ⁻ ,5/2 ⁻) [#]	A	Fg	K	0	XREF: $o(1080)$. I^{π} : γ'_{5} to $5/2^{-}$ and $7/2^{-}$ levels.
1126				L		
1131.17 11	5/2-		G	K	0	XREF: O(1146). J^{π} : L=3 in ¹⁹² Os(³ He,d), (α ,t); γ to 3/2 ⁺ level. Assigned as 5/2 ⁻ 1/2[541] state by 1971Pr13 (¹⁹² Os(³ He,d), (α ,t)).
1145.614 ^{<i>d</i>} 10	(9/2)-		ΕG	K	0	XREF: G(1150)O(1146). J ^{π} : L=5 in ¹⁹² Os(³ He,d), (α ,t); 9/2 ⁻ consistent with band assignment. Alternatively assigned as 9/2 ⁻ 1/2[541] state by 1971Pr13 (¹⁹² Os(³ He,d), (α ,t)).
1163 3	$(13/2)^+$		G		0	XREF: O(1146). J ^{π} : L=6 in ¹⁹² Os(³ He,d), (α ,t). Assigned as 13/2 ⁺ 1/2[660] state by 1971Pr13.
1168.06 ^b 13	$(13/2^{-})^{\#}$			К		J^{π} : γ 's to $(11/2^{-})$ and $(13/2^{-})$ levels; band structure.
1169.170 ^e 8 1193	$(11/2^+)^{\#}$		EF	K M L		J^{π} : (E2) γ to 7/2 ⁺ level, (M1) γ to (11/2) ⁺ level; band structure.
1201 3	1/2-,3/2-‡		G		0	E(level): from ¹⁹² Os(³ He,d), (α ,t). J ^{π} : L=1 in ¹⁹² Os(³ He,d), (α ,t).
1250.42 8	$(3/2,5/2)^{+\#}$			K	0	J^{π} : γ 's to $5/2^+$ and $7/2^+$ levels.
1286	5/2-,7/2-		G		0	E(level): from ¹⁹² Os(³ He,d), (α ,t). J ^{π} : L=3 in ¹⁹² Os(³ He,d), (α ,t).
1358.8 5	(19/2 ⁻)		Н	L	0	XREF: L(1347)O(1344). J^{π} : 428.4 γ d to (17/2 ⁻).
1398 <i>10</i> 1407			G		0	
1438.429 ^{&} 11	$(13/2^+)^{\#}$		Е	К		J^{π} : γ to $(9/2^+)$ level; band structure.
1459.968 [@] 11	$(15/2)^+$		EF	М		J^{π} : γ 's to $(11/2)^+$ and $(13/2)^+$ levels; band structure.
1511.714 17	$(3/2^+)^{\ddagger}$		EF	KL	0	XREF: $O(1504)$. I^{π} : $(M1+E2) \propto to 5/2^+$ level $\propto to (1/2)^+$ level
1527.7 <i>4</i> 1552 <i>10</i>	$(21/2^{-})$		Н		Q	J^{π} : 501.3 γ d to (19/2 ⁻), γ to (17/2 ⁻).
1592.6^{a} 4	(21/2 ⁻)		Н		0 Q	XREF: O(1583). J^{π} : 662.7 γ Q to (17/2 ⁻), band structure.
1609 5 1639 5					0 0	
1650.5 [@] 5 1690 5	$(17/2^+)$			М	0	J^{π} : γ to $(13/2)^+$ level; band structure.
1698 <i>3</i>	3/2+,5/2,7/2-		G			J^{π} : L=2 or 3 in (³ He,d), (α ,t).
1714.9 ^{<i>a</i>} 4	$(23/2^{-})$		H		Q	J^{π} : Q γ to (19/2 ⁻), band structure.
1728.5 <i>4</i> 1744 <i>5</i>	(23/2 ⁻ ,25/2 ⁻)		Н		Q 0	J^{α} : 200.8 γ to (19/2 ⁻).
1759 [†] 3	$(3/2)^{-}$		G			J ^{π} : L=1 in ¹⁹² Os(³ He,d), (α ,t); band structure.
1820^{f} 3	$(7/2)^{-}$		G			J^{π} : L=3 in ¹⁹² Os(³ He,d), (α ,t); band structure.
1823.7 4	(23/2)				Q	J^{π} : 231.3 γ to (23/2 ⁻ ,25/2 ⁻), 797.4 γ to (19/2 ⁻).

¹⁹³Ir Levels (continued) E(level)[†] J^{π} $T_{1/2}$ XREF Comments 1826.5 0 J^{π} : J=L+1/2 in ¹⁹⁴Pt(pol t, α). 1845.2 6 (23/2)Q J^{π} : 819.2 γ to (19/2⁻). 1866 5 0 1893.9 5 Н 0 Q XREF: O(1898). $(25/2^{-})$ J^{π} : 165.3 γ M1 to (23/2⁻). 1935.5 $(5/2^+)^{\ddagger}$ 0 1944.3 5 25/2-,27/2- J^{π} : 215.8 γ M1+E2 to (23/2⁻). 0 G 1970.3 1999 *3* G 2029 G 2052.3 5 $(27/2^{-})$ J^{π} : 323.9 γ (E2) to (23/2⁻), 158.3 γ M1 to (27/2⁻). 0 2179.0[@] 5 $(19/2^+)$ М J^{π} : decay to $(15/2)^+$ level; band structure. 2231.7 6 $(29/2^+)$ J^{π} : 337.8 γ M2 to (25/2⁻). 0 2278.9 5 $31/2^{+}$ 124.8 µs 21 %IT=100 0 T_{1/2}: from γ (t) (HI,xn γ). configuration: possible $v(9/2^{-}[505], 11/2^{+}[615]) \otimes \pi(11/2^{-}[505])$. $2404?^{@}$ $(21/2^+)$ М J^{π} : possible member of rotational band (Coulomb excitation).

- [†] For levels seen in ¹⁹³Os β^- decay, ¹⁹²Ir(n, γ), ¹⁹²Os(d,n γ) and ¹⁹³Ir(n,n' γ) reaction and Coulomb excitation, E(level) is from a least-squares fit to E γ , assuming Δ E=0.5 keV for missing uncertainties. Fifteen γ transitions fit poorly. Uncertainty tripled for those γ rays during the fit: 96.815 γ , 418.431 γ from 557.427; 154.721 γ , 573.267 γ from 712.169; 181.38 γ , 176.907 γ from 740.376; 388.60 γ , 487.217 γ , 709.924 γ from 848.982; 282.34 γ , 418.31 γ from 879.49; 369.81 γ , 752.73 γ from 892.262; 459.5 γ from 930.430; and 662.636 γ from 1511.665. χ^2_{crit} =1.3, prior χ^2 =6 and later χ^2 =1.8. 282.34 γ , 418.31 γ yet had a poor fit. 740 keV level during the fit. For levels seen only in particle reactions, the source is given only if an ambiguity exists.
- [‡] From angular distributions and analyzing powers in ¹⁹⁴Pt(pol t, α), (t, α).
- [#] From comparison of experimental and theoretical level-population rates in ¹⁹³Ir(n,n' γ), and γ -ray decay systematics (1987Pr10).
- [@] Band(A): $K^{\pi} = 3/2^+$, 3/2[402] band.
- [&] Band(B): $K^{\pi} = 1/2^+$, 1/2[400] band.
- ^{*a*} Band(C): $K^{\pi} = 11/2^{-}$, 11/2[505] band.
- ^b Band(D): $K^{\pi} = 7/2^{-}$, 7/2[523] band.
- ^c Band(E): $K^{\pi} = 1/2^+$, 1/2[411] band.
- ^d Band(F): $K^{\pi} = 3/2^{-}$, 3/2[532] band.
- ^e Band(G): $K^{\pi} = 7/2^+$, 7/2[404] band.
- ^{*f*} Band(H): $K^{\pi} = 1/2^{-}$, 1/2[530] band.

$\gamma(^{193}\mathrm{Ir})$

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^e	$I_{(\gamma+ce)}$	Comments
73.041	1/2+	73.029 [§] 15	100	0.0	3/2+	M1+E2	-0.558 5	6.10 10		$B(M1)(W.u.)=0.00100 \ 3; B(E2)(W.u.)=22.6 \ 8$
80.238	11/2-	80.234 ^{<i>a</i>} 7	100	0.0	3/2+	M4		2.11×10 ⁴		B(M4)(W.u.)=2.15 4 Mult.: From ¹⁹³ Ir IT decay (10.53 d).
138.941	5/2+	138.930 <i>18</i>	100	0.0	3/2+	M1+E2	-0.362 [#] 6	2.26		B(M1)(W.u.)=0.0320 6; B(E2)(W.u.)=84 3 δ : Others: 0.316 15, 0.353 21, 0.329 12 (¹⁹³ Os β^{-} decay).
180.069	$3/2^{+}$	41.18 [§] 7		138.941	$5/2^{+}$				12 [§] 3	
		107.022 ^{&} 5	$100^{\&} 4$	73.041	$1/2^{+}$	M1+E2	+0.164 8	5.00		B(M1)(W.u.)=0.061 23; B(E2)(W.u.)=55 22
		180.071 ^{&} 7	28.6 ^{&} 14	0.0	3/2+	M1+E2	-0.48 2	1.028 17		B(M1)(W.u.)=0.0031 <i>12</i> ; B(E2)(W.u.)=8 4 I_{γ} : Other: 71 8 (Coulomb Excitation).
299.396	$7/2^{-}$	219.158 ^{&} 7	100	80.238	$11/2^{-}$	E2		0.254		B(E2)(W.u.)=71 12
357.768	7/2+	218.826& 7	87 ^{&} 4	138.941	5/2+	M1+E2 [#]	$-0.280^{\#} 9$	0.638 10		B(M1)(W.u.)=0.0375 24; B(E2)(W.u.)=23.8 21
		357.761 [§] 10	100 [§] 2	0.0	3/2+	E2 [#]		0.0571		B(E2)(W.u.)=32.3 <i>17</i> Mult.: Q from Coulomb excitation, E2 from ce data (192 Ir(n, γ)).
361.857	5/2+	181.792 ^{&} 7	66 <i>3</i>	180.069	3/2+	M1+E2	+0.149 11	1.107		B(M1)(W.u.)=0.026 5; B(E2)(W.u.)=6.8 16 I _{γ} : Weighted average of data from β^- decay, (n, γ), (d,n γ), Coul. Ex., and (n,n' γ).
		288.819 [§] 10	49.5 6	73.041	1/2+	(E2)		0.1063		B(E2)(W.u.)=22 4 I _{γ} : Weighted average of data from β^- decay, (n, γ), Coul. Ex., and (n,n' γ).
		361.858 [§] 10	100 [#] 7	0.0	3/2+	M1+E2	-0.315 19	0.159 3		B(M1)(W.u.)=0.0041 7; B(E2)(W.u.)=1.21 25
460.538	3/2+	98.681 [§] 10	0.42 [§] 1	361.857	$5/2^{+}$	M1		6.36		B(M1)(W.u.)=0.0032 6
		280.465 ^{&} 3	31.7 [§] 2	180.069	$3/2^{+}$	M1+E2	-0.049 12	0.337		B(M1)(W.u.)=0.0105 8; B(E2)(W.u.)=0.12 7
		321.604 ^{&} 7	32.1 [§] 2	138.941	5/2+	M1+E2	+0.234 10	0.225		B(M1)(W.u.)=0.0067 6; B(E2)(W.u.)=1.38 16 I _{γ} : Other: 42 3 (n,n' γ).
		387.509 [§] 10	31.6 [§] 2	73.041	$1/2^{+}$	M1+E2	-0.24 4	0.136 3		B(M1)(W.u.)=0.0038 3; B(E2)(W.u.)=0.56 19
		460.547 ^{&} 7	100.0 [§] 5	0.0	$3/2^{+}$	M1+E2	-0.64 3	0.0718 16		B(M1)(W.u.)=0.0053 5; B(E2)(W.u.)=4.0 4
469.384	$(13/2^{-})$	389.140 ^{&} <i>10</i>	100	80.238	$11/2^{-}$	(M1) ^{&}		0.1395		
478.988	$(15/2^{-})$	398.775 ^{&} 23	100	80.238	$11/2^{-}$	(E2) ^{&}		0.0424		
516.414	(7/2)+	154.554 ^{&} 7	24 ^{&} 3	361.857	5/2+	(M1) ^{&}		1.770		I _{γ} : Others: 15 4 (β^- decay), 30 4 (Coul. Ex), 14 6 (n,n' γ).
		336.343 ^{&} 9	99 ^{&} 9	180.069	3/2+	(E2) ^{&}		0.0679		I _γ : Others: 100 6 (β^- decay), 57 12 (Coul. Ex), 47 6 (n,n'γ), 21 5 ((d,nγ) – complex peak).

62

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}6$

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}6$

$\gamma(1)$ (continued)	$\gamma(^{193}\text{Ir})$	(continued)
-------------------------	---------------------------	-------------

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
516.414	$(7/2)^+$	377.477 & 7	100 [#] 7	138.941	$5/2^{+}$	(M1) ^{&}		0.1513	
	(.,=)	516.475 ^{&h} 15	<11&	0.0	$3/2^+$	()			γ multiply placed in ¹⁹² Ir(n, γ).
521.926	$(9/2)^+$	164.158 ^{&} 4	10.5 8	357.768	$7/2^{+}$	(M1) ^{&}		1.493	B(M1)(W.u.)=0.0285
					,				I_{γ} : Weighted average of data (n,γ) and Coul. Ex.
		382.989 ^{&} 7	100 [#] 3	138.941	$5/2^{+}$	(E2) ^{&}		0.0473	B(E2)(W.u.)=61 9
557.413	$(1/2)^+$	96.815 [§] 15	7.18 [§] 15	460.538	$3/2^{+}$	M1+E2	0.171 <i>19</i>	6.68	B(M1)(W.u.)=0.027 7; B(E2)(W.u.)=32 11
		377.340 ^{&} 10	4.96 [§] 4	180.069	$3/2^{+}$	M1(+E2)	1.0 5	0.10 3	B(M1)(W.u.)=0.00016 10; B(E2)(W.u.)=0.4 3
		418.431 [§] <i>16</i>	3.98 [§] 3	138.941	$5/2^{+}$	[E2]		0.0373	B(E2)(W.u.)=0.44 11
			8						I_{γ} : Other: 8.7 15 (n, γ).
		484.3598 10	12.858 18	73.041	1/2+	(M1)		0.0782	
		557.401 ⁸ 10	$100.0^8 9$	0.0	3/2+	(M1)		0.0541	B(M1)(W.u.)=0.00205
559.298	5/2+	197.486 ⁸ 24	$0.89^{8}5$	361.857	5/2+	[M1,E2]		0.6 3	
		201.535 7	0.78^{8}	357.768	7/2+	[M1,E2]		0.6 3	
		3/9.230 11	2.088 8	180.069	3/2*	[M1,E2]		0.10 5	
		420.351 8	32.88 3	138.941	5/2+	M1		0.1136	$B(M1)(W.u.)=0.061 \ IO$
		486.255 ⁸ 10	2.198 2	73.041	1/2+	[E2]		0.0254	B(E2)(W.u.) = 5.6 I2
562.402	(0)	559.289 ⁸ 10	100.08 8	0.0	3/2*	(MI)		0.0537	B(M1)(W.u.)=0.077/13
563.402	(9/2-)	264.005 5	100.0×5	299.396	1/2-	$(M1)^{\infty}$		0.398	
500 000	2/2-	483.160 8	63 ^{cc} 4	80.238	11/2	(M1)		0.0787	
598.220	3/2-	236.318 4	0.358 6	361.857	5/2*				
		298.828 ^{cc} 10	$100.0^{8} \ 10$	299.396	7/2-	(E2)		0.0959	B(E2)(W.u.) exceeds RUL, however, with considerable uncertainty.
		418 [§]	3.8 [§] 8	180.069	3/2+	[E1]		0.01176	$B(E1)(W.u.)=3.0\times10^{-5}+12-30$
		525.190 [§] <i>10</i>	$10.8^{\textcircled{0}}$ 4	73.041	$1/2^{+}$	[E1]		0.00717	$B(E1)(W.u.)=4.0\times10^{-5}+14-40$
		598.42 [§] 7	0.38 [§] 13	0.0	$3/2^{+}$	[E1]		0.00547	$B(E1)(W.u.)=1.0\times10^{-6}+5-10$
620.991	7/2+	259.8 [@] 13	5.5 [@] 20	361.857	$5/2^{+}$	[M1,E2]		0.28 14	I_{γ} : relative to $I_{\gamma}(620.98)=74$.
		263.218 ^{&} 8	13.6& 7	357.768	7/2+	M1+E2 [#]	-0.26 [#] 11	0.385 16	B(M1)(W.u.)=0.0174 20; B(E2)(W.u.)=7 6
		482.048 8	100 [#] 4	138.941	5/2+	M1+E2 [#]	-0.93 [#] 11	0.054 4	B(M1)(W.u.)=0.0119 18; B(E2)(W.u.)=17 3
		620.98 ^{&} 3	75 & 6	0.0	$3/2^{+}$	[E2]		0.01425	B(E2)(W.u.)=7.8 8
695.142	$5/2^{+}$	96.969 [§] 15	0.73 [§] 16	598.220	3/2-				
		135.88 ^{&} 3	1.9 ^{&} 10	559.298	$5/2^{+}$	[M1,E2]		2.0 6	I_{γ} : Unweighted average from β^- decay and (n,γ) .
		234.608 7	100.0 [§] 2	460.538	$3/2^{+}$	M1+E2	-0.36 9	0.505 21	
		333.28 💥 4	5.3 [§] 4	361.857	5/2+	(M1) ^{&}		0.211	
		337.33 ^{&} 3	1.38 [§] 24	357.768	7/2+	[M1,E2]		0.14 7	I _{γ} : Others: 80 20 (d,n γ), 100 10 (n, γ) (discrepant data).

63

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}7$

NUCLEAR DATA SHEETS

$\gamma(^{193}$ Ir) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	${\rm I}_{\gamma}^{\dagger}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
695.142	5/2+	515.064 ^{&} 9	23.8 [§] 3	$\frac{180.069}{3/2^+}$	$(M1+E2)^{\&}$		0.044 23	
	- /	556.175 ^{&} 9	6.1 ^{&} 5	138.941 5/2+	(M1+E2) ^{&}		0.036 18	
		695.159 [§] 14	5.53 [§] 16	$0.0 3/2^+$	[M1,E2]		0.021 10	
712.180	3/2+	154.721 ^{&} 4	12.96 [§] 24	557.413 (1/2)+	M1+E2	+0.26 3	1.71 <i>3</i>	B(M1)(W.u.)=0.019 18; B(E2)(W.u.)=20 20 I_{γ} : Other: 32 15 (n,n' γ).
		251.635 ^{&} 7	100.0 [§] <i>13</i>	460.538 3/2+	M1+E2	-0.11 3	0.451	B(M1)(W.u.)=0.04 4; B(E2)(W.u.)=3 3
		350.325 ^{&} 9	2.64 [§] 22	361.857 5/2+	[M1,E2]		0.12 7	I_{γ} : 69 10 (n, γ).
		354.25 [§] 12	0.043 [§] 24	357.768 7/2+				
		532.126 [§] 10	40.0 [§] 4	180.069 3/2+	M1+E2	+0.48 +32-16	0.053 9	B(M1)(W.u.)=0.0013 13; B(E2)(W.u.)=0.4 +6-4
		573.267 [§] 10	9.72 [§] 9	138.941 5/2+	M1+E2	+0.03 2	0.0503	B(M1)(W.u.)=0.0003 3
		639.151 [§] <i>10</i>	3.69 [§] 4	73.041 1/2+	[M1,E2]		0.026 13	
		712.188 [§] <i>10</i>	8.07 [§] 7	0.0 3/2+	[M1,E2]		0.020 10	
740.380	5/2-	142.159 ^{&} 3	75.8 [§] <i>13</i>	598.220 3/2-	M1		2.24	
		176.907 [§] 16	<1.28 [§]	563.402 (9/2-)				
		181.38 [§] 4	0.18 [§] 4	559.298 5/2+				
		378.533 ^{&} 8	1.9 3	361.857 5/2+	[E1]		0.01470	I _{γ} : Weighted average of data from β^- decay and (n,γ) .
		382.63 [§] 15	$0.08^{\mbox{\$}} 4$	357.768 7/2+				
		440.980 ^{&} 13	$100^{\$} 5$	299.396 7/2-	M1+E2	-0.37 4	0.0920 21	
		560.33 ^{&} 3	3.18 9	180.069 3/2+	[E1]		0.00626	I _γ : there is a disagreement about this I _γ . The branching ratios are given as 3.1 9 (¹⁹³ Os β^- decay, deduced from $\gamma\gamma$ data), 31 4 (¹⁹² Ir(n, γ)), 44 7 (¹⁹² Os(d,n γ)). See ¹⁹² Ir(n, γ) for comment.
		601.45 ^{&} 5	$0.28^{\&} 4$	138.941 5/2+				I_{γ} : Other 16 3 (n, γ).
806.902	$(5/2)^+$	445.023 44	5.6 7	361.857 5/2+	0			
		449.149 18	53 6 5	357.768 7/2+	(M1) &		0.0953	
		626.88 8	8.0 2 10	180.069 3/2+				
		667.963 ^{&} 9	100 7	138.941 5/2+				
		733.93 [@] 15	7.9 [@] 16	73.041 1/2+				
		807#		$0.0 3/2^+$				
828.92	(9/2 ⁻)	748.68 [@] 9	100	80.238 11/2-	8 -			
832.893	$(11/2^{-})$	269.490 ^{°°} 7	100^{∞} 5	563.402 (9/2 ⁻)	(M1) ^{<i>C</i>}		0.377	
		533.51 [°] 3	70^{∞} 7	299.396 7/2-	(E2) ^{ex}		0.0203	
		752.73 ⁸ 15	<35 ⁸	80.238 11/2-				multiply placed, with undivided intensity I γ =30 5 in ¹⁹³ Ir(n,n' γ).

NUCLEAR DATA SHEETS

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}8$

42

 $^{193}_{77}\mathrm{Ir}_{116}\mathrm{-8}$

$\gamma(^{193}\mathrm{Ir})$	(continued)
-----------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{e}	Comments
838.918	$(9/2^+)$	279.611 ^{&} 18	2.3 ^{&} 4	559.298 5/2+			
		322.505 ^{&} 21	33.4 ^{&} 20	516.414 (7/2)+	(M1) ^{&}	0.231	
		477.062 ^{&} 8	100 ^{&} 5	361.857 5/2+	(E2) ^{&}	0.0267	
848.967	$3/2^{(+)}, 5/2^{(+)}$	290 [§]	≈10 [§]	559.298 5/2+	[M1,E2]	0.21 11	
		388.60 ^{&b} 4	100 ^{&} 21	460.538 3/2+	(M1) ^{&}	0.1400	
		487.217 ^{&b} 13	64 ^{&} 6	361.857 5/2+	(E2) ^{&}	0.0253	
		491.26 [§] 8	3.9 [§] 16	357.768 7/2+			
		709.924 [§] 13	46.5 [§] 18	138.941 5/2+	[M1,E2]	0.020 10	
		775.9 ⁸ 3	9 [§] 40	73.041 1/2+	[E2]	0.00876	
		848.944 [§] 16	100 [§] 3	$0.0 3/2^+$	[M1,E2]	0.013 6	
857.027	$(11/2)^+$	335.101 2 11	31 3	521.926 (9/2)+	(M1) ^{&}	0.208	B(M1)(W.u.)≈0.043
		499.254 ^{&} 8	$100^{#}_{8} 4$	357.768 7/2+	(E2) ^{&}	0.0238	B(E2)(W.u.)=57 10
874.290	$3/2^+, 5/2^+$	253.08 ⁸ 8	<9 ⁸	620.991 7/2+			
		314.938 5	10.48 21	559.298 5/2+			
		3178	5.48 15	557.413 (1/2)+	[M1,E2]	0.16 8	
		413.756 8	23 3	460.538 3/2+	(M1,E2)	0.08 4	
		512.38 3	88 4	361.857 5/2+	[M1,E2]	0.045 23	
		516.528 4	15.28 4	357.768 7/2+	[M1,E2]	0.044 22	
		735.32* 34	$5.6^{\circ} 2$	138.941 5/2*	[M1,E2]	0.018 9	
		800.98 3	1.58 7	73.041 1/2*	[M1,E2]	0.015 7	
970.40		8/4.306° 25	$100^{\circ} 0$	$0.0 3/2^{-1}$	[M1,E2]	0.012 0	
879.49		282.34° 9	100% 12	598.220 3/2 460.528 2/2 ⁺			
002 10		418.31° /	48% 28	400.538 3/2			
882.19		283.97% 7	100	598.220 3/2 508.220 3/2			
802 260	$(0/2^+)$	292.19° 7	100 17 ^{&} 5	598.220 5/2 620.001 7/2+			
092.209	()/2)	$369.81^{\textcircled{0}}$ 10	47 J 65 [#] 17	$521.926 (9/2)^+$			I : Other: 26.4 (n n'z)
		$534 482^{\&} 21$	100 ^{&} 6	357 768 7/2 ⁺			r_{γ} . Other. 20 + (ii,ii γ).
		$752.738^{@}$ 15	<47 ⁸ @	$138 941 5/2^+$			
918.363	$(7/2^{-})$	$177.986^{\&}$ 7	100 & 8	$740.380 \ 5/2^{-1}$	(M1) ^{&}	1.189	
	<u>\</u>	320.142 ^{&} 17	11.8 & 18	598.220 3/2-	(E2) ^{&}	0.0783	
		354.960 & 7	17.6 ^{&} 26	563.402 (9/2 ⁻)	(M1) ^{&}	0.1784	
		618.94 ^{&} 3	51 4	299.396 7/2-			I_{γ} : Weighted average of branching data from (n,γ) E=TH and $(n,n'\gamma)$
930.429	(17/2 ⁻)	451.441 ^{&} 8	100	478.988 (15/2-)	D+Q		E_{γ} ,Mult.: Other: 449.3 5 (⁷ Li, α 2n γ). Mult: From (HI,xn γ).

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}9$

$\gamma(^{193}\text{Ir})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.‡	$\alpha^{\boldsymbol{e}}$	Comments
930.429	$(17/2^{-})$	459.5 [°] 5		469.384	$(13/2^{-})$			
959.73		361.51 [§] 3	100	598.220	3/2-			
964.41	1/2+	784.43 [§] 5	24.3 23	180.069	3/2+	[M1,E2]	0.016 7	I _{γ} : Weighted average of branching data from (n, γ) E=TH and (n,n' γ).
		891.34 [§] <i>3</i>	100 [§] 5	73.041	$1/2^{+}$	[M1,E2]	0.011 5	
972.872	$(5/2^+)$	232.507 ^{&} 19	14.6 ^{&} 15	740.380	5/2-			
		351.864 ^{&} <i>14</i>	61 ^{&} 5	620.991	7/2+			
		611.037 ^{&} 21	100 ^{&} 18	361.857	5/2+			I_{γ} : 71 <i>16</i> (n,n' γ).
		615.09 ^{&} 5	94 ^{&} 13	357.768	7/2+			
		899.98 [@] 13	100 [@] 14	73.041	$1/2^{+}$			E_{γ} : Only reported in $(n,n'\gamma)$.
		972.08 ^{@h} 24	49 [@] 16	0.0	$3/2^{+}$			
975.330	$(11/2^{-})$	496.345 ^{&} 8	100 ^{&} 10	478.988	$(15/2^{-})$	(E2) ^{&}	0.0242	
		505.943 ^{&} 8	50 ^{&} 4	469.384	$(13/2^{-})$	(M1) ^{&}	0.0697	
1009.354	$(11/2^+)$	492.940 8	100 ^{&} 9	516.414	$(7/2)^+$	(E2) ^{&}	0.0246	
		539.92 <mark>&</mark> 8	17 ^{&} 3	469.384	$(13/2^{-})$			
1019.589	$(11/2^+)$	503.174 ^{&} 8	100	516.414	$(7/2)^+$	(E2) ^{&}	0.0234	
1026.0	(19/2 ⁻)	96.0 ^d 5		930.429	$(17/2^{-})$			
		545.7 ^d 5	100	478.988	$(15/2^{-})$	Q		Mult.: From (HI, $xn\gamma$).
1035.465	$(13/2^+)$	178.441 ^{&} 4	5.0 ^{&} 10	857.027	$(11/2)^+$	(M1) ^{&}	1.181	
		513.529 ^{&} 8	100 ^{&} 8	521.926	$(9/2)^+$	(E2) ^{&}	0.0222	
1035.855	$3/2^+, 5/2^{(+)}, 7/2^+$	340.1 [@] 9	31 [@] 23	695.142	5/2+			
		678.085 ^{&} 24	100 [@] 13	357.768	7/2+			
		856.5 [@] 6	16 [@] 10	180.069	3/2+			
1038.054	$(5/2^+, 7/2^+)$	516.153 ^{&} 23	30.3 ^{&} 24	521.926	$(9/2)^+$			
		676.192 ^{&} 13	100 ^{&} 17	361.857	5/2+			
		680.280 ^{&} 15	69 ^{&} 14	357.768	7/2+			
		858.2 [@] 3	67 [@] 27	180.069	3/2+			
1065.89	$1/2^+, 3/2^{(+)}, 5/2^+$	444.75 [@] 12	8 [@] 5	620.991	7/2+			γ multiply placed in $(n,n'\gamma)$; only observed in $(n,n'\gamma)$.
		704.01 [@] 11	35 [@] 6	361.857	5/2+			
		885.91 [@] 8	100 [@] 14	180.069	3/2+			
		992.2 ^{f@} 5	$18^{f@} 11$	73.041	$1/2^{+}$			
1076.47	$(3/2^+)$	718.72 [@] 10	100 [@] 10	357.768	7/2+			
		937.49 [@] 13	30 [@] 5	138.941	5/2+			
1077.99	$(3/2^{-}, 5/2^{-})$	337.8 [@] 2	8.3 [@] 25	740.380	5/2-			
		778.43 [§] 19	100 10	299.396	7/2-	[M1,E2]	0.016 8	

66

NUCLEAR DATA SHEETS

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}10$

$\gamma(^{193}\text{Ir})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^e	Comments
1131.17	5/2-	951.10 [@] 11	100 [@] 17	180.069	3/2+			
		992.2 ^{<i>f</i> @} 5	37 ^{f@} 22	138.941	5/2+			
1145.614	(9/2)-	227.252 ^{&} 7	100 ^{&} 9	918.363	$(7/2^{-})$			
		582.201 ^{&} 20	17 <i>3</i>	563.402	(9/2-)			I_{γ} : Weighted average of data from (n,γ) and $(n,n'\gamma)$.
1168.06	(13/2 ⁻)	335.21 [@] 19	100 [@] 44	832.893	$(11/2^{-})$,
		698.64 [@] 17	67 [@] 26	469.384	(13/2 ⁻)			
1169.170	$(11/2^+)$	276.890 ^{&} 20	14.5 ^{&} 21	892.269	$(9/2^+)$	(M1) ^{&}	0.350	
		312.125 ^{&} 9	9.7 ^{&} 24	857.027	$(11/2)^+$			
		548.19 ^{&} 3	75 ^{&} 4	620.991	7/2+	(E2) ^{&}	0.0190	
		647.257 ^{&} 8	100 ^{&} 11	521.926	$(9/2)^+$			
		654 [#]		516.414	$(7/2)^+$			
		812 [#]		357.768	7/2+			
1250.42	$(3/2, 5/2)^+$	888.42 [@] 10	100.0 [@] 9	361.857	5/2+			
		892.89 [@] 13	92 [@] 12	357.768	7/2+			
1358.8	(19/2 ⁻)	428.4 ^C 5	100	930.429	$(17/2^{-})$	D		
1438.429	$(13/2^+)$	599.510 ^{&} 7	100	838.918	$(9/2^+)$			
1459.968	$(15/2)^+$	425#	0	1035.465	$(13/2^+)$			
		440.37 ^{&} 5	15.8 24	1019.589	$(11/2^+)$			
		602.940 & 8	100 2 12	857.027	$(11/2)^+$			
1511.714	$(3/2^+)$	538.845 ^{&} 20	34 ^{&} 4	972.872	$(5/2^+)$	(M1+E2)	0.039 20	
		637.46 ^{&} 3	100 6	874.290	3/2+,5/2+			
		662.636 15	100 233	848.967	$3/2^{(+)}, 5/2^{(+)}$			
		954.37 [@] 15	$100^{(2)} 20$	557.413	$(1/2)^+$			
1527.7	$(21/2^{-})$	501.3 ^c 5	100	1026.0	$(19/2^{-})$	D		
1500 ((21/2-)	597.7 ^a 5	1000 0	930.429	$(17/2^{-})$	5.0		
1592.6	(21/2)	$566.3^{\circ} 5$	$100^{\circ} 9$	1026.0	(19/2)	D+Q		Mult.: From (HI, $xn\gamma$).
1650.5	$(17/2^+)$	615 [#]	+ <i>3</i> + 100	1035.465	(17/2) $(13/2^+)$	Y		
1714 9	$(23/2^{-})$	$187.3^{d}.5$	100	1527.7	$(21/2^{-})$			
1/11.7	(23/2)	688.8 ^c 5	100	1026.0	$(19/2^{-})$	Q		Mult.: From (HI, $xn\gamma$).
1728.5	(23/2 ⁻ ,25/2 ⁻)	135.9 ^c 5	56 ^c 11	1592.6	$(21/2^{-})$	M1+E2	2.0 6	
		$200.8^{\circ}_{1}5$	100 [°] 11	1527.7	$(21/2^{-})$	(E2)	0.341 6	$δ$: From (HI,xn γ).
1823.7	(23/2)	231.3^{d} 5		1592.6	$(21/2^{-})$			
		797.4 ^d 5		1026.0	(19/2-)			
1845.2	(23/2)	819.2 ^d 5	100	1026.0	$(19/2^{-})$			

NUCLEAR DATA SHEETS

$\gamma(^{193}$ Ir) (continued)

$\underline{E_i(\text{level})}$	\mathbf{J}_i^{π}	Ε _γ	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	α ^e	Comments
1893.9	(25/2 ⁻)	165.3 ^d 5		1728.5	(23/2 ⁻ ,25/2 ⁻)	M1	1.464 24	Mult.: M1 in (HI,xn γ) for a placement from 25/2 ⁻ to $23/2^-, 25/2^-$.
		178.9 [°] 5	100	1714.9	(23/2 ⁻)	E2	0.507 9	Mult.: From (HI, $xn\gamma$).
1944.3	25/2-,27/2-	120.7 ^d 5		1823.7	(23/2)			
		215.8 ^d 5		1728.5	$(23/2^-, 25/2^-)$	M1+E2	0.48 22	Mult.: From (HI, $xn\gamma$).
2052.3	$(27/2^{-})$	158.3 ^d 5		1893.9	$(25/2^{-})$	M1	1.65 3	Mult.: $\alpha(\exp)=1.60 \ 30 \ (HI,xn\gamma)$.
		323.9 ^d 5		1728.5	$(23/2^-, 25/2^-)$	(E2)	0.0757	Mult.: $\alpha(\exp)=0.02 \ 12 \ (HI,xn\gamma)$.
2179.0	$(19/2^+)$	719 [#]	100	1459.968	$(15/2)^+$			
2231.7	$(29/2^+)$	337.8 ^d 5		1893.9	$(25/2^{-})$	M2	0.743	Mult.: $\alpha(\exp)=0.68 \ 16 \ (HI,xn\gamma)$.
		503.3 ^d 5		1728.5	$(23/2^-, 25/2^-)$			
2278.9	31/2+	226.7 ^d 5	41.3 ^d 12	2052.3	(27/2 ⁻)	M2	2.81 5	B(M2)(W.u.) \approx 0.0051 Mult.: α(exp)=3.30 20 (HI,xnγ).
		334.5 ^d 5	100.0 ^d 14	1944.3	25/2-,27/2-	(E3)	0.303	B(E3)(W.u.)=3.2 9 Mult.: $\alpha(\exp)=0.31$ 7.
		385.0 ^d 5	9.4 ^d 11	1893.9	(25/2 ⁻)	[E3]	0.179	B(E3)(W.u.)=0.11 4
2404?	$(21/2^+)$	753 ^{#h}	100	1650.5	$(17/2^+)$			

89

[†] The statistical agreement among different datasets is good. When values are discrepant, branching value from β^- decay and other values are listed. Overall (d,n γ) data are less in agreement with other datasets.

[‡] From ¹⁹³Os β^- decay, unless otherwise noted.

§ From ¹⁹³Os β^- decay.

& From 192 Ir(n, γ).

[@] From 193 Ir(n,n' γ).

[#] From Coulomb excitation.

^a Weighted average of 80.22 keV 2 (1987Li16 – IT decay) and 80.236 keV 7 (1997Dr04 -(n, γ)).

^b The γ placed from a slightly higher but different state at 849.084 keV, while the levels could be the same as noted in 2006Ac01 (previous evaluation). Based on measurements in 2005Za15, evaluator merged these two levels into one.

^{*c*} From (⁷Li, $\alpha 2n\gamma$).

^{*d*} From (HI,xn γ).

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed with undivided intensity.

^g Multiply placed with intensity suitably divided.

^h Placement of transition in the level scheme is uncertain.

¹⁹³Os β⁻ decay 1972Pr04,2012Kr05,2002Ma18

Parent: ¹⁹³Os: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=29.830$ h *18*; $Q(\beta^-)=1141.9\ 24$; $\%\beta^-$ decay=100 Others: 2005Za15,2008ZaZY,2007ZaZZ,1972De67,1971Bb09,1968Av01,1968Av02,

1968P103,1968Ra24,1967Ag06,1967Pe03,1960Fe03,1958Du76,1954De04,1953Co13.

Other contributing references are:

γ: 1971Lu08, 1970Ra37.

ce: 1970Ba56, 1969Co08.

γγ(t), βγ(t), β(ce)(t): 1973II02, 1972Be85, 1969Ba28, 1969Li13, 1969Va36, 1968Av02.

 $\gamma\gamma(\theta,H,T)$: 1985Be03.

1972Pr04: Measured E γ , I γ , E(ce), I(ce), $\gamma\gamma$ -coin. Deduced excited level spin and parity, multipolarities, mixing ratios.

2012Kr05: Measured E γ , I γ , half-life using HPGe detector. Results are based on the average of three different samples each counted for at least 2 half-lives.

2002Ma18: Measured absolute γ -ray emission (intensity) probabilities in a $4\pi\beta\gamma$ coincidence experiment.

2005Za15: Measured E γ , I γ , $\gamma\gamma$ -coin using planer detector array in coincidence mode (within 200 ns). Deduced excited levels.

1970Be06: 98.7% enriched ¹⁹²Os metal powder irradiated for approximately one hour with a neutron flux density of 2×10^{14} . Measured E γ , I γ , ce.

1969Pr02, 1958Na15: Measured γ , ce, β , $\gamma\gamma$, $\beta\gamma$, (ce)(ce)(t).

1984Gh01, 1973Kr05: Measured $\gamma\gamma(\theta)$, $\gamma(\theta,H,T)$.

The decay scheme shown is from 1972Pr04 and 2005Za15.

Sum of decay energies of this dataset is 1140 keV 35 cf. 1142 keV 2 from ²⁸Ne β^- decay Q(g.s.) and decay branching.

¹⁹³Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0 73.037 6	3/2 ⁺ 1/2 ⁺	stable 6.09 ns 15	T _{1/2} : weighted average of 6.3 ns 2 β (ce)(t) (1969Li13), 6.34 ns <i>16</i> $\gamma\gamma$ (t) (1969Ba28), 5.90 ns <i>11</i> $\gamma\gamma$ (t) (1972Be85,1973Il02), with increased uncertainty (discrepant data set).
80.234 7 138.946 7	11/2 ⁻ 5/2 ⁺	10.53 [‡] d 4 80 ps 5	T _{1/2} : Weighted average of 75 ps <i>10</i> (ce)(ce)(t) (1970Be06), 77 ps <i>17</i> γγ(t) (1969Ba28), 74 ps <i>11</i> β(ce)(t) (1969Li13), 88 ps 9 β(ce)(t) (1968Av02). Other: 1960Fe03. Adopted value 69.7 ps <i>10</i> from recoil-distance method in Coulomb excitation (2000Be07).
180.070 5	3/2+	59 ps 7	T _{1/2} : weighted average of 55 ps +8–15 (ce)(ce)(t) (1970Be06), 46 ps 15 γγ(t) (1969Ba28), 66 ps 10 β(ce)(t) (1969Li13); other: <35 ps (1968Av02). Adopted value 43 ps 16.
299.381 9	$7/2^{-}$	0.19 ns 3	$T_{1/2}$: from (ce)(ce)(t) (1970Ba56).
357.764 10	7/2+	18.7 [‡] ps 7	
361.858 6	5/2+	36 ps 7	$T_{1/2}$: from β(ce)(t) (1969Va36). Others: 1968Av02, 1973II02. Adopted value 31 ps 5.
460.552 5	3/2+	17 ps 4	$T_{1/2}$: weighted average of 19 ps 5 (1968Av02), 15 ps 6 (1969Va36,1969Li13) β (ce)(t); other: 1973II02. Adopted value 13.2 ps 10.
516.585 24	$(7/2)^+$	24 0	
557.396 6	$(1/2)^+$	34 ps 8	$T_{1/2}$: from β (ce)(t) (1969Va36); others: 1969L113, 1968Av02, 1973II02.
559.293 7 563.429 16	5/2+	1.08 ⁴ ps <i>16</i>	$T_{1/2}$: <76 ps b(ce)(t) (1969Va36); others: 1968Av02, 1969Li13, 1973II02.
598.212 8 621.02 4 695.142 7	3/2 ⁻ (7/2) ⁺ 5/2 ⁺	2.8 [‡] ps +28–9	
712.197 5 740.348 10 806.96 ^(a) 6 848.905 11 874.279 12 879.50 17	3/2 ⁺ 5/2 ⁻ (5/2) ⁺ 5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	15 ps 14	$T_{1/2}$: from β (ce)(t) (1969Va36); other: 1968Av02.

¹⁹³Os β^- decay **1972Pr04,2012Kr05,2002Ma18** (continued)

¹⁹³Ir Levels (continued)

 $\begin{array}{c} E(\text{level})^{\dagger} & J^{\pi \ddagger} \\
 882.18 7 \\
 890.40 7 \\
 959.72 4 \\
 964.41 3 \\
 1077.81 19 \\
 (3/2^-, 5/2^-)
 (3/2^-, 5/2^-)$

[†] From least-squares fit to γ -ray energies, assuming $\Delta E=0.5$ keV for missing uncertainties. Poor fit (5 to 6 std. dev.) for 181.38 γ from 740 keV and 282.34 γ , 418.31 γ from 879 keV levels. Uncertainty tripled for least-squares fit – yet later two γ -transitions fit with 3 to 4 std. dev. $\chi^2=2.3$ and $\chi^2_{critical}=1.5$.

[‡] From Adopted Levels.

[#] Best values from β^{-} decay unless otherwise noted; adopted values are given under Comments when different.

^(a) Level proposed by the evaluator: γ 667.7 in ¹⁹³Os decay agrees with γ 667.97 in (n, γ) and (d,n γ), and γ 668.04 in (n,n' γ) from 860.9 level.

β^- radiations

 β^{-} feedings are from intensity imbalance at each level.

Others: Εβ: 1968P103, 1967Ag06, 1958Du76, 1954De04; βγ: 1969Pr02, 1968P103, 1967Ag06, 1960Fe03, 1958Du76.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(64.1 24)	1077.81	0.0018 5	7.92 13	
(177.5 24)	964.41	0.0033 2	9.02 4	
(267.6 24)	874.279	0.033 2	8.58 <i>3</i>	
(293.0 24)	848.905	0.0079 8	9.33 5	
(401.6 24)	740.348	0.32 1	8.17 2	
(429.7 24)	712.197	0.513 8	8.06 1	L=0 (1984Gh01,1973Kr05); L=1 (1985Be03).
(446.8 24)	695.142	0.095 <i>3</i>	8.85 2	
(543.7 24)	598.212	< 0.02	>9.8	L=1 (1985Be03).
(582.6 24)	559.293	0.72 1	8.35 1	$E\beta$, $I\beta$: see data with 557 level.
				(L=2)/(L=1)=0.22 13 (1984Gh01,1973Kr05).
(584.5 24)	557.396	2.33 4	7.85 1	$E\beta$ =510 50, I β =6, includes group to 559 level (FK analysis, 1958Na15).
(681.3 24)	460.552	7.74 11	7.55 1	$E\beta = 670 \ 30, \ I\beta = 11 \ (FK \ analysis, \ 1958Na15).$
				(L=0)/(L=1)=0.45 5 (1984Gh01,1973Kr05); (L=0)/(L=1)=0.40 15 (1985Be03).
(780.0 24)	361.858	0.72 2	8.79 <i>1</i>	(L=2)/(L=1)=0.18 14 (1984Gh01); L=1 (1985Be03).
(784.1 24)	357.764	0.013 4	10.88 14	No β^{-} group seen in FK analysis (1958Na15).
(842.5 24)	299.381	0.018 8	10.50 20	L=1 (1985Be03).
(961.8 24)	180.070	1.5 2	8.79 6	$E\beta = 850 \ 30, \ I\beta = 10 \ (FK \ analysis, \ 1958Na15).$
				L=0 (1984Gh01).
(1003.0 24)	138.946	10.6 2	8.00 1	I β =10 (FK analysis with E β =993, 1958Na15).
				(L=2)/(L=1)=0.14 12 (1984Gh01), L=1 (1985Be03).
(1068.9 24)	73.037	17 <i>3</i>	7.90 8	$I\beta$ =21 (FK analysis with $E\beta$ =1059, 1958Na15).
(1141.9 24)	0.0	59 <i>3</i>	7.46 2	E(decay): 1132 5 (1958Na15). Others: 1130 15 (1968Pl03), 1040 30
				(1967Ag06).
				$I\beta^-$: 42 (FK analysis, 1958Na15).
				$(L=2)/(L=1)=0.14 \ 9 \ (1985Be03).$

[†] Absolute intensity per 100 decays.

					¹⁹³ 0	s β^- decay	1972Pr04	,2012Kr05,2002N	Ma18 (con	tinued)	
							2	~(¹⁹³ Ir)			
normalization: he four runs p γ measured in perimental Ice (K x ray), rela From 2012Kr0	: $\%$ I γ (present a single e from ative to 05.	$(460\gamma)=3.88$ ed in 2002M es and $\beta\gamma$ m 1972Pr04, o I $\gamma=100$ fo	3 5. 200 Ma18 in neasuren 1970Be or 460.5	2Ma18 me estead of th ments) and 206, 1970B γ (1972Pr(easured at quot 3.9 2 (a56, an (4).	absolute int and by the au (1958Na15, and 1969Co08	tensity in a 4 athors, which from compare 3. Other: 196	$\pi\beta\gamma$ coincidence of a state weighted a rison of $I\gamma/I\beta$ in ¹ (58Pl03 (not include	experiment average of ⁹³ Os and i led in the o	t. The adopted value is the unweighted average of discrepant data. Others: 4.0 2 (1969Pr02, from I β and in ¹⁹⁸ Au). evaluation; Ice uncertainties were not reported).	
		E(X-ray	7)	I(X-ray	y) *						
Ir K $lpha_2$ x ray Ir K $lpha_1$ x ray Ir K eta_1 ' x ra Ir K eta_2 ' x ra	, У У	63.28 5 64.90 5 73.58 1 75.63 5	 5 .0	98 9 160 16 33 5 13 2	5						
E_{γ}	Ιγ ^e	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{bd}	$lpha^f$	$I_{(\gamma+ce)}^{e}$	Comments	
.18 7 .564 6 .87 ^g 6	0.06	180.070	3/2 ⁺	138.946 73.037	5/2 ⁺	[M1,E2]		1.5×10 ² 13	1.9 5	E _γ : From E(ce) measurements (1970Be06). I _γ : Iγ<0.01 estimated from ce(L1)<0.003 (1970Be06). I _(γ+ce) : Deduced from γγ measurements; γ not seen by 1972Pr04. E _γ : From 2005Za15, propose tentitive placement from 138.948 keV level. However, γ ray off by about 3 keV to final level. Evaluator list as unplaced. E _γ : From 2005Za15. Other: 65.87 keV 6 (1970Be06).	
										In 1970Be06 this γ -ray placed from 138.949 keV level, however, in 1972Pr04 a comparable transition energy listed as 64.90 keV 5 identified as $K_{\alpha 1}$ line. Evaluator mark as uncertain placement and not adopted. 2005Za15 also identified as tentative placement.	
3.029 [@] 15 7	799	73.037	1/2+	0.0	3/2+	M1+E2	-0.558 5	6.10 <i>10</i>		 ky. From D70D000, by estimated from (cc(L5))=0.8 2. E_y: Weighted average of 73.012 7 (1972Pr04), 73.10 4 (1970Be06), 73.044 3 (1971Lu08), 72.951 46 (2012Kr05). I_y: Weighted average of 82 12 (1972Pr04) and 74 14 (2012Kr05). Mult.,δ: α(L1)exp=1.11 16 (1972Pr04); L1:L2:L3=72.7 14: 105 3: 100 3 (1972Pr04) Other ce measurements (1968Pl03,1969Co08,1970Be06) agree closely with those of 1972Pr04. δ from 	

 $^{193}_{77}\mathrm{Ir}_{116}$ -15

71
28	
Ĕ	
<u> </u>	
16	
<u> </u>	
6	

72Pr04,2012Kr05,2002Ma18 (continued)

$\gamma(^{193}\text{Ir})$ (continued)

Εγ	I_{γ}^{e}	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{bd}	α^{f}	$I_{(\gamma+ce)}^{e}$	Comments
										adopted gammas, Other: δ =0.56 4 from conversion electron data, see δ footnote. Calculated circular polarization of γ (1988Fe11).
(80.234 7)		80.234	$11/2^{-}$	0.0	3/2+	M4		2.11×10^4	8.8 7	E_{γ} : From Adopted Gammas. Other: 80.19 (1972Pr04)
										Mult.: From Adopted Gammas. $I_{(\gamma+ce)}$: Deduced from intensity balance at 80.2 level.
96.815 [§] 15	2.42 [§] 5	557.396	$(1/2)^+$	460.552	3/2+	M1+E2	0.171 <i>19</i>	6.68		E_{γ} : Others: 96.82 <i>3</i> (1972Pr04), 96.90 <i>5</i> (1970Be06).
96 969 ^{&} 15	0.000 $%$ 2	605 142	5/2+	508 212	3/2-					I_{γ} : Other: 2.5 2 (1972Pr04).
98.681 [§] 10	0.423 [§] 10	460.552	$3/2^+$	361.858	$5/2^+$	(M1)		6.36		E _γ : Others: 98.70 8 (1972Pr04), 98.77 6
										(1970Be06). L.: Other: 0.42.6 (1972Pr04)
107.07 [@] 7	14.4 8	180.070	3/2+	73.037	1/2+	M1+E2	+0.164 8	4.99		$ E_{\gamma}: 106.993 \ IO \ (1972Pr04), \ 107.10 \ 4 \\ (1970Be06), \ 107.16 \ 8 \ (1971Lu08), \\ 107.019 \ IO \ (2012Kr05). \\ I_{\gamma}: Weighted ave. of 14.6 \ 3 \ (2012Kr05), \\ 16 \ 1 \ 8 \ (1072Pr04), \ 12 \ 8 \ 7 \ (1070Pc06) $
										δ : Weighted average of 0.16 <i>I</i> (1984Gh01) and 0.171 <i>I3</i> (2008ZaZY).
136 [†]	0.011 [†] 3	695.142	5/2+	559.293	5/2+	[M1,E2]		2.0 6		I _{γ} : I γ deduced from coincidence experiment does not agree with the relative branching measured in ¹⁹¹ Ir(nn, γ).
138.92 [@] 3	98.4 <i>13</i>	138.946	5/2+	0.0	3/2+	M1+E2	-0.329 12	2.28		E _γ : 138.892 7 (1972Pr04), 138.97 4 (1970Be06), 138.947 8 (1971Lu08), 138.932 <i>μ</i> 0 (2012K-05)
										I_{γ} : Weighted ave. of 99.1 <i>19</i> (2012Kr05), 108 5 (1972Pr04), 100 6 (1970Be06),
										95.7 21 (2002Ma18). Mult : from L subshell ratios:
										L1:L2:L3=100.0 21: 23.9 11: 8.5 4 (1972Pr04), also 100 4: 24.3 25: 10.4 13 (1969Co08). α (L)exp=0.401 20 (1972Pr04), α (L)exp=0.38 3 (1970Pa06)
										$\alpha(L)\exp[-0.36.5](1970E00),$ $\alpha(L)\exp[-0.42.4](1969Co08).$
										 δ: Weighted ave. of 0.353 21 (1969Co08) and 0.316 15 (1970Be06, 1972Pr04). '-' sign from 1973Kr05 (θ,H,T). Also listed in 1984Gh01.

72

193	
Ť	
11	
6	
17	
-	

¹⁹³ Os β ⁻ decay 1972Pr04,2012Kr05,2002Ma18 (continue

					$\gamma(^{193}$	Ir) (continued)	
E_{γ}	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π} Mult. ^{<i>a</i>}	δ^{bd}	α^{f}	Comments
142.135 6	1.72 3	740.348	5/2-	598.212 3/2	2- (M1)		2.24	 E_γ: Weighted ave. of 142.130 8 (1972Pr04), 142.26 6 (1970Be06), 142.139 10 (2012Kr05). I_γ: Others: 1.9 2 (1972Pr04), 1.4 2 (1970Be06). Mult.: α(K)exp=1.5 3 (1972Pr04), α(K)exp=2.0 4 (1970Be06).
154.751 ^{&} 24 154.800 9	0.0080 ^{&} 21 0.692 13	516.585 712.197	(7/2) ⁺ 3/2 ⁺	361.858 5/2 557.396 (1/	2 ⁺ 2) ⁺ M1+E2	+0.26 3	1.70 <i>3</i>	 E_γ: Weighted ave. of 154.808 <i>10</i> (2012Kr05), 154.74 <i>3</i> (1972Pr04), 154.68 <i>10</i> (1970Be06). I_γ: Others: 0.76 <i>11</i> (1972Pr04), 0.63 7 (1970Be06). Mult.,δ: α(K)exp=0.8 3 (1972Pr04). δ=1.3 6 from α(K)exp datum.
176.907& <i>16</i>	<0.029	740.348	$5/2^{-}$	563.429				
180.061 [§] <i>10</i>	4.31 ⁸ 8	180.070	3/2+	0.0 3/2	2 ⁺ M1+E2	-0.48 2	1.028 17	E _γ : Others: 180.03 <i>3</i> (1972Pr04), 180.15 <i>6</i> (1970Be06). I _γ : Others: 4.6 <i>5</i> (1972Pr04), 4.5 <i>5</i> (1970Be06). Mult.: α (K)exp=1.00 <i>19</i> , α (L)exp=0.14 <i>3</i> , L1:L2:L3=100 <i>15</i> : 28 <i>9</i> : 15 <i>15</i> (1972Pr04). δ : Other: 0.63 <i>9</i> from conversion electrom data. See δ footnote.
181.38 ^{&} 12	0.004 & 1	740.348	5/2-	559.293 5/2	2+			E_{γ} , I_{γ} : Other: 181 (1972Pr04) seen in coincidence spectra only with I_{γ} =0.008 at the limit of detection.
181.785 [§] 10	4.63 [§] 9	361.858	5/2+	180.070 3/2	2 ⁺ M1+E2	+0.149 11	1.107	E _γ : Others: 181.81 <i>3</i> (1972Pr04), 181.89 <i>6</i> (1970Be06). I _γ : Others: 4.9 <i>5</i> (1972Pr04), 4.7 <i>5</i> (1970Be06). Mult.: α (K)exp=0.92 <i>11</i> , K/L=6.9 <i>14</i> , L1:L2:L3=100 <i>15</i> : 21 <i>10</i> : 15 <i>9</i> (1972Pr04). δ : δ =0.49 7 from conversion electron data.
197.486 [§] 24	0.110 [§] 6	559.293	5/2+	361.858 5/2	2 ⁺ [M1,E2]		0.6 3	 E_γ: Others: 197.4 2 (1972Pr04), 197.486 24 (2012Kr05). I_γ: Other: 0.12 4 (1972Pr04).
201.52 [§] 5	0.097 [§] 9	559.293	5/2+	357.764 7/2	2 ⁺ [M1,E2]		0.6 3	E_{γ}, I_{γ} : Other: 201.5 <i>3</i> , 0.07 <i>4</i> (1972Pr04). δ: 0.02 <i>4</i> (2007ZaZZ).
219†	$0.22^{\dagger} 5$	357.764	7/2+	138.946 5/2	2 ⁺ M1+E2	-0.280 9	0.637	Mult., δ : from Adopted Gammas.
219.144 [§] <i>10</i>	6.58 [§] 11	299.381	7/2-	80.234 11,	/2 ⁻ E2		0.254	E _γ : Others: 219.13 5 (1972Pr04), 219.18 8 (1970Be06). I _γ : Others: 7.0 5 (1972Pr04), 6.6 6 (1970Be06). Mult.: α (K)exp=0.12 3, K/L=1.5 4, L1:L2:L3=<44: 100 <i>19</i> : 63 <i>11</i> (1972Pr04).
234.572 [§] 10	1.23 [§] 3	695.142	5/2+	460.552 3/2	2 ⁺ M1+E2	-0.36 9	0.511 20	 E_γ: Others: 234.58 <i>6</i> (1972Pr04), 234.60 <i>12</i> (1970Be06). I_γ: Others: 1.30 <i>17</i> (1972Pr04), 1.2 <i>1</i> (1970Be06). δ: Weighted average of -0.20 <i>13</i> (nuclear orientation - 1973Kr05) and -0.41 <i>7</i> (2007ZaZZ).

73

¹⁹³Os β^- decay 1972Pr04,2012Kr05,2002Ma18 (continued)

29
$\sim \omega$
H .
<u> </u>
<u> </u>
6
- 1
Ĺ.
00

. –

						γ ⁽¹⁹³ Ir) (continued)		
Eγ	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{bd}	α^{f}	Comments
236.31 ^{&} 4 251.645 [§] 10	0.017 ^{&} 3 5.34 [§] 7	598.212 712.197	3/2 ⁻ 3/2 ⁺	361.858 460.552	5/2 ⁺ 3/2 ⁺	M1+E2	-0.11 3	0.451	 E_γ: Others: 251.62 4 (1972Pr04), 251.66 8 (1970Be06). I_γ: Others: 5.5 4 (1972Pr04), 5.4 4 (1970Be06). δ: Unweighted average of -0.132 7 (2008ZaZY) and -0.079 20 (1984Gh01) other: δ=0.45 14 from conversion electron data see δ footnote
253.08 ^{&} 8 263.02 ^{&} 15 263.997 ^{&} 25 280.476 9	<0.043 ^{&} 0.0012 ^{&} 7 0.016 ^{&} 3 31.7 2	874.279 621.02 563.429 460.552	3/2 ⁺ ,5/2 ⁺ (7/2) ⁺ 3/2 ⁺	621.02 357.764 299.381 180.070	(7/2) ⁺ 7/2 ⁺ 7/2 ⁻ 3/2 ⁺	M1+E2	-0.049 12	0.337	 E_γ: Weighted average of 280.482 <i>10</i> (2012Kr05), 280.43 <i>3</i> (1972Pr04) 280.50 <i>8</i> (1970Be06), and 280.457 <i>35</i> (1971Lu08).
	0 00 ^g								I _γ : From 2002Ma18. Others: 31.9 <i>3</i> (2012Kr05), 31.5 <i>16</i> (1972Pr04), 33.0 <i>17</i> (1970Be06). Mult.: α (K)exp=0.35 <i>3</i> , K/L=5.7 <i>3</i> , L1:L2:L3=100 <i>5</i> : 18: 4: <5 (1972Pr04); α (K)exp=0.27 <i>3</i> , K/L=5.6 <i>7</i> (1970Be06); δ : 0.18 <i>11</i> from conversion electron data. See δ footnote.
282.34 ^{&} 9	0.025 3	879.50		598.212	3/2-				
283.97 ⁴⁰ 7 288.819 [§] 10	0.028 & 3 $3.62 \ 4$	882.18 361.858	5/2+	598.212 73.037	3/2 ⁻ 1/2 ⁺	(E2)		0.1063	 E_γ: Others: 288.79 <i>5</i> (1972Pr04), 288.98 <i>15</i> (1970Be06). I_γ: Others: 3.6 <i>3</i> (1972Pr04), 4.0 <i>3</i> (1970Be06). Mult.: α(K)exp=0.087 <i>15</i> (1972Pr04), 0.077 <i>19</i> (1970Be06).
290 [†] 292.19 ^{&} 7	0.012^{\dagger} $0.0170^{\&}$ 24	848.905 890.40	5/2+	559.293 598.212	5/2+ 3/2 ⁻	[M1,E2]		0.21 11	I_{γ} : At detection limit.
298.831 [§] 10	4.79 [§] 5	598.212	3/2-	299.381	7/2-	(E2)		0.0959	 E_γ: Others: 298.83 5 (1972Pr04), 298.71 15 (1970Be06). I_γ: Others: 4.7 4 (1972Pr04), 4.8 3 (1970Be06).
314.93 ^{&} 5	0.050 ^{&} 10	874.279	3/2+,5/2+	559.293	$5/2^{+}$,
317 [†] 321.616 <i>10</i>	0.026 [†] 7 32.1 2	874.279 460.552	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	557.396 138.946	(1/2) ⁺ 5/2 ⁺	[M1,E2] M1+E2	+0.234 10	0.16 8 0.225	 E_γ: From 2012Kr05. Others: 321.56 <i>3</i> (1972Pr04), 321.63 <i>10</i> (1970Be06), 321.627 <i>35</i> (1971Lu08). I_γ: Weighted ave. of 31.9 <i>3</i> (2012Kr05), 32.3 <i>16</i> (1972Pr04), 35.0 <i>20</i> (1970Be06), 32.2 <i>2</i> (2002Ma18). Mult.: α(K)exp=0.244 <i>18</i>, K/L=6.1 <i>9</i>,

74

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}18$

	¹⁹³ Os β ⁻ decay 1972Pr04,2012Kr05,2002Ma18 (continued)										
$\underline{\gamma}(^{193}\text{Ir})$ (continued)											
E_{γ}	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{bd}	α^f	Comments		
333.24 5	0.065 5	695.142	5/2+	361.858	5/2+	(M1)		0.211	L1:L2:L3=100 <i>11</i> : 18 8: 14 <i>14</i> (1972Pr04); α(K)exp=0.182 <i>21</i> , K/L=6.4 <i>9</i> (1970Be06). δ: Other: +0.236 <i>16</i> (2008ZaZY). E _γ : From 2012Kr05. Others: 333.3 <i>3</i> (1972Pr04), 333.0 <i>3</i> (1970Be06). I _γ : Weighted ave. of 0.067 <i>5</i> (2012Kr05), 0.07 <i>4</i> (1972Pr04), 0.04 <i>2</i> (1970Be06).		
336.39 ^{&} 15	0.054 ^{&} 10	516.585	$(7/2)^+$	180.070	$3/2^{+}$						
337.30 [§] 7	0.017 [§] 3	695.142	5/2+	357.764	7/2+	[M1,E2]		0.14 7	E_{γ} : Other: 337.7 5 (1972Pr04). Ly: Other: 0.03 2 (1972Pr04).		
350.343 16	0.141 12	712.197	3/2+	361.858	5/2+	[M1,E2]		0.12 7	E _γ : From 2012Kr05. Others: 350.2 2 (1972Pr04), 350.2 3 (1970Be06). I _γ : Weighted ave. of 0.138 4 (2012Kr05), 0.18 6		
251 258 12	0.0022 & 12	712 107	2/2+	257 761	7/2+				(19/2Pt04), 0.16.5 (19/0Be06).		
357.761 [§] 10	$0.0023^{\circ} 13$ $0.233^{\circ} 4$	357.764	$\frac{3}{2}$ $\frac{7}{2^+}$	0.0	$3/2^+$	E2		0.0571	E _v : Others: 357.7 2 (1972Pr04), 357.8 3 (1970Be06).		
0	0								I_{γ} : Others: 0.25 8 (1972Pr04), 0.30 18 (1970Be06).		
361.51 ^{&} 3	0.083 7	959.72		598.212	3/2-						
361.858 [§] 10	7.30 [§] 7	361.858	5/2+	0.0	3/2+	M1+E2	-0.315 <i>19</i>	0.159 3	E _γ : Others: 361.79 5 (1972Pr04), 361.92 12 (1970Be06). I _γ : others: 7.5 6 (1972Pr04), 6.4 4 (1970Be06). Mult.: α (K)exp=0.18 3 (1972Pr04), 0.17 3 (1970Be06). δ : Weighted average of -0.314 27 (2008ZaZY), -0.33 3 (1984Gh01), and -0.26 7 (1985Be03).		
377.340 [§] 10	1.67 [§] 2	557.396	$(1/2)^+$	180.070	3/2+	(M1+E2)	1.0 5	0.10 3	E _γ : Others: 377.31 7 (1972Pr04), 377.60 20 (1970Be06). I _γ : Others: 1.8 2 (1972Pr04), 1.7 2 (1970Be06).		
377.41 ^{&} 8	0.016 ^{&} 4	516.585	$(7/2)^+$	138.946	$5/2^{+}$						
378.38 [§] 10	0.04 [§] 1	740.348	5/2-	361.858	5/2+	[E1]		0.01471	E_{γ}, I_{γ} : Other: 378, 0.041 <i>10</i> (1972Pr04).		
379.19 [§] 3	0.26 [§] 1	559.293	5/2+	180.070	3/2+	[M1,E2]		0.10 5	E_{γ} : Others: 379.04 <i>15</i> (1972Pr04), 379.0 <i>5</i> (1970Be06). I_{γ} : Others: 0.35 <i>9</i> (1972Pr04), 0.20 <i>8</i> (1970Be06).		
382.63 ^{&} 15 387.509 10	0.0017 ^{&} 10 31.6 2	740.348 460.552	5/2- 3/2+	357.764 73.037	7/2 ⁺ 1/2 ⁺	M1+E2	-0.24 4	0.136 <i>3</i>	 E_γ: From (2012Kr05). Others: 387.46 <i>4</i> (1972Pr04), 387.48 <i>12</i> (1970Be06), 387.509 <i>58</i> (1971Lu08). I_γ: Weighted ave. of 31.3 <i>3</i> (2012Kr05), 31.9 <i>16</i> (1972Pr04), 29.0 <i>20</i> (1970Be06), 31.8 <i>2</i> (2002Ma18). Mult.: α(K)exp=0.138 <i>10</i>, K/L=6.3 <i>9</i>, L1:L2:L3=100 <i>15</i>: 23 <i>10</i>: <11 (1972Pr04); α(K)exp=0.131 <i>17</i>, K/L=5.6 <i>10</i> (1970Be06). 		

¹⁹³Os β⁻ decay 1972Pr04,2012Kr05,2002Ma18 (continued)

723
F
=
୍ତି
20

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}20$

γ ⁽¹⁹³ Ir) (continued)										
E_{γ}	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{bd}	α^{f}	Comments	
									$ δ: δ=0.25 \ 10 $ from conversion electron data. See δ	
413.730 <i>16</i>	0.105 5	874.279	3/2+,5/2+	460.552	3/2+	(M1,E2)		0.08 4	Footnote. E_{γ} : Weighted average of 413.729 <i>16</i> (2012Kr05), 413.8 2 (1972Pr04), and 414.0 3 (1970Be06). I_{γ} : Others: 0.12 4 (1972Pr04), 0.11 3 (1970Be06).	
418 [†] 418.31 ^{&} 7	$0.18^{\dagger} \ 4 \\ 0.012^{\&} \ 7$	598.212 879.50	3/2-	180.070 460.552	3/2+ 3/2+	[E1]		0.01176		
418.431 [§] <i>16</i>	1.34 [§] <i>I</i>	557.396	$(1/2)^+$	138.946	5/2+	[E2]		0.0373	 E_γ: Others: 418.35 8 (1972Pr04), 418.16 20 (1970Be06). I_γ: Others: 1.38 14 (1972Pr04), 1.6 2 (1970Be06). 	
420.346 [§] 10	4.07 [§] 4	559.293	5/2+	138.946	5/2+	M1(+E2)	0.03 4	0.1136 <i>17</i>	E_{γ} : Others: 420.30 5 (1972Pr04), 420.07 20 (1970Be06).	
440.981 <i>18</i>	2.27 12	740.348	5/2-	299.381	7/2-	M1+E2	-0.37 4	0.0920 21	I _γ : Others: 4.2 3 (19/2Pr04), 3.7 4 (1970Be06). E _γ : Weighted ave. of 440.986 19 (2012Kr05), 440.95 5 (1972Pr04), and 440.90 20 (1970Be06). I _γ : Others: 2.32 16 (1972Pr04), 2.2 2 (1970Be06). Mult.: α (K)exp=0.085 17 (1972Pr04), α (K)exp=0.09 3 (1970Be06). δ: From 1973Kr05. Other: δ =0.19 4 and 0.32 10 from listed α (K)exp values, respectively.	
449.16 ^{&} 6 460.541 <i>10</i>	0.007 ^{&} 3 100.0 5	806.96 460.552	(5/2) ⁺ 3/2 ⁺	357.764 0.0	7/2 ⁺ 3/2 ⁺	M1+E2	-0.64 3	0.0718 <i>16</i>	 E_γ: Weighted average of 460.547 <i>10</i> (2012Kr05), 460.49 <i>3</i> (1972Pr04) 460.56 <i>12</i> (1970Be06), and 460.501 <i>65</i> (1971Lu08). I_γ: From 2002Ma18. Others: 100 <i>1</i> (2012Kr05), 100 <i>5</i> (1972Pr04), 100 <i>6</i> (1970Be06). δ: Others: -0.49 <i>2</i> (1985Be03) and -0.634 <i>17</i> (20087a7V) 	
482.06 ^{&} 5	0.022 & 4	621.02	$(7/2)^+$	138.946	5/2+				(20082821).	
483.34 [°] 7	$0.006^{\infty} 2$	563.429		80.234	$11/2^{-}$					
484.359 [§] 10	4.33 [§] 6	557.396	$(1/2)^+$	73.037	1/2+	(M1)		0.0782	E _γ : Others: 484.25 5 (1972Pr04) and 484.22 15 (1970Be06).	
105.0558 10	0.0718.0	550 000	5 /0+	7 2 02 7	1 (2+			0.0054	I_{γ} : Others: 4.3 3 (19/2Pr04), 4.8 5 (19/0Be06).	
486.255* 10	$0.2/1^{3}$ 3	559.293	5/21	73.037	1/2 '	[E2]		0.0254	E_{γ}, I_{γ} : Other: 486.11 15, 0.29 14 (1972Pr04).	
487.22° 11	0.0053° 12	848.905	5/2 ' 5/2 +	361.858	5/2					
491.26 8	0.0045° 18	848.905	5/2' 2/2+ 5/2+	357.764	1/2 ' 5/2+			0.045.02		
512.3* 3	0.04+ 2	874.279	3/2+,5/2+	361.858	5/2*	[M1,E2]		0.045 23		
515.064 ⁸ 10	0.2938 4	695.142	5/2+	180.070	3/2+	(M1,E2)		0.044 23	E_{γ} : Others: 514.95 <i>10</i> (1972Pr04), 515.2 <i>2</i> (1970Be06). Le: Others: 0.28 5 (1972Pr04), 0.40 6 (1970Be06)	
516.52 [§] 4	0.073 [§] 2	874.279	3/2+,5/2+	357.764	7/2+	[M1,E2]		0.044 22	E_{γ}, I_{γ} : Other: 516.3 4, 0.06 3 (1972Pr04).	

76

193	
\mathbf{F}	
16	
5	
<u> </u>	

				193 Os β	- deca	y 1972Pr	04,2012Kr05,200	2Ma18 (cont	tinued)
						$\gamma(^{193})$	³ Ir) (continued)		
E_{γ}	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{bd}	α^{f}	Comments
^x 517.84 ^{&} 4	0.080& 10								E_{γ} : 2005Za15 propose the placement from 598 keV level. However, if placed, this would be a 3/2 ⁻ to $11/2^{-}$ transition. Evaluator list it as unplaced.
525.190 [§] <i>10</i>	0.41 [§] 44	598.212	3/2-	73.037	1/2+	[E1]		0.00717	E _γ : Others: 524.98 8 (1972Pr04), 525.3 2 (1970Be06). L _v : Others: 0.40 4 (1972Pr04), 0.40 6 (1970Be06).
532.126 [§] 10	2.14 [§] 2	712.197	3/2+	180.070	3/2+	M1+E2 ^{<i>c</i>}	+0.48 +32-16	0.053 9	E_{γ} : Others: 532.02 5 (1972Pr04), 532.3 2 (1970Be06).
556	0.08 2	695 142	5/2+	138 946	5/2+	(F2)		0.0184	1γ . Oulers. 2.10 15 (1972) 104), 2.2 2 (1970) 2000).
557.401 ^{§#} 10	33.7 [§] 3	557.396	$(1/2)^+$	0.0	3/2 ⁺	(M1)		0.0541	E_{γ} : Others: 557.36 8 (1972Pr04) and 557.41 15 (1970Be06).
559.289 ^{§#} 10	12.4 [§] 1	559.293	5/2+	0.0	3/2+	(M1)		0.0537	E_{γ} : Others: 559.26 8 (1972Pr04), 559.22 15 (1970Be06).
- ! -	-1-								I_{γ} : Others: 12.3 <i>12</i> (1972Pr04), 15.5 <i>20</i> (1970Be06).
5601	0.07 2	740.348	5/2-	180.070	$3/2^{+}$	[E1]		0.00627	
573.2678 10	0.5198 5	712.197	3/2+	138.946	5/2+	M1+E2 ^C	+0.03 2	0.0503	E _γ : Others: 573.33 <i>10</i> (1972Pr04), 573.4 <i>2</i> (1970Be06).
598.42 7	0.018 6	598.212	3/2-	0.0	3/2+	[E1]		0.00547	I_{γ} : Others: 0.49 5 (1972Pr04), 0.54 6 (1970Be06). E_{γ} : Weighted ave. of 598.438 78 (2012Kr05). 598.1 3 (1972Pr04), 598.6 4 (1970Be06). L: Others: 0.017 8 (1972Pr04), 0.02 L (1970Be06).
601 89& 18	0.0063& 9	740 348	5/2-	138 946	5/2+				12. Others. 0.017 O (19721104), 0.02 I (19701000).
$620.93^{\&}$ 10	0.0005 4	621.02	$(7/2)^+$	0.0	$3/2^+$				
639.151 [§] 10	0.197 [§] 2	712.197	3/2+	73.037	$1/2^+$	[M1,E2]		0.026 13	E _γ : Others: 639.09 <i>10</i> (1972Pr04), 639.3 2 (1970Be06).
668.10 <i>10</i>	0.021 3	806.96	(5/2)+	138.946	5/2+				 I_γ: Others: 0.19 <i>3</i> (1972Pr04), 0.21 <i>3</i> (1970Be06). E_γ: Using the Limitation of relative statistical weight method of 668.147 <i>55</i> (2012Kr05), 668.09 <i>9</i> (2005Za15), 668.3 <i>3</i> (1972Pr04), and 667.0 <i>4</i> (1970Be06).
									I_{γ} : Using the Limitation of relative statistical Weight method of 0.026 <i>I</i> (2012Kr05), 0.016 <i>2</i> (2005Za15), 0.019 <i>9</i> (1972Pr04), and 0.03 <i>I</i> (1970Be06).
695.159 [§] <i>14</i>	0.068 [§] 2	695.142	5/2+	0.0	3/2+	[M1,E2]		0.021 10	E_{γ} : Others: 695.12 <i>10</i> (1972Pr04), 695.3 2 (1970Be06).
709.924 13	0.053 2	848.905	5/2+	138.946	5/2+	[M1,E2]		0.020 10	I_{γ} : Others: 0.0/2 <i>14</i> (19/2Pr04), 0.09 2 (19/0Be06). E_{γ} : Weighted ave. of 709.904 27 (2012Kr05),

77

$^{193}_{77}\mathrm{Ir}_{116}\text{--}21$

¹⁹³Os β^- decay 1972Pr04,2012Kr05,2002Ma18 (continued)

$\gamma(^{193}\text{Ir})$ (continued)

Eγ	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	α^{f}	Comments
								709.93 <i>15</i> (1972Pr04), 710.0 <i>4</i> (1970Be06). I _γ : Others: 0.052 <i>13</i> (1972Pr04), 0.04 <i>2</i> (1970Be06).
712.188 [§] <i>10</i>	0.431 [§] 4	712.197	3/2+	0.0	3/2+	[M1,E2]	0.020 10	E_{γ} : Others: 712.10 <i>10</i> (1972Pr04), 712.1 <i>2</i> (1970Be06). I_{γ} : Others: 0.39 <i>6</i> (1972Pr04), 0.50 <i>5</i> (1970Be06).
735.32 [§] 3	0.027 [§] 1	874.279	3/2+,5/2+	138.946	5/2+	[M1,E2]	0.018 9	E_{γ} : Others: 735.3 3 (1972Pr04), 735.5 4 (1970Be06). I_{γ} : Others: 0.027 7 (1972Pr04), 0.030 6 (1970Be06).
775.9 [‡] 3	0.010 [‡] 5	848.905	$5/2^{+}$	73.037	$1/2^{+}$	[E2]	0.00876	,
778.43 19	0.047 1	1077.81	(3/2 ⁻ ,5/2 ⁻)	299.381	7/2-	[M1,E2]	0.016 8	E_{γ} : Using the Limitation of relative statistical Weight method of 778.513 <i>14</i> (2012Kr05), 778.48 <i>15</i> (1972Pr04), and 777.4 <i>4</i> (1970Be06).
784.43 5	0.017 2	964.41	1/2+	180.070	3/2+	[M1,E2]	0.016 7	 I_γ: Others: 0.042 9 (1972Pr04), 0.06 2 (1970Be06). E_γ: Weighted average of 784.447 56 (2012Kr05), 784.2 2 (1972Pr04), and 784.2 4 (1970Be06). I_γ: Others: 0.017 4 (1972Pr04), 0.02 1 (1970Be06).
800.9 [‡] 3	$0.008^{\ddagger} 4$	874.279	$3/2^+, 5/2^+$	73.037	$1/2^{+}$	[M1,E2]	0.015 7	·
848.944 [§] 16	0.114 [§] 3	848.905	5/2+	0.0	3/2+	[M1,E2]	0.013 6	E_{γ} : Others: 848.85 <i>15</i> (1972Pr04), 848.9 <i>4</i> (1970Be06). I_{γ} : Others: 0.11 <i>2</i> (1972Pr04), 0.12 <i>2</i> (1970Be06).
874.306 25	0.48 3	874.279	3/2+,5/2+	0.0	3/2+	[M1,E2]	0.012 6	 E_γ: From 2012Kr05. Others: 874.36 <i>15</i> (1972Pr04), 874.2 <i>3</i> (1970Be06). I_γ: Weighted ave. of 0.46 <i>3</i> (2012Kr05), 0.48 <i>7</i> (1972Pr04), 0.58 <i>6</i> (1970Be06).
891.34 [§] <i>3</i>	0.067 [§] 3	964.41	$1/2^{+}$	73.037	1/2+	[M1,E2]	0.011 5	E_{γ} : Others: 891.26 <i>15</i> (1972Pr04), 891.0 <i>4</i> (1970Be06). I _{\gamma} : Others: 0.072 <i>11</i> (1972Pr04), 0.080 <i>12</i> (1970Be06).

[†] From 1972Pr04; seen in coincidence spectra only.

[‡] From 1972Pr04.

[§] From 2012Kr05.

[&] From 2005Za15. Coincidence measurements – for transition intensity Ιγ, summation for angular dependence assumed to be a constant.

[@] Using the Limitation of relative statistical weight method of values listed in comments section.

[#] $\Delta E(559.26\gamma-557.36\gamma)=1.9 \ 1 \ (1967Me12)$. From analysis of complex γ -line obtained with Ge(Li) detector using I(557 γ)/I(559 γ)=3.0 6.

^a From conversion electron data in 1972Pr04, 1970Be06, and others, unless noted otherwise.

^b Signed values are from 1984Gh01 and unsigned ones from internal conversion coefficient data; exceptions are noted. 1984Gh01 performed a combined analysis of angular correlation and nuclear orientation data, using $\delta(138.9\gamma)=0.329$ 12 from ICC. The Ice data have been normalized by the evaluators (2006Ac01) at the theoretical $\alpha(K)$ for the 138.9 γ ; their average (LWM) was used to deduce ICC using the adopted I γ , and were fitted to δ following 1980Ry04 algorithm. Some of these values are listed in comments section.

^{*c*} From $\gamma(\theta, H, T)$ (1973Kr05, 1984Gh01).

^d If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^e For absolute intensity per 100 decays, multiply by 0.0388 5.

^f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies,

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}22$

¹⁹³Os β⁻ decay 1972Pr04,2012Kr05,2002Ma18 (continued)

 $\gamma(^{193}$ Ir) (continued)

assigned multipolarities, and mixing ratios, unless otherwise specified.

^g Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹⁹³Os β⁻ decay 1972Pr04,2012Kr05,2002Ma18

 $^{193}_{77} \mathrm{Ir}_{116}$

¹⁹³Os β⁻ decay 1972Pr04,2012Kr05,2002Ma18

¹⁹³Os β^- decay 1972Pr04,2012Kr05,2002Ma18

 $^{193}_{77}$ Ir $_{116}$

¹⁹³Ir IT decay (10.53 d) 2004Ni14,1987Li16

Parent: ¹⁹³Ir: E=80.238 6; $J^{\pi}=11/2^-$; $T_{1/2}=10.53$ d 4; %IT decay=100

¹⁹³Ir Levels

Data are from 1987Li16, except where noted, highly pure sources from ¹⁹²Os(n, γ) E=thermal, osmium enriched to 99.4% in ¹⁹²Os, chemical separation; measured E γ , I γ (absolute) (calibrated planar germanium, well-type germanium detectors), E(ce), Ice(absolute) (4 $\pi\beta$ proportional counter, evacuated windowless Si(Li) detector); determined Ir L-subshell fluorescence yield and Coster-Kronig coefficients.

2004Ni14 accurately measured the isomeric transition $\alpha(K)$; enriched (99.935%) ¹⁹²Os target, chemical separation, HPGe detector.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$3/2^{+}$	stable	
80.238 6	$11/2^{-}$	10.53 d 4	%IT=100
			$T_{1/2}$: Absolute electron counting in $4\pi\beta$ proportional counter (1987Li16). Other values: 11.9 d 5
			(1957Bo12), 10.8 d 5 (1969Bi01), 12 d 2 (1970Ba56), 10.60 d 11 (1975Ba35).

[†] From Adopted Levels.

γ ⁽¹⁹³Ir)</sup>

It has been suggested that $\alpha(K)$ for this isomeric transition is decreased due to an 'electronic bridge' effect (1988Zh11); however, additional calculations (1989Ba76,1990Ba48) seem to indicate that this second-order effect does not contribute measurably to the α of this transition. This effect is further discussed in 1989Pi14, 1990Ko06, 1990Ko22, 1990Ko28, 1992Tk01, 1994Tk02. 2004Ni14 gives precise value of measured $\alpha(K)$ and compares the experimental value with several theoretical calculations.

Eγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
80.22 2	80.238	11/2-	0.0 3/2+	M4	2.14×10 ⁴	100	E_{γ} : other values: E_{γ} =80.19 5 (1957Bo12), E_{γ} =80.27 4(1970Ba56). Other: 1966Sy01.Mult.: from L1:L2:L3 (exp)=54.5 3:10.9 2:225 1.Also: $\alpha(K)$ exp=103.0 8 (from I(K x ray)/I γ assuming $\omega(K)$ =0.958 4 given by 1996Sc06) (2004Ni14).Other: $\alpha(K)$ exp=104 3 (I(K x ray)/I γ) (1987Li16); $\alpha(K)$ exp=92.6 9 (I(K x ray)/I γ) (1988Zh11).K:L:M:N:(O+P)(exp)=2.08 4:290.4 6:101.4 6:26.6 3:3.8 1 (Ice(K) deducedfrom I(K x ray) (Ir fluorescence yield =0.95));(O+P)/N3(exp)=0.228 2 (1975Ma32). Other ce data:1970Ba56, 1969Bi01, 1957Bo12.

[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³Ir IT decay (10.53 d) 2004Ni14,1987Li16

 $^{193}_{77} \mathrm{Ir}_{116}$

Muonic atom 1984Ta04,1977Li20

Measured difference between $E\gamma$ in an ordinary atom and a muonic atom. Deduced muonic isomer shift. (1974Ba77). Observed hyperfine splitting of the $5/2^+$ to $3/2^+$ transition (139 γ) in muonic atom (1977Li20). Discussion of precision measurements of nuclear quadrupole moments by muonic X-rays (1985St28).

¹⁹³Ir Levels

$E(level)^{\dagger}$	$J^{\pi \dagger}$	Comments
0.0 138.941	$\frac{3/2^+}{5/2^+}$	Q=0.751 9 from hyperfine splitting of muonic x-rays (1984Ta04).

[†] From Adopted Levels.

$\gamma(^{193}\mathrm{Ir})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
138.9	138.941	5/2+	$0.0 \ \overline{3/2^+}$	E_{γ} : rounded-off value from Adopted Gammas. $E_{\gamma}(\text{ordinary atom}) = E_{\gamma}(\text{muonic atom}) = -0.27.5 (1974Ba77); \gamma \text{ observed by 1977Li20}$

Muonic atom 1984Ta04,1977Li20

Level Scheme

¹⁹³Pt ε decay (50 y) 1983Jo04

Parent: ¹⁹³Pt: E=0.0; $J^{\pi}=1/2^{-}$; $T_{1/2}=50$ y 6; $Q(\varepsilon)=56.6$ 3; $\%\varepsilon+\%\beta^{+}$ decay=100

1983Jo04 and 1985Ri05 report≤500 eV for electron-neutrino mass (measured internal bremsstrahlung spectrum,

bremmstrahlung-L x ray coin (¹⁹³Pt sources extracted from lead in ISOLDE facility; silicon, intrinsic germanium detectors)). 1983Ke07 discuss recoilless resonant neutrino absorption by nuclei.

¹⁹³Ir Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}
0.0	$3/2^{+}$	stable

[†] From Adopted Levels.

 ε radiations

E(decay)	E(level)	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(56.6 3)	0.0	100	7.16 6	100	εM/εL=0.386 14 (1971Ra18).

[†] Absolute intensity per 100 decays.

Inelastic scattering 1980Ha47,1971No01

(p,p'), (p,p): 1980Ha47: E(p)=50 MeV; measured E(p') (mag spect), σ , (p')(θ) (θ (lab) 15° to 51°), absolute σ ; compared results with transition rates predicted by the supersymmetry scheme.

(d,d'): 1971No01: ED=12.1 MeV; measured E(d), σ , d(θ) (θ =90°, 125°, 150°). Deduced band structure.

¹⁹³Ir Levels

Band structure from 1971No01.

B(E2) \uparrow : 1980Ha47 measured B(E2) \uparrow relative to the B(E2) \uparrow of ¹⁹⁴Pt(358.5 level). Evaluator has recalculated the B(E2) \uparrow 's using B(E2) \uparrow (¹⁹⁴Pt, 358.5 level)=1.649 *15* (2006Si17).

E(level) [†]	$J^{\pi \ddagger}$	L#	Comments
0.0 ^{<i>a</i>}	3/2+		
73 ^b	1/2+		B(E2) \uparrow ≤0.13 ((p,p') 1980Ha47). Level composed of 73.0 level (J ^π =1/2 ⁺), plus possible minor component from 80.2 level (J ^π =11/2 ⁻) ((p,p') 1980Ha47).
138.9 ^{@a}	$5/2^{+}$	2	$\beta_2 = 0.183$; B(E2) $\uparrow = 0.79$ ((p,p') 1980Ha47).
180 ^b	$3/2^{+}$		B(E2)↑=0.12 ((p,p') 1980Ha47).
358 ^{<i>a</i>} 460	7/2+	2	$\beta_2=0.145$; B(E2) $\uparrow=0.66$ ((p,p') 1980Ha47). Level composed of 357.7 (J ^{π} =7/2 ⁺) and possibly also 361.9 (J ^{π} =5/2 ⁺) levels ((p,p') 1980Ha47). B(E2) $\uparrow=0.031$ ((p,p') 1980Ha47).
522 ^{&a} 596 ^{&}	9/2+		
620 ^c 693 ^{&} 739 ^{&}	7/2+		B(E2)↑=0.16 ((p,p') 1980Ha47).
857 ^{&a} 1126 ^{&} 1193 ^{&} 1347 ^{&} 1510 ^{&}	11/2+		

[†] From 1971No01. Uncertainties range from 4 keV for levels near g.s. up to 8 keV for highest-lying levels. E(level)=138.9 was adopted by 1971No01 for calibration. Levels observed by both (p,p') and (d,d'), unless otherwise noted.

[‡] From 1971No01. Based on magnitudes and angular dependence of cross sections; authors used combined analysis of their (d,d') and Coulomb excitation data.

[#] From 1980Ha47.

[@] Calibration value.

 $\ensuremath{^\&}$ Observed only in (d,d') experiment.

^a Band(A): 3/2[402] band.

^b Band(B): 1/2[400] band (partly of γ -vibrational in character).

^{*c*} Band(C): γ -vibrational band.

¹⁹¹Ir(t,p) **1981Ci02**

E(t)=17 MeV; measured ground-state σ , deduced enhancement factors and supersymmetry predictions.

¹⁹³Ir Levels

$\frac{\mathrm{E(level)}}{0.0} \quad \frac{\mathrm{J}^{\pi \dagger}}{\mathrm{3/2^+}}$

[†] From Adopted Levels.

¹⁹²Os(d,nγ) **1997Dr04**

E=12.0, 12.4, 14.2, 16.4 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, but angular distribution data not given; Compton-suppressed Ge detectors FWHM=1.8 keV at 1.4 MeV.

¹⁹³Ir Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$3/2^{+}$		
73.057	$1/2^+$		
80.242	$\frac{1}{1}/2^{-}$	10.53 d 4	T _{1/2} : From Adopted Levels.
138,939	$5/2^{+}$		1/2
180.077	$3/2^+$		
299.401	7/2-		
357.767	$7/2^+$		
361.863	5/2+		
460.540	$3/2^+$		
469.387	$13/2^{-}$		
478.992	$15/2^{-}$		
516.421	7/2+		
521.924	$9/2^{+}$		
557.447	$1/2^+, 3/2^+$		J^{π} : Adopted $(1/2)^{+}$.
559.303	$3/2^+, 5/2^+$		J^{π} : Adopted 5/2 ⁺ .
563.407	9/2-		
598.228	3/2-		
620.988	7/2+		
695.137	5/2+		
712.176	$3/2^+, 5/2^+$		J^{π} : Adopted $3/2^+$.
740.387	5/2-		
806.901	5/2+		
832.897	$11/2^{-}$		
838.923	9/2+		
849.088			
857.025	$11/2^+$		
874.28	$3/2^+, 5/2^+$		
892.268	$9/2^+,11/2^+$		J^{π} : Adopted (9/2 ⁺).
918.368	7/2-		
930.43 <i>3</i>			
972.874	3/2+,5/2,7/2		J^{n} : Adopted (5/2 ⁺).
1019.595	$11/2^{+}$		
1035.463	13/2		
10/8.8	11/2+		
1109.40	11/2		
1452.407			
1439.903			
1311.723			

[†] From combined data of 192 Ir(n, γ) and 192 Os(d,n γ) (1997Dr04).

 $\gamma(^{193}\mathrm{Ir})$

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
(73.05) 80.24 107.02	‡ 4.4 2	73.057 80.242 180.077	$\frac{1/2^{+}}{11/2^{-}}$ $3/2^{+}$	0.0 0.0 73.057	$3/2^+$ $3/2^+$ $1/2^+$	M4	Mult.: From Adopted Gammas.

¹⁹²**Os(d,n**γ) **1997Dr04** (continued)

$\gamma(^{193}\text{Ir})$ (continued)

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^π	E _f	J_f^π	Comments
135.9	‡	695.137	5/2+	559.303	$3/2^+, 5/2^+$	
138.94	8.5 [§] 4	138.939	5/2+	0.0	3/2+	
142.16	‡	740 387	5/2-	598 228	3/2-	
154 55	‡	516 421	7/2+	361 863	5/2 ⁺	
154.72	‡	712 176	3/2+ 5/2+	557 447	$\frac{3}{2}$	
164 16	±	521.024	$\frac{3}{2}, \frac{3}{2}$	257 767	$\frac{1}{2}, \frac{3}{2}$	
104.10	215	918 368	9/2 7/2 ⁻	740 387	7/2 5/2 ⁻	
178 //	‡	1035 463	13/2+	857.025	$\frac{3}{2}$	
180.07	1.3 2	180.077	$3/2^+$	0.0	$3/2^+$	
181.79	1.3 <i>3</i>	361.863	5/2+	180.077	3/2+	
201.54	‡	559.303	$3/2^+, 5/2^+$	357.767	7/2+	
218.83	<20	357.767	7/2+	138.939	5/2+	I_{γ} : $I_{\gamma}(218.83+219.16)=19.95.$
219.16	<20	299.401	$7/2^{-}$	80.242	$11/2^{-}$	I_{γ} : $I_{\gamma}(218.83+219.16)=19.95.$
232.51	‡	972.874	3/2+,5/2,7/2	740.387	5/2-	
234.61	1.0 [§] 2	695.137	5/2+	460.540	3/2+	
251.64	6.2 4	712.176	$3/2^+, 5/2^+$	460.540	3/2+	
263.22	<6.4	620.988	7/2*	357.767	7/2+	$I_{\gamma}: I_{\gamma}(263.22+264.01)=6.4$ 4.
269.49	< 0.4	303.407 832 897	$\frac{9/2}{11/2^{-1}}$	299.401 563 407	$9/2^{-}$	I_{γ} : $I_{\gamma}(205.22+204.01)=0.4$ 4.
202.12	$3.1^{\$}$ 3	892.027	$9/2^+ 11/2^+$	620.988	7/2 ⁺	
276.80	$12.0^{\$}$ 1	1160.40	$\frac{11}{2^+}$	802 268	$0/2^+$ 11/2 ⁺	
280.47	2.3.4	460.540	$3/2^+$	180.077	$3/2^+$,11/2	
288.81	210	361.863	$5/2^+$	73.057	$1/2^+$	
298.83	5.6 4	598.228	3/2-	299.401	7/2-	
321.60	2.2 3	460.540	3/2+	138.939	5/2+	
322.51	3.5 3	838.923	9/2+	516.421	7/2+	
333.3	+	695.137	5/2+	361.863	$5/2^+$	
335.10	2.5 3	857.025	$\frac{11}{2}$	521.924	9/2 *	
330.34	0.82	510.421 605 127	7/2 5/2 ⁺	257 767	3/2 7/2+	
251.96	1.81 2	072.074	3/2	620.089	7/2	
357.8	183	972.874	$\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}$	020.988	$\frac{1}{2}$	
361.86	1.5 3	361.863	$5/2^+$	0.0	$3/2^+$	
377.48	3.98 4	516.421	7/2+	138,939	5/2 ⁺	
378 53	+	740 387	5/2-	361 863	5/2 ⁺	
379.23	‡	559 303	$3/2^+$ $5/2^+$	180.077	3/2+	
382.99	15.6 5	521.924	$9/2^+$	138.939	$5/2^+$	
387.52	2.2 3	460.540	$3/2^{+}$	73.057	$1/2^{+}$	
388.6	<3.6	849.088		460.540	3/2+	I_{γ} : $I\gamma(388.6+389.14)=3.6$ 3.
389.14	<3.6	469.387	13/2-	80.242	$11/2^{-1}$	I_{γ} : $I_{\gamma}(388.6+389.14)=3.6$ 3.
398.78	20.8 6	478.992	15/2	80.242	11/2	
413.76	178 3	874.28	3/2+,5/2+	460.540	3/2+	
418.5	+	557.447	$1/2^+, 3/2^+$	138.939	5/2+	
420.35	13.88 5	559.303	$3/2^+, 5/2^+$	138.939	5/2+	
440.4	¥ 4 - -	1459.965	5/2-	1019.595	$\frac{11}{2^+}$	
440.98	4.5 5	740.387	5/2	299.401	1/2	
449.15	7.18 5	806.901	5/2+	357.767	1/2+	
451.44	5.15 815	930.43 460 540	3/2+	4/8.992	15/2 3/2+	
-00.33	0.+ 5	+00.040	5/2	0.0	5/2	

¹⁹²**Os**(**d**,**n** γ) **1997Dr04** (continued)

					γ ⁽¹⁹³ Ir)	(continued)
${\rm E}_{\gamma}^{\dagger}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
477.06	11.2 5	838.923	$9/2^+$	361.863	$5/2^{+}$	
482.05	4.5 5	620.988	7/2+	138.939	5/2+	
483.16	9.5 [§] 5	563.407	9/2-	80.242	$11/2^{-}$	
484.32	‡	557.447	$1/2^+, 3/2^+$	73.057	$1/2^{+}$	
499.25	4.8 4	857.025	$11/2^{+}$	357.767	$7/2^+$	
503.17	2.7 4	1019.595	$11/2^{+}$	516.421	7/2+	
525.2	2.6 [§] 3	598.228	3/2-	73.057	$1/2^{+}$	
532.13	1.2 4	712.176	$3/2^+, 5/2^+$	180.077	$3/2^{+}$	
533.5	1.4 4	832.897	$11/2^{-}$	299.401	7/2-	
548.2	1.1 <i>3</i>	1169.40	$11/2^{+}$	620.988	7/2+	
557.43	4.2 5	557.447	$1/2^+, 3/2^+$	0.0	3/2+	
559.3	3.8 5	559.303	$3/2^+, 5/2^+$	0.0	3/2+	
560.3	2.0 ^{&} 3	740.387	$5/2^{-}$	180.077	$3/2^{+}$	
573.21	§	712.176	$3/2^+, 5/2^+$	138.939	$5/2^{+}$	
599.51	4.0 5	1432.407		832.897	$11/2^{-}$	
621.0	3.1 4	620.988	7/2+	0.0	$3/2^{+}$	
637.46	2.3 2	1511.725		874.28	$3/2^+, 5/2^+$	
647.26	2.5 3	1169.40	$11/2^{+}$	521.924	9/2+	
662.64	2.1 3	1511.725		849.088		
667.96	4.0 5	806.901	5/2+	138.939	5/2+	
779.5 2	≤2.5	1078.8		299.401	$7/2^{-}$	Line observed in coincidence experiment only.

193

[†] Rounded-off value from 192 Ir(n, γ) experiment (1997Dr04).

[‡] Line obscured by impurities.

[§] Complex line, total intensity of line given. [§] γ is either influenced by an impurity, or is placed incorrectly. A γ of this intensity is not seen in ¹⁹³Os β^- decay (evaluator). [@] Placement of transition in the level scheme is uncertain.

¹⁹²Os(³He,d), (α ,t) 1971Pr13

 $E(^{3}He)=28$ MeV; $\theta=30^{\circ}$, 55°.

 $E(\alpha)=28$ MeV; $\theta=45^{\circ}$, 60° .

Osmium metal targets enriched to 98.7% in ¹⁹²Os; measured E(level) (mag spect, FWHM=16-17 keV for (³He,d), =12 keV for (α,t)), differential cross sections.

¹⁹³Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	L@	$C_{jl}^2 U^{2#}$	Comments
0.0 ^b	3/2+	2	0.67	$C_{jl}^2 U^2$ in (α ,t) for all transitions were normalized to give 0.67 for this transition.
77 ^d 3	1/2 ⁺ AND 11/2 ⁻			Unresolved doublet, with division of intensity assumed to be the same as that for the analogous states in ¹⁹¹ Ir. L=0 and $C_{jl}^2 U^2 = 0.25$ (0.24 in (α ,t)) for 73.0 level; L=5 and $C_{il}^2 U^2 = 0.77$ (0.89 in (α ,t)) for 80.2 level.
140 ^b	5/2+	2	0.04	$C_{i1}^2 U^2 = 0.04$ in (α ,t).
181 ^C	3/2+	2	0.05	$C_{11}^{\frac{1}{2}}U^{2}=0.05$ in (α ,t).
300	7/2-	3	0.04	$C_{11}^{\frac{1}{2}}U^{2}=0.03$ in (α ,t).
364 [°] 3	7/2 ⁺ AND 5/2 ⁺	4+2		Unresolved doublet. If the entire cross section is assumed to be of the assigned L, $C_{jl}^2 U^2 = 1.28$ (0.50 in (α ,t)) for L=4 and $C_{jl}^2 U^2 = 0.30$ (0.26 in (α ,t)) for L=2.
562 ^e 3	5/2+	2	0.25	$C_{i1}^2 U^2 = 0.26$ in (α ,t).
622 ^f 852	7/2+	4	0.03	$C_{jl}^{l_{1}}U^{2}=0.02$ in (α,t) .
969 <i>3</i>		0,1		
1071		1,2		
1133 ^{&g}	5/2-	3		$C_{il}^2 U^2 = 0.06$ in (α ,t).
1150 ⁸ 3	9/2-	5	1.33	$C_{il}^2 U^2 = 1.31$ in (α ,t).
1163 ^h 3	$13/2^{+}$	6	0.44	$C_{ii}^{2}U^{2}=0.50$ in (α ,t).
1201 3		1		ji
1286		3		
1407		• •		
1698 3		2,3		2 2
1759 ¹ 3	3/2-	1	0.05	$C_{il}^2 U^2 = 0.15$ in (α ,t).
$ 1820^{l} 3 1970^{a} 3 1999^{a} 3 2029^{a} $	7/2-	3	0.77	$C_{jl}^2 U^2 = 0.61$ in (α ,t).

[†] Averages from (³He,d) and (α ,t), except where noted; uncertainties are 3 keV for strongly populated states (estimated by evaluator to be those with $d\sigma/d\Omega \ge 10$).

[‡] From Nilsson-model interpretation of L values and spectroscopic factors; fingerprint evaluated taking into account Coriolis interaction (1971Pr13).

[#] From DWBA analysis, $C_{il}^2 U^2 = (d\sigma/d\Omega)(exp)/2N (d\sigma/d\Omega)(DWBA)$ where N=4.42 for (³He,d); values for (α ,t) are given under comments, normalized to (³He,d) observed value for g.s., which required N=118, much greater than the expected value N=48. [@] From DWBA analysis of angular distributions.

& Seen in (α,t) only.

^a Seen in (³He,d) only.

^b Band(A): 3/2[402] band. ^c Band(B): 1/2[400] band.

^d Band(C): 11/2[505] band.

^e Band(D): 5/2[402] band.

¹⁹²Os(³He,d), (α ,t) 1971Pr13 (continued)

¹⁹³Ir Levels (continued)

^f Band(E): 7/2[404] band.

- ^g Band(F): 1/2[541] band. ^h Band(G): 1/2[660] band. ⁱ Band(H): 1/2[530] band.

¹⁹²**Os**(⁷**Li**, α **2n** γ) **2011Fa07**

⁷Li beam, E=44 MeV, impinging on an enriched 1.7 mg/cm² thick ¹⁹²Os target with 1.1 mg/cm² carbon backing. Used 14 Compton-suppressed HPGe detectors divided into three groups (at 90° 40° and 152°) for angular distribution measurements. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$. Deduced level scheme, spin and parity.

¹⁹³Ir Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	3/2+		
80.234 [‡] 7	$11/2^{-}$	10.53 d 4	%IT=100
			$T_{1/2}$: From Adopted Levels.
469.2 [#] 5	$13/2^{-}$		
479.2 [‡] 5	$15/2^{-}$		
928.6 [#] 5	$17/2^{-}$		
$1025.0^{\ddagger} 6$	19/2-		
1357.0 7	$(19/2^{-})$		
1526.3 7	$(19/2^{-})$		
1591.3 [#] 6	$21/2^{-}$		
1713.8 [‡] 8	$23/2^{-}$		
1727.1 7	$(23/2^{-})$		
1892.7 [‡] 9	$(27/2^{-})$		J ^{π} : (25/2 ⁻) in Adopted Levels. 2012Dr02 (HI,xn γ) argue 178.9 γ as a Δ J=1 transition.

 † proposed in 2011Fa07, on the basis of measured ADO ratios.

[‡] Band(A): $\pi h_{11/2}$ band, $\alpha = -1/2$.

[#] Band(a): $\pi h_{11/2}$ band, $\alpha = +1/2$.

$\gamma(^{193}\text{Ir})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
80.234 7		80.234	$11/2^{-}$	0.0	$3/2^{+}$	M4	E_{γ} , Mult.: From Adopted Gammas.
135.9 5	51	1727.1	$(23/2^{-})$	1591.3	$21/2^{-}$, -
178.9 5	61	1892.7	$(27/2^{-})$	1713.8	$23/2^{-}$	Q	R _{ADO} =1.14 24.
200.8 5	91	1727.1	$(23/2^{-})$	1526.3	$(19/2^{-})$	Q	$R_{ADO} = 1.10 \ 17.$
389.1 5		469.2	$13/2^{-}$	80.234	$11/2^{-}$		
398.9 5	100 7	479.2	$15/2^{-}$	80.234	$11/2^{-}$	Q	R _{ADO} =1.17 11.
428.4 5	11 <i>1</i>	1357.0	$(19/2^{-})$	928.6	$17/2^{-}$	D	$R_{ADO} = 0.89 \ 22.$
449.3 5	43 <i>3</i>	928.6	$17/2^{-}$	479.2	$15/2^{-}$	D	R _{ADO} =0.98 8.
459.5 5		928.6	$17/2^{-}$	469.2	$13/2^{-}$		
501.3 5	16 2	1526.3	$(19/2^{-})$	1025.0	$19/2^{-}$	D	R _{ADO} =1.13 <i>13</i> .
					·		Mult.: 2011Fa07 note the R_{ADO} value is consistent with non-stretched, $\Delta J=0$, transition.
545.7 5	62 5	1025.0	$19/2^{-}$	479.2	$15/2^{-}$	Q	R _{ADO} =1.18 <i>12</i> .
566.3 5	23 2	1591.3	$21/2^{-}$	1025.0	$19/2^{-}$	D	R _{ADO} =0.92 11.
662.7 5	10 <i>1</i>	1591.3	$21/2^{-}$	928.6	$17/2^{-}$	Q	$R_{ADO} = 1.10 \ 23.$
688.8 5	12 <i>1</i>	1713.8	$23/2^{-}$	1025.0	$19/2^{-}$	Q	R _{ADO} =1.10 <i>16</i> .

[†] Placement based on γ - γ coincidence, sum of γ -ray energies, and relative intensities. γ -ray energy uncertainties are noted as within 0.5 keV. Evaluator assigns 0.5 keV for all.

[‡] from $R_{ADO}(\gamma) = I\gamma(35^{\circ})/I\gamma(90^{\circ})$ ratios. Stretched, $\Delta J=2$, quadrupole transitions assumed for R_{ADO} values larger than unity and dipole transitions for less than 1.0 in 2011Fa07.

¹⁹²Ir(n, γ) E=TH **1997Dr04**

Target: From thermal neutron capture of ¹⁹¹Ir. Measured E γ , I γ , $\gamma\gamma$ (curved-crystal spectrometer, resolution 220 eV at 900 keV, calibrated with Ir K x ray and some ¹⁹²Ir γ 's); Ice (magnetic spectrometer, resolution 100 eV at 35 keV, 230 eV at 300 keV, calibrated with ¹⁹²Ir electromagnetic transitions with known multipolarities). γ -spectra were analyzed up to E=700 keV. The results are interpreted in the framework of the asymmetric rotor and the interacting boson models.

¹⁹³Ir Levels

E(level) [†]	$J^{\pi \dagger}$	Comments
0.0 [‡]	3/2+	
73.057 [#] 15	$1/2^+$	
80.242 [@] 10	$\frac{11}{2}$	
138.939 [‡] 15	5/2+	
$180.077^{\#}$ 10	$3/2^+$	
299.401 & 10	7/2-	
357.767 [‡] 8	7/2+	
361.863 [#] 8	$5/2^+$	
460.540 ^{<i>a</i>} 8	$3/2^+$	
469.387 [@] 15	13/2-	
478.992 [@] 20	15/2-	
516.421 [#] 10	7/2+	
521.924 [‡] <i>10</i>	9/2+	
557.447 ^a 20	1/2+,3/2+	J^{π} : Adopted $(1/2)^+$.
559.303 10	5/2+	Possibly $5/2[402] + K+2 \gamma$ -vibration on $1/2[400]$. J ^{π} : From Adopted Levels. $3/2^+$, $5/2^+$ in 1997Dr04.
563.407 ^{&} 10	9/2-	
598.228 ^b 10	3/2-	
620.988 [°] 10	7/2+	Probably influenced by K+2 γ -vibration on 3/2[402].
695.137 ^{<i>a</i>} 10	5/2+	T^{T} A 1 \sim 1.2/0 ⁺
712.176.25	3/2+,5/2+	J^{A} : Adopted $3/2^{+}$.
740.3870 10	$5/2^{-}$ $5/2^{+}$	
822 807 & 15	$\frac{3}{2}$	
832.897 13	0/2+	
838.925 13	$\frac{9}{2}$ $\frac{3}{2}^{(+)}$ $\frac{5}{2}^{(+)}$	I^{π} . From Adopted Levels
857 025 10	$\frac{3}{2}, \frac{3}{2}$	J. Hom Adopted Levels.
874.28 3	$3/2^+, 5/2^+$	
892.268 ^c 20	9/2+,11/2+	J^{π} : Adopted (9/2 ⁺).
918.368 ^b 15	7/2-	
930.43 [@] 3		
972.874 15	3/2+,5/2,7/2	J^{π} : Adopted (5/2 ⁺).
975.333 25	$11/2^{-1}$	
1009.361 15	11/2*	
1019.595" 15	11/2*	
1035.463+ 15	13/2+	
1035.86 3	5/2+ 7/2 9/2+	I^{π} : Adopted (5/2+7/2+)
$1145 619^{b} 20$	$7/2^{-} 9/2^{-}$	I^{π} : Adopted (9/2) ⁻
1169.17 [°] 11	$11/2^+$	J. Muopicu (1/2).
1432.407 [#] 25		

¹⁹²Ir(\mathbf{n}, γ) E=TH 1997Dr04 (continued)

¹⁹³Ir Levels (continued)

E(level)[†]

1459.965[‡] 20 1511.725 25

[†] E(level), J^{π} and band assignments are from 1997Dr04.

[‡] Band(A): 3/2[402] band.

[#] Band(B): 1/2[400] band.

[@] Band(C): 11/2[505] band. [&] Band(D): 7/2[523] band.

^a Band(E): 1/2[411] band.

^b Band(F): 3/2[532] band.

^c Band(G): 7/2[404] band.

γ ⁽¹⁹³Ir)

Eγ	Iγ	E _i (level)	J_i^π	E _f	J_f^π	Mult. [†]	δ	Comments
41.219 [‡] <i>13</i>		180.077	3/2+	138.939	5/2+			E_{γ} : energy fit very poor in least-squares fit of E_{γ} . From calculated E(level) E_{γ} =41.126 4.
73.050 [‡] 22		73.057	$1/2^{+}$	0.0	$3/2^{+}$	M1+E2	0.655 31	δ : deduced from L and M subshell ratios.
80.236 [‡] 7		80.242	$11/2^{-}$	0.0	$3/2^+$	M4		
107.022 5	3.57 14	180.077	$3/2^+$	73.057	$1/2^+$	M1		
135.88 3	0.12 2	695.137	5/2+	559.303	5/2+			
138.938 5	19.1 15	138.939	$5/2^+$	0.0	$3/2^{+}$	M1		
142.159 <i>3</i>	3.6 <i>3</i>	740.387	5/2-	598.228	3/2-	M1		
154.554 7	2.7 3	516.421	7/2+	361.863	5/2+	M1		
154.721 4	0.09 4	712.176	$3/2^+, 5/2^+$	557.447	$1/2^+, 3/2^+$			
164.158 4	2.53 23	521.924	9/2+	357.767	7/2+	M1		
177.986 7	3.8 <i>3</i>	918.368	7/2-	740.387	5/2-	M1		
178.441 <i>4</i>	0.59 12	1035.463	$13/2^{+}$	857.025	$11/2^{+}$	M1		
180.071 7	1.02 5	180.077	3/2+	0.0	3/2+	M1+E2		
181.792 7	5.6 <i>3</i>	361.863	5/2+	180.077	3/2+	M1		
201.535 7	0.06 2	559.303	$5/2^{+}$	357.767	$7/2^{+}$			
218.826 2	20.0 10	357.767	$7/2^{+}$	138.939	$5/2^{+}$	M1+E2	0.37 [§] 12	
219.158 7	74 <i>4</i>	299.401	7/2-	80.242	$11/2^{-}$	E2		
227.252 7	1.31 12	1145.619	7/2-,9/2-	918.368	$7/2^{-}$			
232.507 19	0.20 2	972.874	3/2+,5/2,7/2	740.387	5/2-			
234.608 7	2.26 11	695.137	5/2+	460.540	3/2+	M1		
251.635 7	0.59 <i>3</i>	712.176	$3/2^+, 5/2^+$	460.540	$3/2^{+}$	M1		
263.218 8	1.40 7	620.988	7/2+	357.767	7/2+	M1		
264.005 5	19.7 <i>10</i>	563.407	9/2-	299.401	7/2-	M1		
269.490 7	5.9 <i>3</i>	832.897	$11/2^{-}$	563.407	9/2-	M1		
271.282 12	0.73 7	892.268	9/2+,11/2+	620.988	7/2+			
276.890 20	0.55 8	1169.17	$11/2^{+}$	892.268	$9/2^+,11/2^+$	M1		
279.611 18	0.25 4	838.923	9/2+	559.303	5/2+			
280.465 3	2.35 19	460.540	3/2+	180.077	3/2+	MI		
288.807.9	3.46 17	361.863	5/2+	73.057	1/2+	E2		
298.828 10	12.8 12	598.228	3/2	299.401	1/2	E2		
312.125 9	0.379	1169.17	11/2	857.025	11/2	F.0		
320.142 17	0.45 /	918.368	1/2 2/2 ⁺	398.228	$\frac{3}{2}$	E_2		
321.004 /	2.22 20	400.540	$\frac{3}{2}$	138.939	5/2" 7/2+	MI+E2 M1		
522.505 21 222 20 1	3.01 22 0.25 7	838.923 605 127	9/2 · 5/2+	261 962	1/2 · 5/2+	IVII M1		
333.28 4 225 101 11	0.23 / 2 1 2	093.137 857.025	$\frac{J}{2}$	521.024	$\frac{3}{2}$	IVII M1		
335.101 11	3.1 3 10 0 <i>10</i>	637.023 516.421	$\frac{11/2}{7/2^+}$	JZ1.924 180.077	2/∠ 3/2+	E2		
330.3+37	10.910	510.421	// <i>2</i> 5/2+	257.7(7	5/2 7/0+	62		
337.33" 3 #	4.1~ 4	695.137	5/2	357.767	1/2'			Expected intensity from adopted branching ratio ≈ 0.05 .
350.325 [#] 9	0.41 ^{&} 6	712.176	$3/2^+, 5/2^+$	361.863	5/2+			Expected intensity from adopted branching ratio~0.02.

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}41$

¹⁹²Ir(n,γ) E=TH **1997Dr04** (continued)

 $\gamma(^{193}\text{Ir})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}^{π}_{i}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ	Comments
351.864 14	0.83 7	972.874	$3/2^+, 5/2, 7/2$	620.988 7/2+			
354.960 7	0.67 10	918.368	7/2-	563.407 9/2-	M1		
357.77 5	23.0 18	357.767	7/2+	$0.0 3/2^+$	E2		
361.860 15	7.1 6	361.863	5/2+	$0.0 3/2^+$	M1		
377.477 7	11.0 10	516.421	7/2+	138.939 5/2+	M1(+E2)		
378.533 8	0.10 2	740.387	5/2-	361.863 5/2+			
379.230 11	0.22 3	559.303	5/2+	180.077 3/2+			
382.989 7	26.0 21	521.924	9/2+	138.939 5/2+	E2		
387.520 18	1.9 <i>3</i>	460.540	$3/2^{+}$	73.057 1/2+	M1		
388.60 4	1.9 4	849.088	$3/2^{(+)}, 5/2^{(+)}$	460.540 3/2+	M1		
389.140 10	17.9 14	469.387	13/2-	80.242 11/2-	M1		
398.775 <i>23</i>	7.8 6	478.992	15/2-	80.242 11/2-	E2		
413.756 8	1.82 11	874.28	$3/2^+, 5/2^+$	460.540 3/2+	M1+E2		
418.48 4	0.17 <i>3</i>	557.447	$1/2^+, 3/2^+$	138.939 5/2+			
420.351 8	2.34 12	559.303	5/2+	138.939 5/2+	M1		
440.37 5	0.52 8	1459.965		$1019.595 \ 11/2^+$			
440.980 13	5.0 5	740.387	5/2-	299.401 7/2-	M1		
445.023 14	0.23 3	806.901	5/2+	361.863 5/2+			
449.149 18	2.17 20	806.901	5/2+	357.767 7/2+	M1		
451.441 8	1.64 10	930.43		478.992 15/2-		6	
460.547 7	6.7 5	460.540	3/2+	$0.0 3/2^+$	M1+E2	0.61 [§] 23	
477.062 8	10.8 5	838.923	9/2+	361.863 5/2+	E2		
482.048 8	10.3 5	620.988	7/2+	138.939 5/2+	M1+E2	0.92 [§] 22	
483.160 8	12.4 9	563.407	9/2-	80.242 11/2-	M1		
484.323 12	0.27 5	557.447	1/2+,3/2+	73.057 1/2+	M1		E_{γ} : energy fit poor in least-squares fit of E_{γ} . From calculated E(level) E_{γ} =484.397 8.
486.274 11	0.19 <i>3</i>	559.303	5/2+	73.057 1/2+			
487.217 13	1.21 11	849.088	$3/2^{(+)}, 5/2^{(+)}$	361.863 5/2+	E2		
492.940 8	7.2 7	1009.361	$11/2^{+}$	516.421 7/2+	E2		
496.345 8	6.0 6	975.333	$11/2^{-}$	478.992 15/2-	E2		
499.254 8	10.0 9	857.025	$11/2^{+}$	357.767 7/2+	E2		
503.174 8	9.8 9	1019.595	$11/2^{+}$	516.421 7/2+	E2		
505.943 8	3.02 24	975.333	$11/2^{-}$	469.387 13/2-	M1		
513.529 8	11.7 10	1035.463	$13/2^{+}$	521.924 9/2+	E2		
515.064 9	1.28 8	695.137	5/2+	180.077 3/2+	M1+E2		
516.153 23	0.88 7	1038.055	5/2+,7/2,9/2+	521.924 9/2+			
516.475 [@] 15	1.01 [@] 12	516.421	7/2+	$0.0 3/2^+$			
516.475 [@] 15	$1.01^{@}$ 12	874.28	$3/2^+.5/2^+$	357.767 7/2+			
525.16.5	1.54 1.5	598.228	3/2-	73.057 1/2+			
532.127 18	0.24 3	712.176	$3/2^+, 5/2^+$	$180.077 3/2^+$			
533.51 3	4.1 4	832.897	$11/2^{-1}$	299.401 7/2-	E2		
				,			

NUCLEAR DATA SHEETS

¹⁹²Ir(n, γ) E=TH **1997Dr04** (continued)

$\gamma(^{193}$ Ir) (continued)

Eγ	Ι _γ	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
534.482 21	1.57 10	892.268	$9/2^+,11/2^+$	357.767	7/2+		
538.845 20	1.72 19	1511.725		972.874	$3/2^+, 5/2, 7/2$	M1+E2	
539.92 8	1.24 19	1009.361	$11/2^{+}$	469.387	$13/2^{-}$		
548.19 <i>3</i>	2.86 14	1169.17	$11/2^{+}$	620.988	7/2+	E2	
556.175 9	0.25 2	695.137	5/2+	138.939	$5/2^{+}$	E2(+M1)	
557.429 <i>21</i>	1.96 20	557.447	$1/2^+, 3/2^+$	0.0	$3/2^{+}$	M1	
559.29 <i>4</i>	6.4 5	559.303	5/2+	0.0	3/2+	M1	
560.33 [#] 3	1.53 ^{&} 21	740.387	5/2-	180.077	$3/2^{+}$		Expected intensity from adopted branching ratio≈0.15.
573.21 6	0.10 3	712.176	$3/2^+, 5/2^+$	138.939	$5/2^+$		
582.201 20	0.25 5	1145.619	7/2-,9/2-	563.407	9/2-		
599.510 7	7.4 9	1432.407		832.897	$11/2^{-}$		
601.45 5	0.82 15	740.387	5/2-	138.939	5/2+		
602.940 8	3.3 4	1459.965		857.025	$11/2^{+}$		
611.037 <i>21</i>	1.37 24	972.874	3/2+,5/2,7/2	361.863	5/2+		
615.09 5	1.29 18	972.874	3/2+,5/2,7/2	357.767	7/2+		
618.94 <i>3</i>	2.07 17	918.368	7/2-	299.401	$7/2^{-}$		
620.98 <i>3</i>	7.76	620.988	7/2+	0.0	$3/2^{+}$		
626.88 8	0.33 4	806.901	5/2+	180.077	3/2+		
637.46 <i>3</i>	5.1 <i>3</i>	1511.725		874.28	$3/2^+, 5/2^+$		
647.257 8	3.8 4	1169.17	$11/2^{+}$	521.924	9/2+		
662.636 15	5.1 <i>17</i>	1511.725		849.088	$3/2^{(+)}, 5/2^{(+)}$		
667.963 9	4.1 <i>3</i>	806.901	5/2+	138.939	$5/2^{+}$		
676.192 <i>13</i>	2.9 5	1038.055	5/2+,7/2,9/2+	361.863	5/2+		
678.090 25	5.9 <i>3</i>	1035.86		357.767	7/2+		
680.280 15	2.0 4	1038.055	5/2+,7/2,9/2+	357.767	7/2+		

[†] Deduced from conversion coefficients and ce-ratios (data not given by 1997Dr04).

[‡] Observed in ce-spectra only.

§ Deduced from $\alpha(K)$ exp and $\alpha(L1)$ exp.

[&] γ is either influenced by an impurity, or is placed incorrectly. A γ of this intensity was not seen in ¹⁹³Os β^- decay. [@] Multiply placed with undivided intensity.

[#] Placement of transition in the level scheme is uncertain.

¹⁹³Ir(γ , γ):Mossbauer

¹⁹³Ir Levels

Time-reversal invariance: 1980Da12, 1970Ze04, 1968At01. Isomer shifts: 1985De51, 1985Be03, 1973Wa05 (also 1970Wa18,1967Wa12), 1967At03. Quadrupole interaction: 1974Sa08, 1967Wa12. Hyperfine fields: 1975Ka16, 1969Pe05, 1967He11. Conversion electron Mossbauer spectra: 1991Sa33.

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †	Comments
0.0	3/2+	stable	
73.041 5	$1/2^{+}$	6.09 ns 15	g(73 level)/g(g.s.)=9.1 3 (1967At03), +8.875 18 (1967Wa20).
			J ^{π} : from shape of absorption spectrum (magnetic splitting of 73.0 level) (1967At03); π from Adopted Levels.
138.941 5	5/2+	78 ps 4	T _{1/2} : adopted value includes 79.7 ps 21 from measured Γ (1969St04).

[†] From Adopted Levels.

$\gamma(^{193}\mathrm{Ir})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	δ	Comments
73.040 12	73.041	1/2+	0.0 3/2+	M1+E2	-0.558 5	δ: from relative intensities of emission lines from completely magnetized ¹⁹³ Os source (1967Wa20) (sign convention not stated by authors, but sign apparently consistent with later data (1984Gh01)); $δ$ =0.61 5 (1967At03). Other: 1968At01.
138.92 4	138.941	$5/2^{+}$	0.0 3/2+	M1+E2	-0.329 12	δ : from Adopted Gammas.

[†] From adopted gammas.

193 Ir(γ , γ):Mossbauer

Level Scheme

¹⁹³₇₇Ir₁₁₆

¹⁹³Ir(γ, γ'):res fluorescence **1967Me12,1970Me16**

1967Me12: source: ¹⁹³Os; high-speed-rotor technique used to tune γ-rays (Ge(Li) detector). 1970Me16: reevaluation of data.
1995La16: source: ¹³⁷Cs, ⁶⁰Co; measured excitation cross-section for the 10.53 d, 80.22 keV ¹⁹³Ir isomer. Detected electrons (E≈70 keV), persumably ce(L)(80.22γ) from isomeric level (also 1994La33).

1996La27: source: bremsstrahlung 4 MeV endpoint. Measured excitation cross-section for the 10.53 d, 80.22 keV ¹⁹³Ir isomer. Detected Ir L x ray.

¹⁹³Ir Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	3/2+		
460	3/2+	11 ps 2	T _{1/2} : from [(2J+1)/(2J(g.s.)+1)] x $[\Gamma_{\gamma 0}^2/\Gamma] = 7.6 \times 10^{-6}$ eV <i>12</i> (1967Me12); adopted value T _{1/2} =14.9 ps <i>18</i> .
557	$(1/2)^+$	≤4 [#] ps	$T_{1/2}$: adopted value $T_{1/2}$ =34 ps 8.
559	5/2+	1.08 [#] ps <i>16</i>	$T_{1/2}$: the value given in 1970Me16, mean life =1.65 24, had been corrected to reflect the adopted branching ratios and γ properties (see adopted gammas).
598.2	3/2-	2.8 ps +28-9	$T_{1/2}$: from 1995La16.

[†] From Adopted Levels.

[‡] From 1970Me16 (results of reanalysis of experimental measurements of 1967Me12); unless otherwise noted.

[#] From $[(2J+1)/(2J(g.s.)+1)] \times [\Gamma_{\chi 0}^2/\Gamma] = 7.9 \times 10^{-5} \text{ eV } 6$ for the combined 557+559 levels (1967Me12).

$\gamma(^{193}{\rm Ir})$

E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
460	3/2+	0.0	3/2+
557	$(1/2)^+$	0.0	$3/2^{+}$
559	$5/2^{+}$	0.0	$3/2^{+}$
	$\frac{\mathrm{E}_i(\mathrm{level})}{460}$ 557 559	$\frac{E_i(\text{level})}{460} \frac{J_i^{\pi}}{3/2^+} \\ 557 (1/2)^+ \\ 559 5/2^+ \end{cases}$	$\begin{array}{c c} \frac{\mathbf{E}_i(\text{level})}{460} & \frac{\mathbf{J}_i^{\pi}}{3/2^+} & \frac{\mathbf{E}_f}{0.0} \\ 557 & (1/2)^+ & 0.0 \\ 559 & 5/2^+ & 0.0 \end{array}$

¹⁹³Ir(γ , γ'):res fluorescence 1967Me12,1970Me16

Level Scheme

¹⁹³Ir(**n**,**n**'γ) **1987Pr10**

Reactor fast-neutron beam, θ =90°; enriched ¹⁹³Ir targets (97.6%); measured E γ , I γ (Ge(Li), FWHM=2.0 keV at 1332 keV); determined level-population rates.

Others: 1959An30, 1984Ya02.

¹⁹³Ir Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	3/2+		
73.0 [@]	$1/2^{+}$		
80.2 ^C	11/2-	10.53 d 4	%IT=100 $T_{1/2}$: From Adopted Levels.
138.9 [#]	5/2+		
$180.0^{@}$	3/2+		
299.3 ^a	7/2-		
357.7 [#]	7/2+		
361.8 [@]	5/2+		
460.5 ^{&}	3/2+		
469.4 ^C	13/2-		
479.0 ^c	15/2-		
516.4 [@]	7/2+		
521.8 [#]	9/2+		
557.3 [°]	$1/2^+$		
559.2 563.3 <mark>0</mark>	$\frac{5}{2}$		
508.5	3/2 2/2-		
621.0	$\frac{3}{2}$		
695.1 ^{&}	5/2+		
712.1	$3/2^+$		
740.3 ^b	5/2-		
806.9	5/2+		J^{π} : alternate 7/2 ⁺ assignment by 1987Pr10 not consistent with observation of 733.9 γ to $1/2^+$ (evaluator).
828.9	$(9/2^{-})$		
833.2^{α}	11/2-		
(834.7°)	9/2 ' 5/2+		
040.9 957.0#	$\frac{3}{2}$		
874.2	11/2		1987Pr10 suggest that this is the 7/2 ⁺ member of the second $K^{\pi}=1/2^+$ band. However, a weak γ to $1/2^+$ level seen in ¹⁹³ Os β^- decay contradicts this assignment
892.2	$9/2^{+}$		
918.3 ^b	7/2-		
930.4 ^c	17/2-		
964.4	$(1/2^+, 3/2^+)$		J^{π} : Adopted $1/2^+$.
972.8	$(5/2^+)$ 11/2 ⁺		
1009.5	$11/2^+$		
1015.0	$(3/2.5/2.7/2)^+$		
1038.2	(+)		
1065.9	(+)		
1076.4	$(3/2^+)$		
1077.9 1131.1	(3/2 ,5/2 ⁻)		

¹⁹³Ir(n,n' γ) 1987Pr10 (continued)

¹⁹³Ir Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	Comments						
1145.7 ^b 1168.2 ^a 1169.2 1250.5 1434.1 [@] 1511.9	$\begin{array}{c} 9/2^{-} \\ 13/2^{-} \\ 11/2^{+} \\ (3/2^{+}, 5/2^{+}) \\ (13/2^{+}) \\ (3/2^{+}, 5/2^{+}) \end{array}$	J^{π} : Adopted (3/2 ⁺).						

[†] From 1987Pr10.

[‡] From comparison of experimental and theoretical level-population rates, band structure, and γ -ray decay systematics (1987Pr10).

* From comparison of exp # $K^{\pi}=3/2^{+}$ band. (@ $K^{\pi}=1/2^{+}$ band. & Second $K^{\pi}=1/2^{+}$ band. ${}^{a} K^{\pi}=7/2^{-}$ band. ${}^{b} K^{\pi}=3/2^{-}$ band. ${}^{c} K^{\pi}=11/2^{-}$ band.

Eγ	$\mathrm{I}_{\gamma}^{\dagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	N
$(73.040^{\ddagger} 12)$		73.0	$1/2^{+}$	0.0	$3/2^{+}$	
$(80.22^{\ddagger}.2)$		80.2	11/2-	0.0	$3/2^+$	י
107.07.5	122 16	180.0	$3/2^+$	73.0	$1/2^+$	1
139.23 4	480 50	138.9	$5/2^+$	0.0	$3/2^+$	
142.2 9	24 7	740.3	$5/2^{-}$	598.1	$3/2^{-}$	
154.67 ^e 9	11 ^e 5	516.4	7/2+	361.8	5/2+	
154.67 ^e 9	11 ^e 5	712.1	3/2+	557.3	1/2+	
164.19.17	7.3.25	521.8	$9/2^{+}$	357.7	$7/2^{+}$	
177.97 4	28.3	918.3	$7/2^{-}$	740.3	$5/2^{-}$	
180.09 4	34 3	180.0	$3/2^+$	0.0	$3/2^+$	
181.79 2	81 6	361.8	$5/2^+$	180.0	$3/2^{+}$	
^x 211.70 5	7.2 20				-	
219.24 ^{<i>f</i>} 3	850 ^{f§} 70	299.3	7/2-	80.2	11/2-	
219.24 ^{<i>f</i>} 3	150 ^{f§} 12	357.7	$7/2^{+}$	138.9	$5/2^{+}$	
227.35 9	8.8 10	1145.7	$9/2^{-}$	918.3	$7/2^{-}$	
234.61 <i>3</i>	63 12	695.1	$5/2^{+}$	460.5	$3/2^{+}$	
^x 242.37 6	11.5 18					
^x 247.5 1	5.1 12					
251.64 3	33.9 13	712.1	$3/2^{+}$	460.5	$3/2^{+}$	
259.8 13	3.5 13	621.0	7/2+	361.8	$5/2^{+}$	
264.00^{J} 3	96 ^{<i>f</i>} ^{<i>w</i>} 15	563.3	9/2-	299.3	$7/2^{-}$	
264.00 ^{<i>f</i>} 3	9.0 ^{f@} 8	621.0	7/2+	357.7	7/2+	
^x 267.91 14	4.3 14					
269.50 4	31 3	833.2	$11/2^{-}$	563.3	9/2-	
271.17 8	7.1 21	892.2	9/2+	621.0	$7/2^{+}$	
280.46 <i>3</i>	45 4	460.5	$3/2^{+}$	180.0	$3/2^{+}$	

 $\gamma(^{193}\mathrm{Ir})$

Mult.	Comments						
M4	Mult.: From Adopted Gammas.						
	I _γ : from adopted gammas I _γ (154γ)/I _γ (336γ)=0.40 <i>13</i> which would indicate that all the observed intensity belongs to this location in level scheme. I _γ : from adopted gammas I _γ (155γ)/I _γ (252γ)=0.14 2 which suggests I _γ (155γ)=4.7 7.						

This placement suggested by evaluator on basis of Coulomb excitation and (n,γ) data.

			¹⁹³ Ir (r	ι,n ′γ)	1987Pr	10 (continued)
				γ (¹⁹³ I	r) (conti	nued)
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
288.84 3	60 5	361.8	5/2+	73.0	$1/2^{+}$	
298.82 <i>3</i>	196 <i>16</i>	598.1	3/2-	299.3	$7/2^{-}$	
x308.73 5	6.1 13					
^x 314.30 7	3.1 6					
321.69 4	55 4	460.5	$3/2^{+}$	138.9	$5/2^{+}$	
*329.93 18	3.19	605 1	5/2+	261.0	5/2+	
335.15	2.89	095.1	5/2 11/0 ⁺	501.0	5/2 0/2+	
335.21^{-19}	$6.3^{f} 1/$	857.2	11/2	521.8	9/2	
335.21 19	2.7 12	1168.2	$\frac{13}{2^{-}}$	833.2	$\frac{11}{2^{-}}$	
330.38 0	3/ 3	516.4 1077.0	$1/2^{+}$ (2/2- 5/2-)	180.0	3/2 · 5/2-	
337.8 2	3.310 2216	1077.9	(3/2, 3/2) $(3/2, 5/2, 7/2)^+$	695.1	5/2 5/2+	
^x 349.20 11	4.6.12	1055.0	(3/2,3/2,7/2)	075.1	5/2	
355.1 4	2.7 16	918.3	7/2-	563.3	9/2-	
357.77 4	169 9	357.7	7/2+	0.0	$3/2^{+}$	
361.87 4	113 9	361.8	5/2+	0.0	$3/2^{+}$	
369.81 10	5.8 9	892.2	9/2+	521.8	9/2+	γ not placed by 1987Pr10; placement suggested by Coulomb excitation data.
x375.12 18	3.2 11					
377.50^{f} 5	79 ^{<i>f</i> & 5}	516.4	7/2+	138.9	$5/2^{+}$	
377.50 ^f 5	3f	557.3	$1/2^{+}$	180.0	$3/2^{+}$	
383.01 5	97 7	521.8	9/2+	138.9	5/2+	
387.54 5	45 3	460.5	3/2+	73.0	$1/2^{+}$	
389.16 5	513	469.4	13/2-	80.2	$11/2^{-}$	
* 397.03 7	15.1 4	470.0	15/2-	80.2	11/2-	
$x_{405,7,2}$	20.1 25	479.0	13/2	80.2	11/2	
x406.9 2	4.4 9					
^x 409.10 11	5.8 11					
413.81 10	8.6 12	874.2		460.5	$3/2^{+}$	
418.21 7	1.8 4	557.3	1/2+	138.9	5/2+	
420.40 6 ^x 432.8 4	33 <i>3</i> 1.7 <i>10</i>	559.2	5/2+	138.9	5/2+	
440.99 6	37 3	740.3	5/2-	299.3	7/2-	
444.75 ^{<i>f</i>} 12	2.1^{fd} 4	806.9	5/2+	361.8	$5/2^{+}$	
444.75 ^{fg} 12	1.2^{fd} 3	1065.9	(*)	621.0	$7/2^{+}$	
449.21 6	20 2	806.9	5/2+	357.7	$7/2^{+}$	
451.39 14	2.6 6	930.4	17/2-	479.0	$\frac{15}{2^{-}}$	
460.53 6	131.9	460.5	3/21	0.0	3/2	
(482.2.3)	3.4 ð	621.0	7/2+	128.0	5/2+	Pool superimposed on impurity (⁷ Li 477a): In
(482.2 3)	≈04	021.0	1/2	138.9	5/2	calculated from relative branching in Coulomb excitation (1987Pr10).
(484.3 [‡])	6.3	557.3	1/2+	73.0	1/2+	I _γ : from branching ratio in adopted gammas; γ possibly masked by impurity (477 γ of ⁷ Li) (evaluator).
*488.46 18	2.2 11	1000 2	11/0+		7.0+	
492.93 7	8.5 8 10 4	1009.3	11/2'	516.4	1/2 ⁺	
499.3 3 503 77 &	19 <i>4</i> 10 <i>7 15</i>	857.2 1010 6	$\frac{11/2}{11/2^+}$	516 A	7/2 · 7/2+	
(512.21)	20^{a}	017.0	11/2	261.0	5/2+	
(J12.3°)	2.9	074.2	5/0+	100.0	5/2 2/2+	1. met meet heed from incomite (517 : 34 (1)
515.06*	≈15	695.1	5/2	180.0	3/2 '	γ not resolved from impurity (51/ γ in ⁵⁷ Cl) contaminant; I γ deduced from relative branching in

contaminant; $I\gamma$ deduced from 193 Os β^- decay (1987Pr10).

			¹⁹³ I	r(n,n ′γ)	1987	Pr10 (continued)	
γ ⁽¹⁹³ Ir) (continued)							
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments	
(516.48^{\ddagger})	4.7 ^{<i>a</i>}	874.2		357.7	7/2+		
525.31 8 531.90 9	21.1 8 12.8 <i>13</i>	598.1 712.1	3/2 ⁻ 3/2 ⁺	73.0 180.0	$\frac{1}{2^{+}}$ $\frac{3}{2^{+}}$		
533.89 ^e 8	22.7 <mark>eb</mark> 14	833.2	$11/2^{-}$	299.3	$7/2^{-}$	1987Pr10 places the γ from this level alone.	
533.89 ^e 8 *545.85.15	22.7^{eb} 14	892.2	9/2+	357.7	7/2+	· · · · · · · · · · · · · · · · · · ·	
548.17 <i>11</i> x552.8 <i>19</i>	5.8 <i>13</i> 5.6 <i>12</i>	1169.2	11/2+	621.0	7/2+		
(556.18 [‡])	6 2	695.1	5/2+	138.9	5/2+	γ not observed but expected from ¹⁹³ Os β^- decay and ¹⁹² Ir(n, γ) data. I γ calculated from relative branching from adopted gammas.	
557.35 8 559.31 8	48 <i>4</i> 98 <i>8</i>	557.3 559.2	$\frac{1/2^{+}}{5/2^{+}}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$3/2^+$ $3/2^+$		
(573.24 [‡])	3.1 10	712.1	3/2+	138.9	5/2+	γ not seen, but expected on the basis of ¹⁹³ Os β^- and ¹⁹² Ir(n, γ) data. I γ deduced from relative branching in Adopted Levels (evaluator)	
582.55 <i>13</i> x589.96 23	1.1 5 1.8 6	1145.7	9/2-	563.3	9/2-	racipied Zereis (eraldator).	
599.4 ^{cg} 3	1.8 5	1434.1	$(13/2^+)$	834.7?	$9/2^{+}$		
610.80 ^g 15	3.5 8	972.8	$(5/2^+)$	361.8	$5/2^+$		
619.02 10	12.8 15	918.3	7/2-	299.3	7/2-		
621.05 9	51 <i>3</i>	621.0	7/2+	0.0	$3/2^{+}$		
627.34 15	2.8 6	806.9	5/2+	180.0	$3/2^{+}$		
^x 636.76 12	4.7 6						
647.49 <i>11</i>	6.0 12	1169.2	$11/2^{+}$	521.8	9/2+		
*651.64 18	1.8 4	1511.0	(2/2 + 5/2 +)	040.0	5/0+		
662.68 <i>14</i>	4.3 10	1511.9 806.0	$(3/2^+, 5/2^+)$ $5/2^+$	848.9 138.0	5/2* 5/2+		
x672 99 11	619	800.9	5/2	130.9	5/2		
676 36 18	306	1038.2	(+)	361.8	$5/2^{+}$		
677.98 11	7.0 9	1035.6	$(3/2.5/2.7/2)^+$	357.7	$7/2^+$		
695.27 14	4.0 10	695.1	5/2+	0.0	$3/2^+$		
698.64 17	1.8 7	1168.2	$13/2^{-}$	469.4	$13/2^{-}$		
704.01 11	5.5 9	1065.9	(*)	361.8	$5/2^{+}$		
710.01 10	14.4 15	848.9	5/2+	138.9	$5/2^{+}$		
712.47 26	2.1 7	712.1	3/2+	0.0	$3/2^{+}$		
718.72 10	41 4	1076.4	$(3/2^+)$	357.7	7/2+		
733.93 15	3.0 6	806.9	5/21	73.0	1/2 '		
735.59 18	2.0 4	8/4.2	$(0/2^{-})$	138.9	$\frac{5}{2}$		
x750.07.10	6912	020.9	(9/2)	80.2	11/2		
750.9719	0.912	022 2	11/2-	80.2	11/2-	1097Dr10 places the suffram this loval along	
752.75° 15	9.2°° 14	855.2	11/2	80.2	11/2	1987Pr10 places the γ from this level alone.	
752.73° 15	9.200 14	892.2	9/21	138.9	5/21		
x761 5 1	1.4 14						
^x 764.1.5	2.0 14 096						
^x 769.50 18	2.8.9						
x774.02 24	2.3 14						
^x 776.50 19	3.8 8						
778.60 9	40 4	1077.9	$(3/2^{-}, 5/2^{-})$	299.3	$7/2^{-}$		
^x 781.88 10	14.5 <i>14</i>				-		
¹⁹³Ir(n,n'γ) **1987Pr10** (continued)

$\gamma(^{193}$ Ir) (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
784.58 15	5.1 8	964.4	$(1/2^+, 3/2^+)$	180.0	$3/2^{+}$
x795.00 13	4.7 8				- 1
x797.00 15	4.3 9				
^x 802.93 9	8.8 9				
^x 829.8 4	2.2 13				
848.95 8	35 4	848.9	5/2+	0.0	$3/2^{+}$
856.5 6	1.1 7	1035.6	$(3/2,5/2,7/2)^+$	180.0	$3/2^{+}$
858.2 <i>3</i>	2.0 8	1038.2	(+)	180.0	$3/2^{+}$
x862.10 12	5.7 11		. ,		
874.26 9	36 4	874.2		0.0	$3/2^{+}$
^x 875.9 4	4.0 14				
885.91 8	15.5 21	1065.9	(*)	180.0	$3/2^{+}$
888.42 10	9.1 8	1250.5	$(3/2^+, 5/2^+)$	361.8	$5/2^{+}$
891.41 9	22.5 23	964.4	$(1/2^+, 3/2^+)$	73.0	$1/2^{+}$
892.89 <i>13</i>	8.4 11	1250.5	$(3/2^+, 5/2^+)$	357.7	$7/2^{+}$
899.98 <i>13</i>	4.9 7	972.8	$(5/2^+)$	73.0	$1/2^{+}$
^x 910.8 3	2.5 6				
^x 914.7 5	2.0 10				
^x 916.0 <i>3</i>	3.1 12				
^x 920.14 17	2.8 9				
^x 927.17 <i>12</i>	4.3 7				
^x 930.29 11	5.0 7				
937.49 <i>13</i>	12.3 20	1076.4	$(3/2^+)$	138.9	$5/2^{+}$
^x 943.33 22	2.5 8				
^x 947.44 20	2.7 11				
951.10 <i>11</i>	7.6 <i>13</i>	1131.1		180.0	$3/2^{+}$
954.37 15	5.1 10	1511.9	$(3/2^+, 5/2^+)$	557.3	$1/2^{+}$
^x 956.49 17	4.4 10				
^x 959.5 3	3.0 10				
^x 964.06 10	18.7 <i>18</i>				
^x 966.17 21	3.1 6				
972.08 24	2.4 8	972.8	$(5/2^+)$	0.0	$3/2^{+}$
^x 976.8 <i>3</i>	3.9 11				
^x 981.35 <i>11</i>	15.9 <i>15</i>				
992.2 ^e 5	2.8 ^e 17	1065.9	(*)	73.0	$1/2^{+}$
992.2 ^e 5	2.8 ^e 17	1131.1		138.9	$5/2^{+}$
^x 993.4 5	2.5 14				

[†] Relative I γ at θ =90°.

[‡] From adopted gammas.

§ Deduced from Iγ(complex peak)=1000 70 and relative branching from 357.7 level from other sources (1987Pr10).

& Deduced from I γ (complex peak)=82 5 and relative branching from 557.3 level from other sources (1987Pr10).

[@] Deduced from I γ (complex peak)=105 13 and relative branching from 621.0 level from adopted gammas (evaluator).

[#] Deduced from I γ (complex peak)=9 3 and relative branching from 857.2 level from adopted gammas (evaluator).

^{*a*} γ expected on the basis of ¹⁹³Os β^- decay data. γ probably masked by annihilation radiation and/or impurity (³⁶Cl 517 line). Iγ from relative branching in adopted gammas (evaluator).

^b Multiple placement by evaluator on the basis of Coulomb excitation and/or 192 Ir(n, γ) data.

^{*c*} γ identified as the 13/2⁺ to 9/2⁺ transition in a rotational band. The 9/2⁺ level was not seen, the transition from it was assumed to be masked by impurities. The energy of the 9/2⁺ level was estimated to be 834.7 keV. From Adopted Levels E(9/2⁺)=839.1 keV. Therefore, the adopted E(13/2⁺)=1438.5 keV.

^d Deduced from from I γ (complex peak)=3.3 6 and relative branching from 806.9 level from adopted gammas (evaluator).

^e Multiply placed with undivided intensity.

¹⁹³Ir(n,n' γ) 1987Pr10 (continued)

 $\gamma(^{193}\text{Ir})$ (continued)

^f Multiply placed with intensity suitably divided.

^{*g*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

 $^{193}_{77}$ Ir₁₁₆-54

Coulomb excitation 2000Be07,1987Mc01,1984Mu19

The level scheme combines data from the following major sources:

2000Be07: $E({}^{58}Ni)=155$, 180 MeV; $E({}^{65}Cu)=130$ MeV; $E({}^{32}S)=100$ MeV; $E({}^{16}O)=40$ MeV. Natural Ir targets. Measured

 $\gamma(\theta,H,t)$, recoil distance, particle- $\gamma(\theta)$, and g-factor (transient field IMPAC technique). Used particle-triaxial-rotor-model, U(6/4), and U(6/20) supersymmetry models to interpret level structure.

1987Mc01: $E({}^{40}Ar)=160$ MeV; $E({}^{136}Xe)=617$ MeV. Enriched 193 Ir targets (99.45%); measured γ -ray yields, particle- γ coin (annular solid-state surface-barrier detector, Ge(Li)); used triaxial rotor model to interpret level structure.

1986Ko20: E(32 S)=89, 118 MeV; measured $\gamma(\theta,H)$, $\gamma(\theta,H,t)$, recoil-distance.

1984Mu19: E(p), E(α)=5.0-6.0 MeV. Natural Ir targets; measured γ -ray yields, $\gamma(\theta)$ (large-volume Compton-suppressed Ge(Li) detector).

1972Pr04: $E(^{16}O)=25$ MeV, 40 MeV, 65 MeV. Enriched ¹⁹³Ir targets (98.0%); measured E γ , I γ (Ge(Li)), γ -ray yields.

Some data are from the following: 1971No01: E(d)=7.0 MeV; Eα=16.6 MeV. 1970Av02: E(¹⁶O)≈40 MeV. 1969Av03: E(¹⁶O)=9-30 MeV. 1958Mc02: E(p)=3.0-4.0 MeV. Others: 1971Ow01, 1957Be56, 1957Mc34, 1956Da40, 1956Hu49.

¹⁹³Ir Levels

- B(E2) \uparrow : The values of 1972Pr04 have been renormalized to B(E2) \uparrow (138.9 level)=0.75 *3*. The values of 1984Mu19 were obtained using B(E2) \uparrow (¹⁹⁴Pt 0⁺ to 2⁺)=1.620 *15* (1978Ba38) for calibration and were renormalized to the currently adopted value 1.649 *15* (2007Si17).
- g-factors: In the transient field IMPAC measurements of 1986Ko20 the value for g-factor(138.9 level)=+0.211 *12* was adopted for the calibration of the transient field; however, later measurements give g-factor(138.9 level)=+0.356 *16* ((Ni,Ni') and (Cu,Cu') 2000Be07, 1996St22).

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0 ^b	3/2+		
73.0 ^C	$1/2^{+}$	4.1 ns 3	B(E2)↑=0.110 8
			B(E2)↑: Weighted average of 0.11 <i>1</i> (1971No01), 0.111 <i>12</i> (1969Av03).
			$T_{1/2}$: In Adopted Levels: 6.09 ns 15 (from ¹⁹³ Os β^- decay).
80.2	$11/2^{-}$	10.53 [@] d 4	
138.9 ^b	$5/2^{+}$	69.7 ^{&} ps <i>10</i>	B(E2)↑=0.75 3
			B(E2) [†] : Limited weight method average of 0.81 3 (2000Be07), 0.71 7
			(1971No01), 0.64 6 (1969Av03), 0.74 7 (1958Mc02).
			g-factor=+0.356 16 transient field IMPAC measurements (2000Be07). Other: 0.211 12 (static
			field), $+0.215$ 13 (transient field) IMPAC measurements (1986Ko20); 1970Av02.
			$T_{1/2}$: 2000Be07 (recoil-distance method). Others: 92 4 ps (recoil-distance method, 1986Ko20); 78 4 ps (from B(E2)).
180.1 ^C	$3/2^{+}$	28 ps 4	B(E2)↑=0.087 8
			B(E2) ⁺ : Weighted average of 0.095 <i>14</i> (1972Pr04), 0.085 <i>10</i> (1971No01). Other: 0.25 <i>15</i> (1969Av01).
			$T_{1/2}$: Adopted value: 43 ps 16.
299.4	$7/2^{-}$		-,- · ·
357.8 ^b	$7/2^{+}$	18.7 ^{&} ps 7	B(E2)↑=0.518 9
			B(E2) [†] : Weighted average of 0.50 2 (2000Be07), 0.525 <i>10</i> (1984Mu19), 0.54 8 (1972Pr04), 0.49 7 (1971No01), 0.47 5 (1969Av03), 0.61 7 (1958Mc02).
			g-factor=+0.441 <i>16</i> transient field IMPAC measurements (2000Be07). Other: +0.41 <i>8</i> (static field), +0.62 <i>13</i> (transient field) IMPAC measurements, (1986Ko20).
			$T_{1/2}$: weighted average of 18.6 ps 7 (2000Be07) and 20.4 ps 24 (1986Ko20) (recoil-distance).

2000Be07,1987Mc01,1984Mu19 (continued) **Coulomb excitation**

¹⁹³Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
			Other: 14.9 ps 7 from B(E2), not included in the average because depends on $I\gamma(219)$
	1		from 357.8 level seen as an unresolved doublet.
361.9 ^c	5/2+	25 ps 3	$B(E2)\uparrow=0.0162 4$
			B(E2) ⁺ : Weighted average of 0.0159 5 (1984Mu19), 0.018 3 (1972Pr04).
460.5	$3/2^{+}$	13.8 ps 10	B(E2)↑=0.0253 5
			B(E2) ⁺ : Weighted average of 0.0252 5 (1984Mu19), 0.030 5 (1972Pr04).
516.4 [°]	$(7/2)^+$		
521.9 ^b	(9/2)+	13.2 ^{&} ps <i>19</i>	 B(E2)=0.827 30 (138.9 level to 521.9 level) (1987Mc01). g-factor=+0.54 15 (transient field IMPAC measurement), 2000Be07 – unweighted average of ⁵⁸Ni runs at 155 and 180 MeV. Other: +0.84 25 (transient field IMPAC measurement, 1986Ko20).
			$T_{1/2}$: weighted average of 13.9 ps 22 (2000Be07) and 11 ps 4 (1986Ko20) (recoil-distance): 10.4 ps 6 from B(E2) was not included because L is uncertain.
557.4	$(1/2)^+$	34 [@] ps 8	1984Mu19 report B(E2)=0.046 15; however, assuming 557γ pure E2 to determine an upper limit, this B(E2) gives $T_{1/2} = 6.2$ ps, much smaller than the measured $T_{1/2}$.
559.3	$5/2^{+}$	1.08 [@] ps 16	$B(E2)\uparrow=0.012\ 6\ (1984Mu19)$
563.4	$(9/2^{-})$	1	
598.2	3/2-	$2.8^{\textcircled{0}}$ ps +28-9	
621.0 ^d	$7/2^{+}$	4.3^{a} ps 3	B(E2)↑=0.106 5
			 B(E2)↑: Weighted average of 0.110 6 (1984Mu19), 0.121 <i>18</i> (1972Pr04), 0.090 <i>11</i> (1971No01). g-factor=+0.33 4 (transient field IMPAC measurement, 2000Be07). Other:+0.15 <i>11</i> (transient field IMPAC measurement, 1986Ko20). T_{1/2}: weighted average of 4.4 ps 5 (2000Be07) and 6.1 ps <i>17</i> (1986Ko20) (recoil-distance method), and 4.2 ps 4 (from adopted B(E2)).
695.1	$5/2^{+}$	_	B(E2)↑=0.0066 22 (1987Mc01)
712.2	3/2+	15 [@] ps <i>14</i>	
740.4	5/2-		
806.9	(5/2)+		B(E2)=0.013 4 (1987Mc01). J^{π} : (7/2 ⁺) assignment from 1987Mc01 not consistent with observation of 733.9 γ (to 1/2 ⁺) in ¹⁹³ Ir(n,n' γ).
838.9 ^c	$(9/2^+)$		
857.0 ^b	$(11/2)^+$	4.2 ps 4	B(E2)=0.50 <i>3</i> (357.7 level to 857 level) (1987Mc01). g-factor=+0.49 <i>13</i> (transient field IMPAC measurement, 2000Be07).
892.3 ^d	$(9/2^+)$		
1035.5 ^b	$(13/2)^+$		
1169.2 ^d	$(11/2^+)$		
1460.0 ^b	$(15/2)^+$		
1651 ^b	$(17/2^+)$		
2179 ^b	$(19/2^+)$		
2404? ^b	$(21/2^+)$		

[†] Rounded-off values from Adopted Levels.

[‡] From 1987Mc01. The J^{π} assignments for J \geq 7/2 are based on band structure and similarities to ¹⁹¹Ir.

[#] Calculated from adopted B(E2) \uparrow using the adopted δ , α , and branching ratios for the relevant γ 's, unless otherwise noted.

[@] From Adopted Levels.

[&] From recoil-distance method, see comment. ^{*a*} From recoil-distance method and B(E2), see comment.

2000Be07,1987Mc01,1984Mu19 (continued) **Coulomb excitation**

¹⁹³Ir Levels (continued)

^{*b*} Band(A): $K^{\pi}=3/2^{+}$ band. ^{*c*} Band(B): $K^{\pi}=1/2^{+}$ band. ^{*d*} Band(C): $K^{\pi}=7/2^{+}$ band.

				Coulo	mb excit	ation 20	00Be07,1987N	Ac01,1984Mu19 (co	ntinued)
							γ ⁽¹⁹³ Ir)		
${\rm E_{\gamma}}^\dagger$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [§]	$\delta^{\S b}$	α^{c}	Comments
73		73.0	1/2+	0.0	3/2+	M1+E2	-0.558 5	6.11 10	E_{γ} : from 1969Av03. Masked by x-rays (1972Pr04); observation confirmed from analysis of x-ray spectrum (1969Av03).
$(80.236^{\&} 7)$ $x_{105.9}^{@} 2$		80.2	11/2-	0.0	3/2+	M4		2.11×10^4	
107.0 [@] 2	6.5 9	180.1	3/2+	73.0	1/2+	M1+E2	+0.16 1	5.01 8	I_{γ} : subject to absorber and detector-efficiency corrections (priv. comm. from authors of 1987Mc01).
138.9 [@] 2	111 <i>3</i>	138.9	5/2+	0.0	3/2+	M1+E2	-0.362 6	2.26	δ: 2000Be07 (particle- $\gamma(\theta)$). Others: -0.44 +2-4 (1970Av02); -0.75 25 (1958Mc02); 0.329 12 (β ⁻ decay).
154	3.6 5	516.4	$(7/2)^+$	361.9	$5/2^{+}$	(M1)		1.79	
$164.2^{@} 2$ $^{x}168.4^{@} 2$	10.0 7	521.9	(9/2)+	357.8	7/2+	(M1)		1.492	I_{γ} : $I_{\gamma}(164.2\gamma)/I_{\gamma}(382.9\gamma)=0.109\ 20\ (1972Pr04).$
$180.0^{\textcircled{0}}2$	4.6 5	180.1	$3/2^{+}$	0.0	$3/2^{+}$	M1+E2	-0.48 2	1.029 17	I_{γ} : $I_{\gamma}(180.0\gamma)/I_{\gamma}(107.0\gamma)=0.288 \ 19 \ (1972Pr04).$
$181.7^{@} 2$	10.0 7	361.9	$5/2^{+}$	180.1	$3/2^{+}$	M1+E2	+0.149 11	1.108	I_{γ} : $I_{\gamma}(181.7\gamma)/I_{\gamma}(361.8\gamma)=0.80\ 25\ (1972Pr04).$
218.8 [@] 2	65.6 22	357.8	7/2+	138.9	5/2+	M1+E2	-0.280 9	0.639 10	I _γ : I _γ (218.8γ)/I _γ (357.7γ)=0.63 4 (1972Pr04). I _γ : 219γ is also placed from the 7/2 ⁻ 299.4 keV level by 1987Mc01; however, all I _γ is shown here. Mult.,δ: 2000Be07 (particle- $\gamma(\theta)$). Others: -0.34 4 ($\gamma(\theta)$, 1984Mu19); -0.22 3 (1958Mc02); -0.42 +8-14 (1970Av02).
(219)	1.0.4	299.4	7/2-	80.2	$11/2^{-}$	E2		0.255	
234	1.2.4	695.1 563.4	$5/2^{+}$	460.5	3/2	(M1) (M1)		0.555	
$263.2^{@} 2$	3.9 5	621.0	(9/2) 7/2 ⁺	357.8	7/2 ⁺	(M1) M1+E2	-0.26 [#] 11	0.385 16	I _{γ} : I γ (263.2 γ)/I γ (482.1 γ)=0.122 <i>12</i> (1972Pr04), 0.17 (1984Mu19).
271	1.4 5	892.3	$(9/2^+)$	621.0	7/2+				
$280.4^{\textcircled{0}}{2}$	1.3 4	460.5	$3/2^{+}$	180.1	$3/2^{+}$	M1+E2	-0.049 12	0.337	I_{γ} : Iγ(280.4γ)/Iγ(460.5γ)=0.194 18 (1972Pr04).
$288.7^{@}2$	5.5 5	361.9	$5/2^{+}$	73.0	$1/2^{+}$	(E2)		0.1064	I_{γ} : $I_{\gamma}(288.7\gamma)/I_{\gamma}(361.8\gamma)=0.52 \ 17 \ (1972Pr04).$
299	2.0 4	598.2	$3/2^{-}$	299.4	7/2-	(E2)		0.0958	
3124		1169.2	(11/2 ⁺)	857.0	(11/2)+				I_{γ} : $I_{\gamma}(3I_{2\gamma})/(I_{\gamma}(548\gamma)+I_{\gamma}(64/\gamma))=0.19$ / (from 61/-MeV ¹³⁶ Xe data, 1987Mc01).
$321.6^{\textcircled{0}}2$ 323 $x_{328.4}^{\textcircled{0}}2$	1.1 <i>3</i> 1.7 <i>4</i>	460.5 838.9	3/2 ⁺ (9/2 ⁺)	138.9 516.4	$5/2^+$ $(7/2)^+$	M1+E2 (M1)	+0.234 10	0.225 0.230	I_{γ} : $I_{\gamma}(321.6\gamma)/I_{\gamma}(460.5\gamma)=0.24 \ 4 \ (1972Pr04).$
335 336 x246 7 [@] 2	8.6 <i>18</i> 6.9 <i>14</i>	857.0 516.4	$(11/2)^+$ $(7/2)^+$	521.9 180.1	(9/2) ⁺ 3/2 ⁺	[M1,E2] (E2)		0.14 7 0.0681	
357.7 [@] 2	100	357.8	7/2+	0.0	3/2+	E2		0.0571	Mult.: Q from $\gamma(\theta)$ (1958Mc02).

113

NUCLEAR DATA SHEETS

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}57$

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}57$

γ ⁽¹⁹³ Ir)	(continued)
------------------------------	-------------

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [§]	$\delta^{\S b}$	α^{c}	Comments
361.8 [@] 2	12.0 8	361.9	5/2+	0.0	3/2+	M1+E2	-0.33 3	0.158 3	
370	1.5 4	892.3	$(9/2^+)$	521.9	$(9/2)^+$	(1)		0 15 19	
3//	12.1 8	516.4	$(1/2)^+$	138.9	5/2 ·	(M1)	105	0.1518	
3/7.4"		557.4	$(1/2)^{+}$	180.1	3/2 '	(M1+E2)	1.0 5	0.10 3	$1\gamma(3/(.4\gamma))/1\gamma(55/.4\gamma)=0.059$ (1984Mu19).
382.9 [©] 2	89 <i>3</i>	521.9	$(9/2)^+$	138.9	5/2+	(E2)		0.0473	
387.5 ^{^w} 2	1.2 4	460.5	$3/2^+$	73.0	$1/2^+$	M1+E2	-0.24 4	0.136 3	I_{γ} : $I_{\gamma}(387.5\gamma)/I_{\gamma}(460.5\gamma)=0.16 \ 3 \ (1972Pr04).$
420	2.1 4	559.3	5/2	138.9	$5/2^{+}$	MI		0.1139	1 + 1 + (405) + (602) + 0 + 1 + (6) + (17) + 136 + 1
425"		1460.0	(15/2)*	1035.5	$(13/2)^{+}$				I_{γ} : $I_{\gamma}(425\gamma)/I_{\gamma}(603\gamma)=0.11$ 4 (from 61/-MeV ¹⁵⁰ Xe data, 1987Mc01).
441 <i>I</i>		740.4	$5/2^{-}$	299.4	$7/2^{-}$	M1+E2	-0.37 4	0.0919 22	
449	1.0 3	806.9	$(5/2)^+$	357.8	7/2+	(M1)		0.0954	
$x_{450.8}^{@}$ 2									
$460.5^{@}2$	3.3 4	460.5	$3/2^{+}$	0.0	$3/2^{+}$	M1+E2	-0.64 3	0.0718 16	
477	4.3 5	838.9	$(9/2^+)$	361.9	5/2+	(E2)		0.0267	
482.1 [@] 2	33.5 <i>13</i>	621.0	7/2+	138.9	5/2+	M1+E2	-0.93 11	0.054 4	δ: average of -0.89 13 (particle- $\gamma(\theta)$, 2000Be07) and -1.02 19 ($\gamma(\theta)$, 1984Mu19).
499	33.5 13	857.0	$(11/2)^+$	357.8	$7/2^{+}$	[E2]		0.0239	
513.6	15.3 8	1035.5	$(13/2)^+$	521.9	$(9/2)^+$	(E2)		0.0222	
514.9		695.1	5/2+	180.1	3/2+	(M1,E2)		0.044 23	E_{γ} : from 1984Mu19.
532.1	a a <i>i</i>	712.2	$3/2^+$	180.1	$3/2^+$	M1+E2	+0.48 + 32 - 16	0.053 9	E_{γ} : from 1984Mu19.
534	2.3 4	892.3	$(9/2^+)$	357.8	7/2+			0.0100	
548	2.1 4	1169.2	$(11/2^{+})$	621.0	1/2*	(E2)		0.0190	
557.4"		557.4	$(1/2)^+$	0.0	3/2+	(M1)		0.0541	
559	4.4 6	559.3	$5/2^{+}$	0.0	$3/2^{+}$	(M1)		0.0537	
603	3.3 4	1460.0	$(15/2)^{-1}$ $(17/2^{+})^{-1}$	857.0	$(11/2)^{+}$ $(12/2)^{+}$				
613	25 0 11	(21.0	(17/2)	1055.5	(15/2)	(EA)		0.01425	$\mathbf{L} = \mathbf{L}_{1}(2, 1, 0, 1)/\mathbf{L}_{2}(4, 2, 1, 1) = 0.76 \in (10, 72, 10, 0, 1) = 0.70$
621.0 - 2	25.0 11	621.0	1/2	0.0	3/2*	[E2]		0.01425	1_{γ} : $1_{\gamma}(0.21.0\gamma)/1_{\gamma}(482.1\gamma)=0.76.6 (1972Pr04), 0.79 (1984Mu19).$
647	3.0 5	1169.2	$(11/2^+)$	521.9	$(9/2)^+$				
654 ^u		1169.2	$(11/2^{+})$	516.4	(7/2)+				I_{γ} : $I_{\gamma}(654\gamma)/(1\gamma(548\gamma)+1\gamma(64/\gamma))=0.15$ 5 (from 617-MeV ¹³⁶ Xe data, 1987Mc01).
668	2.0 6	806.9	$(5/2)^+$	138.9	5/2+				
695		695.1	5/2+	0.0	3/2+				
719 ^{<i>u</i>}	10.4	2179	$(19/2^+)$	1460.0	$(15/2)^+$				
753	1.3 4	892.3	$(9/2^{+})$	138.9	5/2*				
153		2404?	$(21/2^+)$	1651	$(1^{7}/2^{+})$				Possible second placement of γ in ¹³⁰ Xe data of 1987Mc01.
807		806.9	$(5/2)^+$	0.0	$3/2^{+}$				

Coulomb excitation 2000Be07,1987Mc01,1984Mu19 (continued)

$\gamma(^{193}$ Ir) (continued)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Comments
812 ^{<i>a</i>}	1169.2	$(11/2^+)$	357.8	7/2+	I_{γ} : $I_{\gamma}(812\gamma)/(I_{\gamma}(548\gamma)+I_{\gamma}(647\gamma))=0.20 \ 8 \ (from \ 617-MeV^{-136}Xe \ data, \ 1987Mc01).$
[†] Fr [‡] A [§] Fr [@] Fr [#] Fr ^a γ ^b If ^c Tc as ^x γ	om 1987Mc rbitrary units om Adopted om Adopted om 1972Pr0 om 1984Mu seen only w no value giv otal theoretic signed multi ray not plac	01, unless s for $E(^{40}A)$ l Gammas, l Gammas, 19. ith ¹³⁶ Xe l ven it was cal internal polarities, ed in level	otherw: Ar)=160 , unless E=617 I assumed convers and miz	ise note MeV otherw MeV ra d δ =1.0 sion co xing rate	ed. (1987Mc01). ise noted. eaction (1987Mc01). 00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. efficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, tios, unless otherwise specified.

¹⁹⁴Pt(d,³He) **1981Iw01**

E(d)=50 MeV, $\theta=15^{\circ}$; enriched ¹⁹⁴Pt targets; measured E(level) (mag spect, resolution ≈ 30 keV), differential cross sections, angular distributions; compared results with predictions of supersymmetry model.

¹⁹³Ir Levels

E(level)	$J^{\pi \dagger}$	L [‡]	$C^2S^{\#}$	Comments
0.0	3/2+	2	1.17	
73	$1/2^+$	0	0.43	Includes minor component from 80 level $(J^{\pi}=11/2^{-})$.
139	5/2+	2	0.09	
180	3/2+	2	0.09	
299	7/2-	3	0.03	
362	5/2+	2	0.25	Includes minor component from 358 level $(J^{\pi}=7/2^+)$.
460	3/2+	2	0.87	
559	$5/2^{+}$	2	1.15	Includes minor component from 557 level $(J^{\pi}=(1/2)^+)$.
621	7/2+	4	0.24	
695	$5/2^{+}$	2	0.31	695 and 712 levels not resolved.
				L: for 695 and 712 levels combined.
				$C^2S=0.52$ if entire cross section is assumed to be for 695 level.
712	$3/2^{+}$	2	$0.30^{@}$	695 and 712 levels not resolved.
/	0/2	-	0.00	L: for 695 and 712 levels combined.
				$C^2S=0.73$ if entire cross section is assumed to be for 712 level
849	$5/2^{+}$	2	0.56	849 and 874 levels not resolved.
0.7	0/2	-	0.00	$L C^2 S$ for 849 and 874 levels combined
874	$3/2^+$ $5/2^+$	2	0.56	See comments with 849 level
964	$1/2^+$	õ	0.20	
201	-, -	0	0.11	

[†] From Adopted Levels.

[‡] From DWBA analysis of angular distributions.

[#] From DWBA analysis, with $C^2S=(2J+1) \times (d\sigma/d\Omega)exp/(N (d\sigma/d\Omega)(DWBA))$ where N=2.95; uncertainties are large, except for the ±5% attributed to relative values for states corresponding to the same proton single-particle orbital.

[@] If $\sigma(695)/\sigma(712)$ is assumed to be same as in (t,α) .

¹⁹⁴**Pt(pol t**, α), (t, α) **1983Ci01,1978Ya03**

1983Ci01: E(t)=17 MeV (typical polarization of ≈ 0.77), $\theta = 10^{\circ}$ to 45° (5° intervals); measured E(α) (Q3D mag spect,

FWHM=18 keV), differential cross sections, angular distributions, analyzing powers. Compared results with predictions of the supersymmetry scheme in Ir-Pt nuclei.

1981Ci02: preliminary report by 1983Ci01.

1978Ya03: E(t)=15 MeV; measured E(α), σ ; DWBA analysis.

¹⁹³Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	S _{1j} #	Comments
0.0	$3/2^{+}$	1.6	$Ay(30^{\circ}) = -0.69 \ 3.$
73.0 [@] &	1/2 ⁺ ^C	0.5 ^e 3	
80.2 [@] &	$11/2^{-}$	4.0 ^e	
137.5 30	$5/2^{+C}$	0.12	$Ay(30^{\circ}) = -0.02 \ II \ (1983Ci01).$
178 <i>3</i>	$3/2^{+}$	0.11	$Ay(30^{\circ}) = -0.26 \ I4 \ (1983Ci01).$
298 <i>3</i>	$7/2^{-C}$	≈0.16	J^{π} : J=L+1/2; Ay=+0.39 9 (1983Ci01).
357.8 ^{@a}	7/2 ⁺ ^C	0.22 ^e	
361.9 ^{@a}	$5/2^{+}$	0.27 ^e	
459 <i>3</i>	$3/2^{+}$	1.1	$Ay(30^\circ) = -0.52 \ 4 \ (1983Ci01).$
558 <i>3</i>	$5/2^{+}$	1.8	Possibly includes unresolved 557.3 level. Ay $(30^\circ) = +0.31 \ 3$.
621 <i>3</i>	7/2+ ^c	0.45	J^{π} : J=L-1/2; Ay(30°)=-0.61 9 (1983Ci01).
694 <i>3</i>	$5/2^{+}$	0.55	$Ay(30^{\circ}) = +0.30 \ 6 \ (1983Ci01).$
712 3	$3/2^{+}$	0.33	$Ay(30^{\circ}) = -0.88 5 (1983Ci01).$
830 <i>3</i>			$Ay(30^{\circ}) = +0.12 \ I4 \ (1983Ci01).$
849 <i>3</i>	$5/2^{+}$	0.91	$Ay(30^{\circ}) = +0.35 4 (1983Cio1).$
873 <i>3</i>			$Ay(30^\circ) = -0.14 \ 14 \ (1983Ci01).$
970 <i>3</i>	$(5/2^+)^d$		
975 ^b	$11/2^{-}$	6.9	$Ay(30^\circ) = +0.31 \ 3 \ (1983Ci01).$
1032 10			$Ay(30^\circ) = +0.21 \ 17 \ (1983Ci01).$
1063 10			$Ay(30^\circ) \le -0.32$ (1983Ci01).
1080 5			$Ay(30^{\circ}) = +0.18$ 7 (1983Ci01).
1146 10			Complex peak; probably includes 1131.2, 1145.7, and 1163 levels seen in ¹⁹³ Os decay (1978Ya03).
1202 10			
1250 10			
1285 10			
1344 10			
1398 10		c	
1504 5	$(3/2^+)$	0.22^{f}	$Ay(30^{\circ}) = -0.16 \ 9 \ (1983Ci01).$
1552 10			
1583 10			
1609 5			
1639 5			
1690 5			
1/44 3			I_{1}^{T} I I $(1/2)$ A (20°) (0.0) A (10020°)
1820 3			J^{**} , $J=L+1/2$; $Ay(50) = +0.004$ (1983)(101). $Ay(20^{\circ}) = +0.18.7$ (1082)(101)
1808 5			Ay(30) = +0.107 (1903C101). $Ay(30^{\circ}) = +0.256 (1083C101)$
1090 5	(5 /0±)	0.25f	$Ay(50) = +0.25 \ 0 \ (1905Cl01).$
1935 5	$(5/2^{+})$	0.35^{J}	$Ay(30^{\circ}) = +0.13^{\circ} / (1983Ci01).$

[†] From 1978Ya03, unless otherwise noted. Uncertainties are 3 keV for E(level)<1 MeV (5 keV for E(level)>1 MeV) for strongly populated levels (estimated by evaluator to be those with $d\sigma/d\Omega$ >10).

[‡] From 1983Ci01, based on angular distribution and analyzing power, unless otherwise noted.

[#] From DWBA analysis, with $S_{lj} = (d\sigma/d\Omega) \exp/(N (d\sigma/d\Omega)(DWBA))$ where N=23 (1983Ci01); typical uncertainties are less than 20%.

¹⁹⁴Pt(pol t,*α*), (t,*α*) **1983Ci01,1978Ya03** (continued)

¹⁹³Ir Levels (continued)

[@] Rounded-off value from Adopted Levels.

& E(level)=79 for unresolved 73.0 and 80.2 levels. Ay(30°)=+0.34 3 for the doublet.

^{*a*} E(level)=362 for unresolved 357.7 and 361.9 levels. Ay(30°)=+0.07 7 for the doublet.

^b From 1983Ci01.

^c From Adopted Levels.

^d From 1978Ya03.

 e^{e} Strength extracted by determining individual values consistent with the analyzing powers and cross sections for complex peak.

^{*f*} Strength obtained assuming the J^{π} value indicated.

2012Dr02 (HI,xny)

Beam=¹³⁶Xe, targets=¹⁸⁶W, ¹⁸⁷Re, ¹⁹²Os.

6.0 MeV/u ¹³⁶Xe pulsed beams, provided by the ATLAS facility at ANL, bombarded three different targets: enriched, metallic ¹⁸⁶W and ¹⁸⁷Re foils, $\approx 6 \text{ mg/cm}^2$ thick with 25 mg/cm² gold foil directly behind them and a pressed 44 mg/cm² enriched ¹⁹²Os target with a 10 mg/cm² gold foil behind it. Gamma rays detected by Gammasphere array (100 HPGe Compton-suppressed Ge detectors). Measured Ey, Iy, $\gamma\gamma\gamma$ coin, $\gamma\gamma(t)$, $\gamma\gamma(\theta)$. Deduced level scheme, J π , T_{1/2}, total conversion coefficients and multipolarity.

¹⁹³Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2+		J^{π} : From Adopted Levels. configuration: $\pi(3/2^+[402])$.
80.238 [#] 6	11/2-	10.53 d 4	%IT=100 E(level), $T_{1/2}$: from Adopted Levels. configuration: $\pi(11/2^{-}[505])$.
469.4 [@] 5	13/2-		
479.1 [#] 5	15/2-		
928.4 [@] 5	17/2-		
1024.6 [#] 5	19/2-		
1526.1 6	$21/2^{-}$		
1590.9 [@] 6	$21/2^{-}$		
1713.5 [#] 6	23/2-		
1727.0 6	23/2-,25/2-		
1822.1 6	(23/2)		
1843.8 /	(23/2)		
1092.5 0	25/2 25/2-27/2-		
2050.8 7	$27/2^{-}$		
2230.3 7	$(29/2^+)$		
2277.4 7	$31/2^{+}$	124.8 µs 21	%IT=100
			$T_{1/2}$: from $\gamma(t)$ (2012Dr02).
			configuration: possible $v(9/2^{-1}505), 11/2^{+1}615) \otimes \pi(11/2^{-1}505))$.

[†] From a least-squares fit to $E\gamma$. [‡] From 2012Dr02, unless otherwise stated. [#] Band(A): Member of the $\pi h_{11/2}$ band, $\alpha = -1/2$.

[@] Band(B): Member of the $\pi h_{11/2}$ band, $\alpha = +1/2$.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\underline{E_i(\text{level})}$	\mathbf{J}_i^π	E _f	J_f^{π}	Mult. [‡]	α@	Comments
$(10^{\$} I)$		479.1	15/2-	469.4	$13/2^{-}$			
(47.2 [§] 10)	406 12	2277.4	31/2+	2230.3	(29/2+)	[M1]	9.8 4	I_{γ} : inferred in 2012Dr02, from total intensity balance and total electron conversion coefficient.
(49 [§] 1)		1892.5	25/2-	1843.8	(23/2)			
(50 [§] 1)		1942.8	25/2-,27/2-	1892.5	$25/2^{-}$			
(71 [§] <i>I</i>) 96.0 5 120.7 5		1892.5 1024.6 1942.8	25/2 ⁻ 19/2 ⁻ 25/2 ⁻ ,27/2 ⁻	1822.1 928.4 1822.1	(23/2) 17/2 ⁻ (23/2)			

 $\gamma(^{193}\mathrm{Ir})$

(HI,xn γ) 2012Dr02 (continued)

$\gamma(^{193}$ Ir) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α@	Comments
136.0 5		1727.0	$23/2^{-}, 25/2^{-}$	1590.9	21/2-	M1+E2		Mult.: $\alpha(\exp)=1.79 \ 11 \text{ gives } \delta=1.35 \ 25.$
158.3 5		2050.8	27/2-	1892.5	$25/2^{-}$	M1		Mult.: $\alpha(\exp) = 1.60 \ 30.$
165.3 5		1892.5	25/2-	1727.0	23/2-,25/2-	M1		Mult.: $\alpha(\exp) = 1.96 \ 32$.
178.9 5		1892.5	$25/2^{-}$	1713.5	23/2-	E2		Mult.: $\alpha(\exp) = 0.48$ 19.
187.3 5		1713.5	$23/2^{-}$	1526.1	$21/2^{-}$			
200.9 5		1727.0	23/2-,25/2-	1526.1	$21/2^{-}$	(E2)		Mult.: $\alpha(\exp)=0.24$ 6.
215.8 5		1942.8	25/2-,27/2-	1727.0	23/2-,25/2-	M1+E2		Mult.: $\alpha(\exp)=0.44$ 12 gives $\delta=1.2$ 5.
226.7 5	1715 <i>51</i>	2277.4	$31/2^{+}$	2050.8	$27/2^{-}$	M2	2.81 5	Mult.: $\alpha(\exp)=3.30\ 20$.
231.3 5		1822.1	(23/2)	1590.9	$21/2^{-}$			
323.9 5		2050.8	27/2-	1727.0	23/2-,25/2-	(E2)		Mult.: $\alpha(\exp)=0.02$ 12.
334.5 5	4153 57	2277.4	$31/2^{+}$	1942.8	25/2-,27/2-	(E3)	0.303	Mult.: $\alpha(\exp)=0.31$ 7.
337.8 5		2230.3	$(29/2^+)$	1892.5	$25/2^{-}$	M2		Mult.: $\alpha(\exp)=0.68 \ 16.$
385.0 5	389 44	2277.4	31/2+	1892.5	$25/2^{-}$	[E3]	0.179	
389.1 5		469.4	$13/2^{-}$	80.238	$11/2^{-}$			
398.9 5		479.1	$15/2^{-}$	80.238	$11/2^{-}$	0		
449.3 5		928.4	$17/2^{-}$	479.1	$15/2^{-}$	D+Q ^{&}		
458.8 5		928.4	17/2-	469.4	13/2-			
501.3 5		1526.1	$21/2^{-}$	1024.6	$19/2^{-}$	D+0 ^{&}		
503.3 5		2230.3	$(29/2^+)$	1727.0	23/2-,25/2-			
545.7 5		1024.6	19/2-	479.1	15/2-	Q ^{&}		
566.3 5		1590.9	$21/2^{-}$	1024.6	19/2-	D+Q&		
597.7 5		1526.1	$21/2^{-}$	928.4	$17/2^{-}$	-		
662.7 5		1590.9	$21/2^{-}$	928.4	$17/2^{-}$			
688.8 5		1713.5	$23/2^{-}$	1024.6	19/2-	0 ^{&}		
797.4 5		1822.1	(23/2)	1024.6	$19/2^{-}$			
819.2 5		1843.8	(23/2)	1024.6	19/2-			

[†] From 2012Dr02. $\Delta E\gamma$ were estimated by the evaluator.

[‡] From total electron conversion coefficients, unless otherwise stated. A list of numerical values of the total electron conversion coefficients corresponding to those presented in figure 3 of 2012Dr02 was received from the first author (G.D. Dracoulis) on Feb. 28, 2012. These values are listed under comments.

[§] Implied by $\gamma\gamma$ coincidences, but not observed directly.

[&] From $\gamma\gamma(\theta)$ in 2012Dr02.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

 $Q(\beta^{-})=-1075 \ 9$; $S(n)=6262.5 \ 23$; $S(p)=6933.0 \ 4$; $Q(\alpha)=2082.2 \ 12 \ 2017Wa10$

Effect of chemical composition of source on half-life: 1977Do07, theory; 1968Ma51 observed 4 2 % variation from Au to AuCl₃ matrix in 1.64 keV level half-life (effect surprisingly large according to 1972Ra38).

Other reactions:

 196 Pt(n,xnyp γ) (2001Ta31): E(n)=1-250 MeV. White spectrum spallation neutron source; prompt γ -rays measured with Compton-suppressed HPGe detectors.

 194 Pt(12 C, 13 C) (2001Sh20): E=55-73 MeV. Measured fusion and transfer cross-sections.

¹⁹³Pt Levels

Cross Reference (XREF) Flags

		F C L F	A 193 Pt IT B 193 Au ε C 193 Au ε D 192 Os(α , D 192 Pt(n,)	decay (4.33 d) F 194 Pt(p,d), (d,t) decay (17.65 h) G 194 Pt(3 He, α) decay (3.9 s) H 195 Pt(p,t) $^{3n\gamma}$)							
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments							
0.0	1/2-	50 [@] y 6	ABCDEF H	%ε=100 μ=+0.603 8 J ^π : L=0 in ¹⁹⁵ Pt(p,t). T _{1/2} : weighted average of 49 y 6 (1971Ra18) and 64 y 20 (1971Ho17) others: 1953Sw20 (no value reported), 1969Ho14 – partial half-life for L capture: 620 y 250, μ: Resonance ionization mass spectroscopy (1992Hi07). Isotope shift: Δ <r<sup>2>=-0.047 fm² 7 (relative to ¹⁹⁴Pt) (1992Hi07).</r<sup>							
1.642 2	3/2-	9.7 ns 3	ABCD F H	$\gamma = 5.420 \text{ Im } 5.(2004\text{AII}(4)).$ $J^{\pi}: \text{M1+E2 } \gamma \text{ from } 5/2^{-} 14.3 \text{ level, M1 } \gamma \text{ to } 1/2^{-}.$ Thus: from ¹⁹³ Au & decay (17.65 b)							
14.276 8	5/2-	2.52 ns 5	ABCD FGH	J^{π} : M1+E2 γ from 3/2 ⁻ ; L=3,4 in ¹⁹⁴ Pt(³ He, α).							
114.158 8 121.29 <i>3</i>	3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻		B Fh B Fh	T _{1/2} : from ¹⁹³ Au ε decay (17.65 h) (1968Ma51). J ^{π} : M1+E2 γ to 1/2 ⁻ . J ^{π} : M1 γ to 3/2 ⁻ 1.64 level.							
149.78 ^{&} 4	13/2+	4.33 d <i>3</i>	A CD FGH	%IT=100 μ =(-)0.753 <i>15</i> (2014StZZ,1986Sc04) μ : x-ray detection of nuclear magnetic resonance (1985Sc15,1986Sc04); negative sign suggested by systematics. J ^{π} : M4 γ to 5/2 ⁻ 14.3 level. T _{1/2} : from IT decay (1949Wi08).							
187.81 2	3/2-		B EF H	J^{π} : primary E1 γ from $1/2^+$ in 192 Pt(n, γ) E=res; L=2 in 195 Pt(p,t).							
199.0 ^{<i>a</i>} 2	$(11/2^+)$		D	J^{π} : 49.2 γ to 13/2 ⁺ level, 320 Q from (15/2 ⁺).							
252.10 2	(3/2)		в гп	J: M1 γ s to 5/2 114.2 and 187.8 levels; L=(5) III γ Pt(p,d), (d,t); L=2 from ¹⁹⁵ Pt(n t)							
269.83 2 308 <i>3</i> 331 <i>10</i>	3/2-		BFH F G	J^{π} : M1+E2 γ to 5/2 ⁻ 14.3 level; L=1 in (p,d). J^{π} : L=(4,5) in ¹⁹⁴ Pt(p,d), (d,t). J^{π} : L=5.6 in ¹⁹⁴ Pt(³ He. α).							
340 <i>3</i> 415 <i>3</i>	5/2-,7/2-		F H Fg	J^{π} : L=(4,5) in ¹⁹⁴ Pt(p,d), (d,t). XREF: g(420). I^{π} . L=3 in ¹⁹⁴ Pt(p,d), (d,t).							
425 3	5/2-,7/2-		FgH	XREF: g(420). J^{π} : L=3 in ¹⁹⁴ Pt(p,d), (d,t).							

Adopted Levels, Gammas (continued)

¹⁹³Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
434 3	$(5/2^{-},7/2^{-})$	F	$\overline{J^{\pi}: L=3 \text{ in } {}^{194}\text{Pt}(p,d), (d,t).}$
439.05 3	(3/2)-	BF	J^{π} : M1 γ to $1/2^{-1}$ g.s., (M1) γ to $5/2^{-1}$ 14.3 level.
459 <i>3</i>	$(5/2^-, 7/2^-)$	FΗ	XREF: H(462).
	×		J^{π} : L=(3) in ¹⁹⁴ Pt(p,d), (d,t).
491 0 2	$(17/2^+)$	Da	XRFF: g(484)
491.0 2	(17/2)	Dg	I^{π} : $\Omega \propto to 13/2^+$ level: hand structure
491.24.2	$(5/2)^{-}$	B FaH	XREF: g(484)
.,	(0/=)	2 - 9	I^{π} : M1+E2 γ to 3/2 ⁻ 114.2 levels: L=(3) in ¹⁹⁴ Pt(n d) (d t)
519.6 ^a 1	$(15/2^+)$	D	I^{π} : $\Omega \gamma$ to $(11/2^+)$ level D+ $\Omega \gamma$ to $13/2^+$ level; hand structure
522.53 8	$(3/2^{-}, 5/2^{-})$	В	J^{π} : (M1) γ to (5/2) ⁻ level; (E2) γ to g.s.
530 3	$1/2^{-},3/2^{-}$	EF H	XREF: E(544).
	, , ,		J^{π} : L=1 in ¹⁹⁴ Pt(p,d), (d,t).
			Possibly same as the 522.5 level seen in 193 Au ε decay (17.65 h).
544 3	$(5/2^{-}7/2^{-})$	F	L=(3) in ¹⁹⁴ Pt(n d) (d t)
563 3	$1/2^{-} 3/2^{-}$	F	I^{π} : I = 1 in ¹⁹⁴ Pt(n d) (d t)
599 3	$5/2^{-}$ $7/2^{-}$	FCH	$I^{\pi}: I = 3 \text{ in } {}^{194}\text{Pt}(n \text{ d}), (d \text{ t}) \text{ and } {}^{194}\text{Pt}({}^{3}\text{He} \alpha)$
603 3 1	$(15/2^+)$	D	$I^{\pi}: D = 0 \text{ m}$ $I^{\pi}(p, u), (u, t)$ and $I^{\pi}(n, u)$.
622.4	(15/2)	н	$\mathbf{y} \cdot \mathbf{D} + \mathbf{Q} \cdot \mathbf{y} + \mathbf{to} + 5/2$. Level.
630 5	5/2- 7/2-	F	I^{π} : I = 3 in ¹⁹⁴ Pt(n d) (d t)
642 <i>4</i>	5/2 ,7/2	н	$\mathbf{J} : \mathbf{E} = \mathbf{J} \prod_{i=1}^{n} \mathbf{I} : (\mathbf{p}, \mathbf{u}), \ (\mathbf{u}, \mathbf{r}).$
665 3	$11/2^+, 13/2^+$	FG	XREF: F(675).
	1) -1		J^{π} : L=6 in ¹⁹⁴ Pt(p,d), (d,t).
692.3	$(11/2^+, 13/2^+)$	F	J^{π} : L=(6) in ¹⁹⁴ Pt(p,d), (d,t).
700	$1/2^{-}.3/2^{-}$	Eh	I^{π} : primary E1 γ from $1/2^+$ in ¹⁹² Pt(n γ) E=res.
701 5	$(5/2^{-},7/2^{-})$	F h	I^{π} : L=(3) in ¹⁹⁴ Pt(n,d). (d,t).
718 4	$(1/2^+)$	F	I^{π} : L=(0) in ¹⁹⁴ Pt(n d) (d t)
728 5	5/2-7/2-	FGH	I^{π} : L=3 in ¹⁹⁴ Pt(nd) (d t)
755 5	5/2 ,7/2	FH	$I^{\pi}: I = 3 \text{ in } I^{94} Pt(n d) (d t)$
828 4	$(5/2^{-},7/2^{-})$	FGH	XREF: F(830)G(819).
020 .	(0/= ,//=)		I^{π} : I = (3) in ¹⁹⁴ Pt(n d) (d t)
846 5	3/2-	ЕН	I^{π} : I = 1 in ¹⁹⁴ Pt(n d) (d t): I = 2 in ¹⁹⁵ Pt(n t)
00742	$(17/2^+)^{\#}$	D	$I^{\pi}: D = 0$ are to $(15/2^{+})$ levels at to $(17/2^{+})$ level
907.4 2	(17/2)		J. $D + Q \gamma S to (15/2)$ revers, $\gamma to (17/2)$ rever. π , $L = 1$ in 194 $P(r, d)$ (4.1), $L = 2$ in 195 $P(r, d)$
923 3	5/2	г п F	$J \cdot L = 1 \text{ III} F((p, u), (u, t), L = 2 \text{ III} F((p, t)).$
980 5 ^{<i>a</i>} 2	$(19/2^+)$	D I	I^{π} : O α to $(15/2^+)$ level: band structure
984 4	(1)/2	н	$\mathbf{y} : \mathbf{y} \neq 0 (15/2)$ level, band structure.
1003 1 4 1	$(21/2^{+})$	 D	I^{π} ; cascading of to $(17/2^+)$ level; hand structure
1003.4 4	(21/2)	D F	J : cascading y to $(1/2)$ level, band structure. $I^{\pi}: I = (4.5)$ in ¹⁹⁴ Dt(n d) (d t)
1014 5		r	J : L = (4, 5) III I : (p, 0), (0, 1). $I^{\pi} : I = 5.6 \text{ in } \frac{194}{2} \text{Bt}(^{3} \text{H}_{2.5})$
1021 10	11/2+ 12/2+	E G	$J : L = 5.0 \text{ Im} \text{It}(\Pi c, a).$ $I\pi : I = 6 : n 194 \text{D}t(n \text{ d}) (d \text{ t})$
1042 5	11/2 ,15/2	r u	J^{*} . $L=0$ III f^{*} $F((p,u)), (u,t)$.
1055 8	(5/2 - 7/2 -)	F	$\pi_{1} = 1 - (2) = \frac{194}{10} \frac{194}{10} \frac{1}{(d+1)}$
1009 10	(5/2, 7/2)	FCU	$\pi_{1} = (3) \ln \frac{1}{10} \ln \frac{1}{1$
1099 5	(3/2, 7/2)	гол	J^{*} . L=(3) III f^{*} F((p,u), (u,t). I^{π} : D=(0 x to (15/2 ⁺) level
1130 10	(5/2 - 7/2 -)	р Е	$I^{\pi} \cdot I = (2) \text{ in } \frac{194}{2} \text{ Dt}(n \text{ d}) (d \text{ t})$
1150.0.2	(3/2, 7/2)	г	J $L = (J)$ III I $L(p,u)$, (u,i) .
1159.9 2	$(19/2^{+})''$	U _	J ^{**} : (Q) γ s to (15/2 ⁺) levels, D+Q γ to (17/2 ⁺) level.
1168 10	(1/2, 3/2)	F	$J^{*}: L=(1) \text{ in } {}^{*} Pt(p,d), (d,t).$
1182.8	(3/2)	± h	E(level): from $^{1/3}$ Pt(p,t).
			J^{n} : L=2 in ¹⁵⁰ Pt(p,t); the level at 1188 seen in ¹⁵⁴ Pt(p,d) is a doublet with L=1 for at
			least one member of doublet.

Adopted Levels, Gammas (continued)

¹⁹³Pt Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
1188 5			f h	E(level): from ¹⁹⁵ Pt(p,t). Member of unresolved doublet.
1219 10			Gh	J^{π} : L=3,4 in ¹⁹⁴ Pt(³ He, α).
1222 5	$1/2^{-}, 3/2^{-}$		Fh	J^{π} : unresolved doublet; L=1 for one member of doublet in ¹⁹⁴ Pt(p,d).
1245 5	$(5/2^-, 7/2^-)$		F H	J^{π} : L=(3) in ¹⁹⁴ Pt(p,d), (d,t).
1259 10			F H	XREF: H(1265).
1320 5	5/2-,7/2-		F	J^{π} : unresolved doublet; L=3 for one member of doublet in ¹⁹⁴ Pt(p,d).
1320 5	$1/2^{-}, 3/2^{-}$		F	J ^{π} : unresolved doublet; L=1 for one member of doublet in ¹⁹⁴ Pt(p,d).
1320.9 ^b 2	$(21/2^{-})$		D	J ^{π} : γ 's to (19/2 ⁺) levels; band structure.
1333 8			Н	
1359 4	$11/2^+, 13/2^+$		FG	XREF: G(1337).
				E(level): From (p,d).
1264 9				J ^{α} : L=6 in ¹⁾⁺ Pt(p,d) and ¹⁾⁺ Pt(³ He, α).
1304 0			п	
1442 10			G	
$1454 8^{b} 3$	$(25/2^{-})$	3.2 ns 3	D	I^{π} : (F2) γ to (21/2 ⁻) level: hand structure
1151.0 5	(23/2)	5.2 115 5	D	$T_{1/2}$: from $\frac{192}{192}Os(\alpha 3n\gamma)$
1457.8	$1/2^{-}$		н	$I_{1/2}^{\pi}$: L=0 in ¹⁹⁵ Pt(n,t).
1510.4 3	-/-		D	J^{π} : γ to $(21/2^{-})$ level.
1534 8	$1/2^{-}$		н	J^{π} : L=0 in ¹⁹⁵ Pt(p,t).
1557 8	$1/2^{-}$		Н	J^{π} : L=0 in ¹⁹⁵ Pt(p,t).
1561 10	·		G	J^{π} : L=3,4 in ¹⁹⁴ Pt(³ He, α).
1585 8	$1/2^{-}, 3/2^{-}$		ЕН	XREF: E(1591).
				J ^{π} : primary E1 γ from 1/2 ⁺ in ¹⁹² Pt(n, γ) E=res.
1610 8			Н	
1631.8 ^{&} 4	$(25/2^+)$		D	J^{π} : Q γ to (21/2 ⁺) level; band structure.
1668 10			G	J^{π} : L=4,5 in ¹⁹⁴ Pt(³ He, α).
1689.9 ⁶ 3	$(27/2^{-})$		D	J ^{π} : D γ to (25/2 ⁻) level; band structure.
1744 10	5/2-,7/2-		G	J^{π} : L=3 in ¹⁹⁴ Pt(p,d).
1776.9 4			D	
1913 10			G	
1986./? 4			D	
1992.20 3	(29/2 ⁻)		D	J^{α} : Q γ to (25/2 ⁻), γ to (27/2 ⁻); band structure.
2335.2 [°] 5	$(29/2^+)$		D	J^{π} : Q γ to (25/2 ⁺) level; band structure.
2337 10			G	
2696.2°C 6	$(33/2^+)$		D	J^{n} : Q γ to (29/2 ⁺) level: band structure.
3129.2 ^{<i>a</i>} 6	$(37/2^+)$		D	J^{π} : γ to $(33/2^+)$ level; band structure.

[†] From least-squares fit to $E\gamma$ for levels seen in ¹⁹³Au ε decays, ¹⁹³Pt IT decay or ¹⁹³Os(α ,3n γ) reaction. From ¹⁹⁴Pt(p,d), (d,t) for levels seen in particle reaction, unless otherwise noted, or where XREF clearly indicates other source.

[‡] Band assignments and descriptions are from 1977Sa01.

[#] Monotonically-increasing J^{π} sequence is suggested by cascades of coincident E2 and M1+E2 γ 's in ¹⁹²Os(α ,3n γ), decaying to the 13/2⁺ 149.8 level.

- ^(a) Both measurements are specific activity measurements and are based on $T_{1/2}(\varepsilon L)$ deduced from I(L x ray). $T_{1/2}(\varepsilon L)=73 \text{ y } 9$ (1971Ra18) and 94 y 30 (1971Ho17), remeasurement by authors of 1969Ho14. The evaluator has calculated $T_{1/2}$ using $\varepsilon L/\varepsilon=0.6761$, the value for adopted Q+=56.6 keV.
- & Band(A): i13/2 favored decoupled band. Configuration=($\nu i_{13/2}1$).
- ^{*a*} Band(B): (J-1) unfavored decoupled band. Configuration=($v i_{13/2}1$).

^b Band(C): $21/2^{-}$ semidecoupled band. Position and spacing are similar to corresponding band structure in other odd-mass Pt and Hg nuclei. These bands are related to the 5⁻ bands in neighboring even-mass nuclei.

 $\gamma(^{193}\text{Pt})$

All γ data are from ¹⁹³Au ε decay (17.65 h), unless otherwise noted. 1990Pi08: measured relative K x ray intensities.

124

E _i (level)	${ m J}^{\pi}_i$	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	δ^{\S}	α ^{&}	Comments
1.642	3/2-	1.642 2	100	0.0	1/2-	M1		3116	B(M1)(W.u.)=0.165 6 α : From Bricc. Note 1.642 keV 2 γ energy is within 1 keV to the N1-shell binding energy of 0.723 keV. Others: 12000 (1991Ba63), 4010 (1978Ro21).
14.276	5/2-	12.634 8	100	1.642	3/2-	M1+E2	0.015 +3-4	142 8	B(M1)(W.u.)=0.0303 <i>18</i> ; B(E2)(W.u.)=17 7
114.158	3/2-	99.88 <i>4</i>	6.9 5	14.276	$5/2^{-}$	M1+E2	0.87 <i>3</i>	5.93	
		112.515 10	100 4	1.642	3/2-	M1+E2	0.36 2	4.56	
		114.155 <i>13</i>	32 6	0.0	$1/2^{-}$	M1+E2	0.48 4	4.24 8	
121.29	$1/2^{-}, 3/2^{-}, 5/2^{-}$	119.64 <i>3</i>	100	1.642	3/2-	M1		3.99	
149.78	13/2+	135.50 <i>3</i>	100	14.276	5/2-	M4		872	B(M4)(W.u.)=1.130 <i>18</i> E _{γ} ,Mult.: From ¹⁹³ Pt IT decay.
187.81	3/2-	73.62 <i>3</i>	1.1 2	114.158	3/2-	(M1)		2.88	
		173.52 5	29	14.276	5/2-	M1+E2	0.355 21	1.300 21	
		186.17 <i>3</i>	100 6	1.642	3/2-	M1+E2	0.32 4	1.078 22	
		187.83 4	94	0.0	$1/2^{-}$	(M1+E2)		0.8 4	
199.0	$(11/2^+)$	49.2^{\ddagger}	100	149 78	$13/2^{+}$				
232.16	$(5/2)^{-}$	44 33 3	1169	187.81	$3/2^{-}$	M1		12.76	
232.10	(3/2)	117 99 2	100.16	114 158	$3/2^{-}$	M1		4 15	
		230 50 7	96 10	1 642	$3/2^{-}$	(E2)		0.224	
		232.18.6	96 10	0.0	$1/2^{-}$	E2		0.219	
269.83	3/2-	37.65.3	0.33 2	232.16	$(5/2)^{-}$	M1+E2	0.042 + 12 - 13	21.4.6	
207100	0/=	155.68 4	5.2.13	114,158	$3/2^{-}$	M1	01012 112 10	1.89	
		255.57 4	100 9	14.276	5/2-	M1+E2	0.41 7	0.428 15	Measured prompt production in ¹⁹⁶ Pt reaction with 1-250 MeV spallation pettrons (2001Ta31)
		268 22 5	58 5	1 642	3/2-	M1+F2	133	0 24 4	licutions (20011451).
		269.84 5	13.3	0.0	$1/2^{-}$	F2	1.5 5	0.1358	
439.05	$(3/2)^{-}$	206.85.6	4711	232.16	$(5/2)^{-}$	(M1)		0.1550	
139.05	(3/2)	251.4.5	14.6	187.81	$3/2^{-}$	(111)		0.050	
		317.73.7	12.3	121.29	$1/2^{-}.3/2^{-}.5/2^{-}$	(M1)		0.261	
		324.89.5	18.3	114,158	3/2-	M1		0.246	
		424.76 12	7.9 15	14.276	5/2-	(M1)		0.1199	
		437.41 8	26.5	1.642	3/2-	M1		0.1109	
		439.04 8	100 8	0.0	$1/2^{-}$	M1		0.1099	
491.0	$(17/2^+)$	341.2 [‡] 2	100	149.78	$13/2^+$	O^{\ddagger}			

$\gamma(^{193}\text{Pt})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ^{\S}	α ^{&}	Comments
491.24	$(5/2)^{-}$	52.18 2	2.3 4	439.05	$(3/2)^{-}$	M1		7.90	
	(-1-)	221.40 6	11 3	269.83	3/2-	M1+E2	1.7 +12-5	0.37 7	
		259.05 6	29 <i>13</i>	232.16	$(5/2)^{-}$	M1		0.456	
		303.41 7	39 11	187.81	3/2-	(M1+E2)		0.20 10	
		377.10 3	73 10	114.158	$3/2^{-}$	M1+E2	1.2 3	0.098 17	
		4/0.98 9	0/15 33.7	14.270	5/2 3/2-	(E2) (M1)		0.0278	
		491.28 12	100 17	0.0	$\frac{3}{2}$ $\frac{1}{2}$	(1411)		0.0024	
519.6	$(15/2^+)$	320.6^{\ddagger} /	$100^{\ddagger} 7$	199.0	$(11/2^+)$	O^{\ddagger}			
519.0	(13/2)	369.8 [‡] 1	27 7 19	149 78	(11/2)	$\nabla + \Omega^{\ddagger}$			
522.53	$(3/2^{-}, 5/2^{-})$	290.33 10	67 27	232.16	$(5/2)^{-}$	(M1)		0.334	
	(-1)-1)	334.7 <i>3</i>	49 29	187.81	3/2-				
		408.4 2	100 20	114.158	3/2-	(M1,E2)		0.09 5	
		508.26 20	42 11	14.276	5/2-	(M1+E2)		0.05 3	
		520.97 25	60 <i>13</i> 56 <i>11</i>	1.642	$\frac{3}{2}$	(E2) (E2)		0.0224	
602.2	$(15/2^{+})$	522.00 25 452 5 [‡] 1	100	140.79	1/2	(\mathbf{E}_2)		0.0222	
003.3	(13/2)	433.3° 1	741 10	149.70	$(15/2 \pm)$	$D+Q^{\ddagger}$			
907.4	$(17/2^{+})$	304.072	74* 10 94 [±] 12	510.6	$(15/2^{+})$	D+Q*			
		387.9* 2	$84^{+} I2$	519.6	$(15/2^{+})$	D+Q⁺			
000 5	(10/0+)	$416.5^{+} 2$	$100^{+} 14$	491.0	$(1/2^{+})$	ot			
980.5	$(19/2^+)$	$3/7.3^{+}2$	11.6^{+} 14	603.3	$(15/2^{+})$	Q ⁺			
		461.0 ⁺ <i>I</i>	100+ 7	519.6	$(15/2^+)$	Q^+			
		489.5* 1	69* 6	491.0	$(17/2^{+})$	D+Q*			
1003.4	$(21/2^+)$	512.4+ 3	100	491.0	$(17/2^{+})$	+			
1103.5	(*)	500.2+ 3	100	603.3	$(15/2^+)$	D+Q+			
1159.9	$(19/2^+)$	556.5+ <i>3</i>	66÷ 9	603.3	$(15/2^+)$	(Q)+ _			
		640.2 ⁺ 4	29+ 6	519.6	$(15/2^+)$	(Q)+			
		669.1 [‡] 3	100 [‡] 15	491.0	$(17/2^+)$	D+Q‡			
1320.9	$(21/2^{-})$	161.07 2	12.8 [‡] 12	1159.9	$(19/2^+)$				
		340.3 [‡] 2	100 [‡] 10	980.5	$(19/2^+)$				
1454.8	(25/2 ⁻)	133.9 [‡] 2	100	1320.9	(21/2 ⁻)	(E2)		1.532	B(E2)(W.u.)=24.5 24 Mult.: From (HI,xnγ) and RUL.
1510.4		189.5 [‡] 2	100	1320.9	$(21/2^{-})$				
1631.8	$(25/2^+)$	628.4 [‡] 2	100	1003.4	$(21/2^+)$	Q^{\ddagger}			
1689.9	$(27/2^{-})$	235.2 [‡] 1	100	1454.8	$(25/2^{-})$	D^{\ddagger}			
1776.9		266.5 [‡] 3	100	1510.4		(Q) [‡]			
1986.7?		296.8 ^{‡@} 3	100	1689.9	(27/2 ⁻)				

NUCLEAR DATA SHEETS

 $\gamma(^{193}\text{Pt})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	Mult.
1992.2	(29/2 ⁻)	302.3 [‡] 2	16 [‡] 3	1689.9	(27/2 ⁻)	
		537.4 [‡] 2	100 [‡] 12	1454.8	$(25/2^{-})$	Q [‡]
2335.2	$(29/2^+)$	703.4 [‡] 3	100	1631.8	$(25/2^+)$	Q [‡]
2696.2	$(33/2^+)$	361.0 [‡] 3	100	2335.2	$(29/2^+)$	Q [‡]
3129.2	$(37/2^+)$	433.0 [‡] 3	100	2696.2	$(33/2^+)$	

[†] Relative photon branching from level. [‡] From ¹⁹²Os(α ,3n γ).

[§] If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

¹⁹³₇₈Pt₁₁₅

¹⁹³Pt IT decay (4.33 d) 1968Sv01

Parent: ¹⁹³Pt: E=149.78 3; $J^{\pi}=13/2^+$; $T_{1/2}=4.33$ d 3; %IT decay=100 1968Sv01: sources from Pt(p,xn), E(p)=35 MeV, chem; measured E(ce), Ice (mag spect). Others: 1953Sw20, 1954Co29, 1954Gi04, 1955Br41, 1957Ew34, 1960Ma28, 1961Kr02, 1989ViZT.

¹⁹³Pt Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	1/2-	50 y 6	
1.642 2	3/2-	9.7 ns 3	
14.276 8	$5/2^{-}$	2.52 ns 5	
149.78 <i>3</i>	$13/2^{+}$	4.33 d <i>3</i>	%IT=100
			$T_{1/2}$: from 1949Wi08; however, they saw also a 170 γ and an 1.5 MeV γ , obviously from
			some impurity. Other values: $4.5 d = 2 (1953 \text{ sw} 20) = 3.35 d = 10 (1954 \text{ Co} 29) = 3.5 d = 4$

some impurity. Other values: 4.5 d 2 (1953Sw20), 3.35 d 10 (1954Co29), 3.5 d 4 (1955Br41), 4.4 d 2 (1957Ew34).

[†] From Adopted Levels.

[‡] From Adopted Levels, unless otherwise noted.

 $\gamma(^{193}\text{Pt})$

I(γ +ce) normalization: From I(γ +ce)(135.50 γ)=100%.

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	δ	α@	$I_{(\gamma+ce)}$ [‡] &	Comments
1.642 [§] 2	1.642	3/2-	0.0 1/2-	M1 [§]		3116	100	α : From Bricc. Note 1.642 γ is within 1 keV to the N1-shell binding energy of 0.723 keV. Others: 12000 (1991Ba63), 4010 (1978Ro21).
12.634 [§] 8 135.50 <i>3</i>	14.276 149.78	5/2 ⁻ 13/2 ⁺	1.642 3/2 ⁻ 14.276 5/2 ⁻	M1+E2 [§] M4	0.015 [§] +3-4	142 8 872	100 100	E _y : from 1968Sv01. Mult.: α (K)exp=135 <i>11</i> (measured I(x ray)/Iy (1976Sa22)); K/L=0.198 <i>15</i> , L1/L2=4.6 <i>4</i> , L1/L3=0.46 <i>3</i> (1968Sv01); theory: α (K)(M4)=137, K/L=0.26, L1/L2=4.40, L1/L3=0.466. Others: K:L1:L2:L3=58:48: 15:100 (1962Ha24); K:L1:L3:(M+n)=10:14:29: 15 (1957Ew34). Competing crossover transition not seen (1957Ew34).

 † Deduced from E(ce) measurements. Calibration: $KL_{1}L_{1}$ and $KL_{2}L_{3}$ Auger lines in Pt, E(ce(K)) 316 γ in ^{192}Pt

(E(ce(K))=238.087 10), ThC a line (E(ce)=24.509) and ThB f line (E(ce)=148.108).

[‡] From intensity balance in level scheme.

 $^{\$}$ From $^{193}\text{Au}\ \varepsilon$ decay (17.65 h).

[&] Absolute intensity per 100 decays.

¹⁹³Pt IT decay (4.33 d) **1968Sv01** (continued)

$\gamma(^{193}\text{Pt})$ (continued)

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³₇₈Pt₁₁₅

¹⁹³Au ε decay (17.65 h) **1968Sv01,1970Pl02**

Parent: ¹⁹³Au: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=17.65 h I5$; $Q(\varepsilon)=1075 9$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100 1970Pl02: sources from spallation of Pb by 680-MeV protons, chem; measured E γ , $I\gamma$ (Ge(Li)). 1968Sv01: sources from Pt(p,xn), E(p)=35 MeV; measured E(ce), Ice (mag spect). (preliminary report 1967Jo14). 1957Ew34: measured $\gamma\gamma$, ce γ .

Others: 1954Gi04, 1962Ma18, 1976Di15, 1976ViZM.

¹⁹³Pt Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	1/2-	50 y 6	$T_{1/2}$: From Adopted Levels.
1.642 2	3/2-	9.7 ns <i>3</i>	$T_{1/2}$: (ce)(ce)(t) with metallic gold source; $T_{1/2}$ is 4% longer when measured with a gold chloride source (1968Ma51). See 1977Do07 for a discussion of this and related phenomena.
14.276 8	5/2-	2.52 ns 5	$T_{1/2}$: (ce)(ce)(t) (1968Ma51). Other value: 2.2 ns 8 (1957Ew34).
114.158 8	3/2-		-,
121.29 <i>3</i>	1/2-,3/2-,5/2-		
187.81 2	3/2-		
232.16 2	$(5/2)^{-}$		
269.83 2	$(3/2)^{-}$		
439.05 <i>3</i>	$(3/2)^{-}$		
491.24 2	$(5/2)^{-}$		
522.53 7	(3/2 ⁻ ,5/2 ⁻)		

[†] From Adopted Levels.

ε, β^+ radiations

1976Di15 report two β^+ groups with E(max.)=320 30 and 150 20. The higher group gives Q+=1340 30, inconsistent with the adjusted Q+=1075 9 from 2017Wa10. However, since the observed groups are inner groups in the FK plot in a combined β^+ spectrum from ¹⁹³Hg + ¹⁹³Au decay, it is possible that the energy and/or the nuclear assignment of these groups could be in error.

No γ^{\pm} seen, I β^{+} < 0.08% (1957Ew34).

E(decay)	E(level)	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	E(decay)	E(level)	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$
(552 9)	522.53	0.51 10	7.89 9	0.51 10	(954 9)	121.29	0.6 3	8.34 22	0.6 3
(584 9)	491.24	2.7 4	7.22 7	2.7 4	(961 9)	114.158	12.4 18	7.03 7	12.4 18
(636 9)	439.05	3.7 5	7.17 6	3.7 5	(1061 9)	14.276	20 4	6.92 9	20 4
(805 9)	269.83	15.7 20	6.77 6	15.7 20	(1073 9)	1.642			‡
(843 9)	232.16	3.8 7	7.43 8	3.8 7	(1075 9)	0.0	15 6	7.06 18	15 [‡] 6
(887 9)	187.81	26 4	6.64 7	26 4					

[†] From intensity imbalance at each level.

^{\ddagger} I ε given for 0.0 level is a combined value for the 0.0 and 1.6 levels.

[#] Absolute intensity per 100 decays.

$\gamma(^{193}\text{Pt})$

I γ normalization: 1957Ew34 report %TI for several γ rays based on K conversion electron measurements per disintegration. Using %TI(186.17 γ)=21.3 and %TI(173.52 γ)=6.1, the evaluator deduced the normalization factor as an average. Mean number of K conversions per disintegration of ¹⁹³Au, 0.29 *3* (assuming ε (K)/ ε =0.80), measured by 1957Ew34 is also used to obtain intensity per disintegration for relative conversion electron intensity reported in 1968Sv01 (in comments section).

All ce data are from 1968Sv01.

Unassigned ce-line: E(ce)=137.54 10 Ice=0.8 2 % of the 268 K ce intensity (1968Sv01).

E_{γ}^{\dagger}	I_{γ} ‡#	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [§]	δ§@	α^{a}	$I_{(\gamma+ce)}^{\#}$	Comments
1.642 2		1.642	3/2-	0.0	1/2-	M1		3116		Mult.: N1/N2=5.5 <i>15</i> , N2/N3>3, N1/O1=1.5 <i>5</i> (1968Sv01).
12 (24.0	0.0.11	14.076	5/2-	1 (12	2/2-		0.015 . 2.4	142.0		<i>a</i> . From BRCC. Oness. 12000 (1991Ba03), 4010 (1978Ro21).
12.634 8	8.9 11	14.276	5/2	1.642	3/2	MI+E2	0.015 +3-4	142 8		I_{γ} : Deduced from Ice(M1)=2550 330 (1968Sv01)*0.29=740 95 and α (M1)=83.5 12 (Brice).
										Mult.,δ: From M1/M2=7.0 10, M2/M3=3.8 10 (1968Sv01).
37.65 3	0.80 8	269.83	(3/2)-	232.16	(5/2)-	M1+E2	0.042 +12-13	21.4 6		I_{γ} : From Ice(L)/ α (L). Where Ice(L)=L1+L2+L3=45.5.41*0.29=13.2.12.
										Mult. δ : From L1/L2=8.4 8. L1/L3>27.
44.33 <i>3</i>	2.2 2	232.16	(5/2)-	187.81	3/2-	M1		12.76		Mult.: From L1/L2=10.5 <i>10</i> , L1/L3>25 (1968Sv01).
										I_{γ} : From Ice(L1)=69 6 (1968Sv01)*0.29=20 2 and α(L1)=8.83 13 (Bricc).
^x 49.14 3	0.46 6					M1+E2	0.42 2	26.9 15		I _{γ} : deduced from Ice(L3)=3.3 3 and α (L3)=7.2 6 (Bricc).
										Mult.,δ: L1/L3=0.83 6, M1/M2=0.62 11 (1968Sv01).
52.18 2	0.59 9	491.24	(5/2)-	439.05	(3/2)-	M1		7.90	5.7 7	I _γ : From Ice(L1)/ α (L1). Where Ice(L1)=11.0 <i>16</i> (1968Sv01)*0.29=3.2 <i>5</i> and α (L1)=5.47 <i>8</i> .
										Mult.: From L1/L2=8 4, L1/L3>10 (1968Sv01).
73.62 <i>3</i>	4.0 4	187.81	3/2-	114.158	3/2-	(M1)		2.88		I_{γ} : From Ice(L1)=27.9 25
										$(1968Sv01)*0.29=8.1$ 7 and $\alpha(L1)=2.0$ (Bricc).
00.00.4	500	114 150	2/2-	14.076	5/0-	M1 . D0	0.07.2	5.02		Mult.: From $L1/L2=8.7$ 15 (1968Sv01).
99.88 4	5.0 8	114.158	5/2	14.270	5/2	MIT+E2	0.87 5	5.95		Mult., o : From K/L=1.1 4, L1/L2=0.08 4, L1/L3=0.86 7 (1968Sv01).
										I_{γ} : From Ice(K)/ α (K)(Bricc). Ice(K)=59 9 (1968Sv01)*0.29=17.1 2.6.
^x 110.28 5	22 11					(E1)		0.318		I _y : Obtained by subtraction of I _y (112.5y) from I _y (110.3y+112.5y)=102.10
										Mult.: From $\alpha(K) \exp = Ice(K)/I\gamma = 0.25$ 13.

 $^{193}_{78} \mathrm{Pt}_{115}$ -11

193 78
Pt_1
15
-12

NUCLEAR DATA SHEETS

γ ⁽¹⁹³ Pt) (continued)										
E_{γ}^{\dagger}	I_{γ} ‡#	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [§]	δ ^{§@}	α^{a}	Comments	
112 515 10	80.5	114 158	3/2-	1 642	3/2-	M1+F2	0.36.2	4 56	Ice(K)=21 4*0.29=6.1 12. Also K/L1=9.5 28 (1968Sv01). Mult & From K/L12=3.9.5 L1/L2=3.34 15	
112.515 10	00.5	111.150	5/2	1.012	572	1411 1.2	0.50 2	1.50	L1/M1=3.6 7 (1968Sv01). I_{y} : From Ice(K)/ α (K)(Bricc). Ice(K)=980 60 (1968Sv01)*0 29–284 17	
114.155 <i>13</i>	27 5	114.158	3/2-	0.0	1/2-	M1+E2	0.48 4	4.24 8	Mult.: From α (K)exp=Ice(K)/I γ =3.3 7. Ice(K)=312 20*0.29=90 6. Also K/(L1+L3)=5.1 10, 11/(3=3.4.6 M1/M2=2.1.5 (1968Sv01)	
117.99 2	19 <i>3</i>	232.16	(5/2)-	114.158	3/2-	M1		4.15	Mult.: From α (K)exp=Ice(K)/I γ =3.1 5. Ice(K)=205 15*0.29=59 4. Also K/L12=5.2 11, L1/L2=9.7 15 (1968Sv01)	
119.64 <i>3</i>	6.3 15	121.29	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	1.642	3/2-	M1		3.99	Mult.: From α (K)exp=Ice(K)/I γ =2.7 7. Ice(K)=57.9 45*0.29=16.8 13. Also K/L1=5.6 25, L1/L2>3.1, L1/M1=4.9 21 (1968Sv01)	
155.68 4	12 3	269.83	(3/2)-	114.158	3/2-	M1		1.89	Mult.: From α (K)exp=Ice(K)/I γ =1.4 3. Ice(K)=58.5 40*0.29=17.0 12. Also K/L12=5.3 9, L1/2=10.9 20. L1/2 3>5 (1968 γ 01)	
173.52 5	100	187.81	3/2-	14.276	5/2-	M1+E2	0.355 21	1.300 21	Mult., δ : From K/L=5.2 6, L1/L2=5.0 4, L1/L3=14.4 20 (1968Sv01).	
$x_{180.0}^{\infty} 2_{186.17} 3$	2.1 <i>13</i> 347 20	187.81	3/2-	1.642	3/2-	M1+E2	0.32 4	1.078 22	Mult., δ : From α (K)exp=0.97 9, K/L12=5.2 6, L1/L2=5.9 5, L1/L3>11 (1968Sy01)	
187.83 4	31 12	187.81	3/2-	0.0	1/2-	(M1+E2)		0.78 34	Mult.: From $\alpha(K)$ exp=Ice(K)/I γ =0.30 <i>13</i> . Ice(K)=33 6 (1968 Σ v01) *0 29	
206.85 6	3.1 7	439.05	(3/2)-	232.16	(5/2)-	(M1)		0.850	Mult.: From α (K)exp=Ice(K)/I γ =0.61 15 (Ice(K)=6.4 8 (1968Sv01)*0.29=1.9.2)	
^x 215.41 <i>10</i>	3.3 9					M1+E2	1.5 5	0.43 10	Photon observed by 1970P102; 1968Sv01 unassigned line with $E(ce)=137.02$ 10 (Ice=1.2 3 % of the 268 ce(K)) attributed to corresponding K line.	
221 40 6	276	401 24	(5/2)-	260.83	$(3/2)^{-}$	M1+E2	17 12 5	0 37 7	(see note above)* $0.29 = 0.93 23$. Mult & From $\alpha(K) = 0.29 = 0.93 23$.	
221.40 0	2.7 0	491.24	(3/2)	209.83	(3/2)	WIT+E2	1.7 +12-5	0.377	(Ice(K)=3.5 5*0.29=1.01 14). Also L1/L2>1, L1/L3=1.25 75 (1968Sv01).	
230.50 7	18.5 20	232.16	(5/2) ⁻	1.642	3/2-	(E2)		0.224	Mult.: From α (K)exp=Ice(K)/I γ =0.11 2. Ice(K)=7.1 7*0.29=2.1.2 Also K/M=7.1.20 (1968Sv01)	
232.18 6	18.5 20	232.16	(5/2)-	0.0	1/2-	E2		0.219	Mult.: From α (K)exp=Ice(K)/I γ =0.15 3. Ice(K)=9.5 11*0.29=2.8 3. Also K/L23=1.5 5, L2/L3=2.4 11, L1/L3<1.5 (1968Sv01).	
251.4 ^{&} 5 255.57 4	9 <i>4</i> 231 <i>20</i>	439.05 269.83	(3/2) ⁻ (3/2) ⁻	187.81 14.276	3/2 ⁻ 5/2 ⁻	[M1] M1+E2	0.41 7	0.495 0.428 <i>15</i>	Mult., δ : From $\alpha(K)$ exp=Ice(K)/I γ =0.35 4	

$^{193}_{78}{ m Pt}$
-
01
<u> </u>
S
-

¹⁹³ Au ε decay (17.65 h)	1968Sv01.1970Pl02 (continued)
Au ε uccay (17.05 II)	19005v01,19701102 (Continueu)

γ ⁽¹⁹³ Pt) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger \#}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. [§]	δ^{\S}	α^{a}	Comments	
259.05 6	73	491.24	(5/2)-	232.16	(5/2) ⁻	M1		0.456	(Ice(K)=283 15*0.29=82 4). Also Also K/L=4.8 2, L1/L2=6.6 16, L1/L3=20 6 (1968Sv01). Mult.: From α (K)exp=Ice(K)/I γ =0.36 16 (Ice(K)=8.8 10*0.29=2.55 29). Also K/L1=11 6, L1/L2>1 (1968Sv01).	
268.22 5	134 <i>11</i>	269.83	(3/2)-	1.642	3/2-	M1+E2	1.3 <i>3</i>	0.24 4	Mult., δ : From α (K)exp=Ice(K)/I γ =0.216 10 (Ice(K)=100*0.29=29). Also K/L=4.8 22, L1/L2=1.5 7, L1/L3=2.5 13 (1968Sv01).	
269.84 5	29 6	269.83	(3/2)-	0.0	1/2-	E2		0.1358	Mult.: From α (K)exp=Ice(K)/I γ =0.093 22 (Ice(K)=9.3 9*0.29=2.7 3). Also K/L3=6.2 14 (1968Sv01).	
^x 281.76 <i>10</i>	5.4 9					M1		0.362	Mult.: From α (K)exp=Ice(K)/I γ =0.35 8. Ice(K)=6.6 10^{*0} 0.2=1.9.3 Also K/I 12>1.9 (1968S γ 01)	
290.33 10	3.0 12	522.53	(3/2 ⁻ ,5/2 ⁻)	232.16	(5/2)-	(M1)		0.334	Mult.: From $\alpha(K)$ exp=Ice(K)/I γ =0.44 <i>19</i> (Ice(K)=4.6 8 (1968Sv01)*0.29=1.33.23)	
303.41 7	9.3 26	491.24	(5/2)-	187.81	3/2-	(M1+E2)		0.20 10	Mult.: From $\alpha(K)$ exp=Ice(K)/I γ =0.11 3 (Ice(K)=3.4 6 (1968Sv01)*0 29=0 99 17)	
317.73	8.1 17	439.05	(3/2)-	121.29	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	(M1)		0.261	Mult.: From $\alpha(K) \exp[-lec(K)/l\gamma=0.23 \ 6 \ (Ice(K)=6.4 \ 10 \ (1968Sv01)*0.29=1.9.3)$	
324.89 5	12.0 21	439.05	(3/2)-	114.158	3/2-	M1		0.246	Mult.: From $\alpha(K)$ exp=Ice(K)/I γ =0.29 9 (Ice(K)=12 3 (1968Sv01)*0.29=3 5 9) Also K/I 12=7 5 38	
334.7 ^{&} 3 ^x 344.1 ^{&} 9	2.2 <i>13</i> 0.9 <i>4</i>	522.53	(3/2 ⁻ ,5/2 ⁻)	187.81	3/2-	[M1]		0.227	(19000001) 0.29-5.5 9). This in 212-7.5 50.	
x369.9 ^{&} 2 377.10 3	2.1 5 17.5 23	491.24	(5/2)-	114.158	3/2-	M1+E2	1.2 3	0.098 17	Mult.,δ: From α(K)exp=Ice(K)/Iγ=0.112 20 (Ice(K)=6.8 8*0.29=1.97 23). Also K/L=3.8 11, L1/L2=2.4 7, L1/L3=11 4 (1968Sv01).	
^x 383.4 ^{&} 4 ^x 387.60 9	0.8 <i>4</i> 13.1 <i>16</i>					E2		0.0476	Mult.: From α (K)exp=Ice(K)/I γ =0.053 9. Ice(K)=2.4 3*0.29=0.70 9. Also K/L3=14 7 (1968Sv01).	
^x 401.3 ^{&} 3 408.4 2	3.9 9 4.5 9	522.53	(3/2 ⁻ ,5/2 ⁻)	114.158	3/2-	(M1,E2)		0.087 46	Mult.: From α(K)exp=Ice(K)/Iγ=0.08 4 (Ice(K)=1.3 5*0.29=0.38 15). Also K/L12=4.5 19 (1968Sv01).	
^x 421.3 ^{&} 4 424.76 12	1.8 9 5.2 10	439.05	(3/2)-	14.276	5/2-	(M1)		0.1199	Mult.: From α (K)exp=Ice(K)/I γ =0.100 22 (Ice(K)=1.8 2 (1968Sv01)*0.29=0.52 6).	
^x 431.4 ^{&} 3 437.41 8	1.0 <i>3</i> 17 <i>3</i>	439.05	(3/2)-	1.642	3/2-	M1		0.1109	Mult.: From α (K)exp=Ice(K)/I γ =0.065 13	
439.04 8	66 5	439.05	(3/2)-	0.0	1/2-	M1		0.1099	(Ice(K)=3.9 4 (1968 Sv01)*0.29=1.1 1). Mult.: From α (K)exp=Ice(K)/I γ =0.107 9	

 $^{193}_{78}\text{Pt}_{115}\text{--}13$

				¹⁹³ Au ε decay (17.65 h)			1968Sv	1968Sv01,1970Pl02 (continued)		
γ ⁽¹⁹³ Pt) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π}	Mult. [§]	α^{a}	Comments		
×445& 1	044							(Ice(K)=24.5 <i>10</i> (1968Sv01)*0.29=7.1 <i>3</i>). Also K/L12=5.7 <i>6</i> , K/L3>29 (1968Sv01).		
^x 459.2 2	0.5 3							Photon observed by 1970Pl02; 1968Sv01 unassigned line with E(ce)=380.77 <i>15</i> (Ice=0.25 <i>5</i> % of 268 ce(K)) attributed to corresponding K line.		
^x 464.1 ^{&} 5	1.0 5									
476.98 9	16 3	491.24	(5/2)-	14.276	5/2-	(E2)	0.0278	Mult.: From α (K)exp=Ice(K)/I γ =0.085 20 (Ice(K)=4.7 7*0.29=1.36 20). Also K/L=4.4 15, L12/L3=7 4 (1968Sv01). From L12/L3 ratio, the γ is mainly E2; too high α (K)exp seems to indicate that perhaps the I γ (477.0) and I γ (478.4) were not correctly resolved.		
^x 478.40 15	4.1 10							α (K)exp=Ice(K)/I γ =0.39 <i>14</i> . Ice(K)=0.55 <i>13</i> *0.29=1.6 <i>4</i> . K/L12=2.3 <i>8</i> ; K/L12=4.18; M1: α (K)=0.0750, K/L12=6.23 (1968Sv01). E2: α (K)=0.02, M1: α (K)=0.072 (Brice).		
^x 483 ^{&} 1	0.5 3									
489.61 12	8.0 16	491.24	$(5/2)^{-}$	1.642	3/2-	(M1)	0.0824	Mult.: From α (K)exp=Ice(K)/I γ =0.072 23 (Ice(K)=2.0 5*0.20=0.58 JS). Also K/I 12=5.6.25 J 12/J 2>0.7 (10685):01)		
491.28 12	24 4	491.24	$(5/2)^{-}$	0.0	$1/2^{-}$	[E2]	0.0258	$S^{-0.29=0.38}$ $I^{-0.29=0.38}$ $I^{-0.29=0.38}$ $I^{-0.29=0.67}$		
					,			Also K/L12>4 (1968Sv01).		
x505.66 20	3.3 6	500 50	(2 2-5 2-)	14.076	5/0-	$(\mathbf{M}1 + \mathbf{E}2)$	0.040.26	Mult.: K/L12<6, L12/L3>1.5 (1968Sv01).		
508.20 20	1.9 5	322.33	(3/2 ,3/2)	14.270	5/2	(NII+E2)	0.049 20	Mult.: From $a(\mathbf{K})\exp[-ice(\mathbf{K})/i\gamma]=0.040$ 14 (ice($\mathbf{K})=0.27$ 0 (1968Sv01)*0.29=0.078 17).		
520.97 25	2.7 6	522.53	(3/2 ⁻ ,5/2 ⁻)	1.642	3/2-	(E2)	0.0224	Mult.: From α (K)exp=Ice(K)/I γ =0.022 7 (Ice(K)=0.21 5 (1968Sv01)*0.29=0.061 15).		
522.66 25	2.5 5	522.53	(3/2 ⁻ ,5/2 ⁻)	0.0	1/2-	(E2)	0.0222	Mult.: From α (K)exp=Ice(K)/I γ =0.025 8 (Ice(K)=0.22 5 (1968Sv01)*0.29=0.064 15).		
^x 529.7 ^{&} 4	1.3 3									
^x 577.60 20	1.50 16					(M1)	0.0535	Mult.: α (K)exp=Ice(K)/I γ =0.042 12. Ice(K)=0.22 6*0.29=0.064 17.		
*628.55 25	2.3 3					(M1)	0.0429	α (K)exp=lce(K)/l γ =0.039 8. lce(K)=0.31 5*0.29=0.090 15. Also K/L=5.2 27; K/L=6.25 (1968Sv01).		
^x 685 ^{&} 1	0.74 21									
^x 698 ^{&} 1	2.2 5									
^x 730 ^{&} 1	0.7 2									
^x 743 ^{&} 1	1.2 4									
^x 845 ^{&} 2	2.4 8									
^x 1124 ^{&} 4	1.6 8									

[†] Deduced from E(ce) measurements of 1968Sv01, unless otherwise noted. Calibration: KL₁L₁ and KL₂L₃ Auger lines in Pt, E(ce(K)) 316y in ¹⁹²Pt $(E(ce(K))=238.087 \ 10)$, ThC A (E(ce)=24.509) and ThB F (E(ce)=148.108) lines. [‡] From 1970Pl02, unless otherwise noted.

NUCLEAR DATA SHEETS

¹⁹³Au ε decay (17.65 h) **1968Sv01,1970Pl02** (continued)

$\gamma(^{193}\text{Pt})$ (continued)

§ From experimental internal conversion coefficients and ratios, based on Ice of 1968Sv01 and I γ of 1970Pl02.

[&] From 1970Pl02.

^(a) If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[#] For absolute intensity per 100 decays, multiply by ≈ 0.028 .

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁹³Au ε decay (17.65 h) 1968Sv01,1970Pl02

¹⁹³Au ε decay (3.9 s) 1955Br41

Parent: ¹⁹³Au: E=290.20 3; $J^{\pi}=11/2^{-}$; $T_{1/2}=3.9$ s 3; $Q(\varepsilon)=1075$ 9; $\mathscr{H}\varepsilon+\mathscr{H}\beta^{+}$ decay ≈ 0.03

¹⁹³Au-%ε+%β⁺ decay: 0.03% from I(γ+ce)(135.4γ M4 ¹⁹³Pt)/I(γ+ce)(258.0γ M1 ¹⁹³Au)≈0.0003; deduced from Ice and theoretical α by 1955Br41.

Sources from decay of ¹⁹³Hg parent activity; measured γ , ce, γ (ce).

¹⁹³Pt Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	Comments	
0.0	$\frac{1/2^{-}}{3/2^{-}}$			
14.276 8	5/2- 5/2-			
149.78 <i>4</i>	13/2+	4.33 d <i>3</i>	$T_{1/2}$: other: 3.5 d 4 (1955Br41).	

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$
(1215 9)	149.78	0.03	4.7	0.03

[†] For absolute intensity per 100 decays, multiply by $\approx 3 \times 10^{-4}$.

E_f Mult.[†] Comments Eγ E_i (level) δ $\alpha^{\$}$ (1.642^{\dagger}) 1.642 3/2-M1 3116 α : From BRICC. Others: 12000 ≈0.03 (1991Ba63), 4010 (1978Ro21). (12.634^{\dagger}) 14.276 1.642 3/2⁻ 14.276 5/2⁻ 0.015 +3-4 δ : From Adopted Gammas. $5/2^{-}$ M1+E2 142 8 ≈0.03 135.4 149.78 $13/2^{+}$ M4 875 ≈0.03 E_{γ} : from 1955Br41. Mult.: K:L1:L3:M=1:2:4:1 (1955Br41).

 $\gamma(^{193}\text{Pt})$

[†] From Adopted Gammas.

[‡] For absolute intensity per 100 decays, multiply by $\approx 3 \times 10^{-4}$.

[§] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³Au ε decay (3.9 s) 1955Br41

Decay Scheme

¹⁹³₇₈Pt₁₁₅

¹⁹²**Os**(α ,**3n** γ) **1977Sa01**

1977Sa01: $E(\alpha)=31-46$ MeV, $\theta=90^{\circ}$ to 140° (5 angles used); enriched (98%) ¹⁹²Os targets; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t), excit; interpreted level structure in terms of the triaxial rotor plus hole model.

1976Pi03, 1975Pi02: $E(\alpha)=30-50$ MeV, measured γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(t)$. All high-spin states which are strongly populated in the $(\alpha,3n)$ reaction deexcited by γ cascades leading to the 4.3-day $13/2^+$ isomer. No other isomeric states observed.

¹⁹³Pt Levels

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	Comments
0.0			
1.64			
14.28			
149.8 ^{‡#}	$13/2^{+}$	4.33 d 3	$T_{1/2}$: From Adopted Levels.
199.0 [@]	$11/2^{+}$		
491.0 [#]	$17/2^{+}$		
519.6 [@]	$15/2^{+}$		
603.3	$15/2^+$		
907.4	$(17/2^{+})$		
980.5 ⁻	19/2		
1003.4"	21/2		
1159.9	$19/2^{+}$		
1320.8 ^{&}	$21/2^{(-)}$		
1454.7 ^{&}	$25/2^{(-)}$	3.2 ns 3	$T_{1/2}$: weighted average of 3.26 ns 34 (ce(t) (1978Ti02)) and 3.1 ns 5 (γ (t) (1977Sa01)).
1510.3			
1631.8#	25/2+		
1689.9 [°]	$27/2^{(-)}$		
17/6.8			
$1992.2^{\&}$	29/2(-)		
$2335.2^{\#}$	29/2+		
2696.2 [#]	33/2+		
3129.2 [#]	$(37/2^+)$		
C. 127.12	(2.72)		

[†] From γ -ray multipolarities and fits of coincident γ rays into expected bands (1977Sa01).

[‡] Rounded-off value from Adopted Levels.

[#] Band(A): i13/2 favored decoupled band, Configuration=($\nu i_{13/2}1$).

[@] Band(B): (J-1) unfavored, decoupled band from Configuration=($\nu i_{13/2}1$).

& Band(C): 21/2⁻ semidecoupled band; Position and spacing are similar to corresponding band structure in other odd-mass Pt and Hg nuclei. These bands are related to the 5⁻ bands in neighboring even-mass nuclei.

 $\gamma(^{193}\text{Pt})$

All data are from 1977Sa01, unless otherwise noted.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
(1.642 [§] 2)		1.64		0.0			
(12.634 [§] 8)		14.28		1.64			
49.2	14 4	199.0	$11/2^{+}$	149.8	$13/2^{+}$		
133.9 2	257 15	1454.7	$25/2^{(-)}$	1320.8	$21/2^{(-)}$	Q	$A_2 = +0.33 6; A_4 = -0.09 7$

¹⁹²Os(α ,3n γ) 1977Sa01 (continued)

$\gamma(^{193}\text{Pt})$ (continued)

Ε _γ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
(135.50 [§] 3)		149.8	$13/2^{+}$	14.28			
^x 159.7 3	19 <i>3</i>		,				A ₂ =-0.10 8
161.0 2	96 9	1320.8	$21/2^{(-)}$	1159.9	$19/2^{+}$	D,D+Q	$A_2 = -0.186; A_4 = +0.027$
^x 168.8 3	14 3						$A_2 = -0.62 \ 16$
189.5 2	55 7	1510.3		1320.8	$21/2^{(-)}$		$A_2 = -0.04 6; A_4 = +0.06 7$
^x 216.1 3	17 <i>3</i>						
235.2 1	159 <i>13</i>	1689.9	$27/2^{(-)}$	1454.7	$25/2^{(-)}$	D,D+Q	$A_2 = -0.05 6; A_4 = 0.00 7$
^x 255.4 3	19 4						
^x 264.1 2	85 9					(Q)	$A_2 = +0.35$ 7; $A_4 = +0.01$ 8
266.5 3	20 4	1776.8		1510.3		(Q)	A ₂ =+0.57 21
296.8 ^{&} 3	32 5	1986.7?		1689.9	$27/2^{(-)}$		
302.3 2	23 4	1992.2	$29/2^{(-)}$	1689.9	$27/2^{(-)}$		
304.0 2	37 5	907.4	$(17/2^+)$	603.3	$15/2^{+}$	D,D+Q	$A_2 = -0.75 \ 11; \ A_4 = +0.10 \ 12$
(317)		1320.8	$21/2^{(-)}$	1003.4	$21/2^{+}$		Transition, if present, obscured by 316.5 γ in ¹⁹² Pt.
320.6 1	542 38	519.6	$15/2^{+}$	199.0	$11/2^{+}$	Q	$A_2 = +0.29 6; A_4 = -0.07 7$
x335.1 2	23 4						
340.3 2	747 75	1320.8	$21/2^{(-)}$	980.5	$19/2^{+}$	D,D+Q	$A_2 = -0.16 8; A_4 = -0.01 9$
341.2 2	1000	491.0	$17/2^{+}$	149.8	$13/2^{+}$	Q	$A_2 = +0.23 8; A_4 = -0.04 9$
361.0 <i>3</i>	41 6	2696.2	$33/2^{+}$	2335.2	$29/2^{+}$	Q	A ₂ =+0.31 7
369.8 1	150 12	519.6	$15/2^{+}$	149.8	$13/2^{+}$	D+Q	$A_2 = -0.73 6; A_4 = +0.08 7$
377.3 2	58 7	980.5	19/2+	603.3	$15/2^+$	Q	$A_2 = +0.31 8; A_4 = -0.06 9$
387.9 2	42.6	907.4	$(17/2^+)$	519.6	15/2+	D+Q	$A_2 = -0.36 \ I3; A_4 = +0.06 \ I5$
^413.1 3	20 4	007.4	(17/0+)	401.0	17/0+		$A_2 = +0.29 I_2$
410.5 2	50 /	907.4	$(1/2^{+})$	491.0	17/21		$A_2 = +0.28 9$
423.14	11.2 22.4	2120.2	$(27/2^{+})$	2606 2	22/2+		
x_{44732}	23 4 60 7	5129.2	(31/2)	2090.2	55/2		$\Delta_{2} = \pm 0.22.11$
453 5 1	238 19	603 3	$15/2^{+}$	149.8	$13/2^{+}$	D+O	$A_2 = -0.726$; $A_4 = +0.097$
461.0 1	501 35	980.5	$19/2^+$	519.6	$15/2^+$	0	$A_2 = +0.306$; $A_4 = -0.087$
^x 474.1 2	92.9	200.2	17/2	517.0	10/2	×	$A_2 = -0.07 \ 8; \ A_4 = -0.01 \ 9$
^x 478.2 3	26 5						$A_2 = +0.46\ 23$
489.5 <i>1</i>	346 28	980.5	$19/2^{+}$	491.0	$17/2^{+}$	D+Q	$A_2 = -0.74 8; A_4 = +0.11 10$
500.2 <i>3</i>	28 5	1103.5		603.3	$15/2^{+}$	D,D+Q	$A_2 = -0.44 \ 17$
^x 503.6 3	33 6						
512.4 <i>3</i>	350 <i>53</i>	1003.4	$21/2^+$	491.0	$17/2^{+}$		
^x 518.4 4	16 4						
537.4 2	142 17	1992.2	$29/2^{(-)}$	1454.7	$25/2^{(-)}$	Q	$A_2 = +0.40 \ 10; A_4 = -0.12 \ 11$
^x 547.2 3	31 6					D,D+Q	$A_2 = -1.0 \ 3$
556.5 3	77 10	1159.9	$19/2^{+}$	603.3	$15/2^{+}$	(Q)	$A_2 = +0.23 \ 13; A_4 = -0.03 \ 15$
^595.7 3	49 8	1(01.0	25/2+	1002 (01/0±	0	$A_2 = +0.52\ 22$
628.4 2	228 23	1631.8	25/2+	1003.4	$21/2^+$	Q	$A_2 = +0.36$ /; $A_4 = -0.11$ 8
040.2 <i>4</i>	34 /	1159.9	19/2 '	519.6	15/2	(Q)	$A_2 = +0.33 I/$
702 4 2	11/1/	1139.9	19/2	491.0 1621.0	$\frac{1}{25}$	D,D+Q	$A_2 = -0.00$ 9; $A_4 = +0.19$ 11 $A_4 = +0.40$ 8; $A_4 = -0.12$ 10
105.4 5	121 18	2333.2	29/2	1051.8	23/2	V V	$A_2 = +0.40$ o, $A_4 = -0.15$ 10

[†] Relative intensities at $E(\alpha)=35.0$ MeV and $\theta=125^{\circ}$.

[‡] From $\gamma(\theta)$ in 1977Sa01; mult=Q assignments are based on positive A₂ and corresponds to $\Delta J=2$, stretched quadrupole (most likely E2); Mult= D or D+Q assignments are based on negative A₂ and corresponds to $\Delta J=1$ or 0.

§ From ¹⁹³Pt IT decay (4.33 d).
 & Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

¹⁹²Pt(n, γ) E=res **1968Sa13**

1968Sa13: E(n)=47 eV, 54 eV; natural Pt targets; measured Eγ, Iγ for primary γ's (Ge(Li), FWHM=5 keV at 1 MeV).
1969De09: from neutron time-of-flight measurements in transmission and absorption experiments, observed five resonances, whose energies and widths, in eV and meV respectively, are: 47, 47 2; 54, 17 *I*; 130, 225 *I*2; 145, 170 *I*0; 389, 308 27.

¹⁹³Pt Levels

Comments

E(level)	$J^{\pi^{\dagger}}$	
0.0	1/2-,3/2-	J^{π} : adopted $1/2^{-}$.
186	$1/2^{-}, 3/2^{-}$	J^{π} : adopted $3/2^{-}$.
440?		
461?		
544	$1/2^{-}, 3/2^{-}$	
700	$1/2^{-}, 3/2^{-}$	
1591	1/2-,3/2-	
$S(n)+x^{\ddagger}$	1/2+	E(level): $x = E(res) = 47 \text{ eV}$ and 54 eV. J ^{π} : 1/2 ⁺ for both resonances (1969De09).

[†] From population by E1 γ from J^{π}=1/2⁺ resonances.

[‡] Adopted S(n)=6262.5 23 (2017Wa10). From E γ (to g.s.)=6247 (1968Sa13) it appears that there is a calibration error of \approx -13 keV in the data of 1968Sa13.

$\gamma(^{193}\text{Pt})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	Mult.
4656	$\overline{S(n)+x}$	$1/2^{+}$	E1
5547	S(n)+x	$1/2^{+}$	E1
5703	S(n)+x	$1/2^{+}$	E1
5786 ^{‡§}	S(n)+x	$1/2^{+}$	
5807 ^{‡§}	S(n)+x	$1/2^{+}$	
6061	S(n)+x	$1/2^{+}$	E1
6247	S(n)+x	$1/2^{+}$	E1

[†] Inferred from comparison of radiative widths with those for known E1 transitions in other Pt isotopes.

[‡] Existence of γ uncertain.

§ Placement of transition in the level scheme is uncertain.

¹⁹⁴**Pt(p,d), (d,t)** 1978Be09

1978Be09: Pt and ¹⁹⁴Pt (97.4%) targets. ¹⁹⁴Pt(p,d): E=26 MeV; measured: E(d) (mag spect), differential cross sections, σ(θ) (θ=5°, 9°, 15°, 30°, 45°, 55°). ¹⁹⁴Pt(t,d): E=26 MeV; measured E(t) (mag spect), differential cross sections at 15°.
1977Sm03: ¹⁹⁴Pt(p,d): E=27 MeV; measured: E(d), σ, σ(θ). FWHM 30 keV and 13 keV for long and short runs, respectively.

1965Mu05: ¹⁹⁴Pt(d,t): E=15 MeV; measured E(t), σ .

1990Bu26: calculated parameters for fits to single-neutron-transfer strengths in the U(6/12) scheme.

¹⁹³Pt Levels

Data are from 1978Be09 unless otherwise noted.

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	L	S [#]	Comments
0.0	$(1/2)^{-}$	1	1.08 ^{&}	$C^2S=1.15$ in (d,t).
$1.6^{@}$	$(3/2)^{-}$	1	1.10	$C^2S=1.20$ in (d,t).
14.3@	$(5/2)^{-}$		&	$C^2S=1.70$ in (d.t).
$114.2^{@}$	3/2-	1 <i>a</i>	0.07 ^b	$C^2S=0.03$ in (d,t).
$121.3^{@}$	3/2-	1^a	0.07^{b}	$C^2S=0.03$ in (d t)
148.3	$13/2^+$	6	4.24	$C^{2}S=5.83$ in (d,t).
189 6		-		
233 6	5/2-	(3)	0.03	
271 <i>3</i>	3/2-	1	0.02	
308 <i>3</i>	(9/2)	(4,5)	0.14	
340 <i>3</i>	(9/2)	(4,5)	0.16	
415 [°] 3	5/2 ^{-c}	3 ^c	1.06 ^{cd}	
425 [°] 3	5/2 ^{-c}	3 ^c	0.042 ^{cd}	
439.0 [@]	3/2-	1	0.033	Not resolved from 459 level.
459 <i>3</i>	5/2-	(3)	0.18	$C^2S=0.16$ in (d,t).
491 <i>3</i>	5/2-	(3)	0.18	$C^2S=0.16$ in (d,t).
530 <i>3</i>	3/2-	1	0.03	$C^2S=0.07$ in (d,t).
544 <i>3</i>	$(5/2^{-})$	(3)	0.17	$C^2S=0.13$ in (d,t).
563 <i>3</i>	3/2-	1	0.02	
599 <i>3</i>	7/2-	3	1.035	$C^2S=0.85$ in (d,t).
630 5	7/2-	3	0.22	$C^2S=0.17$ in (d,t).
665 ^C 3	$13/2^{+C}$	6 ^{<i>C</i>}	0.39 ^{ce}	
692 [°] 3	$(13/2^+)^{c}$	(6) ^C	0.55 ^{ce}	
701 5	$(5/2^{-})$	(3)	0.075	
718 [°] 4	$(1/2^+)^{C}$	(0) ^C	0.006 ^C	Part of a unresolved doublet with a stronger L=3, C ² S=0.11 level (probably the 728 level seen by 1978Be09).
728 5	7/2-	3	0.16	$C^2S=0.12$ in (d,t).
755 5	7/2-	3	0.315	$C^2S=0.23$ in (d,t).
830 10	$(7/2^{-})$	(3)	0.10	
846 5	3/2-	1	0.44	
923 5	3/2-	1	0.11	
969 <i>10</i>				
1014 5	$(9/2^+)$	(4,5)	0.05	
1042 5	$13/2^{+}$	6	1.65	
1069 10	$(7/2^{-})$	(3)	0.05	
1099 5	$(7/2^{-})$	(3)	0.09	
1130 10	$(7/2^{-})$	(3)	0.04	
1168 10	$(3/2^{-})$	(1)	0.02	
1188 5	3/2-	1	0.13	Unresolved doublet.
1222° 5	$3/2^{-1}$ AND $5/2^{-1}$	$1 + 3^{\circ}$	$0.044 + 0.13^{\circ}$	

¹⁹⁴Pt(p,d), (d,t) **1978Be09** (continued)

¹⁹³Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	L	S#
1245 5	(7/2 ⁻)	(3)	0.22
1239? 10 $1320^{\circ} 5$ $1359^{\circ} 4$	5/2 ⁻ AND 3/2 ⁻ <i>c</i> 13/2 ⁺ <i>c</i>	$ \frac{3 + 1^{c}}{6^{c}} $	0.10+0.016 ^C 0.30 ^C

[†] The uncertainty is estimated to be 2.5 keV below~600 keV and 5 keV above, except for the weak transitions (1978Be09) (the evaluator has doubled the uncertainty for transitions with $\pm \sigma > 10\%$).

^{\ddagger} J^{π} assumed for the calculation of C²S. From 1978Be09, unless otherwise noted.

[#] $(d\sigma/d\Omega)(exp)/N(d\sigma/d\Omega)(DWBA)$, N=2.29. C²S values for (d,t) (N=3.33) are given in comments; these were obtained from only one angle, corresponding to the maximum angular distribution for L=3, and values for other L transfers may be imprecise.

[@] Rounded-off value from Adopted Levels; level not well resolved in ¹⁹⁴Pt(p,d), (d,t).

& To extract C²S for the unresolved 0.0, 1.6, and 14.3 levels, σ was divided equally between the 0.0 and 1.6 states (good L=1 fit to the triplet suggests small σ for the 14.3-keV, 5/2⁻ state).

^{*a*} L=1 for 114.2+121.3 doublet.

^b Total for unresolved 114 and 121 levels $(3/2^{-} \text{ assumed for each})$.

^c From 1977Sm03.

^d 1978Be09 report C²S=1.71 in (p,d) and C²S=1.46 in (d,t) ($J^{\pi}=5/2^+$) for single state with E(level)=423 3, L=3.

^e 1978Be09 report C²S=0.76 in (p,d) ($J^{\pi}=13/2^+$) for single state with E(level)=675 5, L=6.
¹⁹⁴Pt(³He,α) **1985Th02**

 $E(^{3}He)=50$ MeV, $\theta=5^{\circ}$ to 45° (2.5° intervals); enriched (>98%) ¹⁹⁴Pt targets; measured $E(\alpha)$ (mag spect with two-dimensional detector system, FWHM \approx 35 keV), differential cross sections, angular distributions (high-L transfers favored); interpreted levels in terms of quasiparticle-core coupling models.

¹⁹³Pt Levels

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	L [‡]	Slj [#]	Comments
15 10	5/2-		3,4	1.31	
150 10	$13/2^{+}$	4.33 d <i>3</i>	6	6.37	$T_{1/2}$: From Adopted Levels.
331 10	$(13/2^+)$		5,6	1.21	
420 10	5/2-		3,4	0.92	
484 10					
592 10	$7/2^{-}$		3	0.95	
667 10	$13/2^{+}$		6	0.84	
732 10	$7/2^{-}$		3,4	0.38	
819 10	$7/2^{-}$		3,4	0.29	
1021 10	$13/2^{+}$		5,6	1.73	
1095 10	$7/2^{-}$		3,4,5	0.25	
1219 10	$7/2^{-}$		3,4	0.25	
1337 10	$13/2^{+}$		6	0.67	
1442 10					
1561 10			3,4		
1668 10	9/2-		4,5	0.61	
1744 10	7/2-		3	0.44	
1913 <i>10</i>					
2337 10					

[†] J π assumed to extract Slj.

[‡] From DWBA analysis of angular distributions.

[#] $(d\sigma/d\Omega)(exp)/N$ $(d\sigma/d\Omega)(DWBA)$, N=34.

¹⁹⁵Pt(p,t) **1980Ro07**

¹⁹³Pt Levels

 $J^{\pi}(^{195}Pt)=1/2^{-}.$

E(p)=25 MeV, $\theta=5^{\circ}$ to 55°; Pt metal targets enriched to 97.28% in ¹⁹⁵Pt; measured E(level) (mag spect, FWHM=16-18 keV), differential cross sections, angular distributions.

E(level)	$J^{\pi \dagger}$	T _{1/2}	L‡	$\Sigma \sigma(\theta)^{\#}$	Comments
0.0	$1/2^{-}$		0	100	
1.6@	,			12^a	
14.2@				60	
14.5				19	
140.99@&	12/2+	122 4 2		1.7	IT T . From Adorted Levels
149.87	$\frac{15}{2}$	4.55 û 5	2	27	$J^{*}, I_{1/2}$. From Adopted Levels.
232 4	$(5/2)^{-}$		2	2.7 4 9	
232 4	$3/2^{-}$		$\frac{2}{2}$	1.9	
307? 4	5/2		2	0.15	
340 4				2	
425 4				4.6	
462 <i>4</i>				2	
492 <i>4</i>	$(5/2)^{-}$		2	0.7	
531 4				1.8	
597 4				4.2	
622 4				0.9	
642 <i>4</i>				1.2	
701 4				0.5	
728 4				1.5	
753 4				3.3	
828 4	2/2-		2	2.1	
841 4	3/2		2	4.3	
922 4	3/2		Z	3 1 1	
904 4 1053 8				2.5	
1091 8				1	
1182.8	$3/2^{-}$		2	1	
1217 8	5/2		-	1.9	
1243 8				0.8	
1265 8				2.9	
1333 8				2.8	
1364 8				1.9	
1425 8				2	
1457 8	$1/2^{-}$		0	3	
1534 8	$1/2^{-}$		0	1.4	
1557 8	$1/2^{-}$		0	3.5	
1585 8				0.6	
1610 8				0.9	

[†] From 1980Ro07; deduced from angular distributions and cross sections, relative to those for corresponding levels in ¹⁹⁴Pt(p,d), (d,t), except otherwise noted.

[‡] Inferred from angular distributions.

[#] Relative summed cross-sections for the seven angles between 5° and 55° observed in the experiment.

[@] Rounded off value from Adopted Levels; level not well resolved in ¹⁹⁵Pt(p,t).

[&] Population uncertain; peak overlaps that for ¹⁹²Pt g.s. from contaminant.

^{*a*} Estimated from spectrum at θ =15° assuming the angular distribution observed for J^{π}=5/2⁻ states.

Adopted Levels, Gammas

 $Q(\beta^{-}) = -2343 \ 14$; $S(n) = 8704 \ 18$; $S(p) = 4405 \ 9$; $Q(\alpha) = 2620 \ 15 \ 2017Wa10$

Other studies:

1990Ka04: ¹⁹⁷Au(α ,⁸He); E α =65 MeV. Reaction products analyzed at 8° with a solid angle of 5 msr by the

quadrupole-dipole-dipole magnetic spectrometer.

1998Is08: 191 Ir(α ,2n), 193 Ir(α ,4n); E α =16-48 MeV. Reaction cross-section measured and compared to Hauser-Feshbach with pre-equilibrium calculation.

2001Gl05: Pb(p,4pXn); E(p)=0.065-2.6 GeV. Measured excitation function.

2008Er03: ¹⁹⁷Au(γ ,4n), E<67.7 MeV, measured ¹⁹³Au yield and integral cross section.

2015Ju02: Measured ¹⁹³Au production cross section, 30.3 mb 25, bombarding Pb target with proton beam, E=250 MeV.

2015Ba20: ²⁰⁸Pb(¹³⁶Xe, X), E=743 MeV (mid target), measured cumulative and independent production yields for ¹⁹³Au to be 1.39 mb 28 and 1.27 mb 21, respectively.

2016Ka36: Measured cumulative production cross section of ¹⁹³Au, 9.61 mb 96, bombarding ²⁰⁹Bi target with ¹¹B beam, E=146.0 MeV.

¹⁹³Au Levels

Cross Reference (XREF) Flags

A	¹⁹³ Au IT decay (3.9 s)	E	$^{186}W(^{11}B,4n\gamma)$
B	¹⁹³ Hg ε decay (3.80 h)	F	Ir(α ,xn γ)
C D	¹⁹³ Hg ε decay (11.8 h) ¹⁹² Os(⁷ Li,6n γ)	G	194 Pt(p,2n γ)

E(level) [†]	J^{π}	T _{1/2}	XRE	F	Comments
0.0‡	3/2+	17.65 h <i>15</i>	ABCD	FG	$%ε+%β^+=100$ μ=+0.1396 5; Q=+0.664 20 Limit for possible α decay:<1E-5% (1963Ka17). Theory 1E-21% (2001Mo07). J ^π : spin from atomic beam (1976Fu06); parity from Schmidt diagram, μ. T _{1/2} : from 1968Sv01. Other values: 15.8 h 3 (1948Wi01,1949Wi08), 17.5 h 2 (1957Ew34), 15.3 h 5 (1952Fi06). μ: Collinear LASER spectroscopy (1994Pa37); others: 0.1396 6 NMR on oriented nuclei (1993Hi10), +0.140 <i>I</i> atomic beam (2014StZZ,1980Ek04), 0.139 atomic beam (1976Fu06).
28 224 17	(1/2)+	2 91 mg 79	ADC	EC	Q: Collinear LASER spectroscopy (2014StZZ,1994Pa37). Isotope shift: $\Delta < r^2 > = -0.162 \text{ fm}^2 2$ (1994Pa37), relative to ¹⁹⁷ Au. Other: -0.157 fm ² 4 (1989Wa11,1985St10). $\sqrt{ = 5.421 \text{ fm} 4 (2004An14)}.$
36.234 17	(1/2)	5.01 118 10	ADC	гG	T _{1/2} : from ¹⁹³ Hg ε decay (3.80 h) (1970Fo08).
224.80 <i>3</i>	(3/2)+	<0.03 ns	В	F	J^{π} : M1+E2 γ to (1/2) ⁺ . T _{1/2} : from ¹⁹³ Hg ε decay (3.80 h) (1970Fo08).
257.986 [‡] 21	5/2+	45 ps 20	ABCD	FG	J^{π} : M1+E2 γ to 3/2 ⁺ , E2 γ to (1/2) ⁺ ; see J^{π} assignment for the 290.18 level. $T_{1/2}$: from ¹⁹³ Au IT decay (3.9 s) (1970Fo08).

¹⁹³Au Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
290.20 [#] 4	11/2-	3.9 s <i>3</i>	ABCDEFG	%1T=99.97; % ε +% $\beta^{+}\approx 0.03$
				$\mu = 6.18 \ 9; \ Q = +1.98 \ 6$
				J^{π} : E3 – M1+E2 cascade to $3/2^+$ g.s., direct transition to g.s. very
				weak and no transition to $(1/2)^{-}$ 38.25 level. This indicates $J^{*}=11/2$ for the 290.18 level and $J^{\pi}=5/2^{+}$ for the 257.97 level. Systematics of h11/2 levels in Au puels
				The set from 193 Au IT decay (1055Ei30)
				$1_{1/2}$. from Au II decay (19551150). $\infty \epsilon + \infty \beta^+$: deduced from I($\gamma + c\epsilon$)(258 (γ in ¹⁹³ Au) relative to
				$I(\gamma+ce)(135.5\gamma \text{ in } ^{193}\text{Pt})$ (1955Br41).
				μ: Radiative detection of NMR (2014StZZ,1983Ha10); other: 6.17 9 NMR (2014StZZ,1983Li21).
	- (a.)			Q: $\gamma(\theta, H, t)$ from ¹⁹³ Hg decay (11.8 h), NMR (2014StZZ, 1996Se06).
381.62 3	5/2+		BC G	J^{n} : D+Q γ to $3/2^{+}$ g.s., γ to $(1/2)^{+}$; see J^{n} assignment at 508-keV level.
508.27 4	7/2-	0.29 ns 2	BC FG	J^{π} : E2 γ to 11/2 ⁻ level, (E1) – M1+E2 cascade to 3/2 ⁺ g.s.; this gives
				$J^{n} = 1/2^{-1}$ for this level and $J^{n} = 5/2^{+1}$ for 382-keV level.
528 00 4	$(7/2^{+})$		DCD EC	$I_{1/2}$: from 2^{-2} Hg \mathcal{E} decay (11.8 n) (1970Bab6).
687.43 <i>4</i>	$(7/2^+)$		C G	J^{π} : $(E_2) \gamma$ to $3/2^{-1}$ g.s., band structure. J^{π} : $\Omega \gamma$ to $(3/2)^{+}$: D+O γ to $5/2^{+}$.
697.81 [#] .5	$(15/2)^{-}$		CDEFG	J^{π} : E2 γ to $11/2^{-1}$ level: band structure.
789.94 ^{<i>a</i>} 5	9/2-	1.2 ns 1	C EFG	J^{π} : M1+E2 γ 's to 7/2 ⁻ and 11/2 ⁻ levels; band structure.
				$T_{1/2}$: from ¹⁹³ Hg ε decay (11.8 h) (1975Be29).
808.57 [‡] 5	$(9/2)^+$		CD FG	J^{π} : Q γ to 5/2 ⁺ level; band structure.
828.00 9	3/2+		B G	J^{π} : (M1) γ to (1/2) ⁺ , D+Q γ to 5/2 ⁺ . 1/2 ⁺ discarded based on correlation analysis of 446 γ and 381 γ cascade.
863.36 [@] 5	(13/2)-		C FG	J^{π} : M1 γ to (15/2) ⁻ level, M1+E2 γ to 11/2 ⁻ level.
890.80 5	9/2-		CD FG	J^{π} : M1 γ to 7/2 ⁻ , M1+E2 γ to 11/2 ⁻ .
929.09 5	$(9/2^+)$		CG	J^{π} : (E2) γ to $5/2^+$ level. See J^{π} assignment for 2125 level.
985.39 11 1085 35 <i>11</i>	$(7/2^+)$		G	J^{*} : 758.67 Q to (5/2) , 725.07 D+Q to 5/2 . I^{π} : 860 5v to (3/2) ⁺ 827 5v D+O to 5/2 ⁺
1089.34 9	(1/2)		BG	
1105.92 12	$(7/2^+)$		G	J^{π} : γ D+Q to 5/2 ⁺ , 277.9 γ to (3/2 ⁺).
1106.4 ^b 5	$(11/2^{-})$		E	J^{π} : 316.5 γ M1+E2 to 9/2 ⁻ , band structure.
1118.97 12	$(3/2)^+$		B G	J^{π} : M1+E2 γ to 5/2 ⁺ level, γ to (1/2) ⁺ level.
1151.640	9/2,11/2 (11/2 ⁺)		C FG	J ^{**} : M1+E2 γ to $9/2$ level, 100/.8 γ from 12/2 ⁺ 1931be hand structure
$1135.35^{\circ} 0$ 1194 31 ^{<i>a</i>} 7	(11/2) $(13/2^{-})$			J^{π} : $(F_2) \propto t_0 Q/2^{-1} \log f_t = 8.2 \ \log f^{10} t_1 = 8.9 \ \text{from} \ 13/2^{-193} \text{Hg}$
1284.81.5	$9/2^{-}.11/2^{-}$		C FG	I^{π} : M1+E2 γ to 9/2 ⁻ : log ft=7.6 log $f^{1u}t=8.3$ from 13/2 ^{+ 193} Hg
1297.41 16	$(3/2^{-} \text{ to } 11/2^{-})$		G	J^{π} : 789 γ to 7/2 ⁻ .
1300.39 22	$(3/2 \text{ to } 11/2^+)$		G	J^{π} : 215 γ to (7/2 ⁺).
1330.90 14	$(9/2^+)$		G	J^{π} : 347.3 γ D+Q to (7/2 ⁺), 949.3 γ to 5/2 ⁺ .
1343.69 20	$(1/2^+ \text{ to } 9/2^+)$ $(11/2^+ \text{ to } 15/2^-)$		G	J [*] : γ to $3/2^{+}$. I^{π} : (F2) γ to $(15/2)^{-}$ level: (M1+F2) γ from $11/2^{-}$ 13/2 ⁻ 1630 level
$1372.94^{@} 10$	$(17/2)^{-}$		C FG	I^{π} : M1+F2 γ to (15/2) ⁻ level; hand structure
1379.93 10	$(11/2^+)$		C G	J^{π} : (E2) γ to $(7/2^+, 9/2^+)$ level; 840.9 γ to $(7/2^+)$; log <i>ft</i> =8.3 from
1398.51 6	(13/2)-		C FG	$15/2^{-100}$ Hg. J ^{π} : M1+E2 γ to (13/2) ⁻ level, (M1+E2) γ to (15/2) ⁻ level, (E2) γ to 9/2 ⁻ level.
1400.39 5	$11/2^{-}$		C G	J^{π} : M1+E2 γ to 9/2 ⁻ ; log $f^{1u}t=7.8$ from 13/2 ⁺ .
1413.03 16	(9/2 ⁻)		С	J ^{π} : log $f^{4u}t$ =9.7, log ft =9.1 (if 11/2) from 13/2 ⁺ ¹⁹³ Hg; γ to (7/2 ⁺) level.

Continued on next page (footnotes at end of table)

¹⁹³Au Levels (continued)

E(level) [†]	J^{π}	T_1/2	XREF	Comments
1417.99 14	$(5/2^+, 7/2^+)$		G	J^{π} : 590 γ to (3/2 ⁺) and 609.3 γ to (9/2) ⁺ .
1419.13 [#] 25	$(19/2)^{-}$		DEFG	I^{π} : E2 γ to $(15/2)^{-}$ level: band structure.
1433.49 12	$(11/2^+, 13/2^+)$		C	J^{π} : (E2) γ to (9/2) ⁺ level; log <i>ft</i> =8.4 from 13/2 ⁺ ¹⁹³ Hg.
1455.19 9	$(11/2 \text{ to } 15/2^{-})$		c	J^{π} : (E2) γ 's to (13/2) ⁻ and (15/2) ⁻ levels; γ from (11/2 ⁻) 2201 level.
1463.10 22			G	
1476.98 [‡] 21	$(13/2^+)$		D FG	J^{π} : γ to $(9/2)^+$ level; band structure.
1477.18 12	$(7/2, 9/2, 11/2)^{-}$		С	J^{π} : 668.48 γ E1 to (9/2) ⁺ .
1496.30 7	(9/2)-		C FG	J^{π} : M1+E2 γ to 9/2 ⁻ ,11/2 ⁻ level; (E1) γ to (7/2 ⁺) level.
1514.20 16	(7/2 ⁻)		С	J^{π} : γ to $5/2^+$ level; γ from $11/2^-$ 2157 level. see J^{π} assignment for 2157 level.
1521.9 ⁶ 11	$(15/2^{-})$		E	J^{π} : E2 γ to (11/2 ⁻), band structure.
1526.9 <i>3</i>	$(9/2,7/2^+)$		G	J ^{π} : Suggested by 2014Th04 (p,2n γ) based on $\gamma\gamma(\theta)$ results.
1572.29 12	$(9/2^{-},11/2,13/2^{+})$		C G	J ^{π} : γ to (9/2 ⁺) level; log <i>ft</i> =9.0, log <i>f</i> ¹ ^u <i>t</i> =9.5 from 13/2 ⁺ ¹⁹³ Hg.
1575.62 6	11/2-,13/2-		C G	J^{π} : M1 γ to 9/2 ⁻ ,11/2 ⁻ level; 877.76 γ E2 to (15/2) ⁻ ; log $f^{du}t$ =7.5 from 13/2 ⁺ ¹⁹³ Hg
1578.01 17	$(5/2,7/2)^+$		G	J^{π} : Suggested by 2014Th04 based on $\gamma\gamma(\theta)$ results.
1598.6 <i>3</i>			G	
1603.15 19	$(3/2^{-}, 5/2^{+})$		В	J^{π} : γ 's to $7/2^{-}$ and $(1/2)^{+}$ levels.
1630.25 6	11/2-,13/2-		C G	J ^{π} : M1+E2 γ to 9/2 ⁻ , 11/2 ⁻ level; log $f^{1u}t=7.1$ from 13/2 ⁺ .
1654.69 <i>16</i>	$(9/2^{-}, 11/2, 13/2^{+})$		C G	J ^{π} : γ to (9/2 ⁺) level; log $f^{1u}t=8.4$ from 13/2 ^{+ 193} Hg.
1658.0 <i>3</i>	$1/2^{(+)}$ to $5/2^{(+)}$		B G	J^{π} : (E2) γ to 5/2 ⁺ ; log $f^{1u}t$ =6.9 from 3/2 ⁻¹⁹³ Hg.
1678.79 <i>19</i>			G	
1680.35 17	$(11/2^{-}, 13/2^{-})$		C	J^{π} : γ 's to $9/2^-$ and $(15/2)^-$ levels; (E2) γ to $(13/2)^-$ level.
1684.74 19	$(9/2^{-} \text{ to } 13/2^{-})$		C	J^{n} : (E2) γ to 11/2 ⁻ level; γ to 9/2 ⁻ level; log <i>ft</i> =7.6, log <i>ft</i> ^u <i>t</i> =8.0 from 13/2 ⁺ ¹⁹³ Hg.
1708.8 ^a 9	$(17/2^{-})$		E	J^{π} : E2 γ to (13/2 ⁻); band structure.
1733.44 <i>10</i> 1745.1 <i>3</i>	(15/2 ⁻)		C G	J ^{π} : (M1+E2) γ to (17/2) ⁻ ; log $f^{1u}t$ =7.4 from 13/2 ⁺ ¹⁹³ Hg.
1776.04 8	11/2-		С	J^{π} : E2 γ to (13/2) ⁻ level; γ to 7/2 ⁻ level; log <i>ft</i> =7.8, log <i>f</i> ^{1u} <i>t</i> =7.0
1704 02 15	(12/2-)		C	from $13/2^{+125}$ Hg.
1/94.92 13	(15/2) $(1/2) 2/2) 5/2^+)$		P	$J^{n}: \gamma \le 10 \ 9/2 \text{and} \ (1//2).$
1815 41 23	(1/2, 3/2, 3/2) $(9/2^{-} 11/2^{-} 13/2^{-})$		C	J^{π} : γ 's to $Q/2^{-}$ and $(13/2)^{-}$ levels
1829.91 6	$(11/2^{-},13/2^{-})$		C	J^{π} : (M1) γ to (13/2) ⁻ level: γ to 9/2 ⁻ level.
1861.91 21	$(1/2^+, 3/2, 5/2^+)$		В	J^{π} : γ 's to $(1/2)^+$ and $5/2^+$ levels.
1869.28 17	$(11/2^{-} \text{ to } 15/2^{-})$		С	J^{π} : (E2) γ to $(15/2)^-$ level; γ to $11/2^-$ level.
1876.29 <i>17</i>	$(11/2^-, 13/2^-)$		С	J ^{π} : (E2) γ to (15/2) ⁻ level; γ to 9/2 ⁻ level.
1915.20 17	$(11/2^{-} \text{ to } 15/2^{-})$		С	J^{π} : (E2) γ to (13/2) ⁻ level; γ 's to 11/2 ⁻ and (15/2) ⁻ levels.
1930.03 6	11/2-,13/2-		C	J^{π} : M1 γ to 11/2 ⁻ ,13/2 ⁻ level; γ to 9/2 ⁻ level; log $f^{4u}t$ =6.6 from 13/2 ⁺ ¹⁹³ Hg.
1939.20 11	$(11/2, 13/2)^{-}$		С	J^{π} : E2 γ to $(15/2)^{-}$ level; γ to $9/2^{-}$ level.
1947.10 ^d 25	$(21/2)^+$	10.4 ns 8	DEF	μ =+6.48 11 (2014StZZ)
				μ : From differential perturbed angular distribution of γ rays following nuclear reactions.
				J^{π} : E1 γ to (19/2) ⁻ level, (E3) γ to (15/2) ⁻ level.
2012 20 17	(12/2= 15/2=)		C	$I_{1/2}$: from $Ir(\alpha, xn\gamma)$ (1985Ko13).
2012.20 17	(15/2, 15/2) $(1/2^+, 3/2, 5/2^+)$		L D	J ^{**} : γ s to 11/2 and (17/2) levels. I^{π_1} even to (17/2) ⁺ and 5/2 ⁺ levels.
2014.72.23	(1/2, 3/2, 3/2) $(11/2 \text{ to } 15/2^{-})$		ь С	J. $\gamma = 00 (1/2)$ and $3/2 = 100018$. $I^{\pi} \cdot M1 + F2$ and (F2) $\gamma' = 0.011/2^{-1}$ and $(15/2)^{-1}$ levels
2037.47 7	$(11/2, 13/2)^{-}$		C	J^{π} : M1+E2 γ to 11/2 ⁻ , 13/2 ⁻ , (M1+E2) γ to 9/2 ⁻ 11/2 ⁻ level (E2) γ
			-	to $(15/2)^{-1}$.
2043.4 3	1/2,3/2,5/2		В	J ^{-195} Hg.

¹⁹³Au Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments			
2063.05 7	11/2-,13/2-,15/2-		С	J^{π} : M1+E2 γ to 11/2 ⁻ ,13/2 ⁻ level; log $f^{1u}t=6.3$ from 13/2 ⁺ ¹⁹³ Hg.			
2080.0 ^{<i>d</i>} 4	(25/2+)	2.51 ns 13	DEF	T _{1/2} : from Ir(α ,xn γ) (1985Ko13). J ^{π} : (E2) γ to (21/2) ⁺ level; member of γ cascade in (α ,xn γ).			
2087.3 [@] 4	$(21/2^{-})$		F	J^{π} : γ to $(19/2)^{-}$ level; band structure.			
2100.9 ^b 15	(19/2 ⁻)		Е	J^{π} : E2 to (15/2 ⁻); band structure.			
2104.44 15	$(11/2, 13/2)^{-}$		С	J^{π} : γ 's to $9/2^{-}$ and $(15/2)^{-}$ levels.			
2125.37 19	(11/2 ⁻)		С	J ^{π} : (E2) γ to (13/2) ⁻ level gives π =(-) and 9/2≤J≤17/2; log $f^{1u}t$ =6.9 from 13/2 ⁺ ¹⁹³ Hg rules out J=9/2 and 17/2; 1196 γ - 547 (E2) γ cascade to 5/2 ⁺ level rules out J=13/2 and 15/2 since 1196 γ , competing with the 1262 (E2) γ , in unlikely to be an M2 transition. Therefore J(this level)=11/2 and J(929 level)=9/2			
2130.40 12	$(11/2^{-} \text{ to } 15/2^{-})$		С	J^{π} : (E2) γ to $(13/2)^{-}$: log $t^{1u}t=6.3$ from $13/2^{+}$ level.			
2139.78 19	$(13/2^-, 15/2^-)$		C	J^{π} : (M1) γ to (15/2) ⁻ , γ to 9/2 ⁻ ,11/2 ⁻ level.			
2140.2 4	$(23/2^+)$		D F	J^{π} : D+Q γ to $(21/2)^+$; no decay to levels with J<21/2.			
2157.63 16	(11/2 ⁻)		C	J^{π} : strongest γ 's to $(15/2)^{-}$ and $(9/2)^{-}$ levels; the $643\gamma - 1132\gamma$ cascade to $5/2^{+}$ level.			
2159.03 9	$(11/2^{-} \text{ to } 15/2^{-})$		C	J ^{π} : (E2) γ to 11/2 ⁻ , 13/2 ⁻ level; (M1,E2) γ to (15/2) ⁻ ; log $f^{1u}t=6.4$ from 13/2 ⁺ ¹⁹³ Hg.			
2173.0 [#] 4	$(23/2^{-})$		DEF	J^{π} : (E2) γ to (19/2) ⁻ level: band structure.			
2196.88 20	$(11/2^-, 13/2, 15/2^-)$		С	J^{π} : γ 's to $11/2^{-}$ and $(15/2)^{-}$ levels.			
2201.73 9	$(11/2^{-})$		C	J^{π} : (E2) γ to (15/2) ⁻ level; γ to 7/2 ⁻ level.			
2205.94 22	$(11/2^{-})$		C	J^{π} : log $f^{1u}t=6.1$ from $13/2^{+195}$ Hg; γ to $7/2^{-1}$ level.			
2215.20 17	(13/2 ⁻ ,15/2 ⁻)		C	J^{n} : (M1) γ to (15/2) ⁻ level; γ to 11/2 ⁻ level; log $f^{au}t=5.9$ from $13/2^{+}$ ¹⁹³ Hg.			
2255.12 13	$(11/2^{-} \text{ to } 15/2^{-})$		C	J^{π} : (M1) γ to (13/2) ⁻ level.			
2279.39 17	(11/2 ⁻)		C	J^{n} : intense γ 's to $7/2^{-}$ and $(15/2)^{-}$ levels; (E2) γ to $(7/2,9/2,11/2)^{-}$ level.			
2285.28 16	$(11/2^+)$		C	J^{π} : log ft=6.8, log f ^{4u} t=5.2 from 13/2 ⁺ ¹⁹³ Hg; γ to (7/2 ⁺) level.			
2291.01 16	$(11/2^+)$		C _	J^{π} : log ft=6.5, log f ^{4u} t=5.6 from 13/2 ⁺ ¹⁹⁵ Hg; γ to (7/2 ⁺) level.			
2320.1 ^a 12	(21/2)		E	J^{*} : 611.3 γ E2 to (17/2). Band structure.			
2324.9 ^d 5	(29/2+)	<0.2 ns	F	$T_{1/2}$: Ir(α ,xn γ) (1985Ko13). J ^{π} : 2007Ok05 (¹¹ B,4n γ) assign 29/2 ⁺ based on 245.1 γ E2 to 25/2 ⁺ and 161 8 γ d from 31/2 ⁺ However, 1979Go15 (α xn γ)			
				assign $27/2^+$ hased on 244.9 γ (M1) to $25/2^+$ and 161.8 γ (E2)			
				from 31.2^+ . Note that Multipolarity assignments in 2007Ok05			
				were from R(DCO) and polarization measurements, while for			
				161.8 γ in 1979Go15 (M1) multipolarity from measured total			
				conversion coefficient and γ -ray angular distribution			
				measurements.			
2377.9" 4	$(27/2^{-})$	0.79 ns 8	DEF	$\mu \le 9.5 \ (2014 \ StZZ, 1985 \ Ko13)$			
				μ : From integral perturbed angular distribution.			
				$T_{1/2}$: from $Ir(\alpha xn\alpha)$ (1985Ko13)			
2176 6# 5	$(21/2^{-})$	2.52 m 18	FF	$u = 4.7, 21, (2014) \pm 77, 1005 \pm 12)$			
2470.0 5	(31/2)	5.52 118 10	Er	$\mu = 4.751 (20145)(222,1965)(2015)$ $I^{\pi_1} (F^2) \propto to (27/2^-)$ level: hand structure			
				$T_{1/2}$: from Ir(α ,xny) (1985Ko13).			
				μ : From integral perturbed angular distribution.			
2486.7 ^{&} 6	$(31/2^+)$	150 ns 50	EF	J^{π} : D γ to $(27/2^+)$; band structure.			
				$T_{1/2}$: from Ir(α ,xn γ) (1985Ko13).			
2701.1 [°] 6	(33/2 ⁻)	1.80 ns 9	EF	μ=2.3 19 (2014StZZ,1985Ko13)			

Continued on next page (footnotes at end of table)

¹⁹³Au Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				 J^π: 2007Ok05 (¹¹B,4nγ) assign 33/2⁻ based on 224.5γ M1+E2 to 31/2⁻. However, 1979Go15 (α,xnγ) assign 35/2⁻ based on 224.5γ as E2 to 31/2⁻. Note that Multipolarity assignments in 2007Ok05 were from R(DCO) and polarization measurements. In 1979Go15 Q multipolarity from γ-ray angular distribution measurements. T_{1/2}: from Ir(α,xnγ) (1985Ko13). μ: From integral perturbed angular distribution.
2923.4 ^{&} 7	$(35/2^+)$		EF	J^{π} : (E2) γ to (31/2 ⁺) level; band structure.
3155.1 ^c 7	(37/2 ⁻)	<0.5 ns	EF	J^{π} : (E2) γ to (33/2 ⁻) level; band structure. T _{1/2} : from Ir(α ,xn γ) (1985Ko13).
3441.9 ^{&} 7	$(39/2^+)$		EF	J^{π} : (E2) γ to (35/2 ⁺) level; band structure.
3896.1 [°] 7	$(41/2^{-})$		EF	J^{π} : (E2) γ to (37/2 ⁻) level; band structure.
4063.4 ^{&} 8	$(43/2^+)$		EF	J^{π} : (E2) γ to (39/2 ⁺) level, band structure.
4348.5 ^{&} 11	$(47/2^+)$		Е	J^{π} : 285.1 γ E2 to (43/2 ⁺), band structure.
4701.1 [°] 9	$(45/2^{-})$		E	J^{π} : 805.0 γ E2 to (41/2 ⁻), band structure.
5058.8 ^{&} 14	$(51/2^+)$		E	J^{π} : 710.3 γ E2 to (47/2 ⁺), band structure.
5231.8 [°] 13	$(49/2^{-})$		E	J^{π} : 530.7 γ E2 to (45/2 ⁻), band structure.
5741.6 ^{&} 17	$(55/2^+)$		Е	J^{π} : 682.8 γ E2 to (51/2 ⁺), band structure.

[†] From least-squares fit to $E\gamma$.

[‡] Band(A): g.s. band.

[#] Band(B): h11/2 decoupled band (favored sequence).

[@] Band(C): h11/2 decoupled band (unfavored sequence).

& Band(D): rotation-aligned band based on $31/2^+$ level.

^{*a*} Band(E): $h_{9/2}$ band, $\alpha = +1/2$.

^b Band(F): $h_{9/2}$ band, $\alpha = -1/2$.

^c Band(G): Band based on (33/2⁻). Continuation of $h_{11/2}$ band after band crossing. Second band crossing occurs at $\hbar\omega\approx 0.22$ MeV.

^{*d*} Band(H): Band based on $(21/2^+)$.

$\gamma(^{193}\mathrm{Au})$

$\underline{\mathrm{E}}_{i}(\mathrm{level})$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [†]	δ	α^{b}	Comments
38.234	$(1/2)^+$	38.23 [@] 2	100	0.0	3/2+	M1+E2	0.41 8	86 23	B(M1)(W.u.)=0.00098 17; B(E2)(W.u.)=46 12
224.80	$(3/2)^+$	186.56 [§] 3	100 [#] 10	38.234	$(1/2)^+$	M1+E2§	0.26 [§] 5	1.186 25	B(M1)(W.u.)>0.045; B(E2)(W.u.)>22
		224.81 [§] 4	5.0 [#] 10	0.0	$3/2^{+}$				
257.986	5/2+	219.75 [@] 3	5.7 3	38.234	(1/2)+	E2		0.273	B(E2)(W.u.)=14 7 I _{γ} : From ¹⁹³ Au IT decay (3.9 s). I _{γ} : I γ =4 from Ir(α ,xn γ) (1974Tj02).
		257.99 [@] 3	100 [#] 10	0.0	3/2+	M1+E2	-0.75 11	0.380 25	B(M1)(W.u.)=0.014 7; B(E2)(W.u.)=31 15 δ: From (p,2nγ).
290.20	11/2-	32.21 3	≈4.1	257.986	5/2+	E3		9.29×10 ⁴	 B(E3)(W.u.)≈0.042 E_γ: From ¹⁹³Hg ε decays (11.8 h). I_γ: Branching deduced using I(γ+ce) in ¹⁹³Au IT decay (3.9 s).
		289.8 [‡]	100	0.0	3/2+	[M4]		18.1	 I_γ: Branching deduced using I(γ+ce) in ¹⁹³Au IT decay (3.9 s). Yields B(M4)(W.u.)=26 <i>14</i>, note the value exceeds RUL=10 by 1 to 2 sigmas.
381.62	$5/2^{+}$	156.8 [#] 2	1 [#] 1	224.80	$(3/2)^+$				
		343.4 [#] 2	6 [#] 1	38.234	$(1/2)^+$				
		381.60 4	100 [#] 10	0.0	$3/2^{+}$	D+Q [#]	$-2.9^{\#} + 6 - 5$		δ: 1.2 +5-3 (¹⁹³ Hg ε decay (11.8 h)).
508.27	7/2-	126.56 10	2.0 6	381.62	$5/2^+$	(E1)		0.229	$B(E1)(W.u.)=5.3\times10^{-6}$ 17 B(E2)(W.u.)=46.4
538.99	$(7/2^+)$	157.40 10	2.5.5	290.20 381.62	$5/2^+$	E2 (E2)		0.280	B(E2)(w.u.)=40.4
	(.,_)	280.94 5	26 [#] 4	257.986	5/2 ⁺	D+Q [#]	$-0.06^{\#} 3$		I _γ : Others: 15 <i>12</i> (¹⁹³ Hg ε decay (11.8 h)), 45 from Ir(α ,xnγ) (1974Tj02).
		314.0 [#] 2	2 [#] 1	224.80	$(3/2)^+$				
		539.03 6	100 [#] 10	0.0	$3/2^{+}$	(E2)		0.0216	
687.43	$(7/2^+)$	148.5 [#] 3	1 [#] 1	538.99	$(7/2^+)$				
		305.9 [#] 2	9 [#] 1	381.62	$5/2^{+}$	D+Q [#]	$+0.44^{\#} + 22 - 19$		
		429.51 ^d 5	$100^{d\#} 10$	257.986	5/2+	D+Q [#]	$-0.19^{\#} + 2 - 3$		
		$462.6^{\#}_{\#}2$	13# 2	224.80	$(3/2)^+$	Q [#]			
(07.01	(15/2) =	687.5# 2	27# 1	0.0	$3/2^+$	F2		0.0422	
097.81 780.04	(15/2) $0/2^{-}$	407.034	100 2# 2	290.20 538.00	$\frac{11}{2}$	E2 [E1]#		0.0433	$P(E_1)(W_{11}) = 1.6 \times 10^{-7}$ 16
/ 09.94	9/2	231.0° 2 281.76 4	2^{-2} 2 20 [#] 1	508 27	$(1/2^{-1})$	[£1]" M1+E2	0.66 + 17 12	0.0412	$D(E1)(W.u.)=1.0\times10^{-5}$ 10 $P(M1)(W.u.)=8.0\times10^{-5}$ 15: $P(E2)(W.u.)=0.16.6$
		201.70 4 100 65 5	20 I $100^{\#} I0$	200.27	//2 11/2 ⁻	$M1 \downarrow E2$	0.00 + 17 - 12 0.8 A	0.51 5	$B(M1)(Wu) = 5.5 \times 10^{-5}$ 10 $B(E2)(Wu) = 0.100$ $B(M1)(Wu) = 5.5 \times 10^{-5}$ 10 $B(E2)(Wu) = 0.002$
808 57	$(9/2)^+$		3 [#] 1	538.00	$(7/2^+)$	$D \pm 0^{\#}$	$-0.13^{\#}$ 5	0.002 15	E_1 (w.u.)= 0.095 E.: Average of 269.2.3 (α yny) and 269.6.2
000.57	()/2)	209.7 2	5 1	550.99	$(\eta 2)$	ע⊤ע	0.15 5		$(p,2n\gamma)$.

 $^{193}_{79}\mathrm{Au}_{114}$ -6

151

γ ⁽¹⁹³Au) (continued)</sup>

E _i (level)	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ	α ^b	Comments
808.57	$(9/2)^+$	427.0 [#] 2	3 [#] 1	381.62	$5/2^{+}$				
		550.63 6	100 [#] 10	257.986	$5/2^+$	Q			
828.00	$3/2^{+}$	446.4 [#] 2	52 [#] 9	381.62	5/2+	D+Q [#]	-0.30 [#] 7		
		603.2 [#] 3	100 [#] 10	224.80	(3/2)+	D+Q [#]	+0.50 [#] +36-28		δ: Angular correlation analysis did yield a distinct value (2014Th02 – (p,2nγ)).
		789.7 [#] 2	54 [#] 4	38.234	$(1/2)^+$	(M1) [§]		0.0258	E _γ : 789.21 21 in ¹⁹³ Hg ε decay (3.80 h) is a doublet (2014Th02).
		828.0 [#] 2	81 [#] 23	0.0	3/2+	(E2) [§]		0.00840	E_{γ} : 827.81 20 in ¹⁹³ Hg ε decay (3.80 h) is a doublet (2014Th02).
863.36	$(13/2)^{-}$	165.53 4	0.28 7	697.81	$(15/2)^{-}$	M1		1.728	
		573.25 6	100 10	290.20	$11/2^{-}$	M1+E2	+0.36 & 7	0.0545 19	
890.80	9/2-	382.47 4	100 21	508.27	$7/2^{-}$	M1	14.64	0.1723	$\mathbf{L} = \mathbf{L} = \mathbf{L} \left(\mathbf{L} \right) \left$
020.00	$(0/2^{+})$	600.65 0	100 11	290.20	$\frac{11}{2}$	M1+E2 $D \cdot O^{\#}$	1.4 + 0 - 4	0.029 6	I_{γ} : $I_{\gamma}=18$ from Ir(α , xn γ) (19/41j02).
929.09	(9/2.)	241.704	40.9	687.43	$(1/2^{+})$	D+Q"	-0.12" 5		
		590.1° 5	$29^{-1} 2$	201.62	$(1/2^{+})$	D" (E2)		0.0208	
		347.450	$100^{-1} 10$	200.20	$\frac{3}{2}$	(E2)		0.0208	
082 50	$(7/2^{+})$	$155.6^{\#}$	2^{+}	290.20	11/2 2/2 ⁺				
965.59	(7/2)	133.0 4	$\frac{2}{10^{\#}}$	828.00 528.00	$\frac{3}{2}$				
		444.0 4	10 4 $100^{\#} 10$	257.096	(1/2)	D+0 [#]	+2.54# +30.25		
		723.0 2	$56^{\#}$ /	227.980	$(3/2)^+$	0 [#]	+2.34 +30-23		
1085 35	$(7/2^{+})$	$205 4^{\#} 3$	$100^{\#}$ 10	224.00 780 04	(3/2) $0/2^{-}$	Q			
1005.55	(1/2)	577 1 [#] 2	$23^{\#}$	508.27	7/2 7/2				
		$703.7^{\#} 2$	37 [#] 4	381.62	5/2 ⁺	D+Q [#]	+0.36 [#] +21-19		δ: Value listed in parentheses (2014Th02 -
		827.5 [#] 3	40 [#] 5	257.986	5/2+	D+Q [#]	+0.48 [#] 16		δ : Value listed in parentheses (2014Th02 - (p.2n γ)).
		860.5 [#] 3	63 [#] 8	224.80	$(3/2)^+$				
1089.34		580.97 [§] 8	100	508.27	7/2-				
1105.92	$(7/2^+)$	277.9 [#] 2	20 [#] 4	828.00	3/2+				
	,	567.1 [#] 3	59 [#] 12	538.99	$(7/2^+)$	D+Q [#]	$+0.32^{\#}+22-19$		
		724.3 [#] 2	100 [#] 10	381.62	5/2+	D+Q [#]	+0.40 [#] 11		
		847.8 [#] 3	35 [#] 7	257.986	5/2+	D+Q [#]	+0.28 [#] 5		
1106.4	$(11/2^{-})$	316.5 ^{<i>a</i>} 5	100	789.94	9/2-	$M1+E2^{a}$		0.19 10	
1118.97	$(3/2)^+$	861.11 [§] <i>17</i>	100 [§] 17	257.986	5/2+	M1+E2 [#]	+1.33 [#] 40	0.0124 23	
		1080.7 [§] 3	29 [§] 4	38.234	$(1/2)^+$				

152

NUCLEAR DATA SHEETS

 $^{193}_{79}\mathrm{Au}_{114}$ -7

$\gamma(^{193}\text{Au})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	δ	α^b	Comments
1118.97	(3/2)+	1118.84 [§] <i>17</i>	64 [§] 9	0.0	3/2+				Mult.: (E2) in ¹⁹³ Hg ε decay (3.80 h). Spin parity implies (M1+E2).
1131.84 1153.53	9/2 ⁻ ,11/2 ⁻ (11/2 ⁺)	341.91 <i>4</i> 345.00 <i>4</i>	100 91 <i>39</i>	789.94 808.57	9/2 ⁻ (9/2) ⁺	M1+E2 D	0.9 3	0.16 <i>3</i>	Mult.: From (p,2n γ), in band transition. α (K)exp= 0.052 33 (¹⁹³ Hg ε decay (11.8 h) indicates dominant F2 (>90%)
		614.32 10	100 <i>16</i>	538.99	(7/2+)	Q			Mult.: From (p,2n γ). α (K)exp=0.021 5 (¹⁹³ Hg ε decay (11.8 h)) indicates M1+E2 with δ =1.5 4.
1194.31	(13/2 ⁻)	404.36 5	100	789.94	9/2-	(E2)		0.0442	E_{γ} : Other value: 406.9 keV 9 (¹¹ B,4n γ).
1284.81	9/2 ⁻ ,11/2 ⁻	394.00 <i>4</i> 776.57 20	100 12 26 11	890.80 508.27	9/2 ⁻ 7/2 ⁻	M1+E2	0.75 22	0.119 16	
		994.61 15	61 7	290.20	$11/2^{-}$	E2		0.00581	
1297.41	$(3/2^{-} \text{ to } 11/2^{-})$	207.7 [#] 3	19 [#] 4	1089.34					
		789.1 [#] 2	$100^{\#} 10^{\#}$	508.27	7/2-				
1300.39	$(3/2 \text{ to } 11/2^+)$	$215.1^{\#}_{\#}$ 3	$100^{#}_{\#} 10$	1085.35	$(7/2^+)$				
	in the last	612.9# 3	13# 5	687.43	$(7/2^+)$	#	#		
1330.90	$(9/2^{+})$	347.3 [#] 3	$100^{m} 10$	983.59	$(7/2^+)$	D+Q [#]	$-0.45^{#}$ 24		
		$401.8^{\#}$ 3	95# 19	929.09	$(9/2^+)$				
		522.3" 3	53" 11 00 [#] 10	808.57	$(9/2)^{+}$				
		643.5" 3	89" 18 28# 6	687.43	$(1/2^{+})$				
13/3 60	$(1/2^+$ to $0/2^+)$	949.5^{*} 5	$28^{\circ} 0$ $10^{\#} 6$	381.62	5/2+				
1545.09	(1/2 10 9/2)	$1085 7^{\#} 2$	19^{-0}	257.086	5/2				
1355.32	$(11/2 \text{ to } 15/2^{-})$	657.62 15	100 10	697.81	$(15/2)^{-}$	(E2)		0.01370	
1372.94	(17/2)-	675.17 <i>12</i>	100	697.81	$(15/2)^{-}$	M1+E2	1.5 +10-5	0.021 5	
1379.93	$(11/2^+)$	571.3 [#] 2	100 [#] 10	808.57	$(9/2)^+$	$D^{\#}$			
		692.54 <i>12</i>	98 [#] 20	687.43	$(7/2^+)$	(E2)		0.01224	
1200 51	(12/2)-	840.9 3	77# 15	538.99	$(7/2^+)$	M1 - F0	12.04	0.040.10	
1398.51	(13/2)	535.15 5 608 70 10	100 20	863.36 789.94	(13/2) $9/2^{-}$	M1+E2 (E2)	1.3 +8-4	0.040 10	
		700.88 12	15 3	697.81	$(15/2)^{-}$	(M1+E2)	1.1 +10-5	0.0224 66	
1400.39	$11/2^{-}$	509.43 6	37 18	890.80	9/2-	M1+E2	1.4 +8-4	0.044 10	
		537.08 5	100 13	863.36	$(13/2)^{-11/2^{-1}}$	M1+E2	0.8 + 6 - 5	0.051 15	
1412.02	$(0/2^{-})$	$1109.80^{\circ} I/$	32.3	290.20 687.42	$\frac{11}{2}$				
1415.05	$(\frac{9}{2})$ $(\frac{5}{2}+\frac{7}{2})$	123.00^{-13}	50 [#] 10	082 50	$(7/2^{+})$				
1417.99	(3/2, 7/2)	434.4 3 188.0 [#] 3	50 12 $64^{\#} 13$	903.39	(1/2) $(0/2^+)$				
		-100.9 J	04 15	242.09	(2/2)				

153

γ ⁽¹⁹³Au) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ	$\alpha^{\boldsymbol{b}}$	Comments
1417.99	$(5/2^+, 7/2^+)$	590.0 [#] 3	67 [#] 17	828.00	3/2+				
		609.3 [#] 3	32 [#] 6	808.57	$(9/2)^+$				
		879.1 [#] 3	100 [#] 10	538.99	$(7/2^+)$				
1419.13	$(19/2)^{-}$	721.3 [#] 3	100	697.81	$(15/2)^{-}$	E2 ^{&}		0.01122	
1433.49	$(11/2^+, 13/2^+)$	624.91 10	100	808.57	$(9/2)^+$	(E2)		0.01535	
1455.19	(11/2 to 15/2 ⁻)	591.72 8	80 23	863.36	$(13/2)^{-}$	M1+E2	1.0 7	0.036 16	
		757.63 20	$100\ 20$	697.81	(15/2)-	(E2)		0.01010	
1463.10		$572.3^{#}$ 3	100 [#] 10	890.80	9/2-				
		$635.1^{#}_{#}3$	21# 5	828.00	3/2+				7
1476.98	$(13/2^+)$	668.4" 2	100	808.57	$(9/2)^+$	F 1		0.00474	E_{γ} : Other: 669.8 in (⁷ Li,6n γ).
14/7.18	(1/2,9/2,11/2)	668.48 <i>12</i> 364 47 4	100	808.57	(9/2)'	EI M1+E2	12 + 5 1	0.00474	
1490.30	(9/2)	706.30 12	39 7	789.94	$9/2^{-}$,11/2 $9/2^{-}$	(E2)	1.5 +5-4	0.01173	
		957.42 ^e 25	13 3	538.99	$(7/2^+)$	(E1)		0.00239	
		1205.3 6	1.3 5	290.20	11/2-				
1514.20	$(7/2^{-})$	1132.50 20	100	381.62	5/2+	E0 (1		0.0410.7	
1521.9	(15/2)	415.5^{4} 9	100	1106.4	(11/2)	E2 ^a		0.0412 /	
1526.9	$(9/2, 7/2^+)$	987.9 [#] 3	100	538.99	$(1/2^{+})$				
1572.29	$(9/2^{-},11/2,13/2^{+})$	274.4'' 3	100'' 10	1297.41	$(3/2^{-} \text{ to } 11/2^{-})$				
		482.1" 3	17/11/3	1089.34	$(0/2^{+})$				
1575.62	$11/2^{-}.13/2^{-}$	290.75.5	40.8	1284.81	$9/2^{-}.11/2^{-}$	M1		0.362	
1070102	11/2 ,10/2	444.0 4	3.5 10	1131.84	9/2-,11/2-			0.002	
		684.77 12	29 8	890.80	9/2-	(E2)		0.01254	
		712.15 12	17 3	863.36	$(13/2)^{-}$	M1+E2	1.3 5	0.0198 53	
		8/7.76 17	100 13 29 4	290.20	(15/2) $11/2^{-1}$	E2 M1+F2	137	0.00746	
1578.01	$(5/2 \ 7/2)^+$	472 1# 2	$100^{\#}$ 10	1105.92	$(7/2^+)$	11111122	1.5 /	0.0050 15	
1570.01	(3/2,7/2)	$750.0^{\#}2$	$17^{\#} 6$	828.00	3/2+				
1598.6		$404.3^{\#}.3$	100#	1194 31	$(13/2^{-})$				
1603.15	$(3/2^{-} 5/2^{+})$	1094 5 [§] 4	94 [§] 28	508.27	$(13/2)^{-}$				
1005.15	(3/2 ,3/2)	1221 18 5	46 [§] 14	381.62	5/2 ⁺				
		1378 58 4	100 \$ 29	224.80	$(3/2)^+$				
		$1565.0^{\$}$ 6	198 10	38 234	$(1/2)^+$				
		1603 4 ^C ⁸ 3	350 ^C [§] 70	0.254	3/2+				
1630.25	11/2-,13/2-	274.95 7	0.56 14	1355.32	$(11/2 \text{ to } 15/2^{-})$	(M1+E2)	1.2 +8-5	0.251 76	
	, , - ,	345.46 4	8.6 9	1284.81	9/2-,11/2-	M1+E2	0.24 3	0.218 4	
		739.47 17	1.3 8	890.80	9/2-	(E2,M1)		0.021 10	

154

 $^{193}_{79}\mathrm{Au}_{114}\text{-}9$

 $^{193}_{79}\mathrm{Au}_{114}\text{-}9$

NUCLEAR DATA SHEETS

$\gamma(^{193}\text{Au})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. †	δ	α^{b}
1630.25	11/2-,13/2-	766.97 20	3.1 6	863.36	(13/2) ⁻	(E2)		0.00985
		932.37 15	100 10	697.81	$(15/2)^{-}$	(E2)		0.00660
1654.69	$(9/2^{-}, 11/2, 13/2^{+})$	725.60 ^d 15	100^d	929.09	$(9/2^+)$			
1658.0	$1/2^{(+)}$ to $5/2^{(+)}$	1276.38 [§] 25		381.62	5/2+	(E2) [§]		0.00360
1678.79		695.2 [#] 2	100 [#] 10	983.59	$(7/2^+)$			
		870.2 [#] 3	68 [#] 18	808.57	$(9/2)^+$			
1680.35	$(11/2^{-}, 13/2^{-})$	790.6 4	23 10	890.80	9/2-			
		816.81 20	100 17	863.36	$(13/2)^{-}$	(E2)		0.00864
		982.2 4	17 6	697.81	$(15/2)^{-}$			
1684.74	$(9/2^{-} \text{ to } 13/2^{-})$	895.0 <i>5</i>	1.8 6	789.94	9/2-			
		1394.50 20	100 15	290.20	$11/2^{-}$	(E2)		0.00307
1708.8	$(17/2^{-})$	514.5 ^{<i>a</i>} 9	100	1194.31	$(13/2^{-})$	$E2^{\prime\prime}$		0.0241
1733.44	$(15/2^{-})$	360.51 5	14 4	1372.94	$(17/2)^{-}$	(M1+E2)	0.9 + 6 - 4	0.139 35
		870.05 17	100 14	863.36	$(13/2)^{-}$	(E2)		0.00759
		1035.54 17	62 10	697.81	(15/2)	(E2)		0.00537
1745.1		1236.8# 3	100	508.27	7/2-			
17/6.04	$11/2^{-1}$	200.30 7	11.6	1575.62	$11/2^{-}, 13/2^{-}$			
		491.3 4	11.6	1284.81	9/2 ,11/2			
		885.3 4	1.2 22	890.80	9/2	E2		0.00690
		913.00 13	26.11	803.30 780.04	(13/2) $0/2^{-}$	E2		0.00689
		965.94	5.0 <i>11</i> 10.3	709.94 508.27	9/2 7/2-	(E2)		0.00365
		1486 10 25	94 11	290.27	$\frac{11}{2}$	(E2)		0.00305
1794 92	$(13/2^{-})$	421.8.4	100 25	1372.94	$(17/2)^{-}$	(12)		0.00270
1791192	(13/2)	1004.6 6	58 18	789.94	9/2-			
		1097.15 15	58 15	697.81	$(15/2)^{-}$			
1815.1	$(1/2, 3/2, 5/2^+)$	1776.4 [§] 4	32 [§] 8	38.234	$(1/2)^+$			
		1815.6 [§] 4	100 [§] 24	0.0	$3/2^{+}$			
1815.41	$(9/2^{-}, 11/2^{-}, 13/2^{-})$	952.0 4	9.3	863.36	$(13/2)^{-}$			
	(,,_ ,,_ ,,_)	1026.0 6	2.3 9	789.94	9/2-			
		1525.1 <i>3</i>	100 14	290.20	$11/2^{-}$	(E2)		0.00265
1829.91	$(11/2^{-}, 13/2^{-})$	429.51 ^d 5	37 ^d 19	1400.39	$11/2^{-}$			
		431.46 5	21 6	1398.51	$(13/2)^{-}$	(M1)		0.1249
		545.05 6	100 22	1284.81	9/2-,11/2-	(E2)		0.0210
		939.1 4	18 5	890.80	9/2-			
		966.1 <i>4</i>	14 5	863.36	$(13/2)^{-}$			
		1539.0 5	21 5	290.20	$11/2^{-}$			
1861.91	$(1/2^+, 3/2, 5/2^+)$	1603.4 ^{°§} 3	143 ^{<i>c</i>§} 28	257.986	5/2+			
		1824.3 [§] 4	36 [§] 11	38.234	$(1/2)^+$			

 $^{193}_{79}\mathrm{Au}_{114}\text{--}10$

 γ ⁽¹⁹³Au) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	δ	α ^b	Comments
1861.91 1869.28	$\frac{(1/2^+, 3/2, 5/2^+)}{(11/2^- \text{ to } 15/2^-)}$	1862.2 [§] 4 1171.50 <i>17</i> 1578.9 4 1013 3 4	$ \begin{array}{r} 100^{\$} 19 \\ 100 22 \\ 5.3 15 \\ 50 13 \end{array} $	0.0 697.81 290.20 863.36	$3/2^+$ (15/2) ⁻ 11/2 ⁻ (13/2) ⁻	(E2)		0.00423	
1870.29	(11/2 ,13/2)	1013.3 4 1085.7 6 1178.60 20 1585.5 4	18 7 100 23 57 13	789.94 697.81 290.20	$(15/2)^{-}$ $9/2^{-}$ $(15/2)^{-}$ $11/2^{-}$	(E2)		0.00418	
1915.20	(11/2 ⁻ to 15/2 ⁻)	1052.00 20 1217.7 5 1624.5 3	100 <i>17</i> 3.0 <i>9</i> 54 8	863.36 697.81 290.20	$(13/2)^-$ $(15/2)^-$ $11/2^-$	(E2)		0.00520	
1930.03	11/2 ⁻ ,13/2 ⁻	299.82 <i>4</i> 354.5 <i>5</i> 529.51 7	18 <i>3</i> 2.6 <i>12</i> 35 <i>20</i>	1630.25 1575.62 1400.39	11/2 ⁻ ,13/2 ⁻ 11/2 ⁻ ,13/2 ⁻ 11/2 ⁻	M1 (E2)		0.333 0.0225	
		645.23 <i>12</i> 1040.5 <i>3</i> 1066.0 <i>6</i> 1130.5 5	8.2 23 <10 1.4 5 2.9 0	1284.81 890.80 863.36 789.94	9/2 ⁻ ,11/2 ⁻ 9/2 ⁻ (13/2) ⁻ 9/2 ⁻	(E2)		0.01429	
		1232.20 <i>20</i> 1639 <i>4 3</i>	68 9 100 15	697.81	$(15/2)^{-}$ $(11/2)^{-}$	E2		0.00385	
1939.20	(11/2,13/2)-	654.51 <i>15</i> 1048.5 <i>4</i>	3.8 <i>11</i> 1.8 <i>6</i>	1284.81 890.80	9/2 ⁻ ,11/2 ⁻ 9/2 ⁻	(E2)		0.01385	
		1075.90 25 1241.30 20 1648.5 3	14.6 <i>21</i> 100 <i>9</i> 46 <i>7</i>	863.36 697.81 290.20	$(13/2)^-$ $(15/2)^-$ $11/2^-$	(E2) E2		0.00498 0.00379	
1947.10	(21/2)+	528.0 ^{&} 3	100& 7	1419.13	(19/2)-	E1&		0.00765	B(E1)(W.u.)= 1.04×10^{-7} 13 E _{γ} : Weighted average of 527.9 3 (α ,xn γ) and 528.4 5 (11 B,4n γ).
2012.20	(13/2 ⁻ ,15/2 ⁻)	$1249.3^{\&} 3$ $639.0^{d} 4$ $1149.3 6$ $1314.51^{d} 20$	$26^{\& 3} \\ 35^{d} 18 \\ 6 2 \\ 100^{d} 38 \\ 2 3100^{d} 38 \\ 3 $	697.81 1372.94 863.36 697.81	$(15/2)^{-}$ $(17/2)^{-}$ $(13/2)^{-}$ $(15/2)^{-}$	(E3) ^{&}		0.00799	B(E3)(W.u.)=2.3 4
2014.72	(1/2+,3/2,5/2+)	1721.3 5 1756.7 [§] 5 1976.6 [§] 4	3.8 11 $18^{\$} 6$ $100^{\$} 24$	290.20 257.986 38.234	$11/2^{-}$ $5/2^{+}$ $(1/2)^{+}$				
2023.47	(11/2 to 15/2 ⁻)	2014.6 [§] 4 623.10 <i>10</i> 738.60 ^e <i>17</i> 1160.18 <i>20</i>	3.2 [§] 8 12 3 10 6 17.6 25	0.0 1400.39 1284.81 863.36	3/2 ⁺ 11/2 ⁻ 9/2 ⁻ ,11/2 ⁻ (13/2) ⁻	M1+E2 (E2)	1.0 9	0.032 <i>16</i> 0.00431	
2037.47	(11/2,13/2)-	1325.50 <i>20</i> 461.83 <i>6</i>	100 <i>12</i> 40 <i>6</i>	697.81 1575.62	(15/2) ⁻ 11/2 ⁻ ,13/2 ⁻	(E2) M1+E2	0.9 6	0.00336 0.072 <i>27</i>	

156

 $^{193}_{79}\mathrm{Au}_{114}\text{--}11$

$\gamma(^{193}\text{Au})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. †	δ	α^{b}	Comments
2037.47	$(11/2, 13/2)^{-}$	560.0 4	94	1477.18	$(7/2,9/2,11/2)^{-}$				
		639.0 ^d 4 752.70 15 883.6 4	11 ^d 4 11.7 23 3.4 11	1398.51 1284.81 1153.53	$(13/2)^{-}$ 9/2 ⁻ ,11/2 ⁻ $(11/2^{+})$	(M1+E2)	0.9 7	0.0207 78	
		1147.20 <i>20</i> 1174.00 <i>17</i> 1339.60 <i>20</i>	6.4 <i>13</i> 53 8 100 <i>13</i>	890.80 863.36 697.81	9/2 ⁻ (13/2) ⁻ (15/2) ⁻	(E2) (E2) (E2)		0.00440 0.00421 0.00330	
2043.4	1/2,3/2,5/2	953.7 [§] 4	100 [§] 29	1089.34	7 (0)				
2063.05	11/2 ⁻ ,13/2 ⁻ ,15/2 ⁻	1662.18 <i>4</i> 330.0 <i>5</i> 487.41 <i>6</i> 662.73 <i>12</i>	628 16 1.9 6 25 5 18 5	381.62 1733.44 1575.62 1400.39	5/2 ⁺ (15/2 ⁻) 11/2 ⁻ ,13/2 ⁻ 11/2 ⁻	M1+E2	1.1 3	0.056 10	
		778.37 20 1199.5 3 1365.10 22	13 7 2.7 8 100 <i>13</i>	1284.81 863.36 697.81	9/2 ⁻ ,11/2 ⁻ (13/2) ⁻ (15/2) ⁻	(M1,E2) (M1) (E2)		0.0182 <i>87</i> 0.00892 0.00319	
2080.0	$(25/2^+)$	132.9 ^{&} 3	100	1947.10	$(21/2)^+$	E2 ^{&}		1.66 3	B(E2)(W.u.)=30.9 17
2087.3	$(21/2^{-})$	668.2 ^{&} 3		1419.13	(19/2)-	~			
2100.9	$(19/2^{-})$	578.5 ^{de} 9	100	1521.9	$(15/2^{-})$	$E2^{a}$		0.0183	
2104.44	$(11/2, 13/2)^{-}$	1314.51 ^{<i>a</i>} 20	36 ^{<i>a</i>} 14	789.94	$9/2^{-}$			0.0045.15	
2125.37	(11/2 ⁻)	1406.60 <i>20</i> 295.4 <i>4</i> 1196.4 <i>3</i>	100 <i>14</i> 13 <i>5</i> 53 <i>12</i>	697.81 1829.91 929.09	(15/2) $(11/2^-, 13/2^-)$ $(9/2^+)$	(M1,E2)		0.0045 15	
2120.40	$(11/2^{-} + 15/2^{-})$	1261.9 3	100 25	863.36	$(13/2)^{-}$	(E2)		0.00368	
2130.40	$(11/2 \ 10 \ 13/2)$	1432.40.20	52 0 100 15	697.81	$(15/2)^{-}$	(E2) (E2 M1)		0.01087	
2139.78	(13/2 ⁻ ,15/2 ⁻)	1007.8 <i>4</i> 1442.00 <i>20</i>	36 9 100 21	1131.84 697.81	$9/2^{-},11/2^{-}$ (15/2) ⁻	(M1)		0.00569	
2140.2	$(23/2^+)$	193.1 ^{&} 3	100	1947.10	$(21/2)^+$	D+Q ^{&}			
2157.63	(11/2 ⁻)	643.41 ^{<i>d</i>} 12 661.7 4 963.1 6 1294.3 4 1459 8 4	$26^{d} 10 \\ 42 13 \\ 5.8 24 \\ 17 5 \\ 100 30$	1514.20 1496.30 1194.31 863.36 697.81	$(7/2^{-})$ $(9/2)^{-}$ $(13/2^{-})$ $(13/2)^{-}$ $(15/2)^{-}$				
2159.03	(11/2 ⁻ to 15/2 ⁻)	583.32 8 1461.60 20 1869.2 3	27 8 100 <i>30</i> 41 <i>11</i>	1575.62 697.81 290.20	$(15/2)^{-}$ $(11/2^{-}, 13/2^{-})^{-}$ $(15/2)^{-}$ $11/2^{-}$	(E2) (M1,E2)		0.0179 0.0042 <i>14</i>	
2173.0 2196.88	(23/2 ⁻) (11/2 ⁻ ,13/2,15/2 ⁻)	753.8 ^{&} 3 798.39 25 1499.2 4 1906.4 5	100 30 <i>13</i> 100 26 23 8	1419.13 1398.51 697.81 290.20	(19/2) ⁻ (13/2) ⁻ (15/2) ⁻ 11/2 ⁻	(E2) ^{&}		0.01021	

 $^{193}_{79}\mathrm{Au}_{114}\text{-}12$

 γ ⁽¹⁹³Au) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{b}	Comments
2201.73	(11/2-)	626.22 10	13 4	1575.62	11/2-,13/2-	(M1)	0.0469	
		746.11 20	93	1455.19	$(11/2 \text{ to } 15/2^{-})$			
		803.22 25	3.8 15	1398.51	$(13/2)^{-}$	(M1)	0.0247	
		1070.0 0	1.4 /	607.81	9/2, 11/2 (15/2) ⁻	(F2)	0.00271	
		1693.4.6	239	508.27	(13/2) $7/2^{-}$	(L2)	0.00271	
2205.94	$(11/2^{-})$	1697.0.3	25.6	508.27	7/2-			
	(11/2)	1916.4 3	100 21	290.20	$\frac{1}{12^{-1}}$			
2215.20	$(13/2^{-}, 15/2^{-})$	1351.52 25	50 15	863.36	$(13/2)^{-}$	(E2,M1)	0.0049 17	
		1517.50 25	100 15	697.81	$(15/2)^{-}$	(M1)	0.00505	
		1925.5 4	38 11	290.20	11/2-			
2255.12	$(11/2^{-} \text{ to } 15/2^{-})$	854.80 25	49 <i>16</i>	1400.39	$11/2^{-}$			
		970.0 4	19 <i>3</i>	1284.81	9/2-,11/2-			
		1123.2 <i>3</i>	20 9	1131.84	9/2-,11/2-			
		1392.00 20	100 18	863.36	$(13/2)^{-}$	(M1)	0.00619	
		1556.9 <i>3</i>	93 16	697.81	$(15/2)^{-}$			
2279.39	$(11/2^{-})$	801.73 25	58 15	1477.18	$(7/2, 9/2, 11/2)^{-}$	(E2)	0.00898	
		900.4 6	73	1379.93	$(11/2^+)$			
		1581.9 3	100 21	697.81	$(15/2)^{-}$			
		1//1.6 4	42 12	508.27	1/2			
2295 29	$(11/2^{+})$	1988.0 0	1.2 0	290.20	$\frac{11}{2}$			
2285.28	$(11/2^{+})$	808.3 0	5.5 15 5 2 21	14//.18	(1/2,9/2,11/2)			
		905.1 5	3.2 21	808 57	(11/2) $(9/2)^+$			
		1746 3 3	88 18	538.00	(7/2)			
2291.01	$(11/2^+)$	1137 80 25	29.9	1153 53	$(11/2^+)$			
22/1.01	(11/2)	1400.0 3	41 12	890.80	9/2-			
		1481.6 4	100 26	808.57	$(9/2)^+$			
		1752.2 3	41 12	538.99	$(7/2^+)$			
2320.1	$(21/2^{-})$	611.3 ^a 8	100	1708.8	(17/2 ⁻)	E2 ^a	0.01613	
2324.9	$(29/2^+)$	244.9 ^{&} 3	100	2080.0	$(25/2^+)$	(E2)	0.191	B(E2)(W.u.)>40
						_		Mult.: From $(^{11}B, 4n\gamma)$. Other (M1) in $(\alpha, xn\gamma)$.
2377.9	$(27/2^{-})$	204.9 ^{&} 3	100 ^{&} 12	2173.0	$(23/2^{-})$	(E2) ^{&}	0.345	B(E2)(W.u.)=17 4
		298.0 ^{&} 3	41 ^{&} 12	2080.0	$(25/2^+)$	(E1) ^{<i>a</i>}	0.0273	$B(E1)(W.u.)=2.2\times10^{-6} 8$
								E_{γ} : Other value: 297.2 8 (α ,4xn γ).
2476.6	(31/2 ⁻)	98.7 ^{&} 3	100	2377.9	$(27/2^{-})$	(E2) ^{&}	5.50 11	B(E2)(W.u.)=39.9 23
2486.7	$(31/2^+)$	161.8 ^{&} 3	100	2324.9	$(29/2^+)$	D		Mult.: From (¹¹ B,4n γ). Other (E2) in ($\alpha xn\gamma$).
2701.1	$(33/2^{-})$	224.5 ^{&} 3	100	2476.6	$(31/2^{-})$	(E2) ^{&}	0.254	B(E2)(W.u.)=6.6 4
2923.4	$(35/2^+)$	436.7 <mark>&</mark> 3	100	2486.7	$(31/2^+)$	(E2) ^{&}	0.0362	
3155.1	$(37/2^{-})$	$454.0^{\&}$ 3	100	2701.1	$(33/2^{-})$	$(E2)^{\&}$	0.0328	$B(E_2)(W_{11}) > 0.85$
5155.1	(37/2)	151.0 5	100	2701.1	(33/2)	(12)	0.0520	B(B2)(11.0.)× 0.05

158

$\gamma(^{193}\text{Au})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α ^b
3441.9	$(39/2^+)$	518.5 ^{&} 3	100	2923.4 (35/2+)	(E2) ^{&}	0.0237
3896.1	$(41/2^{-})$	741.0 ^{&} 3	100	3155.1 (37/2-)	(E2) ^{&}	0.01059
4063.4	$(43/2^+)$	621.5 ^{&} 3	100	3441.9 (39/2+)	(E2) ^{&}	0.01554
4348.5	$(47/2^+)$	285.1 ^a 7	100	4063.4 (43/2 ⁺)	$E2^{a}$	0.1192 19
4701.1	$(45/2^{-})$	805.0 ^a 5	100	3896.1 (41/2 ⁻)	$E2^{a}$	0.00890
5058.8	$(51/2^+)$	710.3 ^a 9	100	4348.5 (47/2 ⁺)	$E2^{a}$	0.01159
5231.8	$(49/2^{-})$	530.7 ^a 9	100	4701.1 (45/2-)	$E2^{a}$	0.0224
5741.6	$(55/2^+)$	682.8 ^{<i>a</i>} 9	100	5058.8 (51/2+)	$E2^{a}$	0.01262

 † From $^{193}{\rm Hg}~\varepsilon$ decay (11.8 h), unless otherwise noted. ‡ From $^{193}{\rm Au}$ IT decay (3.9 s).

§ From ¹⁹³Hg ε decay (3.80 h).

[&] From $Ir(\alpha, xn\gamma)$.

^(a) From Ir(α ,xn γ). ^(a) Weighted average of measurements from 1970Fo08 (¹⁹³Au IT decay) and 1974ViZS (¹⁹³Hg decays).

[#] From $(p, 2n\gamma)$.

^{*a*} From (¹¹B,4n γ).

159

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

2324.9

2080.0

1947.10

¹⁹³Au IT decay (3.9 s) 1970Fo08

Parent: ¹⁹³Au: E=290.20 3; $J^{\pi}=11/2^{-}$; $T_{1/2}=3.9$ s 3; %IT decay=99.97

¹⁹³Au-%IT decay: 99.97% from I(γ +ce)(258.0 γ (M1) in ¹⁹³Au): I(γ +ce)(135.5 γ (M4) in ¹⁹³Pt)=1000:0.3 (1955Br41). Ratio deduced from ce-intensities and theoretical conversion coefficients (not given).

1970Fo08: activity from ¹⁹³Hg ε (3.80 h) + ¹⁹³Hg (11.8 h) decay (produced by spallation of Pb by 600-MeV protons, ms). Measured E γ , I γ (Ge(Li)), E(ce), Ice (mag spect), γ (ce), (ce)(ce)t.

Others: 1974ViZS, 1958Br88, 1955Br12, 1955Br41, 1955Fi30, 1954Gi04, 1952Fi06.

¹⁹³Au Levels

The decay scheme is that proposed by 1970Fo08.

$E(level)^{\dagger}$	$J^{\pi^{\dagger}}$	T _{1/2} †	Comments
0.0	3/2+	17.65 h 15	
38.23 2	$(1/2)^+$	3.81 ns 18	
257.98 2	$5/2^{+}$	45 ps 20	$T_{1/2}$: from (ce(L)(32.21 γ))(ce(K)(257.95 γ)t) (1970Fo08).
290.20 <i>3</i>	$11/2^{-}$	3.9 s <i>3</i>	%1T=99.97
			$T_{1/2}$: from 1955Fi30. Other: 3.8 s 3 (1955Br41).

[†] From Adopted Levels, unless otherwise noted.

 $\gamma(^{193}\mathrm{Au})$

I γ normalization: From I(γ +ce)(219.75 γ)+I(γ +ce)(257.97 γ)-I(γ +ce)(289.8 γ)=99.47. All data are from 1970Fo08, unless otherwise noted.

E_{γ}^{\dagger}	Ι _γ ‡&	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.	δ^{\S}	α [#]	$I_{(\gamma+ce)}^{@}$	Comments
32.21 3		290.20	11/2-	257.98	5/2+	E3		9.29×10 ⁴	99.47	E _γ : from 1974ViZS. Mult.: from (M1+M2+M3)/(M4+M5)=11.3 (1958Br88); other subshell ratios allow E2 or E3, but (M1+M2+M3)/(M4+M5)=71.2 (E2 theory), =9.13 (E3 theory) is consistent only with E3. L2/L3=0.65 (1954Gi04).
38.22 2		38.23	(1/2)+	0.0	3/2+	M1+E2	0.42 +5-4	89 <i>14</i>	4.81 26	$I_{(\gamma+ce)}. \text{ from } 9.97 - I(\gamma+ce)(289.8\gamma).$ $I_{(\gamma+ce)}: \text{ from } I(\gamma+ce)(38.22)=I(\gamma+ce)(219.75) \text{ in }$ level scheme. Mult.: from L1:L2:L3=42 4:98 9:100. δ: from L1/L3=0.50 10, weighted average from
219.75 5 257.97 3	3.85 <i>20</i> 67.1	257.98 257.98	5/2+ 5/2+	38.23 0.0	$(1/2)^+$ $3/2^+$	E2 M1+E2	0.52 15	0.273 0.43 <i>4</i>		1970Fo08 and 1974ViZS (¹⁹³ Hg (3.80 h) decay). Mult.: from K:L1:L2:L3=14.0 <i>15</i> :2.35 <i>30</i> :6.7 <i>7</i> :5.1 <i>6</i> . Mult.: from L1:L2:L3=100:22 <i>4</i> :4.7 +47-30.
289.8		290.20	11/2-	0.0	3/2+	[M4]		18.1	0.5	δ: from weighted average of ce(L) ratios from 1970Fo08 and 1974ViZS (¹⁹³ Hg (11.8 h) decay). E_{γ} , $I_{(\gamma+ce)}$: from 1955Br41. $I_{(\gamma+ce)}$: deduced from I(ce) relative to I(ce 257.97γ)
										and theoretical conversion coefficients (values not given by 1955Br41). $I_{(\gamma+ce)}$: upper limit $\approx 3\%$ from comparison of the ce-lines of the 290 and 256 transitions (1954Gi04).

[†] Deduced from E(ce); calibrated with E(ce(K)) of the 117.99 2 γ in ¹⁹³Pt.

^{\ddagger} Calculated from intensity balances in the level scheme, the conversion coefficients, and the ratio I(219.75 γ)/I(257.97 γ)=0.0572 30 (1970Fo08).

[§] If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[&] For absolute intensity per 100 decays, multiply by 1.0007.

[@] Absolute intensity per 100 decays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

1970Fo08

¹⁹³₇₉Au₁₁₄

¹⁹³Au IT decay (3.9 s)

¹⁹³Hg ε decay (3.80 h) 1974ViZS

Parent: ¹⁹³Hg: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=3.80$ h 15; $Q(\varepsilon)=2343$ 14; $\%\varepsilon+\%\beta^{+}$ decay=100

Sources from (p,xn) reactions on gold, E(p)=70, 80 MeV, isotope separation; measured Ey, Iy, E(ce), Ice, (Ge(Li), Si(Li)

(FWHM=1.2-2.5 keV), mag spect (resolution=0.1%)), $E\beta$ +, $I\beta$ ⁺ (mag spect), $\gamma\gamma$ coin.

Other studies of ¹⁹³Hg decays: 1976Di15, 1976ViZM, 1975Zg01, 1970Fo08, 1970Pl01, 1962Di05, 1958Br88, 1955Br12, 1954Gi04. 1974ViZS studied 1) freshly prepared Hg sources to measure the decay curves of the transitions, and 2) Hg sources which had reached transient equilibrium (40 to 100 hours after preparation). In the first case distinction could be made between transitions following the decay of ¹⁹³Hg (3.80 h) and ¹⁹³Hg (11.8 h). In the second case the relative intensities of transitions in both decays could be measured since in the metastable state ¹⁹³Hg (11.8 h) decays to the ground state ¹⁹³Hg (3.80 h) with %IT=7.2, and all transitions now decay with a T_{1/2}=11.8 h.

¹⁹³Au Levels

The decay scheme is from 1974ViZS and is constructed from transitions showing a 3.80 h component in the pre-equilibrium sources of ¹⁹³Hg. For high energy levels fed directly by ε decay, the entire γ intensity is assigned to this decay. For the medium levels, which are not directly fed by $\varepsilon + \beta^+$ but are fed by γ 's from both ¹⁹³Hg decays, the intensity of the deexciting transitions is divided according to the feeding.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	3/2+	17.65 h 15	
38.245 23	$(1/2)^+$	3.81 ns 18	$T_{1/2}$: from (ce(K)(186.56 γ))(ce(L)(38.22 γ))t (1970Fo08); other: 4.2 ns 6 (γ (ce)(t) 1962Ja04).
224.81 <i>3</i>	$(3/2)^+$	<0.03 ns	$T_{1/2}$: from γ (ce(K) 187)(t) (1970Fo08).
257.99 <i>3</i>	5/2+	45 ps 20	
290.20 4	$11/2^{-}$	3.9 s <i>3</i>	
381.61 4	5/2+		
508.26 5	7/2-	0.29 ns 2	
539.00? [#] 4			
827.67 14	$(1/2^+, 3/2^+)$		
1089.25 10			
1118.97 <i>12</i>	$(3/2)^+$		
1603.15 19	$(3/2^{-}, 5/2^{+})$		
1658.0 <i>3</i>	$1/2^{(+)}$ to $5/2^{(+)}$		
1815.1 <i>3</i>	$(1/2,3/2),(5/2)^+$		
1861.92 <i>21</i>	$(1/2, 3/2, 5/2^+)$		
2014.73 25			
2043.3 <i>3</i>	1/2,3/2,5/2		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

[#] This level is only fed by the 289.0 γ from the 827.7 level. However, since the 827.7 level is seen only in this decay, and the 539.0 level is seen only in the ¹⁹³Hg (11.8 h) decay it is not clear to which decay the 289.0 γ belongs, or whether the placement of the γ is correct.

ε, β^+ radiations

The study of β^+ spectrum shows only one major β^+ group with $E(\beta^+)=1287$ *15* (1974ViZS,1976Di15). From the intensity balance in the level scheme shown ($\Sigma I(\gamma+ce)$ (to ¹⁹³Au g.s.) – $I(\gamma+ce)$ (¹⁹³Hg IT decay) \approx 0) 1974ViZS has deduced that this β^+ group does not go directly to ¹⁹³Au g.s. From intensity balance in the level scheme it appears that the group feeds the 224.8 level, resulting in Q+=2534 *15*. 2017Wa10 evaluation of atomic masses adopted Q+=2343 *14*, corresponding to feeding both the ground and first excited states, and was adopted in this evaluation.

The fact that there is no significant direct $\varepsilon + \beta^+$ decay from the $3/2^{-193}$ Hg to the $3/2^+$ g.s. and $1/2^+$ level in ¹⁹³Au seems surprising. However, no systematics for these transitions has been established. In A=189 and A=191 the log *ft*'s for these transitions

¹⁹³Hg ε decay (3.80 h) 1974ViZS (continued)

 ε, β^+ radiations (continued)

have not been measured. In A=195 and A=197 J^{π}(Hg)=1/2⁻ and the log *ft*'s for the transitions to the 3/2⁺ Au g.s. are 7.3 and \geq 8.0.

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(300 14)	2043.3		1.6 4	6.12 13	1.6 4	
(328 14)	2014.73		2.1 5	6.10 12	2.1 5	
(481 14)	1861.92		4.0 6	6.22 8	4.0 6	
(528 14)	1815.1		3.4 7	6.39 10	3.4 7	
(685 14)	1658.0		2.6 6	6.76 11	2.6 6	
(740 14)	1603.15		3.6 6	6.69 8	3.6 6	
(1224 14)	1118.97		24 3	6.34 6	24 <i>3</i>	
(1254 14)	1089.25		3.2 21	7.2 3	3.2 21	
(1515 14)	827.67	0.0072 14	9.2 <i>13</i>	6.95 7	9.2 13	
(1961 14)	381.61	0.12 6	13 6	7.03 21	13 6	
(2118 14)	224.81	0.56 7	34 4	6.68 6	35 4	E(decay): $E(\beta^+)=1287 \ 15$
						(1974ViZS,1976Di15,1976DiZM).
(2305 14)	38.245	< 0.41	<15	>7.1	<15	

[†] From intensity balance in the level scheme.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{193}\mathrm{Au})$

I γ normalization: From Σ I(γ +ce)(to ¹⁹³Au g.s.)=100, assuming no g.s. feeding. Deduced value of I γ normalization=6.7 7 is in good agreement with the I γ normalization=6.8 obtained by applying the half-life correction to the equilibrium counting rate of 100 disintegrations of ¹⁹³Hg (11.8 h). All data are from 1974ViZS, unless otherwise noted. The transitions listed showed a 3.80 h component in the pre-equilibrium sources.

E_{γ}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger c}$	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
32.21 3		290.20	11/2-	257.99	5/2+	E3		9.29×10 ⁴	0.5 2	$I_{(\gamma+ce)}: \text{ From } I(\gamma+ce)(32.21\gamma) = I(\gamma+ce)(218.07\gamma).$ Mult : see ¹⁹³ Hg (11.8 h) decay
38.24 3		38.245	(1/2)+	0.0	3/2+	M1+E2	0.42 +5-4	88 14	7.7 10	Mult.: See Fig (11.6 ii) decay. Mult.: L1:L2:L3=205 <i>12</i> : 320 20: 330 20; M1:M2:M3=43 5: 85 9: 95 9. δ : from L1/L3=0.50 <i>10</i> , weighted average from 1974ViZS and 1970Fo08 (¹⁹³ Au IT decay). I(γ +ce): I(γ +ce)(from equilibrium source) - I(γ +ce)(attributed to ¹⁹³ Hg(11.8 h) decay). I(α +co)= Σ Ica + Ica + Ica
126 56 10	0.008 & 4	508.26	7/2-	381.61	5/2+	(F1)		0 229		decay). $I(\gamma + ce) = 2$ ice + $I\gamma = 11.7$ 8. %I $\chi = 0.05.3$
120.50 10	0.000 7	500.20	1/2	501.01	5/2	(11)		0.22)		Mult.: from 193 Hg (11.8 h) decay.
186.56 <i>3</i>		224.81	(3/2)+	38.245	(1/2)+	M1+E2	0.26 5	1.186 25	4.9 4	Mult.,δ: L1:L2:L3=31 3: 4.5 5: 1.1 2, K/L=6.0 7. I _(γ+ce) : Σ Ice + Iγ; Iγ=2.22 21 deduced
										from Ice(K)=2.20 15 and α (K)=0.99 2.
218.07 4	0.4 2 1	508.26	7/2-	290.20	11/2-	E2		0.280		$\%$ I γ =2.7 8 Mult.: from ¹⁹³ Hg (11.8 h) decay.
219.75 4	$0.07^{\ \ }2$	257.99	5/2+	38.245	$(1/2)^+$	E2		0.273		%Iy=0.47 15
224.81 4	0.15 3	224.81	$(3/2)^+$	0.0	3/2+	(E2)		0.253		Mult.: see $^{11.8}$ h) decay. %Iγ=1.01 23 I _γ : other: Iγ(224.8γ)/Iγ(185.6γ)<0.052 (1970Fo08).
258.00 4	1.3 [§] 3	257.99	5/2+	0.0	$3/2^{+}$	M1+E2	0.62 4	0.407 11		%Iy=8.7 20
289.0 ^g	0.16 8	827.67	(1/2 ⁺ ,3/2 ⁺)	539.00?						 Mult.,δ: from ¹⁹³Hg (11.8 h) decay. %Iγ=1.1 6 I_γ: estimated from coincidence data. It is not clear whether this γ belongs in this decay or the ¹⁹³Hg (11.8 h) decay. See comment

NUCLEAR DATA SHEETS

with the 539.0 level. 2014Th02 $(p,2n\gamma)$ do not support this placement. Not adopted by

evaluator.

γ ⁽¹⁹³Au) (continued)</sup>

Eγ	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger c}$	α^{e}	Comments
381.60 4	2.3 7	381.61	5/2+	0.0	3/2+	M1+E2	1.2 +5-3	0.102 19	%I γ =15 5 I $_{\gamma}$: from I γ =3.1 6 in equilibrium source less I γ =0.8 2 attributed to ¹⁹³ Hg (11.8 h) decay.
^x 429.51 ^b 5						(M1+E2)		0.08 5	Mult., δ : α (K)exp=0.081 <i>14</i> , K/L1=5.7 <i>10</i> . Mult.: α (K)exp=0.046 <i>12</i> ; theory: α (K)(M1)=0.072 α (K)(E2)=0.024
446.5 5	0.10 3	827.67	$(1/2^+, 3/2^+)$	381.61	5/2+				% (1)
x567.2 5 580.97 8	0.007 <i>3</i> 0.6 <i>3</i>	1089.25		508.26	7/2-				$\% I\gamma = 0.047 \ 21$ $\% I\gamma = 4.0 \ 21$
789.21 20	0.65 13	827.67	$(1/2^+, 3/2^+)$	38.245	$(1/2)^+$	(M1)		0.0258	Mult.: <i>α</i> (K)exp=0.010 7. %Iγ=4.4 10
827.81 20	0.57 10	827.67	$(1/2^+, 3/2^+)$	0.0	3/2+	(E2)		0.00840	Mult.: α(K)exp=0.017 5. %Iγ=3.8 8
861 11 17	183	1118 97	$(3/2)^+$	257 99	5/2+	M1+F2	+1 33 40	0.0124.23	Mult.: $\alpha(K) \exp = 0.0068 \ 20.$
^x 920.0 4	0.11 3				- ,				Mult.: From Adopted Gammas. α (K)exp=0.0061 <i>16</i> , K/L12=6.1 <i>13</i> (1974ViZS); Theory: α (K)(E2)=0.00618 <i>9</i> , K/L12=5.49 <i>11</i> ; α (K)(M1+E2, δ =1.33 40)=0.0101 <i>20</i> , K/L12=5.8 <i>12</i> . %I γ =0.74 <i>22</i>
953.7 <i>4</i>	0.14 4	2043.3	1/2,3/2,5/2	1089.25					%Iy=0.9 3
1040.5" 6 1080.7 <i>3</i> 1094.5 <i>4</i>	0.33 7 0.53 8 0.080 24	1118.97 1603.15	$(3/2)^+$ $(3/2^-, 5/2^+)$	38.245 508.26	$(1/2)^+$ $7/2^-$				$\%_{1\gamma=2.2}^{6}$ $\%_{1\gamma=3.6}^{7}$ $\%_{1\gamma=0.54}^{7}$ <i>17</i>
1118.84 17	1.16 17	1118.97	$(3/2)^{+}$	0.0	3/2+	(E2)		0.00462	$\%_{1\gamma} = 7.8 \ 14$ Mult.: $\alpha(K) \exp = 0.0049 \ 12$.
1221.1 <i>5</i> 1276.38 ^{<i>a</i>} 25	0.039 <i>12</i> 0.38 <i>8</i>	1603.15 1658.0	$(3/2^-, 5/2^+)$ $1/2^{(+)}$ to $5/2^{(+)}$	381.61 381.61	5/2+ 5/2+	(E2)		0.00360	$\%$ I γ =0.26 9 %I γ =2.5 6 Mult : α (K)exp=0.0036 13.
1378.5 <i>4</i> 1565.0 <i>6</i>	$0.085 \ 25 \\ 0.016 \ 8$	1603.15 1603.15	$(3/2^-, 5/2^+)$ $(3/2^-, 5/2^+)$	224.81 38.245	$(3/2)^+$ $(1/2)^+$				$\% I \gamma = 0.57 \ I 8$ $\% I \gamma = 0.11 \ 6$
1603.4 ^{<i>f</i>} 3	$0.30^{f} 6$	1603.15	$(3/2^-, 5/2^+)$	0.0	3/2+				%I γ =2.0 5 Mult.: α (K)exp=0.0026 16.
1603.4 ^{<i>f</i>} 3 1662.1 4 1756.7 5 1776.4 4	0.30 ^f 6 0.087 22 0.045 14 0.12 3	1861.92 2043.3 2014.73 1815.1	$(1/2,3/2,5/2^+)$ 1/2,3/2,5/2 $(1/2,3/2),(5/2)^+$	257.99 381.61 257.99 38.245	$5/2^+$ $5/2^+$ $5/2^+$ $(1/2)^+$				$\%$ I γ =2.0 5 $\%$ I γ =0.58 16 $\%$ I γ =0.30 10 $\%$ I γ =0.80 22
1815.6 <i>4</i> 1824.3 <i>4</i>	0.37 <i>9</i> 0.075 22	1815.1 1861.92	$(1/2,3/2),(5/2)^+$ $(1/2,3/2,5/2^+)$	0.0 38.245	$3/2^+$ $(1/2)^+$				%1γ=2.5 7 %1γ=0.50 <i>16</i>

¹⁹³Hg ε decay (3.80 h) 1974ViZS (continued)

γ ⁽¹⁹³Au) (continued)</sup>

Eγ	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1862.2 <i>4</i>	0.21 <i>4</i>	1861.92	(1/2,3/2,5/2+)	0.0	$3/2^+$	%Iy=1.4 3
1976.6 <i>4</i>	0.25 <i>6</i>	2014.73		38.245	$(1/2)^+$	%Iy=1.7 5
2014.6 <i>4</i>	0.008 <i>2</i>	2014.73		0.0	$3/2^+$	%Iy=0.054 15

[†] Intensity determined in the ¹⁹³Hg (11.8 h) source in equilibrium with the ¹⁹³Hg (3.80 h) decay. Intensity per 100 disintegrations of ¹⁹³Hg (11.8 h). Applying the half-life correction for transient equilibrium, the intensity is per 148 ¹⁹³Au (3.80 h) decays.

[±] From $\alpha(K)$ exp and/or ce subshell ratios, except where noted. The photon and ce intensity scales were normalized through the theoretical $\alpha(K)$ of 218.07, 219.75, 573.25 and 932.37 transitions (1974ViZS).

[§] From the decay scheme of 1974ViZS 2.3% of the decay from the 258 level follows decay from levels seen in ¹⁹³Hg (3.80 h) g.s., 98% follows decay from ¹⁹³Hg (11.8 h) isomer. From intensity balance there is no direct ε feeding to this level.

[&] Iγ divided on the basis of feeding from high levels as shown on the level scheme. From intensity balance there is no direct ε feeding. For the 508.23 level 7% of decay is from 3.80 h decay, 93% from 11.8 h decay.

^{(@} γ belongs in this decay from composite T_{1/2}. Placed from the 2043 level by 1974ViZS feeding the 1477 level where the deexciting γ shows no composite T_{1/2}. However, this γ is weak and would contribute only \approx 10% or less to the deexciting G. Possible spin assignments for these levels – make the placement unlikely. The list as unplaced.

[#] Multiply placed γ by 1974ViZS in composite level scheme. γ placed from the 2043 level to a 1004 level in ¹⁹³Hg(3.80 h) decay. However, the multiply placed 746.11 γ from the 1004 level is weaker than the 1040 γ and is not shown as possessing a composite T_{1/2}.

^{*a*} γ shows composite T_{1/2}. Placement here supported by $\gamma\gamma$ results. 1974ViZS also shows the γ from the 2139 level in the ¹⁹³Hg(11.8 h) decay with no $\gamma\gamma$ support for that placement. The evaluator has included total I γ in this decay.

^b γ is shown as exhibiting composite T_{1/2} in pre-equilibrium source, but appears to be in coincidence only with γ 's from ¹⁹³Hg(11.8 h) decay.

^c If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^d For absolute intensity per 100 decays, multiply by 6.7 7.

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed with undivided intensity.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

169

 $^{193}_{79}\mathrm{Au}_{114}$

¹⁹³Hg ε decay (11.8 h) 1974ViZS,1970Pl01

Parent: ¹⁹³Hg: E=140.76 5; $J^{\pi}=13/2^{(+)}$; $T_{1/2}=11.8$ h 2; $Q(\varepsilon)=2343$ 14; $\%\varepsilon+\%\beta^+$ decay=?

 193 Hg-% ε +% β ⁺ decay: 92.8% 5; see 193 Hg IT decay.

1974ViZS: source: from (p,xn) reactions on gold, E(p)=70, 80 MeV, ms; measured E γ , I γ , E(ce), Ice, (Ge(Li), Si(Li), mag spect), E β +, I β ⁺ (mag spect), $\gamma\gamma$ coin.

1970Pl01: source: from spallation of Pb by 660-MeV protons, chem; measured E γ , I γ (Ge(Li), NaI(Tl)), $\gamma\gamma$ coin.

Others: 1970Fo08, 1962Di03, 1962Di05, 1958Br88, 1957Br53, 1955Br12, 1954Gi04.

Two β^+ groups have been reported by 1958Br88: E β +=1.17 3 MeV, I $\beta^+/(I(ce(K) 913\gamma)+I(ce(K) 932\gamma))=3.1$; and E β +=0.42 keV, no intensity given. The 1.17 MeV β^+ group to the 290 keV level would give Q(g.s.)=2.34 and a 19% $\varepsilon + \beta^+$ decay to the 290 keV level. This is in contradiction to the data as reported by 1974ViZS. It is possible that the 1.17 MeV seen by 1958Br88 (it is an inner group in a F-K plot which also includes ¹⁹²Au β^+ spectrum) is the same as the 1.287 MeV b+ group seen by 1974ViZS (also reported in 1976Di15, 1976ViZM) and assigned to ¹⁹³Hg (3.80 h) decay.

It is interesting to note that in the proposed decay scheme there is no direct $\varepsilon + \beta^+$ branch to the 11/2⁺ level in ¹⁹³Au. This is contrary to the situation in A=191, 195, and 197, where the log *ft*'s for this transition are \approx 7.0, 7.3, and 6.8, respectively.

Decay scheme is not normalized due to difficulty with separating the decays of the two ¹⁹³Hg isomers in an equilibrium source.

¹⁹³Au Levels

The decay scheme is deduced from that proposed by 1974ViZS from the decay of the ¹⁹³Hg (11.8 h, 13/2⁺) in equilibrium with ¹⁹³Hg (3.80 h, 3/2⁻). The levels which are fed directly by ε and which are then deexcited by γ 's observed to have a composite half-life (in the pre-equilibrium source) are omitted from this level scheme. The γ 's from such levels have also been omitted. The levels which are not fed directly by ε , but are fed by γ 's arising from both the 11.8 h and 3.80 h decays are included and the intensities of the deexciting γ 's have been divided according to the feeding pattern.

E(level) [†]	J^{π} ‡	T _{1/2} ‡	Comments
0.0	3/2+	17.65 h 15	
38.24 3	$(1/2)^+$	3.81 ns 18	
257.99 <i>3</i>	5/2+	45 ps 20	
290.19 4	$11/2^{-}$	3.9 s <i>3</i>	
381.63 4	$5/2^+$		
508.24 5	7/2-	0.29 ns 2	$T_{1/2}$: from (ce(K) 382.47)(ce(K) 218.07)t (1970Ba56).
539.00 4	$(7/2^+)$		
687.45 5	$(7/2^+, 9/2^+)$		
697.79 5	$(15/2)^{-}$		
789.93 5	9/2-	1.2 ns 1	$T_{1/2}$: from $\gamma ce(t)$ (1975Be29).
808.58 6	$(9/2)^+$		
863.34 5	$(13/2)^{-}$		
890.79 <i>5</i>	9/2-		
929.12 5	$(9/2^+)$		
1131.82 6	9/2-,11/2-		
1153.54 7	$(11/2^+)$		
1194.29 7	$(9/2^{-},11/2^{-},13/2^{-})$		
1284.80 5	9/2-,11/2-		
1355.30 9	$(11/2 \text{ to } 15/2^{-})$		
1372.92 10	$(17/2)^{-}$		
1379.96 <i>11</i>	$(11/2^+)$		
1398.49 6	$(13/2)^{-}$		
1400.37 6	11/2-		
1413.05 16	$(9/2^{-},11/2)$		
1433.49 12	$(11/2^+, 13/2^+)$		
1455.17 9	$(11/2 \text{ to } 15/2^{-})$		
14/7.18 12	$(1/2,9/2,11/2)^{-1}$		
1496.28 7	$(9/2)^{-}$		
1514.19 16	(1/2)		
15/2.53 13	$(9/2, 11/2, 13/2^+)$		

¹⁹³Hg ε decay (11.8 h) 1974ViZS,1970Pl01 (continued)

E(level) [†]	$\mathrm{J}^{\pi\ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	J ^π ‡
1575.62 6	11/2-,13/2-	1876.27 <i>17</i>	$(11/2^{-}, 13/2^{-})$	2139.76 19	$(13/2^{-}, 15/2^{-})$
1630.23 6	11/2-,13/2-	1915.18 <i>17</i>	$(11/2^{-} \text{ to } 15/2^{-})$	2157.63 17	$(11/2^{-})$
1654.72 16	$(9/2^{-}, 11/2, 13/2^{+})$	1930.00 6	11/2-,13/2-	2159.13 8	$(11/2^{-} \text{ to } 15/2^{-})$
1680.33 17	$(11/2^{-}, 13/2^{-})$	1939.18 <i>11</i>	$(11/2, 13/2)^{-}$	2196.87 20	$(11/2^{-}, 13/2, 15/2^{-})$
1684.73 <i>19</i>	(9/2 ⁻ to 13/2 ⁻)	2012.18 17	$(13/2^{-}, 15/2^{-})$	2201.73 10	$(11/2^{-})$
1733.42 10	$(15/2^{-})$	2023.45 10	$(11/2 \text{ to } 15/2^{-})$	2206.37 22	$(11/2^{-})$
1776.03 8	$11/2^{-}$	2037.47 7	$(11/2, 13/2)^{-}$	2215.18 17	$(13/2^{-}, 15/2^{-})$
1794.84 <i>21</i>	$(13/2^{-})$	2063.04 7	11/2-,13/2-,15/2-	2255.10 13	$(11/2^{-} \text{ to } 15/2^{-})$
1815.40 23	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	2104.42 15	$(11/2, 13/2)^{-}$	2279.38 17	$(11/2^{-})$
1829.90 6	$(11/2^{-}, 13/2^{-})$	2125.37 20	$(11/2^{-})$	2285.28 16	$(11/2^+)$
1869.26 17	$(11/2^{-} \text{ to } 15/2^{-})$	2130.38 12	$(11/2^{-} \text{ to } 15/2^{-})$	2291.01 16	$(11/2^+)$

¹⁹³Au Levels (continued)

[†] From least-squares fit to γ -ray energies. [‡] From Adopted Levels.

$\frac{193}{\text{Hg}} \varepsilon \text{ decay (11.8 h)} \qquad 1974 \text{ViZS}, 1970 \text{Pl01 (continued)}$							nued)			
						<u>2</u>	/(¹⁹³ Au)			
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{c}	$I_{(\gamma+ce)}$	Comments
32.21 3		290.19	11/2-	257.99	5/2+	E3		9.29×10 ⁴	88 10	Mult.: $\alpha(L1)\exp=2.8\times10^2$ 11, L1:L2:L3=0.28 11: 29.7 30: 34.3 34, M2:M3:M4:M5=8.3 10: 8.1 10: 0.65 16: 0.95 24 (1974ViZS).
38.24 <i>3</i>		38.24	(1/2)+	0.0	3/2+	M1+E2	0.41 8	86 <i>23</i>	4.1 7	Mult.: from ce subshell ratios (see ¹⁹³ Hg 3.80 h decay). δ : from L1/L3=0.50 <i>10</i> , weighted average from 1974ViZS and 1970Fo08 (¹⁹³ Au IT decay). I _(γ+ce) : deduced from intensity balance at 38.2 level. I(γ +ce)=I(γ +ce)(219.75 γ).
126.56 10	0.11 [@] 3	508.24	7/2-	381.63	5/2+	(E1)		0.229		I _{γ} : measured I γ =0.12 <i>3</i> adjusted for contribution from 3.80 h ¹⁹³ Hg decay. Mult.: α (K)exp=0.008 <i>4</i> (1974ViZS).
157.40 <i>10</i> 165.53 <i>4</i>	0.037 ^{&} 7 0.086 21	539.00 863.34	$(7/2^+)$ $(13/2)^-$	381.63 697.79	5/2 ⁺ (15/2) ⁻	(E2) M1		0.877 1.728		Mult.: α (K)exp=0.59 <i>30</i> (1974ViZS). Mult.: α (K)exp=1.7 <i>7</i> , K/L1=4.7 <i>16</i> (1974ViZS).
200.30 7		1776.03	$11/2^{-}$	1575.62	11/2-,13/2-					I_{γ} : γ not seen, Ice(K)=0.021 3 (1974ViZS).
218.07 4	5.6 [@] 8	508.24	7/2-	290.19	11/2-	E2		0.280		 I_γ: measured Iγ=6.0 8 adjusted for contribution from 3.80 h ¹⁹³Hg decay. Mult.: K:L1:L2=83 6: 10.2 <i>12</i>: 37 <i>4</i>, M2:M3=12.3 <i>12</i>: 7.6 <i>12</i> (1974ViZS); K/L12=1.4, L12/L3>1.3 (1958Br88).
219.75 4	3.2 ^{&} 5	257.99	5/2+	38.24	(1/2)+	E2		0.273		I _γ : measured Iγ=3.3 5 adjusted for contribution the ¹⁹³ Hg (3.80 h) decay. Mult.: α (K)exp=0.12 3, L1:L2:L3=4.6 4: 15.2 30: 10.0 10 (1974ViZS).
241.70 4	0.17 4	929.12	$(9/2^+)$	687.45	$(7/2^+, 9/2^+)$	(M1)		0.601		Mult.: α (K)exp=0.53 <i>16</i> (1974ViZS).
258.00 4	57 ^{&} 6	257.99	5/2+	0.0	3/2+	M1+E2	0.52 15	0.43 4		I _γ : measured Iγ=58 <i>6</i> adjusted for contribution from the ¹⁹³ Hg (3.80 h) decay. Mult.: α (K)exp=0.40 <i>8</i> , K/L=6.6 <i>10</i> , L1:L2:L3=260 <i>13</i> :67 <i>3</i> :24 2 (1974ViZS). δ : from ce(L) ratios from 1974ViZS and

173

L1/L2=4.5 8 (1970Fo08 (¹⁹³Au IT decay)).

NUCLEAR DATA SHEETS

 $^{193}_{79}\mathrm{Au}_{114}\text{--}28$

$\gamma(^{193}\text{Au})$ (continued)

${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{c}	Comments
274.95 7	0.082 21	1630.23	11/2 ⁻ ,13/2 ⁻	1355.30	(11/2 to 15/2 ⁻)	(M1+E2)	1.2 +8-5	0.251 76	$ \begin{array}{c} \alpha(\text{K}) = 0.19 \ 6; \ \alpha(\text{L}) = 0.050 \ 9; \\ \alpha(\text{M}) = 0.0120 \ 15; \ \alpha(\text{N}+) = 0.00376 \ 21 \\ \text{Mult.:} \ \alpha(\text{K}) \exp = 0.19 \ 6 \ (1974 \text{ViZS}). \end{array} $
280.94 5	0.22 ^{&} 18	539.00	$(7/2^+)$	257.99	5/2+	(M1,E2)		0.26 14	Mult.: α(K)exp=0.41 36, K/L1=4.5 7 (1974ViZS).
281.76 <i>4</i>	0.91 <i>11</i>	789.93	9/2-	508.24	7/2-	M1+E2	0.66 +17-12	0.31 3	 I_γ: I_γ calculated from Ice(K)=0.24 2 and α(K)=0.265 21. Mult.,δ: K/L12=4.4 6, L1/L2=4.6 9 (1974ViZS).
290.75 5	1.9 4	1575.62	11/2-,13/2-	1284.80	9/2-,11/2-	M1		0.362	Mult.: α (K)exp=0.26 6, K/L12=4.3 6, L12/M12=3.3 5 (1974ViZS); other: α (K)exp=0.145 (1970Pl01), K/L1=9.8 (1958Br88).
295.4 <i>4</i> 299.82 <i>4</i>	0.040 <i>16</i> 0.62 <i>10</i>	2125.37 1930.00	(11/2 ⁻) 11/2 ⁻ ,13/2 ⁻	1829.90 1630.23	(11/2 ⁻ ,13/2 ⁻) 11/2 ⁻ ,13/2 ⁻	M1		0.333	Mult.: <i>α</i> (K)exp=0.27 7, K/L12=6.1 <i>12</i> , L1/L2=8.1 <i>18</i> (1974ViZS); <i>α</i> (K)exp=0.14 (1970Pl01).
330.0 <i>5</i> 341.91 <i>4</i>	0.059 <i>18</i> 3.0 <i>5</i>	2063.04 1131.82	11/2 ⁻ ,13/2 ⁻ ,15/2 ⁻ 9/2 ⁻ ,11/2 ⁻	1733.42 789.93	(15/2 ⁻) 9/2 ⁻	M1+E2	0.77 25	0.17 3	Mult., δ : from α (K)exp=0.13 3, K/L=3.6 6, L1:L2:L3=9.2 14: 1.2 3: 0.56 10 (1974ViZS); Other: α (K)exp=0.0555 (1970Pl01)
345.00 4	0.7 3	1153.54	(11/2 ⁺)	808.58	(9/2)+				Mult.: α (K)exp=0.052 33 (1974ViZS) indicates dominant E2 (>90%) component. See comments in adopted gammas.
345.46 <i>4</i>	1.25 13	1630.23	11/2 ⁻ ,13/2 ⁻	1284.80	9/2 ⁻ ,11/2 ⁻	M1+E2	0.24 3	0.218 4	I _γ : from Ice(K)=0.220 <i>15</i> (1974ViZS) and α(K)=0.176 <i>13</i> . Mult.,δ: K/L12=5.7 <i>7</i> , L1/L2=9.0 <i>2</i> (1974ViZS).
354.5 5	0.09 4	1930.00	11/2-,13/2-	1575.62	11/2-,13/2-				
360.51 5	0.40 10	1733.42	$(15/2^{-})$	1372.92	$(17/2)^{-}$	(M1+E2)	0.9 + 6 - 4	0.139 35	Mult., δ : α (K)exp=0.11 3 (1974ViZS).
364.47 <i>4</i>	2.8 4	1496.28	(9/2) ⁻	1131.82	9/2 ⁻ ,11/2 ⁻	M1+E2	1.2 +5-4	0.11 3	Mult., δ : α (K)exp=0.089 <i>19</i> , K/L1=7.1 <i>13</i> (1974ViZS); other: α (K)exp=0.041 (1970Pl01).
381.60 4	0.8 2	381.63	5/2+	0.0	3/2+	M1+E2	1.2 +5-3	0.102 19	I _γ : deduced from intensity balance at 381.6 level. Mult δ: from ¹⁹³ Hg (3.80 h) decay
382.47 4	4.7 10	890.79	9/2-	508.24	7/2-	M1		0.1723	Mult.: $\alpha(K)\exp=0.12 \ 3, \ K/L1=5.9 \ 3 \ (1974ViZS).$
394.00 4	5.7 7	1284.80	9/2-,11/2-	890.79	9/2-	M1+E2	0.75 22	0.119 16	Mult.: α(K)exp=0.089 15, K/L12=5.0 7,

193 79'
Au
₁₄ -30

102		
¹⁹⁵ Hg ε decay (11.8 h)	1974ViZS,1970Pl01	(continued)

	$\gamma(^{193}\text{Au})$ (continued)										
${\rm E_{\gamma}}^\dagger$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}^{π}_i	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{c}	Comments		
404.36 5 407.63 4	1.4 <i>3</i> 37 <i>6</i>	1194.29 697.79	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻) (15/2) ⁻	789.93 290.19	9/2 ⁻ 11/2 ⁻	(E2) E2		0.0442 0.0433	L1/L2=6.2 <i>16</i> (1974ViZS); K/L1=2.5 (1958Br88). Mult.: <i>a</i> (K)exp=0.030 <i>10</i> (1974ViZS). Mult.: <i>a</i> (K)exp=0.024 <i>6</i> , K/L=2.6 <i>3</i> , L1:L2:L3=15.2 <i>18</i> : 14.0 <i>17</i> : 5.6 7 (1974ViZS); K/L=3.13, L12/L3=2.6 (1958Br88)		
421.8 4	0.40 10	1794.84	$(13/2^{-})$	1372.92	(17/2)-				(1950).		
429.51 ^d 5	0.70 ^d 12	687.45	(7/2+,9/2+)	257.99	5/2+				 I_γ: deduced from intensity balance at 687.4 level. γ shows composite T_{1/2} in pre-equilibrium source, therefore, some of measured Iγ=1.6 <i>3</i> belongs in the 3.80 h decay. 		
429.51 ^d 5	0.33 ^d 17	1829.90	(11/2 ⁻ ,13/2 ⁻)	1400.37	11/2-				 I_γ: intensity divided on the basis of coincidence data (1974ViZS). Mult.: α(K)exp=0.046 12 for the multiplet (1974ViZS). 		
431.46 5	0.19 5	1829.90	$(11/2^{-}, 13/2^{-})$	1398.49	$(13/2)^{-}$	(M1)		0.1249	Mult.: α (K)exp=0.10 7 (1974ViZS).		
444.0 <i>4</i> 461.83 <i>6</i>	0.17 5 1.9 <i>3</i>	1575.62 2037.47	$(11/2, 13/2)^{-1}$	1131.82 1575.62	9/2, 11/2 11/2 ⁻ , 13/2 ⁻	M1+E2	0.9 6	0.072 27	Mult.: α (K)exp=0.055 14, K/L1=5.5 10 (1074) k^{2} (K)exp=0.075 (1070Pl01)		
487.41 6	0.77 16	2063.04	11/2-,13/2-,15/2-	1575.62	11/2-,13/2-	M1+E2	1.1 3	0.056 10	(19/4 VI2.3), α (K)exp=0.073 (19/0F101). Mult.: α (K)exp=0.040 22, K/L12=5.3 24, L1/L2=4.3 12 (1974ViZS).		
491.3 <i>4</i>	0.38 19	1776.03	$11/2^{-}$	1284.80	9/2-,11/2-				I_{γ} : deduced from $\gamma\gamma$ spectrum (1974ViZS).		
499.65 5	5.5 7	789.93	9/2-	290.19	11/2-	M1+E2	0.8 4	0.062 15	Mult., δ : α (K)exp=0.055 <i>10</i> , K:L1:L2=30 <i>2</i> : 4.7 <i>5</i> : 1.0 <i>2</i> (1974ViZS).		
509.43 6	2.9 14	1400.37	11/2-	890.79	9/2-	M1+E2	1.4 +8-4	0.044 10	Mult.,δ: K/L12=5.2 9, L1/L2=3.4 11 (1974ViZS).		
516.7 4	0.17 5	1379.96	$(11/2^+)$	863.34	(13/2)-				E_{γ} : Placement not confirmed by 2014Th02 (n 2nz). Not adopted by evaluator		
529.51 7	1.2 7	1930.00	11/2-,13/2-	1400.37	$11/2^{-}$	(E2)		0.0225	Mult.: $\alpha(K) \exp[=0.010\ 7\ (1974ViZS)]$.		
535.15 5	4.5 9	1398.49	$(13/2)^{-}$	863.34	(13/2)-	M1+E2	1.3 +8-4	0.040 12	Mult.: α(K)exp=0.032 9, K/L1=6.9 11 (1974ViZS).		
537.08 5	7.9 10	1400.37	11/2-	863.34	(13/2)-	M1+E2	0.8 +6-5	0.051 15	Mult.: α (K)exp=0.042 <i>11</i> , K/L12=7.1 (1974ViZS).		
539.03 6	1.5 ^{&} 4	539.00	$(7/2^+)$	0.0	3/2+	(E2)		0.0216	Mult.: α (K)exp=0.011 5 (1974ViZS).		
545.05 6 547 43 6	$0.90\ 20$	1829.90	$(11/2^{-}, 13/2^{-})$	1284.80	9/2 ⁻ ,11/2 ⁻ 5/2 ⁺	(E2) (E2)		0.0210	Mult: $\alpha(K) \exp = 0.024.7 (1974 \text{ViZS}).$		
x548.59 7	0.45 11	929.12	(9/2)	301.03	512	(E2) (E1)		0.0208	Mult.: $\alpha(K)\exp=0.0114$ (1974 viz.s). Mult.: $\alpha(K)\exp=0.0018$ 12 (1974 Viz.s).		
550.63 6	1.5 8	808.58	(9/2)+	257.99	5/2+	È2		0.0205	I _{γ} : calculated from Ice(K)=0.023 <i>12</i> and α (K)=0.0154.		

¹⁹³Hg ε decay (11.8 h) 1974ViZS,1970Pl01 (continued)

$\gamma(^{193}\text{Au})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{c}	Comments
560.0 <i>4</i> 573.25 <i>6</i>	0.40 <i>19</i> 30.8 <i>31</i>	2037.47 863.34	(11/2,13/2) ⁻ (13/2) ⁻	1477.18 290.19	(7/2,9/2,11/2) ⁻ 11/2 ⁻	M1+E2	+0.36 7	0.0545 19	Mult.: K/L=3.5 19, L1:L2:L3=0.35 3: 0.22 3: 0.08 2 (1974ViZS). I _{γ} : intensity deduced from $\gamma\gamma$ data. Mult.: α (K)exp=0.032 5, K/L12=5.7 32 (1974ViZS); K/L1=4.6 (1958Br88). δ : from $\gamma(\theta)$ (α ,xn γ); δ =1.0 3 from ce
583.32 8	0.20 6	2159.13	$(11/2^{-} \text{ to } 15/2^{-})$	1575.62	11/2-,13/2-	(E2)		0.0179	Mult.: $\alpha(K) \exp = 0.027 \ 12 \ (1974 \text{ViZS}).$
591.72 8	0.24 7	1455.17	(11/2 to 15/2 ⁻)	863.34	(13/2)-	M1+E2	1.0 7	0.036 16	Mult.: $\alpha(K)\exp \theta = 1.5 + 37 - 7$. Mult.: $\alpha(K)\exp = 0.029 \ 12$, K/L12=5.8 12 (1974ViZS).
600.65 6	4.7 5	890.79	9/2-	290.19	11/2-	M1+E2	1.4 +6-4	0.029 6	δ: From α (K)exp and K/L12 data. Mult.,δ: α (K)exp=0.021 4, K/L12=5.9 9, L1/L2=4.8 12
608.70 <i>10</i> 614.32 <i>10</i>	0.21 6 0.77 <i>12</i>	1398.49 1153.54	(13/2) ⁻ (11/2 ⁺)	789.93 539.00	9/2 ⁻ (7/2 ⁺)	(E2) (E2)		0.01628 0.01595	Mult.: $\alpha(K)\exp=0.023$ 10 (1974ViZS). Mult., δ : $\alpha(K)\exp=0.021$ 5 (1974ViZS) indicates M1+E2 with $\delta=1.5$ 4. See comments in adopted gammas. Evaluator assign from lavel scheme
623.10 10	0.57 14	2023.45	(11/2 to 15/2 ⁻)	1400.37	11/2-	M1+E2	1.0 9	0.032 16	Mult., δ : From α (K)exp=0.022 8, K/L12=7.7.13 (1974Vi7S)
624.91 <i>10</i> 626.22 <i>10</i> 639.0 ^d 4	$0.48 \ 12 \\ 0.16 \ 5 \\ 0.28^{d} \ 14$	1433.49 2201.73 2012.18	$(11/2^+, 13/2^+)$ $(11/2^-)$ $(13/2^-, 15/2^-)$	808.58 1575.62 1372.92	$(9/2)^+$ 11/2 ⁻ ,13/2 ⁻ (17/2) ⁻	(E2) (M1)		0.01535 0.0469	Mult.: α (K)exp=0.013 5 (1974ViZS). Mult.: α (K)exp=0.046 20 (1974ViZS). L _x : intensity divided on the basis of
639.0 ^d 4	0.51 ^d 18	2037.47	(11/2,13/2)-	1398.49	(13/2) ⁻				coincidence data (1974ViZS). I _{γ} : division of intensity based on $\gamma\gamma$
643.41 ^{<i>d</i>} 12	0.09 ^d 4	1572.53	(9/2 ⁻ ,11/2,13/2 ⁺)	929.12	(9/2+)				I_{γ} : intensity divided on the basis of $\gamma\gamma$ data (1974ViZS).
643.41 ^{<i>d</i>} 12	0.20 ^d 8	2157.63	(11/2 ⁻)	1514.19	(7/2 ⁻)				I_{γ} : intensity division based on $\gamma\gamma$ data, I_{γ} (multiplet)=0.30 <i>10</i> (1974ViZS). Mult.: α (K)exp=0.014 <i>6</i> for the multiplet (1074ViZS)
645.23 <i>12</i> 654.51 <i>15</i> 657.62 <i>15</i>	0.28 8 0.21 6 0.23 7	1930.00 1939.18 1355.30	11/2 ⁻ ,13/2 ⁻ (11/2,13/2) ⁻ (11/2 to 15/2 ⁻)	1284.80 1284.80 697.79	9/2 ⁻ ,11/2 ⁻ 9/2 ⁻ ,11/2 ⁻ (15/2) ⁻	(E2) (E2) (E2)		0.01429 0.01385 0.01370	Mult.: α (K)exp=0.015 7 (1974ViZS). Mult.: α (K)exp=0.020 <i>10</i> (1974ViZS). Mult.: α (K)exp=0.0061 <i>32</i> , K/L12=1.8 6 (1974ViZS).
661.7 <i>4</i> 662.73 <i>12</i>	0.32 <i>10</i> 0.57 <i>14</i>	2157.63 2063.04	(11/2 ⁻) 11/2 ⁻ ,13/2 ⁻ ,15/2 ⁻	1496.28 1400.37	(9/2) ⁻ 11/2 ⁻	(E2)		0.01347	Mult.: α(K)exp=0.011 4, K/L12=5.9 22 (1974ViZS).

176

¹⁹³ Hg ε decay (11.8				ıy (11.8 h) 19 '	74ViZS,1970I	Pl01 (continue	d)		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{C}	Comments
668.48 12	0.83 14	1477.18	(7/2,9/2,11/2)-	808.58	(9/2)+			0.00477	Mult.: From α (K)exp=0.0043 <i>12</i> , K/L12=3.6 8 (1974ViZS).
675.17 12	1.7 3	1372.92	(17/2)-	697.79	(15/2) ⁻	M1+E2	1.5 +10-5	0.021 5	Mult., δ : α (K)exp=0.017 4, K/L12=5.5 7 (1974ViZS).
684.77 12	1.4 4	1575.62	11/2-,13/2-	890.79	9/2-	(E2)		0.01254	Mult.: α (K)exp=0.0077 31 (1974ViZS).
692.54 12	0.32 10	1379.96	$(11/2^+)$	687.45	(7/2 ⁺ ,9/2 ⁺)	(E2)		0.01224	Mult.: α (K)exp=0.012 5, K/L12=3.3 8 (1974ViZS).
700.88 12	0.68 14	1398.49	$(13/2)^{-}$	697.79	$(15/2)^{-}$	(M1+E2)	1.1 +10-5	0.0224 66	Mult.: α (K)exp=0.018 5 (1974ViZS).
706.30 <i>12</i> 712.15 <i>12</i>	1.10 20 0.83 <i>14</i>	1496.28 1575.62	(9/2) 11/2 ⁻ ,13/2 ⁻	789.93 863.34	$(13/2)^{-}$	(E2) M1+E2	1.3 5	0.01173 0.0198 53	Mult.: $\alpha(K)\exp=0.009 \ 3 \ (1974 \lor 128)$. Mult., δ : From $\alpha(K)\exp=0.016 \ 4 \ (1974 \lor 128)$.
725.60 ^d 15	0.10 ^d 5	1413.05	(9/2 ⁻ ,11/2)	687.45	(7/2 ⁺ ,9/2 ⁺)	#			I_{γ} : intensity division from coincidence data (1974ViZS).
725.60 ^d 15	0.7 ^{<i>d</i>} 4	1654.72	(9/2 ⁻ ,11/2,13/2 ⁺)	929.12	(9/2+)	#			I _{γ} : I γ =80 <i>14</i> divided on the basis of coincidence data (1974ViZS).
^x 727.2 [§] 10	0.26 [§] 11								
731.95 <i>12</i> 738.60 ^e <i>17</i>	0.46 <i>9</i> 0.5 <i>3</i>	2130.38 2023.45	(11/2 ⁻ to 15/2 ⁻) (11/2 to 15/2 ⁻)	1398.49 1284.80	(13/2) ⁻ 9/2 ⁻ ,11/2 ⁻	(E2)		0.01087	Mult.: α (K)exp=0.014 4 (1974ViZS). Mult.: α (K)exp=0.0028 21 (1974ViZS). Theory: α (K)(E1)=0.00327, α (K)(E2)=0.00840. α (K)exp indicates E1, but level scheme requires M1,E2.
739.47 17	0.19 11	1630.23	11/2 ⁻ ,13/2 ⁻	890.79	9/2-	(E2,M1)		0.021 10	I_{γ} : from Ice(K)=0.0033 6 (1974ViZS) and α (K)=0.017 9.
746.11 ^{<i>a</i>} 20	0.11 4	2201.73	(11/2 ⁻)	1455.17	(11/2 to 15/2 ⁻)				Mult.: α (K)exp(doublet)=0.010 5 (1974ViZS)
752.70 <i>15</i> 757.63 <i>20</i> 766.97 <i>20</i> 776.57 <i>20</i>	0.55 <i>11</i> 0.30 <i>6</i> 0.45 <i>9</i> 1.5 <i>6</i>	2037.47 1455.17 1630.23 1284.80	(11/2,13/2) ⁻ (11/2 to 15/2 ⁻) 11/2 ⁻ ,13/2 ⁻ 9/2 ⁻ ,11/2 ⁻	1284.80 697.79 863.34 508.24	9/2 ⁻ ,11/2 ⁻ (15/2) ⁻ (13/2) ⁻ 7/2 ⁻	(M1+E2) (E2) (E2) [M1,E2]	0.9 7	$\begin{array}{c} 0.0207 \ 78 \\ 0.01010 \\ 0.00985 \\ 0.0183 \ 87 \end{array}$	Mult.: $\alpha(K)\exp=0.017 \ 5 \ (1974ViZS)$. Mult.: $\alpha(K)\exp=0.007 \ 3 \ (1974ViZS)$. Mult.: $\alpha(K)\exp=0.012 \ 5 \ (1974ViZS)$. Mult.: $\alpha(K)\exp=0.0040 \ 14 \ (1974ViZS)$.
778.37 20	0.40 20	2063.04	11/2 ⁻ ,13/2 ⁻ ,15/2 ⁻	1284.80	9/2-,11/2-	(M1,E2)		0.0182 87	I_{γ} : intensity deduced from $\gamma\gamma$ data. Mult.: α (K)exp=0.018 <i>14</i> (1974ViZS).
790.6 <i>4</i> 798.39 <i>25</i> 801.73 <i>25</i> 803.22 <i>25</i>	0.12 5 0.07 3 0.19 5 0.045 18	1680.33 2196.87 2279.38 2201.73	$(11/2^-, 13/2^-)$ $(11/2^-, 13/2, 15/2^-)$ $(11/2^-)$ $(11/2^-)$	890.79 1398.49 1477.18 1398.49	9/2 ⁻ (13/2) ⁻ (7/2,9/2,11/2) ⁻ (13/2) ⁻	(E2) (M1)		0.00898 0.0247	Mult.: 0.013 10 (1974ViZS). Mult.: α (K)exp=0.009 4 (1974ViZS). Mult.: α (K)exp=0.031 18 (1974ViZS).

$\gamma(^{193}\text{Au})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	α^{C}	Comments
808.3 <i>6</i> 816.81 <i>20</i>	0.045 <i>13</i> 0.53 9	2285.28 1680.33	$(11/2^+) (11/2^-, 13/2^-)$	1477.18 863.34	(7/2,9/2,11/2) ⁻ (13/2) ⁻	(E2)	0.00864	Mult.: α(K)exp=0.0093 34, K/L12=9.8 25 (1974ViZS).
840.9 <i>3</i> 854.80 <i>25</i> ^x 855.8 <i>4</i>	0.33 7 0.22 7 0.31 9	1379.96 2255.10	(11/2 ⁺) (11/2 ⁻ to 15/2 ⁻)	539.00 1400.37	(7/2 ⁺) 11/2 ⁻			Mult.: α (K)exp=0.0036 <i>14</i> (1974ViZS).
870.05 17	2.9 4	1733.42	(15/2 ⁻)	863.34	(13/2) ⁻	(E2)	0.00759	Mult.: α (K)exp=0.0060 <i>16</i> , K/L12=8.8 <i>20</i> (1974Vi7S): other: α (K)exp=0.0111 (1970Pl01)
877.76 17	4.8 6	1575.62	11/2-,13/2-	697.79	(15/2)-	E2	0.00746	Mult.: $\alpha(K)\exp=0.0067 \ 18, \ K/L12=7.1 \ 16$ (1974ViZS): other: $\alpha(K)\exp=0.018, \ (1970Pl01)$
883.6 4 885.3 4 ^x 890.5 4	0.16 <i>5</i> 0.26 <i>8</i> 0.057 <i>17</i>	2037.47 1776.03	(11/2,13/2) ⁻ 11/2 ⁻	1153.54 890.79	(11/2 ⁺) 9/2 ⁻			(1)/+ (123), outer. <i>a</i> (k)exp=0.0100 (1)/01101).
895.0 5 900.4 6 ×902.4 6	0.032 <i>11</i> 0.024 <i>10</i> 0.032 <i>13</i>	1684.73 2279.38	(9/2 ⁻ to 13/2 ⁻) (11/2 ⁻)	789.93 1379.96	9/2 ⁻ (11/2 ⁺)			
905.1 5 913.06 <i>15</i>	0.044 <i>18</i> 3.6 <i>4</i>	2285.28 1776.03	$(11/2^+)$ $11/2^-$	1379.96 863.34	$(11/2^+)$ $(13/2)^-$	E2	0.00689	Mult.: α (K)exp=0.0060 <i>11</i> , K/L12=5.8 <i>9</i>
932.37 15	14.6 15	1630.23	11/2 ⁻ ,13/2 ⁻	697.79	(15/2)-	(E2)	0.00660	(1974 VIZS). Mult.: α (K)exp=0.0064 10, K/L12=7.4 7 (1974 ViZS)
939.1 <i>4</i> 952.0 <i>4</i>	0.16 <i>4</i> 0.12 <i>4</i>	1829.90 1815.40	$(11/2^-, 13/2^-)$ $(9/2^-, 11/2^-, 13/2^-)$	890.79 863.34	$9/2^{-}$ (13/2) ⁻			(19/4 VIZ3).
957.42 25 963.1 6 966.1 4	0.35 7 0.044 <i>18</i> 0.13 <i>4</i>	1496.28 2157.63 1829.90	$(9/2)^{-}$ (11/2 ⁻) (11/2 ⁻ ,13/2 ⁻) (11/2 ⁻ ,t5/2 ⁻)	539.00 1194.29 863.34	$(7/2^+)$ $(9/2^-,11/2^-,13/2^-)$ $(13/2)^-$ $(13/2)^-$	(E1)	0.00239	Mult.: α (K)exp=0.0026 <i>15</i> (1974ViZS).
970.0 4 982.2 4	0.084 15	1680.33	(11/2 + 10 + 15/2) $(11/2^-, 13/2^-)$	697.79	9/2, 11/2 (15/2) ⁻			
985.9 <i>4</i> 994.61 <i>15</i>	0.13 4 3.5 4	1776.03 1284.80	9/2 ⁻ ,11/2 ⁻	789.93 290.19	9/2 11/2 ⁻	E2	0.00581	Mult.: α(K)exp=0.0047 9, K/L12=5.5 9 (1974ViZS); K/L1=4.4 (1958Br88).
x1003.5 5 1004.6 6 1007.8 4 1013.3 4	0.20 6 0.23 7 0.12 3 0.15 4 0.022 13	1794.84 2139.76 1876.27	$(13/2^{-})$ $(13/2^{-}, 15/2^{-})$ $(11/2^{-}, 13/2^{-})$ $(0/2^{-}, 11/2^{-}, 12/2^{-})$	789.93 1131.82 863.34 780.03	9/2 ⁻ 9/2 ⁻ ,11/2 ⁻ (13/2) ⁻			
1020.0 0 1035.54 <i>17</i> ×1037.22 <i>25</i>	0.032 13 1.8 3 0.19 7	1733.42	$(5/2^{-})$, $(15/2^{-})$	697.79	$(15/2)^{-}$	(E2)	0.00537	Mult.: $\alpha(K)\exp=0.0037 \ 11 \ (1974ViZS)$. Mult.: $\alpha(K)\exp=0.005 \ 4 \ (1974ViZS)$. Theory: $\alpha(K)(F1)=0 \ 00173 \ \alpha(K)(F2)=0 \ 00433$
1040.5 6	< 0.33	1930.00	11/2 ⁻ ,13/2 ⁻	890.79	9/2-			γ placed also in 3.80 h decay. Placement here confirmed by coincidence data (1974Vi7S)
1048.5 4	0.10 3	1939.18	(11/2,13/2)-	890.79	9/2-			

 $^{193}_{79}\mathrm{Au}_{114}\text{-}34$

100		
¹⁹³ Hg ε decay (11.8 h)	1974ViZS,1970Pl01	(continued)

γ ⁽¹⁹³Au) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	${\rm I}_{\gamma}^{\dagger}$	E _i (level)	${f J}^\pi_i$	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α^{c}	Comments
1052.00 <i>20</i> 1066.0 <i>6</i> 1070.6 <i>6</i>	1.20 <i>20</i> 0.046 <i>18</i> 0.017 9	1915.18 1930.00 2201.73	$(11/2^{-} \text{ to } 15/2^{-}) \\ 11/2^{-}, 13/2^{-} \\ (11/2^{-})$	863.34 863.34 1131.82	$(13/2)^{-}$ $(13/2)^{-}$ $9/2^{-}$ 11/2^{-}	(E2)		0.00520	Mult.: α (K)exp=0.0043 <i>13</i> (1974ViZS).
1075.90 25 1085.7 6	0.82 12	1939.18 1876.27	$(11/2^{-})^{-}$ $(11/2,13/2)^{-}$ $(11/2^{-},13/2^{-})^{-}$	863.34 789.93	$(13/2)^{-}$ $9/2^{-}$	(E2)		0.00498	Mult.: α (K)exp=0.0046 21 (1974ViZS).
1097.15 25 1109.80 ^e 17	0.23 6 2.5 4	1794.84 1400.37	$(13/2^{-})$ $(13/2^{-})$ $11/2^{-}$	697.79 290.19	$(15/2)^{-}$ $11/2^{-}$				Mult.: α (K)exp=0.0029 <i>15</i> (1974ViZS). Mult.: α (K)exp=0.0015 <i>4</i> (1974ViZS).
									Placement in level scheme by 1970Pl01. From α (K)exp 1974ViZS suggest that γ is E1 and does not place it in level scheme.
1123.2 <i>3</i> 1132 50 20	0.09 <i>4</i> 0.26 5	2255.10 1514 19	$(11/2^{-} \text{ to } 15/2^{-})$	1131.82	9/2 ⁻ ,11/2 ⁻ 5/2 ⁺				Mult.: α (K)exp=0.0041 28 (1974ViZS). Mult.: α (K)exp=0.0025 10 (1974ViZS)
1137.80 25	0.10 3	2291.01	$(1/2^{+})$ $(11/2^{+})$ $(11/2^{-}, 12/2^{-})$	1153.54	$(11/2^+)$				Mult.: $\alpha(K) \exp = 0.0042 \ 23 \ (1974 ViZS)$.
1139.5 5 1147.20 20 1149 3 6	0.30 6	2037.47	$(11/2, 13/2)^{-}$ $(13/2^{-}, 15/2^{-})$	890.79 863.34	$9/2^{-}$ $(13/2)^{-}$	(E2)		0.00440	Mult.: α (K)exp=0.0037 <i>14</i> (1974ViZS).
1149.5 0	0.86 12	2012.10	(13/2, 13/2) $(11/2 \text{ to } 15/2^{-})$	863 34	$(13/2)^{-}$	(E2)		0.00431	Mult : $\alpha(K) \exp(0.039 l_0 (1974 \text{ViZS}))$
1171.50 17	1.35.30	1869.26	$(11/2^{-} \text{ to } 15/2^{-})$	697.79	$(15/2)^{-}$	(E2)		0.00423	Mult.: $\alpha(K) \exp[-0.0035/10](1974 \text{ViZS})$.
1174.00 17	2.5 4	2037.47	$(11/2,13/2)^{-}$	863.34	$(13/2)^{-}$	(E2)		0.00421	Mult.: $\alpha(K) \exp[-0.0047 \ 16 \ (1974 \text{ViZS})]$.
1178.60 20	0.30 7	1876.27	$(11/2^{-}, 13/2^{-})$	697.79	$(15/2)^{-}$	(E2)		0.00418	Mult.: $\alpha(K) \exp[=0.0053 \ 22 \ (1974 \text{ViZS})]$.
^x 1184.0 5	0.08 3								
^x 1189.5 7	0.017 9								
1196.4 <i>3</i>	0.17 4	2125.37	$(11/2^{-})$	929.12	$(9/2^+)$				Mult.: α (K)exp=0.0039 24 (1974ViZS).
1199.5 <i>3</i>	0.085 25	2063.04	11/2-,13/2-,15/2-	863.34	$(13/2)^{-}$	(M1)		0.00892	Mult.: α (K)exp=0.013 7 (1974ViZS).
1205.3 6	0.035 14	1496.28	$(9/2)^{-}$	290.19	$11/2^{-}$				
x1212.2 6	0.019 6								
1217.7 5	0.036 11	1915.18	$(11/2^{-} \text{ to } 15/2^{-})$	697.79	$(15/2)^{-}$				
1232.20 20	2.3 3	1930.00	11/2-,13/2-	697.79	(15/2)-	E2		0.00385	Mult.: α (K)exp=0.0028 7, K/L12=5.4 <i>15</i> (1974ViZS).
1241.30 20	5.6 7	1939.18	$(11/2, 13/2)^{-}$	697.79	(15/2) ⁻	E2		0.00379	Mult.: <i>α</i> (K)exp=0.0034 7, K/L12=4.6 5 (1974ViZS).
^x 1254.1 3	0.22 5								Mult.: α (K)exp=0.0021 <i>16</i> (1974ViZS). Theory: α (K)(E1)=0.00124, α (K)(E2)=0.00304.
1261.9 <i>3</i> x1265.4 <i>5</i>	0.32 8 0.22 <i>4</i>	2125.37	$(11/2^{-})$	863.34	(13/2)-	(E2)		0.00368	Mult.: α (K)exp=0.0027 <i>12</i> (1974ViZS).
1267.90 20	0.68 10	1776.03	$11/2^{-}$	508.24	$7/2^{-}$	(E2)		0.00365	Mult.: α (K)exp=0.0035 <i>11</i> (1974ViZS).
1285.20 <i>20</i> ×1288 7 6	1.40 <i>20</i> 0.08 <i>4</i>	1575.62	11/2-,13/2-	290.19	11/2-	M1+E2	1.3 7	0.0050 15	Mult., δ : From α (K)exp=0.0041 11 (1974ViZS).
1294.3 4	0.13 4	2157.63	$(11/2^{-})$	863.34	$(13/2)^{-}$				
x1296.80 25	0.30 9	2107.00	(000.04	(10/2)				Mult.: $\alpha(K)\exp=0.0021$ 12 (1974ViZS). Theory: $\alpha(K)(E1)=0.00117$ $\alpha(K)(E2)=0.00286$
^x 1301.0 4	0.19 5								$a(\mathbf{K}_{1}(\mathbf{E}_{1}) = 0.00117, a(\mathbf{K}_{1}(\mathbf{E}_{2}) = 0.00260.$
193 Hg ε decay (11.8 h) 1974ViZS,1970Pl01 (continued)

γ ⁽¹⁹³Au) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. [‡]	α^{c}	Comments
x1309 5 7	0.016.8							
1314.51^d 20	$0.8^d 3$	2012.18	(13/2 ⁻ ,15/2 ⁻)	697.79	(15/2)-			I_{γ} : intensity divided on the basis of coincidence data (1974ViZS).
1314.51 ^{<i>d</i>} 20	0.80 ^d 32	2104.42	(11/2,13/2)-	789.93	9/2-			I _y : intensity division on the basis of $\gamma\gamma$ data (1974ViZS). Mult.: α (K)exp=0.0029 8 for the multiplet (1974ViZS). Theory: α (K)(E2)=0.00279.
1325.50 20	4.9 6	2023.45	$(11/2 \text{ to } 15/2^{-})$	697.79	$(15/2)^{-}$	(E2)	0.00336	Mult.: $\alpha(K) \exp[-0.0029 \ 6 \ (1974 \text{ViZS})]$.
1339.60 20	4.7 6	2037.47	$(11/2, 13/2)^{-}$	697.79	$(15/2)^{-}$	(E2)	0.00330	Mult.: $\alpha(K) \exp = 0.0022 \ 4 \ (1974 \text{ViZS}).$
1351.52 25	0.40 12	2215.18	$(13/2^{-}, 15/2^{-})$	863.34	$(13/2)^{-}$	(E2.M1)	0.0049 17	Mult.: $\alpha(K) \exp[0.0037 \ 18 \ (1974 \text{ViZS})]$.
^x 1353.5 3	0.28 8		(()	(,)		Mult.: $\alpha(K)\exp=0.0019 \ II \ (1974ViZS)$. Theory: $\alpha(K)(E1)=0.00109 \ \alpha(K)(E2)=0.00264$
^x 1359.4.6	0 11 5							$u(\mathbf{R})(\mathbf{E}) = 0.00109, u(\mathbf{R})(\mathbf{E}2) = 0.00201.$
1365.10.22	3.1.4	2063.04	11/213/215/2-	697.79	$(15/2)^{-}$	(E2)	0.00319	Mult.: $\alpha(K) \exp (0.0027.7.(1974 ViZS))$
×1387.68 10	0.128.3	2000101	11/2 ,10/2 ,10/2	0,,,,,,,	(10/=)	(22)	0100019	
1302.00.20	0.12° 5	2255 10	$(11/2^{-} \text{ to } 15/2^{-})$	863 31	$(13/2)^{-}$	(M1)	0.00610	Mult : $\alpha(K) = 0.0044.13(1074Vi7S)$
1392.00 20	1 75 26	1684 73	(11/2 10 13/2) $(0/2^{-} \text{ to } 13/2^{-})$	200.10	(15/2) $11/2^{-}$	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.00019	Mult: $\alpha(\mathbf{K}) \exp[-0.0044 \ IJ (17/4 \ ViZS)]$
1400.0.3	0.14.4	2201.01	(9/2 + 10 + 13/2)	290.19	$0/2^{-}$	(L2)	0.00507	Mult: $\alpha(K) \exp -0.00310 (17/4 VIZS).$
1400.0 5	0.14 4	2291.01	(11/2)	890.79	9/2			E2. E3. M1. $a(k)exp=0.004 \ 5 \ (1974 \ 12.5). a(k)exp covers E1,$
1406.60 20	2.2 3	2104.42	$(11/2, 13/2)^{-}$	697.79	$(15/2)^{-}$	(M1,E2)	0.0045 15	Mult.: α (K)exp=0.0038 <i>10</i> , K/L12=13 <i>5</i> (1974ViZS).
^x 1414.1 4	0.061 15							
1432.40 20	1.46 22	2130.38	$(11/2^{-} \text{ to } 15/2^{-})$	697.79	$(15/2)^{-}$	(E2,M1)	0.0044 15	Mult.: α (K)exp=0.0035 <i>12</i> (1974ViZS).
1442.00 20	0.33 7	2139.76	$(13/2^-, 15/2^-)$	697.79	$(15/2)^{-}$	(M1)	0.00569	Mult.: $\alpha(K) \exp = 0.0073 \ 29 \ (1974 \text{ViZS}).$
^x 1453.9 5	0.08 <i>3</i>							
1459.8 <i>4</i>	0.76 23	2157.63	$(11/2^{-})$	697.79	$(15/2)^{-}$			
1461.60 10	0.73 22	2159.13	$(11/2^{-} \text{ to } 15/2^{-})$	697.79	$(15/2)^{-}$	(M1,E2)	0.0042 14	Mult.: α (K)exp=0.0034 21 (1974ViZS).
1476.70 20	0.85 13	2285.28	$(11/2^+)$	808.58	$(9/2)^+$			Mult.: α (K)exp=0.0022 9 (1974ViZS).
1481.6 4	0.34 9	2291.01	$(11/2^+)$	808.58	$(9/2)^+$			Mult.: α (K)exp=0.0015 11 (1974ViZS).
1486.10 25	3.4 4	1776.03	$11/2^{-1}$	290.19	$11/2^{-}$	(E2)	0.00276	Mult.: $\alpha(K) \exp = 0.0023 \ 6 \ (1974 \text{ViZS}).$
1499.2 4	0.23 6	2196.87	$(11/2^{-}, 13/2, 15/2^{-})$	697.79	$(15/2)^{-}$			
1503.80 25	1.20 20	2201.73	$(11/2^{-})$	697.79	$(15/2)^{-}$	(E2)	0.00271	Mult.: α (K)exp=0.0027 8 (1974ViZS).
1517.50 25	0.80 12	2215.18	$(13/2^{-}, 15/2^{-})$	697.79	$(15/2)^{-}$	(M1)	0.00505	Mult.: α (K)exp=0.0051 <i>19</i> (1974ViZS).
1525.1 <i>3</i>	1.4 2	1815.40	$(9/2^{-}, 11/2^{-}, 13/2^{-})$	290.19	$11/2^{-}$	(E2)	0.00265	Mult.: α (K)exp=0.0021 9 (1974ViZS).
^x 1533.5 4	0.20 5							
1539.0 5	0.17 4	1829.90	$(11/2^{-}, 13/2^{-})$	290.19	$11/2^{-}$			
^x 1551.5 6	0.037 11							
1556.9 <i>3</i>	0.42 7	2255.10	$(11/2^{-} \text{ to } 15/2^{-})$	697.79	$(15/2)^{-}$			Mult.: α (K)exp=0.0045 27 (1974ViZS).
^x 1562.2 4	0.056 14							
1578.9 4	0.072 21	1869.26	$(11/2^{-} \text{ to } 15/2^{-})$	290.19	$11/2^{-}$			
1581.9 <i>3</i>	0.33 7	2279.38	$(11/2^{-})$	697.79	$(15/2)^{-}$			
1585.5 4	0.17 4	1876.27	$(11/2^{-}, 13/2^{-})$	290.19	$11/2^{-1}$			
^x 1591.4 6	0.013 6							

180

 $^{193}_{79}\mathrm{Au}_{114}$ -35

¹⁹³Hg ε decay (11.8 h) 1974ViZS,1970Pl01 (continued)

$\gamma(^{193}\text{Au})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J^π_i	E_f	\mathbf{J}_f^{π}	Comments
x1599.9 3	0.27 5					
^x 1608.5 d	0.012 6					
1624.5	0.65 10	1915.18	$(11/2^{-} \text{ to } 15/2^{-})$	290.19	$11/2^{-}$	
1639.4 3	3.4 5	1930.00	11/2-,13/2-	290.19	$11/2^{-}$	
1648.5 3	2.6 4	1939.18	$(11/2, 13/2)^{-}$	290.19	$11/2^{-}$	Mult.: $\alpha(K) \exp = 0.0018$ 5 evaluated from given I γ and ce data from 1958Br88.
^x 1674.2 <i>d</i>	0.019 8					
^x 1678.1 .	0.35 1					
^x 1683.8 .	0.039 12					
1693.4 6	0.027 11	2201.73	$(11/2^{-})$	508.24	7/2-	
1697.9	0.18 4	2206.37	$(11/2^{-})$	508.24	$7/2^{-}$	
x1700.0 e	0.026 10					
1721.3 5	0.030 9	2012.18	$(13/2^{-}, 15/2^{-})$	290.19	$11/2^{-}$	
x1732.3 4	0.37 7					
*1737.6.5	0.054 16	2205.20	(11/2+)	53 0.00	(7 (0±)	
1746.3	0.75 15	2285.28	$(11/2^+)$	539.00	$(7/2^{+})$	
1752.2 :	0.14 4	2291.01	$(11/2^+)$	539.00	$(7/2^{+})$	
x1760.94	0.034 10					
~1/68.4 (0.024 10	2270.29	(11/2-)	500 04	7/0-	
1//1.04	0.14 4	2279.38	(11/2)	508.24	1/2	
×1/83./ 0	0.023 9					
×1785.2 .	0.09 3					
×1705.2	0.021.8					
x1803.2	0.04012					
x1806.0 3	0.0239					
x1813 /	0.073 22					
x1827.5	0.073					
x1836.2 4	0.12.3					
x1848.5	0.12.5					
x1853.3	0.026 10					
x1856.0	0.025 10					
1869.2	0.30 8	2159.13	$(11/2^{-} \text{ to } 15/2^{-})$	290.19	$11/2^{-}$	
x1878.1 (0.021 9		× i ··· -i)		,	
^x 1881.3 .5	0.075 22					
^x 1885.4 .	0.056 17					
x1892.5 4	0.18 5					
^x 1898.4 .	0.040 14					
^x 1903.7 .	0.040 14					
1906.4 .5	0.054 19	2196.87	$(11/2^-, 13/2, 15/2^-)$	290.19	$11/2^{-}$	
^x 1909.8 4	0.16 4					
1916.4 3	0.73 15	2206.37	$(11/2^{-})$	290.19	$11/2^{-}$	
^x 1919.8 4	0.20 6					

181

 γ (¹⁹³Au) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
x1923.5 4	0.25 7					1988.6 6	0.004 2	2279.38	$(11/2^{-})$	290.19	$11/2^{-}$
1925.5 <i>4</i>	0.30 9	2215.18	$(13/2^{-}, 15/2^{-})$	290.19	$11/2^{-}$	^x 1997.3 5	0.008 2				
^x 1933.3 6	0.014 5					x2028.0 7	0.002 1				
^x 1954.9 4	0.14 4					^x 2032.6 7	0.002 1				
^x 1963.6 4	0.31 8					^x 2045.2 7	0.002 1				
^x 1968.2 6	0.013 5					x2060.1 5	0.010 4				
^x 1972.9 6	0.039 12										

[†] From 1974ViZS.

[‡] From 1974ViZS and based on α (K)exp and/or ce subshell ratios, unless otherwise noted. The photon and ce intensity scales were normalized through α of 218.1 γ , 129.8 γ , 573.25 γ , 932.37 γ (1974ViZS). The α (K)exp from 1970Pl01 are based on I(ce) of 1958Br88 and I γ of 1970Pl01 with the intensities normalized through α (K)(407.6 γ E2)=0.0301.

[§] From 1970Pl01.

182

[&] From intensity balance, this level is not fed directly by ε . From feeding pattern 98% of the decay out of this level follows γ 's seen in ¹⁹³Hg (11.8 h) ε .

[@] From intensity balance, this level is not fed directly by ε . From feeding pattern 93% of the decay out of this level follows γ 's seen in ¹⁹³Hg (11.8 h) ε .

[#] $\alpha(K)\exp=0.0044$ 18, K/L12=2.3 9. Theory: E1: $\alpha(K)=0.00337$, K/L12=7.02; E2: $\alpha(K)=0.00865$, K/L12=5.12; M1: $\alpha(K)=0.0265$, K/L12=6.26; M2: $\alpha(K)=0.068$, K/L12=5.46. From this it can be seen that numerous combinations of multipolarities are possible from the members of this doublet.

^{*a*} 1974ViZS show this γ as a doublet with second placement from a 1004 level. The 1004 level is fed by a 1040 γ which is shown as belonging to the 3.80 h decay, while the 746 γ deexciting the level is not shown as being of composite T_{1/2}.

^b If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁹³₇₉Au₁₁₄

Decay Scheme (continued)

184

¹⁹³₇₉Au₁₁₄

 $^{193}_{79}{\rm Au}_{114}$

$\frac{Decay \; Scheme \; (continued)}{Intensities: \; Relative \; I_{\gamma}}$

¹⁹³₇₉Au₁₁₄

186 W(11 B,4n γ) 2007Ok05

Target: ¹⁸⁶W foil (thickness 300 μ g/cm²); Projectile: ¹¹B, E=68 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO), γ (lin pol) using the YRAST Ball array of seven Clover Ge detectors, 16 single Ge detectors and three LEPs detectors. Deduce level scheme, spin and parity.

¹⁹³Au Levels

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	Comments
290.20 ^{&} 3	$11/2^{-}$	3.9 s <i>3</i>	
698.2 ^{&} 5	$15/2^{-}$		
790.4 [#] 5	9/2-		
1106.9@7	$11/2^{-}$		E(level): Level energy corrected in erratum.
1197.1 [#] <i>11</i>	$13/2^{-}$		
1419.7 ^{&} 7	19/2-		
1522.4 [@] 12	$15/2^{-}$		E(level): Level energy corrected in erratum.
1711.6 [#] 14	$17/2^{-}$		
1948.1 [°] 9	$21/2^+$		
$2081.2^{\circ} 10$	$25/2^{+}$		
$2100.9 \circ 15$	(19/2)		E(level): Level energy corrected in erratum.
$21/3.5^{\circ}$ 9	23/2		
2322.9 ^{°°} 10 2326 3 [°] 11	$\frac{21}{2}$ 29/2 ⁺		
$2378.4^{\&}$ 10	27/2-		Terminating state, configuration= πh^{-1} , $\otimes 8^+$ or 10 ⁺ isomer in the core nucleus ¹⁹⁴ Hg
$2477.0^{\&}$ 11	$31/2^{-1}$		Configuration = $\pi h_{1/2}^{-1} \otimes \eta_{1/2}^{-2}$.
2488.1 ^b 12	$31/2^+$		11/2 + 13/2
2701.5 ^{<i>a</i>} 12	33/2-		
2925.0 ^b 13	35/2+		
3155.9 ^{<i>a</i>} 13	$(37/2^{-})$		
3444.4 ^b 14	39/2+		
3897.0^{a} 14	$(41/2^{-})$		
4066.5 ⁰ 15	43/2+		
4351.6° 16	$47/2^+$		
$4/02.0^{-10}$ 15	(45/2) 51/2 ⁺		
5232.7 ^a 17	$(49/2^{-})$		
$57447^{b}21$	55/2+		
27.117 21	2012		

[†] From least-squares fit to $E\gamma$'s.

[‡] From Adopted Levels.

[#] Band(A): $h_{9/2}$ band, $\alpha = +1/2$.

[@] Band(a): h_{9/2} band, $\alpha = -1/2$. 215.3 γ in 2007Ok05 has been removed in the erratum.

& Band(B): $h_{11/2}$ band. Decoupled favored sequence.

^{*a*} Band(C): Band based on 33/2⁻. Continuation of $h_{11/2}$ band after band crossing. Second band crossing occurs at $\hbar\omega\approx0.22$ MeV.

^b Band(D): Band based on 31/2⁺.

^c Band(E): Band based on 21/2⁺.

				¹⁸⁶ W(¹¹	Β,4n γ)	2007Ok05	(continued)
					$\frac{\gamma}{\gamma}$	(¹⁹³ Au)	
Eγ [§]	$I_{\gamma}^{\$}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [†]	Comments
98.6 5	18.6 3	2477.0	31/2-	2378.4	27/2-		
133.1 5	48.7 5	2081.2	$25/2^+$	1948.1	$21/2^+$	Q	DCO=1.2 4
161.8 5	40.3 3	2488.1	31/2	2326.3	29/21	D E2	DCO=0.70 18 DCO=1.04.0
204.9 5	130.37	2376.4	21/2	2175.5	23/2	E2	POI = +0.12.15
224.5 5	109.1 6	2701.5	33/2-	2477.0	31/2-	M1+E2	DCO=0.80 9 POI = 0.05 10
245.1 5	47.3 4	2326.3	29/2+	2081.2	25/2+	E2	$POL=-0.05 \ 10.$ DCO=1.0 3 POL=+0.11 16.
285.1 7	20.9 4	4351.6	47/2+	4066.5	43/2+	E2	DCO=1.14 19 POI = 10.12 12
297.2 8	73.1 4	2378.4	27/2-	2081.2	25/2+	E1	DCO=0.55 9 POL=+0.12 9.
316.5 ^{&} 5	80.2 9	1106.9	11/2-	790.4	9/2-	M1+E2	DCO=0.88 <i>12</i> POL=-0.09 <i>7</i> .
406.7 ^{&} 9	48.4 7	1197.1	13/2-	790.4	9/2-	E2	DCO=1.2 <i>3</i> POL=+0.05 <i>9</i> .
408.0 5	306.5 10	698.2	$15/2^{-}$	290.20	$11/2^{-}$	$E2^{\ddagger}$	
415.5 ^{&} 9	32.7 3	1522.4	15/2-	1106.9	11/2-	E2	DCO=1.23 24
436.9 5	45.5 4	2925.0	35/2+	2488.1	31/2+	E2	POL=+0.04 23. DCO=1.14 18 POL=+0.08 0
454.4 5	104.9 5	3155.9	(37/2 ⁻)	2701.5	33/2-	E2	DCO=1.10 22 POL=+0.13 10.
500.2 5	100.0 5	790.4	9/2-	290.20	$11/2^{-}$	M1+E2 [‡]	
514.5 <mark>&</mark> 9	44.2 25	1711.6	17/2-	1197.1	13/2-	E2	DCO=1.05 24
519.4 5	36.1 5	3444.4	39/2+	2925.0	35/2+	E2	POL=+0.14 9. DCO=1.1 3 POL=+0.09 15
528.4 5	122.5 10	1948.1	$21/2^+$	1419.7	19/2-	E1	DCO=0.88 13
530.7 9	46.6 6	5232.7	(49/2 ⁻)	4702.0	(45/2 ⁻)	E2	POL=+0.06 8. DCO=1.05 23 POL=+0.10 7.
578.5 ^{&@} 9	11.9 <i>19</i>	2100.9	(19/2 ⁻)	1522.4	15/2-	E2	DCO=1.2 <i>3</i> POL=+0.2 <i>3</i> .
611.3 ^{&} 8	32.9 4	2322.9	$21/2^{-}$	1711.6	17/2-	E2	DCO=1.1 3
622.1 5	29.5 6	4066.5	43/2+	3444.4	39/2+	E2	POL=+0.02 14. DCO=1.09 19 POL=+0.11 9
682.8 9	9.3 <i>3</i>	5744.7	55/2+	5061.9	$51/2^+$	E2	DCO=0.96 21 POI =+0.05 10
710.3 9	10.3 3	5061.9	51/2+	4351.6	47/2+	E2	DCO=1.0 3
721.5 5	278.6 12	1419.7	19/2-	698.2	15/2-	E2	POL = +0.12 14. DCO=1.07 8 POL=+0.06 2.
741.1 5	106.8 6	3897.0	$(41/2^{-})$	3155.9	(37/2 ⁻)	E2	DCO=1.08 <i>13</i> POI =+0.13 <i>4</i>
753.8 5	99.2 6	2173.5	23/2-	1419.7	19/2-	E2	DCO=1.2 4 POL=+0.09 17.
805.0 5	81.3 7	4702.0	(45/2 ⁻)	3897.0	(41/2 ⁻)	E2	DCO=0.95 23 POL=+0.04 6.

[†] DCO's correspond to gates on ΔJ =2, quadrupole transition 408.0 γ unless otherwise stated. Expected DCO=1.0 for ΔJ =2,

Continued on next page (footnotes at end of table)

¹⁸⁶W(¹¹B,4n γ) 2007Ok05 (continued)

$\gamma(^{193}\text{Au})$ (continued)

quadrupole and 0.5 for $\Delta J=1$, dipole or dipole+quadrupole transitions. All DCO and POL values are from erratum published by the authors of 2007Ok05.

[‡] From Adopted Gammas. Used for gating and DCO analysis.

[§] From erratum of 2007Ok05. [&] DCO corresponds to gate on $\Delta J=1$, M1+E2, 500.2 γ . [@] Placement of transition in the level scheme is uncertain.

¹⁹²Os(⁷Li, $6n\gamma$) 1974Tj02

E(⁷Li)=58 MeV; measured γ , $\gamma\gamma$, $\gamma(\theta)$;Ge(Li) detectors.

¹⁹³Au Levels

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$3/2^{+}$		
258.0	5/2+		
290.1	$11/2^{-}$		
539.3	$(7/2^+)$		
697.8	$(15/2)^{-}$		
809.2	$(9/2)^+$		
890.7	9/2-		
1419.0	$(19/2)^{-}$		
1479.0	$(13/2^+)$		
1947.7	$(21/2)^+$	10.4 ns 8	$T_{1/2}$: From Adopted Levels. 12 ns in 1974Tj02.
2080.8	$(25/2^+)$		
2141.2	$(23/2^+)$		
2173.5	$(23/2^{-})$		
2378.7	$(27/2^{-})$		

[†] From 1974Tj02.

[‡] From Adopted Levels.

$\gamma(^{193}\mathrm{Au})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_f^{π}	Comments
133.1 [§]	14.1	2080.8	$(25/2^+)$	1947.7	$(21/2)^+$	$I_{\gamma}(45^{\circ})/I_{\gamma}(90^{\circ})=1.37.$
193.5 [§]	30.1	2141.2	$(23/2^+)$	1947.7	$(21/2)^+$	$I\gamma(45^{\circ})/I\gamma(90^{\circ})=1.08.$
205.2	72.8	2378.7	$(27/2^{-})$	2173.5	$(23/2^{-})$	$I\gamma(45^{\circ})/I\gamma(90^{\circ})=1.11.$
258.1 281.5 407.7 528.7	38.1 6.4 100 33.9	258.0 539.3 697.8 1947.7	5/2 ⁺ (7/2 ⁺) (15/2) ⁻ (21/2) ⁺	0.0 258.0 290.1 1419.0	3/2 ⁺ 5/2 ⁺ 11/2 ⁻ (19/2) ⁻	I _{γ} : includes contribution from ¹⁹² Os Coulomb excitation. I γ (45°)/I γ (90°)=0.97. I γ (45°)/I γ (90°)=1.06. I γ (45°)/I γ (90°)=1.16. I γ (45°)/I γ (90°)=0.80.
(539.0 [‡])		539.3	$(7/2^+)$	0.0	$3/2^{+}$	
(550.6 [‡]) 600.9 669.8	19.4 10.7	809.2 890.7 1479.0	(9/2) ⁺ 9/2 ⁻ (13/2 ⁺)	258.0 290.1 809.2	5/2 ⁺ 11/2 ⁻ (9/2) ⁺	$I\gamma(45^{\circ})/I\gamma(90^{\circ})=1.04.$ $I\gamma(45^{\circ})/I\gamma(90^{\circ})=1.77.$ $E_{\gamma}: 2014$ Th02 (p,2n γ) measure a 668.4 keV 2 γ ray in $\gamma\gamma$ spectra and do not find any signature of a doublet (without a broadened peak width) in coincidence with 550.6 γ . Evaluator considers 669.8 γ same as 668.4 γ .
721.2	77.8	1419.0	$(19/2)^{-}$	697.8	$(15/2)^{-}$	$I_{\gamma}(45^{\circ})/I_{\gamma}(90^{\circ})=1.20.$
754.5	32.5	2173.5	$(23/2^{-})$	1419.0	$(19/2)^{-}$	$I\gamma(45^{\circ})/I\gamma(90^{\circ})=1.27.$
1250.1	≈10	1947.7	$(21/2)^+$	697.8	$(15/2)^{-}$	

[†] Relative I γ at 90°.

[‡] γ expected from Adopted Levels, but not measured in this reaction. [§] Placement in level scheme from Adopted Levels. 1974Tj02 identify as preceding γ of 21/2⁺ isomer.

194 **Pt(p,2n** γ) **2014Th02**

E(p)=14 MeV. Target=1.3 mg/cm² thick ¹⁹⁴Pt. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma(\theta)$ using HORUS array with 12 HPGe detectors at Cologne tandem accelerator facility. Deduced levels, J, π , mixing ratios, B(M1), B(E1). Comparison with predictions of IBFM model calculations.

¹⁹³Au Levels

E(level) [†]	J ^{π @}	T _{1/2} &	Comments
0.0	3/2+		
38.234 17	$(1/2)^{+}$		E(level): From Adopted Levels.
224.83 9	3/2+		
258.01 7	5/2+		
290.20 3	$11/2^{-\&}$	3.9 s <i>3</i>	E(level): From Adopted Levels.
381.61 7	5/2+		
508.25 8	7/2-*	0.29 ns 2	
538.91 /	1/2* 7/2+		
607.44 8	(15/2) = &		
097.79 10	(13/2)		
/89.9/9	9/2 ~~ 0/2 ⁺		
808.00 9	9/2 2/2 ⁺		
827.99+ 10	$3/2^{-1}$		J^{-1} $I/2^{-1}$ discarded based on correlation analysis of 446 γ and 381 γ cascade.
863.42 15	(13/2)-00		
890.80 9	9/2 ⁻		
929.10 9	9/2		
985.01 12	$(7/2^+)$		
1089.65.79	(1/2)		
1105.90 13	7/2+		J^{π} : 9/2 is also possible from $\gamma\gamma(\theta)$ data, but discarded from γ to 3/2 ⁺ .
1119.01 21	3/2+		J ^{π} : 7/2 with $\delta(861\gamma) = -2.28 + 49 - 75$ is also possible, but it is inconsistent with
			log ft value in decay data.
1131.8 <i>3</i>	9/2 ⁻ ,11/2 ^{-&}		
1153.56 23	11/2+		
1194.3 4	(13/2 ⁻)		
1284.95 13	9/2 ⁻ ,11/2 ^{-&}		
1297.35 19	(3/2 to 11/2)		
1300.40 23	$(3/2 \text{ to } 11/2^+)$		
1330.91 15	$9/2^+$		
1343./1 21	$(1/2 \text{ to } 9/2^+)$		E(level): 1243.6 listed in table 1 of 20141h02 is a misprint (communications with 1st Author).
1355.40 17	(11/2 to 15/2 ⁻)		E(level),J ^π : From Adopted Levels. Level not listed in Table 1 of 2014Th02, however needed for 274.95γ from 1630 keV level.
1372.9 <i>3</i>	15/2,17/2-		
1379.89 [#] 16	$11/2^{+}$		
1398.56 24	$(13/2)^{-\&}$		
1400.4 4	11/2-&		
1417.98 15	$(5/2,7/2)^+$		
1419.1 <i>4</i>	$(19/2)^{-\&}$		
1463.10 23	$(1/2 \text{ to } 7/2^+)$		
1477.00 22	9/2+,11/2+,13/2+		J^{π} : Best fit to $\gamma\gamma(\theta)$ data is obtained for 13/2 -> 9/2 -> 5/2, yet 9/2 and 11/2 cannot be ruled out.
1496.1 3	$(9/2)^{-\&}$		
1526.8.3	$(9/2, 7/2^+)^{\&}$		
1571.7 3	(//=,//=)		
1575.79 20	11/2-,13/2-&		

Continued on next page (footnotes at end of table)

¹⁹⁴Pt(p,2n γ) 2014Th02 (continued)

¹⁹³Au Levels (continued)

E(level) [†]	J ^π @	Comments
1578.00 <i>17</i> 1598.6 <i>5</i>	$(5/2,7/2)^+$ &	
1630.4 <i>4</i> 1655 4 <i>4</i>	11/2 ⁻ ,13/2 ^{-&}	I^{π} : 2014Tb02 propose (3/2 to 11/2). Evaluator's note: 726y to (9/2 ⁺)
1658.5 <i>3</i> 1678.81 <i>19</i>	$(1/2^+ \text{ to } 9/2^+)$ $(3/2^+ \text{ to } 11/2^+)$	$3 \cdot 20141102$ propose (3/2 to 11/2). Evaluator s note: 720y to (3/2).
1733.49 22 1745.1 <i>3</i>	(15/2 ⁻)	

[†] From least-squares fit to γ -ray energies.

[‡] An uncertain placement of 289.0 γ in the literature from this level was not in agreement with the data in 2014Th02. [#] 516.7 γ in the literature from this level was not observed in $\gamma\gamma$ coincidence spectrum in 2014Th02. [@] From 2014Th02 based on $\gamma\gamma(\theta)$ results and γ -decay pattern, unless otherwise stated.

& From Adopted Levels.

¹⁹⁴**Pt(p,2n**γ) **2014Th02** (continued)

 γ (¹⁹³Au)

Unplaced γ rays are observed in coincidence spectra with a gated transition.

195

E_i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f J_f^{π}	Mult. [†]	δ^{\dagger}	Comments
		$x_{422.2}^{@} 3$ $x_{528.2} 4$					γ in coin with 721 γ .
		$x_{545.1}^{@}$ 3					
		$x_{913} = \frac{18}{2}$					γ in coin with 581 γ .
		×989.7& 3					
		×1052.5 ^{&} 3					
		^x 1097.3 [§] 3					
		^x 1115.6 3					γ in coin with 499 γ .
		^x 1171.5 [§] 3					
		^x 1174.1 ^{&} 3					
		$x_{1178.78}^{x} 3$					a in agin with 420a
		$x_{1232} 4 \$ 4$					γ in com with 429 γ .
		x1241 6§ 3					
		x1314.5 [§] 3					
		×1325.9 [§] 3					
		^x 1339.7 [§] 3					
		^x 1352.2 ^{&} 3					
		^x 1365.4 [§] 3					
		^x 1442.2 [§] 3					
		^x 1460.0 [§] 3					
		^x 1505.0 [§] 4					
224.92	2/2+	x1557.28 4	100 10	28 224 (1/2)+	D		S(O/D) + 0.11.15 (2014/Th02)
224.85	3/2	224.8 2	5 1	$0.0 3/2^+$	D		$\partial(Q/D) = +0.11 15 (20141 n 02).$
258.01	$5/2^{+}$	219.8 2	61	38.234 (1/2)+	Q		$\delta(O/Q) = +0.0259.$
201 (1	5/2+	258.0 <i>I</i>	100 10	$0.0 3/2^+$	D+Q	-0.75 11	
381.01	5/2	150.8 2	11	$224.83 3/2^{\circ}$	1521		
		343.4 2 381.6 <i>1</i>	100 10	$\begin{array}{ccc} 58.254 & (1/2) \\ 0.0 & 3/2^+ \end{array}$	[E2] ¹ D+Q	-2.93 +62-45	δ: Other possible value of -0.07 5 is ruled out by 2014Th02 from comparison with previous ce data.
508.25	7/2-	126.5	52	381.61 5/2+	[E1] [‡]		
		218.0 <i>I</i>	100 10	290.20 11/2-	[E2] [‡]		

¹⁹⁴**Pt(p,2n**γ) **2014Th02** (continued)

$\gamma(^{193}\text{Au})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ	\mathbf{E}_{f}	J_f^{π}	Mult. [†]	δ^{\dagger}	Comments
538.91	7/2+	157.2 2	21	381.61	$5/2^+$			
		280.9 2	26 4	258.01	$\frac{5}{2}^{+}$	D+Q	-0.06 3	
		538.9 1	100 10	0.0	$3/2^+$	Q		$\delta(O/Q) = -0.03 \ 13.$
687.44	7/2+	148.5 3	11	538.91	7/2+			
		305.9 2	91	381.61	5/2+	D+Q	+0.44 +22-19	δ: According to e-mail reply of Jan 17, 2014 from T. Thomas, value of δ should be +0.44 +22–19 as in authors' table 6, if $\delta(381\gamma)=-2.93$ is correct. Value of $\delta=+0.22 +22-19$ listed in authors' table 1 should be disregarded.
		429.4 <i>1</i>	100 10	258.01	$5/2^{+}$	D+Q	-0.19 +2-3	
		462.6 2	13 2	224.83	$3/2^{+}$	Q .		$\delta(O/Q) = 0.00 \ 20.$
		687.5 2	27 1	0.0	$3/2^{+}$	[E2] [‡]		
697.79	$(15/2)^{-}$	407.6 1	100	290.20	$11/2^{-}$			
789.97	9/2-	251.0 2	22	538.91	7/2+	[E1] [‡]		
		281.7 2	20 1	508.25	7/2-			
000 (0	o / o +	499.8 1	100 10	290.20	$\frac{11}{2^{-}}$	D 0	0.10.5	
808.60	9/21	269.6 2	31	538.91	7/2	D+Q	-0.13 5	δ : Uncertainty is 0.07 in Table 6 of 2014Th02.
		427.0 2	31	381.61	$5/2^+$	[E2]*		
827.00	2/2+	550.6 1	100 10	258.01	5/2 '	Q	0.20.7	$\delta(O/Q) = -0.03 \ 2.$
827.99	5/2	440.4 2	32.9	381.01	5/2* 2/2+	D+Q	-0.507	
		603.2 3	100 10	224.83	$3/2^{+}$	D+Q	+0.50'' + 36 - 28	E. Ensure entropy of description and entropy of the second s
		789.72 828.02	54 4 81 23	38.234	$(1/2)^{+}$	$D \pm O$	$\pm 0.78 \pm 81 \pm 45$	E_{γ} : Energy extracted from a triplet 2014Tb02 note. However, only
		020.0 2	01 25	0.0	5/2	DIQ	10.70 101 45	828.0v and $825.5v$ are listed.
863.42	$(13/2)^{-}$	165.6 5	>1	697.79	$(15/2)^{-}$			
		573.2 2	100 10	290.20	$11/2^{-1}$			
890.80	9/2-	382.5 2	100 10	508.25	$7/2^{-}$			
		600.6 1	84 17	290.20	$11/2^{-}$			
929.10	9/2+	241.7 <i>3</i>	39 10	687.44	7/2+	D+Q	-0.12 5	
		390.1 3	29 2	538.91	7/2+	D		$\delta(Q/D) = +0.03 \ 8.$
		547.57	100 10	381.61	5/21	Q +		$\delta(0/Q) = -0.03$ /.
000 (1	7.0+	638.9 2	14 5	290.20	$11/2^{-}$	[E1]÷		
983.61	7/21	155.6 4	21	827.99 528.01	3/2			
		444.6 4	10 4	258.91	1/2 5/2+	$D \downarrow O$	+2.54 + 30.25	I_{γ} : 100 <i>10</i> in table 1 is a misprint (communications with 1st Author).
		758.8.2	100 <i>10</i> 56 <i>4</i>	238.01	$\frac{3}{2}^{+}$	D+Q O	+2.34 +30-23	$\delta(\Omega/\Omega) = +0.02.21$
1085 35	$(7/2^{+})$	295.4.3	100 10	789.97	9/2-	≺ 111‡		
1005.55	(12)	577 1 0	22.2	508.25	7/2-	[E1] [†]		
		702 7 2	23 3	201.61	1/2 5/0+		· 0.26 [#] · 21.10	
		105.1 2	5/4	381.01	5/2	D+Q	$+0.30^{+}+21-19$	
		827.5 3	40.5	258.01	5/2 '	D+Q	+0.48" 16	

196

NUCLEAR DATA SHEETS

 $^{193}_{79}\mathrm{Au}_{114}\text{-}51$

¹⁹⁴**Pt(p,2n** γ) 2014Th02 (continued)

$\gamma(^{193}\text{Au})$ (continued)

E_i (level)	J^π_i	Eγ	Iγ	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
1085.35	$(7/2^+)$	860.5 <i>3</i>	63 8	224.83 3/2+	[E2] [‡]		
1089.65		581.4 2	100	508.25 7/2-			
1105.90	$7/2^{+}$	277.9 2	20 4	827.99 3/2+	[E2] [‡]		
	.,_	567.1 3	59 12	538.91 7/2+	D+O	+0.32 + 22 - 19	
		724.3 2	100 10	381.61 5/2+	D+Q	+0.40 11	
		847.8 <i>3</i>	35 7	258.01 5/2+	D+Q	+0.28 5	
1119.01	3/2+	861.0 2	100	258.01 5/2+	M1+E2	+1.33 40	δ : Other possible value of +0.35 8 is ruled out by 2014Th02 from comparison with previous ce data of 1974ViZS (193HG EC Decay).
1131.8	9/2-,11/2-	341.8 <i>3</i>	100	789.97 9/2-			
1153.56	$11/2^{+}$	344.9 <i>3</i>	63 13	808.60 9/2+	D		$\delta(Q/D) = -0.02 5.$
		614.7 <i>3</i>	100 10	538.91 7/2+	Q		$\delta(O/Q) = +0.03 \ 9.$
1194.3	$(13/2^{-})$	404.3 <i>3</i>	100	789.97 9/2-			
1284.95	9/2-,11/2-	394.0 <i>3</i>	100	890.80 9/2-			
		776.6 2	35 7	508.25 7/2-			
1007.05	(2) (2 + 11) (2)	994.9 2	54 11	290.20 11/2-			
1297.35	(3/2 to 11/2)	207.73	19 4	1089.65			
1200 40	$(2/2 + 11/2^{+})$	/89.1 2	100 10	$508.25 \ 1/2$			
1300.40	$(3/2 \ 10 \ 11/2^{+})$	213.1 3	12 5	$1085.35 (1/2^{\circ})$			
1330.91	9/2+	347.3 <i>3</i>	100 <i>10</i>	983.61 7/2 ⁺	D+Q	-0.45 24	δ: From Figure caption A.2. A value of $δ$ =-0.20 13 in Table 1 is a misprint (communications with 1st Author).
		401.8 <i>3</i>	95 19	929.10 9/2+			
		522.3 <i>3</i>	53 11	808.60 9/2+			
		643.5 <i>3</i>	89 18	687.44 7/2+			
		949.3 <i>3</i>	28 6	381.61 5/2+			
1343.71	$(1/2 \text{ to } 9/2^+)$	962 <i>3</i>	19 6	381.61 5/2+			
		1085.7 2	100 10	258.01 5/2+			
1372.9	15/2,17/2-	675.1 <i>3</i>	100	697.79 (15/2)-			
1379.89	$11/2^{+}$	571.3 2	100 10	808.60 9/2+	D		$\delta(Q/D) = +0.05$ 7.
		692.5 <i>3</i>	98 20	687.44 7/2+	Q .		$\delta(O/Q) = -0.05 \ 8.$
		840.9 <i>3</i>	77 15	538.91 7/2+	[E2] [‡]		
1398.56	$(13/2)^{-}$	535.1 <i>3</i>	100 10	863.42 (13/2)-			
		700.8 <i>3</i>	49 20	697.79 (15/2)-			
1400.4	11/2-	537.0 <i>3</i>	100	863.42 (13/2)-			
1417.98	$(5/2,7/2)^+$	434.4 <i>3</i>	58 12	983.61 7/2+			
		488.9 <i>3</i>	64 13	929.10 9/2+			
		590.0 <i>3</i>	67 17	827.99 3/2+			
		609.3 <i>3</i>	32.6	808.60 9/2+			
1410.1	(10/2)	879.1 3	100 10	538.91 7/2+	0		
1419.1	$(19/2)^{-1}$	721.3 3	100	697.79 (15/2)-	Q		$\delta(O/Q) = +0.09 \ I2.$

197

 $^{193}_{79}\mathrm{Au}_{114}\text{-}52$

¹⁹⁴**Pt(p,2n** γ) 2014Th02 (continued)

 γ (¹⁹³Au) (continued)

E _i (level)	${f J}^\pi_i$	Eγ	Iγ	E_f J_f^{π}	Mult. [†]	δ^{\dagger}	Comments
1463.10	(1/2 to 7/2 ⁺)	572.3 <i>3</i> 635.1 <i>3</i>	100 <i>10</i> 21 5	890.80 9/2 ⁻ 827.99 3/2 ⁺	[E1] [‡]		
1477.00	9/2+,11/2+,13/2+	668.4 2	100	808.60 9/2+			δ (Q/D)=+0.28 <i>17</i> for J(1477)=9/2, +0.47 <i>8</i> for J(1477)=11/2; δ (O/O)=+0.02 <i>9</i> for J(1477)=13/2.
1496.1	(9/2)-	364.3 <i>3</i> 706.2 <i>3</i>	100 <i>10</i> 32 6	1131.8 9/2 ⁻ ,11/2 ⁻ 789.97 9/2 ⁻	D+Q	-0.53 +10-11	
1526.8 1571.7	(9/2,7/2 ⁺)	987.9 <i>3</i> 274.4 <i>3</i> 482 1 <i>3</i>	100 100 <i>10</i> 17 3	538.91 7/2 ⁺ 1297.35 (3/2 to 11/2) 1089.65			
1575.79	11/2 ⁻ ,13/2 ⁻	290.8 <i>3</i> 712.5 <i>3</i>	30 6 10 3	$\begin{array}{c} 1089.03 \\ 1284.95 \\ 9/2^{-},11/2^{-} \\ 863.42 \\ (13/2)^{-} \\ (15/2)^{-} \end{array}$			
1578.00	(5/2,7/2)+	877.9 3 472.1 2 750.0 2	100 <i>10</i> 100 <i>10</i> 17 6	697.79 (15/2) 1105.90 7/2 ⁺ 827.99 3/2 ⁺			
1598.6 1630.4 1655.4	11/2 ⁻ ,13/2 ⁻	404.3 <i>3</i> 932.6 <i>3</i> 726.3 <i>3</i>	100 100 100	$\begin{array}{rrrr} 1194.3 & (13/2^{-}) \\ 697.79 & (15/2)^{-} \\ 929.10 & 9/2^{+} \end{array}$			
1658.5 1678.81	$(1/2^+ \text{ to } 9/2^+)$ $(3/2^+ \text{ to } 11/2^+)$	1276.9 <i>3</i> 695.2 <i>2</i>	100 100 <i>10</i>	381.61 5/2 ⁺ 983.61 7/2 ⁺			
1733.49	(15/2 ⁻)	360.5 <i>4</i> 869.9 <i>3</i>	30 8 100 <i>10</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
1745.1		1035.9 <i>3</i> 1236.8 <i>3</i>	60 <i>12</i> 100	697.79 (15/2) ⁻ 508.25 7/2 ⁻			

[†] From $\gamma\gamma(\theta)$ data (2014Th02), except otherwise noted.

[‡] 2014Th02 assume from selection rule of G-ray transition. 2014Th02 list in parentheses, however, the evaluator list in square brackets.

[§] γ in coin with 407-keV gate.

φ in coin with 107 keV gate.
φ γ in coin with 573-keV gate.
φ γ in coin with 675-keV gate.
2014Th02 list value in parentheses to indicate that angular correlation analysis did not yield a distict δ value.

 $x \gamma$ ray not placed in level scheme.

NUCLEAR DATA SHEETS

Ir(*α*,**xn***γ*) **1979Go15,1985Ko13**

1985Ko13: ¹⁹³Ir(α ,4n γ), E(α)=50 MeV; measured E γ , I γ (Ge(Li)), E(ce), Ice (mag spect), prompt and delayed (ce)(ce) and (ce) γ , perturbed angular distributions; confirmed Configuration=($\nu i_{13/2}2$) core structure of the rotation-aligned h11/2 proton-hole band.

1979Go15: ¹⁹³Ir(α ,4n γ), E(α)=51 MeV; measured E γ , I γ (Ge(Li)), $\gamma\gamma$, $\gamma(\theta)$ (6 angles), $\gamma(t)$. Earlier reports: 1977Go12, 1976Go22.

1975LaYS: ¹⁹³Ir(α ,4n γ), E(α)=42-52 MeV; natural Ir targets; measured E γ , I γ (intrinsic germanium detectors), E(ce), Ice (Si(Li)), $\gamma\gamma$, $\gamma(\theta)$;

1975StZE: ¹⁹¹Ir(α ,2n γ), E(α)=23-27 MeV; measured E γ , I γ (Ge(Li)), E(ce), Ice (Si(Li)), $\gamma\gamma$, $\gamma(\theta)$.

1974Tj02: ¹⁹¹Ir(α ,2n γ), E(α)=26, 29, 42 MeV; measured E γ , I γ (Ge(Li)), $\gamma\gamma$ coin, $\gamma\gamma$ (t), $\gamma(\theta)$ (30° and 90°).

¹⁹³Au Levels

The level scheme is that proposed by 1979Go15 with g.s. band added from 1975StZE and 1974Tj02. For a discussion of the rotation-aligned h11/2 proton-hole bands see 1979Go15, 1985Ko13 and references cited therein.

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	$3/2^{+b}$		
38.2	$(1/2)^{+b}$		
224.8	$(3/2)^{+b}$		
258.0#	$5/2^{+b}$		
$290.2^{@}$	$11/2^{-b}$	3.9 8.3	Tuz: From Adopted Levels
508.3	$7/2^{-}$	5.7 6 5	
539.0 [#]	7/2+		
697.8 [@]	$15/2^{-}$		
789.9	9/2-		
808.6 [#]	9/2+		
863.4 <mark>&</mark>	$13/2^{-}$		
890.8	9/2-		
1131.8	$(11/2^{-})^{c}$		J^{π} : adopted $9/2^{-}, 11/2^{-}$.
1153.5#	$11/2^{+c}$		
1194.3	$(13/2^{-})^{\circ}$		$W_{\rm c}$ adopted $0/2^{-}$ 11/2 ⁻
1204.0	11/2		J . adopted $9/2$, $11/2$.
1372.9	$(15/2^{-})$		I^{π} : adopted (13/2 ⁻)
1/18 0@	(13/2)		5 . adopted (15/2).
1410.9 1478 4 [#]	$(13/2^+)$		
1496.3	(13/2)		
1946.9	21/2+	10.4 ns 8	$T_{1/2}$: from (ce(L2) 133 γ)(ce(K) 408 γ)(t) (1985Ko13). Others: 15 ns 2 (1979Go15), 12 ns 2 (1974Ti02).
2079.8	$25/2^+$	2.51 ns 13	$T_{1/2}$: (ce(K) 245 γ)(ce(L2) 133 γ)(t) (1985Ko13).
2087.1 ^{&}	$21/2^{-}$		
2140.0	$23/2^{(+)}$		
2172.7 [@]	23/2-		
2324.7	$27/2^+$	<0.2 ns	$T_{1/2}$: (ce(L2) 162 γ)(ce(K) 245 γ)(t) (1985Ko13).
2377.7 [@]	27/2-	0.79 ns 8	 T_{1/2}: (ce(L2) 99γ)(ce(K) 205K)(t) (1985Ko13). Other:<3 ns (1979Go15). g-factor≤0.7 (1985Ko13); from integral perturbed angular distribution measurements with external magnetic fields.
2476.4 [@]	31/2-	3.52 ns 18	g-factor=0.3 2 (1985Ko13) from integral perturbed angular distribution measurements with external magnetic fields.
2486.5 ^a	31/2+	150 ns 50	$T_{1/2}$: (ce(K) 225γ)(ce(L2) 99γ)(t) (1985Ko13). Other: 6 ns 2 (1979Go15). $T_{1/2}$: (ce(K) 244γ)γ(t) (1985Ko13). Other:≥100 ns (1979Go15).

Continued on next page (footnotes at end of table)

$Ir(\alpha, xn\gamma)$ 1979Go15,1985Ko13 (continued)

¹⁹³Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
2700.9 [@]	35/2-	1.80 ns 9	g-factor=0.13 <i>11</i> (1985Ko13); from integral perturbed angular distribution measurements with external magnetic fields.
2923.2 ^a	35/2+		$1_{1/2}$: (ce(K) 223 γ)(t) (1983K013).
3154.9 [@] 3441.7 ^a 3895.9 [@] 4063.2 ^a	39/2 ⁻ 39/2 ⁺ 43/2 ⁻ 43/2 ⁺	<0.5 ns	$T_{1/2}$: (ce(K) 454 γ)(t) (1985Ko13).

[†] Rounded-off values from Adopted Levels.

[‡] From 1979Go15 and/or 1974Tj02, unless otherwise noted. Assignments are based on coincidence data and γ -ray multipolarities. 1985Ko13 state that their experimental conversion coefficients (not given) confirm the J^{π} assignments of 1979Go15. Many assignments are the same as adopted values but given under parentheses.

g.s. band.

- [@] Favored h11/2 decoupled band.
- & Unfavored h11/2 decoupled band.
- ^{*a*} Rotation-aligned band based on $31/2^+$ level.

^b From Adopted Levels.

^c J^{π} suggested by 1975StZE.

$\gamma(^{193}\mathrm{Au})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [§]	Comments
(32.21 & 3)		290.2	$11/2^{-}$	258.0	5/2+		
(38.23 & 2)		38.2	$(1/2)^+$	0.0	3/2+		
98.7 <i>3</i>	31	2476.4	31/2-	2377.7	27/2-	(E2) ^b	Mult.: A ₂ =+0.32 11, A ₄ =-0.06 17 (1979Go15).
132.9 3	11 <i>1</i>	2079.8	25/2+	1946.9	21/2+	E2 ^b	Mult.: A_2 =+0.32 3, A_4 =-0.02 5 (1979Go15), A_2 =+0.30 5 (1975LaYS).
							Mult.: prompt decay of 2079.8 level (2.51 ns) consistent with E2 assignment.
161.8 <i>3</i>	72	2486.5	31/2+	2324.7	27/2+	(E2) ^{<i>a</i>}	Mult.: $\alpha(\exp)=0.97\ 20\ (1979Go15)$; theory: $\alpha(E2)=0.792$, $\alpha(E1)=0.123$, $\alpha(M1)=1.84$; A ₂ =+0.12 4, A ₄ =-0.01 6 (1979Go15).
186.6 [@]		224.8	(3/2)+	38.2	$(1/2)^+$		$I\gamma(30^{\circ})/I\gamma(90^{\circ})=0.74$ (1974Tj02). I_{γ} : $I\gamma/I\gamma(407.6)=0.109$ (1974Tj02).
193.1 <i>3</i>	52	2140.0	$23/2^{(+)}$	1946.9	$21/2^+$	D+Q	Mult.: $A_2 = -0.11 5$, $A_4 = -0.04 8$ (1979Go15).
204.9 3	17 2	2377.7	27/2-	2172.7	23/2-	(E2) ^b	Mult.: A_2 =+0.32 4, A_4 =-0.04 6 (1979Go15), A_2 =+0.31 4 (1975LaYS).
218.1		508.3	7/2-	290.2	11/2-		$I\gamma(30^{\circ})/I\gamma(90^{\circ})=1.03 \ (1974Tj02).$ $I_{\gamma}: I\gamma/I\gamma(407.6)=0.307 \ (1974Tj02).$
219.9 [@]		258.0	5/2+	38.2	$(1/2)^+$		Iγ(30°)/Iγ(90°)=1.03 (1974Tj02). I _γ : Iγ/Iγ(407.6)=0.116 (1974Tj02).
224.5 3	8 1	2700.9	35/2-	2476.4	$31/2^{-}$	(E2) ^b	Mult.: $A_2 = +0.34 4$, $A_4 = -0.06 6$ (1979Go15).
244.9 3	11 3	2324.7	27/2+	2079.8	25/2+	(M1) ^{<i>a</i>}	Mult.: $\alpha(exp)=0.72 \ 20 \ (1979Go15)$; theory: $\alpha(M1)=0.579$, $\alpha(E2)=0.192$; A ₂ =0.00 3, A ₄ =+0.02 5 (1979Go15).
258.1 [@]		258.0	5/2+	0.0	3/2+		$I\gamma(30^{\circ})/I\gamma(90^{\circ})=0.87$ (1974Tj02). I_{γ} : $I\gamma/I\gamma(407.6)=2.89$ (1974Tj02).

Continued on next page (footnotes at end of table)

Ir(*α*,**xn***γ*) **1979Go15,1985Ko13** (continued)

γ ⁽¹⁹³Au) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult. [§]	δ	Comments
269.2 ^{#c}		808.6	9/2+	539.0	7/2+			γ not seen in ¹⁹³ Hg decay.
281.5 [@]		539.0	7/2+	258.0	$5/2^{+}$			$I_{\gamma}(30^{\circ})/I_{\gamma}(90^{\circ})=0.77$ (1974Ti02).
					- 1			I_{γ} : $I_{\gamma}/I_{\gamma}(407.6) = 0.104 \ (1974Tj02).$
281.6 [#]		789.9	9/2-	508.3	$7/2^{-}$			
298.0 <i>3</i>	72	2377.7	27/2-	2079.8	$25/2^+$			$A_2 = -0.13 4$, $A_4 = +0.02 6$ (1979Go15).
342.4		1131.8	$(11/2^{-})$	789.9	9/2-			
344.1#		1153.5	$11/2^{+}$	808.6	9/2+			
364.9 [#]		1496.3		1131.8	$(11/2^{-})$			
382.2 [@]		890.8	9/2-	508.3	7/2-			$I\gamma(30^{\circ})/I\gamma(90^{\circ})=1.66 (1974Tj02).$ $I_{\gamma}: I\gamma/I\gamma(407.6)=0.449 (1974Tj02).$
394.5 [#]		1284.8	$11/2^{-}$	890.8	9/2-			
404.8 [#]		1194.3	$(13/2^{-})$	789.9	9/2-			
407.6 <i>3</i>	100 7	697.8	15/2-	290.2	11/2-	(E2) ^b		Mult.: $A_2 = +0.28 \ 2$, $A_4 = -0.03 \ 3 \ (1979Go15)$, $A_2 = +0.28 \ 2 \ (1975LaYS)$; $I\gamma(30^\circ)/I\gamma(90^\circ) = 1.41$ (1974Tj02).
436.7 <i>3</i>	72	2923.2	$35/2^{+}$	2486.5	$31/2^{+}$	(E2) ^b		Mult.: $A_2 = +0.39 \ 11$, $A_4 = -0.05 \ 17 \ (1979Go15)$.
454.0 <i>3</i>	62	3154.9	39/2-	2700.9	35/2-	(E2) ^b		Mult.: A ₂ =+0.39 <i>13</i> , A ₄ =-0.09 <i>19</i> (1979Go15).
500.0 [#]		789.9	9/2-	290.2	$11/2^{-}$			
518.5 <i>3</i>	31	3441.7	$39/2^{+}$	2923.2	$35/2^{+}$	(E2) ^b		Mult.: $A_2 = +0.21 \ 8$, $A_4 = -0.01 \ 12 \ (1979Go15)$.
527.9 3	42 3	1946.9	21/2+	1418.9	19/2-	E1		Mult.: from α (K)exp=0.0075 <i>15</i> (1975LaYS); theory: α (K)(E1)=0.00637; A ₂ =-0.07 <i>2</i> , A ₄ =+0.01 <i>3</i> (1979Go15); A ₂ =-0.26 <i>2</i> (1975LaYS); I γ (30°)/I γ (90°)=0.94 (1974Tj02). I $_{\gamma}$: I γ /I γ (407.6)=0.229 (1974Tj02).
535.7 [@]		1398.5	(15/2 ⁻)	863.4	13/2-	M1+E2		Mult.: α (K)exp=0.065 <i>13</i> (1975LaYS); theory: α (K)(M1)=0.0583, α (K)(E2)=0.0162; A ₂ =+0.28 5 (1975LaYS); I γ (30°)/I γ (90°)=1.19 (1974Tj02). I _{γ} : I γ /I γ (407.6)=0.143 (1974Tj02). δ : adopted δ =1 4 + <i>1</i> 2-5 from ¹⁹³ Hg decay
539.3 [@]		539.0	7/2+	0.0	3/2+			$I_{\gamma}(30^{\circ})/I_{\gamma}(90^{\circ})=1.24 (1974Tj02).$ $I_{\nu}: I_{\nu}/I_{\nu}(407.6)=0.201 (1974Tj02).$
551.2 [@]		808.6	9/2+	258.0	5/2+			A ₂ =+0.22 8 (1975LaYS); $I\gamma(30^{\circ})/I\gamma(90^{\circ})=1.19$ (1974Tj02). L : $I_V/I_V(407.6)=0.172$ (1974Tj02)
572.9 3	62	863.4	13/2-	290.2	11/2-	M1+E2	+0.36 7	Mult.: α (K)exp=0.053 <i>I1</i> (1975LaYS); theory: α (K)(M1)=0.0489 A ₂ =+0.18 <i>δ</i> , A ₄ =+0.08 <i>9</i> (1977Go12,1979Go15); A ₂ =+0.25 <i>δ</i> (1975LaYS); I _Y (30°)/I _Y (90°)=1.43 (1974Tj02). I _Y : I _Y /I _Y (407.6)=0.342 (1974Tj02). δ : from $\gamma(\theta)$ (1977Go12), δ not reported in 1979Go15.
600.9 [@]		890.8	9/2-	290.2	11/2-			$I\gamma(30^\circ)/I\gamma(90^\circ)$ ≈1.7 (1974Tj02). I_{γ} : $I\gamma/I\gamma(407.6)$ =0.08 (1974Tj02).
614.9 [#]		1153.5	$11/2^{+}$	539.0	7/2+			, <u>,</u> , , , , , , , , , , , , , , , , ,
621.5 <i>3</i>	21	4063.2	$43/2^{+}$	3441.7	39/2+	(E2) ^b		Mult.: $A_2 = +0.22$ 12, $A_4 = -0.01$ 18 (1979Go15).
668.2 3	5 1	2087.1	21/2-	1418.9	19/2-			Mult.: A_2 =+0.18 3, A_4 =-0.01 5 (1979Go15); A_2 =+0.21 5 (1975LaYS).
669.8 [@]		1478.4	$(13/2^+)$	808.6	9/2+			Mult.: α (K)exp=0.043 9 (1975LaYS); theory: α (K)(M1)=0.0326, α (K)(E2)=0.0102;

Ir(*α*,**xn***γ*) **1979Go15,1985Ko13** (continued)

$\gamma(^{193}\text{Au})$ (continued) E_{γ}^{\dagger} I_{γ}^{\ddagger} Mult.§ J_f^{π} δ E_i(level) J_i^{π} \mathbf{E}_{f} Comments $I_{\gamma}(30^{\circ})/I_{\gamma}(90^{\circ})=1.23$ (1974Tj02). Data suggests a M1, $\Delta J=1$ transition, level scheme requires E2 multipolarity. Possibly a doublet with the major component the 668.2 γ from the 2087-keV 21/2- level. I_{γ} : $I_{\gamma}/I_{\gamma}(407.6) = 0.135 (1974Tj02).$ 1372.9 +0.396674.8 3 61 $17/2^{-}$ 697.8 15/2-M1+E2Mult.: α (K)exp=0.035 8 (1975LaYS); theory: $\alpha(K)(M1) = 0.0320 A_2 = +0.25 5, A_4 = +0.05 8$ (1977Go12,1979Go15); A2=+0.28 5 $(1975LaYS); I\gamma(30^{\circ})/I\gamma(90^{\circ})=1.49 (1974Tj02).$ I_{γ} : $I_{\gamma}/I_{\gamma}(407.6) = 0.068 (1974Tj02)$. δ: from $\gamma(\theta)$ (1977Go12) (mistakenly shown as δ of 720.0 γ in table 1 of 1977Go12), δ not reported in 1979Go15. Adopted $\delta = 1.5 + 10 - 5$ from ¹⁹³Hg decay. Mult.: α (K)exp=0.013 3 (1975LaYS); theory: 720.9 3 79.8 1418.9 $19/2^{-}$ 697.8 15/2-E2 $\alpha(K)(E2)=0.00877, \alpha(K)(M1)=0.0270;$ $A_2 = +0.27 3$, $A_4 = -0.02 5$ (1979Go15); $\tilde{A_2}$ =+0.26 3 (1975LaYS); $I\gamma(30^\circ)/I\gamma(90^\circ)$ =1.17 (1974Ti02). I_{γ} : $I_{\gamma}/I_{\gamma}(407.6) = 0.413 (1974Tj02)$. 3154.9 39/2-741.0.3 $(E2)^{b}$ Mult.: A₂=+0.37 13, A₄=-0.13 19 (1979Go15). 31 3895.9 $43/2^{-}$ 753.8 3 25 2 2172.7 $23/2^{-}$ 1418.9 19/2-Mult.: $\alpha(K) \exp[0.014 \ 3 \ (1975 \text{LaYS})]$: theory: (E2) $\alpha(K)(E2)=0.00802, \alpha(K)(M1)=0.0241;$ $A_2 = +0.32 3$, $A_4 = -0.04 5$ (1979Go15); $A_2 = +0.33 4$ (1975LaYS). 777.5# 1284.8 $11/2^{-}$ 508.3 7/2-(994.61 & 15) 1284.8 $11/2^{-}$ 290.2 11/2-1249.3 3 $21/2^{+}$ 11 *1* 1946.9 697.8 15/2-Mult.: $A_2 = +0.31 \ 3$, $A_4 = +0.02 \ 5 \ (1979Go15)$. (E3) Stretched octupole character inferred from $\gamma(\theta)$. The partial $T_{1/2}$ for the 1947.0 level via 1249.3γ (=50 ns) is low relative to the Weisskopf single-particle estimate for E3 (=116 ns). E3 is nevertheless preferable to other

[†] From 1979Go15, unless otherwise noted.

[‡] From 1979Go15; arbitrary units, relative to $I\gamma(407.6\gamma)=100$ in ¹⁹³Ir(α ,4n γ), E(α)=51 MeV.

§ I(ce)/I γ normalized to α (K)(E2)=0.030 for the 407.6 γ .

& From Adopted Gammas.

[@] From 1974Tj02; uncertainties estimated to be 0.3 keV, as in 1979Go15 (evaluator).

[#] From 1975StZE.

^{*a*} $\alpha(\exp)$ deduced from intensity balance in level scheme in delayed coin from the 2486.5 level (T_{1/2}=150 ns), with the assumption that I(γ +ce)(244.9 γ)=I(γ +ce)(161.8 γ)=I(γ +ce)(132.9 γ ,E2)=I(γ +ce)(407.6 γ ,E2).

assignments (1979Go15).

^b From γ -ray angular distributions in 1979Go15; stretched E2 assignments were based on large positive A₂, and intraband M1+E2 assignments on rotational structure and negative A₂.

^c Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^{-})=-3585\ 17;\ S(n)=7122\ 22;\ S(p)=5579\ 22;\ Q(\alpha)=2982\ 18\ 2017Wa10$ 2015Ju02: Measured ^{193m}Hg (11.8 h) production cross section, 17.91 mb *64*, bombarding Pb target with proton beam, E=250 MeV.

2016Ba25: Measured ^{193m}Hg and ^{193g}Hg production cross sections – 7.19 mb 80 and 3.3 mb 11, respectively, bombarding ¹⁹⁷Au with deuteron beam, E=4.4 GeV.

¹⁹³Hg Levels

Cross Reference (XREF) Flags

		A B C D	¹⁹³ Hg I ¹⁹³ Tl ε ¹⁹³ Tl ε Pt(α,xn	T decay (11.8 h) E (HI, $xn\gamma$) decay (21.6 min) F (HI, $xn\gamma$):SD decay (2.11 min) γ)
E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2}	XREF	Comments
0.0	3/2 ⁽⁻⁾	3.80 h 15	ABC	 %ε+%β⁺=100 μ=-0.62757 18; Q=-0.72 38 μ: From optical pumping (1971Mo24,2014StZZ), with diamagnetic correction applied. Q: From collinear fast-beam laser spectroscopy, corrected for polarization effects (Sternheimer corrections) (1986U102,2014StZZ), Limit for possible α decay: <10⁻⁵% (1963Ka17), 10⁻¹⁷% (2001Mo07); other estimated value: <1×10⁻¹⁴% (1997Mo25). J^π: spin from optical spectroscopy, optical level crossing (1976Fu06); parity from Schmidt diagram, μ. T_{1/2}: from 1974ViZS. Other values: 4 h (1958Ma50), 3.5 h 5 (1965KaZZ), 3 h (1966Ha47). RMS charge radius: 5.4239 fm 35(2004An14).
30 51 3	5/2(-)	0.63 ns 3	٨R	Isotope shift: $\Delta < r^2 > = -0.234 \text{ fm}^2 8 (1986\text{U}102, \text{ relative to } ^{198}\text{Hg}).$
59.51 5	5/2**	0.05 118 5	AD	$T_{1/2}$: from ¹⁹³ Hg IT decay (11.8 h) (1969Ba42).
49.95 14	(1/2 ⁻)		В	J^{π} : (M1) γ to $3/2^{(-)}$; expected p1/2 level from shell model.
140.76 ^{&} 5	13/2 ⁽⁺⁾	11.8 h 2	A DE	 %IT=7.2 5; %ε+%β⁺=92.8 5 μ=-1.0585 8; Q=+0.92 2 μ: From 1973Re04, optical pumping, with diamagnetic correction applied. 2014StZZ list as -1.058430 3. Other: -1.0416 3 (1971Mo24, optical pumping, no diamagnetic correction). Q: Re-evaluated value listed in 2014StZZ from 2013StZZ. 1986Ul02 report +0.916 97, collinear fast-beam laser spectroscopy, corrected for polarization effects (Sternheimer corrections). J^π: spin from optical spectroscopy (1976Fu06); parity from Schmidt diagram, μ. T_{1/2}: from ¹⁹³Hg IT decay (11.8 h) (1974ViZS). Other values: 11.1 h 5 (1970Pl01), 10.0 h 5 (1952Fi06), 11 h 1 (1958Br88). %IT: From ¹⁹³Hg IT decay (11.8 h). Isotope shift: Δcr²> = -0.2160 fm² 24 (1986Ul02, relative to ¹⁹⁸Hg)
207.74 20	(7/2-)		В	J^{π} : (E2) γ to $3/2^{(-)}$ g.s.; systematics of low-lying states in odd Hg isotopes
324.36 8 344.00 <i>10</i> 374.61 <i>10</i> 522.73 ^{&} <i>19</i>	$(3/2^{-},5/2^{-})$ $(1/2^{-},3/2^{-})$ $(3/2^{-},5/2^{-},7/2^{-})$ $(17/2^{+})$		B B DE	J^{π} : (M1) γ to 5/2 ⁻ , (E2) γ to (1/2 ⁻). J^{π} : (M1) γ to (1/2 ⁻). J^{π} : (M1) γ to 5/2 ⁻ .

E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2}	XREF	Comments
746.8 ^{<i>h</i>} 4	$(15/2^+)$		DE	
752.64 25	$(1/2^-, 3/2^-, 5/2^-)$		В	J^{π} : (M1) γ to $3/2^{(-)}$.
1026.4 6	$(13/2^+, 15/2^+)$		E	
1145.4 ^{&} 3	$(21/2^+)$		DE	
1380.3 ^h 3	$(19/2^+)$		DE	
1523.1 5	$(17/2^+, 19/2^+)$		DE	
1523.3 <i>3</i>	$(1/2^-, 3/2^-, 5/2^-)$		В	J^{π} : (M1+E2) γ to (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻).
1580.10 <i>21</i>	$(1/2^-, 3/2, 5/2^-)$		В	J^{π} : γ to $5/2^{-}$ level.
1735.8 7	$(19/2^+)$		E	
1/55./8 3	(21/2)		DE	
1884.3 ^{°C} 5	$(25/2^+)$	1.50 (DE	
1886.28 5	(25/2)	1.58 ns 6	DE	$T_{1/2}$: from (α ,xn γ).
1890.9^{a} 4	(25/2) $(27/2^{-})$		DE	
$2090.0 \ 5$ 2189 28 5	$(27/2^{-})$		DE	
2289.5 7	$(27/2^{-})$		E	
2351.8 7	$(25/2^+)$		E	
2502.1 ^d 6	$(29/2^+)$		DE	
2583.7 ^a 6	$(31/2^{-})$		DE	
2617.3 6	$(29/2^{-})$		E	
2641.7 2641.7	$(29/2^+)$		E	
2695.6 ^d 6	$(33/2^+)$	0.57 ns 3	DE	$T_{1/2}$: from (α ,xn γ).
$2762.2^{g}_{2}6$	$(33/2^{-})$		DE	
3176.2 ^d 7	$(37/2^+)$		DE	
3196.0 8	$(33/2^+)$		E	
3202.5 7	$(33/2^{-})$		E	
$3220.1 \circ$	(35/2)		E DE	
3225.0 0	$(33/2^+)$		F	
3497 5 <mark>8</mark> 6	$(33/2^{-})$		DF	
$3570.2^{b}8$	$(37/2^+)$		F	
3727.1 7	$(37/2^{-})$		E	
3754.2 8	$(37/2^+)$		Ē	
3811?			Е	
3850.7 8	(37/2 ⁻)		E	
3880.5 ^d 7	$(41/2^+)$		DE	
3883.8 ^e 6	$(39/2^{-})$		DE	
4119.7° 9	$(39/2^+)$		E	
4120.5 ⁰ 10	$(41/2^+)$		E	
4150.8 ^J 7	$(41/2^{-})$		E	
4198.0 8	$(39/2^{-})$		E	
4396.8° 7	(43/2)		E	
4412.0° / 4416.7 <i>11</i>	(41/2)		E F	
4462.2 12			E	
4539.0 7	$(41/2^+)$		Ē	
4674.1 ^{<i>f</i>} 7	$(45/2^{-})$		Е	
4683.8 ^c 12	$(43/2^+)$		Е	

Adopted Levels, Gammas (continued)

¹⁹³Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger \#}$	XREF	Comments
4688.4 ^d 9	$(45/2^+)$	Е	
4720.6 8	$(39/2^{-})$	E	
4792.0 7	$(41/2^{-})$	Е	
4864.9 8	$(43/2^{-})$	E	
4889.9 ^b 13	$(45/2^+)$	Е	
4958.5 7	$(45/2^{-})$	Е	
4964.0 <i>13</i>	(43/2)	E	
5033.1 12		E	
5048.0 ^e 9	$(47/2^{-})$	E	
5117.4 8	$(45/2^{-})$	E	
5319.9 8	(43/2)	E	
$5359.1 \circ$ 5261 7 15	(47/2)	E	
5301.7 15	(47/2) $(43/2^+)$	E	
5400 3 15	(+3/2)	F	
$5411.5f_{-10}$	$(40/2^{-})$	Ē	
5442.6.7	(49/2) $(45/2^+)$	F	
5547.6 ^k 7	$(47/2^+)$	E E	
5550.5d 12	(47/2)	E	
5560 5 9	$(47/2^{-})$	E	
5678.4 8	$(49/2^{-})$	Ē	
5698 1 ^b 15	$(49/2^+)$	F	
5702.7 9	$(49/2^{-})$	Ē	
5714.8? 13		Е	
5747.5 10	$(49/2^{-})$	E	
5800.6 9	$(49/2^{-})$	E	
5832.1 ^k 7	$(49/2^+)$	E	
5899.1 ^e 12	$(51/2^{-})$	E	
6017.1 13	$(51/2^{-})$	E	
6067.7 ^k 8	$(51/2^+)$	E	
6103.9 9	$(51/2^{-})$	E	
6145.2 9	(51/2)	E	
6205.2.0	$(51/2^{-})$ $(52/2^{-})$	E	
0303.59	(35/2)	E	
6394.9 ^{<i>j</i>} 13	(53/2)	E	
6401.0 18	$(53/2^{-})$	E	The decay out of this level has not been observed.
6419.4 9	$(53/2^{-})$	E	
6428.5 10	$(53/2^{+})$	E	
$6404.0^{10} \delta$	$(53/2^{+})$	E	
6496.9^{-1} 13	$(55/2^{+})$	E	
6726.4 <i>J</i> 17 6832.3 9	(55/2) $(55/2^+)$	E	
$6839.9^{k}.8$	$(55/2^+)$	F	
6913.4^{e} 15	$(55/2^{-})$	Ē	
6921.8 16	(==)	E	
6921.9 ⁱ 10	(55/2 ⁻)	Е	
6978.6 ^j 18	$(57/2^{-})$	E	
7037.5 ^k 9	$(57/2^+)$	E	
7038.1 16		E	
7133.3 12	$(57/2^+)$	E	

Continued on next page (footnotes at end of table)

E(level) [†]	J ^{π‡#}	XREF	Comments
7186.7 11	$(57/2^{-})$	Е	
7197.9 ^k 10	$(59/2^+)$	Е	
7245.7 ^j 19	$(59/2^{-})$	Е	
7276.6 ⁱ 10	$(57/2^{-})$	Е	
7281.6 12	$(57/2^+)$	E	
7440.0 14		E	
7476.4 ^J 16	$(57/2^{-})$	E	
7492.3 16		E	
7555.2 10	$(61/2^+)$	E	
7560.4 / 19	$(61/2^{-})$	E	
7681.2 I2	(50/0-)	E	
7699.5' 10	(59/2)	E	
7838.3' 10	$(61/2^{-})$	E	
7920.0 ^J 20	$(63/2^{-})$	E	
7924.8 ^k 10	$(63/2^+)$	E	
8137.0 ¹ 11	$(63/2^{-})$	E	
8331.0 ^J 20	$(65/2^{-})$	E	
8388.8 ^{<i>k</i>} 11	$(65/2^+)$	E	
8394.8 ¹ 11	$(65/2^{-})$	E	
8751.0 ¹ 12	$(67/2^{-})$	E	
8757.8 ¹ 21	$(67/2^{-})$	E	
8886.8 ^k 12	$(67/2^+)$	E	
8978.1 13		E	
9221.5^{l} 12	$(69/2^{-})$	E	
9409.1 ^{<i>k</i>} 14	$(69/2^+)$	E	
9675.9 ¹ 13	$(71/2^{-})$	E	
9923.1 ^{<i>k</i>} 16	$(71/2^+)$	E	
10290.4^{l} 14	$(73/2^{-})$	E	
10853.6 ¹ 15	$(75/2^{-})$	E	
x ^l	J	F	$J^{\pi}: J \approx (19/2^{-}).$
			1993Fa07 suggested that the lowest transition in this band is 192 keV, but 1993Jo09 do not
111 $8 \pm x^m \Delta$	I +1	F	seem to confirm this.
$233.20 + \sqrt{2}.20$	J ⊥ 7	r r	
$365.8 \pm x^m 4$	J+2 J+3	F	
$507.4 + x^{l}$ 3	J+4	F	
$660.4 + x^m 4$	J+5	F	
$821.3 + x^{l} 4$	J+6	F	
995.3+x ^m 4	J+7	F	
1174.7+x ^l 4	J+8	F	
1369.8+x ^m 4	J+9	F	
$1566.6 + x^l 4$	J+10	F	
$1782.9 + x^m 5$	J+11	F	
$1995.6 + x^{l} 5$	J+12	F	
$2234.0+x^{m}$ 5	J+13	F	
$2460.1 + x^{l} 5$	J+14	F	

E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2}	XREF	Comments
$2722.3 + x^m 5$	J+15		F	
$2957.5 + x^{l}.5$	I+16		F	
$3247.2 + x^m 6$	J+10 I+17		F	
$2485.7 \pm x^{l}$ 6	J 10	$0.122^{@}$ no 14	- E	
$3463.7 \pm x^{m}$ 6	J + 10 I + 10	0.152 ps 14	r F	
1011 Q	J+19	0.104@ 7	r	
$4044.2 + x^{\circ} 0$	J+20 L+21	0.104 ° ps /	1	
4402.0+X 0	J+21		г	
$4634.2 + x^{t} 6$	J+22	0.083° ps +/-14	F	
5030.8+x ^m /	J+23	()	F	
$5256.8 + x^{l} 7$	J+24	0.062 ^w ps 7	F	
$5692.5 + x^m 7$	J+25		F	
$5912.5 + x^{l} 7$	J+26		F	
$6386.6 + x^m 7$	J+27		F	
$6601.0+x^{l}$ 7	J+28		F	
7112.2+x ^m 8	J+29		F	
7322.3+x ^l 8	J+30		F	
7868.8+x ^m 8	J+31		F	
$8075.5 + x^{l} 8$	J+32		F	
8656.1+x ^m 8	J+33		F	
$8860.4 + x^{l} 8$	J+34		F	
9473.8+x ^m 9	J+35		F	
$9677.0+x^{l}9$	J+36		F	
10321.3+x ^m 10	J+37		F	
10524.8+x ^l 10	J+38		F	
11197.4+x ^m 11	J+39		F	
11405.7+x ^l 11	J+40		F	
y ⁿ	J1		F	$J^{\pi}: J_1 \approx (19/2^+).$
111.9+y ⁰ 4	J1+1		F	
233.49+y ⁿ 20	J1+2		F	
366.1+y ⁰ 4	J1+3		F	
$508.5 + y^{n} 3$	J1+4		F	
$660.9 + y^0 4$	J1+5		F	
$823.5+y^{n}$ 4	J1+6		F	
996.0+y ^{\circ} 4	JI+/		r 	
$11/8.3+y^{2}$ 4 1270.6 + y^{0} 4	$J1+\delta$ J1+0		r E	
1570.0+y 4 1572 1+y ⁿ 4	$J1 \pm 9$ $I1 \pm 10$		г F	
$1783.0 \pm v^0 \Lambda$	$J1 \pm 10$ $I1 \pm 11$		r F	
$2004.2 + v^n 5$	J_{1+12}		F	
$2235.0+v^{0}.5$	J1+13		F	
$2474.0+v^n$ 5	J1+14		F	
2723.3+y ^o 5	J1+15		F	
2980.2+ y^n 5	J1+16		F	
3248.2+v ⁰ 6	J1+17	$0.146^{\textcircled{0}}$ ps $+14-21$	F	
$3521.7 + y^n 6$	J1+18	1	F	

E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2}	XREF	Comments
$3808.1 \pm v^{0}$ 6	I1+19	$0.076^{@}$ ns $+7-14$	F	
$4098.5 + y^{n} 6$	J1+20	0.070 ps 17 17	F	
$4403.0+y^{0}.6$	I1+21	$0.083^{@}$ ps 7	F	
$4709.8 \pm v^{n}$ 7	11+21	0.005 ps /	F	
$5031.8 \pm v^{0}.7$	11+22		г Я	
$5354.1 + v^{n} 7$	11+23		F	
$5693.5 + v^0.7$	I1+25		F	
$6031.9 + y^{n}.7$	I1+26		F	
$6387.5 + y^{0} 7$	J1+20 J1+27		F	
$6741.8 + y^n 7$	J1+28		F	
$7113.1 + v^{0} 8$	J1+29		F	
$7484.0+v^n 8$	J1+30		F	
$7869.7 + v^{0} 8$	J1+31		F	
$8255.2 + y^n 8$	J1+32		F	
8657.0+v ^o 8	J1+33		F	
$9057.4 + v^n 9$	J1+34		F	
9474.7+v ^o 9	J1+35		F	
9889.5+y ⁿ 11	J1+36		F	
10322.3+v ^o 10	J1+37		F	
$10750.0 + y^{n} 12$	J1+38		F	
11198.4+y ⁰ 11	J1+39		F	
zp	J2		F	J^{π} : $J_2 \approx (27/2^{-})$.
				1998Li54 suggest J= $25/2$ for this level on the basis of the systematics
				for the bandhead moments of inertia.
291.00+z ^p 20	J2+2		F	
619.8+z ^p 3	J2+4		F	
986.4+z ^p 4	J2+6		F	
1391.4+z ^p 4	J2+8		F	
1835.6+z ^p 5	J2+10		F	
2319.9+z ^p 5	J2+12		F	
2845.8+z ^p 6	J2+14		F	
3412.5+z ^p 6	J2+16		F	
$4017.5 + z^p 6$	J2+18		F	
$4658.0 + z^p$ 7	J2+20		F	
5332.5+z ^p 7	J2+22		F	
$6040.0+z^p$ 7	J2+24		F	
6779.3+z ^p 8	J2+26		F	
$7549.0+z^p$ 9	J2+28		F	
8350.3+z ^p 10	J2+30		F	
9181.6+z ^p 11	J2+32		F	
10042.6+z?P	J2+34		F	
u ⁴	J3		F	$J^{n}: J_{3} \approx (21/2^{-}).$
$240.52 + u^{4} 20$	J3+2		F	
$522.4 + u^{4} 3$	J3+4		F	
845.9+u ⁹ 4	J3+6		F	

¹⁹³Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger \#}$	XREF	E(level) [†]	$J^{\pi \ddagger \#}$	XREF	E(level) [†]	$J^{\pi \ddagger \#}$	XREF
1211.3+u ^q 4	J3+8	F	$3648.6 + u^{q} 6$	J3+18	F	7054.4+u ^q 8	J3+28	F
1617.8+u ^q 5	J3+10	F	$4254.9 + u^{q}$ 7	J3+20	F	7844.2+u ^q 8	J3+30	F
2065.3+u ^q 5	J3+12	F	$4899.4 + u^{q} 7$	J3+22	F	8668.5+u ^q 9	J3+32	F
2553.4+u ^q 6	J3+14	F	5581.3+u ^q 7	J3+24	F	9526.4+u ^q 10	J3+34	F
3081.4+u ^q 6	J3+16	F	6299.9+u ^q 8	J3+26	F			

[†] From least-squares fit to $E\gamma$.

[‡] From (HI,xn γ) data set, unless otherwise noted. J π assignments are based on multipolarities of transitions and fits of coincident γ rays into an interconnected set of rotational bands.

[#] For SD bands, the bandhead $J\pi$ is from the (HI,xn γ):SD dataset and from least-squares fit to expansions relating second moment of inertia and angular frequency (1990Cu05).

[@] From line-shape analysis (1998Bu03).

& Band(A): Band (1) Proposed configuration: $v(i_{13/2})$ (1995Fo13).

^{*a*} Band(B): Band (2) Proposed configuration: $v(i_{13/2}^2 p_{3/2})$ (1995Fo13).

^b Band(C): Band (3) Proposed configuration: $\nu(i_{13/2}^3 p_{3/2}^2)$ (1995Fo13).

^c Band(D): Band (4) Proposed configuration: $v(i_{13/2}^3 p_{3/2} h_{9/2})$ (1995Fo13).

^d Band(E): Band (5) Proposed configuration: $v(i_{13/2}^3)$ (1995Fo13).

^e Band(F): Band (6) Proposed configuration: $v(i_{13/2}^4 p_{3/2})$ (1995Fo13).

^{*f*} Band(G): Band (7) Proposed configuration: $\nu(i_{13/2}^{4} p_{3/2})$ (1995Fo13).

^g Band(H): Band (8) Proposed configuration: $\nu(i_{13/2}^2 p_{3/2})$ (1995Fo13).

^{*h*} Band(I): Band (9) Proposed configuration: $v(i_{13/2})$ (1995Fo13).

^{*i*} Band(J): Dipole band (1).

^{*j*} Band(K): Dipole band (2).

- ^{*k*} Band(L): Dipole band (3).
- ^{*l*} Band(M): SD-1 Band: Possible configuration: [512]5/2, $\alpha = -1/2$ (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=18.4 +8-9 (1998Bu03). Percent population=1.6 *3* (1990Cu05). g factor (intrinsic)=-0.65 *14* (1993Jo09). This is deduced from the ratio of interband (M1) and intraband (E2) transition intensities. Possible configuration: [512]5/2, $\alpha = -1/2$ below $E\gamma \approx 400$. and $j_{15/2}$ above $E\gamma \approx 600$ keV.

^{*m*} Band(N): SD-2 Band: Possible configuration: [512]5/2, $\alpha = +1/2$ (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11-9 (1998Bu03). Percent population=2.1 3 (1990Cu05). The relative intensity of this band is anomalously high (≈ 2 times that of its signature partner SD-3 band) which leads to suggestion that this band may be composed of two SD bands, one of them being the signature partner of SD-3 band. Signature partner of SD-1 band.

- ^{*n*} Band(O): SD-3 Band: Possible configuration: [624]9/2, $\alpha = -1/2$ (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.1 +15-14 (1998Bu03). Percent population=0.9 3 (1990Cu05).
- ^{*o*} Band(P): SD-4 Band: Possible configuration: [624]9/2, $\alpha = +1/2$ (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11-9 (1998Bu03). Signature partner of SD-3 band. SD-2 and SD-4 bands are unresolved but FWHM of lines is consistently greater than that for lines in SD-1 band (from (HI,xn γ):SD).

^{*p*} Band(Q): SD-5 Band: configuration: (N=7, α =-1/2) (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.7 *10* (1998Bu03). Percent population=1.1 *3* (1990Cu05). j_{15/2}, α =-1/2 intruder band below E γ ≈400 keV and [512]5/2 α =-1/2 above E γ ≈600 keV. Configuration: (N=7, α =-1/2)(1994Jo10).

 q Band(R): SD-6 Band: configuration: (N=7,α=+1/2) (1998Bu03,1994Jo10). Q(intrinsic)=16.7 +14−13 (1998Bu03). Percent population ≈0.6 (1994Jo10). Configuration: (N=7,α=+1/2) (1994Jo10).

$\gamma(^{193}\text{Hg})$

Some mixing ratios from ¹⁹³Tl ε decay and Pt(α ,xn γ) data sets are listed in the Comments column. If no value is specified for this parameter a default δ =1.0 is assumed.

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\mathcal{C}}$	α^d	Comments
39.51	5/2 ⁽⁻⁾	39.51 [‡] 3	100	0.0	3/2 ⁽⁻⁾	M1 [‡]		21.7	B(M1)(W.u.)=0.0239 14
49.95	$(1/2^{-})$	49.5 ^{f§ 11}	100 ^{<i>f</i>}	0.0	$3/2^{(-)}$	(M1) [§]		11.2 8	
140.76	$13/2^{(+)}$	101.25 [‡] 4	100	39.51	5/2 ⁽⁻⁾	M4 [‡]		6.13×10^3	B(M4)(W.u.)=1.38 11
207.74	$(7/2^{-})$	207.74 [§] 20	100	0.0	$3/2^{(-)}$	(E2) [§]		0.343	
324.36	$(3/2^{-}, 5/2^{-})$	274.39 [§] 14	13.5 [§] <i>13</i>	49.95	$(1/2^{-})$	(E2) [§]		0.1395	
		284.89 [§] <i>13</i>	21.6 [§] 10	39.51	$5/2^{(-)}$	(M1) [§]		0.415	
		324.37 [§] 10	100 [§]	0.0	$3/2^{(-)}$	(M1) [§]		0.292	
344.00	$(1/2^{-}, 3/2^{-})$	294.08 [§] 25	10.3 [§] 12	49.95	$(1/2^{-})$	(M1) [§]		0.381	
		343.99 [§] 10	100 [§] 4	0.0	$3/2^{(-)}$	(M1+E2) [§]	1.7 +17-6	0.117 35	δ : from ¹⁹³ Tl ε decay (21.6 min).
374.61	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	49.5 ^{f§ 11}	40 ^f § 19	324.36	$(3/2^{-}, 5/2^{-})$	(M1) [§]		11.2 8	• • • •
		335.11 [§] <i>10</i>	100 [§] 4	39.51	$5/2^{(-)}$	(M1) [§]		0.267	
		374.58 [§] 22	29 [§] 3	0.0	$3/2^{(-)}$	(E2) [§]		0.0566	
522.73	$(17/2^+)$	382.0 2	100	140.76	$13/2^{(+)}$	E2		0.0536	
746.8	$(15/2^+)$	606.0 4	100	140.76	$13/2^{(+)}$	(M1+E2)		0.036 20	
752.64	$(1/2^-, 3/2^-, 5/2^-)$	713.0 [§] 4	52 [§] 6	39.51	$5/2^{(-)}$	(E2) [§]		0.01204	
		752.5 [§] 4	100 [§] 15	0.0	$3/2^{(-)}$	(M1) [§]		0.0316	
1026.4	$(13/2^+, 15/2^+)$	885.7 8	100	140.76	$13/2^{(+)}$				
1145.4	$(21/2^+)$	622.7 2	100	522.73	$(17/2^+)$	E2		0.01618	
1380.3	$(19/2^+)$	633.5 4	92.9 18	746.8	$(15/2^+)$	E2	0.00 (0.01557	
1522.1	$(17/2 \pm 10/2 \pm)$	857.54	100 8	522.73	(1/2') $(12/2^+, 15/2^+)$	(M1+E2)	0.33 6	0.0212 6	δ : from Pt(α ,xn γ).
1525.1	(17/2 ,19/2)	1000 4 4	100 0 18	522.73	(15/2, 15/2) $(17/2^+)$	Q D+0			
1523 3	$(1/2^{-} 3/2^{-} 5/2^{-})$	770 4 [§] 4	100% 6	752 64	$(1/2^{-})^{-}$ $(1/2^{-})^{-}$	$(M1+F2)^{\$}$	$0.9 \pm 10 - 5$	0.0210.66	δ : from ¹⁹³ TL s decay (21.6 min)
1525.5	(1/2 ,3/2 ,3/2)	1484 18 7	26§ 8	39.51	(1/2, 3/2, 3/2) $5/2^{(-)}$	(1011 + 122)	0.9 110 5	0.0210 00	0. nom - 112 decay (21.0 mm).
		1523 4§ 4	62\\$ 15	0.0	3/2 $3/2^{(-)}$				
1580 10	$(1/2^{-} 3/2 5/2^{-})$	$1325.4^{\$}$ 3	238 3	374.61	$(3/2^{-} 5/2^{-} 7/2^{-})$				
1500.10	(1/2 ,5/2,5/2)	1205.4° 3	23 3 23§ 1	374.01	$(3/2^{-}, 5/2^{-}, 7/2^{-})$				
		1530.48 10	$25^{\circ} \neq$ $20^{\$} = 4$	30.51	(3/2, 3/2) 5/2(-)				
		$1539.4^{\circ} 10$	20° 4	39.31	$3/2^{(-)}$				
1735.8	$(10/2^+)$	1379.3° 10 080 0 8	1003 22	0.0 746.8	$(15/2^+)$	0			
1755.7	$(21/2^{-})$	(19.9 10)	<1	1735.8	$(19/2^+)$	TE11		6.7 10	
	<pre> /- /</pre>	232.3 4	37.4 9	1523.1	$(17/2^+, 19/2^+)$	D			
		375.2 4	100 3	1380.3	(19/2 ⁺)	(E1)		0.01662	

210

 $^{193}_{80}\mathrm{Hg}_{113}$ -8

 $\gamma(^{193}\text{Hg})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	Ι _γ @	E_f	J_f^{π}	Mult. ^a	α^d	Comments
1755.7	$(21/2^{-})$	610.5 6	29.7 23	1145.4	$(21/2^+)$			
1884.3	$(25/2^+)$	738.9 4	100	1145.4	$(21/2^+)$	E2	0.01116	
1886.2	$(25/2^{-})$	130.5 4	100	1755.7	$(21/2^{-})$	E2	1.88 4	B(E2)(W.u.)=49.1 23
1890.9	$(23/2^{-})$	135.0 10	1.6 6	1755.7	$(21/2^{-})$	(M1+E2)	2.50 86	
		745.5 <i>4</i>	100 6	1145.4	$(21/2^+)$	(E1+M2)	0.0048 8	
2096.0	$(27/2^{-})$	205.1 4	100.0 25	1890.9	$(23/2^{-})$	E2	0.359 6	
		209.6 8	4.1 <i>3</i>	1886.2	$(25/2^{-})$	[M1]	0.970 17	
		211.9 8	7.1 5	1884.3	$(25/2^+)$	(E1)	0.0642 11	
2189.2	$(29/2^{-})$	93.4 <i>10</i>	0.9 <i>3</i>	2096.0	$(27/2^{-})$			
		302.9 4	100.0 18	1886.2	$(25/2^{-})$	E2	0.1035	
2289.5	$(27/2^{-})$	403.2 8	100	1886.2	$(25/2^{-})$			
2351.8	$(25/2^+)$	1206.6 8	100	1145.4	$(21/2^+)$			
2502.1	$(29/2^+)$	150.5 10	1.20 13	2351.8	$(25/2^+)$	Q		
		617.8 4	100 5	1884.3	$(25/2^+)$	E2	0.01647	
2583.7	$(31/2^{-})$	394.7 8	4.7 4	2189.2	$(29/2^{-})$			
		487.7 <i>4</i>	100.0 21	2096.0	$(27/2^{-})$	E2	0.0286	
2617.3	$(29/2^{-})$	327.7 6	92.3 26	2289.5	$(27/2^{-})$	D		
		428.1 8	100 13	2189.2	$(29/2^{-})$			
		521.3 10	26 5	2096.0	$(27/2^{-})$			
		731.1 8	48.7 26	1886.2	$(25/2^{-})$			
2641.7	$(29/2^+)$	757.5 6	100	1884.3	$(25/2^+)$	(E2)	0.01059	
2695.6	$(33/2^+)$	193.5 4	100	2502.1	$(29/2^+)$	E2	0.438	$B(E2)(W.u.)=38.3\ 21$
2762.2	$(33/2^{-})$	573.0 4	100	2189.2	$(29/2^{-})$	E2	0.0195	
3176.2	$(37/2^+)$	480.6 4	100	2695.6	$(33/2^+)$	E2	0.0297	
3196.0	$(33/2^{+})$	500.3 10	<25	2695.6	$(33/2^+)$	0		
2202 5	(22)(2-)	554.4 7	100 24	2641.7	$(29/2^+)$	Q		
3202.5	(33/2)	585.2 8	100 4	2617.3	(29/2)			
2220 1	(22)(2-)	1013.4 8	59 19	2189.2	(29/2)			
3220.1	(33/2)	602.9 8	100	2017.3	(29/2)			
3223.6	(35/2)	461.4 8	10.75	2/62.2	(33/2)	EO	0.01522	
2260.2	$(22/2^{+})$	040.0 4 564 7 10	100.0 19	2383.1	(31/2)	E2	0.01522	
3200.3	$(33/2^{+})$	504.7 10 759 2 9	19.5	2095.0	$(33/2^{+})$	(E2)	0.01057	
2407 5	(27/2-)	738.2 8	100 0	2502.1	$(29/2^{+})$	(E2) E2	0.01057	
3497.3	(37/2)	755.24	100	2762.2	(33/2)	E2 (E2)	0.01128	
5570.2	(37/2)	309.9 8	03.3 <i>24</i> 100 0 2 <i>4</i>	2176.2	(33/2)	(E2)	0.0907 10	
3727 1	$(37/2^{-})$	595.9 8	80 4	3220.1	(31/2) $(33/2^{-})$			
5121.1	(31/2)	5745 8	100 12	3220.1	(33/2)			
		965 0 8	52 22	5202.5 2762 2	(33/2)			
3754.2	$(37/2^{+})$	558 2 8	100 30	3196.0	$(33/2^+)$	0		
5754.2	(37/2)	1058.6.10	54.8	2695.6	$(33/2^+)$	Υ.		
		1050.0 10	J - 0	2095.0	(33/2)			

211

 γ (¹⁹³Hg) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^d
3811?		1115.0^{g} 10	100	2695.6	$(33/2^+)$		
3850.7	$(37/2^{-})$	1088.5.8	100	2762.2	$(33/2^{-})$	0	
3880.5	$(41/2^+)$	704.3 4	100	3176.2	$(37/2^+)$	(E2)	0.01236
3883.8	$(39/2^{-})$	660.2.4	100	3223.6	$(35/2^{-})$	(E2)	0.01422
4119.7	$(39/2^+)$	549.5 10	21.1.26	3570.2	$(37/2^+)$	(112)	0.01.22
	(=>)=)	943.5 8	100.0 26	3176.2	$(37/2^+)$	(M1)	0.0177
4120.5	$(41/2^+)$	550.3 6	100	3570.2	$(37/2^+)$	(E2)	0.0214
4150.8	$(41/2^{-})$	653.3 4	100	3497.5	$(37/2^{-})$	(E2)	0.01455
4198.0	$(39/2^{-})$	314.2 10	83 25	3883.8	$(39/2^{-})$. ,	
		974.4 8	100 25	3223.6	$(35/2^{-})$		
4396.8	$(43/2^{-})$	512.9 4	100	3883.8	$(39/2^{-})$	(E2)	0.0253
4412.6	$(41/2^{-})$	561.9 8	25 4	3850.7	$(37/2^{-})$	Q	
		685.7 8	19 4	3727.1	$(37/2^{-})$		
		915.1 6	100.0 14	3497.5	$(37/2^{-})$	(E2)	0.00720
4416.7		1240.5 8	100	3176.2	$(37/2^+)$		
4462.2		1286.0 10	100	3176.2	$(37/2^+)$		
4539.0	$(41/2^+)$	784.8 8	100 8	3754.2	$(37/2^+)$	Q	
		1362.8 8	54 <i>4</i>	3176.2	$(37/2^+)$	Q	
4674.1	$(45/2^{-})$	523.2 4	100	4150.8	$(41/2^{-})$	(E2)	0.0242
4683.8	$(43/2^+)$	564.1 8	100	4119.7	$(39/2^+)$	(E2)	0.0202
4688.4	$(45/2^+)$	807.96	100	3880.5	$(41/2^+)$	(E2)	0.00926
4720.6	$(39/2^{-})$	993.6 8	100	3727.1	$(37/2^{-})$		
4792.0	$(41/2^{-})$	(71.3)		4720.6	$(39/2^{-})$		
		594.1 8	100 4	4198.0	$(39/2^{-})$		
		908.2 8	91 <i>13</i>	3883.8	$(39/2^{-})$	D	
		1064.8 10	39 <i>13</i>	3727.1	$(37/2^{-})$		
		1294.4 10	30 13	3497.5	$(37/2^{-})$		
4864.9	$(43/2^{-})$	(72.9)		4792.0	$(41/2^{-})$		
		144.5 10		4720.6	$(39/2^{-})$		
4889.9	$(45/2^+)$	769.4 8	100	4120.5	$(41/2^+)$	(E2)	0.01025
4958.5	$(45/2^{-})$	546.0 <i>6</i>	100.0 13	4412.6	$(41/2^{-})$	Q	
		561.4 8	44 5	4396.8	$(43/2^{-})$		
4964.0	(43/2)	843.5 8	100	4120.5	$(41/2^+)$	D	
5033.1		1152.6 10	100	3880.5	$(41/2^+)$		
5048.0	$(47/2^{-})$	651.2 6	100	4396.8	$(43/2^{-})$	Q	
5117.4	$(45/2^{-})$	252.5 4	100.0 20	4864.9	$(43/2^{-})$	D	
		325.5 ^g 10	5.4 7	4792.0	$(41/2^{-})$		
5319.9	(43/2)	1169.0 8	100	4150.8	$(41/2^{-})$		
5339.1	$(47/2^{-})$	221.7 4	100 3	5117.4	$(45/2^{-})$	D	
		474.2 8	52.3 15	4864.9	$(43/2^{-})$	Q	
5361.7	$(47/2^+)$	677.9 8	100	4683.8	$(43/2^+)$		

$\gamma(^{193}\text{Hg})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. ^a	α^d
5391.9	$(43/2^+)$	1511.5 8	100	3880.5	$(41/2^+)$	(D+O)	
5400.3	(, -)	716.5 8	100	4683.8	$(43/2^+)$	D	
5411.5	$(49/2^{-})$	737.4 6	100	4674.1	$(45/2^{-})$	(E2)	0.01121
5442.6	$(45/2^+)$	123.0 10	1.6 3	5319.9	(43/2)	. ,	
		903.5 6	100.0 15	4539.0	$(41/2^+)$	Q	
		1046.0 8	27.9 15	4396.8	$(43/2^{-})$	Ď	
		1562.0 10	5.9 15	3880.5	$(41/2^+)$		
5547.6	$(47/2^+)$	105.2 8	2.4 3	5442.6	$(45/2^+)$	D	
		155.9 10	3.0 6	5391.9	$(43/2^+)$		
		227.4 8	15.2 <i>15</i>	5319.9	(43/2)		
		589.1 8	19.7 <i>15</i>	4958.5	$(45/2^{-})$		
		873.4 6	100.0 15	4674.1	$(45/2^{-})$	(E1)	0.00295
5559.5	$(49/2^+)$	871.1 8	100	4688.4	$(45/2^+)$	(E2)	0.00794
5560.5	$(47/2^{-})$	443.2 6	100	5117.4	$(45/2^{-})$		
5678.4	$(49/2^{-})$	339.4 8	14 4	5339.1	$(47/2^{-})$		
		719.8 6	100 9	4958.5	$(45/2^{-})$		
5698.1	$(49/2^+)$	808.2 8	100	4889.9	$(45/2^+)$	(E2)	0.00926
5702.7	$(49/2^{-})$	363.6 8	73 <i>3</i>	5339.1	$(47/2^{-})$	D	
		744.4 8	100 17	4958.5	$(45/2^{-})$		
5714.8?		375.8 ^g 10	100	5339.1	$(47/2^{-})$		
5747.5	$(49/2^{-})$	789.0 10	100	4958.5	$(45/2^{-})$		
5800.6	$(49/2^{-})$	240.1 6	63 6	5560.5	$(47/2^{-})$		
		461.5 6	100 9	5339.1	$(47/2^{-})$		
5832.1	$(49/2^+)$	284.5 4	100.0 24	5547.6	$(47/2^+)$	M1	0.417
		389.6 8	7.8 6	5442.6	$(45/2^+)$	Q	
5899.1	$(51/2^{-})$	851.1 8	100	5048.0	$(47/2^{-})$		
6017.1	$(51/2^{-})$	302.2 ^g 10	86 29	5714.8?			
		678.0 <i>10</i>	100 14	5339.1	$(47/2^{-})$	Q	
6067.7	$(51/2^+)$	235.6 4	100.0 19	5832.1	$(49/2^+)$	(M1)	0.701
		520.1 4	83.9 <i>19</i>	5547.6	$(47/2^+)$	(E2)	0.0245
6103.9	$(51/2^{-})$	401.1 8	100 <i>3</i>	5702.7	$(49/2^{-})$	D	
		425.5 8	48 10	5678.4	$(49/2^{-})$		
		543.5 10	17 <i>3</i>	5560.5	$(47/2^{-})$		
		765.0 8	62 7	5339.1	$(47/2^{-})$		
6145.2	$(51/2^{-})$	442.6 8	100 12	5702.7	$(49/2^{-})$	[M1]	0.1266
		806.0 8	44 <i>4</i>	5339.1	$(47/2^{-})$		
6163.6	$(51/2^+)$	801.9 8	100	5361.7	$(47/2^+)$		
6305.3	$(53/2^{-})$	557.7 8	29 9	5747.5	$(49/2^{-})$		
		626.8 6	100.0 17	5678.4	$(49/2^{-})$		
6394.9	$(53/2^{-})$	983.4 8	100	5411.5	$(49/2^{-})$	(E2)	0.00624
6419.4	$(53/2^{-})$	113.9 <i>10</i>	<7	6305.3	$(53/2^{-})$		

γ (¹⁹³Hg) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	α^d
6419.4	$(53/2^{-})$	274.2 8	29.3 13	6145.2	$(51/2^{-})$	D	
	(1)	315.6 6	55 <i>5</i>	6103.9	$(51/2^{-})$	D	
		618.7 6	100 8	5800.6	$(49/2^{-})$		
		716.7 8	27 4	5702.7	$(49/2^{-})$		
6428.5	$(53/2^+)$	869.0 10	100	5559.5	$(49/2^+)$		
6464.6	$(53/2^+)$	397.0 4	100.0 15	6067.7	$(51/2^+)$	(M1)	0.1692
		632.6 6	44 <i>4</i>	5832.1	$(49/2^+)$	(E2)	0.01562
6496.9	$(53/2^+)$	937.4 8	100	5559.5	$(49/2^+)$		
6726.4	$(55/2^{-})$	325.4 10	78 22	6401.0	$(53/2^{-})$		
		709.3 10	100 22	6017.1	$(51/2^{-})$	Q	
6832.3	$(55/2^+)$	367.8 8	57 <i>5</i>	6464.6	$(53/2^+)$	D	
		764.6 6	100.0 18	6067.7	$(51/2^+)$	Q	
6839.9	$(55/2^+)$	375.4 4	57 <i>3</i>	6464.6	$(53/2^+)$	(M1)	0.197
		772.2 4	100.0 19	6067.7	$(51/2^+)$	(E2)	0.01017
6913.4	$(55/2^{-})$	1014.3 8	100	5899.1	$(51/2^{-})$		
6921.8		1022.7 10	100	5899.1	$(51/2^{-})$		
6921.9	$(55/2^{-})$	502.4 8	100.0 25	6419.4	$(53/2^{-})$	(M1)	0.0905
		818.2 8	95.0 25	6103.9	$(51/2^{-})$	Q	
6978.6	$(57/2^{-})$	252.3 8	73 27	6726.4	$(55/2^{-})$		
		577.6 10	100 20	6401.0	$(53/2^{-})$	(E2)	0.0192
7037.5	$(57/2^+)$	197.6 4	100 <i>3</i>	6839.9	$(55/2^+)$	(M1)	1.143
		205.1 9	14.3 <i>19</i>	6832.3	$(55/2^+)$		
7038.1		1139.0 <i>10</i>	100	5899.1	$(51/2^{-})$		
7133.3	$(57/2^+)$	293.4 8	100	6839.9	$(55/2^+)$	D	
7186.7	$(57/2^{-})$	881.5 8	100	6305.3	$(53/2^{-})$		
7197.9	$(59/2^+)$	160.4 4	100	7037.5	$(57/2^+)$	(M1)	2.05 4
7245.7	$(59/2^{-})$	267.0 8	100	6978.6	$(57/2^{-})$	(M1)	0.496 8
7276.6	$(57/2^{-})$	354.7 8	50.6 12	6921.9	$(55/2^{-})$		
		857.1 6	100 6	6419.4	$(53/2^{-})$	(E2)	0.00821
7281.6	$(57/2^+)$	449.3 8	100	6832.3	$(55/2^+)$	D	
7440.0		306.7 8	100 6	7133.3	$(57/2^+)$	D	
		600.2 ^g 10	24 6	6839.9	$(55/2^+)$		
7476.4	$(57/2^{-})$	1081.5 10	100	6394.9	$(53/2^{-})$		
7492.3		1097.4 10	100	6394.9	$(53/2^{-})$		
7555.2	$(61/2^+)$	357.3 4	100.0 16	7197.9	$(59/2^+)$	(M1)	0.225
		517.6 8	13.7 8	7037.5	$(57/2^+)$		
7560.4	$(61/2^{-})$	314.7 8	100 4	7245.7	$(59/2^{-})$	(M1)	0.317
		581.9 <i>10</i>	39 8	6978.6	$(57/2^{-})$		
7681.2		848.9 8	100	6832.3	$(55/2^+)$		
7699.5	$(59/2^{-})$	422.9 6	100 5	7276.6	$(57/2^{-})$	(M1)	0.1430
		512.8 10	13.6 15	7186.7	$(57/2^{-})$		

214

						γ (¹⁹³ Hg) (continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{@}$	E_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^d
7699 5	$(59/2^{-})$	777 6 8	77 3 15	6921.9	$(55/2^{-})$	(E2)	0.01003
7838.3	$(61/2^{-})$	138.8 4	47.6 16	7699.5	$(59/2^{-})$	$(\underline{\mathbf{M1}})$	3.10
	(- / /	561.8 6	100 6	7276.6	$(57/2^{-})$	(E2)	0.0204
7920.0	$(63/2^{-})$	359.6 8	100 11	7560.4	$(61/2^{-})$	(M1)	0.221 4
	(/ /	674.1 8	92 4	7245.7	$(59/2^{-})$	(E2)	0.01358
7924.8	$(63/2^+)$	369.7 6	100 5	7555.2	$(61/2^+)$	(M1)	0.205
		726.9 6	95.2 16	7197.9	$(59/2^+)$	(E2)	0.01155
8137.0	$(63/2^{-})$	298.7 4	100.0 17	7838.3	$(61/2^{-})$	(M1)	0.365
		437.5 8	11.9 25	7699.5	$(59/2^{-})$	(E2)	0.0376
8331.0	$(65/2^{-})$	411.0 8	86 <i>5</i>	7920.0	$(63/2^{-})$	(M1)	0.1543
		770.7 8	100 5	7560.4	$(61/2^{-})$	(E2)	0.01021
8388.8	$(65/2^+)$	464.0 8	100 10	7924.8	$(63/2^+)$	(M1)	0.1117
		833.6 8	97.6 24	7555.2	$(61/2^+)$	(E2)	0.00869
8394.8	$(65/2^{-})$	257.8 4	100.0 26	8137.0	$(63/2^{-})$	(M1)	0.547
		556.5 8	58 7	7838.3	$(61/2^{-})$	(E2)	0.0209
8751.0	$(67/2^{-})$	356.1 6	100 5	8394.8	$(65/2^{-})$		0.226
		614.0 8	61 8	8137.0	$(63/2^{-})$	(E2)	0.01669
8757.8	$(67/2^{-})$	426.9 8	50 5	8331.0	$(65/2^{-})$		
		837.8 8	100 5	7920.0	$(63/2^{-})$		
8886.8	$(67/2^+)$	497.9 8	52.6 26	8388.8	$(65/2^+)$	(M1)	0.0927
		962.0 8	100.0 26	7924.8	$(63/2^+)$	(E2)	0.00651
8978.1		1053.3 8	100	7924.8	$(63/2^+)$		
9221.5	$(69/2^{-})$	470.6 8	100.0 21	8751.0	$(67/2^{-})$	(M1)	0.1076
		826.6 8	72.9 21	8394.8	$(65/2^{-})$	(E2)	0.00884
9409.1	$(69/2^+)$	522.2 ⁸		8886.8	$(67/2^+)$		
		1020.3 8	100 7	8388.8	$(65/2^+)$		
9675.9	$(71/2^{-})$	454.4 8	57 5	9221.5	$(69/2^{-})$	(M1)	0.1181
		924.9 8	100 5	8751.0	$(67/2^{-})$	(E2)	0.00704
9923.1	$(71/2^+)$	514.1 ⁸		9409.1	$(69/2^+)$		
		1036.3 10	100 13	8886.8	$(67/2^+)$		
10290.4	$(73/2^{-})$	614.5 8	100 15	9675.9	$(71/2^{-})$	(M1)	0.0534
		1068.9 8	63 11	9221.5	$(69/2^{-})$	(E2)	0.00530
10853.6	$(75/2^{-})$	563 ⁸		10290.4	$(73/2^{-})$		
		1177.7 8	100 5	9675.9	$(71/2^{-})$	Q	
233.20+x	J+2	121.1 5		111.8+x	J+1		
		233.2 2	0.37 [#] 3	х	J		
365.8+x	J+3	132.2 ^e 5		233.20+x	J+2		
		254.0 ^e 2	0.12 [#] 5	111.8+x	J+1		
507.4+x	J+4	141.6 5		365.8+x	J+3		
		274.2 2	0.48 [#] 3	233.20+x	J+2		
γ (¹⁹³Hg) (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f J	$\frac{\pi}{f}$ Mult. ^{<i>a</i>}	α^d	Comments
660.4+x	J+5	152.9 ^e 5		507.4+x J+	4		
		294.6 ^e 2	0.38 [#] 8	365.8+x J+	3		
821.3+x	J+6	160.7 5	щ	660.4+x J+	5		
		314.0 2	0.75 [#] 5	507.4+x J+	4		
995.3+x	J +7	173.70 5	o (1 [#] o	821.3+x J+	6		
1174.7+x	I+8	334.9° 2 179.3.5	0.61" 9	660.4 + x J + 995.3 + x J +	5 7		
11/1./ 1.	510	353.4 2	0.90 [#] 5	821.3+x J+	6		
1369.8+x	J+9	374.5 ^e 2	0.73 [#] 18	995.3+x J+	7		
1566.6+x	J+10	196.9 5		1369.8+x J+	9		
		391.9 2	0.96 [#] 5	1174.7+x J+	8		
1782.9+x	J+11	413.1 ^e 2	1.00 [#] 12	1369.8+x J+	9		
1995.6+x	J+12	212.3 5		1782.9+x J+	11		This γ is a member of an unresolved doublet (the other member is 212.9 keV, from level 1783.9+y).
		429.0 2	$1.00^{\#} 5$	1566.6+x J+	10		
2234.0+x	J+13	451.1 ^e 2		1782.9+x J+	11		
2460.1+x	J+14	226.4 5		2234.0+x J+	13		
		464.4 2	$0.98^{#}_{\#}$ 3	1995.6+x J+	12		
2722.3+x	J+15	488.3 ^e 2	0.96 [#] 18	2234.0+x J+	13		
2957.5+x	J+16	497.4 2	$1.00^{#}$ 3	2460.1+x J+	14		
3247.2+x	J+17	524.9 ^e 2	0.98 [#] 20	2722.3+x J+	15		
3485.7+x	J+18	528.2 2	1.11 [#] 10	2957.5+x J+	16 [E2] ^b	0.0236	$B(E2)(W.u.)=1.57\times10^3 \ 17$
3807.1+x	J+19	559.9 ^e 2	1.08 [#] 10	3247.2+x J+	17		
4044.2+x	J+20	558.5 2	0.94 [#] 14	3485.7+x J+	18 [E2] ^b	0.0207	$B(E2)(W.u.)=1.51\times10^3 11$
4402.0+x	J+21	594.9 ^e 2	щ	3807.1+x J+	19		
4634.2+x	J+22	590.0 2	0.73 [#] 20	4044.2+x J+	20 [E2] ⁰	0.0183	$B(E2)(W.u.) = 1.44 \times 10^3 + 25 - 13$
5030.8+x	J+23	628.8 ^e 2	0.85# 8	4402.0+x J+	21		
5256.8+x	J+24	622.6 2	щ	4634.2+x J+	22 [E2] ^b	0.01618	$B(E2)(W.u.)=1.47\times10^{3}$ 17
5692.5+x	J+25	661.7 ^e 2	0.52 [#] 12	5030.8+x J+	23		
5912.5+x	J+26	655.7 2	0.40 [#] 16	5256.8+x J+	24		
6386.6+x	J+27	694.1 ^e 2	0.56 [#] 15	5692.5+x J+	25		
6601.0+x	J+28	688.5 2	0.18 [#] 10	5912.5+x J+	26		
7112.2+x	J+29	725.6 ^e 2	0.45 [#] 19	6386.6+x J+	27		
7322.3+x	J+30	721.3 2	0.39 [#] 10	6601.0+x J+	28		
7868.8+x	J+31	756.6 ^e 2	0.38 [#] 10	7112.2+x J+	29		
8075.5+x	J+32	753.2 2	0.55 [#] 16	7322.3+x J+	30		

$\gamma(^{193}\text{Hg})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult. ^a	α^d	Comments
8656.1+x	J+33	787.3 ^e 2		7868.8+x	J+31			
8860.4+x	J+34	784.9 2		8075.5+x	J+32			
9473.8+x	J+35	817.7 ^e 3		8656.1+x	J+33			
9677.0+x	J+36	816.6 <i>3</i>		8860.4+x	J+34			
10321.3+x	J+37	847.5 ^e 4		9473.8+x	J+35			
10524.8+x	J+38	847.8 4		9677.0+x	J+36			
1119/.4+x	J+39	8/6.1 5		10321.3+x	J+37			
11405.7 + X	J+40	880.9 5		10524.8 + X	J+38			
255.49+y	J1+2	122.6 3	o o 4 [#] o	111.9+y	J1+1			
366.1+y	J1+3	$233.5\ 2$ $132.2^{e}\ 5$	0.21" 3	у 233.49+у	J1 J1+2			
		254.0 ^e 2	0.12 [#] 5	111.9+y	J1+1			
508.5+y	J1+4	142.7 5		366.1+y	J1+3			
-		275.2 2	0.30 [#] 5	233.49+y	J1+2			
660.9+y	J1+5	152.9 ^e 5		508.5+y	J1+4			
-		294.6 ^e 2	0.38 [#] 8	366.1+v	J1+3			
823.5+y	J1+6	162.5 5		660.9+y	J1+5			
2		315.2.2	0.53 [#] 5	508.5 + v	J1+4			
996.0+v	J1+7	173.7^{e} 5	0.00 0	823.5+y	J1+6			
		$334.9^{e}.2$	0.61 [#] 9	$660.9 \pm y$	I1+5			
1178.3+v	J1+8	182.6.5	0.01 9	996.0+y	J1+7			
11/0.5+9	5110	354.0.2	0.78# 5	823 5±v	J1+7 I1⊥6			
1370 6+v	I1+9	192 3 5	0.76 5	1178 3+y	11+8			
1570.01y	5112	274 5° 2	0.72# 16	006.0+y	J1 7			
1572 1±v	11 ± 10	201.9.5	0.75 10	1370 6±v	$J1\pm 7$ $I1\pm 0$			
1372.11y	J 1+10	201.9 5	0.05# 5	1178 2 Ly	J1 9			
1783 Q±v	T1⊥11	393.8 Z	0.95 5	11/8.3+y 1572.1+y	J1+8 $I1\pm 10$			This y is a member of an unresolved doublet (the other member is
1785.9+y	J1+11	212.9 5		1 <i>372</i> .1+y	J 1+10			212.3 keV from level 1995 6+X)
		113 1 ^e 2	1.00# 12	1370.61 1	I1+0			212.5 ket, nom leter 1995.6 (11).
2004.2 + v	11 + 12	220 5 5	1.00 12	1783.9+y	J_{1+j} I_{1+11}			
2004.21y	J1 12	422.1.2	1.00# 8	1572 1 + y	J1 10			
2235 0±v	I1⊥13	452.12	1.02 8	1372.1+y 1783 0+y	J1+10 I1+11			
2233.0Ty	J1 + 1J	460 0 C	1.00 [#] 9	2004 2 ···	J1+11			
2474.0+y	J1+14	409.8 2	$1.00^{-6} \delta$	2004.2+y	J1+12			
2723.3+y	J1+15	488.3° 2	0.96" 18	2235.0+y	J1+13			
2980.2+y	J1+16	506.2 2	1.00 [#] 14	2474.0+y	J1+14	1		
3248.2+y	J1+17	524.9 ^e 2	0.98 [#] 20	2723.3+y	J1+15	[E2] ^b	0.0240	$B(E2)(W.u.) = 1.47 \times 10^3 + 22 - 14$
3521.7+y	J1+18	541.5 2	0.82 [#] 32	2980.2+y	J1+16			

217

γ (¹⁹³Hg) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	J_f^π	Mult. ^a	α^{d}	Comments
3808.1+v	J1+19	559.9 ^e 2	1.08 [#] 10	3248.2+v	J1+17	IE21 ^b	0.0206	$B(E2)(W.u.)=2.04\times10^3 + 38 - 19$
4098.5+y	J1+20	576.8 2	0.63 [#] 24	3521.7+y	J1+18	[]		
4403.0+y	J1+21	594.9 ^e 2		3808.1+y	J1+19	[E2] ^b	0.0179	$B(E2)(W.u.) = 1.38 \times 10^3 I2$
4709.8+y	J1+22	611.3 2	0.43 [#] 28	4098.5+y	J1+20			
5031.8+y 5354.1+y	J1+23 J1+24	628.8 ^e 2 644.3 2	0.85 [#] 8	4403.0+y 4709.8+y	J1+21 J1+22			
5693.5+y 6031.9+y	J1+25 J1+26	661.7 ^e 2 677.8 2	0.52 [#] 12	5031.8+y 5354.1+y	J1+23 J1+24			
6387.5+y 6741.8+y	J1+27 J1+28	694.1 ^e 2 709.9 2	0.56 [#] 15	5693.5+y 6031.9+y	J1+25 J1+26			
7113.1+y 7484.0+y	J1+29 J1+30	725.6 ^e 2 742.2 2	0.45 [#] 19	6387.5+y 6741.8+y	J1+27 J1+28			
7869.7+y 8255.2+y 8657.0+y 9057.4+y 9474.7+y 9889.5+y 10322.3+y 10750.0+y 11198.4+y	J1+31 J1+32 J1+33 J1+34 J1+35 J1+36 J1+37 J1+38 J1+39	756.6 ^e 2 771.2 3 787.3 ^e 2 802.2 4 817.7 ^e 3 832.1 5 847.5 ^e 4 860.5 5 876.1 ^e 5	0.38 [#] 10	7113.1+y 7484.0+y 7869.7+y 8255.2+y 8657.0+y 9057.4+y 9474.7+y 9889.5+y 10322.3+y	J1+29 J1+30 J1+31 J1+32 J1+33 J1+34 J1+35 J1+36 J1+37			
291.00+z	J2+2	291.0 2	$0.17^{#}$ 3	Z	J2			
619.8+z	J2+4	328.8 2	$0.72^{++}4$	291.00+z	J2+2			
986.4+z	J2+6	366.6 2	0.8/" 5	619.8+z	J2+4			
1391.4+z	J2+8	405.0 2	0.98'' /	986.4+z	J2+6			
1835.6+z	J2+10	444.2 2	1.00^{-4} /	1391.4+z	J2+8			
2319.9+2 2845.8+7	$J_2 + 1_2$ $I_2 + 1_4$	484.5 2	1.00^{-5}	1855.0+Z	J_{2+10} I_{2+12}			
2843.8+z 3412.5+z	J2+14 J2+16	525.9 2 566.7 2	$0.98^{\#} 8$	2319.9+z 2845.8+z	J2+12 J2+14			
4017.5+z	J2+18	605.0 2		3412.5+z	J2+16			
4658.0+z	J2+20	640.5 2	$0.82^{\#}$ 7	4017.5+z	J2+18			
5332.5+z	J2+22	674.5 2	$0.80^{\#}$ 7	4658.0+z	J2+20			
6040.0+z	J2+24	707.5 2	$0.72^{\#}$ 7	5332.5+z	J2+22			
6779.3+z	J2+26	739.3 2	$0.61^{\#}$ 7	6040.0+z	J2+24			
7549.0+z	J2+28	769.7 4	$0.46^{\#}$ 4	6779.3+z	J2+26			
8350.3+z	J2+30	801.3 5	0.36 [#] 3	7549.0+z	J2+28			

NUCLEAR DATA SHEETS

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	$E_f \qquad J_f^{\pi}$
9181.6+z	J2+32	831.3 5	0.21 [#] 4	8350.3+z	J2+30	3648.6+u	J3+18	567.2 2	1.00 [#] 6	3081.4+u J3+16
10042.6+z?	J2+34	861 ^{&g}	0.15 [#] 3	9181.6+z	J2+32	4254.9+u	J3+20	606.3 2		3648.6+u J3+18
240.52+u	J3+2	240.5 2	0.58 [#] 5	u	J3	4899.4+u	J3+22	644.5 2	0.90 [#] 10	4254.9+u J3+20
522.4+u	J3+4	281.9 2	$0.80^{\#} 5$	240.52+u	J3+2	5581.3+u	J3+24	681.9 2	$0.70^{\#} 6$	4899.4+u J3+22
845.9+u	J3+6	323.5 2	0.90 [#] 5	522.4+u	J3+4	6299.9+u	J3+26	718.6 2	$0.60^{\#} 6$	5581.3+u J3+24
1211.3+u	J3+8	365.4 2	1.00 [#] 5	845.9+u	J3+6	7054.4+u	J3+28	754.5 2		6299.9+u J3+26
1617.8+u	J3+10	406.5 2	1.00 [#] 5	1211.3+u	J3+8	7844.2+u	J3+30	789.8 2	0.42 [#] 5	7054.4+u J3+28
2065.3+u	J3+12	447.5 2	0.98 [#] 5	1617.8+u	J3+10	8668.5+u	J3+32	824.3 <i>3</i>	0.26 [#] 5	7844.2+u J3+30
2553.4+u	J3+14	488.1 2	0.95 [#] 5	2065.3+u	J3+12	9526.4+u	J3+34	857.9 5	0.24 [#] 5	8668.5+u J3+32
3081.4+u	J3+16	527.9 2	1.05 [#] 6	2553.4+u	J3+14					

[†] From (HI,xn γ) data set for levels, unless otherwise noted. From (HI,xn γ):SD data set for γ 's in superdeformed bands.

[‡] From ¹⁹³Hg IT decay (11.8 h). [§] From ¹⁹³Tl ε decay (21.6 min).

& Estimated (1998Ar07) from intensity plot (fig.1 in 1994Jo10).

[@] Relative photon branching from each level from (HI,xny), unless otherwise noted.

[#] Relative intensity within the SD band.

^{*a*} From (HI,xn γ) and Pt(α ,xn γ) data sets, unless otherwise noted.

^b Multipolarity assumed by the evaluator on the basis of the band sequence, for the purpose of estimating transition probabilities for γ rays from levels with known half-life.

^c If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed.

219

^f Multiply placed with undivided intensity.

^g Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $^{193}_{80}\text{Hg}_{113}$

 $^{193}_{80}Hg_{113}$

Band(L	.): Dipol	e band (3)
(71/2+)		9923.1
(69/2 ⁺)	514	9409.1 036
<u>(67/2⁺)</u> 10	522 020	8886.8
(65/2+)	498 9	<u>8388.8</u>
<u>(63/2⁺)</u>	464	7924.8
(61/2 ⁺)	34 370	7555.2
(59/2+)	357	7197.9
$\frac{(57/2^+)}{(55/2^+)}$	160 198	
(53/2+)	375	<u>6464.6</u>
(51/2+)	397	6067.7
(49/2 ⁺)	236	5832.1
(47/2 ⁺)	284	5547.6

Band(M): SD-1 Band: Possible configuration: [512]5/2, α =-1/2	Band(N): SD-2 Band: Possible configuration: [512]5/2. q=+1/2		Band(P): SD-4 Band: Possible configuration: [62419/2, q=+1/2	
J+40 11405.7+x		Band(O): SD-3 Band: Possible configuration:	[02.])/2, 00 12/2	
	J+39 11197.4+x	[624]9/2, α=-1/2	J1+39 11198.4+y	
881		.I1+38 10750.0+v		Band(Q): SD-5 Band:
J+38 10524.8+x	876	JII00 LILLIN	876	configuration: $(N=7, 1/2)$
	J+37 10321.3+x	860	J1+37 10322.3+y	α=-1/2)
848		11.20 0880 5 LV		
.J+36 9677.0+x	848	J1+30 7007.5+y	848	
	J+35 9473.8+x	832	J1+35 9474.7+y	861
817		11 - 24 9057 4+v		J2+32 9181.6+z
J+34 8860.4+x	818	J1+34 9037.4+y	818	
	J+33 8656.1+x	802	J1+33 8657.0+y	831
785		11+32 8255.2+v		J2+30 8350.3+z
J+32 8075.5+x	787		787	
	J+31 7868.8+x	771	J1+31 7869.7+y	801
753		J1+30 7484.0+y		J2+28 7549.0+z
J+30 7322.3+x	757		757	
721	J+29 7112.2+x	742	J1+29 /115.1+y	770
/21 I±28 6601.01x	726	J1+28 6741.8+y	726	J2+26 6779.3+z
<u>J+20</u> 0001.0+X	J+27 6386.6+x		J1+27 6387.5+y	720
688		710 11 - 26 6031 9+v		12+24 6040.0.17
J+26 5912.5+x	694	J1+20 0051.9+9	694	J2+24 0040.0+2
(5)	J+25 5692.5+x	678	J1+25 5693.5+y	708
.I+24 5256.8+x	662	J1+24 5354.1+y	662	J2+22 5332.5+z
	J+23 5030.8+x	(1)	J1+23 5031.8+y	
623		.I1+22 4709.8+y		674 12 - 20 4658 0
J+22 4634.2+x	629 I+21 4402 0+x		629 11+21 4403.0+v	<u>J2+20</u> 4056.0+2
590	J121 4402.0TX	611 11 - 20 4098 5+v	J1121	640
J+20 4044.2+x	595 L: 10 - 200 7 1	J1+20 +050.5+y	595	J2+18 4017.5+z
558	J+19 3807.1+X	577	J1+19 5000.1+y	605
J+18 3485.7+x	560	J1+18 5521.7+y	560	J2+16 _ 3412.5+z
528	J+17 3247.2+x	542	J1+17 5240.2+y	567
J+16 2957.5+x	525 I+15 2722 3 m	J1+10 2900.2+y	525 11+15 2723 3+v	J2+14 2845.8+z
497 I+14 2460 1 x	J+13 2722.3+X	506 11+14 2474.0+v	J1+15 2/2010 19	526
J+14 2400.1+X	488 J+13 2234.0+x	JIII	J1+13 488 2235.0+y	J2+12 2319.9+z
J+12 464 1995.6+x	451	J1+12 470 2004.2+y	451	484
429	J+11 1782.9+x	432	J1+11 1783.9+y	J2+10 1835.6+z
J+10 1566.6+x	413 1369 8+x	J1+10 1572.1+y	11+9 413 1370.6+v	
J+8 ³⁹² 1174.7+x	274	J1+8 ³⁹⁴ 1178.3+y	274	405
J+6 353 821 3+v	J+7 995.3+x	J1+6 ³⁵⁵ 823.5+v	J1+7 996.0+y	J2+6 986.4+z
1 4 314 FOT 4	J+5 335 660.4+x	11 4 315 508 5.1	J1+5 ³³⁵ 660.9+y	J2+4 ³⁶⁷ 619.8+z
J+4 50/.4+X	J+3 ²⁹⁵ 365.8+x	J1T4 500.5+Y 11+2 233.40.1 m	J1+3 ²⁹⁵ 366.1+y	$J_{2+2} \xrightarrow{329} 291.00+7$
J 235.20+X	J+1 111.8+x	J1+2 $Z33.49+yJ1$ V	J1+1 111.9+y	J2 ²⁹¹
				· · ·

 $^{193}_{80}\text{Hg}_{113}$

 $^{193}_{80} Hg_{113}$

¹⁹³Hg IT decay (11.8 h) 1974ViZS

Parent: ¹⁹³Hg: E=140.76 5; $J^{\pi}=13/2^{(+)}$; $T_{1/2}=11.8$ h 2; %IT decay=7.1 7

¹⁹³Hg-%IT decay: Deduced by evaluator using data from 1974ViZS: $I(\gamma+ce)(\text{isomeric decay})=8.5 \ 3 \ \text{from weighted average of}$ $I(\gamma+ce)(39.51\gamma)=8.7 \ 5 \ \text{and} \ I(\gamma+ce)(101.25\gamma)=8.4 \ 3; \ \text{total} \ \varepsilon+\beta^+ \ \text{intensity from } I(\gamma+ce)(\text{to }^{193}\text{Au } 290 \ \text{level})=111 \ 7 \ (\text{from }^{193}\text{Hg})$

(11.8 h) decay). ¹⁹³Hg IT decay branching=[8.5 3/(8.5 3+111 7)]=0.071 7. I(γ +ce) normalization from Σ I(γ +ce) to g.s.=100. Sources from (p,xn) reactions on gold, E(p)=70, 80 MeV, isotope separation; measured E(ce), Ice (Si(Li) (FWHM=1.2-2.5 keV), mag spect (resolution=0.1%)).

Others: 1969Ba42, 1962Di05, 1958Br88, 1957Br53, 1956Br04, 1955Br12, 1954Gi04.

¹⁹³Hg Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$\overline{3/2^{(-)}}$ $5/2^{(-)}$	3.80 h 15 0.63 ns 3	$T_{1/2}$; (ce)(ce)(t) (1969Ba42). Other value: 0.8 ns <i>I</i> ((ce)(ce)(t) (1961Re12)).
140.76 5	$13/2^{(+)}$	11.8 h 2	%IT=7.1 7
			$T_{1/2}$: from resolution of complex decay curves for ce(K) peaks in combined ¹⁵⁵ Hg (3.80 h) and ¹⁹³ Hg (11.8 h) sources (1974ViZS). Other values: 10.0 h 5 (1952Fi06), 11 h 1 (1958Br88), 11.1 h 5 (1970Pl01).

[†] From Adopted Levels.

$\gamma(^{193}\text{Hg})$

I(γ+ce) normalization: Deduced by evaluator using data from 1974ViZS: I(γ+ce)(isomeric decay)=8.5 *3* from weighted average of I(γ+ce)(39.51γ)=8.7 *5* and I(γ+ce)(101.25γ)=8.4 *3*; total $\varepsilon + \beta^+$ intensity from I(γ+ce)(to ¹⁹³Au 290 level)=111 7 (from ¹⁹³Hg (11.8 h) decay). ¹⁹³Hg IT decay branching=[8.5 *3*/(8.5 *3*+111 7)]=0.071 7. I(γ+ce) normalization from Σ I(γ+ce) to g.s.=100. All data are from 1974ViZS, unless otherwise noted. The Ice intensities have been normalized to the Iγ of ¹⁹³Hg ε decay (11.8 h). For normalization, see footnote on multipolarity in ¹⁹³Hg ε decay (11.8 h) data set.

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
39.51 3	39.51	5/2 ⁽⁻⁾	0.0	3/2(-)	M1	21.7	8.7 5	Mult.: L1/L2=8.2 <i>10</i> , M1/M2=7.6 <i>12</i> (1974ViZS). Theory: M1: L1/L2=9.7, M1/M2=8.9; E1: L1/L2=1.22, M1/M2=1.39; E2: L1/L2=0.0197, M1/M2=0.0213. I _(y+ce) : From (Ice(L12) + Ice(M12)) expt. + Ice (other) theory + I γ from Ice(L1)=5.6 <i>4</i> expt. (1974ViZS) and α (L1)=14.94 (theory).
101.25 4	140.76	13/2 ⁽⁺⁾	39.51	5/2 ⁽⁻⁾	M4	6.13×10 ³	8.4 <i>3</i>	Mult.: L1:L2:L3=1.25 7: 0.24 2: 4.10 <i>16</i> (1974ViZS). Theory: L1:L2:L3=1.20: 0.24: 4.05. $I_{(\gamma+ce)}$: From (Ice(L) + Ice(M)) expt. + Ice (other) theory + I γ deduce from from Ice(L)=5.59 <i>18</i> expt. (1974ViZS) and α (L)=4120.

[†] For absolute intensity per 100 decays, multiply by 0.84 8.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³Hg IT decay (11.8 h) 1974ViZS

 $^{193}_{80}\text{Hg}_{113}$

¹⁹³Tl ε decay (21.6 min) 1974Va23,1976GoZP

Parent: ¹⁹³Tl: E=0.0; $J^{\pi}=1/2^{(+)}$; $T_{1/2}=21.6 \text{ min } 8$; $Q(\varepsilon)=3585 \ 17$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100 1976GoZP: measured γ , $\gamma\gamma$, γ (ce). 1974Va23: produced by spallation of Pb+p, E(p)=600 MeV, chem, ms; measured γ (Ge(Li)), ce (Si(Li)), $\gamma\gamma$. Other: 1961An03.

¹⁹³Hg Levels

The decay scheme is that proposed by 1974Va23 with additional levels at 207.7 and 344.0 from 1976GoZP.

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †
0.0	3/2 ⁽⁻⁾	3.80 h 15
39.51 <i>3</i>	$5/2^{(-)}$	
49.95 <i>14</i>	$(1/2^{-})$	
207.74 20	$(7/2^{-})$	
324.36 8	$(3/2^{-}, 5/2^{-})$	
344.00 10	$(1/2^{-}, 3/2^{-})$	
374.61 10	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	
752.63 25	$(1/2^-, 3/2^-, 5/2^-)$	
1523.3 <i>3</i>	$(1/2^-, 3/2^-, 5/2^-)$	
1580.10 <i>21</i>	$(1/2^{-}, 3/2, 5/2^{-})$	

[†] From Adopted Levels.

¹⁹³ Tl ε decay (21.6 min)	1974Va23.1976GoZP	(continued)
116 uccay (21.0 mm)	17747423,17700021	(continucu)

$\gamma(^{193}\text{Hg})$

All data are from 1974Va23, unless otherwise noted.

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. †	$\delta^{\dagger \&}$	$\alpha^{@}$	Comments
(39.51 [‡] 3)		39.51	5/2 ⁽⁻⁾	0.0	3/2 ⁽⁻⁾	M1		21.7	E_{γ} ,Mult.: from ¹⁹³ Hg IT decay (11.8 h).
49.5 [#] 11	10.5 ^{#§} 50	49.95	$(1/2^{-})$	0.0	$3/2^{(-)}$	(M1)§		11.2 8	Mult.: α (L)exp=21 11.
49.5 [#] 11	10.5 ^{#§} 50	374.61	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	324.36	$(3/2^{-}, 5/2^{-})$	(M1) [§]		11.2 8	Mult.: α (L)exp=21 11.
207.74 20	19.5 10	207.74	(7/2 ⁻)	0.0	3/2 ⁽⁻⁾	(E2)		0.343	Mult.: α (K)exp=0.16 3; K/L=1.5 10.
274.39 14	13.5 13	324.36	(3/2 ⁻ ,5/2 ⁻)	49.95	$(1/2^{-})$	(E2)		0.1395	Mult.: α (K)exp=0.15 <i>10</i> . δ : \leq 62% M1 (1974Va23).
284.89 13	21.6 10	324.36	(3/2 ⁻ ,5/2 ⁻)	39.51	5/2 ⁽⁻⁾	(M1)		0.415	Mult.: α (K)exp=0.30 7, K/L=5.2 17. δ : \leq 44% E2 (1974Va23).
294.08 25	4.3 5	344.00	$(1/2^-, 3/2^-)$	49.95	$(1/2^{-})$	(M1)		0.381	Mult.: α (K)exp=0.31 <i>12</i> . δ : \leq 48% E2 (1974Va23).
324.37 10	100	324.36	(3/2 ⁻ ,5/2 ⁻)	0.0	$3/2^{(-)}$	(M1)		0.292	Mult.: α (K)exp=0.22 3, K/L=5.8 14. δ : \leq 22% E2 (1974Va23).
335.11 10	26.1 11	374.61	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)	39.51	5/2(-)	(M1)		0.267	Mult.: α (K)exp=0.21 4, K/L=4.8 15. δ : \leq 34% E2 (1974Va23).
343.99 10	41.7 18	344.00	(1/2 ⁻ ,3/2 ⁻)	0.0	3/2(-)	(M1+E2)	1.7 +17-6	0.12 4	Mult., δ : From α (K)exp=0.089 30, K/L=4.3 16.
^x 369.8 5	1.6 8								
374.58 22	7.6 9	374.61	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)	0.0	$3/2^{(-)}$	(E2)		0.0566	Mult.: α (K)exp=0.025 <i>13</i> ; theory: α (K)=0.0375.
X208 6 1	60.10					(M1 E2)		0.11.6	$\delta: \leq 1\% \text{ M1} (1974 \vee a23).$
x493 52 15	12 1 7					(M1, E2)		0.11.0	Mult: $\alpha(K) \exp[0.11 10]$ Mult: $\alpha(K) \exp[0.020, 10]$
195.52 15	12.1 /					(12)		0.0270	$\delta: \le 19\%$ M1 (1974Va23).
^x 543.3 7	3.8 9					(M1,E2)		0.05 3	Mult.: $\alpha(K) \exp = 0.053 \ 24$.
^x 574.9 5	3.8 6							0.0400	
^x 636.4 3 ^x 652 0 3	18 /					(M1)		0.0488	Mult.: $\alpha(K) \exp[0.040 1/; K/L=3.3 13]$.
x655.0.5	74								
x676.10 <i>19</i>	48 4					(M1)		0.0417	Mult.: α (K)exp=0.031 6; K/L=4.9 15. δ : <35% E2 (1974Va23).
^x 692.3 4	20.9 16					(M1)		0.0392	Mult.: α (K)exp=0.027 6. δ : <52% E2 (1974Va23).
713.0 4	6.0 7	752.63	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	39.51	5/2 ⁽⁻⁾	(E2)		0.01204	Mult.: α(K)exp=0.011 10. δ: <54% M1.
^x 720.0 5	1.7 8								Mult.: α (K)exp=0.050 46; theory: α (K)(M1)=0.0292 5, α (K)(E2)=0.00915 13.
752.5 4	11.6 <i>17</i>	752.63	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	0.0	3/2 ⁽⁻⁾	(M1)		0.0316	Mult.: α (K)exp=0.028 <i>13</i> . δ : $\leq 63\%$ E2.

$^{193}_{80}{ m H}$
1g11:
₃ -26

					γ ⁽¹⁹³ H	g) (continued	d)		
E_{γ}	I_{γ}	E _i (level)	${f J}^\pi_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger \&}$	α [@]	Comments
^x 759.1 7 770.4 4	6.5 <i>15</i> 12.9 8	1523.3	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	752.63	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	(M1,E2) (M1+E2)	1.2 10	0.021 <i>11</i> 0.021 7	Mult.: $\alpha(K)\exp=0.022$ 18. Mult., δ : From $\alpha(K)\exp=0.018$ 6. δ deduced by evaluator, BriccMixing gives 0.8 δ and 0.8 $+10-7$.
^x 773.9 6	1.6 7								
^x 783.0 <i>15</i> ^x 821.2 2	4.0 <i>16</i> 9.4 <i>5</i>					(M1+E2)	1.1 6	0.016 5	Mult., δ : From α (K)exp=0.013 4. δ from BriccMixing, other value it gives 1.1 +13-6.
^x 942.1 5	1.8 8								
^x 994.75 25	11.0 11								
^x 1014.4 <i>3</i>	8.9 10								
^x 1044.7 3	59 6								
^x 1064.3 4	7.1 5								
^x 1086.2 6	1.6 8								
^x 1130.3 <i>3</i>	12.3 13								
^x 1145.8 4	4.2.8								
*1152.0 4	4.9 9	1500.10	(1 10- 0 10 5 10-)	074 (1	(2)0- 5/0- 7/0-)				
1205.4 3	10.2 I2	1580.10	(1/2,3/2,5/2)	3/4.61	(3/2,5/2,1/2)				
$x_{1229.2} 0$	2.5 10								
1256.0.2	4.0 12	1580 10	$(1/2^{-} 2/2 5/2^{-})$	221 26	$(2/2^{-} 5/2^{-})$				
1230.0 <i>3</i> x1337 6 <i>4</i>	5610	1380.10	(1/2, 3/2, 3/2)	524.50	(3/2 ,3/2)				
x1360.8.4	489								
x_{143074}	4.0 9								
x1474 7 7	2.6.10								
1484 1 7	3410	1523.3	$(1/2^{-} 3/2^{-} 5/2^{-})$	30 51	5/2(-)				
1523 4 4	8 0 19	1523.3	$(1/2^{-}, 3/2^{-}, 5/2^{-})$	0.0	3/2 $3/2^{(-)}$				
1530 / 10	8820	1520.0	$(1/2^{-}, 3/2^{-}, 3/2^{-})$	30.51	5/2 5/2(-)				
1570 3 10	45 10	1580.10	$(1/2^{-}, 3/2, 3/2^{-})$	0.0	3/2 3/2(-)				
13/9.3 10	+J 10	1000.10	(1/2, 3/2, 3/2)	0.0	5/2.				

[†] From $\alpha(K)\exp$ and/or $\alpha(L)\exp$. 1974Va23 have normalized the ce-intensities to the photon intensities so that $\alpha(K)\exp$ and $\alpha(L)\exp$ for the 284.9 γ , 324.4 γ , 335.1 γ , 344.0 γ and 676.1 γ gave the same multipolarities as their respective K/L ratios. This normalization gives $\alpha(K)\exp(207.7\gamma)=0.16$ 3 which is in agreement with proposed E2 multipolarity for this γ (expected $\alpha(K)(E2)=0.156$). However, several γ 's which are expected to be [M1,E2] have $\alpha(K)\exp$ or $\alpha(L)\exp$ outside the range of expected values e.g. $\alpha(L)\exp(636.4\gamma)$, $\alpha(K)\exp(374.6\gamma)$ thus suggesting that although the multipolarities have been established, the mixing ratios should be considered tentative.

[‡] Presence suggested by decay scheme and constant energy differences between pairs of γ rays.

§ Based on $\alpha(L)$ exp, only 12% 11 of the undivided intensity can come from an E2 transition.

& If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

¹⁹³Tl ε decay (2.11 min) 1976GoZP

Parent: ¹⁹³Tl: E=365.2+x; $J^{\pi}=9/2^-$; $T_{1/2}=2.11 \text{ min } 15$; $Q(\varepsilon)=3585 \ 17$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+ \text{ decay}\geq 25$ 1976GoZP: measured γ , $\gamma\gamma$, $\gamma(\text{ce})$. No level scheme has been proposed.

Pt(*α*,**xn***γ*) **1975Li16,1978Me11**

1975Li16: ¹⁹⁵Pt(α ,⁶n γ), E(α)=80 MeV; ¹⁹⁶Pt(α ,⁷n γ), E(α)=90 MeV; ¹⁹⁴Pt(α ,⁵n γ), E(α)=65 MeV. Enriched Pt targets.

Measured E γ , I γ (Ge(Li)), $\gamma\gamma$ coin, $\gamma\gamma$ (t), γ -ray angular distributions (θ from 90° to 165° in 15° steps); used rotation-alignment model to interpret level structure. Earlier report: 1974Be11.

1978Me11: ¹⁹²Pt,¹⁹⁴Pt,¹⁹⁸Pt(α ,xn γ), E(α)=31-57 MeV. Enriched Pt targets. Measured ce(t).

¹⁹³Hg Levels

The level scheme is that proposed by 1975Li16.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
140.76 [@] 5	13/2 ⁽⁺⁾	11.8 h 2	E(level), $T_{1/2}$: From Adopted Levels.
522.7 [@] 3	$17/2^{+}$		
747.1 ^{&} 3	$15/2^{+}$		
1145.0 [@] 4	$21/2^+$		
1380.3 ^{&} 3	$19/2^{+}$		
1523.3 4	$19/2^{(+)}$		
1755.5 ^a 4	$21/2^{(-)}$		
1883.6 [@] 5	$25/2^+$		
1886.0 ^a 5	$25/2^{(-)}$	1.58 ns 6	
1890.3 4	$23/2^{(-)}$		
2095.2 5	$27/2^{(-)}$		
2188.5 ^{<i>a</i>} 6	$29/2^{(-)}$		
2501.3 [@] 6	29/2+		
2582.7 6	$31/2^{(-)}$		
2694.5 [@] 7	33/2+	573 ps <i>30</i>	
2761.4 ^{<i>a</i>} 7	$33/2^{(-)}$		
3175.2 [@] 7	37/2+		
3222.3 7	$35/2^{(-)}$		
3496.1 ^{<i>u</i>} 7	37/2(-)		
3879.6 8	$41/2^+$		
3882.1 7	$39/2^{(-)}$		

[†] From least-squares fit to γ -ray energies, except otherwise noted.

[‡] From 1975Li16, based on multipolarities of transitions and fits of coincident γ rays into an interconnected set of rotational bands.

[#] ce(t) (1978Me11), except otherwise noted.

[@] Member of i13/2 favored decoupled band.

[&] Member of i13/2 unfavored decoupled band.

^{*a*} Member of π =- side band 1.

$\gamma(^{193}\text{Hg})$

All γ data are from 1975Li16.

Eγ	E _i (level)	J_i^{π}	E _f	J_f^{π}	Mult. [†]	$I_{(\gamma+ce)}$ [‡]	Comments
130.5 <i>3</i>	1886.0	25/2 ⁽⁻⁾	1755.5 2	$21/2^{(-)}$	E2	37 8	Mult.: A_2 =+0.28 2, A_4 =-0.05 3.
134.6 <i>3</i>	1890.3	23/2 ⁽⁻⁾	1755.5 2	$21/2^{(-)}$	(D+Q)	8 4	Mult.: A_2 =-0.02 10, A_4 =+0.14 15; contains contribution

Pt(*α*,**xn***γ*) **1975Li16,1978Me11** (continued)

					$\gamma($	(193 Hg) (c	ontinued)	
Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [†]	δ^{\dagger}	$I_{(\gamma+ce)}$ [‡]	Comments
193.2 <i>3</i>	2694.5	$33/2^{+}$	2501.3	$29/2^{+}$	E2		28 5	Mult.: $A_2 = +0.26 2$, $A_4 = -0.07 3$.
204.9 3	2095.2	$27/2^{(-)}$	1890.3	$23/2^{(-)}$	E2		20 6	Mult.: $A_2 = +0.32$ 2, $A_4 = -0.07$ 3.
232.2 3	1755.5	$21/2^{(-)}$	1523.3	$19/2^{(+)}$	(D)		11 6	Mult.: $A_2 = -0.33 8$, $A_4 = +0.06 12$.
								$I_{(\gamma+ce)}$: includes contribution from 232.8 γ in ¹⁹⁴ Hg.
302.5 <i>3</i>	2188.5	$29/2^{(-)}$	1886.0	$25/2^{(-)}$	E2		23 4	Mult.: $A_2 = +0.31 \ 2$, $A_4 = -0.04 \ 3$.
375.2 <i>3</i>	1755.5	$21/2^{(-)}$	1380.3	$19/2^{+}$	(D)		20 5	Mult.: $A_2 = -0.22 \ 2$, $A_4 = -0.01 \ 3$.
382.0 <i>3</i>	522.7	$17/2^{+}$	140.76	$13/2^{(+)}$	E2		100 8	Mult.: $A_2 = +0.29 \ 2$, $A_4 = -0.05 \ 3$.
480.7 <i>3</i>	3175.2	$37/2^+$	2694.5	$33/2^{+}$	E2		23 5	Mult.: $A_2 = +0.32 \ 3$, $A_4 = -0.08 \ 4$.
487.5 <i>3</i>	2582.7	$31/2^{(-)}$	2095.2	$27/2^{(-)}$	E2		12 5	Mult.: $A_2 = +0.37 4$, $A_4 = -0.10 5$.
572.9 <i>3</i>	2761.4	$33/2^{(-)}$	2188.5	$29/2^{(-)}$	E2		19 5	Mult.: $A_2 = +0.15 \ 3$, $A_4 = -0.08 \ 4$; contains
								contribution from contaminating line.
606.3 <i>3</i>	747.1	$15/2^{+}$	140.76	$13/2^{(+)}$	D+Q		94	Mult., δ : A ₂ =-0.74 5, A ₄ =+0.15 7; A ₂ does
								not agree with A_2 measured in (HI,xn γ) experiment.
617.7 <i>3</i>	2501.3	$29/2^{+}$	1883.6	$25/2^{+}$	E2		26 4	Mult.: $A_2 = +0.34 \ 3$, $A_4 = -0.07 \ 4$.
622.4 <i>3</i>	1145.0	$21/2^{+}$	522.7	$17/2^{+}$	E2		61 5	Mult.: $A_2 = +0.29 2$, $A_4 = -0.05 3$.
633.1 <i>3</i>	1380.3	$19/2^{+}$	747.1	$15/2^{+}$	E2		10 4	Mult.: $A_1 = +0.38 6$, $A_4 = -0.04 9$.
								$I_{(\gamma+ce)}$: includes contributions from 633.1 γ and 634.8 γ in ¹⁹² Hg.
639.6 <i>3</i>	3222.3	$35/2^{(-)}$	2582.7	$31/2^{(-)}$	E2		11 4	Mult.: $A_2 = +0.35$ 6, $A_4 = +0.02$ 9.
659.8 <i>3</i>	3882.1	$39/2^{(-)}$	3222.3	$35/2^{(-)}$	E2		73	Mult.: $A_2 = +0.39$ 7, $A_4 = -0.09$ 10.
704.4 3	3879.6	$41/2^{+}$	3175.2	$37/2^{+}$	E2		6 <i>3</i>	Mult.: $A_2 = +0.36$ 7, $A_4 = -0.08$ 10.
734.7 <i>3</i>	3496.1	$37/2^{(-)}$	2761.4	$33/2^{(-)}$	E2		11 4	Mult.: $A_2 = +0.28 4$, $A_4 = -0.04 6$.
738.6 <i>3</i>	1883.6	$25/2^+$	1145.0	$21/2^+$	E2		39 4	Mult.: $A_2 = +0.32 \ 2$, $A_4 = -0.05 \ 3$.
745.4 <i>3</i>	1890.3	$23/2^{(-)}$	1145.0	$21/2^+$	(D)		16 8	Mult.: $A_2 = -0.23 \ 6$, $A_4 = +0.01 \ 8$; $\gamma(\theta)$ from
								194 Pt(α ,5n γ) at 65 MeV.
								$I_{(\gamma+ce)}$: includes contribution from 745.4 γ in ¹⁹² Hg.
857.5 <i>3</i>	1380.3	$19/2^{+}$	522.7	$17/2^{+}$	D+Q	0.33 6	14 <i>3</i>	Mult., δ : $A_2 = -0.76 4$, $A_4 = +0.15 6$.
1000.5 <i>3</i>	1523.3	$19/2^{(+)}$	522.7	$17/2^{+}$	(D+Q)		9 <i>3</i>	Mult.: $A_2 = -0.16 \ 12$, $A_4 = +0.16 \ 18$.

or(19311a) (continued)

[†] From γ -ray angular distributions; stretched E2 assignments were based on large positive A₂. 1975Li16 assume probable E1 to pure dipole transitions, and M1+E2 to D+Q transitions, however, evaluator list those as D and D+Q. [‡] From 1975Li16 – relative to I(γ +ce)=100 for 382.0 γ .

(HI,xnγ):SD 1993Jo09,1994Jo10,1998Bu03

1998Bu03: ¹⁷⁶Yb(²²Ne,5n γ) E=118 MeV. Measured γ , $\gamma\gamma$, lifetimes. Deduced SD bands and intrinsic quadrupole moments. 1994Jo10, 1993Jo09, 1992ShZR, 1990Cu05, 1990Cu06: ¹⁵⁰Nd(⁴⁸Ca,5n γ) E=205, 213 MeV. Measured γ , $\gamma\gamma$. Deduced SD bands and transitions.

1993Fa07: ¹⁷⁶Yb(²²Ne,5n γ) E=116 MeV. Measured γ , $\gamma\gamma$. Deduced SD bands and interband transitions. Intraband transitions from 1993Jo09, 1992ShZR. See also 1997Fa15.

Others: 1990He09 used reactions 176 Yb(22 Ne,5ny) E=116 MeV and 150 Nd(48 Ca,5ny) E=195-210 MeV to identify SD-2 and SD-3 bands in 193 Hg (see 1990He23 for analysis of results); 2000Zw03 attempt to determine whether the relative yields for the population of superdeformed states in HI-induced reactions could be enhanced by selecting the (HI, α xn) channel, rather than the pure neutron evaporation channel. The results show that the yield for those states is actually about 4 times lower in the former case. Measured K α x ray yield (1993Cu02).

¹⁹³Hg Levels

SD-1, SD-2 and SD-3 bands assigned on the basis of $\gamma\gamma$ evidence with known transitions (in normal bands) in ¹⁹³Hg. SD-4 band assigned on the basis of excitation functions.

E(level)	\mathbf{J}^{π}	T _{1/2} †	Comments
x‡	J		J ^π : J≈(19/2 [−]). 1993Fa07 suggested that the lowest transition in this band is 192 keV, but 1993Jo09 do not seem to confirm this.
$111.8 + x^{\#} 4$	J+1		
233.20+x [‡] 20	J+2		
$365.8 + x^{\#} 4$	J+3		
507.4+x [‡] 3	J+4		
$660.4 + x^{\#} 4$	J+5		
$821.4 + x^{\ddagger} 4$	J+6		
995.3+x [#] 4	J+7		
$1174.7 + x^{\ddagger} 4$	J+8		
1369.8+x [#] 4	J+9		
$1566.6 + x^{4} 4$	J+10		
1782.9+x [#] 5	J+11		
$1995.6 + x^{+} 5$	J+12		
2234.0+x [#] 5	J+13		
$2460.1 + x^{+} 5$	J+14		
2722.3+x [#] 5	J+15		
2957.5 + x + 5	J+16		
3247.2+x [#] 6	J+17		
$3485.7 + x^{+} 6$	J+18	0.132 ps 14	
3807.1+x [#] 6	J+19		
4044.2 + x + 6	J+20	0.104 ps 7	
$4402.0+x^{#}6$	J+21		
$4634.2 + x^{+} 6$	J+22	0.083 ps +7-14	
$5030.8 + x^{+} 7$	J+23		
5256.8+x ⁺ 7	J+24	0.062 ps 7	
5692.5+x [#] 7	J+25		
5912.5+x+ 7	J+26		
6386.6+x [#] 7	J+27		
$6601.0 + x^{+} 7$	J+28		
7112.2+x [#] 8	J+29		

(HI,xnγ):SD 1993J009,1994J010,1998Bu03 (continued)

¹⁹³Hg Levels (continued)

E(level)	J^{π}	T _{1/2} †	Comments
7322.3+x [‡] 8	J+30		
7868.8+x [#] 8	J+31		
8075.5+x [‡] 8	J+32		
8656.1+x [#] 8	J+33		
8860.4+x [‡] 8	J+34		
9473.8+x [#] 9	J+35		
9677.0+x [‡] 9	J+36		
10321.3+x [#] 10	J+37		
10524.8+x [‡] 10	J+38		
11197.4+x [#] 11	J+39		
11405.7+x [‡] 11	J+40		
y [@]	J1		$J^{\pi}: J_1 \approx (19/2^+).$
111.9+y ^{&} 4	J1+1		
233.50+y [@] 20	J1+2		
366.1+y& 4	J1+3		
508.5+y [@] 3	J1+4		
660.9+y ^{&} 4	J1+5		
823.5+y [@] 4	J1+6		
996.0+y& 4	J1+7		
1178.3+y [@] 4	J1+8		
1370.6+y& 4	J1+9		
1572.1+y [@] 4	J1+10		
1783.9+y& 4	J1+11		
2004.2+y [@] 5	J1+12		
2235.0+y 🗞 5	J1+13		
2474.0+y [@] 5	J1+14		
2723.3+y 5	J1+15		
2980.2+y [@] 5	J1+16		
3248.2+y [∞] 6	J1+17	0.146 ps +14-21	
3521.7+y [@] 6	J1+18		
3808.1+y [∞] 6	J1+19	0.076 ps +7-14	
4098.5+y [@] 6	J1+20		
4403.0+y ^{&} 6	J1+21	0.083 ps 7	
4709.8+y 7	J1+22		
5031.8+y [@] 7	J1+23		
5354.1+y 7	J1+24		
5693.5+y [@] 7	J1+25		
6031.9+y [@] /	J1+26		
$0.38/.0+y^{\circ}/$	J1+27		
0/41.8+y [™] /	J1+28		
$/113.2+y \approx 8$	J1+29		
/484.U+y ° 8 7860 8& °	J1+30 I1+21		
$y_{00}, 0+y_{0} = 0$	J1+31 I1+22		
0233.2+y = 0	J1+32 I1+22		
0037.1+y 0	J1+33		

$(HI,xn\gamma)$:SD 1993Jo09,1994Jo10,1998Bu03 (continued)

¹⁹³Hg Levels (continued)

E(level)	J^{π}	Comments
9057.4+v [@] 9	J1+34	
9474.8+y& 9	J1+35	
9889.5+v [@] 11	J1+36	
10322.3+v ^{&} 10	J1+37	
$10750.0 + y^{@} 12$	J1+38	
$111984 + v^{\&} 11$	I1+39	
z ^a	J2	$J^{\pi}: J_{2} \approx (27/2^{-}).$
291.00+z ^a 20	J2+2	
619.8+z ^a 3	J2+4	
986.4+ z^{a} 4	J2+6	
$1391.4 + z^{\alpha} 4$	J2+8	
$1835.0+Z^{a}$ 5	J_{2+10} I_{2+12}	
2319.9+2 3 2845 8+7 ^{<i>a</i>} 6	$J_{2+1_{2}}$ $I_{2+1_{4}}$	
$3412.5 + z^a 6$	J_{2+1}	
$4017.5 + z^a 6$	J2+18	
4658.0+z ^a 7	J2+20	
$5332.5 + z^{a}$ 7	J2+22	
$6040.0+z^{a}$ 7	J2+24	
$67/9.3 + z^{a} 8$	J2+26	
$7549.0+z^{a}$ 9 8350.3 + z^{a} 10	$J_2 + 28$ $I_2 + 30$	
9181 $6+z^a$ 11	12+30 12+32	
$10042.6 + z?^{a}$	J2+32	
u ^b	J3	J^{π} : $J_3 \approx (21/2^-)$, from 1994Jo10.
240.51+u ^b 20	J3+2	
522.4+u ^b 3	J3+4	
845.9+u ^b 4	J3+6	
1211.3+u ^b 4	J3+8	
1617.8+u ^b 5	J3+10	
$2065.3 + u^b 5$	J3+12	
2553.4+u ^b 6	J3+14	
3081.4+u ^b 6	J3+16	
3648.6+u ^b 6	J3+18	
4254.9+u ^b 7	J3+20	
4899.4+u ^b 7	J3+22	
5581.3+u ^b 7	J3+24	
6299.9+u ^b 8	J3+26	
7054.4+u ^b 8	J3+28	
7844.2+u ^b 8	J3+30	
8668.5+u ^b 9	J3+32	
9526.4+u ^b 10	J3+34	

[†] From line-shape analysis (1998Bu03).

[‡] Band(A): SD-1 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=18.4 +8-9 (1998Bu03). Percent population=1.6 3 (1990Cu05). g factor (intrinsic)=-0.65 14 (1993Jo09). This is deduced from the ratio of interband (M1) and intraband (E2)

(HI,xnγ):SD 1993J009,1994J010,1998Bu03 (continued)

¹⁹³Hg Levels (continued)

transition intensities. Possible configuration: $[512]5/2^-$, $\alpha = -1/2$ below $E\gamma \approx 400$ and $j_{15/2}$ above $E\gamma \approx 600$ keV.

- [#] Band(B): SD-2 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11-9 (1998Bu03). Percent population=2.1 3(1990Cu05). The relative intensity of this band is anomalously high (≈ 2 times that of its signature partner SD-3 band) which leads to suggestion that this band may be composed of two SD bands, the other being the signature partner of SD-3 band. Possible configuration: [512]5/2⁻, $\alpha = +1/2$. Signature partner of SD-1 band.
- ^(a) Band(C): SD-3 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.1 +15-14 (1998Bu03). Percent population=0.9 3 (1990Cu05) Possible configuration: $[624]9/2^+$, $\alpha = -1/2$.
- [&] Band(D): SD-4 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=17.3 +11-9 (1998Bu03). Possible configuration: [624]9/2⁺, α =+1/2. Signature partner of SD-3 band. SD-2 and SD-4 bands are unresolved but FWHM of lines is consistently greater than that for lines in SD-1 band (from (HI,xn γ):SD).
- ^{*a*} Band(E): SD-5 Band (1998Bu03,1994Jo10,1993Jo09,1990Cu05). Q(intrinsic)=16.7 *10* (1998Bu03). Percent population=1.1 *3* (1990Cu05). $j_{15/2}$, $\alpha = -1/2$ intruder band below E $\gamma \approx 400$ keV and [512]5/2 $\alpha = -1/2$ above E $\gamma \approx 600$ keV. Configuration: (N=7, $\alpha = -1/2$)(1994Jo10).
- ^b Band(F): SD-6 Band (1998Bu03,1994Jo10). Q(intrinsic)=16.7 +14-13 (1998Bu03). Percent population ≈ 0.6 (1994Jo10). Configuration: (N=7, α =+1/2), unfavored signature partner (1994Jo10).

$\gamma(^{193}\text{Hg})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
121.1 [§] 5		233.20+x	J+2	111.8+x	J+1	
122.6 [§] 5		233.50+y	J1+2	111.9+y	J1+1	
132.2 ^{&§} 5		365.8+x	J+3	233.20+x	J+2	
132.2 ^{&§} 5		366.1+y	J1+3	233.50+y	J1+2	
141.6 [§] 5		507.4+x	J+4	365.8+x	J+3	
142.7 [§] 5		508.5+y	J1+4	366.1+y	J1+3	
152.9 ^{&§} 5		660.4+x	J+5	507.4+x	J+4	
152.9 ^{&§} 5		660.9+y	J1+5	508.5+y	J1+4	
160.7 [§] 5		821.4+x	J+6	660.4+x	J+5	
162.5 [§] 5		823.5+y	J1+6	660.9+y	J1+5	
173.7 ^{&§} 5		995.3+x	J+7	821.4+x	J+6	
173.7 ^{&§} 5		996.0+y	J1+7	823.5+y	J1+6	
179.3 [§] 5		1174.7+x	J+8	995.3+x	J+7	
182.6 [§] 5		1178.3+y	J1+8	996.0+y	J1+7	
192.3 [§] 5		1370.6+y	J1+9	1178.3+y	J1+8	1993Fa07 suggested that this transition is also the lowest member of SD-1 band, but results of 1993Jo09 do not seem to confirm this placement.
196.9 [§] 5		1566.6+x	J+10	1369.8+x	J+9	
201.9 [§] 5		1572.1+y	J1+10	1370.6+y	J1+9	
212.3 [§] 5		1995.6+x	J+12	1782.9+x	J+11	This γ is a member of an unresolved doublet (the other member is 212.9 keV, from level 1783.9+y).
212.9 [§] 5		1783.9+y	J1+11	1572.1+y	J1+10	This γ is a member of an unresolved doublet (the other member is 212.3 keV, from level 1995.6+X).
220.5 [§] 5		2004.2+y	J1+12	1783.9+y	J1+11	
226.4 [§] 5		2460.1+x	J+14	2234.0+x	J+13	
233.2 2	0.37 3	233.20+x	J+2	Х	J	
233.5 2	0.21 3	233.50+y	J1+2	у	J1	
240.5 2	0.58 5	240.51+u	J3+2	u	J3	

(HI,xnγ):SD 1993Jo09,1994Jo10,1998Bu03 (continued)

$\gamma(^{193}\text{Hg})$ (continued)

E_{γ}^{\dagger}	Ιγ [‡]	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
254.0 [@] 2	0.12 [@] 5	365.8+x	J+3	111.8+x	J+1
$254.0^{\textcircled{0}}2$	$0.12^{\textcircled{0}}5$	366.1+y	J1+3	111.9+y	J1+1
274.2 2	0.48 3	507.4+x	J+4	233.20+x	J+2
275.2 2	0.30 5	508.5+y	J1+4	233.50+y	J1+2
281.9 2	0.80 5	522.4+u	J3+4	240.51+u	J3+2
291.0 2	0.17 3	291.00+z	J2+2	Z	J2
294.6 [@] 2	0.38 ^(@) 8	660.4+x	J+5	365.8+x	J+3
294.6 [@] 2	0.38 [@] 8	660.9+y	J1+5	366.1+y	J1+3
314.0 2	0.75 5	821.4+x	J+6	507.4+x	J+4
315.2 2	0.53 5	823.5+y	J1+6	508.5+y	J1+4
323.5 2	0.90 5	845.9+u	J3+6	522.4+u	J3+4
328.8 2	0.72 4	619.8+z	J2+4	291.00+z	J2+2
334.9 [@] 2	0.61 [@] 9	995.3+x	J+7	660.4+x	J+5
334.9 [@] 2	0.61 [@] 9	996.0+y	J1+7	660.9+y	J1+5
353.4 2	0.90 5	1174.7+x	J+8	821.4+x	J+6
354.9 2	0.78 5	1178.3+y	J1+8	823.5+y	J1+6
365.4 2	1.00 5	1211.3+u	J3+8	845.9+u	J3+6
366.6 2	0.87 5	986.4+z	J2+6	619.8+z	J2+4
374.5 [@] 2	0.73 [@] 18	1369.8+x	J+9	995.3+x	J+7
374.5 [@] 2	0.73 [@] 16	1370.6+y	J1+9	996.0+y	J1+7
391.9 2	0.96 5	1566.6+x	J+10	1174.7+x	J+8
393.8 2	0.95 5	1572.1+y	J1+10	1178.3+y	J1+8
405.0 2	0.98 7	1391.4+z	J2+8	986.4+z	J2+6
406.5 2	1.00 5	1617.8+u	J3+10	1211.3+u	J3+8
413.1 [@] 2	1.00 [@] 12	1782.9+x	J+11	1369.8+x	J+9
413.1 [@] 2	1.00 [@] 12	1783.9+y	J1+11	1370.6+y	J1+9
429.0 2	1.00 5	1995.6+x	J+12	1566.6+x	J+10
432.1 2	1.02 8	2004.2+y	J1+12	1572.1+y	J1+10
444.2 2	1.00 7	1835.6+z	J2+10	1391.4+z	J2+8
447.5 2	0.98 5	2065.3+u	J3+12	1617.8+u	J3+10
451.1 ^{&} 2		2234.0+x	J+13	1782.9+x	J+11
451.1 ^{&} 2		2235.0+y	J1+13	1783.9+y	J1+11
464.4 2	0.98 <i>3</i>	2460.1+x	J+14	1995.6+x	J+12
469.8 2	1.00 8	2474.0+y	J1+14	2004.2+y	J1+12
484.3 2	1.00 5	2319.9+z	J2+12	1835.6+z	J2+10
488.1 2	0.95 5	2553.4+u	J3+14	2065.3+u	J3+12
488.3 [@] 2	0.96 ⁽¹⁾ 18	2722.3+x	J+15	2234.0+x	J+13
488.3 ^{^w} 2	0.96 18	2723.3+y	J1+15	2235.0+y	J1+13
497.4 2	1.00 3	2957.5+x	J+16	2460.1+x	J+14
506.2 2	1.00 14	2980.2+y	J1+16	2474.0+y	J1+14
524.9 ^{^w} 2	0.98 20	3247.2+x	J+17	2722.3+x	J+15
524.9 [@] 2	0.98 [@] 20	3248.2+y	J1+17	2723.3+y	J1+15
525.9 2	0.98 6	2845.8+z	J2+14	2319.9+z	J2+12
527.9 2	1.05 6	3081.4+u	J3+16	2553.4+u	J3+14
528.2 2	1.11 10	3485.7+x	J+18	2957.5+x	J+16
541.5 2	0.82 32	3521./+y	J1+18	2980.2+y	J1+16
558.5 2	0.94 14	4044.2+x	J+20	3483./+X	J+18
559.9 ^w 2	1.08 10	3807.1+x	J+19	3247.2+x	J+17
559.9 2	1.08 ^w 10	3808.1+y	J1+19	3248.2+y	J1+17
566.7 2	0.98 8	3412.5+z	J2+16	2845.8+z	J2+14
567.2 2	1.00 6	3648.6+u	J3+18	3081.4+u	J3+16

(HI,xnγ):SD 1993J009,1994J010,1998Bu03 (continued)

$\gamma(^{193}\text{Hg})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
576.8 2	0.63 24	4098.5+y	J_{1+20}	3521.7+y	J1+18
590.0 2	0.73 20	4634.2+x	J+22	4044.2+x	J+20
594.9 ^{&} 2		4402.0+x	J+21	3807.1+x	J+19
594.9 ^{&} 2		4403.0+y	J1+21	3808.1+y	J1+19
605.0 2		4017.5+z	J2+18	3412.5+z	J2+16
606.3 2		4254.9+u	J3+20	3648.6+u	J3+18
611.3 2	0.43 28	4709.8+y	J1+22	4098.5+y	J1+20
622.6 2	0	5256.8+x	J+24	4634.2+x	J+22
628.8 [@] 2	0.85 [@] 8	5030.8+x	J+23	4402.0+x	J+21
628.8 [@] 2	$0.85^{\textcircled{0}}8$	5031.8+y	J1+23	4403.0+y	J1+21
640.5 2	0.82 7	4658.0+z	J2+20	4017.5+z	J2+18
644.3 2		5354.1+y	J1+24	4709.8+y	J1+22
644.5 2	0.90 10	4899.4+u	J3+22	4254.9+u	J3+20
655.7 2	0.40 16	5912.5+x	J+26	5256.8+x	J+24
661.7 [@] 2	0.52 [@] 12	5692.5+x	J+25	5030.8+x	J+23
661.7 [@] 2	$0.52^{\textcircled{0}}$ 12	5693.5+y	J1+25	5031.8+y	J1+23
674.5 2	0.80 7	5332.5+z	J2+22	4658.0+z	J2+20
677.8 2		6031.9+y	J1+26	5354.1+y	J1+24
681.9 2	0.70 6	5581.3+u	J3+24	4899.4+u	J3+22
688.5 2	0.18 10	6601.0+x	J+28	5912.5+x	J+26
694.1 ^{^w} 2	0.56 15	6386.6+x	J+27	5692.5+x	J+25
694.1 [@] 2	0.56 [@] 15	6387.6+y	J1+27	5693.5+y	J1+25
707.5 2	0.72 7	6040.0+z	J2+24	5332.5+z	J2+22
709.9 2	0.60.6	6741.8+y	J1+28	6031.9+y	J1+26
718.6 2	0.60 6	6299.9+u	J3+26	5581.3+u	J3+24
721.3 2	0.39 10	7322.3+x	J+30	6601.0+x	J+28
725.6 2	0.45 19	7112.2+x	J+29	6386.6+x	J+27
725.6 [@] 2	0.45 [@] 19	7113.2+y	J1+29	6387.6+y	J1+27
739.3 2	0.61 7	6779.3+z	J2+26	6040.0+z	J2+24
742.2 2		7484.0+y	J1+30	6741.8+y	J1+28
753.2 2	0.55 16	8075.5+x	J+32	7322.3+x	J+30
/54.5 2 756.6 [@] 2	0.38@ 10	7868 8 + x	J3+28 J+31	6299.9+u	J3+26 L+20
750.0 2	0.38 10	7808.874	JTJ1	7112.27	JT 29
/50.0 2	0.38 10	7869.8+y	J1+31 J2+28	/113.2+y	J1+29 J2+26
709.74	0.40 4	7349.0+Z	J2+28 J1+22	0//9.5+Z	$J_2 + 20$ $I_1 + 20$
784 0 2		8255.2+y 8860.4+y	$J_{1+3/2}$ $J_{+3/2}$	7464.0+y 8075 5±y	J_{1+30} J_{+32}
70+.92		8656 1 +	J+J+	7060.0	J+J2 L+21
181.3 2		8050.1+X	J+33	/808.8+X	J+31
787.3 2	0.40.5	8657.1+y	J1+33	/869.8+y	J1+31
/89.8 2	0.42 5	/844.2+u	J3+30	/054.4+u	J3+28
801.3 5	0.36 3	8350.3+Z	J_{2+30}	/549.0+Z	J2+28
81663		9037.4+y	J1+34 L+26	8255.2+y	J1+32 L+24
810.05		9077.0+X	J+30	0000.4+X	J+34
817.7×3		9473.8+x	J+35	8656.1+x	J+33
81/./~ 3	0.06.5	94/4.8+y	J1+35	865/.1+y	J1+33
824.3 J	0.20 3	8008.5+u	J3+32	/844.2+u	13+30 12+20
832 1 5	0.21 4	9101.0+Z	J∠+32 I1±36	0057 4 H	J∠+30 I1⊥34
0.02.1 J		2002.3+y	J1+30	5057.4+Y	J1+34 L: 27
84/.5 [~] 4		10321.3+x	J+3/	94/3.8+x	J+35
847.5 [∞] 4		10322.3+y	J1+37	9474.8+y	J1+35
847.8 4		10524.8+x	J+38	9677.0+x	J+36

$(HI,xn\gamma)$:SD 1993Jo09,1994Jo10,1998Bu03 (continued)

$\gamma(^{193}\text{Hg})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
857.9 <i>5</i> 860.5 <i>5</i>	0.24 5	9526.4+u 10750.0+y	J3+34 J1+38	8668.5+u 9889.5+y	J3+32 J1+36	
861 [#]	0.15 <i>3</i>	10042.6+z?	J2+34	9181.6+z	J2+32	E_{γ} : estimated (1998Ar07) from intensity plot (fig.1 in 1994Jo10).
876.1 ^{&} 5		11197.4+x	J+39	10321.3+x	J+37	
876.1 ^{&} 5 880.9 5		11198.4+y 11405.7+x	J1+39 J+40	10322.3+y 10524.8+x	J1+37 J+38	

[†] From 1994Jo10, unless otherwise noted. [‡] Relative intensity within each band, read off intensity plots given by 1992ShZR for SD-1 to SD-4 and by 1994Jo10 for SD-5 and SD-6.

SD-6.
From 1993Jo09.
Multiply placed.
Multiply placed with undivided intensity.
Placement of transition in the level scheme is uncertain.

(HI,xnγ) 1995Fo13,1993De42,1993Ro03

1999We04,1998We19,1998We23: ¹⁵⁰Nd(⁴⁸Ca,5nγ), E=203 MeV; GAMMASPHERE array. Measure perturbed angular correlation; obtain angular correlation coefficients A2/A4, and average g-factors from precession in transient magnetic fields using target with Gd ferromagnetic layer.

1995Fo13, 1997FoZX: ¹⁵⁰Nd(⁴⁸Ca,5nγ), E=213 MeV; measured Eγ, Iγ, γγ, DCO ratios; EUROGAM detector array. Cranked Shell Model interpretation.

1993De42: ¹⁵⁰Nd(⁴⁸Ca,5n\gamma), E=210 MeV; 97.4% ¹⁵⁰Nd target; measured E γ , I γ , $\gamma\gamma$ coin (3-fold or higher), DCO ratios. 1993Re03: ¹⁷⁶Yb(²²Ne,4n γ), E=110 MeV; HERA Ge-detector array; measured E γ , I γ , $\gamma\gamma$ coin (3-fold or higher), DCO ratios. 1986Hu02: ¹⁸⁴W(¹³C,4n γ), ¹⁸⁶W(¹³C,6n γ), E=84-87 MeV; measured E γ , I γ (Compton-suppressed germanium (high purity)

detectors), $\gamma\gamma$ coin, γ -ray angular distributions; used cranked shell model to interpret level structure.

Others:

1999We02 study the time-decay history for normal-deformed bands at high spin in the ¹⁵⁰Nd(⁴⁸Ca,5n) reaction, by measuring the relative fraction of recoil fragments stopped in-flight, using a layered target.

¹⁹³Hg Levels

The level scheme adopted is that proposed by 1995Fo13. With a few minor corrections, it confirms, and adds to, the level schemes proposed by 1986Hu02, 1993De42 and 1993Ro03.

The level scheme consists of three sections: the lower part contains a number of rotational bands and is described as a collective oblate nucleus; the intermediate region is of single-particle character and may be described as non-collective prolate; and the upper region, which contains three dipole bands in a nucleus described as triaxial near-oblate (1995Fo13). For further discussion, and comparison with other Hg nuclei, see 1995Fo13.

The average g-factor from the M1/E2 transitions at high excitation energies is 0.23 6 (1998We23).

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
140.76 [@] 5	13/2(+)	11.8 h 2	E(level), J^{π} , $T_{1/2}$: from Adopted Levels.
522.75 [@] 19	$17/2^{+}$		
746.8 ^g 4	15/2+		
1026.5 6	$(13/2^+, 15/2^+)$		
1145.4 [@] 3	$21/2^+$		
1380.3 ^{<i>g</i>} 4	$19/2^{+}$		
1523.2 4	$(17/2^+, 19/2^+)$		
1735.8 7	$(19/2^+)$		
1755.6 ^J 4	$21/2^{-}$		
1884.3 [@] 5	$25/2^+$		
1886.2^{f} 5	$25/2^{-}$		
1890.9 ^{&} 4	23/2-		
2096.0 ^{&} 5	$27/2^{-}$		
2189.1 ^{<i>f</i>} 5	29/2-		
2289.5 8	27/2-		
2351.9 7	25/2+		
2502.10 6	29/2+		
2583.7 [∞] 6	31/2-		
2617.3 6	(29/2 ⁻)		
2641.7 [@] 7	29/2+		
2695.6 6	33/2+		
2762.2 6	33/2-		
3176.2° 7	37/2+		
3196.0# 8	$(33/2^+)$		
3202.5 7	$(33/2^{-})$		
3220.1 8	(33/2)		

¹⁹³Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
3223.6 & 6	35/2-	
3260.3 ^{<i>a</i>} 8	$33/2^+$	
3497.5 ^{<i>f</i>} 6	$37/2^{-}$	
3570.2 ^{<i>a</i>} 8	$37/2^+$	
3727.0 7	$(37/2^{-})$	
3754.2 [#] 8	$(37/2^+)$	
3811?		Level proposed by 1993De42, 1993Ro03 but not confirmed by 1995Fo13.
3850.7 8	$37/2^{-}$	
3880.5 ^C 7	$41/2^{+}$	
3883.8 ^d 7	39/2-	
4119.7 ^b 9	39/2+	
4120.5 ^{<i>a</i>} 10	$41/2^{+}$	
4150.8 ^e 7	41/2-	
4198.0 8	$(39/2^{-})$	
4396.8 ^{<i>a</i>} 7	$43/2^{-}$	
4412.6 ^J 7	$41/2^{-}$	
4416.7 11		
4462.2 12	(11/2+)	
4539.1" 7	(41/2')	
40/4.1° /	43/2	
4683.8° 12	43/2	
4088.4 10	$(39/2^{-})$	
4792.0 7	(3)/2) $41/2^{-}$	
4864.9 8	$(43/2^{-})$	
4889.9 ^{<i>a</i>} 13	$45/2^{+}$	
4958.5 7	45/2-	
4964.0 13	43/2	
5033.1 <i>13</i>	<i>i = i</i> a_	
5048.0 ⁴ 9	$4'/2^{-}$	
5117.4 9	(45/2)	
533918	$(47/2^{-})$	
$5361.7^{b}.15$	$(17/2)^+$	
5391.9 9	47/2	
5400.3 15		
5411.5 ^e 10	49/2-	
5442.6 7	$45/2^{(+)}$	
5547.6 ^j 7	$47/2^{(+)}$	
5559.5 ^c 13	49/2+	
5560.5 9	$(47/2^{-})$	
5608 1 ^a 15	(49/2) 40/2+	
5702.7.9	$(49/2^{-})$	
5714.8? 13	(1)/2	
5747.5 10	$(49/2^{-})$	
5800.6 9	$(49/2^{-})$	
5832.1 ^j 7	$49/2^{(+)}$	
5899.1 ^d 12	$51/2^{-}$	

¹⁹³Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
6017.1 <i>13</i>	$(51/2^{-})$	
6067.7 ^j 8	$51/2^{(+)}$	
6103.9 9	$(51/2^{-})$	
6145.2 9	$(51/2^{-})$	
6163.6 ^b 17	$(51/2^+)$	
6305.2 9	$(53/2^{-})$	
6394.9 ^e 13	53/2-	
6401.0^{t} 18	$(53/2^{-})$	The decay out of this level has not been observed.
6419.4 ¹¹ 9	$(53/2^{-})$	
6428.5 10	$(55/2^{+})$	
6464.6° 8	$53/2^{(+)}$	
6796.4^{i} 17	$(55/2^{-})$	
6832 4 9	(33/2) 55/2 ⁽⁺⁾	
$6839.9^{j}.8$	$55/2^{(+)}$	
6913.4^{d} 15	$(55/2^{-})$	
6921.8 <i>16</i>	(33/2)	
6921.9 ^h 10	$(55/2^{-})$	
6978.7 ⁱ 18	$(57/2^{-})$	
7037.5 ^j 9	57/2(+)	
7038.1 16	,	
7133.3 12	$(57/2^+)$	
7186.7 11	$(57/2^{-})$	
7197.9 10	$59/2^{(+)}$	
7245.7 ¹ 19	$(59/2^{-})$	
7276.6 ⁿ 10	$(57/2^{-})$	
7281.7 12	$57/2^{(+)}$	
7440.0 14 7476 4 ^e 16	$(57/2^{-})$	
7492.3 16	(37/2)	
7555.2 ^j 10	$61/2^{(+)}$	
7560.4 ⁱ 19	$(61/2^{-})$	
7681.3 12		
7699.5 ^h 10	$(59/2^{-})$	
7838.3 ^h 10	$(61/2^{-})$	
7920.0 ⁱ 20	$(63/2^{-})$	
7924.8 ^j 10	63/2 ⁽⁺⁾	
8137.0 ^h 11	$(63/2^{-})$	
8331.0 ⁱ 20	$(65/2^{-})$	
8388.8 ^j 11	65/2(+)	
8394.8 ^h 11	$(65/2^{-})$	
8750.9 ^h 12	$(67/2^{-})$	
8757.9 ⁱ 21	$(67/2^{-})$	
8886.8 ^j 12	67/2 ⁽⁺⁾	
8978.1 <i>13</i>		
9221.5 ^h 12	$(69/2^{-})$	
9409.1 ^j 14	$(69/2^+)$	

¹⁹³Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
9675.9 ^h 13	$(71/2^{-})$
9923.1 ^j 16	$(71/2^+)$
10290.4 ^h 14	$(73/2^{-})$
10853.6 ^h 15	$(75/2^{-})$

[†] From least squares fit to $E\gamma$, except otherwise noted.

[‡] J π and band assignments are from 1995Fo13. The assignments in the lower part of the level scheme confirm those proposed by earlier researchers. The assignments are based on γ multipolarities, coincidence results, band structure and the assumption that J increases with increasing E(level).

[#] Level assigned to band (1) by 1993De42, 1993Ro03. This band assignment has not been adopted by 1995Fo13 for levels above the $29/2^+$ level in this $\Delta J=2$ level sequence.

[@] Band(A): Band (1).

- [&] Band(B): Band (2) Average g-factor for Bands (2+6) is 0.200 18 (1999We04).
- ^a Band(C): Band (3).

^b Band(D): Band (4).

- ^c Band(E): Band (5) Average g-factor for this band is 0.188 14 (1999We04).
- ^d Band(F): Band (6) See comment for Band (2).
- ^e Band(G): Band (7) Average g-factor for Bands (7+8) is 0.176 14 (1999We04).
- ^{*f*} Band(H): Band (8) See comment for Band (7).
- ^g Band(I): Band (9).
- ^h Band(J): Dipole band (1) This band is part of Structure 1 in the level scheme as defined in 1995Fo13.
- ⁱ Band(K): Dipole band (2) This band is part of Structure 2 in the level scheme as defined in 1995Fo13.
- ^j Band(L): Dipole band (3) This band is part of Structure 3 in the level scheme as defined in 1995Fo13.

 $\gamma(^{193}\text{Hg})$

The main sources for energies and intensities for this table are 1995Fo13 and 1997FoZX. DCO ratios are from 1995Fo13, except when indicated otherwise. A_2 and A_4 values are from 1986Hu02 and 1998We23.

Intensities: The γ and total intensities listed below are from 1995Fo13 and 1997FoZX. Note that the authors (same group in both references) provide a single intensity list about which they state that the values are derived from coincidence data, and that for the cases where the multipolarity of the transitions could be confirmed, the quoted numbers have been corrected for internal conversion. The evaluator, based on this comment, have recalculated the I γ when that condition was applicable. Unfortunately this procedure could not be applied with certainty for many cases, as the definition of when a multipolarity was confirmed or not is not always clear cut. Therefore the resulting I γ values should be used with caution whenever confirming evidence for the multipolarity is not available (see also footnote for the multipolarity column at the end of the γ -ray table). For transitions where the authors of the mentioned references could not establish a multipolarity, their intensity value is listed below in the I γ column, with no I(γ +ce) data. Some intensities from 1986Hu02 and 1993Ro03 are quoted in the Comments column.

E_{γ}^{\dagger}	Ι _γ §	E _i (level)	\mathbf{J}_i^{π}	E_f J_f^{π}	Mult.&	<i>α</i> ^{<i>b</i>}	$I_{(\gamma+ce)}$ [‡]	Comments
(19.9 10)	<0.2	1755.6	21/2-	1735.8 (19/2	+) [E1] [@]	6.7 10		 Iγ from 1997FoZX. Unobserved transition, existence required from observed coincidences of 989-keV γ with members of Band (8) (1995Fo13).
(71.3)		4792.0	41/2-	4720.6 (39/2	-)			Transition uncertain due to low statistics and overlap with Hg x-rays. Existence required from observed coincidence data.
72.9		4864.9	(43/2 ⁻)	4792.0 41/2-	-			Transition uncertain due to low statistics and overlap with Hg x-rays. Existence required from observed coincidences of transitions above the $(43/2^-)$ level with those below the $41/2^-$ level (1995Fo13).
93.4 10	0.3 1	2189.1	$29/2^{-}$	2096.0 27/2-	· (M1)	9.6 4		Mult.: DCO=0.43 10 (1997FoZX).
105.2 8	0.16 2	5547.6	$47/2^{(+)}$	5442.6 45/2(⁺⁾ D		1.2 <i>I</i>	Mult.: DCO=0.48 7.
113.9 10	< 0.5	6419.4	$(53/2^{-})$	6305.2 (53/2	-)			
123.0 10	0.11 2	5442.6	$45/2^{(+)}$	5319.9 (43/2)		0.6 1	Mult.: DCO=0.62 20.
130.5 4	15.2 2	1886.2	25/2-	1755.6 21/2-	E2	1.88 4	41.4 5	I γ =12 (1986Hu02). Mult.: A ₂ =+0.30 <i>3</i> , A ₄ =-0.11 <i>4</i> (1986Hu02). DCO=0.96 2 (1997FoZX); band structure.
135.0 10	0.45 16	1890.9	$23/2^{-}$	1755.6 21/2-	(M1+E2)	2.50 86	1.5 <i>1</i>	$I\gamma = 2.9$ (1986Hu02).
138.8 /	301	7838 3	$(61/2^{-})$	7600 5 (50/2	-) (M1)	3 10	1173	Mult.: $A_2 = +0.02 \ 30 \ (1980Hu02)$. DCO=0.53 $10 \ (199/F0ZX)$. Mult : DCO=0.52 6
130.0 +	5.01	1858.5	(01/2)	1720 ((20/2	-) (1011)	5.10	11.7 5	Muit DCO-0.52 0.
144.5" 10	0.4 I	4864.9	(43/2)	4/20.6 (39/2))		0.0.1	$L_{1} = 0.9 (109 (1L_{1} 0.2))$
150.5 10	0.46 3	2502.1	29/2*	2551.9 25/2	(Q)		0.9 1	Y=0.8 (1986Hu02). Mult.: A ₂ =+0.11 20 (1986Hu02); DCO=1.12 30; ΔJπ from level scheme.
155.9 <i>10</i>	0.20 4	5547.6	47/2 ⁽⁺⁾	5391.9			0.6 1	Mult.: DCO=1.23 30 (gate $\Delta J=1$) (1997FoZX) indicates D, no assignment for final level in this dataset, Adopted Level (47/2 ⁺) to (43/2 ⁺) suggest Q.

NUCLEAR DATA SHEETS

$^{193}_{80} \rm Hg_{113}\text{-}43$

NUCLEAR DATA SHEETS

γ ⁽¹⁹³ Hg) (continued)												
${\rm E_{\gamma}}^{\dagger}$	Ι _γ §	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${\sf J}_f^\pi$	Mult.&	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$ ‡	Comments			
x159.8 ^{<i>a</i>} 10 160.4 4	7.7 2	7197.9	59/2 ⁽⁺⁾	7037.5	57/2 ⁽⁺⁾	M1	2.05 4	22.4 5	Iγ=0.4 (1986Hu02). A ₂ =-0.09 50 (1986Hu02). Iγ=3.25 (1993Ro03). Mult.: DCO=0.50 10; M1 from DCO and intensity balance (1993De42). 1998We23 report A ₂ =-0.39 2, A ₄ =0.14 2 for an M1/E2 transition of 160.1 keV at high excitation energies.			
193.5 <i>4</i> ^x 197.1 ^a 4	23.9 5	2695.6	33/2+	2502.1	29/2+	E2	0.438	32.5 6	$I\gamma=14$ (1986Hu02). Mult.: A ₂ =+0.43 4, A ₄ =-0.10 5 (1986Hu02), DCO=1.02 2 (1997FoZX); band structure. From 1986Hu02; complex line, no intensity			
									determination possible. Mult.: $A_2=-0.23 4$, $A_4=+0.01 5$ (1986Hu02). Other: $A_2=-0.44 2$, $A_4=+0.02 1$ is quoted by 1998We23 for an 197.3 keV γ ray (see also the 197.6 keV γ ray deexciting the 7037.5 keV level: the quoted A_2 and A_4 values could possibly belong to that γ ray).			
197.6 4	10.5 3	7037.5	57/2 ⁽⁺⁾	6839.9	55/2(+)	M1	1.143	21.3 5	I γ =4.94 (1993Ro03). Mult.: DCO=0.49 <i>3</i> ; M1 from DCO and intensity balance (1993De42). 1998We23 report A ₂ =-0.44 <i>2</i> , A ₄ =0.02 <i>1</i> for an M1/E2 transition of 197.3 keV at high excitation energies (see also the 197.1 keV γ ray: the quoted A ₂ and A ₄ values could possibly belong to that γ ray)			
205.1 ^{<i>a</i>} 4	19.7 5	2096.0	27/2-	1890.9	23/2-	E2	0.359 6	25.3 6	I γ =12 (1986Hu02). Mult.: A ₂ =0.32 2, A ₄ =-0.10 2 (1998We23). Other: A ₂ =+0.40 3, A ₄ =-0.12 4 (1986Hu02). DCO=1.01 2 (1997FoZX); band structure.			
205.1 8 209.6 8	1.5 2 0.80 6	7037.5 2096.0	57/2 ⁽⁺⁾ 27/2 ⁻	6832.4 1886.2	55/2 ⁽⁺⁾ 25/2 ⁻	[M1] [@] (M1)	1.030 <i>19</i> 0.970 <i>17</i>	2.8 <i>4</i> 1.5 <i>1</i>	I γ =1.03 (1993Ro03). 1986Hu02 report a complex line, I γ =0.9 estimated from coincidence spectra. Mult : DCO=0.68.7 (1997Fo7X)			
211.9 8	1.4 <i>I</i>	2096.0	27/2-	1884.3	25/2+	(E1)	0.0642 11	1.4 <i>I</i>	1986Hu02 report a complex line, $I\gamma$ =0.7 estimated from coincidence spectra. Mult.: A ₂ =-0.30 <i>15</i> (1986Hu02). DCO=0.47 <i>6</i> . $\Lambda\pi$ =ves from level scheme.			
^x 221.5 ^a												
221.7 <i>4</i>	6.5 2	5339.1	$(47/2^{-})$	5117.4	$(45/2^{-})$	D		11.3 3	Mult.: DCO=0.50 3.			
232.3 4	8.2 2	1755.6	21/2-	1523.2	$(17/2^+, 19/2^+)$	D		13.5 3	Mult.: DCO=0.66 <i>1</i> (1997FoZX); D, $\Delta J=1$ from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.			
235.6 4	16.1 <i>3</i>	6067.7	$51/2^{(+)}$	5832.1	49/2 ⁽⁺⁾	M1	0.701	25.9 5	Iγ=7.26 (1993Ro03).			

803
H
<u>a</u> d
13
44

γ ⁽¹⁹³ Hg) (continued)											
E_{γ}^{\dagger}	I_{γ} §	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^π	Mult. ^{&}	α^{b}	$I_{(\gamma+ce)}$ ‡	Comments		
									Mult.: DCO=0.46 1; M1 from DCO and intensity balance		
x235.9 ^a									(1993De42). Complex line.		
240.1.6	3.4.3	5800.6	$(49/2^{-})$	5560.5	$(47/2^{-})$	[M1] [@]	0.665 11	5.4.5			
25238	0.73.27	6078 7	$(17/2^{-})$	6726 A	$(55/2^{-})$	[M1] [@]	0.580 10	111			
252.5 8	14.8.3	5117.4	$(37/2^{-})$	4864.9	$(33/2^{-})$ $(43/2^{-})$	D	0.580 10	22.14	Mult.: DCO=0.51.2.		
	1 110 0		(10/2)		(10/2)	2			1986Hu02 lists an unplaced γ with E γ =252.4 3, I γ =4 (deduced from coincidences), A ₂ =-0.6 4 possibly corresponding to this γ .		
257.8 4	7.6 2	8394.8	$(65/2^{-})$	8137.0	$(63/2^{-})$	(M1)	0.547	11.2 2	Mult.: $DCO=0.62$ 2.		
267.0 8	3.3 2	7245.7	$(59/2^{-})$	6978.7	$(57/2^{-})$	(M1)	0.496 8	4.7 2	Mult.: DCO=0.61 4.		
^x 274.1									From 1993De42. Tentatively placed from 5832 level; however, placement not confirmed by 1993Ro03, 1995Fo13. Possibly the 274.2 γ from 6419.4 level.		
274.2 8	2.2 1	6419.4	$(53/2^{-})$	6145.2	$(51/2^{-})$	D		3.0 1	Mult.: DCO=0.43 6.		
284.5 4	16.6 4	5832.1	$49/2^{(+)}$	5547.6	$47/2^{(+)}$	M1	0.417	22.3 5	$I\gamma = 7.81 \ (1993 Ro 03).$		
									Mult.: DCO=0.48 2; M1 from DCO and intensity balance (1993De42). 1998We23 report A_2 =-0.38 2, A_4 =-0.05 2 for an M1/E2 transition of 284.2 keV at high excitation energies.		
293.4 8	2.6 1	7133.3	$(57/2^+)$	6839.9	$55/2^{(+)}$	D	0.383	3.4 1	Mult.: DCO=0.65 6.		
^x 298.6									From 1993De42. γ placed from a level at 5256.9 keV, however, the level was not confirmed by 1993Ro03, 1995Fo13.		
298.7 4	11.8 2	8137.0	$(63/2^{-})$	7838.3	$(61/2^{-})$	(M1)	0.365	15.3 2	Mult.: DCO=0.54 3.		
302.2 ^{#c} 10	0.6 2	6017.1	$(51/2^{-})$	5714.8?							
302.9 4	32.6 6	2189.1	29/2-	1886.2	25/2-	E2	0.1035	34.1 6	Iγ=25 (1986Hu02). Mult.: A ₂ =0.33 <i>1</i> , A ₄ =-0.10 <i>1</i> (1998We23). Other: A ₂ =+0.40 <i>3</i> , A ₄ =-0.14 <i>4</i> (1986Hu02). DCO=0.91 <i>1</i> (1997FoZX); band structure.		
306.7 8	3.3 2	7440.0		7133.3	$(57/2^+)$	D			Mult.: DCO=0.57 10. DCO indicates stretched E1,M1. Parent level $J\pi$ unspecified.		
309.9 8	3.5 1	3570.2	37/2+	3260.3	33/2+	E2	0.0967 16	3.6 1	Iγ=2.8 (1986Hu02). Mult.: A ₂ =+0.20 <i>17</i> (1986Hu02), DCO=1.00 <i>8</i> (1997FoZX); band structure.		
314.2 10	1.0 3	4198.0	(39/2-)	3883.8	39/2-						
314.7 8	2.6 1	7560.4	$(61/2^{-})$	7245.7	$(59/2^{-})$	(M1)	0.317	3.2 1	Mult.: DCO=1.06 7 (gate $\Delta J=1$).		
315.6 6	4.1 4	6419.4	$(53/2^{-})$	6103.9	$(51/2^{-})$	D		5.1 5	Mult.: DCO=0.51 2.		
325.4 10	0.7 2	6726.4	$(55/2^{-})$	6401.0	$(53/2^{-})$	[M1] [@]	0.289 5	0.9 2			
325.5 ^{#c} 10	0.8 1	5117.4	$(45/2^{-})$	4792.0	$41/2^{-}$						
327.7 8	3.6 1	2617.3	$(29/2^{-})$	2289.5	$27/2^{-}$	D		4.4 <i>1</i>	Mult.: DCO=0.59 20.		

$\gamma(^{193}\text{Hg})$ (continued)

E_{f}	\mathbf{J}_f^{π}	Mult. &	α^{D}	$I_{(\gamma+ce)}$ [‡]	Comments
	<u> </u>	(Q)			From 1986Hu02: complex line, $I\gamma$ =1.0 estimated from coincidence spectra.
					Mult.: $A_2 = +0.27 \ 10 \ (1986Hu02).$
5339.1	$(47/2^{-})$	[M1] [@]	0.258 5	1.0 2	
6921.9	$(55/2^{-})$	[M1]	0.229	4.8 1	Mult.: DCO $(354.7\gamma + 356.1\gamma) = 0.47\ 20$.
8394.8	$(65/2^{-})$	[M1]	0.227	7.8 <i>3</i>	Mult.: DCO(354.7 γ +356.1 γ)=0.47 20.
7197.9	59/2 ⁽⁺⁾	M1	0.225	14.4 2	$I\gamma = 5.17 (1993 Ro 03).$
					Mult.: DCO=0.48 2; M1, Δ J=1 from DCO and intensity balance (1993De42). 1998We23 report A ₂ =-0.43 2, A ₄ =0.12 <i>I</i> for an M1/E2 transition of 357.1 keV at high excitation
7560 4	$(61/2^{-})$	(M1)	0.221 4	202	$M_{\rm mlt}$ = DCO=0.20.8
7300.4 5330 1	(01/2) $(47/2^{-})$	(MII) D	0.221 4	2.8.5	Mult.: $DCO=0.39$ 8. Mult : $DCO=0.35$ 7
6464 6	(7/2) 53/2(+)	D		373	$I_{\nu-1} = 82 (1993R_{0}03)$
0404.0	55/2	D		5.75	Mult : $DCO=1.25.30$ (gate AI=1)
7555.2	$61/2^{(+)}$	M1	0.205	713	$I_{\nu=2} 25 (1993 R_{0} 03)$
1000.2	01/2		0.205	,	Mult.: DCO=0.31 <i>10</i> ; M1, Δ J=1 from DCO and intensity balance (1993De42).
1380.3	$19/2^{+}$	(E1)	0.01662	21.1 6	$I\gamma = 23 (1986Hu02).$
					Mult.: $A_2 = -0.30 \ I$, $A_4 = 0.05 \ I$ (1998We23). Other: $A_2 = -0.16 \ 3$, $A_4 = -0.09 \ 4$ (1986Hu02). DCO=0.51 I (1997FoZX); band structure.
6464.6	$53/2^{(+)}$	(M1)	0.197	10.4 6	$I_{\gamma}=5.31 (1993Ro03).$
	/				Mult.: DCO=1.10 4 (gate $\Delta J=1$).
5339.1	$(47/2^{-})$				
140.76	$13/2^{(+)}$	E2	0.0536	100	Mult.: $A_2=0.30 \ I$, $A_4=-0.10 \ I$ (1998We23). Other: $A_2=+0.37 \ J$, $A_4=-0.12 \ 4$ (1986Hu02). DCO=0.98 I .
5442.6	$45/2^{(+)}$	Q		1.3 <i>1</i>	Mult.: DCO=0.91 10.
3176.2	$37/2^+$			4.2 1	$I\gamma = 4 (1986Hu02).$
					Mult.: A ₂ =+0.35 8, A ₄ =-0.09 10 (1986Hu02), DCO=0.95 2 (1997FoZX). Its a 37/2 ⁺ to 37/2 ⁺ transition.
2189.1	29/2-	[M1]	0.172	1.2 1	
		D,Q			$I\gamma = 1.6 (1986Hu02).$
					Mult.: $A_2 = -0.66 \ 2$, $A_4 = 0.16 \ 2 \ (1998 We23)$. Other: $A_2 = -0.57 \ 25 \ (1986 Hu02)$.

Mult.: DCO=0.50 2; M1 from DCO and intensity balance

14.4.2 I γ =5.8 (1993Ro03).

3.2 1

3.7 1

2.0 1

(1993De42).

Mult.: DCO=0.59 8.

Mult.: DCO=0.56 4.

Mult.: DCO=1.22 10 (gate $\Delta J=1$).

 E_{γ}^{\dagger}

x328.2^{*a*} 10

339.4 10

354.7 8

356.1 6

357.3 4

359.68

363.68

367.8 8

369.7 6

375.2 4

375.4 4

382.0 2

389.68

393.9 8

394.7 8

x396.8^a 8

397.0 4

401.1 8

403.2 8

411.08

375.8^{#c} 10

Iγ§

0.8 2

4.1 *1*

6.7 3

12.4 2

2.4 3

2.2 1

3.2 3

6.2 3

21.9 6

9.2 5

1.3 *I*

4.2 1

1.1 *1*

13.0 2

2.9 1

3.4 1

1.8 1

< 0.5

100

E_i(level)

5678.4

7276.6

8750.9

7555.2

7920.0

5702.7

6832.4

7924.8

1755.6

6839.9

5714.8?

522.75

5832.1

3570.2

2583.7

6464.6

6103.9

2289.5

8331.0

 \mathbf{J}_i^{π}

 $(49/2^{-})$

 $(57/2^{-})$

 $(67/2^{-})$

 $61/2^{(+)}$

 $(63/2^{-})$

 $(49/2^{-})$

 $55/2^{(+)}$

 $63/2^{(+)}$

 $21/2^{-}$

 $55/2^{(+)}$

 $17/2^{+}$

 $49/2^{(+)}$

 $37/2^{+}$

 $31/2^{-}$

 $53/2^{(+)}$

 $(51/2^{-})$

 $(65/2^{-})$

 $27/2^{-}$

6067.7 51/2⁽⁺⁾

7920.0 (63/2⁻)

 $(49/2^{-})$

 $25/2^{-}$

5702.7

1886.2

M1

D

D

(M1)

0.1692

0.1543

 $^{193}_{80} Hg_{113}\text{--}45$

γ ⁽¹⁹³Hg) (continued)

E_{γ}^{\dagger}	I_{γ} §	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$ ‡	Comments
422.9 6	6.6 3	7699.5	$(59/2^{-})$	7276.6	$(57/2^{-})$	(M1)	0.1430	7.2 3	Mult.: DCO=0.46 3 (1997FoZX).
425.5 8	1.4 <i>3</i>	6103.9	$(51/2^{-})$	5678.4	(49/2 ⁻)	[M1] [@]	0.1406	1.5 <i>3</i>	
426.9 8	1.1 <i>1</i>	8757.9	$(67/2^{-})$	8331.0	$(65/2^{-})$	[M1] [@]	0.1394	1.2 1	
428.1 8	3.9 5	2617.3	$(29/2^{-})$	2189.1	29/2-				
437.5 8	1.4 <i>3</i>	8137.0	$(63/2^{-})$	7699.5	$(59/2^{-})$	(E2)	0.0376	1.4 <i>3</i>	Mult.: DCO=2.57 70 (gate $\Delta J=1$).
^x 440.0 ^{cr} 8									From 1986Hu02; complex line, $1\gamma=1.7$ estimated from
442.6.8	2.5.3	6145.2	$(51/2^{-})$	5702.7	$(49/2^{-})$	[M1]	0.1266	2.7.3	Mult : DCO(442.6 γ +443.2 γ)=0.49.4
443.2 6	5.1 5	5560.5	$(47/2^{-})$	5117.4	$(45/2^{-})$	[M1]	0.1262	5.5 5	Mult.: DCO($442.6\gamma + 443.2\gamma$)=0.49 4.
449.3 8	2.8 1	7281.7	57/2(+)	6832.4	55/2(+)	D		3.0 1	Mult.: DCO=0.47 6.
454.4 8	1.2 1	9675.9	$(71/2^{-})$	9221.5	$(69/2^{-})$	(M1)	0.1181	1.3 <i>1</i>	Mult.: DCO=1.02 10 (gate $\Delta J=1$).
461.4 8	2.2 1	3223.6	35/2-	2762.2	33/2-	[M1] [@]	0.1134	2.3 1	
461.5 6	5.4 5	5800.6	$(49/2^{-})$	5339.1	$(47/2^{-})$	[M1] [@]	0.1133	5.7 5	
464.0 8	4.1 4	8388.8	$65/2^{(+)}$	7924.8	$63/2^{(+)}$	(M1)	0.1117	4.3 4	$I\gamma = 1.34 \ (1993Ro03).$
									Mult.: DCO=0.46 20.
470.6 8	4.8 1	9221.5	$(69/2^{-})$	8750.9	$(67/2^{-})$	(M1)	0.1076	5.0 1	Mult.: DCO=0.49 8.
~472.3 10	0.4 I 3 4 1	5330 1	$(17/2^{-})$	1861.0	$(13/2^{-})$	0		221	γ is related to Structure (2) (1995F015). Mult : DCO-1 15 20
480.6.4	2966	3176.2	(47/2) $37/2^+$	2695.6	(+3/2)	Q F2	0.0297	28.9.6	$I_{\nu=15} (1986 Hu 02)$
100.0 7	29.00	5170.2	5772	2093.0	55/2	112	0.0297	20.9 0	Mult.: $A_2=0.29 \ 3$, $A_4=-0.09 \ 3 \ (1998We23)$. Other: $A_2=+0.46 \ 6$, $A_4=-0.16 \ 9 \ (1986Hu02)$. DCO=1.07 2 (1997FoZX); band structure.
487.7 4	23.3 5	2583.7	31/2-	2096.0	27/2-	E2	0.0286	22.8 5	I γ =14 (1986Hu02). Mult.: A ₂ =0.36 2, A ₄ =-0.10 2 (1998We23). Other: A ₂ =+0.33 4, A ₄ =-0.08 6 (1986Hu02). DCO=1.15 3 (1997FoZX); band structure.
496.7 8	4.1 <i>1</i>	1523.2	(17/2+,19/2+)	1026.5	(13/2+,15/2+)	Q		4.0 1	Iγ=3 (1986Hu02). Mult.: A ₂ =+0.52 <i>10</i> , A ₄ =-0.21 <i>12</i> (1986Hu02), DCO=0.91 <i>9</i> (1997FoZX).
497.9 8	2.0 1	8886.8	$67/2^{(+)}$	8388.8	$65/2^{(+)}$	(M1)	0.0927	2.1 1	Mult.: DCO=0.62 8.
500.3 10	< 0.5	3196.0	$(33/2^+)$	2695.6	33/2+				
502.4 8	4.0 1	6921.9	$(55/2^{-})$	6419.4	$(53/2^{-})$	(M1)	0.0905	4.1 <i>1</i>	Mult.: DCO=0.54 7 (1997FoZX).
507.0 8	2.0 1	3727.0	(37/2)	3220.1	(33/2)				
512.8 10	0.9 1	7699.5	$(59/2^{-})$	7186.7	$(57/2^{-})$	[M1] [©]	0.0858	0.9 1	M H A 0.22.2 A 0.14.2 (1000W 22) DCO 0.00
512.9 4	12.4 2	4396.8	43/2	3883.8	39/2	E2	0.0253	12.1 2	Mult: $A_2=0.32$ 2, $A_4=-0.14$ 2 (1998we23). DCO=0.98 3 (1997FoZX); band structure.
514.1 ^{#C}		9923.1	$(71/2^+)$	9409.1	$(69/2^+)$				
517.6 8 *519.4 <i>10</i>	1.7 <i>I</i>	7555.2	61/2 ⁽⁺⁾	7037.5	57/2 ⁽⁺⁾	[E2] [@] Q	0.0248	1.7 1	Iγ=0.6 (1986Hu02). Mult.: A ₂ =0.23 2, A ₄ =0.01 2 (1998We23). Other: A ₂ =-0.3 3 (1986Hu02).

248

$\gamma(^{193}\text{Hg})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	Iγ [§]	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.&	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$ ‡	Comments
520.1 4	13.5 3	6067.7	51/2(+)	5547.6	47/2 ⁽⁺⁾	E2	0.0245	13.1 3	Iγ=6.9 (1993Ro03). Mult.: DCO=0.93 9; Δ J=2 from DCO (1993De42).
521.3 10	1.0 2	2617.3	$(29/2^{-})$	2096.0	$27/2^{-}$	[M1] [@]	0.0822	1.0 2	
522.2 ^{#c}		9409.1	$(69/2^+)$	8886.8	$67/2^{(+)}$				
523.2 4	19.1 4	4674.1	45/2-	4150.8	$41/2^{-}$	E2	0.0242	18.6 4	$I\gamma = 4 (1986Hu02).$
^x 524.0									Mult.: A ₂ =0.34 <i>I</i> , A ₄ =-0.11 <i>I</i> (1998We23). Other: A ₂ =+0.41 8 (1986Hu02); band structure. DCO=0.93 <i>3</i> (1997FoZX). From 1993De42. Tentative γ placed from 5832 level; however, placement not confirmed by 1993Ro03, 1995Fo13. Possibly the
524 5 0	252	0707.0	(07/0-)	2202 5	(22/2-)	(TO)@	0.0240	0 4 2	524.5γ from 3727.0 level.
524.5 8	2.5 3	3727.0	(31/2)	3202.5	(33/2)	[E2]	0.0240	2.4 3	
543.5 10	0.5 1	6103.9	$(51/2^{-})$	5560.5	$(47/2^{-})$	[E2] [@]	0.0221		
546.0 6	7.8 1	4958.5	45/2-	4412.6	$41/2^{-}$	Q	0.0715	7.6 1	Mult.: $DCO=1.08 \ 10 \ (199/FoZX).$
549.5 10	0.8 1	4119.7	39/2	3570.2	37/2		0.0715	0.8 1	
550.3 6	5.93	4120.5	41/21	3570.2	37/2*	E2	0.0214	5.73	1γ =4 (1986Hu02). Mult.: A ₂ =+0.42 7, A ₄ =-0.16 9 (1986Hu02), DCO=1.02 7 (1997FoZX); band structure.
554.4 8	2.1 5	3196.0	(33/2+)	2641.7	29/2+	Q		2.0 5	 1986Hu02 report a complex line, Iγ=2.0 estimated from coincidence spectra. Mult.: A₂=+0.28 <i>10</i>, A₄=0.00 <i>12</i> (1986Hu02), DCO=1.41 <i>20</i> (1997Eo7X)
556.5 8	4.4.5	8394.8	$(65/2^{-})$	7838.3	$(61/2^{-})$	E2	0.0209	4.3.5	Mult.: DCO=2.16 20 (gate $\Lambda J=1$).
55778	175	6305.2	$(53/2^{-})$	5747 5	$(49/2^{-})$	[F2]@	0.0208	165	
558 2 8	134	3754.2	$(33/2^{+})$ $(37/2^{+})$	3196.0	$(\frac{49}{2})$ $(33/2^+)$	$\begin{bmatrix} L_2 \end{bmatrix}$	0.0208	134	$I_{\gamma}=20(1986H_{10}02)$
550.2 0	1.5 4	5754.2	(37/2)	5170.0	(33/2)	Q		1.5 4	Mult: $DCO=0.97 \ 10 \ (1997FoZX)$.
561.4 8	3.4 4	4958.5	$45/2^{-}$	4396.8	$43/2^{-}$				
^x 561.7			- /		- /				From 1993De42. γ placed from a level at 5818.6 keV; however, the level was not confirmed by 1993Ro03, 1995Fo13. Possibly the 561.9 γ from 4412.5 level, or 561.8 γ from 7838.3 level.
561.8 6	6.3 4	7838.3	$(61/2^{-})$	7276.6	$(57/2^{-})$	E2	0.0204	6.1 4	Mult.: DCO=1.10 4.
561.9 8	1.8 <i>3</i>	4412.6	41/2-	3850.7	37/2-	Q		1.7 3	Mult.: DCO=1.10 4.
563.0 ^{#c} 10		10853.6	$(75/2^{-})$	10290.4	$(73/2^{-})$	-			
564.1 8	3.6.1	4683.8	$43/2^+$	4119.7	$39/2^+$	E2	0.0202	3.5 1	Mult.: DCO=0.82 20: band structure.
564.7 10	0.6 1	3260.3	$33/2^{+}$	2695.6	$33/2^{+}$				
573.0 4	35.0 7	2762.2	33/2-	2189.1	29/2-	E2	0.0195	33.9 7	I γ =22 (1986Hu02). Mult.: A ₂ =0.29 <i>I</i> , A ₄ =-0.09 <i>I</i> (1998We23). Other: A ₂ =+0.26 <i>3</i> , A ₄ =-0.09 <i>4</i> (1986Hu02). DCO=0.99 <i>I</i> (1997FoZX); band structure.
577.6 10	1.0 2	6978.7	$(57/2^{-})$	6401.0	$(53/2^{-})$	E2	0.0192	1.0 2	Mult.: DCO=2.24 50 (gate $\Delta J=1$).
581.9 <i>10</i>	1.0 2	7560.4	$(61/2^{-})$	6978.7	$(57/2^{-})$	[E2] [@]	0.0189	1.0 2	

γ ⁽¹⁹³Hg) (continued)

E_{γ}^{\dagger}	I_{γ} §	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	$\mathbf{I}_{(\gamma+ce)}$ ‡	Comments
585.2 8	2.7 1	3202.5	$(33/2^{-})$	2617.3	$(29/2^{-})$	[E2] [@]	0.0186	2.6 1	
594.1 8	2.3 1	4792.0	$41/2^{-1}$	4938.3 4198.0	$(39/2^{-})$	[E2] [@]	0.0180	2.2 1	
600.2° 10	0.8 2	7440.0		6839.9	55/2(+)	@			
602.9 8	2.2 1	3220.1	$(33/2^{-})$	2617.3	$(29/2^{-})$	[E2]	0.01739	2.1 1	
606.0 4	11.3 4	746.8	15/2+	140.76	13/2(+)	(M1+E2)	0.036 20	11.1 2	1986Hu02 report a complex line, 1γ =9.0 estimated from coincidence spectra. Mult.: A ₂ =-0.34 3, A ₄ =-0.09 5 (1986Hu02), does not agree with $\gamma(\theta)$ in (α ,xn γ); DCO=0.33 4 (1997FoZX).
x606.1 10	0.6 1								γ is related to Structure (2) (1995Fo13).
610.5 6	6.5 5	1755.6	$21/2^{-}$	1145.4	$21/2^+$				DCO=0.95 7 (1997FoZX).
614.0 8	4.1 5	8750.9	$(67/2^{-})$	8137.0	$(63/2^{-})$	E2	0.01669	4.0 5	Mult.: DCO=0.96 <i>30</i> .
614.5 8	2.7 4	10290.4	$(73/2^{-})$	9675.9	$(71/2^{-})$	(M1)	0.0534	2.7 4	Mult.: DCO=0.99 20 (gate $\Delta J=1$).
617.8 4	38.3 21	2502.1	29/21	1884.3	25/21	E2	0.01647	37.0 20	$1\gamma = 28$ (1986Hu02).
									Mult.: $A_2=0.30$ 2, $A_4=-0.06$ 4 (1998we23). Other: $A_2=+0.40$ 3, $A_4=-0.16$ 4 (1986Hu02). DCO=0.99 2 (1997FoZX).
618.7 6	7.5 6	6419.4	$(53/2^{-})$	5800.6	$(49/2^{-})$	[E2] [@]	0.01641	7.2 6	$I(\gamma+ce)$ from 1995Fo13. 1997FoZX quote $I(\gamma+ce)=6.7$ 7.
622.7 2	83.8 11	1145.4	21/2+	522.75	17/2+	E2	0.01618	80.8 10	I γ =61 (1986Hu02). Mult.: A ₂ =0.33 <i>I</i> , A ₄ =-0.10 <i>I</i> (1998We23). Other: A ₂ =+0.38 <i>3</i> , A ₄ =-0.11 <i>4</i> (1986Hu02). DCO=1.07 <i>I</i> (1997FoZX): band structure.
626.8 6	5.91	6305.2	$(53/2^{-})$	5678.4	$(49/2^{-})$	[E2] [@]	0.01594	5.7.1	
632.6 6	5.7.5	6464.6	$53/2^{(+)}$	5832.1	$49/2^{(+)}$	E2	0.01562	5.5.5	$I_{\nu}=1.36$ (1993Ro03).
									Mult.: DCO=1.15 20.
633.5 4	10.5 2	1380.3	19/2+	746.8	$15/2^{+}$	E2	0.01557	10.1 2	$I\gamma = 12$ (1986Hu02).
									Mult.: A ₂ =+0.29 <i>10</i> , A ₄ =-0.01 <i>14</i> (1986Hu02), DCO=1.10 2 (1997FoZX).
^x 634.0									γ seen by 1993De42. Tentative placement from a level at 5307 keV; however, the level was not confirmed by 1993Ro03, 1995Fo13.
640.0 4	20.6 4	3223.6	35/2-	2583.7	31/2-	E2	0.01522	19.9 4	1986Hu02 report a complex line, $I\gamma$ =10.0 estimated from coincidence spectra.
									E_{γ} : 1998We23 report E_{γ} =639.6 keV. Mult.: A ₂ =0.38 2, A ₄ =0.00 2 (1998We23). Other: A ₂ =+0.37 10, A ₄ =-0.14 14 (1986Hu02). DCO=1.02 2 (1997FoZX); band structure.
651.2 6	5.8 8	5048.0	47/2-	4396.8	43/2-	Q		5.7 7	Iγ=2.4 (1986Hu02). Mult.: A ₂ =+0.67 <i>15</i> (1986Hu02), DCO=0.97 <i>6</i> (1997FoZX);
653.3 4	25.5 11	4150.8	41/2-	3497.5	37/2-	(E2)	0.01455	24.6 10	$I_{\gamma}=10 (1986Hu02).$

250

NUCLEAR DATA SHEETS

 $^{193}_{80}\mathrm{Hg}_{113}\text{-}48$

 $^{193}_{80}\mathrm{Hg}_{113}\text{--}48$

$\gamma(^{193}\text{Hg})$ (continued)

E_{γ}^{\dagger}	Ι _γ §	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{b}	$I_{(\gamma+ce)}$ ‡	Comments
									Mult.: $A_2=0.27 \ l$, $A_4=-0.06 \ l$ (1998We23). Other: $A_2=+0.35 \ 5$, $A_4=-0.09 \ 6$ (1986Hu02). DCO=0.94 l (1997FoZX).
660.2 4	20.1 4	3883.8	39/2-	3223.6 3	35/2-	(E2)	0.01422	19.4 4	$I\gamma = 7 (1986Hu02).$
									Mult.: $A_2=0.34$ 2, $A_4=-0.10$ 2 (1998We23). Other: $A_2=+0.45$ 5, $A_4=-0.10$ 7 (1986Hu02). DCO=1.07 3 (1997FoZX).
674.1 8	2.2 1	7920.0	$(63/2^{-})$	7245.7 ((59/2 ⁻)	E2	0.01358	2.1 1	Mult.: DCO=2.50 30 (gate $\Delta J=1$).
677.9 8	2.9 1	5361.7	$47/2^{+}$	4683.8 4	43/2+	E2	0.01342	2.8 1	Mult.: DCO=0.84 30.
678.0 <i>10</i>	0.7 1	6017.1	$(51/2^{-})$	5339.1 ($(47/2^{-})$	Q		0.7 1	DCO=2.3 6 (gate $\Delta J=1$).
685.7 8	1.4 <i>3</i>	4412.6	$41/2^{-}$	3727.0 ($(37/2^{-})$				
704.3 4	12.9 2	3880.5	$41/2^{+}$	3176.2 3	37/2+	E2	0.01236	12.4 2	$I\gamma = 5 (1986Hu02).$
									Mult.: $A_2=0.315$, $A_4=-0.206$ (1998We23). Other: $A_2=+0.459$, $A_4=-0.1413$ (1986Hu02). DCO=0.932 (1997FoZX); band structure
709 3 10	092	67264	$(55/2^{-})$	6017.1 ($(51/2^{-})$	0		092	Mult : $DCO=2.1.7$ (gate $\Delta I=1$)
716.5.8	1.5 7	5400.3	(33/2)	4683.8 4	$43/2^+$	Ď		0.7 2	Mult: $DCO=0.68 \ 10$
716.7 8	2.0 3	6419.4	$(53/2^{-})$	5702.7 ($(49/2^{-})$	 [E2]	0.01191	1.9 3	
719.8 6	5.7 5	5678.4	$(49/2^{-})$	4958.5 4	45/2-	[E2] [@]	0.01180	5.5 5	1993De42 places a 719.6y from a 6538.2 level. Level not
			$(a)(a(\pm))$		z o (z (+)				confirmed by 1993Ro03, 1995Fo13.
726.9 6	5.9 1	7924.8	63/2(+)	/19/.9 3	59/2(+)	E2	0.01155	5.7 1	$I\gamma$ =2.57 (1993Ro03). DCO=0.92 <i>I</i> ; Δ J=2 from DCO (1993De42).
731.1 8	1.9 <i>1</i>	2617.3	$(29/2^{-})$	1886.2 2	$25/2^{-}$	[E2] [@]	0.01141	1.8 <i>1</i>	
735.2 4	35.4 7	3497.5	37/2-	2762.2	33/2-	E2	0.01128	34.0 7	1986Hu02 report a complex line, $I\gamma$ =15.0 estimated from coincidence spectra.
									Mult.: A ₂ =0.37 ¹ <i>I</i> , A ₄ =-0.10 <i>I</i> (1998We23). Other: A ₂ =+0.49 <i>II</i> , A ₄ =-0.17 <i>I3</i> (1986Hu02). DCO=1.07 <i>2</i> (1997FoZX); band structure.
737.4 6	9.6 4	5411.5	$49/2^{-}$	4674.1 4	45/2-	E2	0.01121	9.2 4	Mult.: DCO=0.99 1: band structure.
738.9 4	47.8 11	1884.3	$25/2^{+}$	1145.4 2	$21/2^+$	E2	0.01116	45.9 10	$I\gamma = 41 (1986Hu02).$
			,		,				Mult.: $A_2=0.29 2$, $A_4=-0.11 2$ (1998We23). Other: $A_2=+0.39 6$, $A_4=-0.10 10$ (1986Hu02). DCO=0.95 1 (1997FoZX); band structure.
744.4 8	3.0 5	5702.7	$(49/2^{-})$	4958.5 4	45/2-	[E2] [@]	0.01099	2.9 5	
745.5 <i>4</i>	27.7 17	1890.9	23/2-	1145.4 2	$21/2^+$	(E1+M2)	0.0048 8	27.5 6	$I\gamma = 14 (1986Hu02).$
			,		,	· · · ·			Mult.: $A_2 = -0.07\ 2$, $A_4 = -0.06\ 3\ (1998 We23)$. Other: $A_2 = -0.19\ 6$, $A_4 = -0.09\ 10\ (1986 Hu02)$. DCO=0.75 2 (1997 FoZX).
757.5 6	8.0 1	2641.7	$29/2^{+}$	1884.3 2	$25/2^+$	E2	0.01059	7.7 1	1986Hu02 report a complex line, $I\gamma=5.0$ estimated from
					/_				coincidence spectra.
									Mult.: A ₂ (757. 4γ +757. 8γ)=+0.42 20 (1986Hu02), DCO=1.19 9
									(1997FoZX); band structure.
758.2 8	3.2 2	3260.3	$33/2^{+}$	2502.1 2	29/2+	(E2)	0.01057	3.0 2	1986Hu02 report a complex line, $I\gamma$ =3.0 estimated from
									coincidence spectra.

 $^{193}_{80}\mathrm{Hg}_{113}\text{--}49$
$\gamma(^{193}\text{Hg})$ (continued)

E_{γ}^{\dagger}	I_{γ} §	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. ^{&}	α^{b}	$I_{(\gamma+ce)}$ ‡	Comments
									Mult.: A ₂ (757.4 γ +757.7 γ)=+0.42 <i>10</i> (1986Hu02),
					<i>(</i>)				DCO=1.01 5 (1997FoZX).
764.6 <i>6</i>	5.6 1	6832.4	$55/2^{(+)}$	6067.7	$51/2^{(+)}$	Q		5.4 1	$I\gamma = 2.69 (1993 Ro 03).$
						Ø			Mult.: DCO=1.06 7.
765.0 8	1.8 2	6103.9	$(51/2^{-})$	5339.1	$(47/2^{-})$	[E2]	0.01037	1.7 2	
769.4 8	3.8 2	4889.9	45/2+	4120.5	41/2+	E2	0.01025	3.6 2	Mult.: DCO=1.11 8 (1997FoZX); band structure.
770.7 8	2.1 1	8331.0	$(65/2^{-})$	/560.4	$(61/2^{-})$	E2	0.01021	2.0 1	Mult.: DCO=2.55 60 (gate $\Delta J=1$).
772.2 4	16.1 <i>3</i>	6839.9	$55/2^{(+)}$	6067.7	$51/2^{(+)}$	E2	0.01017	15.4 <i>3</i>	$1\gamma = 8.88 (1993Ro03).$
									Mult.: DCO=1.02 6; $\Delta J=2$ from DCO (1993De42).
									1998 We23 report A ₂ =0.26 3, A ₄ = -0.06 2 for an E2 transition of 772.0 keV at high quaitation energies
x772 2ª 8						(0)			$L_{1} = 2.7 (1086 H_{10} 2)$
112.5 0						(Q)			$1\gamma = 2.7 (1980 \text{Hu} 02).$ Mult : $\Lambda_{2} = \pm 0.50 / 2 (1986 \text{Hu} 02)$
x774 6 ^a 8						(0)			From 1986Hu02: complex line $1/-14$ estimated from
774.0 0						(Q)			coincidence spectra
									Mult.: $A_2 = +0.43$ 15 (1986Hu02).
777.6 8	5.1 <i>1</i>	7699.5	$(59/2^{-})$	6921.9	$(55/2^{-})$	E2	0.01003	4.9 <i>1</i>	Mult.: DCO=1.91 20 (gate $\Delta J=1$).
784.8 8	2.6 2	4539.1	$(41/2^+)$	3754.2	$(37/2^+)$	Q		2.5 2	Mult.: DCO=1.02 10 (1997FoZX).
789.0 10	1.0 1	5747.5	$(49/2^{-})$	4958.5	45/2-				
801.9 8	1.1 <i>1</i>	6163.6	$(51/2^+)$	5361.7	$47/2^{+}$	[E2]	0.00941	1.1 <i>1</i>	
806.0 8	1.1 <i>1</i>	6145.2	$(51/2^{-})$	5339.1	$(47/2^{-})$				
807.96	6.8 <i>1</i>	4688.4	$45/2^{+}$	3880.5	$41/2^{+}$	E2	0.00926	6.5 1	$I\gamma = 4 (1986Hu02).$
									Mult.: $A_2 = +0.31$ 9, $A_4 = -0.10$ 11 (1986Hu02), DCO=0.91 6
000 0 0	0 4 1	5(00.1	40/2+	1000.0	45/0+	52	0.0000	a a 1	(199/FoZX); band structure.
808.2 8	2.4 1	5698.1	$49/2^{+}$	4889.9	45/2'	E2	0.00926	2.3 1	Mult.: $DCO=1.11 \ IO$; band structure.
010.2 0 926 6 8	5.0 I 2 5 I	0921.9	(33/2)	0105.9 9204 9	(51/2)	Q E2	0.00884	5.01 241	$DCO_{-0.80} $
820.0 8	5.5 I 4 0 I	9221.3	(09/2)	7555 2	(05/2)	E2 E2	0.00869	3.41	DCO=0.69 6. $I_{2}=2.56$ (1003P o03)
855.0 8	4.0 1	0.000.0	03/2	1555.2	01/2	112	0.00809	5.6 1	$1\gamma = 2.50 (1995 R005).$ Mult : DCO=2.14.20 (gate AI=1)
837 8 8	221	8757 9	$(67/2^{-})$	7920.0	$(63/2^{-})$				Mult: $D=0-2.14 \ 20 \ (gate \ \Delta J=1)$. Mult: $D=0$ from $DCO=1.55 \ 20 \ (gate \ \Delta J=1)$. However, it is
00710 0	212 1	010115	(0//=)	//2010	(00/=)				a $(67/2^{-})$ to $(63/2^{-})$ transition.
843.5 8	2.2 1	4964.0	43/2	4120.5	$41/2^{+}$	D			Mult.: DCO=0.55 6.
			,		,				a 844 γ was seen by 1986Hu02, but not placed in level
									scheme.
848.9 8	3.3 9	7681.3		6832.4	$55/2^{(+)}$				
851.1 8	3.9 8	5899.1	$51/2^{-}$	5048.0	$47/2^{-}$				$I\gamma = 1.0 \ (1986Hu02).$
									Mult.: DCO=0.86 8 (1997FoZX).
857.1 6	8.1 5	7276.6	$(57/2^{-})$	6419.4	$(53/2^{-})$	E2	0.00821	7.8 5	Mult.: DCO=0.96 5.
857.5 4	11.3 9	1380.3	$19/2^{+}$	522.75	$17/2^{+}$	(M1+E2)	0.0154 72	11.0 8	$I\gamma = 18 (1986Hu02).$
									Mult.: $A_2 = -0.66 \ 2$, $A_4 = 0.13 \ 1 \ (1998 We23)$. Other: $A_2 = -0.67 \ 5$, $A_4 = +0.02 \ 7 \ (1986 Hu02)$.

NUCLEAR DATA SHEETS

(HI,xnγ) 1995Fo13,1993De42,1993Ro03 (continued)

$\gamma(^{193}\text{Hg})$ (continued)

E_{γ}^{\dagger}	I_{γ} §	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_{f}^{π}	Mult.&	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$ ‡	Comments
869.0 <i>10</i> 871.1 8	1.0 <i>3</i> 3.8 <i>8</i>	6428.5 5559.5	(53/2 ⁺) 49/2 ⁺	5559.5 4688.4	49/2 ⁺ 45/2 ⁺	E2	0.00794	3.6 8	 1986Hu02 report a 868.8γ with Iγ=1.0, part of a complex line, from this level. Iγ=1.0 (1986Hu02). Mult.: A₂=+0.21 13, A₄=-0.14 18 (1986Hu02), DCO=1.04.8 (1997Eo7X): band structure
873.4 6	6.6 1	5547.6	47/2 ⁽⁺⁾	4674.1	45/2-	(E1)	0.00295	6.3 1	1986Hu02 report a 873.1 γ with I γ =1.4, but, based on very weak arguments. suggest an (E2) multipolarity. Mult.: DCO=0.53 <i>I</i> ; $\Delta\pi$ =yes from level scheme (1995Fo13).
881.5 8	3.9 1	7186.7	(57/2 ⁻)	6305.2	$(53/2^{-})$	[E2] [@]	0.00776	3.7 1	(1005 E = 12)
885.7 8	3.8 <i>1</i>	1026.5	(13/2 ⁺ ,15/2 ⁺)	140.76	13/2 ⁽⁺⁾	Q		3.6 1	y is related to Structure (2) (1993F013). 1986Hu02 report a complex line, $I\gamma$ =4.0 estimated from coincidence spectra. Mult.: DCO=0.93 20 (1997FoZX).
^x 898.7 10 ^x 902.4 ^a 10	0.8 1								From 1986Hu02; complex line, $I\gamma$ =0.7 estimated from coincidence spectra.
903.5 6	6.8 1	5442.6	$45/2^{(+)}$	4539.1	$(41/2^+)$	0		6.5.1	Mult.: $DCO=1.08.6$ (1997FoZX).
908.2 8	2.1 3	4792.0	$41/2^{-}$	3883.8	39/2-	Ď		2.0 3	Mult.: DCO=0.61 9.
915.1 6	7.3 1	4412.6	41/2-	3497.5	37/2-	E2	0.00720	7.0 1	1986Hu02 report a complex line, $I\gamma=1.7$ estimated from coincidence spectra. Mult : DCO=1.05.20 (1007Eo7X)
924.9 8 937 4 8	2.1 <i>1</i> 1 2 <i>1</i>	9675.9 6496 9	$(71/2^{-})$ $(53/2^{+})$	8750.9 5559 5	$(67/2^{-})$ $49/2^{+}$	E2	0.00704	2.0 1	Mult.: $DCO=2.03 \ 20 \ (J99/102X)$. Mult.: $DCO=2.03 \ 20 \ (gate \ \Delta J=1)$.
^x 938.0 8 ^x 942.7 ^a 8	1.3 2	0190.9	(33/2)	5557.5	17/2				γ is related to Structure (2) (1995Fo13). I γ =2.3 (1986Hu02). Transition feeds 37/2 ⁺ level, but exact placement not determined.
943.5 8	3.8 1	4119.7	39/2+	3176.2	$37/2^{+}$	(M1)	0.0177	3.7 1	Mult.: DCO=0.40 4.
962.0 8	3.8 1	8886.8	67/2 ⁽⁺⁾	7924.8	63/2 ⁽⁺⁾	E2	0.00651	3.6 1	Iγ=1.88 (1993Ro03). Mult.: DCO=1.04 20; Δ J=2 from DCO (1993De42).
965.0 8	1.3 5	3727.0	$(37/2^{-})$	2762.2	33/2-	[E2] [@]	0.00647	1.2 5	
974.4 8	1.2 3	4198.0	$(39/2^{-})$	3223.6	35/2-	-			Iγ=1.5 (1986Hu02).
983.4 8	2.5 1	6394.9	53/2-	5411.5	49/2-	E2	0.00624	2.4 1	Mult.: DCO=0.91 8 (1995Fo13); band structure.
989.0 8	2.4 1	1735.8	$(19/2^+)$	746.8	$15/2^{+}$	Q		2.3 1	Mult.: DCO=1.01 10.
993.6 8	2.5 3	4720.6	(39/2 ⁻)	3727.0	(37/2 ⁻)				988.4 γ seen in coin with 606.4 γ by 1986Hu02.
1000.4 4	10.9 2	1523.2	(17/2 ⁺ ,19/2 ⁺)	522.75	17/2+	D+Q		10.5 2	Iγ=9 (1986Hu02). Mult.: A ₂ =-0.09 4, A ₄ =+0.16 6 (1986Hu02), DCO=1.03 4 (1997FoZX).

253

γ ⁽¹⁹³Hg) (continued)

${\rm E_{\gamma}}^{\dagger}$	Ιγ [§]	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α ^b	$I_{(\gamma+ce)}$ ‡	Comments
1013.4 8	1.6 5	3202.5	$(33/2^{-})$	2189.1	29/2-				
1014.3 8	1.7 <i>1</i>	6913.4	$(55/2^{-})$	5899.1	$51/2^{-}$				Mult.: DCO=0.73 9.
1020.3 8	3.0 2	9409.1	$(69/2^+)$	8388.8	$65/2^{(+)}$				
^x 1021.6 8	1.7 5								γ is related to Structure (1) (1995Fo13).
1022.7 10	0.5 2	6921.8		5899.1	$51/2^{-}$				
^x 1026.0 <i>10</i>	< 0.5								γ is related to Structure (2) (1995Fo13).
1036.3 10	0.8 1	9923.1	$(71/2^+)$	8886.8	$67/2^{(+)}$				
1046.0 8	1.9 <i>1</i>	5442.6	$45/2^{(+)}$	4396.8	43/2-	D		1.8 <i>1</i>	Mult.: DCO=0.46 6 (1997FoZX); $\Delta \pi$ =yes from level scheme.
1053.3 8	2.0 1	8978.1	,	7924.8	$63/2^{(+)}$				
1058.6 10	0.7 1	3754.2	$(37/2^+)$	2695.6	$33/2^{+}$				
1064.8 10	0.9 3	4792.0	$41/2^{-1}$	3727.0	$(37/2^{-})$				
1068.9 8	1.7 3	10290.4	$(73/2^{-})$	9221.5	$(69/2^{-})$	E2	0.00530	1.6 3	Mult.: DCO=2.01 50 (gate $\Delta J=1$).
1081.5 10	1.0 <i>1</i>	7476.4	$(57/2^{-})$	6394.9	53/2-				Mult.: DCO=0.82 20.
1088.5 8	1.8 <i>1</i>	3850.7	37/2-	2762.2	33/2-	Q		1.7 <i>1</i>	Mult.: DCO=1.17 20.
1097.4 <i>10</i>	0.7 1	7492.3		6394.9	53/2-				Mult.: DCO=1.30 20 (1997FoZX).
1115.0 ^C 10	1.0 1	3811?		2695.6	33/2+				
1139.0 <i>10</i>	1.0 1	7038.1		5899.1	$51/2^{-}$				
^x 1145.0 8	1.5 5								γ is related to Structure (1) (1995Fo13).
^x 1149.0 8	2.4 5								γ is related to Structure (1) (1995Fo13).
1152.6 10	1.0 <i>1</i>	5033.1		3880.5	$41/2^{+}$				Mult.: DCO=0.47 9 (1997FoZX).
1169.0 8	1.5 <i>1</i>	5319.9	(43/2)	4150.8	$41/2^{-}$				Mult.: DCO=0.48 10 (1997FoZX).
1177.7 8	2.0 1	10853.6	$(75/2^{-})$	9675.9	$(71/2^{-})$	Q			Mult.: DCO=2.06 30 (gate $\Delta J=1$).
1206.6 8	2.3 1	2351.9	$25/2^+$	1145.4	$21/2^{+}$				
^x 1232.2 8	2.1 1								
1240.5 8	2.3 1	4416.7		3176.2	37/2+				
1286.0 10	0.5 1	4462.2		3176.2	37/2+				
1294.4 10	0.7 3	4792.0	$41/2^{-1}$	3497.5	37/2-	0			
1362.8 8	1.4 1	4539.1	$(41/2^+)$	3176.2	$37/2^+$	Q			Mult.: DCO=1.25 20 (1997FoZX).
1511.5 8	1.2 1	5391.9	17/2(1)	3880.5	41/2	(D+Q)			Mult.: $DCO=1.35 \ 30 \ (199/FoZX)$.
1562.0 10	$0.4 \ l$	5442.6	$45/2^{(+)}$	3880.5	$41/2^+$				

254

[†] From 1995Fo13, unless indicated otherwise. γ -ray energy uncertainties have been assigned by the evaluator, based on the estimates according to their intensities, as suggested in 1995Fo13.

[‡] Total intensity from 1995Fo13, 1997FoZX, for transitions for which they could establish a definite multipolarity (see Note at beginning of γ -ray table). These authors state that they have corrected the measured I γ for internal conversion, if the multipolarity of the γ is confirmed. The distinction, whether the intensity given in those references is I γ or I(γ +ce) is based on this comment. All intensities are relative to I(382.0 γ)=100.

[§] The I γ values are either from 1995Fo13, when they could not confirm the transition multipolarity, or has been calculated by the evaluator from the I(γ +ce) quoted in that reference, and the corresponding conversion coefficient, for those transitions with confirmed multipolarities (see also Note at beginning of the γ -ray table). All γ intensities are relative to I γ =100 for the 382.0 γ .

[&] Deduced from γ-ray angular distributions (1986Hu02, 1998We23) and DCO ratios (1995Fo13,1997FoZX). The DCO ratios are measured as

γ ⁽¹⁹³Hg) (continued)

 $(I\gamma(158^{\circ})I(gate,90^{\circ}))/I\gamma(90^{\circ})I(gate,158^{\circ})$. With a gate on a $\Delta J=2$ Q transition a DCO \approx 1.0 indicates a $\Delta J=2$, Q γ , while a DCO \approx 0.5 indicates a $\Delta J=1$, D γ . With a gate on a $\Delta J=1$ D transition, a value of DCO \approx 2.0 indicates a $\Delta J=2$, Q γ , and, finally, a value of DCO \approx 1.0 indicates a $\Delta J=1$, D γ . Unless otherwise noted, all DCO ratios were measured gating on a $\Delta J=2 \gamma$. For intraband and interband transitions, evaluator assumed sign of the multipolarity based on the decay scheme.

[@] Multipolarity assumed by evaluator on the only basis of the $\Delta J\pi$ of the connected levels in the proposed level scheme.

[#] Uncertain transition due to low statistics (1995Fo13).

^{*a*} γ -ray seen by 1986Hu02; uncertainty assigned by the evaluator depending on intensity.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Adopted Levels, Gammas

 $Q(\beta^{-})=-5280\ 50;\ S(n)=9680\ 30;\ S(p)=2755\ 17;\ Q(\alpha)=3680\ 21$ 2017Wa10

¹⁹³Tl Levels

The level scheme, the bands, and the band labeling are those proposed by 1992Re08. The level scheme has been constructed with the help of coincidence relationships, energy sums and intensity ratios, and γ directional correlation (DCO) ratios. For a discussion of the structure of levels and bands, see 1992Re08.

Cross R	eference	(XREF)	Flags
---------	----------	--------	-------

			A ¹⁹³ 7	FI IT decay (2.11 min) D (HI,xn γ)							
			B ¹⁹³ F	Pb ε decay (5.8 min) E (HI,xn γ):SD							
			C ¹⁹⁷ E	Bi α decay (5.15 min)							
E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments							
0.0	$1/2^{(+)}$	21.6 min 8	ABCD	$\%\varepsilon + \%\beta^+ = 100$							
				μ =+1.591 2							
				Limit for possible α decay: $\langle 2 \times 10^{-4} \%$ (1963Ka17). 1961Fo06 assign a							
				5800-keV α group to either ¹⁹⁵ Tl or ¹⁹⁴ Tl.							
				μ : If from atomic beam (1976Fk03): parity from shell model μ (3s1/2 level							
				is the only $J=1/2$ level available for $Z=81$).							
				$T_{1/2}$: weighted average of 22.6 min 10 (1961An03) and 21.0 min 8							
				(1974Va23). Other values: 30 min 3 (1960Ch05), 25 min 3 (1963Di10).							
				Isotope shift: $\Delta < r^2 > = -0.465 55 \text{ fm}^2$, relative to ²⁰³ Tl (1989MeZZ).							
265 2	2/2(+)			KMS charge radius: $5.4302 58 \text{ Im} (2004\text{An14})$.							
303.2 265.2+#	$5/2^{(1)}$	2.11		J^{*} : MI+E2 γ to 1/2 .							
505.2+X	(9/2)	2.11 11111 13	AB D	$\%\epsilon + \%p \ge 23$; $\%11 \le 73$ $\mu = +3.948.4$: $\Omega = -2.20.2$							
				μ : From 1987Bo44,2014StZZ: collinear fast atom beam laser spectroscopy.							
				Other value: +3.82 3 (2014StZZ,2012Ba32).							
				Q: From 1987Bo44,2014StZZ: collinear fast atom beam laser spectroscopy.							
				E(level): $X < 13$ from 11 decay.							
				μ the $g9/2$ level is the only available level for Z=81 (one proton-hole							
				nucleus). μ also agrees with near-prolate nucleus described by 9/2[505] with							
				$\beta(2)=0.15$, $\beta(4)=-0.02$ and $\gamma=-0.55^{\circ}$ (1992Re08). Systematics of ¹⁹¹ Tl,							
				195 Tl, 197 Tl, 199 Tl.							
				$T_{1/2}$: from 1963Di10.							
				%11: deduced from relative $I(\gamma + ce)$ values for transitions in ¹⁷⁵ Hg and ¹⁷⁵ H							
				Isotope shift: $\Lambda < r^2 > = -0.395 \ 46 \ \text{fm}^2$, relative to ^{205}Tl (1989MeZZ).							
757.51+x [#] 24	$(11/2^{-})$		ΒD	J^{π} : M1+E2 γ to 9/2 ⁻ level; band structure.							
1081.10+x [#] 24	$(13/2^{-})$		ΒD	J^{π} : M1+E2 γ to 11/2 ⁻ level, E2 γ to 9/2 ⁻ level; band structure.							
1163.7+x			В								
1423.7+x			В								
1493.4+x 3	$(13/2^{-})$		ΒD	$J^{n}: Q \gamma \text{ to } (9/2^{-}).$							
$1512.1 + x^{\#} 3$	$(15/2^{-})$		ΒD	J^{n} : M1 γ to 13/2 ⁻ level, E2 γ to 11/2 ⁻ level; band structure.							
$1833.2 + x^{m} 3$	$(17/2^{-})$		D	J^{π} : E2 γ to 13/2 ⁻ level, D γ to 15/2 ⁻ level; band structure.							
10/1.0+x 1899 6+x 4	$(15/2^{-})$		BD	I^{π} : M1 γ to $(13/2)^{+}$ level							
1928.4+x <i>4</i>	$(17/2^{-})$		D	J^{π} : D γ to $15/2^{-}$ level, (Q) γ to $13/2^{-}$ level.							
1960.0+x 5	$(15/2^{-})$		B D	J^{π} : M1 γ to (13/2 ⁻) level.							
$2008.1 + x^a 5$	$(17/2^+)$	0.6 ns	D								

E(level) [†]	$J^{\pi \ddagger}$	XREF
$2105.4 + x^{a} 6$	$(19/2^+)$	D
$2231.5 + x^{a}$ 7	$(21/2^+)$	D
$2303.8 + x^{\#} 5$	$(19/2^{-})$	D
2393.4+x ^{<i>u</i>} 8	$(23/2^+)$	D
2393.7+x 5 2452.0+x 8	(19/2)	D
$2452.0+x^{0}$ 5	(23/2) $(21/2^{-})$	D
$2500.3 \pm x^{\#} 6$	$(21/2^{-})$	ע ח
$2501.3 \pm x^{(0)}$	$(21/2^{-})$	D
2672.5+x 8	(25/2)	D
2687.3+x [@] 7	$(25/2^{-})$	D
2710.2+x ^{<i>a</i>} 6	$(25/2^+)$	D
2798.3+x 9	(27/2)	D
2931.5+x 9	(27/2)	D
2956.3+x [@] 8	$(27/2^{-})$	D
$3026.9 + x^{47} / 2020.2 + x = 10$	$(27/2^{+})$	D
3087.5+x 11	(29/2) (29/2)	D
$3164.3 + x^{@} 8$	$(29/2^{-})$	D
$3407.0 + x^a 7$	$(29/2^+)$	D
3428.5+x 12	(31/2)	D
$3457.3 + x^{b}$ 7	$(27/2^{-})$	D
3556.8+x [@] 9	$(31/2^{-})$	D
3616.3+x ^b 8	$(29/2^{-})$	D
3630.5 + x 12	(33/2)	D
$3/4/.1+X^{**}$ o	$(31/2^{-})$	ע
$3767.2 \pm x^{b}$ 0	(29/2)	ע ח
$3849.8 + x^{(0)}.9$	$(31/2^{-})$	D
$3966.2 + x^{\&} 10$	$(33/2^{-})$ $(31/2^{-})$	D
$3988.9 + x^{b} 10$	$(33/2^{-})$	D
$4008.0 + x^a 8$	$(33/2^+)$	D
4114.6+x 8	(33/2)	D
$4157.5 + x^{a} 10$	$(35/2^+)$	D
$4227.4 + x^{o} 10$	$(35/2^{-})$	D
$4306.8 \pm x^{(0)}.9$	(37/2) $(35/2^{-})$	ם ח
4307.6+x 10	(35/2)	D
4319.3+x ^{<i>a</i>} 11	$(37/2^+)$	D
4335.2+x ^{&} 11	$(33/2^{-})$	D
4525.7+x ^a 12	$(39/2^+)$	D
4532.6+x 11	(37/2)	D
4553.4+x ^b 11	$(37/2^{-})$	D
4587.2+x ^{&} 11	(35/2-)	D
4646.4+x [@] 9	$(37/2^{-})$	D
$4804.9 + x^{a} 12$	$(41/2^+)$	D
4890.4+x ^o 11	$(39/2^{-})$	D

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
	4956.2+x ^{&} 12	$(37/2^{-})$	D	
	5039.5+x 14	(41/2)	D	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5124.4+x [@] 10	39/2-	D	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5125.0+x ^a 12	$43/2^{+}$	D	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5264.2+x ^b	$41/2^{-}$	D	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5312.2+x ^{&} <i>13</i>	39/2-	D	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5469.8+x [@] 10	$41/2^{-}$	D	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5490.6+x ^a 12	$45/2^{+}$	D	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5853.8+x [@] 11	43/2-	D	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$5888.6 + x^{a}$ 13	$47/2^{+}$	D	
v^{c} (17/2 ⁺) E E [clevel): 3134 keV 4 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HLxny) 2016NdZZ. J^{e} : from 1998Bo20. Also from least-squares fits to Ey's using empirical expansions relating second moment of inertia and angular frequency. S8+v ^d (19/2 ⁺) E E[clevel): 313 keV 5 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HLxny) 2016NdZZ. J^{e} : calculated 1=19/2 (1992Wu01,1993Hu06,1994Zh40). 206+v ^c (21/2 ⁺) E E[clevel): 313 keV 5 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HLxny) 2016NdZZ. J^{e} : calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40). 325+v ^d 3 (23/2 ⁺) E 741+v ^c 3 (27/2 ⁺) E 933+v ^d (27/2 ⁺) E 940+v ^d (31/2 ⁺) E 94144 ^d (35/2 ⁺) E 1249+v ^d (35/2 ⁺) E 1249+v ^d (35/2 ⁺) E 1228+v ^d (41/2 ⁺) E 1249+v ^d (45/2 ⁺) E 2252+v ^d (47/2 ⁺) E 2254+v ^d (47/2 ⁺) E 2254+v ^d (45/2 ⁺) E	6271.2+x [@] 12	45/2-	D	
$\begin{array}{rcl} & \text{scond moment of increase and angular frequety.}\\ 98+v^d & (19/2^+) & \text{E} & \text{Eldevel}: 3113 \ \text{kV} 5 \ depopulating from this state. Proposed feeding by 1998Bo20 \ does not fit to members of normal band of (H1,xny) 2016NdZZ. J^F: calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40).\\ 206+v^c & (21/2^+) & \text{E} & \text{Eldevel}: 3046 \ \text{kV} 6 \ depopulating from this state. Proposed feeding by 1998Bo20 \ does not fit to members of normal band of (H1,xny) 2016NdZZ. J^F: calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40).\\ 325+v^d 3 & (25/2^+) & \text{E} & \text{Solution} & Sol$	v ^C	(17/2 ⁺)	E	 E(level): 3134 keV 4 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HI,xnγ) 2016NdZZ. J^π: from 1998Bo20. Also from least-squares fits to Eγ's using empirical expansions relating
$\begin{array}{rcl} 984 V^{a} & (19/2^{-1}) & E & E(EVE): 3115 KeV 3 depopulating from this state. Proposed recting by 1998Bo20 does not fit to members of normal band of (HL,xny) 2016NdZZ. J^F: calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40). \\ \hline E(Evel): 3046 keV 6 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HL,xny) 2016NdZZ. J^F: calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40). \\ \hline S25+v^d 3 & (25/2^+) & E \\ \hline S93+v^d 3 & (27/2^+) & E \\ \hline S93+v^d 3 & (27/2^+) & E \\ \hline S93+v^d 3 & (27/2^+) & E \\ \hline 1249+v^d 3 & (33/2^+) & E \\ \hline 1249+v^d 3 & (35/2^+) & E \\ \hline 1265+v^d 3 & (37/2^+) & E \\ \hline S255+v^d 3 & (47/2^+) & E \\ \hline 2062+v^d 3 & (43/2^+) & E \\ \hline 2062+v^d 3 & (43/2^+) & E \\ \hline 2062+v^d 3 & (47/2^+) & E \\ \hline 2763+v^c 3 & (49/2^+) & E \\ \hline 2763+v^c 3 & (51/2^+) & E \\ \hline 3279+v^c 3 & (51/2^+) & E \\ \hline 3830+v^c 3 & (57/2^+) & E \\ \hline 3830+v^c 3 & (57/2^+) & E \\ \hline 3830+v^c 3 & (57/2^+) & E \\ \hline 3830+v^c 3 & (67/2^+) & E \\ \hline 5037+v^c 3 & (65/2^+) & E \\ $	aa d	$(10/2^{+})$		second moment of merita and angular frequency. $\Gamma(1 = 1) = 2112 + M_{\odot} = 1 + C_{\odot} = 1 +$
$206+v^c$ (21/2*)EEE(level): 3046 keV 6 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HL,xny) 2016NdZZ. J ⁷ : calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40). $325+v^d$ 3(23/2*)E $454+v^c$ 3(25/2*)E $993+v^d$ 3(27/2*)E $901+v^d$ 3(31/2*)E $1069+v^c$ 3(33/2*)E $1069+v^c$ 3(33/2*)E $1636+v^d$ 3(39/2*)E $1636+v^d$ 3(39/2*)E $1636+v^d$ 3(37/2*)E $1636+v^d$ 3(41/2*)E $2225+v^d$ 3(47/2*)E $2225+v^d$ 3(47/2*)E $2763+v^c$ 3(49/2*)E $3279+v^c$ 3(53/2*)E $3279+v^c$ 3(53/2*)E $3564+v^d$ 3(55/2*)E $333+v^c$ 3(67/2*)E $377+v^c$ 3(65/2*)E $377+v^c$ 3(67/2*)E $377+v^c$ 3(67/2*)E<	98+v ^a	(19/2*)	E	E(level): 3113 keV 5 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HI,xn γ) 2016NdZZ. J ^{π} : calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40).
$\begin{array}{llllllllllllllllllllllllllllllllllll$	206+v ^C	(21/2 ⁺)	E	E(level): 3046 keV 6 depopulating from this state. Proposed feeding by 1998Bo20 does not fit to members of normal band of (HI,xn γ) 2016NdZZ. J ^{π} : calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40).
$434+v^{c}$ $(25/2^{+})$ E $593+v^{d}$ $(27/2^{+})$ E $741+v^{c}$ $(29/2^{+})$ E $901+v^{d}$ $(31/2^{+})$ E $1069+v^{c}$ $(33/2^{+})$ E $1249+v^{d}$ $(35/2^{+})$ E $1435+v^{c}$ $(37/2^{+})$ E $1636+v^{d}$ $(39/2^{+})$ E $1840+v^{c}$ $(41/2^{+})$ E $2062+v^{d}$ $(41/2^{+})$ E $2283+v^{c}$ $(45/2^{+})$ E $2255+v^{d}$ $(47/2^{+})$ E $2763+v^{c}$ $(49/2^{+})$ E $3027+v^{d}$ $(51/2^{+})$ E $3279+v^{c}$ $(53/2^{+})$ E $330+v^{c}$ $(57/2^{+})$ E $330+v^{c}$ $(61/2^{+})$ E $4137+v^{d}$ $(69/2^{+})$ E $5390+v^{d}$ $(67/2^{+})$ E $5390+v^{d}$ $(67/2^{+})$ E $590+v^{d}$ $(69/2^{+})$ E $6069+v^{d}$ $(71/2^{+})$ E	$325 + v^{d}$ 3	$(23/2^{+})$	E	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$454 + v^{C} 3$	$(25/2^+)$	E	
$741+v^{C} 3$ $(29/2^{+})$ E $901+v^{d} 3$ $(31/2^{+})$ E $1069+v^{C} 3$ $(33/2^{+})$ E $1249+v^{d} 3$ $(35/2^{+})$ E $1435+v^{C} 3$ $(37/2^{+})$ E $1636+v^{d} 3$ $(39/2^{+})$ E $1636+v^{d} 3$ $(41/2^{+})$ E $2062+v^{d} 3$ $(43/2^{+})$ E $2283+v^{C} 3$ $(45/2^{+})$ E $2255+v^{d} 3$ $(47/2^{+})$ E $2763+v^{C} 3$ $(47/2^{+})$ E $3027+v^{d} 3$ $(51/2^{+})$ E $3279+v^{C} 3$ $(51/2^{+})$ E $380+v^{C} 3$ $(57/2^{+})$ E $3364+v^{d} 3$ $(59/2^{+})$ E $4137+v^{d} 3$ $(59/2^{+})$ E $374+v^{C} 3$ $(61/2^{+})$ E $5390+v^{d} 3$ $(67/2^{+})$ E $5390+v^{d} 3$ $(67/2^{+})$ E $6069+v^{d} 3$ $(71/2^{+})$ E	593+v ^d 3	$(27/2^+)$	Е	
$901+v^d$ $(31/2^+)$ E $1069+v^c$ $(33/2^+)$ E $1249+v^d$ $(35/2^+)$ E $1435+v^c$ $(37/2^+)$ E $1636+v^d$ $(39/2^+)$ E $1840+v^c$ $(41/2^+)$ E $2062+v^d$ $(43/2^+)$ E $2283+v^c$ $(45/2^+)$ E $2255+v^d$ $(47/2^+)$ E $2763+v^c$ $(49/2^+)$ E $3027+v^d$ $(51/2^+)$ E $3279+v^c$ $(53/2^+)$ E $3564+v^d$ $(55/2^+)$ E $3830+v^c$ $(57/2^+)$ E $4137+v^d$ $(59/2^+)$ E $5037+v^c$ $(63/2^+)$ E $5037+v^c$ $(65/2^+)$ E $5390+v^d$ $(67/2^+)$ E $591+v^c$ $(69/2^+)$ E $6069+v^d$ $(71/2^+)$ E	741+v ^C 3	$(29/2^+)$	E	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	901+v ^d 3	$(31/2^+)$	E	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$1069 + v^{c} 3$	$(33/2^+)$	E	
$1435+v^{c} 3$ $(37/2^{+})$ E $1636+v^{d} 3$ $(39/2^{+})$ E $1840+v^{c} 3$ $(41/2^{+})$ E $2062+v^{d} 3$ $(43/2^{+})$ E $2283+v^{c} 3$ $(45/2^{+})$ E $2525+v^{d} 3$ $(47/2^{+})$ E $2525+v^{d} 3$ $(47/2^{+})$ E $3027+v^{d} 3$ $(51/2^{+})$ E $3027+v^{d} 3$ $(51/2^{+})$ E $3279+v^{c} 3$ $(53/2^{+})$ E $3830+v^{c} 3$ $(57/2^{+})$ E $4137+v^{d} 3$ $(59/2^{+})$ E $4137+v^{d} 3$ $(63/2^{+})$ E $5037+v^{c} 3$ $(65/2^{+})$ E $5390+v^{d} 3$ $(67/2^{+})$ E $591+v^{c} 3$ $(69/2^{+})$ E $6069+v^{d} 3$ $(71/2^{+})$ E	1249+v ^d 3	$(35/2^+)$	E	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$1435 + v^{C} 3$	$(37/2^+)$	E	
$1840+v^{C} 3$ $(41/2^{+})$ E $2062+v^{d} 3$ $(43/2^{+})$ E $2283+v^{C} 3$ $(45/2^{+})$ E $2525+v^{d} 3$ $(47/2^{+})$ E $2763+v^{C} 3$ $(49/2^{+})$ E $3027+v^{d} 3$ $(51/2^{+})$ E $3027+v^{d} 3$ $(51/2^{+})$ E $3279+v^{C} 3$ $(53/2^{+})$ E $3564+v^{d} 3$ $(55/2^{+})$ E $3830+v^{C} 3$ $(57/2^{+})$ E $4137+v^{d} 3$ $(59/2^{+})$ E $4137+v^{d} 3$ $(63/2^{+})$ E $5037+v^{C} 3$ $(65/2^{+})$ E $5390+v^{d} 3$ $(67/2^{+})$ E $5390+v^{d} 3$ $(67/2^{+})$ E $6069+v^{d} 3$ $(71/2^{+})$ E	$1636 + v^{d} 3$	$(39/2^+)$	E	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$1840 + v^{C} 3$	$(41/2^+)$	E	
$\begin{array}{rcl} 2283+v^{c} & 3 & (45/2^{+}) & E \\ 2525+v^{d} & 3 & (47/2^{+}) & E \\ 2763+v^{c} & 3 & (49/2^{+}) & E \\ 3027+v^{d} & 3 & (51/2^{+}) & E \\ 3279+v^{c} & 3 & (53/2^{+}) & E \\ 3564+v^{d} & 3 & (55/2^{+}) & E \\ 3830+v^{c} & 3 & (57/2^{+}) & E \\ 4137+v^{d} & 3 & (59/2^{+}) & E \\ 4117+v^{c} & 3 & (61/2^{+}) & E \\ 4417+v^{c} & 3 & (63/2^{+}) & E \\ 5037+v^{c} & 3 & (65/2^{+}) & E \\ 5390+v^{d} & 3 & (67/2^{+}) & E \\ 5390+v^{d} & 3 & (67/2^{+}) & E \\ 5691+v^{c} & 3 & (69/2^{+}) & E \\ 6069+v^{d} & 3 & (71/2^{+}) & E \end{array}$	$2062 + v^{d} 3$	$(43/2^+)$	E	
$\begin{array}{rcl} 2525+v^{d} & 3 & (47/2^{+}) & E \\ 2763+v^{c} & 3 & (49/2^{+}) & E \\ 3027+v^{d} & 3 & (51/2^{+}) & E \\ 3279+v^{c} & 3 & (53/2^{+}) & E \\ 3564+v^{d} & 3 & (55/2^{+}) & E \\ 3830+v^{c} & 3 & (57/2^{+}) & E \\ 4137+v^{d} & 3 & (59/2^{+}) & E \\ 4137+v^{c} & 3 & (61/2^{+}) & E \\ 4417+v^{c} & 3 & (61/2^{+}) & E \\ 5037+v^{c} & 3 & (65/2^{+}) & E \\ 5390+v^{d} & 3 & (67/2^{+}) & E \\ 5691+v^{c} & 3 & (69/2^{+}) & E \\ 6069+v^{d} & 3 & (71/2^{+}) & E \end{array}$	$2283 + v^{c} 3$	$(45/2^+)$	E	
$2/63+v^{c} 3 \qquad (49/2^{+}) \qquad E \\ 3027+v^{d} 3 \qquad (51/2^{+}) \qquad E \\ 3279+v^{c} 3 \qquad (53/2^{+}) \qquad E \\ 3564+v^{d} 3 \qquad (55/2^{+}) \qquad E \\ 3830+v^{c} 3 \qquad (57/2^{+}) \qquad E \\ 4137+v^{d} 3 \qquad (59/2^{+}) \qquad E \\ 4137+v^{d} 3 \qquad (61/2^{+}) \qquad E \\ 4417+v^{c} 3 \qquad (61/2^{+}) \qquad E \\ 4746+v^{d} 3 \qquad (63/2^{+}) \qquad E \\ 5037+v^{c} 3 \qquad (65/2^{+}) \qquad E \\ 5390+v^{d} 3 \qquad (67/2^{+}) \qquad E \\ 5691+v^{c} 3 \qquad (69/2^{+}) \qquad E \\ 6069+v^{d} 3 \qquad (71/2^{+}) \qquad E \\ $	$2525 + v^a 3$	$(47/2^+)$	E	
$\begin{array}{rcl} 3027+v^{d} & 3 & (51/2^{+}) & E \\ 3279+v^{c} & 3 & (53/2^{+}) & E \\ 3564+v^{d} & 3 & (55/2^{+}) & E \\ 3830+v^{c} & 3 & (57/2^{+}) & E \\ 4137+v^{d} & 3 & (59/2^{+}) & E \\ 4117+v^{c} & 3 & (61/2^{+}) & E \\ 4746+v^{d} & 3 & (63/2^{+}) & E \\ 5037+v^{c} & 3 & (65/2^{+}) & E \\ 5390+v^{d} & 3 & (67/2^{+}) & E \\ 5691+v^{c} & 3 & (69/2^{+}) & E \\ 6069+v^{d} & 3 & (71/2^{+}) & E \end{array}$	2/63+v ^e 3	(49/2+)	E	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$3027 + v^{\alpha} 3$	$(51/2^+)$	E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$32/9+v^2$ 3	$(55/2^{+})$	E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3304 + v^{c} 3$	$(55/2^{+})$ $(57/2^{+})$	E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4127 + u^{d} 2$	$(51/2^{+})$	E	
$4746+v^d 3$ $(63/2^+)$ E $5037+v^c 3$ $(65/2^+)$ E $5390+v^d 3$ $(67/2^+)$ E $5691+v^c 3$ $(69/2^+)$ E $6069+v^d 3$ $(71/2^+)$ E	$4417 + v^{C}$ 3	(59/2) $(61/2^+)$	E F	
$5037 + v^c 3$ $(65/2^+)$ E $5390 + v^d 3$ $(67/2^+)$ E $5691 + v^c 3$ $(69/2^+)$ E $6069 + v^d 3$ $(71/2^+)$ E	$4746 + v^{d}$ 3	$(63/2^+)$	F	
$5390+v^{d} 3 \qquad (67/2^{+}) \qquad E 5691+v^{c} 3 \qquad (69/2^{+}) \qquad E 6069+v^{d} 3 \qquad (71/2^{+}) \qquad E$	$5037 + v^{C} 3$	$(65/2^+)$	Ē	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5390 + v^{d}$ 3	$(67/2^+)$	E	
$6069 + v^d 3$ (71/2 ⁺) E	$5691 + v^{C} 3$	$(69/2^+)$	Ē	
	6069+v ^d 3	$(71/2^+)$	E	

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
6377+v ^c 3	$(73/2^+)$	E	
$6782 + v^d 3$	$(75/2^+)$	E	
$7096 + v^{c} 3$	$(77/2^+)$	E	
$7529 + v^d 3$	$(79/2^+)$	E	
$7847 + v^{c} 3$	$(81/2^+)$	Ē	
$8311 + v^{d}$ 3	$(83/2^+)$	F	
$8630 + v^{c} 4$	$(85/2^+)$	Ē	
v ^e	J	Е	J^{π} : $\approx (15/2)$.
187.9+y ^e 3	J+2	E	
418.6+y ^e 5	J+4	E	
691.4+y ^e 6	J+6	E	
$1005.7 + y^e 6$	J+8	E	
1360.7+y ^e 7	J+10	E	
$1/55.8 + y^{e} 8$	J+12	E	
$2190.3 + y^2 = 8$ 2663 $4 + y^2 = 0$	J+14 L+16	E	
$2003.4 \pm y$ 9 3174 0 $\pm y^{e}$ 9	J + 10 I + 18	F	
$3721.5 + y^{e} 10$	J+10 J+20	E	
$4304.9 + y^e 10$	J+22	Ē	
4923.3+y ^e 11	J+24	Е	
5576.4+y ^e 11	J+26	Е	
6263.1+y ^e 12	J+28	E	
6977.1+y ^e 14	J+30	E	
7712.1+y ^e 17	J+32	E	
zJ	J1	E	J^{π} : \approx (23/2).
$250.8 + z^{j} 3$	J1+2	E	
$542.8 + z^{5}$	J1+4	E	
$875.5 + z^{f} 6$	J1+6	E	
$1248.2 + z^{J} 6$	J1+8	E	
$1660.1 + z^{f}$ 7	J1+10	E	
$2110.6 + z^{f} 8$	J1+12	E	
2598.7+z ^f 8	J1+14	E	
$3123.9 + z^{f} 9$	J1+16	E	
$3685.6 + z^{f} 9$	J1+18	E	
$4282.5 + z^{f}$ 10	J1+20	E	
4914.3+ z^{f} 10	J1+22	E	
5580.7+z ^f 11	J1+24	E	
$6285.4 + z^{f}$ 13	J1+26	E	
7033.4+z ^f 16	J1+28	E	
u ^g	J2	E	$\mathbf{J}^{\pi}:\approx(21/2).$
$271.5 + u^8 5$	J2+2	E	
$584.8 + u^8 7$	J2+4	E	
$938.9 + u^{\circ} / 1222.2 + u^{\circ} / 0$	J2+0 12+8	E	
$1332.2 + u^{3} 9$ 1764.5+ $u^{8} 9$	J2+8 J2+10	E	
1701.J u=)	32 110		

¹⁹³Tl Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
2234.4+u ^g 10	J2+12	E	3864.8+u ^g 11	J2+18	E	5813.0+u ^g 13	J2+24	E
2741.7+u ^g 10	J2+14	E	4479.3+u ^g 12	J2+20	E	6531.8+u ^g 15	J2+26	E
3285.4+u ^g 10	J2+16	E	5128.8+u ^g 13	J2+22	E			

[†] From least squares fit to $E\gamma$. For the levels built on the 365.2+x level, the uncertainties given for E(level) are relative uncertainties within that part of the level scheme; they do not include the uncertainty in $E\gamma$ =365.2 (not known) nor the uncertainty in the unknown x. Similarly, the uncertainties on the E(level) in the SD-bands are the relative uncertainties within the band.

^{\ddagger} From (HI,xn γ) based on combined analysis of γ -ray multipolarities, coincidence data, rotational structure, and systematics of odd-mass Tl nuclei in (HI,xn γ), except where noted.

- # Band(A): Band 1.
- [@] Band(B): Band 2 9/2(505).
- & Band(C): Band 3.
- ^a Band(D): Band 4.
- ^b Band(E): Band 5.

^{*c*} Band(F): SD-1 band α =+1/2 (1990Fe07,1996Bo02,1998Bo20,1999Kr19) Percent population is \approx 0.5 of total yield for ¹⁹³Tl (1990Fe07). Q(intrinsic)=18.3 *10* (1999Kr19). From competing M1 (interband) and E2 (intraband) transitions, g_K=1.46 *17* (1996Bo02) and g_s^{eff}/g_s^{free}=0.7 2 (1996Bo02).

- ^d Band(f): SD-2 band $\alpha = -1/2$ (1990Fe07,1996Bo02,1998Bo20,1999Kr19) percent population is ≈ 0.5 of total yield for ¹⁹³TI (1990Fe07). Q(intrinsic)=17.4 *10* (1999Kr19). The two SD bands are interpreted as signature partners influenced by i13/2 proton intruder orbital. From competing M1 (interband) and E2 (intraband) transitions, $g_{\rm K}=1.46$ *17* (1996Bo02) and $g_{\rm s}^{\rm eff}/g_{\rm s}^{\rm free}=0.7$ 2 (1996Bo02).
- ^{*e*} Band(G): SD-3 band (1998Bo32) Population intensity=60% of SD-2 band. Interaction observed between SD-3 and SD-4 bands, and the identical energies (within 2 keV) of transitions in SD-3 and SD-5 bands, indicate involvement of 1/2[411], $\alpha = \pm 1/2$ and 1/2[651], $\alpha = -1/2$ proton orbitals. At high frequencies SD-3 is interpreted to be due to 1/2[651], $\alpha = -1/2$, while at low frequencies, it is expected to be due to 1/2[411] $\alpha = -1/2$.
- ^{*f*} Band(H): SD-4 band (1998Bo32) Population intensity=33% of SD-2 band. Interaction is observed between SD-3 and SD-4 bands. At high frequencies SD-4 is interpreted to be due to 1/2[411], $\alpha = -1/2$, while at low frequencies it is interpreted as 1/2[651], $\alpha = -1/2$.
- ^g Band(I): SD-5 band (1998Bo32) Population intensity=16% of SD-2 band. Identical energies (within 2 keV) of transitions in SD-3 and SD-5 bands indicate that these bands may be signature partners. SD-5 band is interpreted as 1/2[411], $\alpha = +1/2$.

γ ⁽¹⁹³Tl)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [§]	δ^{\S}	α^{d}	Comments
365.2	3/2 ⁽⁺⁾	365.2	100	0.0	1/2 ⁽⁺⁾	M1+E2	1.7 +5-4	0.106 20	E_{γ} : unweighted average of measurements in ¹⁹³ Tl IT decay (365.0 keV, 1976Ha25) and (HI,xnγ) (365.3 keV, 1974Ne16).
365.2+x	(9/2 ⁻)	(x)		365.2	3/2 ⁽⁺⁾	[E3]			Mult., δ : from ¹⁹³ Tl IT decay (2.11 min). E_{γ} : E<13 keV, see ¹⁹³ Tl IT decay (2.11 min). B(E3)(W.u.) varies from 0.005 for E γ =13 to 0.14 for E_{γ} =2.2.
757.51+x	(11/2 ⁻)	392.5	100	365.2+x	(9/2 ⁻)	M1+E2	-0.59 14	0.160 13	$δ$: Other values: $-0.14 < \delta < -0.03$ (1999Fu05), from e ⁻ -γ and γγ angular correlations.
1081.10+x	(13/2 ⁻)	323.9 716.4	89.7 2 100.0 2	757.51+x 365.2+x	$(11/2^{-})$ $(9/2^{-})$	M1+E2 E2	0.6 +4-5	0.0126	I_{γ} : Other: 37.3 (¹⁹³ Pb ε decay (5.8 min)).
1163./+x		406.5	100	/5/.51+x	(11/2)				E_{γ} : 406.6 γ placed from 1900.2+x level in (HI,xn γ) data.
1423.7+x 1493.4+x	(13/2 ⁻)	412.0 735.9	100 11.75 <i>11</i> 100.00 <i>11</i> 3.06 <i>4</i>	757.51+x 1081.10+x 757.51+x 365.2+x	(11/2) $(13/2^{-})$ $(11/2^{-})$ $(0/2^{-})$	D+Q D			
1512.1+x	(15/2 ⁻)	431.2	73.49 5 100 00 21	1081.10+x 757.51+x	$(3/2^{-})$ $(13/2^{-})$ $(11/2^{-})$	Q M1 E2		0.0113	I _{γ} : Other: 30.8 (¹⁹³ Pb ε decay (5.8 min)).
1833.2+x	(17/2 ⁻)	321.0 752.2	31.31 2 100.00 <i>17</i>	1512.1+x 1081.10+x	$(15/2^{-})$ $(13/2^{-})$	D E2		010112	
1871.0+x		1113.5 [@]	100	757.51+x	$(11/2^{-})$				
1899.6+x	(15/2 ⁻)	406.2 818.6	100.0 <i>5</i> 6.09 <i>1</i>	1493.4+x 1081.10+x	$(13/2^{-})$ $(13/2^{-})$	M1 D		0.180	
1928.4+x	(17/2 ⁻)	416.9 848.1	<34.59 100.0 2	1512.1+x 1081.10+x	$(15/2^{-})$ $(13/2^{-})$	D Q			
1960.0+x	(15/2-)	466.9 878.9	100.00 8 9.92 2	1493.4+x 1081.10+x	$(13/2^{-})$ $(13/2^{-})$	М1 D		0.125	
2008.1+x	(17/2 ⁺)	47.5 107.8 495.2	100.00 25 32.59 3 30.32 5	1960.0+x 1899.6+x 1512.1+x	$(15/2^{-})$ $(15/2^{-})$ $(15/2^{-})$	D D E1			
2105.4+x	$(19/2^+)$	97.0	100	2008.1 + x	$(17/2^+)$	D			
2231.5+x	$(21/2^+)$	125.9	100	2105.4+x	$(19/2^+)$	D			
2303.8+x	(19/2 ⁻)	470.0 791.0	62.05 7 100.00 7	1833.2+x 1512.1+x	$(17/2^{-})$ $(15/2^{-})$	D (E2)			
2393.4+x	$(23/2^+)$	161.8	100	2231.5+x	$(21/2^+)$				
2393.7+x	$(19/2^{-})$	464.1	100.0 20	1928.4+x	$(17/2^{-})$	D			
2452 0 1 2	(23/2)	881.0 220.5	14.43 2	1512.1+x 2231.5+x	$(15/2^{-})$ $(21/2^{+})$	Q D			
2432.0+x 2506 3+x	(25/2) $(21/2^{-})$	220.5 112 5	2 40 1	2231.3 + X 2393 7+x	(21/2) $(19/2^{-})$	D			
2300.3TA	(21/2)	202.5	10.36 2	$2303.7 \pm x$ 2303.8+x	$(19/2^{-})$	D			
		672.5	100.0 1	1833.2+x	$(17/2^{-})$	E2			

261

NUCLEAR DATA SHEETS

 $^{193}_{81}\text{Tl}_{112}\text{-}6$

γ (¹⁹³Tl) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [§]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [§]
2576.2+x	$(21/2^{-})$	272.4	24.38 4	2303.8+x	$(19/2^{-})$	D	4114.6+x	(33/2)	707.7	100.00 22	3407.0+x	$(29/2^+)$	Q
		742.4	100.0 1	1833.2+x	$(17/2^{-})$	Q	4157.5+x	$(35/2^+)$	149.5	100	4008.0+x	$(33/2^+)$	D
2591.3+x	$(23/2^{-})$	85.0		2506.3+x	$(21/2^{-})$	-	4227.4+x	$(35/2^{-})$	238.5	100.00 12	3988.9+x	$(33/2^{-})$	M1
		287.5		2303.8+x	$(19/2^{-})$	(Q)			460.1	71.31 20	3767.3+x	$(31/2^{-})$	Q
2672.5+x	(25/2)	220.5 ^b	100.0 23	2452.0+x	(23/2)	D	4262.5+x	(37/2)	632.0	100	3630.5+x	(33/2)	Q
		441.0	33.59 4	2231.5+x	$(21/2^+)$	(Q)	4306.8+x	$(35/2^{-})$	457.0	100.23 23	3849.8+x	$(33/2^{-})$	M1
2687.3+x	$(25/2^{-})$	96.0	100	2591.3+x	$(23/2^{-})$	D			750.0	59.40 20	3556.8+x	$(31/2^{-})$	Q
2710.2+x	$(25/2^+)$	316.7	100.00 9	2393.4+x	$(23/2^+)$	D	4307.6+x	(35/2)	193.0 ^C	100	4114.6+x	(33/2)	D
		478.5	32.40 8	2231.5+x	$(21/2^+)$	Q	4319.3+x	$(37/2^+)$	161.8	100	4157.5+x	$(35/2^+)$	D
2798.3+x	(27/2)	111.0	100	2687.3+x	$(25/2^{-})$	Ď	4335.2+x	(33/2-)	369.0	100	3966.2+x	(31/2-)	D
2931.5+x	(27/2)	259.0 ^b	100	2672.5+x	(25/2)	D	4525.7+x	$(39/2^+)$	206.4	100	4319.3+x	$(37/2^+)$	D
2956.3+x	$(27/2^{-})$	269.0	100	2687.3+x	$(25/2^{-})$	M1	4532.6+x	(37/2)	225.0 ^C	100	4307.6+x	(35/2)	D
3026.9+x	$(27/2^+)$	316.7	35.09 4	2710.2+x	$(25/2^+)$	D	4553.4+x	$(37/2^{-})$	326.0	100	4227.4+x	$(35/2^{-})$	D
		633.4	100.00 11	2393.4+x	$(23/2^+)$	E2	4587.2+x	$(35/2^{-})$	252.0	97.8 <i>3</i>	4335.2+x	$(33/2^{-})$	D
3030.3+x	(29/2)	232.0 ^a	100	2798.3+x	(27/2)	D			621.0	100.0 <i>3</i>	3966.2+x	$(31/2^{-})$	Q
3087.5+x	(29/2)	156.0 ^b	100	2931.5+x	(27/2)	D	4646.4+x	$(37/2^{-})$	339.6	68.17 <i>15</i>	4306.8+x	$(35/2^{-})$	M1
3164.3+x	$(29/2^{-})$	208.0	100.0 2	2956.3+x	$(27/2^{-})$	D			796.6	100.00 18	3849.8+x	$(33/2^{-})$	(E2)
		477.0	49.28 7	2687.3+x	$(25/2^{-})$	Q	4804.9+x	$(41/2^+)$	279.2	100.00 15	4525.7+x	$(39/2^+)$	M1
3407.0+x	$(29/2^+)$	380.1	100.00 12	3026.9+x	$(27/2^+)$	M1			485.6	13.5 4	4319.3+x	$(37/2^+)$	Q
		696.8	88.38 6	2710.2+x	$(25/2^+)$	(E2)	4890.4+x	(39/2 ⁻)	337.0	100.00 21	4553.4+x	(37/2-)	Ď
3428.5+x	(31/2)	341.0 ^b	100	3087.5+x	(29/2)	D			663.0	50.69 14	4227.4+x	$(35/2^{-})$	0
3457.3+x	$(27/2^{-})$	770.0	100.00 21	2687.3+x	$(25/2^{-})$	M1	4956.2+x	$(37/2^{-})$	369.0	100	4587.2+x	$(35/2^{-})$	Ď
		866.0	62.33 16	2591.3+x	$(23/2^{-})$	(E2)	5039.5+x	(41/2)	777.0 ^a	100	4262.5+x	(37/2)	0
3556.8+x	$(31/2^{-})$	392.5	100.00 12	3164.3+x	$(29/2^{-})$	M1	5124.4+x	39/2-	478.0	100.00 18	4646.4+x	$(37/2^{-})$	Ď
		600.5	21.56 8	2956.3+x	$(27/2^{-1})$,	817.6	54.51 8	4306.8+x	$(35/2^{-})$	0
3616.3+x	$(29/2^{-})$	159.0	71.15 14	3457.3+x	$(27/2^{-})$	D	5125.0+x	$43/2^{+}$	320.1	84.87 12	4804.9+x	$(41/2^+)$	Ď
		929.0	100.00 23	2687.3+x	$(25/2^{-})$	0			599.3	100.00 23	4525.7+x	$(39/2^+)$	0
3630.5+x	(33/2)	543.0 ^a	100	3087.5+x	(29/2)	ò	5264.2+x	$41/2^{-}$	374.0 ^e	100	4890.4+x	$(39/2^{-})$	Ď
3747.1+x	$(31/2^+)$	340.1	70.0 6	3407.0+x	$(29/2^+)$	M1	5312.2+x	$39/2^{-}$	356.0	100	4956.2+x	$(37/2^{-})$	D
		720.2	100.00 8	3026.9+x	$(27/2^+)$	E2	5469.8+x	$41/2^{-}$	345.4	100.0 17	5124.4+x	39/2-	M1
3767.2+x	$(29/2^{-})$	210.4	65.8 11	3556.8+x	$(31/2^{-})$	D			823.4	76.9 23	4646.4+x	$(37/2^{-})$	Q
		810.9	100.00 22	2956.3+x	$(27/2^{-})$	M1	5490.6+x	$45/2^{+}$	365.6	100.0 21	5125.0+x	$43/2^{+}$	D
3767.3+x	$(31/2^{-})$	151.0	100	3616.3+x	$(29/2^{-})$	D			685.7	25.79 4	4804.9+x	$(41/2^+)$	Q
3849.8+x	$(33/2^{-})$	293.0	100.00 13	3556.8+x	$(31/2^{-})$	D	5853.8+x	$43/2^{-}$	384.0	100.0 3	5469.8+x	$41/2^{-}$	D
	/	685.5	85.06 18	3164.3+x	$(29/2^{-})$	E2		·	729.4 ^e	21.68 8	5124.4+x	39/2-	Q
3966.2+x	$(31/2^{-})$	199.0	100	3767.2+x	$(29/2^{-})$	(M1)	5888.6+x	$47/2^{+}$	398.0	100	5490.6+x	$45/2^{+}$	Ď
3988.9+x	$(33/2^{-})$	221.6	100	3767.3+x	$(31/2^{-})$	M1	6271.2+x	$45/2^{-}$	417.4	100.0 <i>3</i>	5853.8+x	$43/2^{-}$	D
4008.0+x	$(33/2^+)$	260.9	100.0 13	3747.1+x	$(31/2^+)$	M1			801.4 ^e	29.03 7	5469.8+x	$41/2^{-}$	
	/	601.0	66.81 <i>15</i>	3407.0+x	$(29/2^+)$	Q	206+v	$(21/2^+)$	108.0 <i>3</i>		98+v	$(19/2^+)$	
4114.6+x	(33/2)	367.5	44.34 10	3747.1+x	$(31/2^+)$	D		/	206.6 3		v	$(17/2^+)$	

 $^{193}_{81}{\rm Tl}_{112}{\rm -7}$

 $^{193}_{81}\text{Tl}_{112}$ -7

262

$\gamma(^{193}\text{Tl})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${f J}_f^\pi$	Mult. [§]	Comments
325+v	$(23/2^+)$	118.9 3		206+v	$(21/2^+)$		
454	$(25/2^{+})$	227.3 3	0.98 10	98+v	$(19/2^+)$		
454+V	$(25/2^{+})$	128.5 5	0 39 6	323+v 206+v	$(23/2^+)$ $(21/2^+)$		
593+v	$(27/2^+)$	139.2.3	0.57 0	454 + v	$(25/2^+)$	(M1) [#]	Mult : $\alpha(\exp)(139\gamma+148\gamma)=2.6.8(1996B_002)$; theory: $\alpha(K)(M1)=2.73$
57517	(21/2)	267.9.3	1.13& 23	325+v	$(23/2^+)$ $(23/2^+)$	(1111)	Martin a (Ap)(15)/ +110/) 2.00 (19902002), ale of y. a (19)(11) 2.15.
741+v	(29/2+)	148.2 3		593+v	$(27/2^+)$	(M1) [#]	Mult.: $\alpha(\exp)(139\gamma+148\gamma)=2.6 \ 8 \ \text{and} \ \alpha(\exp)(148\gamma+160\gamma)=3.0 \ 8 \ (1996Bo02)$; theory: $\alpha(K)(M1)=2.29$.
		287.7 3	0.45 5	454+v	$(25/2^+)$		
901+v	$(31/2^+)$	160.1 <i>3</i> 308.2 <i>3</i>	0.86 9	741+v 593+v	$(29/2^+)$ $(27/2^+)$	(M1) [#]	Mult.: $\alpha(\exp)(148\gamma+160\gamma)=3.0 \ 8 \ (1996Bo02)$; theory: $\alpha(K)(M1)=1.84$.
1069+v	$(33/2^+)$	167.4 <i>3</i> 327.4 <i>3</i>	0.53 5	901+v 741+v	$(31/2^+)$ $(29/2^+)$	(M1) [#]	Mult.: $\alpha(\exp)(167\gamma+181\gamma)=2.2 \ 5 \ (1996Bo02)$: theory: $\alpha(K)(M1)=1.622$.
1249+v	(35/2+)	180.6 <i>3</i>		1069+v	(33/2+)	(M1) [#]	Mult.: $\alpha(\exp)(167\gamma+181\gamma)=2.2\ 5$ and $\alpha(\exp)(181\gamma+186\gamma)=1.8\ 7\ (1996Bo02)$; theory: $\alpha(K)(M1)=1.31$.
		348.0 <i>3</i>	1.01 11	901+v	$(31/2^+)$		
1435+v	(37/2 ⁺)	185.8 <i>3</i>		1249+v	(35/2 ⁺)	(M1) [#]	Mult.: $\alpha(\exp)(181\gamma+186\gamma)=1.8$ 7 and $\alpha(\exp)(186\gamma+201\gamma)=1.4$ 6 (1996Bo02); theory: $\alpha(K)(M1)=1.21$.
		366.4 <i>3</i>	1.15 23	1069+v	$(33/2^+)$		
1636+v	$(39/2^+)$	201.4 3		1435+v	$(37/2^+)$	(M1) [#]	Mult.: $\alpha(\exp)(186\gamma+201\gamma)=1.4$ 6 (1996Bo02); theory: $\alpha(K)(M1)=0.965$.
1040	(11/0+)	387.0 3	1.4 <i>4</i>	1249+v	$(35/2^+)$		
1840+v	(41/2))	203.5 3	0 03 10	1636+v 1/35+v	$(39/2^+)$ $(37/2^+)$		
2062+v	$(43/2^+)$	221.5 3	0.93 19	1433+v 1840+v	$(37/2^{+})$ $(41/2^{+})$		
		425.4 3	1.22 12	1636+v	$(39/2^+)$		
2283+v	$(45/2^+)$	442.9 <i>3</i>	0	1840+v	$(41/2^+)$		
2525+v	$(47/2^+)$	463.7 <i>3</i>	1.60 ^{&} 16	2062+v	$(43/2^+)$		
2763+v	$(49/2^+)$	479.7 3	0.72 17	2283+v	$(45/2^+)$		
3027+v	$(51/2^+)$	501.1 3		2525+v	$(47/2^+)$		
3279+v	$(53/2^+)$	516.1 3	1.11 17	2763+v	(49/2')		
3304+V 2820+V	$(55/2^{+})$ $(57/2^{+})$	55163	1.30 14	3027 + V	$(51/2^+)$ $(52/2^+)$		
3830+V 4137+v	(51/2) $(50/2^+)$	573 4 3	1.00 14	3279+V 3564+v	(35/2)		
$4137 \pm v$ $4417 \pm v$	$(59/2^{-})$ $(61/2^{+})$	586 5 3	0.84.17	$3830 \pm v$	$(57/2^+)$		
4746 + v	$(63/2^+)$	608.8.3	0.96 10	4137 + v	$(59/2^+)$		
5037 + v	$(65/2^+)$	620.3.3	0.81 13	4417 + v	$(61/2^+)$		
5390+v	$(67/2^+)$	643.8 <i>3</i>	1.09 22	4746+v	$(63/2^+)$		
5691+v	$(69/2^+)$	653.6 4	0.42 11	5037+v	$(65/2^+)$		
6069+v	$(71/2^+)$	678.7 4	0.75 14	5390+v	$(67/2^+)$		
6377+v	$(73/2^+)$	686.1 <i>4</i>	0.46 11	5691+v	$(69/2^+)$		

NUCLEAR DATA SHEETS

 γ ⁽¹⁹³Tl) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}
6782+v	$(75/2^+)$	713.2 5	6069+v	$(71/2^+)$	1248.2+z	J1+8	372.7 3	875.5+z	J1+6
7096+v	$(77/2^+)$	718.7 5	6377+v	$(73/2^+)$	1660.1+z	J1+10	411.9 <i>3</i>	1248.2+z	J1+8
7529+v	$(79/2^+)$	747.5 5	6782+v	$(75/2^+)$	2110.6+z	J1+12	450.5 <i>3</i>	1660.1+z	J1+10
7847+v	$(81/2^+)$	751.3 5	7096+v	$(77/2^+)$	2598.7+z	J1+14	488.1 <i>3</i>	2110.6+z	J1+12
8311+v	$(83/2^+)$	781.9 5	7529+v	$(79/2^+)$	3123.9+z	J1+16	525.2 <i>3</i>	2598.7+z	J1+14
8630+v	$(85/2^+)$	783.4 5	7847+v	$(81/2^+)$	3685.6+z	J1+18	561.7 <i>3</i>	3123.9+z	J1+16
187.9+y	J+2	187.9 <i>3</i>	у	J	4282.5+z	J1+20	596.9 <i>3</i>	3685.6+z	J1+18
418.6+y	J+4	230.7 <i>3</i>	187.9+y	J+2	4914.3+z	J1+22	631.8 <i>3</i>	4282.5+z	J1+20
691.4+y	J+6	272.8 <i>3</i>	418.6+y	J+4	5580.7+z	J1+24	666.4 <i>3</i>	4914.3+z	J1+22
1005.7+y	J+8	314.3 <i>3</i>	691.4+y	J+6	6285.4+z	J1+26	704.7 7	5580.7+z	J1+24
1360.7+y	J+10	355.0 <i>3</i>	1005.7+y	J+8	7033.4+z	J1+28	748.0 10	6285.4+z	J1+26
1755.8+y	J+12	395.1 <i>3</i>	1360.7+y	J+10	271.5+u	J2+2	271.5 5	u	J2
2190.3+y	J+14	434.5 <i>3</i>	1755.8+y	J+12	584.8+u	J2+4	313.4 4	271.5+u	J2+2
2663.4+y	J+16	473.1 <i>3</i>	2190.3+y	J+14	938.9+u	J2+6	354.1 <i>3</i>	584.8+u	J2+4
3174.0+y	J+18	510.6 <i>3</i>	2663.4+y	J+16	1332.2+u	J2+8	393.3 4	938.9+u	J2+6
3721.5+y	J+20	547.5 <i>3</i>	3174.0+y	J+18	1764.5+u	J2+10	432.3 <i>3</i>	1332.2+u	J2+8
4304.9+y	J+22	583.4 <i>3</i>	3721.5+y	J+20	2234.4+u	J2+12	469.9 <i>3</i>	1764.5+u	J2+10
4923.3+y	J+24	618.4 <i>3</i>	4304.9+y	J+22	2741.7+u	J2+14	507.3 <i>3</i>	2234.4+u	J2+12
5576.4+y	J+26	653.1 <i>3</i>	4923.3+y	J+24	3285.4+u	J2+16	543.7 <i>3</i>	2741.7+u	J2+14
6263.1+y	J+28	686.7 <i>4</i>	5576.4+y	J+26	3864.8+u	J2+18	579.4 <i>4</i>	3285.4+u	J2+16
6977.1+y	J+30	714.0 7	6263.1+y	J+28	4479.3+u	J2+20	614.5 <i>4</i>	3864.8+u	J2+18
7712.1+y	J+32	735.0 10	6977.1+y	J+30	5128.8+u	J2+22	649.5 <i>4</i>	4479.3+u	J2+20
250.8+z	J1+2	250.8 <i>3</i>	Z	J1	5813.0+u	J2+24	684.2 <i>4</i>	5128.8+u	J2+22
542.8+z	J1+4	292.0 <i>3</i>	250.8+z	J1+2	6531.8+u	J2+26	718.8 7	5813.0+u	J2+24
875.5+z	J1+6	332.7 <i>3</i>	542.8+z	J1+4					

[†] From (HI,xn γ) for level scheme based on the 365.2+x level and from (HI,xn γ):SD in superdeformed bands.

^{\ddagger} From (HI,xn γ). Relative photon branching from each level.

§ From (HI,xn γ), unless otherwise noted.

[&] Relative intensity within the SD band.

[@] From ¹⁹³Pb decay (5.8 min).

[#] From (HI,xnγ):SD.

264

^a Member of a sequence.

^b Member of a sequence.

^c Member of a sequence.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

 $^{193}_{81}\text{Tl}_{112}\text{-}9$

Adopted Levels, Gammas

 $^{193}_{81}\text{Tl}_{112}$

Band(F): SE α=+1)-1 band /2								
(05/2+)	-	Band(f): SD	-2 band						
(85/2+)	8630+v	α=-1	/2						
		(83/2+)	8311+v						
783				Band(G)• SD-3 band				
(81/2 ⁺)	7847+v	782		Danu(O). SD-5 banu				
				J+32	7712.1+y				
751		(79/2 ⁺)	7529+v			D J/II). CD (hand		
(77.42+)				7	35	Danu(H): 5D-4 Danu		
(77/2+)	7096+v	748		J+30	6977.1+y	J1+28	7033.4+z		
710		(75/2+)	6782+v					Band(I)	: SD-5 band
719				7	14	7	748	J2+26	6531.8+u
(73/2 ⁺)	6377+v	713		J+28	6263.1+v	J1+26	6285.4+z		
		(71/2+)	6069+v					7	'19
686				6	87	7	705	I2+24	5813 0+u
(69/2+)	5691+v	679		I+26	5576 4+v	I1+24	5580 717		<u>5015.074</u>
		(67/2+)	5390+v	J720		J1+24	3300./+L	6	584
654				6	53	6	666	12+22	5129 8
(65/2+)	5037+v	644		I+24	4923.3+v	I1+22	4014 217	J <i>2</i> 7 <i>22</i>	<u>5120.0+u</u>
		(63/2+)	4746+v	<u> </u>		J1+22	4714.3+2	6	50
620				6	18	6	532	12+20	4479 3±11
(61/2+)	4417+v	609		J+22	4304.9+y	J1+20	4282.5+z		
586		(59/2+)	4137+v					6	14
(57/2+)	3830+v			5	83	5	597	J2+18	3864.8+u
		573 (55/2+)	25(4)	J+20	3721.5+y	J1+18	3685.6+z		
552		(33/2)	3504+V	5	48			5	79
(53/2+)	3279+v	538		J+18	3174.0+y	5	3122.0.17	J2+16	3285.4+u
516		(51/2+)	3027+v			J1+10	5125.9+2	5	544
(49/2+)	2763+v	501		5	2663 4 m	5	525	J2+14	2741.7+u
490		(47/2+)	2525+v	J+10	2003.4+y	J1+14	2598.7+z		
(45/2 ⁺)	2283+v			4	73	4	188	5 12+12	07
		(43/2 ⁺)	2062+v	J+14	2190.3+y	J1+12	2110.6+z	J2+12	<u>2234.4+u</u>
$(41/2^+)$	1840+v			4	34	4	150	4	70
405		(39/2+)	1636+v	J+12	1/55.8+y	J1+10	1660.1+z	J2+10	1764.5+u
(37/2+)	1435+v	387		3 I+10	95 1360.7+v	4	112	4	32
366		(35/2+)	1249+v	<u></u>		J1+8	1248.2+z	J2+0	<u>1332.2+u</u>
(33/2+)	1069+v	$(31/2^+)^{348}$	001.1	J+8	1005.7+y	3	373	J2+6	93 938.9+u
(29/2+) 327	741+v	200	701+V	I+6 ³	691.4+v	J1+6	▼ 8/5.5+z		54
$(25/2^+)^{288}$	454.4.4	(27/2 ⁺) ³⁰⁸	593+v	<u><u> </u></u>	73 419 (J1+4 3	542.8+z	J2+4	584.8+u
(21/2+) 247	434+V	(23/2+) 268	325+v		418.6+y	J1+2 ²	292 250 8+7	J2+2 ³	271.5+0
$(21/2^+)^{-1/2}$	206+v	(19/2+) 227	98+v	<u>J+2</u>	- 18/.9+y	11 2	251	12 2	72
(1112)	v			_J	<u>у</u>	<u>J1</u>	¥ Z	_J2	<u>• u</u>

$^{193}_{81}{\rm Tl}_{112}$

¹⁹³Tl IT decay (2.11 min) 1963Di10,1976Ha25

Parent: ¹⁹³Tl: E=365.0+x; $J^{\pi}=(9/2^{-})$; $T_{1/2}=2.11 \text{ min } 15$; %IT decay ≤ 75 1963Di10: sources from ¹⁸⁵Re(¹²C,⁴n), E(¹²C)=59, 67 MeV; ¹⁸¹Ta(¹⁶O,⁴n), E(¹⁶O)=74, 79, 94 MeV. Natural targets. Measured

E(ce), Ice (mag spect). 1976Ha25: from ¹⁹³Pb (5.8 min) ε decay (¹⁹³Pb produced by bombardment of natural tungsten by ¹⁶O, mass separation); measured $E\gamma$, $I\gamma$ (Ge(Li)).

Other: 1976GoZP.

¹⁹³Tl Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}					Comments		
0.0 365.0 365.0+x	$ \frac{1/2^{(+)}}{3/2^{(+)}} \\ (9/2^{-}) $	21.6 min 8 2.11 min	15 %II T _{1/2}	∑≤75 (1976GoZ 2: from 1963Di	P) 10.				
† From	Adopted 1	Levels.							
					ŝ	γ(¹⁹³ Tl)			
E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\S}	$I_{(\gamma+ce)}^{\dagger\ddagger}$	Comments
(<13)		365.0+x	(9/2 ⁻)	365.0 3/2 ⁽⁺⁾	[E3]			100	E_{γ} : limit suggested by negligible L X ray intensity (conversion of isomeric transition only in M-shell or higher) (1976Ha25); E<25 (1963Di10) L3(binding energy, TI)=12.657. For the assumed multipolarity the theoretical conversion coefficient is α ≥ 1.0×10 ⁷ .
365.0	90.2 16	365.0	3/2 ⁽⁺⁾	0.0 1/2 ⁽⁺⁾	M1+E2	1.7 +5-4	0.106 20	100	E _γ : from 1976Ha25. I _γ : deduced from I(γ+ce) and α . Mult.,δ: from K/L=3.8 4 (1963Di10); other: L/M=2.7 (1963Di10); theory: K/L=3.8 9, L/M=4.1 5.

[†] From intensity balance in the level scheme.

[‡] For absolute intensity per 100 decays, multiply by ≤ 0.75 .

§ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³Tl IT decay (2.11 min) 1963Di10,1976Ha25

¹⁹³Pb ε decay (5.8 min) 1976Ha25

Parent: ¹⁹³Pb: E=0.0+x; J^{π} =(13/2⁺); $T_{1/2}$ =5.8 min 2; Q(ε)=5280 50; % ε +% β ⁺ decay=100

¹⁹³Pb-E: Level energy 130 keV 80 in 2017Au03 from systematics.

1976Ha25: sources from bombardment of natural tungsten by ¹⁶O, mass separation; measured E γ , I γ (Ge(Li)), $\gamma\gamma$ coin. Others: 1974Ne16, 1961An03,

Sum of decay energies of this dataset is 5157 keV 195 cf. 5280 keV 5 obtained from ²⁸Ne β^- decay Q(g.s.) and branching.

¹⁹³Tl Levels

The decay scheme shown is from 1976Ha25 and is based on $\gamma\gamma$ coincidences. The authors state that the results should be considered preliminary. The proposed level scheme agrees with the scheme obtained from (HI,xn γ).

1976Ha25 state that the intensity of the 365.0γ (100 on the I γ scale) is that of the 5.8 min activity (¹⁹³Pb 23/2⁺ state) and from that deduce that 70% of the $\varepsilon + \beta^+$ decay goes directly to the 2.11 min, 365+x level. (they do not state whether this intensity is the measured intensity, or intensity corrected for transient equilibrium conditions). However, a 70% $\varepsilon + \beta^+$ branch to the 365+x level would give log $f^{lu}t=7.6$ (expected log $f^{lu}t\geq 8.5$). This could be explained by: 1) an anomalous log $f^{lu}t$ value or 2) the $\varepsilon + \beta^+$ transition is not 1U (either $J\pi(^{193}Pb$ (5.8 min) \neq (13/2⁺) or $J\pi(^{193}Tl$ (2.11 min) \neq 9/2⁻)). None of these explanations is really acceptable. Another possible explanation for such high $I\gamma(365)$ is that the ¹⁹³Pb 3/2⁻ level has $T_{1/2}\approx 5.8$ min (this activity has not been seen) and that the source contained both activities. With similar $T_{1/2}$ it would be difficult to distinguish between the two decays.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$1/2^{(+)}$	21.6 min 8	
365.0	$3/2^{(+)}$		
365.0+x [‡]	(9/2 ⁻)	2.11 min 15	%IT \leq 75, from ¹⁹³ Tl IT decay (2.11 min) (1976GoZP).
			$T_{1/2}$: from ¹⁹³ Tl IT decay (2.11 min) (1963Di10).
757.2+x [‡]	$(11/2^{-})$		
1081.5+x [‡]	$(13/2^{-})$		
1163.7+x			Level not confirmed by (HI,xn γ) data.
1423.4+x			
1493.2+x	$(13/2^{-})$		J^{π} : From Adopted Levels.
1513.0+x [‡]	$(15/2^{-})$		
1870.7+x			
1960.0+x	$(15/2^{-})$		J^{π} : From Adopted Levels.

[†] From Adopted Levels.

[‡] Band(A): 9/2(505) Band.

ε, β^+ radiations

All log ft information was calculated with $Q(\varepsilon)=5120$ 120, $E(365+x, {}^{193}\text{Tl})=365$ and $E(5.8 \text{ min}, {}^{193}\text{Pb})=100$.

E(decay)	E(level)	Iβ ⁺ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)$
$(1.7 \times 10^{3 \ddagger} 17)$	1960.0+x	0.26	1.74	6.8	2
$(1.7 \times 10^{3 \ddagger} 17)$	1870.7+x	0.29	1.71	6.8	2
$(1.9 \times 10^{3 \ddagger} 19)$	1513.0+x	2.2	8.8	6.2	11
$(1.9 \times 10^{3 \ddagger} 19)$	1493.2+x	3.1	11.9	6.1	15
$(1.9 \times 10^{3 \ddagger} 19)$	1423.4+x	1.5	5.5	6.5	7
$(2.1 \times 10^{3 \ddagger} 21)$	1163.7+x	2.4	6.6	6.5	9
$(2.1 \times 10^{3 \ddagger} 21)$	1081.5+x	8.5	21.5	6.0	30

¹⁹³Pb ε decay (5.8 min) 1976Ha25 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(2.3 \times 10^{3 \ddagger} 23)$	757.2+x	8.3	15.7	6.2	24	
$(2.5 \times 10^{3} \ddagger 25)$	365.0+x	<2.2	<7.8	>8.5	<10	I($\varepsilon + \beta^+$): from log $f^{lu}t > 8.5$ for a $13/2^+$ to $9/2^-$ transition.

[†] Absolute intensity per 100 decays.

[‡] Estimated for a range of levels.

$\gamma(^{193}\text{Tl})$

Iγ normalization: From ΣI(γ+ce)(to 365+x level)=95 5. From log $f^{1u}t>8.5$, I(ε+β⁺)(to 365+x level) < 10%.

E_{γ}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\$}$	Comments
(x)		365.0+x	(9/2-)	365.0	3/2 ⁽⁺⁾	[E3]			E _{γ} : E γ <13 keV from ¹⁹³ Tl IT decay (2.11 min).
324.3	2.5	1081.5+x	$(13/2^{-})$	757.2+x	$(11/2^{-})$	M1+E2	0.6 4	0.26 6	• • •
365.0		365.0	3/2(+)	0.0	1/2 ⁽⁺⁾	M1+E2	1.7 +5-4	0.106 20	I_{γ} : γ follows an isomeric transition with $T_{1/2}$ =2.11 min and %IT≤75%. The equilibrium status of the source is not known. Therefore, Iγ of this γ cannot be compared with Iγ of the other γ's in the decay scheme. 1976Ha25 give Iγ=100. Mult.,δ: from ¹⁹³ Tl IT decay (2.11 min).
392.2	20.7	757.2+x	$(11/2^{-})$	365.0+x	$(9/2^{-})$	M1+E2	-0.59 14	0.154 13	
406.5	2.4	1163.7+x		757.2+x	(11/2 ⁻)				406.6 γ placed from 1900.2+x level in (HI,xn γ) data.
431.5	0.8	1513.0+x	$(15/2^{-})$	1081.5+x	$(13/2^{-})$	M1(+E2)		0.094 54	
466.7	<1.2	1960.0+x	$(15/2^{-})$	1493.2+x	$(13/2^{-})$	M1		0.1194	
666.2	2.0	1423.4+x		757.2+x	$(11/2^{-})$				
716.5	6.7	1081.5+x	$(13/2^{-})$	365.0+x	$(9/2^{-})$	E2		0.01248	
736.1	5.1	1493.2+x	$(13/2^{-})$	757.2+x	$(11/2^{-})$	E1		0.00425	
755.8	2.6	1513.0+x	$(15/2^{-})$	757.2+x	$(11/2^{-})$	E2		0.01115	
1113.5	0.6	1870.7+x		757.2+x	$(11/2^{-})$				

[†] From adopted γ 's, unless otherwise noted.

[±] For absolute intensity per 100 decays, multiply by 3.3.

 $^{\$}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³Pb ε decay (5.8 min) 1976Ha25

Decay Scheme Intensities: Relative I_{γ} Legend $\begin{array}{ll} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ $(13/2^+)$ 0.0+x 5.8 min 2 Q⁺=5280 50 $\%\varepsilon + \%\beta^+ = 100$ + 406,2 Mr - 12,2 $^{193}_{82}{\rm Pb}_{111}$ + 1/_{{3.5} 0.6 $I\beta^+$ - 1 25.822.6 <u>I</u>£ $\log ft$ (15/2-) 1960.0+x 0.26 1.74 6.8 1870.7+x 0.29 1.71 6.8 1 736, E1 S.1 - 6-- 66-- 2.0 $= \frac{2}{345} \frac{2}{865} \frac{1}{826} \frac{1}{865} \frac{$ $(15/2^{-})$ 1513.0+x 2.2 8.8 6.2 1493.2+x 1423.4+x $(13/2^{-})$ 3.1 11.9 6.1 1 406.5 2.4 1.5 5.5 6.5 + 392 Mr + 202 1163.7+x 6.6 6.5 2.4 $(13/2^{-})$ 1081.5+x 8.5 21.5 6.0 $(11/2^{-})$ 757.2+x 8.3 15.7 6.2 + 365.0 MrxE2 - 1^{4} (E_{3}) $(9/2^{-})$ 365.0+x 2.11 min 15 <2.2 <7.8 >8.5 3/2(+) 365.0

 $^{193}_{81}\text{Tl}_{112}$

0.0

21.6 min 8

 $1/2^{(+)}$

 $^{193}_{81}{\rm Tl}_{112}$

¹⁹⁷Bi *α* decay (5.15 min) **1985Co06**

Parent: ¹⁹⁷Bi: E=533 *12*; J^{π} =(1/2⁺); $T_{1/2}$ =5.15 min *55*; Q(α)=5365 *11*; % α decay=6.×10¹ *4* ¹⁹⁷Bi-E: From 2017Au03. ¹⁹⁷Bi-T_{1/2}: From 1985Co06.

Sources from ¹⁴N bombardments of Ir, ¹⁶O bombardments of Re, and ²⁰Ne bombardments of ¹⁸¹Ta, mass separation; measured $E\alpha$, $I\alpha$, time-sequential α and γ spectra.

Others: 1974Le02, 1972Ga27, 1970Ta14, 1950Ne77.

¹⁹³Tl Levels

E(level)	_J ^π	T _{1/2}			Comments
0.0	1/2(+)	21.6 min 8	J^{π} : From Adopted Levels.		
				α radiations	
Б.	Edmin	т. †			Commente

Eα	E(level)	10	Comments
5776 4	0.0	100	Eα: From 1991Ry01, based on 5780 5 (1985Co06), 5770 10 (1974Le02), 5770 10 (1972Ga27); other: 1970Ta14.
			HF: $r_0(^{193}\text{Tl})=1.50 \ I$ Value for r_0 suggested by neighboring Pb isotone, with $r_0(^{194}\text{Pb})=1.496 \ 3$ (1998Ak04) The quoted radius value gives HF=0.15 for this decay. Since HF<<1 is not expected in odd-A nuclei, one must question the input to HF calculation. The two uncertain quantities are the nuclear radius, r_0 , and $\%\alpha$ from ¹⁹⁷ Bi. In order to obtain an HF \approx 1 one would have to use $r_0=1.59$ which is unreasonably large for this region. Using $r_0=1.49$, based on overall systematic trends for r_0 , an alpha branch of $\%\alpha\approx12$ gives a HF ≈1.0 . It seems, therefore, that $\%\alpha=55 \ 40$ quoted in 1985Coo06 may be too large.

[†] For absolute intensity per 100 decays, multiply by 0.6 4.

(HI,xnγ) 2016NdZZ,1992Re08,1974Ne16

Other: 1996SaZU.

2016NdZZ: 160 Gd(37 Cl,4n γ): Two experiments were performed with thin (1.0 mg/cm²) and thick (10 mg/cm²) 160 Gd targets with beam energies of 167 MeV and 162 MeV, respectively, at iThamba accelarator facility. γ rays were measured using 9 clover detectors (afrodite array). Four clover detectors were place (average location) at 135° and five clovers at 90° with respect to beam ditection, but the crystals are arranged in rings at 85° and 95°, 130° and 140°. Both thin and thick target data were used to build the level scheme, while the data from the thin target were used for γ -ray angular distribution and linear polarization measurements. Measured E γ , I γ , $\gamma\gamma$ coin, γ -ray angular distribution, linear polarization anisotropy, and lifetime measurement by Doppler Shift Attenuation Method. Also studied by 181 Ta(18 O,6n γ), E=105 MeV, reaction.

1992Re08: ¹⁶⁰Gd(³⁷Cl,⁴n γ); E=167 MeV; 12 Compton suppressed Ge(Li) detectors, 4π BGO array (ATLAS array), >97% ¹⁶⁰Gd target; measured E γ , I γ , $\gamma\gamma$ coin, DCO ratio (I(γ 1(146°), γ 2(34°)))/I(γ 1(90°), γ 2(34°))).

1974Ne16: ¹⁸¹Ta(¹⁶O,⁴n γ), E(¹⁶O)=79, 84, 89, 98 MeV; ¹⁸⁴W(¹⁴N,⁵n γ), E(¹⁴N)=82, 86, 89 MeV; also includes ¹⁹⁷Au(α ,8n γ), E(α)=93, 104, 116 MeV; measured E γ , I γ (Ge(Li)), $\gamma\gamma$ coin, γ -ray angular distributions, E(ce), Ice (mag spect, Si(Li)).

1996SaZU: ¹⁸¹Ta(¹⁶O, ⁴n γ), E(¹⁶O)=84 MeV; measured $\gamma\gamma(\theta)$, $\gamma(ce)(\theta)$.

Level scheme from 2016NdZZ. Level scheme of 1992Re08 was revised and new transitions added by 2016NdZZ.

¹⁹³Tl Levels

E(level) ^a	Jπb	T _{1/2}	Comments
0.0 365.3 5 365 3+x [†]	9/2-		E(level): from Adopted Levels.
$757.8 + x^{\dagger} 4$	$11/2^{-}$		
1081.7+x [†] 4 1493.8+x 4	13/2 ⁻ 13/2 ⁽⁻⁾		J^{π} : 13/2 ⁺ in 1992Re08. 1128.4 γ (2016NdZZ) to 9/2 ⁻ .
1512.8+x [†] 4	15/2-		
1833.8+x [†] 5 1900.2+x 5	17/2 ⁻ 15/2 ⁻		
1929.7+x 5 1960.6+x 5	17/2 ⁻ 15/2 ⁽⁻⁾		J^{π} : 1466.9 γ M1 to 13/2 ⁽⁻⁾ . 15/2 ⁺ in 1992Re08.
2008.1+x [@] 5	17/2+	0.6 ns	J^{π} : 15/2 ⁺ in 1992Re03. T _{1/2} : 2016NdZZ estimate the value using Recoil Shadow Attenuation Method (RSAM) and list t _{1/2} =0.6 ns, however, used the term "lifetime". The evaluator assumes half-life.
$2105.4 + x^{@} 6$	19/2+		
2231.5+x [@] 7	$21/2^+$		
$2303.8 + x^{\dagger} 5$	19/2-		
2393.4+x [@] 8	$\frac{23}{2^+}$		
2393.7+x 5 2452.0+x 8	19/2 23/2		
$2506.3 + x^{\ddagger} 5$	23/2 $21/2^{-}$		
2576.2+x [†] 6	21/2-		
2591.3+x [‡] 6	$23/2^{-}$		
2672.5+x 8	25/2		
2687.3+x [‡] 7	25/2-		
2710.2+x [@] 6	$25/2^+$		
$2798.3 \pm x 9$ 2931.5 \pm x 9	27/2		
$2956.3 + x^{\ddagger} 8$	27/2-		
3026.9+x [@] 7	27/2+		

				¹⁹³ Tl Level	s (continu	ued)	
E(level) ^{<i>a</i>}	J ^π b	E(level) ^a	Jπb	E(level) ^a	Jπb	E(level) ^{<i>a</i>}	Jπb
3030.3+x 10	29/2	3767.3+x ^{&} 9	31/2-	4319.3+x [@] 11	37/2+	5124.4+x [‡] 10	39/2-
3087.5+x 11	29/2	3849.8+x [‡] 9	33/2-	4335.2+x [#] 11	33/2-	5125.0+x [@] 12	$43/2^{+}$
3164.3+x [‡] 8	29/2-	3966.2+x [#] 10	31/2-	4525.7+x [@] 12	39/2+	5264.2+x&	$41/2^{-}$
3407.0+x [@] 7	$29/2^+$	3988.9+x ^{&} 10	33/2-	4532.6+x 11	37/2	5312.2+x [#] 13	39/2-
3428.5+x 12	31/2	4008.0+x [@] 8	33/2+	4553.4+x ^{&} 11	37/2-	5469.8+x [‡] 10	$41/2^{-}$
3457.3+x ^{&} 7	$27/2^{-}$	4114.6+x 8	33/2	4587.2+x [#] 11	35/2-	5490.6+x [@] 12	$45/2^{+}$
3556.8+x [‡] 9	31/2-	4157.5+x [@] 10	35/2+	4646.4+x [‡] 9	37/2-	5853.8+x [‡] 11	43/2-
3616.3+x ^{&} 8	$29/2^{-}$	4227.4+x ^{&} 10	$35/2^{-}$	4804.9+x [@] 12	$41/2^{+}$	5888.6+x [@] 13	$47/2^{+}$
3630.5+x 12	33/2	4262.5+x 13	37/2	4890.4+x ^{&} 11	39/2-	6271.2+x [‡] 12	$45/2^{-}$
3747.1+x [@] 8	$31/2^+$	4306.8+x [‡] 9	$35/2^{-}$	4956.2+x [#] 12	37/2-		
3767.2+x [#] 9	29/2-	4307.6+x 10	35/2	5039.5+x 14	41/2		

[†] Band(A): Band 1.

[‡] Band(B): Band 2.

[#] Band(C): Band 3.

[@] Band(D): Band 4.

& Band(E): Band 5.

^{*a*} From least-squares fitting to γ -ray energies, assuming $\Delta E \gamma = 0.5$ keV.

^b From 2016NdZZ based on γ -ray angular distribution ratio and polarization measurement. Also coincidence relationships, intensity balances, and increasing J with increasing E(level).

$\gamma(^{193}\text{Tl})$

Ε _γ &	$I_{\gamma}^{\&a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^b	Comments
(15.1)	19.82.5	2591.3+x 2008 1+x	$\overline{23/2^-}$ 17/2 ⁺	2576.2+x 1960.6+x	$\overline{21/2^{-}}$ 15/2 ⁽⁻⁾	D ^c	Mult : $R_{rat} = 0.86.20$ (2016NdZZ)
(60.3)	17.02.5	1960.6+x	$15/2^{(-)}$	1900.2+x	15/2-	D	E_{γ} : Unobserved transition that lies at the shoulder of the x-ray peak tentatively placed based on observed coincidence relations. Placement from level scheme (Fig 4.1). In Table 4.1 – from 2226 keV level.
85.0		2591.3+x	23/2-	2506.3+x	21/2-		E_{γ} : Placement from level scheme (Fig. 4.1). In Table 4.1 – from 1643 keV level – a misprint. Based on intensity balance at 2226.1 keV level, 2016NdZZ propose as an M1 transition.
96.0 [#]	5.150 8	2687.3+x	25/2-	2591.3+x	23/2-	D	Mult.: R _{ad} =0.87 <i>17</i> (2016NdZZ); DCO=1.24 <i>5</i> (1992Re08).
97.0	5.150 4	2105.4+x	19/2+	2008.1+x	17/2+	D	E_{γ} : Confirmed coincidence relation with 735.9γ from 1128.4 keV level, however, changed placement based on coincidences with both 406.6γ and 466.9γ from 1535- and 1595-keV level, respectively. In 1992Re08, 96.4 keV 3, from 2056.4+x, level not present in 2016NdZZ. Mult.: R_{ad} =0.8 3 (2016NdZZ); DCO=1.24 5
107.8 [@]	6.460 5	2008.1+x	17/2+	1900.2+x	15/2-	D ^C	(1992R08). Mult.: R _{ad} =0.87 <i>19</i> (2016NdZZ); DCO=1.42 <i>3</i>
111.0 112.5	0.9200 <i>21</i> 0.9400 <i>18</i>	2798.3+x 2506.3+x	27/2 21/2 ⁻	2687.3+x 2393.7+x	25/2 ⁻ 19/2 ⁻	D c	(1992Re08). Mult.: R_{ad} =0.78 <i>12</i> (2016NdZZ).

$\gamma(^{193}\text{Tl})$ (continued)

Eγ ^{&}	I_{γ} & <i>a</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. ^b	Comments
125.9#	9.260 7	2231.5+x	21/2+	2105.4+x	19/2+	D	Mult.: R _{ad} =0.81 21 (2016NdZZ); DCO=0.660 19 (1992Re08).
149.5 [#]	9.020 4	4157.5+x	35/2+	4008.0+x	33/2+	D	Mult.: R _{ad} =0.74 <i>13</i> (2016NdZZ); DCO=0.664 <i>16</i> (1992Re08).
151.0	1.1100 21	3767.3+x	31/2-	3616.3+x	$29/2^{-}$	D	Mult.: R _{ad} =0.76 19 (2016NdZZ).
156.0 ^{‡#}	2.150 3	3087.5+x	29/2	2931.5+x	27/2	D	Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.69 <i>3</i> (1992Re08).
159.0	0.7400 <i>15</i>	3616.3+x	29/2-	3457.3+x	27/2-	D	Mult.: R_{ad} =0.74 21 (2016NdZZ)Expected to be a magnetic dipole transition (2016NdZZ) from 159.0 γ and 929.0 γ intensity comparisons of this level.
161.8	10.260 14	2393.4+x	$23/2^{+}$	2231.5+x	$21/2^+$		
161.8 [#]	5.780 5	4319.3+x	$37/2^{+}$	4157.5+x	$35/2^{+}$	D	Mult.: R _{ad} =0.87 21 (2016NdZZ).
193.0 [§]	1.370 2	4307.6+x	35/2	4114.6+x	33/2	D	Mult.: R _{ad} =0.73 18 (2016NdZZ).
199.0 [#]	3.110 3	3966.2+x	31/2-	3767.2+x	29/2-	(M1)	Mult.: R _{ad} =0.79 <i>11</i> . Sign from intensity balance (2016NdZZ). DCO=0.69 <i>3</i> (1992Re08).
202.5 [@]	4.060 7	2506.3+x	21/2-	2303.8+x	19/2-	D	Mult.: R _{ad} =0.90 <i>14</i> (2016NdZZ); DCO=0.90 <i>5</i> (1992Re08).
206.4 [#]	5.860 <i>6</i>	4525.7+x	39/2+	4319.3+x	37/2+	D	Mult.: R _{ad} =0.85 <i>14</i> (2016NdZZ); DCO=0.816 <i>16</i> (1992Re08).
208.0 [#]	9.030 18	3164.3+x	29/2-	2956.3+x	27/2-	D	Mult.: R _{ad} =0.82 <i>12</i> (2016NdZZ); DCO=0.72 <i>4</i> (1992Re08).
210.4	1.500 25	3767.2+x	$29/2^{-}$	3556.8+x	$31/2^{-}$	D	Mult.: R _{ad} =0.7 3 (2016NdZZ).
220.5 ^{d#}	3.90 ^d 9	2452.0+x	23/2	2231.5+x	21/2+	D	Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.696 <i>20</i> for doublet (1992Re08).
220.5 ^{d#‡}	3.90 ^d 9	2672.5+x	25/2	2452.0+x	23/2	D	Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.696 <i>20</i> for doublet (1992Re08).
221.6	2.510 5	3988.9+x	33/2-	3767.3+x	31/2-	M1	Mult.: $R_{ad}=0.83 \ 8$, $A_{pol}=-0.17 \ 4 \ (2016NdZZ)$.
225.0 [§]	1.3200 15	4532.6+x	37/2	4307.6+x	35/2	D	Mult.: $R_{ad} = 0.87 \ 8 \ (2016 \text{NdZZ}).$
232.0 ^{†#}	1.390 4	3030.3+x	29/2	2798.3+x	27/2	D	Mult.: R _{ad} =0.9 <i>3</i> (2016NdZZ); DCO=0.95 <i>3</i> (1992Re08).
238.5 [#]	2.510 <i>3</i>	4227.4+x	35/2-	3988.9+x	33/2-	M1	Mult.: $R_{ad}=0.77 \ 12$, $A_{pol}=-0.06 \ 4 \ (2016NdZZ)$; DCO=0.69 3 (1992Re08).
252.0 [#]	0.890 <i>3</i>	4587.2+x	35/2-	4335.2+x	33/2-	D	Mult.: R _{ad} =0.85 24 (2016NdZZ); DCO=0.54 6 (1992Re08).
259.0 ^{‡#}	9.480 8	2931.5+x	27/2	2672.5+x	25/2	D	Mult.: R _{ad} =0.70 <i>16</i> (2016NdZZ); DCO=0.75 <i>3</i> (1992Re08).
260.9 [#]	9.10 12	4008.0+x	33/2+	3747.1+x	31/2+	M1	Mult.: R_{ad} =0.72 20, A_{pol} =-0.10 4 (2016NdZZ); DCO=0.862 20 (1992Re08).
269.0 [#]	17.870 12	2956.3+x	27/2-	2687.3+x	25/2-	M1	Mult.: $R_{ad}=0.78$ 9, $A_{pol}=-0.04$ 3 (2016NdZZ); DCO=0.884 24 (1992Re08); $A_2=-0.49$ 15, $A_4=-0.02$ 15 (1974Ne16).
272.4 [@]	3.150 5	2576.2+x	$21/2^{-}$	2303.8+x	19/2-	D	Mult.: R _{ad} =0.81 21 (2016NdZZ); DCO=0.95 3 (1992Re08).
279.2 [#]	5.190 8	4804.9+x	41/2+	4525.7+x	39/2+	M1	Mult.: R _{ad} =0.77 7, A _{pol} =-0.06 3 (2016NdZZ); DCO=0.789 16 (1992Re08).
287.5	8.820 15	2591.3+x	$23/2^{-}$	2303.8+x	19/2-	(Q)	Mult.: R _{ad} =1.12 8 (2016NdZZ).
293.0 [#]	5.490 7	3849.8+x	33/2-	3556.8+x	31/2-	D	Mult.: R _{ad} =0.81 <i>10</i> (2016NdZZ); DCO=0.67 <i>5</i> (1992Re08).

¹⁹³₈₁Tl₁₁₂-22

$\gamma(^{193}\text{Tl})$ (continued)										
Eγ ^{&}	$I_{\gamma}^{\&a}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. ^b	δ	Comments		
316.7 ^{<i>d</i>#}	8.240 ^{<i>d</i>} 7	2710.2+x	25/2+	2393.4+x	23/2+	D		Mult.: R _{ad} =0.73 8 (2016NdZZ); DCO=0.435 12 (1992Re08)		
316.7 ^{d#}	3.670 ^d 4	3026.9+x	27/2+	2710.2+x	25/2+	D		Mult.: $R_{ad}=0.74$ (2016NdZZ);		
320.1	5.160 7	5125.0+x	43/2+	4804.9+x	41/2+	D		E_{γ} : Placement from level scheme (Fig. 4.1). In table 4.1 – placement from 2661 keV level. Mult.: R_{ad} =0.76 9 (2016NdZZ).		
321.0 [@]	13.040 7	1833.8+x	17/2-	1512.8+x	15/2-	D		Mult.: R _{ad} =0.85 <i>12</i> (2016NdZZ); DCO=0.84 <i>4</i> (1992Re08).		
323.9@	31.28 6	1081.7+x	13/2-	757.8+x	11/2-	M1+E2	0.6 +4-5	Mult., δ : From α (K)exp=0.21 5 (1974Ne16); R _{ad} =0.86 9 (2016NdZZ); DCO=0.791 <i>11</i> (1992Re08); A ₂ =-0.74 2, A ₄ =+0.02 2 (1974Ne16) for unresolved 323.8 γ +320.9 γ .		
326.0 [#]	3.280 6	4553.4+x	37/2-	4227.4+x	35/2-	D		Mult.: R _{ad} =0.74 9 (2016NdZZ); DCO=0.71 3 (1992Re08).		
337.0 [#]	1.440 <i>3</i>	4890.4+x	39/2-	4553.4+x	37/2-	D		E_{γ} : Placement from level scheme (Fig. 4.1). In Table 4.1 – from 4749 keV level.		
								Mult.: R _{ad} =0.68 <i>19</i> (2016NdZZ); DCO=0.60 <i>3</i> (1992Re08).		
339.6 [#]	2.270 5	4646.4+x	37/2-	4306.8+x	35/2-	M1		Mult.: R_{ad} =0.74 <i>10</i> , A_{pol} =-0.06 <i>4</i> (2016NdZZ); DCO=0.70 <i>6</i> (1992Re08). E _y : From level scheme (Fig 4.1). In Table 4.1 – from 4182 keV level, which appears to be a misprint of 4281.		
340.1 [#]	7.40 6	3747.1+x	31/2+	3407.0+x	29/2+	M1		Mult.: R_{ad} =0.72 13, A_{pol} =-0.05 3 (2016NdZZ); DCO=0.70 6 (1992Re08).		
341.0 [‡]	5.710 5	3428.5+x	31/2	3087.5+x	29/2	D		Mult.: R _{ad} =0.75 21 (2016NdZZ).		
345.4 [#]	1.300 22	5469.8+x	41/2-	5124.4+x	39/2-	M1		Mult.: R_{ad} =0.76 25, A_{pol} =-0.10 4 (2016NdZZ); DCO=0.60 4 (1992Re08).		
356.0 [#]	1.1200 13	5312.2+x	39/2-	4956.2+x	37/2-	D		Mult.: R _{ad} =0.77 23 (2016NdZZ); DCO=0.65 5 (1992Re08).		
365.3		365.3		0.0				E_{γ} : from 1974Ne16. I_{γ} : found to be duty cycle dependent.		
365.6 [#]	1.90 4	5490.6+x	45/2+	5125.0+x	43/2+	D		Mult.: R _{ad} =0.74 24 (2016NdZZ); DCO=1.254 24 (1992Re08) not consistent with D.		
367.5	1.840 4	4114.6+x	33/2	3747.1+x	$31/2^+$	D		Mult.: R _{ad} =0.77 21 (2016NdZZ).		
369.0 ^{e#}	2.370 ^e 4	4335.2+x	33/2-	3966.2+x	31/2-	D		Mult.: R _{ad} =0.70 12 (2016NdZZ).		
369.0 ^{e#}	2.0400 ^e 21	4956.2+x	37/2-	4587.2+x	35/2-	D		Mult.: R _{ad} =0.70 <i>12</i> (2016NdZZ); DCO=0.61 <i>4</i> (1992Re08).		
374.0 ^{<i>f</i>}	0.2600 5	5264.2+x	$41/2^{-}$	4890.4+x	39/2-	D		Mult.: Rad=0.75 23 (2016NdZZ).		
380.1#	8.69 1	3407.0+x	29/2+	3026.9+x	27/2+	M1		Mult.: R _{ad} =0.69 <i>12</i> , A _{pol} =-0.05 <i>3</i> (2016NdZZ); DCO=0.721 <i>24</i> (1992Re08).		
384.0 [#]	1.430 4	5853.8+x	43/2-	5469.8+x	41/2-	D		Mult.: R _{ad} =0.8 3 (2016NdZZ); DCO=0.70 8 (1992Re08).		

(HI,xnγ) 2016NdZZ,1992Re08,1974Ne16 (continued)

				<u>2</u>	v(¹⁹³ Tl) (a	continued)	
Eγ ^{&}	$I_{\gamma}^{\&a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	Comments
392.5 ^{d@}	100 ^d 1	757.8+x	11/2-	365.3+x	9/2-	M1+E2	Mult.: α (K)exp=0.110 25 (1974Ne16); DCO=0.791 11 (1992Re08); A ₂ =-0.74 2, A ₄ =+0.02 2 (1974Ne16); R _{ad} =0.91 8, A _{pol} =-0.019 29 (2016NdZZ). δ: from $\gamma\gamma(\theta)$ and $\gamma(ce)(\theta)$ (1996SaZU).
392.5 ^{d#}	13.820^{d} 17	3556.8+x	$31/2^{-}$	3164.3+x	$\frac{29}{2^{-}}$	M1 D	Mult.: $R_{ad}=0.78$ 12, $A_{pol}=-0.08$ 4 (2016NdZZ).
406.2 [@]	2.340 <i>4</i> 29.70 <i>15</i>	1900.2+x	15/2-	1493.8+x	43/2 13/2 ⁽⁻⁾	M1	Mult.: R_{ad} =0.04 <i>II</i> (2010)0222). Mult.: R_{ad} =0.83 <i>I4</i> , A_{pol} =-0.07 <i>3</i> (2016NdZZ); α (K)exp=0.12 <i>3</i> , K/L=4.6 <i>8</i> (1974Ne16); DCO=0.710 <i>I6</i> (1992Re08); A_2 =-0.68 <i>3</i> , A_4 =+0.02 <i>3</i> (1974Ne16).
412.0 [@]	6.150 6	1493.8+x	13/2 ⁽⁻⁾	1081.7+x	13/2-	D+Q	Mult.: R _{ad} =1.12 8 (2016NdZZ), DCO=1.37 3 indicates dominant Q (1992Re08).
416.9 ^{e@}	2.480 ^e 8	1929.7+x	17/2-	1512.8+x	15/2-	D	E_{γ} , I_{γ} : 416.9 is a doublet of 416.9γ and 417.4γ from 6271.2+x keV level. Undivided γ-ray intensity listed. Mult.: DCO=0.53 4 (1992Re08).
417.4 ^{e#}	2.480 ^e 8	6271.2+x	45/2-	5853.8+x	43/2-	D	 E_γ,I_γ: Doublet of 417.4γ and 416.9γ from 1929.7+x keV level. Undivided γ-ray intensity listed. Q. Mult.: DCO=0.53 4 (1992Re08).
431.2 [@]	17.910 <i>13</i>	1512.8+x	15/2-	1081.7+x	13/2-	M1	Mult.: R_{ad} =0.79 8, A_{pol} =-0.04 3 (2016NdZZ); α (K)exp=0.12 3, K/L=4.3 8 (1974Ne16); DCO=0.81 3 (1992Re08); A_2 =-0.51 8, A_4 =-0.16 8 (1974Ne16)
441.0	1.3100 <i>15</i>	2672.5+x	25/2	2231.5+x	21/2+	(Q)	Mult.: R_{ad} =1.16 20 (2016NdZZ). E _{γ} : Placement from level scheme (Fig. 4.1). In Table 4.1 – from 1128 keV level – is a misprint.
457.0 [#]	2.980 7	4306.8+x	35/2-	3849.8+x	33/2-	M1	Mult.: R _{ad} =0.7 3, A _{pol} =-0.028 13 (2016NdZZ); DCO=0.81 4 (1992Re08).
460.1	1.790 5	4227.4+x	35/2-	3767.3+x	31/2-	Q	Mult.: $R_{ad} = 1.2 4$ (2016NdZZ).
464.1 [@]	6.10 12	2393.7+x	19/2-	1929.7+x	17/2-	D	Mult.: R _{ad} =0.73 <i>17</i> (2016NdZZ); DCO=0.90 <i>4</i> (1992Re08).
466.9 [®]	14.410 <i>12</i>	1960.6+x	15/2(-)	1493.8+x	13/2(-)	M1	Mult.: R_{ad} =0.73 <i>16</i> , A_{pol} =-0.05 <i>3</i> (2016NdZZ); α (K)exp=0.090 <i>25</i> (1974Ne16); DCO=0.729 <i>14</i> (1992Re08).
470.0	6.670 7	2303.8+x	19/2-	1833.8+x	17/2-	D	Mult.: R _{ad} =0.82 <i>17</i> (2016NdZZ); DCO=0.79 <i>3</i> (1992Re08).
477.0#	4.450 6	3164.3+x	29/2-	2687.3+x	25/2-	Q	Mult.: R _{ad} =1.3 3 (2016NdZZ); DCO=1.346 22 (1992Re08).
478.0 [#]	2.220 4	5124.4+x	39/2-	4646.4+x	37/2-	D	Mult.: R _{ad} =0.83 8 (2016NdZZ); DCO=0.89 3 (1992Re08).
478.5	2.670 7	2710.2+x	$25/2^+$	2231.5+x	$21/2^+$	Q	Mult.: $R_{ad} = 1.2 \ 3 \ (2016 NdZZ)$.
485.6#	0.700 18	4804.9+x	41/2+	4319.3+x	37/2+	Q	Mult.: R_{ad} =1.25 <i>13</i> (2016NdZZ); DCO=1.33 <i>4</i> (1992Re08).
495.2 ^w	6.01 <i>1</i>	2008.1+x	17/2+	1512.8+x	15/2-	E1	Mult.: R _{ad} =0.78 <i>17</i> , A _{pol} =0.03 <i>3</i> (2016NdZZ); DCO=1.51 <i>3</i> (1992Re08).
543.0 ^{†#}	1.790 5	3630.5+x	33/2	3087.5+x	29/2	Q	Mult.: R _{ad} =1.17 6 (2016NdZZ); DCO=1.462 20 (1992Re08).
599.3 [#]	6.080 14	5125.0+x	43/2+	4525.7+x	39/2+	Q	E_{γ} , I_{γ} : Doublet of 599.3γ and 601.0γ from 3642 keV level. Undivided γ-ray intensity listed. Mult.: DCO=1.29 4 (1992Re08).

γ ⁽¹⁹³Tl) (continued)</sup>

Eγ ^{&}	$I_{\gamma}^{\&a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	Comments
600.5	2.980 11	3556.8+x	31/2-	2956.3+x	27/2-		E_{γ} : From level scheme (Fig 4.1). In Table 4.1 – from 3191 keV level, which appears to be the same with this level.
601.0 [#]	6.080 14	4008.0+x	33/2+	3407.0+x	29/2+	Q	E_{γ} , I_{γ} : Doublet of 601.0 γ and 599.3 γ from 4759 keV level. Undivided γ -ray intensity listed. Mult.: DCO=1.40 3 (1992Re08).
621.0 [#]	0.9100 24	4587.2+x	35/2-	3966.2+x	31/2-	Q	Mult.: R _{ad} =1.41 <i>11</i> (2016NdZZ); DCO=1.40 <i>3</i> (1992Re08).
632.0 [#]	1.760 <i>3</i>	4262.5+x	37/2	3630.5+x	33/2	Q	Mult.: R _{ad} =1.2 <i>3</i> (2016NdZZ); DCO=1.599 22 (1992Re08).
633.4 [#]	10.460 11	3026.9+x	27/2+	2393.4+x	23/2+	E2	Mult.: R _{ad} =1.33 <i>11</i> , A _{pol} =0.04 <i>4</i> ; DCO=1.599 22 (1992Re08).
663.0 [#]	0.730 2	4890.4+x	39/2-	4227.4+x	35/2-	Q	Mult.: R _{ad} =1.31 20 (2016NdZZ); DCO=1.36 5 (1992Re08).
672.5 [@]	39.19 4	2506.3+x	21/2-	1833.8+x	17/2-	E2	Mult.: R _{ad} =1.21 <i>15</i> , A _{pol} =0.04 <i>3</i> (2016NdZZ); DCO=1.347 <i>15</i> (1992Re08).
685.5 [#]	4.67 1	3849.8+x	33/2-	3164.3+x	29/2-	E2	Mult.: R _{ad} =1.25 11, A _{pol} =0.07 4 (2016NdZZ); DCO=1.353 21 (1992Re08).
685.7	0.4900 8	5490.6+x	$45/2^{+}$	4804.9+x	$41/2^{+}$	Q	Mult.: R _{ad} =1.25 21 (2016NdZZ).
696.8 [#]	7.680 5	3407.0+x	29/2+	2710.2+x	25/2+	(E2)	Mult.: R _{ad} =1.15 8, A _{pol} =0.039 25 (2016NdZZ); DCO=1.278 24 (1992Re08).
707.7	4.150 9	4114.6+x	33/2	3407.0+x	$29/2^{+}$	Q	Mult.: R _{ad} =1.33 18 (2016NdZZ).
716.4 [@]	34.88 6	1081.7+x	13/2-	365.3+x	9/2-	E2	Mult.: R_{ad} =1.29 23, A_{pol} =0.06 3 (2016NdZZ); α (K)exp=0.0075 2 (1974Ne16); DCO=1.291 16 (1992Re08); A_2 =+0.32 5, A_4 =-0.02 5 (1974Ne16).
720.2 [#]	10.570 8	3747.1+x	31/2+	3026.9+x	27/2+	E2	Mult.: R _{ad} =1.33 5, A _{pol} =0.06 4 (2016NdZZ); DCO=1.406 <i>18</i> (1992Re08).
729.4 ^{#f}	0.3100 11	5853.8+x	$43/2^{-}$	5124.4+x	39/2-	Q	Mult.: DCO=1.30 3 (1992Re08).
735.9 [@]	52.34 6	1493.8+x	13/2 ⁽⁻⁾	757.8+x	11/2-	D	Mult.: R_{ad} =0.72 13, A_{pol} =0.001 34 (2016NdZZ); α (K)exp=0.0060 15 (1974Ne16), theory: α (K)(E1)=0.00354, α (K)(M1)=0.0299; DCO=0.704 23 (1992Re08); A_2 =-0.19 4, A_4 =0.04 4 (1974Ne16).
742.4 [@]	12.920 <i>13</i>	2576.2+x	21/2-	1833.8+x	17/2-	Q	Mult.: R_{ad} =1.29 25 (2016NdZZ); α (K)exp=0.030 15 (1974Ne16); theory: α (K)(E2)=0.00349, α (K)(M1)=0.0292; DCO=1.191 19 (1992Re08); A ₂ =+0.24 17, A ₄ =-0.05 17 (1974Ne16). In band transition.
750.0	1.770 6	4306.8+x	35/2-	3556.8+x	31/2-	Q	Mult.: R _{ad} =1.21 14 (2016NdZZ).
752.2 [@]	41.65 7	1833.8+x	17/2-	1081.7+x	13/2-	E2	Mult.: α (K)exp=0.013 4 (1974Ne16); DCO=1.640 15 (1992Re08); R _{ad} =1.2 3 (2016NdZZ).
755.1 [@]	24.37 5	1512.8+x	15/2-	757.8+x	11/2-	E2	Mult.: R_{ad} =1.25 <i>12</i> (2016NdZZ); α (K)exp=0.011 <i>4</i> (1974Ne16); DCO=1.219 <i>18</i> (1992Re08). theory: α (K)(E2)=0.00867.
770.0	1.460 3	3457.3+x	$27/2^{-}$	2687.3+x	$25/2^{-}$	M1	Mult.: R _{ad} =0.8 4, A _{pol} =-0.05 4 (2016NdZZ).
777.0 ^{†#}	1.950 <i>3</i>	5039.5+x	41/2	4262.5+x	37/2	Q	Mult.: $R_{ad}=1.3 \ 3 \ (2016NdZZ); DCO=1.39 \ 3 \ (1992Re08).$
791.0 [@]	10.750 8	2303.8+x	19/2-	1512.8+x	15/2-	(E2)	Mult.: R _{ad} =1.13 <i>11</i> , A _{pol} =0.038 25 (2016NdZZ); DCO=1.488 <i>18</i> (1992Re08).
796.6 [#]	3.330 6	4646.4+x	37/2-	3849.8+x	33/2-	(E2)	Mult.: R_{ad} =1.15 8, A_{pol} =0.13 5 (2016NdZZ); DCO=1.382 21 (1992Re08).

γ ⁽¹⁹³ Tl) (continued)
--------------------------------	------------

Eγ ^{&}	$I_{\gamma}^{\&a}$	E _i (level)	J_i^{π}	E _f	J_f^{π} Mult.	b Comments
801.4 ^{#f}	0.7200 17	6271.2+x	$45/2^{-}$	5469.8+x 41	$1/2^{-}$	Mult.: DCO=1.30 7 (1992Re08).
810.9	2.280 5	3767.2+x	$29/2^{-}$	2956.3+x 27	7/2 ⁻ M1	Mult.: R _{ad} =0.53 13, A _{pol} =-0.014 4 (2016NdZZ).
817.6 [#]	1.2100 18	5124.4+x	39/2-	4306.8+x 35	5/2 ⁻ Q	Mult.: R _{ad} =1.30 <i>11</i> (2016NdZZ); DCO=1.90 <i>8</i> (1992Re08).
818.6	1.810 4	1900.2+x	$15/2^{-}$	1081.7+x 13	3/2 ⁻ D	Mult.: R _{ad} =0.78 8 (2016NdZZ).
823.4 [#]	1.00 3	5469.8+x	41/2-	4646.4+x 37	7/2 ⁻ Q	Mult.: R _{ad} =1.32 20 (2016NdZZ); DCO=1.699 23 (1992Re08).
848.1 [@]	7.170 14	1929.7+x	17/2-	1081.7+x 13	3/2 ⁻ Q	Mult.: R _{ad} =1.131 21 (2016NdZZ); DCO=1.201 23 (1992Re08).
866.0	0.9100 23	3457.3+x	$27/2^{-}$	2591.3+x 23	3/2 ⁻ (E2)	Mult.: R _{ad} =1.16 25, A _{pol} =0.09 5 (2016NdZZ).
878.9	1.4300 24	1960.6+x	$15/2^{(-)}$	1081.7+x 13	3/2 ⁻ D	Mult.: R _{ad} =0.86 15 (2016NdZZ).
881.0	0.8800 12	2393.7+x	19/2-	1512.8+x 15	5/2 ⁻ Q	Mult.: R _{ad} =1.23 22 (2016NdZZ).
929.0	1.0400 24	3616.3+x	29/2-	2687.3+x 25	5/2 ⁻ Q	Mult.: R _{ad} =1.2 3 (2016NdZZ).
1128.4	1.600 21	1493.8+x	$13/2^{(-)}$	365.3+x 9/	/2- Q	Mult.: R _{ad} =1.34 8 (2016NdZZ).

[†] Member of a sequence.

[‡] Member of a sequence.

§ Member of a sequence.

& From 2016NdZZ, except otherwise noted. 2016NdZZ did not report uncertainty of γ -ray energy. Assuming a 0.5 keV uncertainty, the values are in good agreement with those of 1992Re08.

[@] A comparable γ ray from the same level also reported in 1992Re08.

[#] A comparable γ -ray reported in 1992Re08, but level not present in 2016NdZZ.

^a From 2016NdZZ, except otherwise noted.

^b Based on α (K)exp, K/L, $\gamma(\theta)$ results (1974Ne16), DCO (1992Re08), and γ -ray angular distribution ratio, polarization measurement (2016NdZZ). The levels up to $13/2^+$ and $15/2^-$ were considered established by 1974Ne16. To obtain the α (K)exp, the photon and ce-spectra of 1974Ne16 were calibrated through α (K) (E3 theory) for 382.8 γ in ¹⁹⁹Tl. The DCO ratio is defined as I($\gamma_1(146^\circ), \gamma_2(34^\circ)$)/I($\gamma_1(90^\circ), \gamma_2(34^\circ)$) which results in DCO=1.4 for $\Delta J=2$ Q and $\Delta J=0$ D, and DCO=0.7 for $\Delta J=1$, D. 2016NdZZ measured γ -ray angular distribution ratio R_{ad}=I $\gamma(135^\circ)/I\gamma(90^\circ)$ and linear polarization anisotropy measurements. Expected R_{ad}=0.85 for pure stretched dipole and R_{ad}=1.35 for pure stretched quadrupole. For parity – a positive sign of polarization anisotropy A_{pol} for stretched electric transitions and a negative sign for stretched magnetic transitions was expected.

^c 2016NdZZ argue the transition expected to be electric dipole based on intensity comparison with following transitons of 406.6 γ , 818.6 γ , 466.9 γ , 878.9 γ and without any additional feeding to $15/2^{-1}$ state at 1535.0 keV level.

^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

(HI,xnγ):SD 1996Bo02,1998Bo32,1999Kr19

1990Fe07: ¹⁶⁰Gd(³⁷Cl,⁴n γ) E=167 MeV; measured γ , $\gamma\gamma$ and deduced SD-1 and SD-2 bands.

1990KeZW; ¹⁷⁶Yb(²³Na,⁶nγ); E=116, 122 MeV; HERA Compton-suppressed Ge detector array (20 detectors); identified a 12-transition SD band which was tentatively assigned to ¹⁹³Tl. Authors give no other details.

1996Bo02, 1996Bo15: ¹⁸¹Ta(¹⁸O,⁶n γ) E=110 MeV. Measured E γ , $\gamma\gamma\gamma\gamma$ with EUROGAM2 array (126 Compton-suppressed Ge detectors (24 quad-clover and 30 Ge detectors)). Deduced SD-1 and SD-2 bands and interband transitions linking the two signature partners.

1998Bo32, 1998Bo20 (also 1996WiZY): 181 Ta(18 O, 6 n γ) E=110 MeV. Measured E γ , 2⁻ and 3-fold gated $\gamma\gamma$ coincidences with

EUROGAM2 array (54 Compton-suppressed Ge detectors (24 quad-clover and 30 Ge detectors)). Deduced SD-3, SD-4 and SD-5 bands. Deduced transitions connecting SD-1 and SD-2 bands to normal bands.

1999Kr19: ¹⁷⁶Yb(²³Na,⁶nγ) E=129 MeV. GAMMASPHERE array of 100 Compton-suppressed HPGe detectors. Measured lifetimes by DSAM and deduced intrinsic quadrupole moments for SD-1 and SD-2 bands.

¹⁹³Tl Levels

E(level)	J^{n}	Comments
v^{\dagger}	(17/2+)	J^{π} : from 1998Bo20. Also from least-squares fits to E γ 's using empirical expansions relating second moment of inertia and angular frequency.
98+v [‡]	$(19/2^+)$	J^{π} : calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40).
206+v [†]	$(21/2^+)$	J^{π} : calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40).
325+v [‡] 3	$(23/2^+)$	
454+v [†] 3	$(25/2^+)$	
593+v [‡] 3	$(27/2^+)$	
741+v [†] 3	$(29/2^+)$	
901+v [‡] 3	$(31/2^+)$	
1069+v [†] 3	$(33/2^+)$	
1249+v [‡] 3	$(35/2^+)$	
1435+v [†] 3	$(37/2^+)$	
1636+v [‡] 3	$(39/2^+)$	
1840+v [†] 3	$(41/2^+)$	
2062+v [‡] 3	$(43/2^+)$	
2283+v [†] 3	$(45/2^+)$	
2525+v [‡] 3	$(47/2^+)$	
2763+v [†] 3	$(49/2^+)$	
3027+v [‡] 3	$(51/2^+)$	
3279+v [†] 3	$(53/2^+)$	
$3564 + v^{\ddagger} 3$	$(55/2^+)$	
3830+v 3	$(57/2^+)$	
4137+v [‡] 3	$(59/2^+)$	
4417+v [†] 3	$(61/2^+)$	
4746+v ⁺ 3	$(63/2^+)$	
5037 + v / 3	$(65/2^+)$	
5390+v ⁺ 3	$(67/2^+)$	
5691+v 3	$(69/2^+)$	
6069+v ⁺ 3	$(71/2^+)$	
$6377 + v^{\dagger} 3$	$(73/2^+)$	
6782+v ⁺ 3	$(75/2^+)$	
7096+v [†] 3	$(77/2^+)$	
7529+v+ 3	$(79/2^{+})$	
7847+v† <i>3</i>	$(81/2^{+})$	

(HI,xnγ):SD 1996Bo02,1998Bo32,1999Kr19 (continued)

E(level)	J^{π}	Comments
8311+v [‡] 3	$(83/2^+)$	
$8630 + v^{\dagger} 4$	$(85/2^+)$	
y#	J	J^{π} : $\approx (15/2)$.
187.9+y [#] 3	J+2	
418.6+y [#] 5	J+4	
691.4+y [#] 6	J+6	
1005.7+y [#] 6	J+8	
1360.7+y [#] 7	J+10	
1755.8+y [#] 8	J+12	
2190.3+y [#] 8	J+14	
2663.4+y [#] 9	J+16	
3174.0+y [#] 9	J+18	
3721.5+y [#] 10	J+20	
4304.9+y [#] 10	J+22	
4923.3+y [#] 11	J+24	
5576.4+y [#] 11	J+26	
$6263.1 + y^{\#} 12$	J+28	
$6977.1 + y^{\#} 14$	J+30	
7712.1+y [#] 17	J+32	-
Z [@]	J1	$\mathbf{J}^{\pi} \colon \approx (23/2).$
250.8+z [@] 3	J1+2	
542.8+z [@] 5	J1+4	
8/5.5+z 6	J1+6	
1248.2 + z = 6	J1+8	
$1660.1+z^{\circ}$ /	J1+10 J1+12	
2110.6 + Z = 8	J1+12 J1+14	
2598.7 + 2 = 8 2122.0 + $\pi^{(0)}$.0	J1+14 J1+16	
3123.9+2 9 3685 6+ $2^{(0)}$ 9	J1+10 I1+18	
$42825 \pm 7^{(0)} 10$	11+10	
$4914 \ 3+7^{@} \ 10$	I1+20 I1+22	
$5580.7+z^{@}$ 11	J1+22 I1+24	
$6285.4 + z^{@}$ 13	J1+26	
7033.4+z [@] 16	J1+28	
u ^{&}	J2	\mathbf{J}^{π} : $\approx (21/2).$
271.5+u ^{&} 5	J2+2	
584.8+u ^{&} 7	J2+4	
938.9+u& 7	J2+6	
1332.2+u ^{&} 9	J2+8	
1764.5+u ^{&} 9	J2+10	
2234.4+u& 10	J2+12	
2741.7+u ^{&} 10	J2+14	
3285.4+u& 10	J2+16	
3864.8+u ^{&} 11	J2+18	
4479.3+u ^{&} 12	J2+20	

(HI,xnγ):SD 1996Bo02,1998Bo32,1999Kr19 (continued)

¹⁹³Tl Levels (continued)

E(level)	J^{π}
5128.8+u ^{&} 13	J2+22
5813.0+u& <i>13</i>	J2+24
6531.8+u ^{&} 15	J2+26

- [†] Band(A): SD-1 band α =+1/2. (1990Fe07,1996Bo02,1998Bo20,1999Kr19). Percent population is \approx 0.5 of total yield for ¹⁹³T1 (1990Fe07). Q(intrinsic)=18.3 *10* (1999Kr19). From competing M1 (interband) and E2 (intraband) transitions, g_K=1.46 *17* (1996Bo02) and g_s^{eff}/g_s^{free}=0.7 2 (1996Bo02).
- [‡] Band(a): SD-2 band $\alpha = -1/2$. (1990Fe07,1996Bo02,1998Bo20,1999Kr19). percent population is ≈ 0.5 of total yield for ¹⁹³Tl (1990Fe07). Q(intrinsic)=17.4 *10* (1999Kr19). The two SD bands (SD Band 1 and SD Band 2) are interpreted as signature partners influenced by the i13/2 proton intruder orbital. From competing M1 (interband) and E2 (intraband) transitions, g_K=1.46 *17* (1996Bo02) and g^{eff}/g^{free}=0.7 2 (1996Bo02).
- [#] Band(B): SD-3 band. Population intensity=60% of SD-2 band. Interaction observed between SD-3 and SD-4 bands, and the identical energies (within 2 keV) of transitions in SD-3 and SD-5 bands, indicate involvement of 1/2[411], $\alpha = \pm 1/2$ and 1/2[651], $\alpha = -1/2$ proton orbitals. At high frequencies SD-3 is interpreted to be due to 1/2[651], $\alpha = -1/2$, while at low frequencies, it is expected to be due to 1/2[411] $\alpha = -1/2$ (1998Bo32).

^(a) Band(C): SD-4 band. Population intensity=33% of SD-2 band. At high frequencies SD-4 Interaction is observed between SD-3 and SD-4 bands. is interpreted to be due to 1/2[411], $\alpha = -1/2$, while at low frequencies it is interpreted as 1/2[651], $\alpha = -1/2$ (1998Bo32).

& Band(D): SD-5 band. Population intensity=16% of SD-2 band. Identical energies (within 2 keV) of transitions in SD-3 and SD-5 bands indicate that these bands may be signature partners. SD-5 band is interpreted as 1/2[411], $\alpha = +1/2$ (1998Bo32).

E_{γ}^{\dagger}	Ι _γ §	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
108.0.3		206+v	$(21/2^+)$	98+v	$(19/2^+)$		
118.9 3		325+v	$(23/2^+)$	206+v	$(21/2^+)$		
128.3 <i>3</i>		454+v	$(25/2^+)$	325+v	$(23/2^+)$		
139.2 <i>3</i>		593+v	$(27/2^+)$	454+v	$(25/2^+)$	(M1)	Mult.: $\alpha(\exp)(139\gamma+148\gamma)=2.6 \ 8 \ (1996Bo02);$ theory: $\alpha(K)(M1)=2.73.$
148.2 3		741+v	(29/2 ⁺)	593+v	(27/2 ⁺)	(M1)	Mult.: $\alpha(\exp)(139\gamma+148\gamma)=2.6 \ 8 \ and \alpha(\exp)(148\gamma+160\gamma)=3.0 \ 8 \ (1996Bo02); theory: \alpha(K)(M1)=2.29.$
160.1 3		901+v	$(31/2^+)$	741+v	(29/2 ⁺)	(M1)	Mult.: $\alpha(\exp)(148\gamma+160\gamma)=3.0 \ 8 \ (1996Bo02);$ theory: $\alpha(K)(M1)=1.84.$
167.4 <i>3</i>		1069+v	$(33/2^+)$	901+v	$(31/2^+)$	(M1)	Mult.: $\alpha(\exp)(167\gamma+181\gamma)=2.2 \ 5 \ (1996Bo02)$: theory: $\alpha(K)(M1)=1.622$.
180.6 <i>3</i>		1249+v	(35/2 ⁺)	1069+v	(33/2 ⁺)	(M1)	Mult.: $\alpha(\exp)(167\gamma+181\gamma)=2.2 \ 5 \ \text{and} \ \alpha(\exp)(181\gamma+186\gamma)=1.8 \ 7 \ (1996Bo02);$ theory: $\alpha(K)(M1)=1.31.$
185.8 <i>3</i>		1435+v	(37/2 ⁺)	1249+v	(35/2+)	(M1)	Mult.: $\alpha(\exp)(181\gamma+186\gamma)=1.8$ 7 and $\alpha(\exp)(186\gamma+201\gamma)=1.4$ 6 (1996Bo02); theory: $\alpha(K)(M1)=1.21$.
187.9 <i>3</i>		187.9+y	J+2	у	J		
201.4 3		1636+v	(39/2+)	1435+v	(37/2 ⁺)	(M1)	Mult.: $\alpha(\exp)(186\gamma+201\gamma)=1.4~6~(1996Bo02);$ theory: $\alpha(K)(M1)=0.965.$
203.5 3		1840+v	$(41/2^+)$	1636+v	$(39/2^+)$		• • • • •
206.6 3		206+v	$(21/2^+)$	v	$(17/2^+)$		
221.5 3		2062+v	$(43/2^+)$	1840+v	$(41/2^+)$		
227.3 3	0.98 10	325+v	$(23/2^+)$	98+v	$(19/2^+)$		
230.7 3		418.6+y	J+4	187.9+y	J+2		

$\gamma(^{193}{\rm Tl})$

(HI,xnγ):SD 1996Bo02,1998Bo32,1999Kr19 (continued)

$\gamma(^{193}\text{Tl})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
247.3 3	0.39 6	454+v	$(25/2^+)$	206+v	$(21/2^+)$
250.8 <i>3</i>		250.8+z	J1+2	Z	J1
267.9 3	1.13 ^{&} 23	593+v	$(27/2^+)$	325+v	$(23/2^+)$
271.5 5		271.5+u	J2+2	u	J2
272.8 3		691.4+y	J+6	418.6+y	J+4
287.7 3	0.45 5	741+v	$(29/2^+)$	454+v	$(25/2^+)$
292.0 3		542.8+z	J1+4	250.8+z	J1+2
308.2 <i>3</i>	0.86 9	901+v	$(31/2^+)$	593+v	$(27/2^+)$
313.4 4		584.8+u	J2+4	271.5+u	J2+2
314.3 <i>3</i>		1005.7+y	J+8	691.4+y	J+6
327.4 <i>3</i>	0.53 5	1069+v	$(33/2^+)$	741+v	$(29/2^+)$
332.7 <i>3</i>		875.5+z	J1+6	542.8+z	J1+4
348.0 <i>3</i>	1.01 11	1249+v	$(35/2^+)$	901+v	$(31/2^+)$
354.1 <i>3</i>		938.9+u	J2+6	584.8+u	J2+4
355.0 <i>3</i>		1360.7+y	J+10	1005.7+y	J+8
366.4 <i>3</i>	1.15 23	1435+v	$(37/2^+)$	1069+v	$(33/2^+)$
372.7 3		1248.2+z	J1+8	875.5+z	J1+6
387.0 <i>3</i>	1.4 4	1636+v	$(39/2^+)$	1249+v	$(35/2^+)$
393.3 4		1332.2+u	J2+8	938.9+u	J2+6
395.1 <i>3</i>		1755.8+y	J+12	1360.7+y	J+10
405.3 4	0.93 19	1840+v	$(41/2^+)$	1435+v	$(37/2^+)$
411.9 <i>3</i>		1660.1+z	J1+10	1248.2+z	J1+8
425.4 3	1.22 12	2062+v	$(43/2^+)$	1636+v	$(39/2^+)$
432.3 3		1764.5+u	J2+10	1332.2+u	J2+8
434.5 3		2190.3+y	J+14	1755.8+y	J+12
442.9 3		2283+v	$(45/2^+)$	1840+v	$(41/2^+)$
450.5 <i>3</i>	0_	2110.6+z	J1+12	1660.1+z	J1+10
463.7 <i>3</i>	1.60 ^{&} 16	2525+v	$(47/2^+)$	2062+v	$(43/2^+)$
469.9 <i>3</i>		2234.4+u	J2+12	1764.5+u	J2+10
473.1 <i>3</i>		2663.4+y	J+16	2190.3+y	J+14
479.7 3	0.72 17	2763+v	$(49/2^+)$	2283+v	$(45/2^+)$
488.1 3		2598.7+z	J1+14	2110.6+z	J1+12
501.1 3		3027+v	$(51/2^{+})$	2525+v	$(4^{\prime}/2^{+})$
507.3 3		2741.7+u	J2+14	2234.4+u	J2+12
510.6 3	1 1 1 17	3174.0+y	J+18	2663.4+y	J+16
516.1 3	1.11 1/	3279+v	$(53/2^{+})$	2763+v	(49/2)
525.2 3	1 20 14	3123.9+z	J_{1+16}	2598.7+z	JI+I4
551.55	1.30 14	2285 4 H	$(55/2^{+})$	3027+V 2741.7+m	$(51/2^{+})$
545./ 5		3283.4+u	J2+10	2/41./+u	$J_{2}+14$
55162	1.00.14	3/21.3+y	J+20 (57/2+)	31/4.0+y	J+18 (52/2+)
561 7 2	1.00 14	2685 617	(37/2)	2122 0 1 7	(33/2)
572 / 2	1.00.10	4127 L V	$(50/2^+)$	2564 LV	$(55/2^+)$
570 / /	1.00 10	4137±V 3864 8±11	(39/2) 12+18	3285 4 + 11	(35/2)
583 1 3		3804.8 ± 0 4304.0 ± 0	J_{2+10} $J_{1}22$	3263.4+u 3721.5+x	J_{2+10}
586 5 3	0.84.17	$4304.9\pm y$	$(61/2^+)$	$3830\pm v$	$(57/2^+)$
596.9.3	0.0+ 17	4282 5+7	(01/2)	3685 6+7	(3/12)
608.8.3	0.96.10	4746+v	$(63/2^+)$	4137+v	$(59/2^+)$
614 5 4	0.90 10	4479 3+11	12+20	3864 8+11	(3)/2
618.4 3		4923 3+v	J+24	4304.9+v	J+22
620.3 3	0.81 13	5037+v	$(65/2^+)$	4417+v	$(61/2^+)$
631.8.3	0.01 10	4914.3+7	J_{1+22}	4282.5+7	J_{1+20}
643.8.3	1.09 22	5390+v	$(67/2^+)$	4746+v	$(63/2^+)$
649.5 4	==	5128.8+u	J2+22	4479.3+u	J2+20

			(HI,xn γ):	SD 1996Bo	02,1998B	8032,1999Kr19 (continued)				
γ ⁽¹⁹³ Tl) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\S}	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_f^{π}	Comments				
653.1 <i>3</i>		5576.4+y	J+26	4923.3+y	J+24					
653.6 4	0.42 11	5691+v	$(69/2^+)$	5037+v	$(65/2^+)$					
666.4 <i>3</i>		5580.7+z	J1+24	4914.3+z	J1+22					
678.7 <i>4</i>	0.75 14	6069+v	$(71/2^+)$	5390+v	$(67/2^+)$					
684.2 <i>4</i>		5813.0+u	J2+24	5128.8+u	J2+22					
686.1 4	0.46 11	6377+v	$(73/2^+)$	5691+v	$(69/2^+)$					
686.7 <i>4</i>		6263.1+y	J+28	5576.4+y	J+26					
704.7 7		6285.4+z	J1+26	5580.7+z	J1+24					
713.2 5		6782+v	$(75/2^+)$	6069+v	$(71/2^+)$					
714.0 7		6977.1+y	J+30	6263.1+y	J+28					
718.7 5		7096+v	$(77/2^+)$	6377+v	$(73/2^+)$					
718.8 7		6531.8+u	J2+26	5813.0+u	J2+24					
735.0 10		7712.1+y	J+32	6977.1+y	J+30					
747.5 <i>5</i>		7529+v	$(79/2^+)$	6782+v	$(75/2^+)$					
748.0 10		7033.4+z	J1+28	6285.4+z	J1+26					
751.3 5		7847+v	$(81/2^+)$	7096+v	$(77/2^+)$					
781.9 <i>5</i>		8311+v	$(83/2^+)$	7529+v	$(79/2^+)$					
783.4 5		8630+v	$(85/2^+)$	7847+v	$(81/2^+)$					
^x 3046 [‡] 6						E_{γ} : Depopulating (21/2 ⁺) state at 206+V (1998Bo20).				
^x 3113 [‡] 5						$E_{\rm eff}$: Depopulating (19/2 ⁺) state at 98+V (1998Bo20).				
^x 3134 [‡] 4						E_{γ} : Depopulating (17/2 ⁺) state at V (1998Bo20).				

[†] From 1996Bo02 for γ 's in SD-1 and SD-2 bands; from 1998Bo32 for γ 's in SD-3, SD-4 and SD-5 bands. Interconnecting transitions from SD-1 and SD-2 bands to normal bands are from 1998Bo20. Ey's for levels up to 2575 are from adopted gammas.

[‡] Identified by 1998Bo20 as out of the two signature partners of SD bands (SD Band 1 and 2) and proposed connection with members of normal deformed states of 1992Re08. The proposed connections do not fit with current data of 2016NdZZ, since the location of 1765.9 (2131+X) level ($J\pi=15/2^+$) changed to 1865.7 (2230.9+X) ($J\pi=21/2^+$). The evaluator placed the transition as unplaced with notes of the depopulating state.

[§] From 1990Fe07 (¹⁶⁰Gd(³⁷Cl,⁴n γ) E=167 MeV). Values are relative transition intensities within the band deduced from $\gamma\gamma$ data with gate on 500.7 γ for SD-1 and gate on 443.0 γ for SD-2. Intensity plots are given by 1998Bo32 for SD-3, SD-4 and SD-5 bands.

& Contains contribution from another unresolved transition in ¹⁹³Tl.

 $x \gamma$ ray not placed in level scheme.

Adopted Levels, Gammas

 $Q(\beta^{-}) = -6310\ 50;\ S(n) = 7710\ 50;\ S(p) = 3610\ 60;\ Q(\alpha) = 5010\ 60$ 2017Wa10

¹⁹³Pb Levels

The main features for the adopted level scheme are from 1996Du18 (30 Si,5n γ), for the lower part of the scheme, including the nomenclature of the magnetic dipole bands. Differences with other sources, specially 1996Ba54 (24 Mg,5n γ), are noted where appropriate. See the (HI,xn γ):SD dataset for sources for the superdeformed bands. For a discussion of the configurations, magnetic dipole bands, and band systematics in Pb nuclei, see 1996Ba54 and 1996Du18 (30 Si,5n γ).

Proposed new spin-parity assignments for 2213.8+x ($J^{\pi}=23/2^+$), 2426.7+x ($J^{\pi}=25/2^+$), and 2584.8+x ($J^{\pi}=27/2^+$) by 2011Ba02 (²⁸Si,5ny) would result 1 \hbar lower spin assignments for most of the excited levels proposed in (³⁰Si,5ny) and (¹⁶O,5ny).

Cross Reference (XREF) Flags

			A ¹⁹³ Bi B ¹⁹⁷ Pc C ¹⁹⁷ Pc D ¹⁶⁸ En E ¹⁷⁰ En	i ε decay F 174 Yb(24 Mg,5n γ) $\omega \alpha$ decay (53.6 s) G 182 W(16 O,5n γ) $\omega \alpha$ decay (25.8 s) H (HI,xn γ):SD r(28 Si,5n γ) r(28 Si,5n γ)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0	(3/2 ⁻)		В	$\%\varepsilon + \%\beta^+ = ?$ Decay not observed. J ^{π} : From shell model. Available low-spin configurations for N=111 are 2f5/2, 3p3/2 and 3p1/2; 3/2 ⁻ is the g.s. in ¹⁹¹ Pb, ¹⁹⁷ Pb and also in ¹⁹³ Hg and ¹⁹³ Po.
0.0+x	(13/2+)	5.8 min 2	CDEFG	RMS charge radius: 5.4298 fm 22 (2004An14). %ε+%β ⁺ =100 μ=-1.150 7; Q=+0.195 10 E(level): Level energy 130 keV 80 in 2017Au03 from systematics. J ^π : From shell calculations – configuration vi _{13/2} . This high-J isomer is confirmed in ¹⁹⁷ Pb, ¹⁹⁹ Pb, ²⁰¹ Pb, ²⁰³ Pb; also in ¹⁹⁹ Po, ²⁰¹ Po, ²⁰³ Po. T _{1/2} : from 1976Ha25. Other values: 5.0 min 6, 5.8 min 3 (both from 1974Ne16). IT and α decay not observed. μ,Q: from collinear fast atom beam laser spectroscopy (2014StZZ,1991Du07). Isotope shift: $\Delta < r^2 > = -0.747$ fm ² 8 relative to ²⁰⁸ Pb (1991Du07). Other: -0.746 fm ² 12 (1989Me77)
757+x	$(13/2^+)$		С	J^{π} : Suggested in 2002Val3, based on the low hindrance factor for the
881.6 +x 2 1022.1+x 3 1401.8+x 3 1519.4+x 11 1550.2+x 3 1585.9+x 4	$(17/2^+) (15/2^+) (21/2^+) (19/2^+) (19/2^+) (21/2^-)$	20.5 ns 4	DEFG DEFG D DEFG DEFG	5622 keV α ray feeding this level from 13/2 ⁺ state in ¹⁵⁷ Po α decay. J ^{π} : E2 γ to (13/2 ⁺) level. J ^{π} : (M1+E2) γ to (13/2 ⁺) level. J ^{π} : E2 γ to (17/2 ⁺) level. J ^{π} : (E2) γ to (15/2 ⁺). J ^{π} : E2 γ to (15/2 ⁺) level, E2+M1 γ to (17/2 ⁺) level. μ =-0.62 <i>12</i> ; Q=0.22 2 μ : From 2014StZZ, 2004Io01: Time Dependent Perturbed Angular Distribution (TDPAD) method. Q: From 2014StZZ, 2004Ba31): TDPAD method. J ^{π} : E1+M2 γ to (21/2 ⁺) level.
1994.8+x <i>4</i> 2058.9+x <i>5</i>	(25/2 ⁺) (23/2 ⁻)		DEFG DEF	$J_{1/2}^{\pi}$: E2 γ to (21/2 ⁺) level. J^{π} : D γ to (21/2 ⁺) level.

¹⁹³Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2141.4+x 4	$(23/2^+)$		DEFG	J^{π} : E2 γ to (19/2 ⁺) level, M1+E2 γ to (21/2 ⁺) level.
2142.1+x 5	$(25/2^{-})$		DEFG	J^{π} : E2 γ to $(21/2^{-})$ level.
21/2.6+x 6	$(23/2^+)$ $(25/2^+)$		DEEC	\mathbb{Z}_{+} Conflicting only assignment (22/2 ⁺) in 2011De02 (28°C; 5mc) based on
2213.8+X 4	(25/2*)	50 (DEFG	J ⁻¹ Conficting spin assignment (25/2 ⁺) in 2011Ba02 (2 ⁻⁵ Si,5ny), based on 811.9γ (M1+E2) to (21/2 ⁺) level. 1991La07 – (¹⁶ O,5nγ) proposes 25/2 ⁺ with 811.9γ E2 from $\alpha_{\rm K}(\exp)$ to (21/2 ⁺). Proposed (23/2 ⁺) assignment requires adjustment of many higher level spin assignments of (³⁰ Si,5nγ) and other (HI,xnγ) datasets. Evaluator keeps (25/2 ⁺) for consistent links with higher excited levels.
2322.2+X 3	(27/2)	5.3 ns o	DEFG	$Q \le 0.5 (2011Ba02)$ $J^{\pi}: E2+M1 \gamma to (25/2-) level.$
$2404.0 \pm x.0$			F	$I_{1/2}$: From 2011Ba02 (~S1,5n γ).
$2404.9 \pm x = 9$ 2426 7 $\pm x = 4$	$(27/2^{+})$		DEEG	I^{π} : Conflicting I π assignment: (25/2 ⁺) by 2011Ba02 (²⁸ Si 5ny) (27/2 ⁺) in
2420.718 4	(27/2)			(30 Si,5n γ), (24 Mg,5n γ), and (16 O,5n γ). Proposed ($^{25}/^2$) assignment requires adjustment of many higher level spin assignments of (30 Si,5n γ) and other (HI,xn γ) datasets. Evaluator keeps ($^{27}/^2$) for consistent links with higher excited levels.
2524.9+x 4	$(27/2^+)$		D F	J^{π} : γ to (23/2 ⁺).
2520.9 + X 4	$(29/2^{+})$ $(20/2^{-})$	0.4 mg 5	DEFG	$J^{-1} = E_2 \gamma (0 (25/2^{-1}))$ level.
2584.8+x ^{ac} 5 2612.5+x 5	(29/2 ⁻) (33/2 ⁺)	9.4 ns 5 180 ns <i>15</i>	DEFG DEFG	 μ=9.2 4 Q=2.6 3 μ: From 2011Ba02, 2014StZZ – Time Dependent Perturbed Angular Distribution (TDPAD) method. Other value: +9.9 4 from g=0.68 3 (1997Ch33). 2011Ba02 (²⁸Si,5nγ) also reanalyzed 1997Ch33 data and reproduce the g value for revised spin-parity of (27/2⁻). Q: From 2011Ba02, 2014StZZ: TDPAD method. Supercedes their earlier value 2.84 26 in 2004Ba31. J^π: 2011Ba02 (²⁸Si,5nγ) propose (27/2⁻). E1 γ to (27/2⁺) level. T_{1/2}: From 2011Ba02 (²⁸Si,5nγ). Other values: 9.4 ns 7 (1991La07), 8 ns 2 from Recoil Shadow Anisotropy Method (2001Gu31), and 11 ns 2 (1997Ch33). μ=2.82 15; Q=0.45 4 E(level): 2742 keV 80 in 2017Au03 from systematics. μ: From 2014StZZ, 2004Io01: Time Dependent Perturbed Angular Distribution (TDPAD) method. Q: From 2014StZZ, 2004Ba31: TDPAD method. J^π: (E2) γ to (29/2⁺) level. T_{1/2}: From 2004Io01 (²⁸Si,5nγ). Other: 104 ns +370-34 (2003Gl05, 2004Gl04): 135 ns +25-15 (1991La07).
2653.6+x 5	$(27/2^{-})$		DF	
2672.2+x 6	$(29/2^{+})$		DF	$J^{n}: Q \gamma$ to $(25/2^{+})$ level.
2686.9 + x = 0 2707 2+x 6	(31/2) $(29/2^{-})$			$J^{*}: \gamma$ to $(2/2)$. $I^{\pi}: \Omega \sim t_{\Omega} (25/2^{-})$ level
$2769.4 + x^{e} 5$	$(29/2^+)$ $(29/2^+)$		DF	J^{π} : γ to $(25/2^{-1})$.
2939.2+x ^{&} 7	$(33/2^{-})$	2.2 ps 6	DEF	J^{π} : (M1) γ to (31/2 ⁻) level.
				T _{1/2} : From measured mean lifetime of 3.2 ps 8 (2005Gl09 – (²⁸ Si,5n γ)).
2994.6+x ^f 6 3080.2+x 6 3128.6+x 6 3133.4+x ^e 5 3249.9+x 8	$\begin{array}{c} (31/2^{-}) \\ (29/2^{+}) \\ (31/2^{-}) \\ (31/2^{+}) \\ (31/2^{-}) \end{array}$		DF DF DF DF DF	$J^{\pi}: Q \gamma \text{ to } (27/2^{-}) \text{ level.} J^{\pi}: d \gamma \text{ to } (29/2^{+}) \text{ level.} J^{\pi}: Q \gamma \text{ to } (27/2^{-}) \text{ level.} J^{\pi}: (M1) \gamma \text{ to } (29/2^{+}) \text{ level.} J^{\pi}: \gamma \text{ to } (29/2^{-}) \text{ level.} $
¹⁹³Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
3260.7+x 7	$(31/2^{-})$		D	J^{π} : γ to $(27/2^{-})$ level.
3282.1+x 7	$(33/2^+)$		D	J^{π} : O γ to (29/2 ⁺) level.
$3320.7 + x^{\&} 7$	$(35/2^{-})$	<0.7 ps	DEF	J^{π} : (M1) γ to (33/2 ⁻) level.
00 <u>2</u> 017 1 1	(00/2)	_0.7 PS	2	$T_{1/2}$: From measured lifetime of <1 ps (2005Gl09 - (²⁸ Si 5py))
3376.4+x 6	$(31/2^+)$		DF	J^{π} : $\Omega \gamma$ to $(27/2^+)$ level.
3414.8+x 6	$(33/2^+)$		DF	J^{π} : O γ to (29/2 ⁺) level.
3418.8 + x.7	(==)		DF	J^{π} : (33/2 ⁻) in 1996Du18 – (³⁰ Si 5ny) as 834y feeding 29/2 ⁻ state at 2584+x.
				however, adopted spin-parity is $(27/2^-)$ for the feeding state.
3541.6+x ^f 8	$(35/2^{-})$		DF	J^{π} : Q γ to $(31/2^{-})$ level.
3542.8+x ^e 6	$(33/2^+)$		DF	J^{π} : D γ to $(31/2^+)$ level.
3607.0+x 12			F	
3640.3+x 8	$(37/2^{-})$		DF	J^{π} : D to (33/2 ⁻) level.
3673.0+x 7	$(33/2^+)$		D	J^{π} : Q to (29/2 ⁺) level.
3702.2+x 6	$(33/2^+)$		D	J^{π} : γ to (29/2 ⁺) level.
3722.3+x & 7	$(37/2^{-})$		D F	J^{π} : Q γ to (33/2 ⁻) level, d γ to (35/2 ⁻) level.
3741.8+x 9	$(35/2^{-})$		DF	J^{π} : Q γ to (31/2 ⁻) level.
3772.1+x 6	$(35/2^+)$		DF	J^{π} : Q γ to (31/2 ⁺) level.
3822.5+x 9	$(35/2^+)$		D	-
3839.5+x 6	$(33/2^+)$		D F	J^{π} : Q γ to (29/2 ⁺) level.
3860.0+x 10	(25/2-)		F	
3906.6+x 8	(35/2)		D	J^{π} : D γ to (33/2) level.
3924.8+x° 6	$(35/2^{+})$		DF	J^{A} : Q γ to (31/2 ⁺) level.
3987.5+X 10 2001 7 + x 7	(25/2+)		r D	π_{1} , μ_{2} to $(22/2^{+})$ level
$3991.7 \pm x = 6$	(33/2)			J^{π} : (0) or to (33/2 ⁺) level
$40035 \pm x6$	(37/2) $(35/2^+)$			$J : (Q) \neq to (33/2^+)$ level
4055.9 + x.9	$(39/2^{-})$		DF	I^{π} : (D) γ to $(37/2^{-})$ level
4063.1+x 8	$(37/2^{-})$		D	J^{π} : γ to $(35/2^{-})$ level.
4116.5+x <i>10</i>	$(37/2^+)$		DF	J^{π} : O γ to (33/2 ⁺) level.
4136 1+x ^{&} 7	$(39/2^{-})$		DF	I^{π} : D γ to $(37/2^{-})$ level
4149.4 + x 6	$(37/2^+)$		DF	J^{π} : D γ to $(35/2^+)$ level.
4167.2+x 8	$(39/2^{-})$		DF	J^{π} : D γ to $(37/2^{-})$ level.
$4180.3 + x \int 10$	$(39/2^{-})$		DF	I^{π} : $\Omega \gamma$ to $(35/2^{-})$ level
4191.4 + x 7	$(39/2^+)$		D	J^{π} : Q γ to (35/2 ⁺) level.
4210.9+x 6	$(37/2^+)$		DF	
4239.2+x 13			F	
4271.1+x 8	$(39/2^{-})$		D	J^{π} : D γ to (37/2 ⁻) level.
4298.0+x ^C 7	$(39/2^+)$		DF	J^{π} : D γ to $(37/2^+)$ level.
4313.4+x ^e 7	$(37/2^+)$		D	J^{π} : γ to (33/2 ⁺) level.
4360.8+x 11	$(37/2^+)$		D	J^{π} : γ to (33/2 ⁺) level.
4388.1+x ^C 7	$(41/2^+)$		D	J^{π} : D γ to (39/2 ⁺) level.
4399.2+x 11	$(39/2^{-})$		D F	J^{π} : Q γ to (35/2 ⁻) level.
4435.2+x 11	$(39/2^{-})$		D F	J^{π} : Q γ to (35/2 ⁻) level.
4445.5+x 6	$(39/2^+)$		D	J^{π} : γ to $(37/2^+)$ level.
4470.6+x ^{&} 8	$(41/2^{-})$		DF	J^{π} : D γ to (39/2 ⁻) level.
4493.6+x			F	E(level): In the level scheme in $({}^{24}Mg,5n\gamma)$ 1996Ba54. this is the the level feeding by 232 γ in dipole band 2 and depopulating by 197 γ . However, a comparable 196 9α placed from 4388+x level
4532.8+x.8	$(41/2^{-})$		D	I^{π} . D γ to (39/2 ⁻) level
$4537.0 + x^{\circ} 7$	$(43/2^+)$		D	J^{π} : D γ to $(41/2^+)$ level.
4538.8+x 10	$(41/2^{-})$		D F	J^{π} : D γ to $(39/2^{-})$ level.
4564.6+x 9	$(39/2^+)$		D	J^{π} : γ to $(37/2^+)$ level.
				• · · · · · · · · · · · · · · · · · · ·

¹⁹³Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
4577.2+x 7	$(41/2^+)$		DF	I^{π} : D γ to (39/2 ⁺) level.
4591 3+x 8	$(41/2^{-})$		DF	I^{π} : D γ to (39/2 ⁻) level
4634.9 + x 12	(11/2)		F	
4661 8+x 11			D	
4760.6 + x.11	$(41/2^+)$		DF	I^{π} : $\Omega \propto to (37/2^+)$ level
$4769.0 + x^{C} 8$	$(45/2^+)$		D	I^{π} : D γ to $(43/2^+)$ level
$4784.2 \pm x.7$	$(41/2^+)$		D	I^{π} : χ to $(39/2^+)$ level
4000.1 + 8	(+1/2)			π_{1} π_{2} π_{2} π_{2} π_{2} π_{2} π_{2}
4828.1+X 0	(43/2)		DF	$J^{*}: D \gamma \text{ to } (41/2) \text{ level.}$
4801.0+X 8	(43/2)		D	J^{*} : D γ to (41/-) level.
$4893.1 + x^{j}$ 12	$(43/2^{-})$		D F	$J^{\pi}: Q \gamma \text{ to } (39/2^{-}).$
4917.0+x 8	$(43/2^{-})$		D	J^{π} : γ to $(43/2^+)$ level.
4945.1+x ^d 8	$(43/2^+)$		DF	J^{π} : D γ to (41/2 ⁺) level.
5033.3+x 9	$(43/2^{-})$		DF	J^{π} : D γ to $(41/2^{-})$ level.
$5060.6 \pm x^{c}.9$	$(47/2^+)$	$0.23^{@}$ ns 3	DF	I^{π} . D γ to $(45/2^+)$ level
5000.01A 9	(17/2)	0.20 ps 5	21	$T_{1/2}$: From mean lifetime of 0.33 ps 4 (1998C106)
$5092.8 + x^{a}.8$	$(45/2^{-})$		D	$I_{1/2}^{\pi}$. D γ to $(43/2^{-})$ level
5165.8 + x.12	$(43/2^{-})$		DF	I^{π} : $\Omega \times to (39/2^{-})$ level
5169.0 + x + 12	$(15/2^{+})$			$\pi_{1} = 0$ (3)/2) loter.
$5109.4 + x^{-1} 9$	$(45/2^{+})$			J^{*} : D+Q γ to (43/2 [*]) level.
5182.0+X 8	(43/2)		DF	
$5218.4 + x^{\infty} 9$	$(45/2^{-})$		D	J^{π} : D γ to (43/2 ⁻) level.
5281.1+x 15	$(43/2^{-})$		D	$J^{n}: \gamma \text{ to } (39/2^{-}) \text{ level.}$
5331.9+x ^{<i>a</i>} 8	$(47/2^{-})$		D F	XREF: F(239.1+Y).
		0		J^{π} : D γ to (45/2 ⁻) level.
5425.8+x ^C 9	$(49/2^+)$	$0.16^{(0)}$ ps $+3-2$	D	J^{π} : D γ to (47/2 ⁺).
		•		$T_{1/2}$: From mean lifetime of 0.23 ps +4-3 (1998Cl06).
$5436.9 + x^{d} 9$	$(47/2^+)$		D	I^{π} : D γ to (45/2 ⁺) level.
5439.8 + x.10	$(45/2^{-})$		D	I^{π} : D γ to $(43/2^{-})$ level
5501.7 + x 9	$(47/2^{-})$		D	I^{π} : D γ to $(45/2^{-})$ level.
$5597.5 + x^{a}.9$	$(49/2^{-})$		DF	XRFF: F(504.2+Y)
5571.51X 7	(1)/2)		<i>D</i> 1	$I^{\pi}: D \propto to (47/2^{-})$ level
5668 3+x 15	$(45/2^{-})$		D	I^{π} : γ to $(41/2^{-})$ level
5762 1 + d	$(10/2^+)$		D	$\pi_{1} = \frac{1}{2} + \frac{1}{2$
$5/03.1+x^{-1}$	$(49/2^{+})$		D	$J^{*}: D \gamma$ to $(4/2^{-})$ level.
5802.2+X 11	(47/2)		D	$J^{**} \gamma$ to (45/2) level.
5815.4+x ^c 9	$(51/2^+)$	0.15 [@] ps <i>3</i>	D	J^{π} : D γ to (49/2 ⁺).
1				$T_{1/2}$: From mean lifetime of 0.21 ps +4-5 (1998Cl06).
5825.3+x ^b 9	$(49/2^{-})$		D	J^{π} : D γ to (47/2 ⁻) level.
5927.0+x ^a 9	$(51/2^{-})$		DF	XREF: F(833.6+Y).
				J^{π} : D+Q γ to (49/2 ⁻) level.
$6001.5 + x^{b} 10$	$(51/2^{-})$		D	I^{π} : D+O γ to (49/2 ⁻) level
$61455 + x^{d} 11$	$(51/2^+)$		- D	I^{π} : D + O α to $(40/2^+)$ level
0143.3 ± 11	(51/2)	0.170 0	D	$J : D + Q \neq 00 (49/2)$ level.
$6231.4 + x^{\circ} 10$	$(53/2^{+})$	0.17° ps 2	D	J^{n} : (M1) γ to (51/2 ⁺) level.
1				$T_{1/2}$: From mean lifetime of 0.25 ps 3 (1998C106).
6285.2+x ^b 10	$(53/2^{-})$		D	J^{π} : D γ to (51/2 ⁻) level.
6302.6+x ^{<i>a</i>} 10	$(53/2^{-})$		DF	XREF: F(1208.5+Y).
				J^{π} : D+Q γ to (51/2 ⁻) level.
6597.1+x ^b 11	$(55/2^{-})$		D	J^{π} : D γ to (53/2 ⁻) level.
6657.6+x ^c 10	$(55/2^+)$		D	J^{π} : γ to $(51/2^+)$ and $(53/2^+)$ levels.
6715.5+x ^a 11	$(55/2^{-})$		D	J^{π} : γ to (53/2 ⁻) level.
$60275 + \frac{b}{2}11$	$(57/2^{-})$		D	I^{π} : D+O or to $(55/2^{-})$ level
0921.JTX 11	(31/2)		U	J . $D = Q \neq 10 (33/2)$ IEVEL

¹⁹³Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
7090.3+x ^c 11	$(57/2^+)$	D	
7154.7+x ^a 12	$(57/2^{-})$	D	J^{π} : D γ to (55/2 ⁻) level.
7312.0+x ^b 12	$(59/2^{-})$	D	J^{π} : D γ to $(57/2^{-})$ level.
7516+x? ^C	$(59/2^+)$	D	J^{π} : γ to (57/2 ⁺) level.
7713.5+x ^b 13	$(61/2^{-})$	D	J^{π} : γ to $(59/2^{-})$ level.
7932+x? ^C	$(61/2^+)$	D	J^{π} : γ to (59/2 ⁺) level.
yg 277 0 y 2	J	Н	J^{π} : $\approx (23/2)$. E(level): 4217 relative to the 13/2 ⁺ isomer was suggested by 1996Pe20 on the basis of a tentative 2222 γ (I γ =0.042 20) to 1995+x level. But this transition has not been confirmed in the work of 1999Ro21 using a larger detector array.
277.0 - y ⁰ 3	J+2	п	transitions to normal-deformed states have not been confirmed by 1990Du05 as mixing a larger detector array, thus these γ rays together with a 2222 γ (1996Du05) have been omitted here.
594.3+y ^g 5	J+4	Н	
951.6+y ^g 6	J+6	Н	
1349.1+y ^g 6	J+8	Н	
1786.9+y ^g 7	J+10	Н	
$2264.3 + y^8 8$	J+12 I+14	H	
2781.0+y89 3337 7+y89	J+14 I+16	л Н	
$3932.5 + v^{g}$ 10	J+18	Н	
4565.9+y ^g 11	J+20	Н	
5237.7+y ^g 13	J+22	Н	
5945.9+y? ^g 15	J+24	Н	
z ^h	J1	Н	$\mathbf{J}^{\pi}:\approx(17/2).$
$190.2 + z^{h} 5$	J1+2	Н	
$422.8 + z^{h} 6$	J1+4	Н	
$698.0 + z^h$ 7	J1+6	Н	
1015.9+z ^h 8	J1+8	Н	
1376.8+z ^h 8	J1+10	Н	
1780.3+z ^h 9	J1+12	Н	
2226.2+z ^h 9	J1+14	Н	
2714.4+z ^h 10	J1+16	Н	
3242.4+z ^h 11	J1+18	Н	
3812.2+z ^h 13	J1+20	Н	
4422.7+z ^h 15	J1+22	Н	
5072.7+z ^h 16	J1+24	Н	
5762.5+z? ^h 18	J1+26	Н	
u ⁱ	J2	Н	\mathbf{J}^{π} : $\approx (21/2)$.
251.5+u ⁱ 6	J2+2	Н	
$543.0+u^{i}$ 7	J2+4	Н	
$875.4 + u^{i} 8$	J2+6	Н	
$1247.5 + u^{i} 8$	J2+8	н	
$1659.4 + u^{i} 9$	J_{2+10}	н	
2110.0 ± 10^{i}	12 ± 10 12 ± 12	и и	
2110.0Tu 9	JZ71Z	п	

¹⁹³Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2598.9+u ⁱ 10	J2+14	Н	
3125.5+u ⁱ 11	J2+16	Н	
3688.9+u ⁱ 11	J2+18	Н	
4288.8+u ⁱ 13	J2+20	Н	
4925.8+u ⁱ 14	J2+22	Н	
5598.0+u ⁱ 15	J2+24	Н	
6307.2+u ⁱ 16	J2+26	Н	
v^j	J3	Н	J^{π} : \approx (23/2).
273.0+v? ^j 7	J3+2	Н	
586.4+v ^j 10	J3+4	Н	
939.5+v ^j 10	J3+6	Н	
1331.4+v ^j 11	J3+8	Н	
1761.4+v ^j 11	J3+10	Н	
2228.5+v ^j 12	J3+12	Н	
2732.4+v ^j 13	J3+14	Н	
3271.9+v ^j 13	J3+16	Н	
3847.0+v ^J 14	J3+18	Н	
4457.0+v ^J 15	J3+20	Н	
$5101.5 + v^{j}$ 16	J3+22	Н	
5777.9+v ^J 17	J3+24	Н	
$6485.1 + v^{j}$ 19	J3+26	Н	
w ^k	J4	Н	J^{n} : $\approx (1^{n}/2).$
$100.5 + w^{t} 8$	J4+1	H	
$213.2 + W^{2} 4$	J4+2	Н	
$333.1 + W^2 0$	J4+5	н	
$407.9 \pm w^{-7}$	J4+4	п	
$762.0 \pm w^{k}$ 7	J4+5 I4+6	п	
$0.26.8 \pm w^{l}.8$	J4+0 I4+7	п ц	
$920.0+w^{-8}$	J4+7 J4+8	п	
$1099.9 \pm w^{l} 8$	J4∓0 I∕I⊥0	п	
$1232.0+w^{k}$ 9	J4+9 I4+10	н	
$1677.0 + w^{l} 9$	J4+11	н	
$1888.7 + w^k 9$	J4+12	н	
$2109.8 + w^l 9$	J4+13	Н	
2340.0+w ^k 10	J4+14	Н	
2580.4+w ^l 10	J4+15	Н	
2828.5+w ^k 12	J4+16	Н	
3087.8+w ^l 11	J4+17	Н	
3355.0+w ^k 13	J4+18	Н	
3631.3+w ^l 12	J4+19	Н	
3917.2+w ^k 14	J4+20	Н	
4211.0+w ^l 13	J4+21	Н	
$4513.4 + w^{k}$ 16	J4+22	Н	
$4825.6 + w^l$ 15	J4+23	Н	

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	J ^{π‡}	XREF
5144.7+w ^k 18	J4+24	Н	3167.8+s ^m 15	J5+16	Н	3900.1+t ⁿ 17	J6+18	Н
5475.1+w ^l 16	J4+25	Н	3729.1+s ^m 16	J5+18	Н	4512.1+t ⁿ 18	J6+20	Н
5811.5+w ^k 20	J4+26	Н	4325.5+s ^m 17	J5+20	Н	5158.9+t ⁿ 19	J6+22	Н
6159.1+w ^l 17	J4+27	Н	4956.6+s ^m 19	J5+22	н	a ⁰	J7	Н
6512.0+w ^k 22	J4+28	Н	5620.8+s ^m 20	J5+24	н	212.9+a ^o 5	J7+2	Н
6877.0+w ^l 18	J4+29	Н	t ⁿ	J6	н	468.7+a ^o 7	J7+4	Н
s ^m	J5	Н	$281.8 + t^n 6$	J6+2	Н	766.0+a ⁰ 10	J7+6	Н
260.6+s ^m 7	J5+2	Н	$603.2 + t^n 9$	J6+4	Н	1102.5+a ^o 11	J7+8	Н
560.4+s ^m 10	J5+4	Н	964.1+t ⁿ 10	J6+6	Н	1478.3+a ^o 13	J7+10	Н
900.5+s ^m 10	J5+6	Н	1362.6+t ⁿ 11	J6+8	Н	1894.2+a ^o 13	J7+12	Н
1279.4+s ^m 12	J5+8	Н	1798.5+t ⁿ 12	J6+10	Н	2349.7+a ^o 14	J7+14	Н
1696.6+s ^m 13	J5+10	Н	2270.8+t ⁿ 14	J6+12	Н	2845.3+a ^o 15	J7+16	Н
2150.6+s ^m 14	J5+12	Н	2778.9+t ⁿ 15	J6+14	Н	3380.7+a ^o 17	J7+18	Н
2641.7+s ^m 15	J5+14	Н	3322.1+t ⁿ 16	J6+16	Н	3956.0+a ^o 19	J7+20	Н

¹⁹³Pb Levels (continued)

[†] From least squares fit to $E\gamma$ as calculated in (HI,xn γ) from 1996Du18 and (HI,xn γ):SD reactions. Note that there is a, somewhat erratic, trend towards lower γ -ray energies in 1996Ba54 (²⁴Mg,5n γ). These add up and tend to reduce the level energies by up to \approx 45 keV (see the dataset).

[‡] From (HI,xn γ) or (HI,xn γ):SD, except for g.s. and the 0+x level. The assignments are based on multipolarities of deexciting transitions (from α (K)exp and $\gamma(\theta)$ measurements), assumption of increasing J with increasing E, and band structure. Specific arguments are listed in comments. For SD bands, the assignments are based on band structure and γ anisotropy, the lowest level spin in each band having been estimated using the spin-fit method.

[#] From $\gamma\gamma(t)$ or $\gamma(t)$ in (HI,xn γ), except as noted.

[@] From mean lifetime in 1998Cl06, deduced from fitting of Doppler broadened γ -ray peaks. Value listed in comments section.

[&] Band(A): Magnetic dipole band 1. (1996Du18). This band is the same as Band 1a in 1996Ba54. Note that from a systematic study of $^{191-199}$ Pb isotopes, 1998Fo02 conclude that members of this band in 193 Pb are 1 \hbar higher compared to all the other isotopes.

^a Band(B): Magnetic dipole band 1a. (1996Du18). This band is the analogue of Band 1b in 1996Ba54.

^b Band(C): Magnetic dipole band 1b. (1996Du18). None of the transitions in this band are observed in 1996Ba54.

^c Band(D): Magnetic dipole band 2. (1996Du18). This band is almost the same as Band 2 in 1996Ba54. There is a significant difference however in the energies for the levels of this band, because in 1996Ba54 a single 197-keV γ ray connects the final level of the 232-keV transition with the 4297-keV bandhead. Instead, 1996Du18 place a sequence of two γ rays (90 keV and 149 keV) in its place, thereby shifting the Band 2 levels upwards by \approx 45 keV, as compared to those shown in 1996Ba54. This modified scheme also implies a change in the proposed spin sequences for the levels in this band.

^d Band(E): Magnetic dipole band 3. (1996Du18). With a single exception (224-keV γ) the transitions in this group are not observed in 1996Ba54.

^e Band(F): Magnetic dipole band 4. (1996Ba54). The transitions in this group are not assigned to a band in 1996Du18.

f Band(G): Band 5.

- ^g Band(H): SD-1 band. (1999Ro21,1995Hu01,1996Du05,1996Pe20). Configuration=v3/2[761] α =-1/2. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.5%. Q(intrinsic)=17.3 +7-6 (1998Va18). See footnote to SD-2 Band regarding relationship between these two SD bands.
- ^{*h*} Band(I): SD-2 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $\nu 3/2$ [761] $\alpha = +1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.3% (1995Hu01). Band intensity relative to SD-1 band=50% (1996Du05), 38% 8 (1999Ro21). SD-1 and SD-2 represent favored and unfavored signature components (with a large observed splitting) of the low-K, 3/2[761], N=7 neutron orbital (from (²⁴Mg,5n γ)).
- ^{*i*} Band(J): SD-3 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $\nu 3/2$ [642] $\alpha = +1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.25% (1995Hu01). Band intensity relative to SD-1 band=50% (1996Du05), 46% 9 (1999Ro21)

¹⁹³Pb Levels (continued)

See footnote to SD-4 Band regarding relationship between these two SD bands.

- ^{*j*} Band(K): SD-4 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $\nu 3/2$ [642] α =-1/2. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.25% (1995Hu01). Band intensity relative to SD-1 band=50% (1996Du05), 23% 5 (1999Ro21). SD-3 and SD-4 are interpreted as signature partners (no signature splitting) based on a high K, 3/2[642] neutron orbital. The 5/2[512] neutron orbital suggested by 1995Hu01 is not supported by calculations and experimental comparisons of 1996Du05 and 1999Ro21.
- ^{*k*} Band(L): SD-5 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $\nu 9/2[624] \alpha = +1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.2% (1995Hu01). Band intensity relative to SD-1 band=30% (1996Du05), 15% 3 (1999Ro21) See footnote to SD-6 Band regarding relationship between these two SD bands.
- ^{*l*} Band(M): SD-6 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $\nu 9/2$ [624] $\alpha = -1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.2% (1995Hu01). Band intensity relative to SD-1 band=30% (1996Du05), 20% 4 (1999Ro21). SD-5 and SD-6 are interpreted as signature partners (no signature splitting) based on a high K, 9/2[624] neutron orbital. From dipole interband transitions, 1996Du05 deduce B(M1)/B(E2)=0.15 4. g_K=-0.39 *l*2 (1996Du05), -0.27 9 (1999Ro21) from M1/E2 branching ratios, using Θ_0 =18.4 and K=9/2.
- ^{*m*} Band(N): SD-7 band. (1999Ro21). Band intensity relative to SD-1 band=17% 3 (1999Ro21). SD-7 and SD-8 are proposed as signature partners with configuration=v5/2[512].
- ^{*n*} Band(O): SD-8 band. (1999Ro21). Band intensity relative to SD-1 band=14% 3 (1999Ro21). SD-7 and SD-8 are proposed as signature partners with configuration=v5/2[512].
- ^o Band(P): SD-9 band. (1999Ro21). Band intensity relative to SD-1 band=5% 1 (1999Ro21). Configuration= $\nu 7_3$ intruder orbital.

 $\gamma(^{193}\text{Pb})$

It should be noted that there are sharp discrepancies between the intensities reported among the (HI,xn γ) datasets. Of these, 1996Du18 and 1991La07 provide total intensity values, while 1996Ba54 lists γ intensities. It is not clear whether these differences are due to varying measurement conditions, or, possibly more likely, to the diversity in the high-lying levels populated by the various reaction channels used. For the adopted values the data from 1996Du18 have been used, where the I γ values have been calculated by the evaluator using the experimental conversion coefficients from 1991La07, where available. Else, total conversion coefficients have been used, based on the multipolarities provided either by the authors, or estimated on the basis of DCO ratios, angular distribution coefficients, membership in various band structures, or assumed from $\Delta J\pi$ values, if no other information was available.

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ι _γ &	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^a	α^{e}	Comments
757+x	$(13/2^+)$	757 1	100	0.0+x	$(13/2^+)$				$\overline{E_{\gamma}}$: From ¹⁹⁷ Po α decay (25.8 s).
881.6 +x	$(17/2^+)$	881.6 2	100	0.0+x	$(13/2^+)$	E2		0.00854	
1022.1+x	$(15/2^+)$	1022.3 <i>3</i>	100	0.0+x	$(13/2^+)$	(M1+E2)		0.0116 53	
1401.8+x	$(21/2^+)$	520.1 2	100	881.6 +x	$(17/2^+)$	E2		0.0267	
1519.4+x	(19/2+)	497.3 5	100	1022.1+x	(15/2 ⁺)	E2		0.0298	E_{γ} : 1991La07 (¹⁶ O,5n γ) list a comparable γ , $E\gamma$ =497.7 4 keV, but unplaced.
1550.2+x	$(19/2^+)$	527.8 <i>3</i>	61 10	1022.1+x	$(15/2^+)$	E2		0.0258	I_{γ} : Other: 100 19 (²⁴ Mg,5n γ).
		668.2 <i>3</i>	100 10	881.6 +x	$(17/2^+)$	E2+M1	1.8 +9-5	0.023 5	I_{γ} : Other: 88 17 (²⁴ Mg,5n γ).
1585.9+x	$(21/2^{-})$	(66.5)		1519.4+x	$(19/2^+)$,
		184.0 4	100	1401.8+x	$(21/2^+)$	E1+M2	0.049 +15-20	0.116 15	$B(E1)(W.u.)=1.42\times10^{-6}$ 5; $B(M2)(W.u.)=0.5$ 3
1994.8+x	$(25/2^+)$	593.1 <i>4</i>	100	1401.8+x	$(21/2^+)$	E2(+M3)	0.16 3	0.030 5	
2058.9+x	$(23/2^{-})$	472.7 5	100	1585.9+x	$(21/2^{-})$	D^b			
2141.4+x	$(23/2^+)$	591.1 <i>4</i>	90 21	1550.2+x	$(19/2^+)$	E2		0.0199	I_{γ} : Other: 100 20 (²⁴ Mg,5n γ).
		739.7 <i>3</i>	100 17	1401.8+x	$(21/2^+)$	M1+E2	0.63 17	0.031 3	I_{γ} : Other: 63 13 (²⁴ Mg,5n γ).
2142.1+x	$(25/2^{-})$	556.0 4	100	1585.9+x	$(21/2^{-})$	(E2)		0.0229	
2172.6+x	$(23/2^+)$	622.3 6	100	1550.2+x	$(19/2^+)$				
2213.8+x	$(25/2^+)$	(40.9)		2172.6+x	$(23/2^+)$				
		72.7 10		2141.4+x	$(23/2^+)$	(M1+E2)	0.21 + 4 - 3	5.3 5	E_{γ} : From (²⁴ Mg,5n γ).
		219.0 3	43 10	1994.8+x	(25/2+)	(M1)		1.016	I _γ : From (²⁴ Mg,5nγ). Other: 32 <i>14</i> (¹⁶ O,5nγ). Mult.: $\alpha_{\rm K}(\exp)$ =1.14 <i>13</i> , $\alpha_{\rm L12}(\exp)$ =0.11 6; Theory: $\alpha_{\rm K}({\rm M1})$ =0.829.
		811.9 6	100 <i>19</i>	1401.8+x	(21/2+)	(E2)		0.01009	I _γ : From (²⁴ Mg,5nγ). Mult.: From $\alpha_{\rm K}(\exp)$ =0.0038 28 in 1991La07 (¹⁶ O,5nγ); theory: $\alpha_{\rm K}(E2)$ =0.00785. (M1+E2) in 2011Ba02 (²⁸ Si,5nγ). See level comments.
2322.2+x	(27/2 ⁻)	180.0 <i>3</i>	100 [@] 6	2142.1+x	(25/2 ⁻)	E2+M1	4 +5-1	0.69 6	B(M1)(W.u.)= $2.2 \times 10^{-5} + 52 - 22;$ B(E2)(W.u.)= $4.2 \ 9$
		263.1 <i>3</i>	$18^{@} 6$	2058.9+x	$(23/2^{-})$	[E2]		0.1727	B(E2)(W.u.)=0.12 5
2404.9+x		819.0 <i>3</i>	100	1585.9+x	$(21/2^{-})$				E_{γ} : From (²⁴ Mg,5n γ).

 $^{193}_{82}\text{Pb}_{111}\text{-}9$

γ (¹⁹³Pb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^a	α^{e}	Comments
2426.7+x	$(27/2^+)$	212.9 3	100 [#] 15	2213.8+x (2	$25/2^+)$	M1		1.100	Mult.: From $(^{24}Mg, 5n\gamma)$.
		431.9 4	7.4 [#] 30	1994.8+x (2	$25/2^+$)	D+Q			Mult.: From $({}^{24}Mg, 5n\gamma)$.
2524.9+x	$(27/2^+)$	98.2 <i>3</i>	22 # 8	2426.7+x (2	$27/2^+)$				
		311.1 <i>3</i>	100 [#] 19	2213.8+x (2	25/2+)				
2526.9+x	$(29/2^+)$	204.6 3	87	2322.2+x (2	$27/2^{-})$	E1+M2	0.63 14	1.71 53	
2581 8 L v	$(20/2^{-})$	552.4 5 158 1 3	100 0	1994.8 + x (2	25/2') 27/2+)	E2(+M3) E1	0.14 +3-7	0.0370.95	$B(E1)(W_{11}) = 4.8 \times 10^{-6}$ 3
2304.078	(29/2)	156.1 5	100	2420.7+X (2	21/2)	LI		0.1590	Mult.: $\alpha_{L12}(exp)=0.0077$ 71 (1991La07); theory: $\alpha_{L12}=0.0170$.
2612.5+x	$(33/2^+)$	85.6 <i>3</i>	100	2526.9+x (2	29/2+)	(E2)		12.1 3	B(E2)(W.u.)=0.79 8
2653.6+x	$(27/2^{-})$	331.3 6	19 [#] 12	2322.2+x (2	27/2-)				E_{γ} : From (²⁴ Mg,5n γ) – 1996Ba54.
		595.0 6	100 [#] 50	2058.9+x (2	23/2-)	1			
2672.2+x 2686.9+x	(29/2 ⁺) (31/2 ⁻)	677.6 7 102.1 <i>3</i>	100 100	1994.8+x (2 2584.8+x (2	25/2 ⁺) 29/2 ⁻)	Q ^b			
2707.2+x	$(29/2^{-})$	301.6 ^f 5	25 # 8	2404.9+x					E_{γ}, I_{γ} : Only in (²⁴ Mg, 5n γ) – 1996Ba54.
		385.0 4	21 [#] 10	2322.2+x (2	27/2-)			С	
		565.0 6	100 [#] 26	2142.1+x (2	25/2-)	Q			Mult.: From DCO ratio in $(^{24}Mg, 5n\gamma)$. See comment for this γ in the dataset.
2769.4+x	$(29/2^+)$	342.7 <i>3</i>	100	2426.7+x (2	27/2+)				
2939.2+x	(33/2 ⁻)	252.3 3	100	2686.9+x (3	31/2-)	(M1) ^b		0.686	B(M1)(W.u.)=0.37 10 Mult.: From (³⁰ Si,5n γ) and RUL. B(M1)=1.1 2 $\mu_{\rm N}^2$ (2005Gl09 (²⁸ Si,5n γ)). 1991La07 show a 253.6 keV γ deexciting their level at 3220 keV. This level is not established by later publications.
2994.6+x	$(31/2^{-})$	341.0 <i>3</i>	28 [#] 9	2653.6+x (2	$27/2^{-}$)			d	•
		672.6 7	100 [#] 26	2322.2+x (2	27/2-)	Q ^b			
3080.2+x	$(29/2^+)$	555.4 6	100	2524.9+x (2	27/2+)	D ^b			
3128.6+x	$(31/2^{-})$	421.4 4	50 [#] 15	2707.2+x (2	29/2-)			С	
		806.4 8	100 [#] 25	2322.2+x (2	27/2-)	Q ^b			
3133.4+x	$(31/2^+)$	364.0 4	$100^{\textcircled{0}}{6}$	2769.4+x (2	29/2+)	(M1)		0.252	
		461.5 5	9 [@] 3	2672.2+x (2	29/2+)			0.135 ^c	
3249.9+x	$(31/2^{-})$	706.7 7 542.7 5	$26^{(@)} 3$ 100	2426.7+x (2 2707.2+x (2 2584.8+x (2	$27/2^+)$ $29/2^-)$			d	
3260.7+X	(31/2)	0/3.8 /	100 0 25	2384.8 + X (2	29/2)	ob			
3282.1+X	$(33/2^{-})$	009.90	100 - 23	20/2.2 + X (2)	$29/2^{+})$	Q ²			
		133.10	03 1/	2320.9+X (2	47/4°)	V V			

295

$^{193}_{82} \mathrm{Pb}_{111} \text{--} 10$

NUCLEAR DATA SHEETS

γ ⁽¹⁹³Pb) (continued)

	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	E _f	${ m J}_f^\pi$	Mult. ^a	α^{e}	Comments
	3320.7+x	(35/2 ⁻)	381.5 4	100 [#] 21	2939.2+x	(33/2 ⁻)	(M1)	0.222	 B(M1)(W.u.)>0.43 Mult.: From (³⁰Si,5nγ) and RUL. 2005Gl09 (²⁸Si,5nγ) estimate B(M1)≥1.4 μ_N². 1991La07 show a 381.7 keV γ deexciting their level at 2967 keV. This level is not confirmed in the newer references.
			633.8 6	7.6 [#] 27	2686.9+x	$(31/2^{-})$	[E2]	0.01703	B(E2)(W.u.)>6.9
	3376.4+x	$(31/2^+)$	296.3 <i>3</i>	31 [#] 9	3080.2+x	$(29/2^+)$	D ^b		
			851.7 9	100 38	2524.9+x	(27/2 ⁺)	Q ^b		I _γ : From I(γ+ce) in (³⁰ Si,5nγ) – α=0.00915 for (E2). Other: 100 38 (²⁴ Mg,5nγ).
	3414.8+x	$(33/2^+)$	742.3 7	100	2672.2+x	$(29/2^+)$	Q ^b		
	3418.8+x		158.0 <i>3</i>	13 [@] 6	3260.7+x	$(31/2^{-})$			
			834.0 8	100 [@] 31	2584.8+x	$(29/2^{-})$			
	3541.6+x	$(35/2^{-})$	547.0 5	100	2994.6+x	$(31/2^{-})$	Q ^b		
	3542.8+x	$(33/2^+)$	409.5 4	100 [#] 23	3133.4+x	$(31/2^+)$	D ^b		
			773.5 8	68 [#] 18	2769.4+x	(29/2 ⁺)			I_{γ} : Other value: 15 6 (³⁰ Si,5nγ) can be obtained from total intensity assuming 409.5γ as (E2).
	3607.0+x		996.5 6	100	2612.5+x	$(33/2^+)$			E_{γ} : From (²⁴ Mg,5n γ) – γ ray seen only by 1996Ba54 (²⁴ Mg,5n γ).
	3640.3+x	$(37/2^{-})$	319.6 3	100	3320.7+x	$(35/2^{-})$	D ^b		
	3673.0+x	$(33/2^+)$	1145.2 11	100	2526.9+x	$(29/2^+)$	Q ^b		
	3702.2+x	$(33/2^+)$	1030.1 10	50 [@] 50	2672.2+x	$(29/2^+)$			
			1174.9 <i>10</i>	100 [@] 50	2526.9+x	$(29/2^+)$			
	3722.3+x	$(37/2^{-})$	401.6 4	100 [#] 22	3320.7+x	$(35/2^{-})$	D		
			783.1 8	25 # 6	2939.2+x	$(33/2^{-})$	Q ^b		
	3741.8+x	$(35/2^{-})$	613.2 6	100	3128.6+x	$(31/2^{-})$	Q ^b		
	3772.1+x	$(35/2^+)$	395.8 4	100	3376.4+x	$(31/2^+)$	Q ^b		
	3822.5+x	$(35/2^{+})$	540.4 5	100	3282.1+x	$(33/2^+)$	- h		
	3839.5+x	$(33/2^{+})$	462.9 5	100'' 25	3376.4+x	$(31/2^+)$	D^{b}		
	2860.0 +		759.4 8	18" 7	3080.2+x	$(29/2^+)$	Q		$E_{\rm c} = E_{\rm row} (^{24}M_{\odot} - 5_{\rm rel}) + 1006 D_{\odot} 5.4$
	3800.0+X	$(25/2^{-})$	447.00	100	2419.8+x	$(33/2^{+})$	D	d	E_{γ} : From (- Mg, $5n\gamma$) 1990Ba54.
	2024 8 + w	(33/2)	407.0 5	$100 \\ 100 @ 17$	2542 8 L m	$(22/2^{+})$	D D		
	3924.8+X	(55/2)	510.2.5	100^{-17}	2414 8 + w	(33/2)	D	с	
			510.2 J 701 5 9	25^{-9}	2122 4 H	(33/2)	ob		
l	3987 5+v		739 5 5	40 - <i>10</i> 100	3133.4+X 3249.9+x	(31/2) $(31/2^{-})$	Q.		E.: From $(^{24}Mg 5ny)$
l	3991.7+x	$(35/2^+)$	448.9 4	100	3542.8 + x	$(33/2^+)$			Ly, 110m (145,017).
l	3997.1+x	$(37/2^+)$	294.8 <i>3</i>	16 [@] 8	3702.2+x	$(33/2^+)$	(Q) ^{<i>b</i>}		

γ (¹⁹³Pb) (continued)

E _i ((level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ιγ ^{&}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	Comments
399	97.1+x	$(37/2^+)$	324.0 <i>3</i>	$16^{@} 8$	3673.0+x	$(33/2^+)$		
			581.8 6	100 [@] 36	3414.8+x	(33/2+)	(Q)	E_{γ} : 1996Ba54 (²⁴ Mg,5n γ) place a 581.4-keV transition as deexciting their level at 4441 keV. This level has no analogue in the scheme of 1996Du18 (³⁰ Si,5n γ).
400)3.5+x	$(35/2^+)$	164.0 <i>3</i>	100 [@] 11	3839.5+x	$(33/2^+)$	D^{b}	
			461.2 5	$20^{@} 8$	3542.8+x	$(33/2^+)$		
405	55.9+x	$(39/2^{-})$	415.6 4	100	3640.3+x	$(37/2^{-})$	(D) ^b	
406	53.1+x	$(37/2^{-})$	156.5 <i>3</i>	100	3906.6+x	(35/2-)		
411	l6.5+x	$(37/2^+)$	701.7 7	100	3414.8+x	$(33/2^+)$	Q^{b}	
413	36.1+x	(39/2 ⁻)	413.8 4	100 [#] 24	3722.3+x	$(37/2^{-})$	D ^b	
			815.4 8	44 [#] 13	3320.7+x	$(35/2^{-})$		
414	49.4+x	$(37/2^+)$	146.0 <i>3</i>	100 [@] 13	4003.5+x	$(35/2^+)$	D^{b}	
			377.3 4	33 [@] 16	3772.1+x	$(35/2^+)$		
416	57.2+x	$(39/2^{-})$	444.9 <i>4</i>	100 [#] 32	3722.3+x	$(37/2^{-})$	D ^b	
			846.5 8	32 [#] 15	3320.7+x	$(35/2^{-})$		
418	30.3+x	$(39/2^{-})$	638.7 6	100	3541.6+x	$(35/2^{-})$	Q ^b	
419	91.4+x	$(39/2^+)$	419.6 4	100	3772.1+x	$(35/2^+)$	Q^{b}	
421	l0.9+x	$(37/2^+)$	438.7 4	100	3772.1+x	$(35/2^+)$	D^{b}	
423	39.2+x		632.2 6	100	3607.0+x			E_{γ} : From (²⁴ Mg,5n γ).
427	71.1+x	(39/2-)	208.0 3	100	4063.1+x	(37/2-)	D^{b}	
429	98.0+x	$(39/2^+)$	148.4 <i>3</i>	100	4149.4+x	$(37/2^+)$	D^{b}	
431	l3.4+x	$(37/2^+)$	388.7 4	100 [@] 40	3924.8+x	$(35/2^+)$		
			770.2 8	40 [@] 50	3542.8+x	$(33/2^+)$		
436	50.8+x	$(37/2^+)$	946.0 9	100	3414.8+x	$(33/2^+)$		
438	38.1+x	$(41/2^+)$	90.0 <i>3</i>	Ø	4298.0+x	$(39/2^+)$	Ь	
			196.9 <i>3</i>	100 ^w 23	4191.4+x	$(39/2^+)$	D ^U	
439	99.2+x	$(39/2^{-})$	657.4 7	100	3741.8+x	$(35/2^{-})$	Q_{h}^{ν}	
443	35.2+x	$(39/2^{-})$	693.4 7	100	3741.8+x	$(35/2^{-})$	Q ⁰	
444	45.5+x	$(39/2^+)$	234.5 <i>3</i>	46 ^w 12	4210.9+x	$(37/2^+)$		
			296.4 <i>3</i>	32 ^w 16	4149.4+x	$(37/2^+)$		
			448.1 <i>4</i>	100 27	3997.1+x	$(37/2^+)$	1	
447	70.6+x	$(41/2^{-})$	303.4 <i>3</i>	29 [#] 11	4167.2+x	(39/2 ⁻)	D	
			334.5 <i>3</i>	100# 26	4136.1+x	(39/2-)	D	
			748.3 7	14# 6	3722.3+x	$(37/2^{-})$		
453	32.8+x	$(41/2^{-})$	261.7 5	100 [@] 36	4271.1+x	$(39/2^{-})$	D	
			396.6 4	68 [@] 50	4136.1+x	$(39/2^{-})$		

297

 γ ⁽¹⁹³Pb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	E _f	J_f^{π}	Mult. ^a	α ^e	Comments
4537.0+x	$(43/2^+)$	148.9 3	100	4388.1+x	$(41/2^+)$	$\overline{D^{b}}$		
4538.8+x	$(41/2^{-})$	482.9 5	100	4055.9+x	$(39/2^{-})$	D ^b		
4564.6+x	$(39/2^+)$	567.5 6	100	3997.1+x	$(37/2^+)$			
4577.2+x	$(41/2^+)$	279.2 3	100	4298.0+x	$(39/2^+)$	$D^{\boldsymbol{b}}$		
4591.3+x	$(41/2^{-})$	424.1 4	100 [#] 38	4167.2+x	(39/2 ⁻)	D^{b}		
		455.3 5	54 [#] 31	4136.1+x	(39/2 ⁻)			
		869.1 9	92 [#] 38	3722.3+x	$(37/2^{-})$			
4634.9+x		647.5 5	100	3987.5+x				E_{γ} : From (²⁴ Mg,5n γ) 1996Ba54.
4661.8+x		545.3 5	100	4116.5+x	$(37/2^+)$	1		
4760.6+x	$(41/2^+)$	644.1 6	100	4116.5+x	$(37/2^+)$	Q_{I}^{D}		
4769.0+x	$(45/2^+)$	232.0 [‡] 3	100	4537.0+x	$(43/2^+)$	D		
4784.2+x	$(41/2^+)$	338.7 3	100	4445.5+x	$(39/2^+)$	- h		
4828.1+x	$(43/2^{-})$	295.2 3	15 10	4532.8+x	$(41/2^{-})$	D^{ν}		
		357.7 4	100 22	4470.6+x	$(41/2^{-})$	D ^D		
4861 6+x	$(43/2^{-})$	092.3 / 328.8 3	91 46	4130.1+x 4532.8+x	(39/2) $(41/2^{-})$			
1001.01X	(15/2)	390.8.4	100 76	4470.6+x	$(11/2^{-})$	Db		
4893 1+x	$(43/2^{-})$	712.8.7	100 / 0	4180.3 + x	(11/2) $(39/2^{-})$	0^{b}		
4917.0+x	$(43/2^{-})$	325.7 3	100	4591.3+x	$(41/2^{-})$	X		
4945.1+x	$(43/2^+)$	367.9 4	100	4577.2+x	$(41/2^+)$	D ^b		
5033.3+x	$(43/2^{-})$	442.0 4	100	4591.3+x	$(41/2^{-})$	D ^b		
5060.6+x	$(47/2^+)$	291.6 [‡] 3	100	4769.0+x	$(45/2^+)$	D ^b		B(M1)=5.27 64 from 1998Cl06.
5092.8+x	$(45/2^{-})$	175.9 <i>3</i>	13 [@] 13	4917.0+x	$(43/2^{-})$	D ^b		
		231.1 3	100 [@] 40	4861.6+x	$(43/2^{-})$	D ^b		
		264.8 <i>3</i>	35 [@] 22	4828.1+x	$(43/2^{-})$		С	
5165.8+x	$(43/2^{-})$	730.6 7	100 [#] 40	4435.2+x	$(39/2^{-})$	$Q^{\boldsymbol{b}}$		
		766.6 8	53 [#] 27	4399.2+x	$(39/2^{-})$			
5169.4+x	$(45/2^+)$	224.3 3	100	4945.1+x	$(43/2^+)$	D+Q ^b		
5182.0+x	$(45/2^{-})$	353.7 4	100 [#] 43	4828.1+x	$(43/2^{-})$	$\mathbf{D}^{\boldsymbol{b}}$		
		711.7 7	29 [#] 14	4470.6+x	$(41/2^{-})$			
5218.4+x	$(45/2^{-})$	390.3 4	100	4828.1+x	$(43/2^{-})$	$D^{\boldsymbol{b}}$		
5281.1+x	$(43/2^{-})$	1225.2 12	100	4055.9+x	(39/2-)	1		
5331.9+x	$(47/2^{-})$	239.1 [§] 3	100	5092.8+x	$(45/2^{-})$	D ^b		
5425.8+x	$(49/2^+)$	365.2 [‡] 4	100 [@] 9	5060.6+x	$(47/2^+)$	(M1) ^b	0.250	B(M1)(W.u.)=2.0 + 4 - 5
5436.9+x	$(47/2^+)$	656.8 7 267.5 <i>3</i>	13.1 [@] 44 100	4769.0+x 5169.4+x	(45/2 ⁺) (45/2 ⁺)	[E2] ^b D	0.01576	B(E2)(W.u.)=41 + 16 - 17

298

$^{193}_{82} \mathrm{Pb}_{111} \text{--} 13$

NUCLEAR DATA SHEETS

γ (¹⁹³Pb) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^\dagger$	Iγ ^{&}	E_f	\mathbf{J}_f^{π}	Mult. ^a	a ^e	Comments
5439.8+x	$(45/2^{-})$	406.5 4	100	5033.3+x	$(43/2^{-})$	D ^b		
5501.7+x	$(47/2^{-})$	319.7 <i>3</i>	100	5182.0+x	$(45/2^{-})$	D ^b		
5597.5+x	$(49/2^{-})$	265.6 [§] 3	100	5331.9+x	$(47/2^{-})$	D ^b		
5668.3+x	$(45/2^{-})$	1129.5 11	100	4538.8+x	$(41/2^{-})$			
5763.1+x	$(49/2^+)$	326.2 3	100	5436.9+x	$(47/2^+)$	D^{b}		
5802.2+x	$(47/2^{-})$	362.4 4	100	5439.8+x	$(45/2^{-})$	1		
5815.4+x	(51/2+)	389.6 [‡] 4	100 [@] 10	5425.8+x	(49/2+)	(M1) ^b	0.210	B(M1)(W.u.)=1.7 5 Mult.: From (30 Si,5n γ) and RUL. B(M1)=4.01 +95-76 from 1998Cl06.
		754.7 8	24 [@] 6	5060.6+x	$(47/2^+)$	[E2]	0.01173	B(E2)(W.u.)=38 13
5825.3+x	$(49/2^{-})$	323.6 <i>3</i>	100	5501.7+x	$(47/2^{-})$	D^{b}		
5927.0+x	$(51/2^{-})$	329.5 [§] <i>3</i>	100	5597.5+x	$(49/2^{-})$	D+Q ^b		
6001.5+x	$(51/2^{-})$	176.3 <i>3</i>	100	5825.3+x	$(49/2^{-})$	D+Q ^b		
6145.5+x	$(51/2^+)$	382.4 4	100	5763.1+x	$(49/2^+)$	D+Q ^b		
6231.4+x	(53/2+)	416.1 [‡] 4	100 [@] 13	5815.4+x	(51/2+)	(M1) ^b	0.176	B(M1)(W.u.)=1.4 4 Mult.: From $({}^{30}\text{Si},5n\gamma)$ and RUL.
		805.6 8	7.3 [@] 37	5425.8+x	$(49/2^+)$	[E2]	0.01025	B(E2)(W.u.)=9 5
6285.2+x	(53/2-)	283.7 <i>3</i>	100	6001.5+x	$(51/2^{-})$	D ^b		
6302.6+x	$(53/2^{-})$	375.6 [§] 4	100	5927.0+x	$(51/2^{-})$	D+Q ^b		
6597.1+x	$(55/2^{-})$	311.9 <i>3</i>	100	6285.2+x	$(53/2^{-})$	D^{b}		
6657.6+x	$(55/2^+)$	426.1 [‡] 4	100 [@] 16	6231.4+x	$(53/2^+)$			
		842.2 8	29 [@] 10	5815.4+x	$(51/2^+)$			
6715.5+x	$(55/2^{-})$	412.9 4	100	6302.6+x	$(53/2^{-})$			
6927.5+x	$(57/2^{-})$	330.4 3	100	6597.1+x	$(55/2^{-})$	D+Q ^b		
7090.3+x	$(57/2^+)$	432.7 [‡] 4	$100^{\textcircled{0}}{33}$	6657.6+x	$(55/2^+)$			
		858.8 <i>9</i>	19 [@] 19	6231.4+x	$(53/2^+)$			
7154.7+x	$(57/2^{-})$	439.2 4	100	6715.5+x	$(55/2^{-})$	D ^b		
7312.0+x	$(59/2^{-})$	384.5 4	100	6927.5+x	$(57/2^{-})$	D ^b		
7516+x?	$(59/2^+)$	426.1 ^{<i>f</i>} 10	100	7090.3+x	$(57/2^+)$			
7713.5+x	$(61/2^{-})$	401.5 4	100	7312.0+x	$(59/2^{-})$			
7932+x?	$(61/2^+)$	416.1 ^J 10	100	7516+x?	$(59/2^+)$			
277.0+y 594.3+y	J+∠ I+4	277.03	100	y 277 0±v	ј I+2			
951.6+v	J+4 J+6	357.3 3	100	594.3+v	J+2 J+4			
1349.1+y	J+8	397.5 3	100	951.6+y	J+6			
1786.9+y	J+10	437.8 3	100	1349.1+y	J+8			
2264.3+y	J+12	477.4 <i>3</i>	100	1786.9+y	J+10			

 γ ⁽¹⁹³Pb) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ ^{&}	\mathbf{E}_{f}	\mathbf{J}_f^π	$I_{(\gamma+ce)}$	Comments
2781.6+v	J+14	517.3 4	100	2264.3+v	J+12		
3337.7+y	J+16	556.1 3	100	2781.6+y	J+14		
3932.5+y	J+18	594.8 <i>4</i>	100	3337.7+y	J+16		
4565.9+y	J+20	633.4 5	100	3932.5+y	J+18		
5237.7+y	J+22	671.8 6	100	4565.9+y	J+20		
5945.9+v?	J+24	708.2 ^f 8		5237.7+v	J+22	0.05 4	SD band transition from 1996Du05, not confirmed by 1999Ro21.
190.2+z	J1+2	190.2 5	100	Z	J1		······································
422.8+z	J1+4	232.6 3	100	190.2+z	J1+2		
698.0+z	J1+6	275.2 3	100	422.8+z	J1+4		
1015.9+z	J1+8	317.9 <i>3</i>	100	698.0+z	J1+6		
1376.8+z	J1+10	360.9 <i>3</i>	100	1015.9+z	J1+8		
1780.3+z	J1+12	403.5 <i>3</i>	100	1376.8+z	J1+10		
2226.2+z	J1+14	445.9 <i>3</i>	100	1780.3+z	J1+12		
2714.4+z	J1+16	488.2 4	100	2226.2+z	J1+14		
3242.4+z	J1+18	528.0 5	100	2714.4+z	J1+16		
3812.2+z	J1+20	569.8 6	100	3242.4+z	J1+18		
4422.7+z	J1+22	610.5 7	100	3812.2+z	J1+20		
5072.7+z	J1+24	650.0 7	100	4422.7+z	J1+22		
5762.5+z?	J1+26	689.8 ^f 8	100	5072.7+z	J1+24		SD band transition from 1996Du05, not confirmed by 1999Ro21.
251.5+u	J2+2	251.5 6	100	u	J2		•
543.0+u	J2+4	291.5 <i>3</i>	100	251.5+u	J2+2		
875.4+u	J2+6	332.4 <i>3</i>	100	543.0+u	J2+4		
1247.5+u	J2+8	372.1 <i>3</i>	100	875.4+u	J2+6		
1659.4+u	J2+10	411.9 <i>3</i>	100	1247.5+u	J2+8		
2110.0+u	J2+12	450.6 <i>3</i>	100	1659.4+u	J2+10		
2598.9+u	J2+14	488.9 <i>3</i>	100	2110.0+u	J2+12		
3125.5+u	J2+16	526.6 4	100	2598.9+u	J2+14		
3688.9+u	J2+18	563.4 <i>4</i>	100	3125.5+u	J2+16		
4288.8+u	J2+20	599.9 <i>5</i>	100	3688.9+u	J2+18		
4925.8+u	J2+22	637.0 5	100	4288.8+u	J2+20		
5598.0+u	J2+24	672.2 6	100	4925.8+u	J2+22		
6307.2+u	J2+26	709.2 7	100	5598.0+u	J2+24		E_{γ} : 709.3 6 (1996Du05) was assigned to SD-4 band.
273.0+v?	J3+2	273.0 ^{<i>f</i>} 7	100	v	J3		SD band transition from 1996Du05, not confirmed by 1999Ro21.
586.4+v	J3+4	313.4 6	100	273.0+v?	J3+2		
939.5+v	J3+6	353.1 4	100	586.4+v	J3+4		
1331.4+v	J3+8	391.9 <i>3</i>	100	939.5+v	J3+6		
1761.4+v	J3+10	430.0 <i>3</i>	100	1331.4+v	J3+8		
2228.5+v	J3+12	467.1 <i>4</i>	100	1761.4+v	J3+10		
2732.4+v	J3+14	503.9 4		2228.5+v	J3+12	1.00 10	
3271.9+v	J3+16	539.5 4		2732.4+v	J3+14	1.02 10	
3847.0+v	J3+18	575.1 <i>3</i>		3271.9+v	J3+16	0.82 8	
4457.0+v	J3+20	610.0 5		3847.0+v	J3+18	0.66 7	

NUCLEAR DATA SHEETS

γ (¹⁹³Pb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	$I_{(\gamma+ce)}$	Comments
5101.5 + v	$\overline{13+22}$	644.5.6	4457.0+v	$\overline{13+20}$	0.31.7	
5777.9+v	J3+24	676.4 6	5101.5+v	J3+22	0.20 7	
6485.1+v	J3+26	707.2 8	5777.9+v	J3+24	0.07 7	E_{y} : 707.3 6 (1996Du05) was assigned to SD-3 band.
100.5+w	J4+1	101^{f}	W	J4		
213.2+w	J4+2	112^{f}	100.5+w	J4+1		
		213.2 4	W	J4	0.53 10	
335.1+w	J4+3	122.0 5	213.2+w	J4+2		
		234.6 5	100.5+w	J4+1	0.13 7	
467.9+w	J4+4	132.9 5	335.1+w	J4+3		
		254.6 7	213.2+w	J4+2	0.72 11	
610.6+w	J4+5	142.5 5	467.9+w	J4+4		
		275.5 5	335.1+w	J4+3	0.35 7	
763.9+w	J4+6	153.2 5	610.6+w	J4+5		
		296.2 5	467.9+w	J4+4	0.71 14	
926.8+w	J4+7	163.0 5	763.9+w	J4+6		
		316.2 5	610.6+w	J4+5	0.45 7	
1099.9+w	J4+8	172.8 5	926.8+w	J4+7		
		336.1 4	763.9+w	J4+6	0.91 10	
1282.6+w	J4+9	182.7 5	1099.9+w	J4+8		
		355.9 5	926.8+w	J4+7	0.87 8	
1475.2+w	J4+10	193.0 5	1282.6+w	J4+9		
	.	375.1 5	1099.9+w	J4+8	0.92 10	
1677.0+w	J4+11	201.9.5	1475.2+w	J4+10		
1000 -		394.4 5	1282.6+w	J4+9	0.95 9	
1888.7+w	J4+12	211.7 5	16/7.0+w	J4+11	1.04.14	
21 00.0	14.10	413.5 5	14/5.2+w	J4+10	1.04 14	
2109.8+w	J4+13	221.0 5	1888./+w	J4+12	1 02 10	
		432.8 4	16//.0+w	J4+11	1.02 10	
2340.0+w	J4+14	231	2109.8+w	J4+13		
		451.2 5	1888.7+w	J4+12	0.89 10	
2580.4+w	J4+15	470.64	2109.8+w	J4+13	0.90 9	
2828.5+w	J4+16	488.6 5	2340.0+w	J4+14	0.73 10	
3087.8+W	J4+1/	507.4 4	2580.4+W	J4+15	0.83 9	
3355.0+W	J4+18 J4+10	526.5 5	2828.5+W	J4+10	0.95 10	
3031.3+W	J4+19	543.5 5	3087.8+W	$J_{4+1/}$	0.757	
3917.2+W	J4+20 I4+21	570 7 5	2621 2 +	J4+18 I4+10	0./1.13	
4211.0+W	J4+21 I4+22	506 2 7	2017 2 + ····	J4+19 I4+20	0.44 /	
4313.4+W	J4+22 I4+22	590.2 / 614.6 7	4211 0 J m	J_{4+20} I_{4+21}	0.35 10	
+623.0+W 5144 7+W	J4+23 I4±24	631 3 8	4211.0+W	J4+21 I4±22	0.337	
5144.74 5/75 1 ± 32	J+⊤∠4 I/⊥25	649 5 5	4825 6J W	J+⊤∠∠ I/⊥??	0.45 10	
$5475.1\pm W$	J+⊤∠J I∕I⊥26	666 8 0	-7023.0+W	J4⊤23 I4⊥24	0.257	
J011.JTW	J4⊤∠U	000.09	5144.7±W	J4724	0.10 2	

301

 $^{193}_{82} \mathrm{Pb}_{111}$ -16

 γ ⁽¹⁹³Pb) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	J_f^{π}	$I_{(\gamma+ce)}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	J_f^{π}	$I_{(\gamma+ce)}$
6159.1+w	J4+27	684.0 6	5475.1+w	J4+25	0.13 7	1362.6+t	J6+8	398.5 5	964.1+t	J6+6	1.00 17
6512.0+w	J4+28	700.5 8	5811.5+w	J4+26	0.18 9	1798.5+t	J6+10	435.9 <i>4</i>	1362.6+t	J6+8	0.58 11
6877.0+w	J4+29	717.97	6159.1+w	J4+27	0.07 7	2270.8+t	J6+12	472.3 6	1798.5+t	J6+10	0.51 7
260.6+s	J5+2	260.6 7	S	J5	0.24 4	2778.9+t	J6+14	508.1 6	2270.8+t	J6+12	0.58 8
560.4+s	J5+4	299.8 6	260.6+s	J5+2	0.51 7	3322.1+t	J6+16	543.2 6	2778.9+t	J6+14	0.36 7
900.5+s	J5+6	340.1 4	560.4+s	J5+4	0.52 7	3900.1+t	J6+18	578.0 5	3322.1+t	J6+16	0.67 8
1279.4+s	J5+8	378.9 5	900.5+s	J5+6	0.63 10	4512.1+t	J6+20	612.0 6	3900.1+t	J6+18	0.29 5
1696.6+s	J5+10	417.2 5	1279.4+s	J5+8	1.00 18	5158.9+t	J6+22	646.8 7	4512.1+t	J6+20	0.43 7
2150.6+s	J5+12	454.0 5	1696.6+s	J5+10	0.69 11	212.9+a	J7+2	212.9 5	а	J7	0.40 5
2641.7+s	J5+14	491.1 5	2150.6+s	J5+12	0.54 11	468.7+a	J7+4	255.8 5	212.9+a	J7+2	1.00 12
3167.8+s	J5+16	526.1 5	2641.7+s	J5+14	0.82 12	766.0+a	J7+6	297.3 6	468.7+a	J7+4	0.36 5
3729.1+s	J5+18	561.3 5	3167.8+s	J5+16	0.80 12	1102.5+a	J7+8	336.6 6	766.0+a	J7+6	0.54 7
4325.5+s	J5+20	596.4 6	3729.1+s	J5+18	0.65 12	1478.3+a	J7+10	375.8 5	1102.5+a	J7+8	0.63 7
4956.6+s	J5+22	631.1 7	4325.5+s	J5+20	0.44 10	1894.2+a	J7+12	415.9 <i>4</i>	1478.3+a	J7+10	0.62 7
5620.8+s	J5+24	664.2 7	4956.6+s	J5+22	0.35 10	2349.7+a	J7+14	455.5 <i>4</i>	1894.2+a	J7+12	0.60 5
281.8+t	J6+2	281.8 6	t	J6	0.15 2	2845.3+a	J7+16	495.6 6	2349.7+a	J7+14	0.40 7
603.2+t	J6+4	321.5 6	281.8+t	J6+2	0.43 7	3380.7+a	J7+18	535.4 7	2845.3+a	J7+16	0.29 5
964.1+t	J6+6	360.9 5	603.2+t	J6+4	0.62 11	3956.0+a	J7+20	575.3 8	3380.7+a	J7+18	0.12 4

302

[†] From (³⁰Si, $5n\gamma$) and (HI, $xn\gamma$):SD data, except where noted.

[‡] Magnetic dipole band 2 transition, common to both 1996Du18 (30 Si,5n γ) and 1996Ba54 (24 Mg,5n γ), but the latter reference shows the band levels shifted by \approx 45 keV, relative to those given in 1996Du18, with respect to the 4297-keV bandhead (see notes in the respective datasets).

 γ ray also observed and placed in dipole band 1a by 1996Ba54 (called Band 1b in the reference), but are unable to establish the level energies because they do not observe the transitions linking the members of this dipole cascade to lower lying levels.

& Photon branching for each level from $({}^{16}O, 5n\gamma)$, except otherwise noted. For SD bands, the values are relative transition intensities within each band.

[@] From (³⁰Si,5nγ).

[#] From (²⁴Mg, $5n\gamma$).

^{*a*} From $({}^{16}\text{O},5n\gamma) - 1991\text{La}07$, except otherwise noted.

^{*b*} From (³⁰Si, $5n\gamma$).

^c Internal conversion coefficient calculated assuming an [M1] multipolarity.

^d Internal conversion coefficient calculated assuming an [E2] multipolarity.

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $^{193}_{82}{\rm Pb}_{111}$

¹⁹³₈₂Pb₁₁₁

Adopted Levels, Gammas (continued)

 $^{193}_{82}\text{Pb}_{111}$

¹⁹³Bi ε decay 1984Co13,2010Co13

Parent: ¹⁹³Bi: E=0.0; $J^{\pi} = (9/2^{-})$; $T_{1/2} = 63.6$ s 30; $Q(\varepsilon) = 6310$ 50; $\%\varepsilon + \%\beta^{+}$ decay=96.5 15

1984Co13: Sources from ¹⁶O bombardments of natural rhenium, E(¹⁶O)=170 MeV, and ²⁰Ne bombardments of ¹⁸¹Ta,

 $E(^{20}Ne)=137$ MeV; mass separation; measured $E\gamma$, $I\gamma$, prompt and delayed $\gamma\gamma$ and $x\gamma$ coin.

1984Co13 report the identification of 21 γ rays with T_{1/21/2}=65 s 4, but do not give energy and intensity values.

2010Co13: ¹⁹³Bi was produced from fusion-evaporation reactions using ¹⁴N, ¹⁶O and ²⁰Ne beams on natural Ir (37.3% ¹⁹¹Ir, 62.7% ¹⁹³Ir), natural Re (37.4% ¹⁸⁵Re, 62.6% ¹⁸⁷Re) and ¹⁸¹Ta targets, respectively. The radioactive recoils were subsequently ionized in a plasma ion source, mass separated and implanted in an aluminized mylar tape. Single γ -ray energy spectra were recorded with two coaxial HPGe detectors. Measured γ -ray energies and relative intensities along with possible cross-over (sum peak). γ -ray placements are not presented.

γ(¹⁹³ P	b)
γ(P	b)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	Comments
^x 174.5	100	
^x 196.8	5.4	
^x 290.6	7.8	
x320.1	7.7	
^x 354	8.7	
^x 505.9	5.2	
^x 554.2	38	
<i>x</i> 621.2	9.2	
^x 681.1	48	
^x 687.2	12.4	
^x 711.1	48.8	
^x 739.1	13.5	
^x 750.1	6.3	E_{γ} : Possible cross-over of 196.8 γ + 554.2 γ .
^x 818.5	14.2	E_{γ} : Possible cross-over of 196.8 γ + 621.2 γ .
^x 861.8	20	E_{γ} : Possible cross-over of 174.5 γ + 687.6 γ .
^x 873.9	29.4	E_{γ} : Possible cross-over of $320.1\gamma + 554.2\gamma$.
^x 995.7	23.8	
^x 1022.3	12.8	
^x 1049.1	9.9	E_{γ} : Possible cross-over of 174.5 γ + 873.9 γ .
<i>x</i> 1116.1	8.4	
^x 1124.7	5.2	
^x 1171.6	10.1	E_{γ} : Possible cross-over of 174.5 γ + 995.7 γ .
^x 1630.6	0.4	E_{γ} : Possible cross-over of 505.9 γ + 1124.7 γ .

[†] From 2010Co13.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁷**Po** *α* decay (53.6 s)

Parent: ¹⁹⁷Po: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=53.6$ s *10*; $Q(\alpha)=6412$ *3*; $\%\alpha$ decay=44 7

- ¹⁹⁷Po-T_{1/2}: Weighted average of 53 s *1* (1993Wa04), 58 s *3* (1967Le21), 52 s *4* (1967Si09), and 60 s *6* (1971Ho01). Other value: 84 s *16* (1996Ta18).
- 1981Sc01: sources from decay of ²⁰¹Rn parent; measured evaporation-residue α spectra (E and gas Δ E detectors), yields and angular distributions of fusion products. Deduced $\%\alpha$.
- 1971Ho01: sources from decay of 201Rn parent, mass separation; measured E α , I α (silicon surface-barrier detectors, multispectrum analysis).

1967Si09: sources from ^{185,187}Re(¹⁹F,xn), ¹⁹⁴Pt(¹²C,xn), helium-jet transport; measured $E\alpha$, $I\alpha$ (solid-state detectors). 1967Tr06: sources from decay of ¹⁹⁷At parent, helium-jet transport; measured $E\alpha$, $I\alpha$ (silicon surface-barrier detectors). Other: 1967Le21.

¹⁹³Pb Levels

E(level)	_J ^π †
0.0	$(3/2^{-})$

[†] From Adopted Levels.

α radiations

Eα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
6281 <i>4</i>	0.0	100	1.8	$E\alpha$: from 1991Ry01 (based on recalibrated values of: 1971Ho01 (6279 9), 1967Si09 (6290 10),
				1967Tr06 (6280.5)). Other: 6326 keV 27 (2015We13).

[†] $r_0(^{193}Pb)=1.501$ Average of $r_0(^{192}Pb)=1.506$ 6 and $r_0(^{194}Pb)=1.496$ 3 (1998Ak04).

[±] For absolute intensity per 100 decays, multiply by 0.44 7.

$^{197}\mathbf{Po}~\alpha$ decay (25.8 s)

Parent: ¹⁹⁷Po: E=230 *SY*; J^{π} =(13/2⁺); $T_{1/2}$ =25.8 s *1*; Q(α)=6412 *3*; % α decay=84 *9*

¹⁹⁷Po-E: From 2017Au03 (systematics value: 230 keV 80). 204 keV sy in ¹⁹⁷Po Adopted Levels (2005Hu03). An average value of E(ex)≈201 keV can be obtained using systematic values in 2017Au03 for ¹⁹⁵Po(E≈90 keV) and ¹⁹⁹Po(E=312 keV).

¹⁹⁷Po-T_{1/2}: From 1993Wa04. Other values: 29 s 9 (1967Le21), 26 s 2 (1967Si09), 27 s 3 (1971Ho01), 40 s *10* (1982Bo04), and 32 s 2 (1996Ta18).

2002Va13: ¹⁶²Dy(⁴⁰Ar,⁵n) E(lab)=189 MeV. Magnetic mass separator for recoiling fragments. Implantation in position-sensitive Si strip detector. Reaction product identification by coincidences between recoil fragments and links in the α -ray decay chain. Determine α - γ and α -x-ray coincidences.

1982Bo04: sources from spallation of uranium, thorium, gold, and tantalum by 5-GeV protons, helium-jet transport; measured $E\alpha$ (silicon surface-barrier detectors).

1981Sc01: sources from decay of ²⁰¹Rn parent; measured evaporation-residue α spectra (E and gas Δ E detectors), yields and angular distributions of fusion products. Deduced $\%\alpha$.

1971Ho01: sources from decay of 201 Rn parent, mass separation; measured E α , I α (silicon surface-barrier detectors, multispectrum analysis).

1967Si09: sources from ^{185,187}Re(¹⁹F,xn), ¹⁹⁴Pt(¹²C,xn), helium-jet transport; measured $E\alpha$, $I\alpha$ (solid-state detectors). 1967Tr06: sources from decay of ¹⁹⁷At parent, helium-jet transport; measured $E\alpha$, $I\alpha$ (silicon surface-barrier detectors). Other: 1967Le21.

¹⁹³Pb Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0+x	(13/2+)	5.8 min 2	E(level): Level energy 130 keV 80 in 2017Au03 from systematics. J^{π} , $T_{1/2}$: From Adopted Levels.
757+x	(13/2+)		E(level): Based on two pairs of 5622α and 757 keV <i>l</i> γ -ray coincidences in ¹⁹⁷ Po decay (2002Va13).
			J^{π} : Suggested in 2002Va13, based on the low hindrance factor for the 5622 keV α ray feeding this level from the 13/2 ⁺ state in ¹⁹⁷ Po.

α radiations

Εα	E(level)	_Iα [‡]	HF^{\dagger}	Comments
5622 [#] 25	757+x	≥0.05	≤1.3	HF: In 2002Va13 ≤ 1.7 10. E α ,I α : From 2002Va13. Intensity listed as ≥ 0.05 3 because of the nonobservation of α -e ⁻ coincidences.
6383.4 [#] 24	0+x	99.3 <i>35</i>	1.2	 Eα: from 1991Ry01 (based on recalibrated values of: 1982Bo04 (6385 3), 1971Ho01 (6380 9), 1967Si09 (6387 8), 1967Tr06 (6378 5)). Other value: 6385 keV 10 (2002Va13). Iα: from 2002Va13. HF: 2002Va13 gives a value of 2.0 2, no details for calculations are presented.

[†] $r_0(^{193}Pb)=1.501$ 5 From average of $r_0(^{192}Pb)=1.506$ 6 and $r_0(^{194}Pb)=1.496$ 3 (1998Ak04). For ¹⁹³Pb level energies,

X=130 keV was considered (see 0+x level comment).

[‡] For absolute intensity per 100 decays, multiply by 0.84 9.

[#] Estimated for a range of levels.

197 Po α decay (25.8 s) (continued) $\gamma(^{193}\text{Pb})$ $\frac{E_{\gamma}}{757 \ l} \quad \frac{E_{i}(\text{level})}{757 + x} \quad \frac{J_{i}^{\pi}}{(13/2^{+})} \quad \frac{E_{f}}{0 + x} \quad \frac{J_{f}^{\pi}}{(13/2^{+})} \quad \frac{E_{\gamma}}{E_{\gamma}: \text{ From 2002Va13.}}$ Comments ¹⁹⁷Po α decay (25.8 s) Decay Scheme $(13/2^+)$ $Q_{\alpha}=6412 3$ 230 25.8 s I %**α=**84 ¹⁹⁷₈₄Po₁₁₃ <u>Εα</u> <u>Iα</u> <u>HF</u> $(13/2^+)$ 5622 $\geq 0.05 \leq 1.3$ $(13/2^+)$ 6383.4 99.3 1.2

 $^{193}_{82}{\rm Pb}_{111}$

¹⁶⁸Er(³⁰Si,5nγ) **1996Du18**

1996Du18: ¹⁶⁸Er(³⁰Si,⁵n γ) E=159 MeV; EUROGAM II spectrometer, analysis performed by multi gated spectra and two-dimensional matrices; measured γ , $\gamma\gamma\gamma$, $\gamma(\theta)$.

¹⁹³Pb Levels

For a discussion of the configurations, bands, and band systematics in Pb nuclei, see 1996Ba54 and 1996Du18. All level energies are expressed relative to the $13/2^+$ isomeric state.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0+x [@]	(13/2+)	5.8 min 2	E(level): 130 keV 80 from $13/2^+$ level systematics (2017Au03). J ^{π} : From Adopted Levels.
881.6+x [@] 2	$(17/2^+)$		
1022.2+x [@] 3	$(15/2^+)$		
1401.7+x [@] 3	$(21/2^+)$		
1519.5+x [@] 5	$(19/2^+)$		
1550.0+x [@] 3	$(19/2^+)$		
1585.9+x [@] 4	$(21/2^{-})$	20.5 ns 4	
1994.5+x [@] 4	$(25/2^+)$		
$2058.8 + x^a 5$	$(23/2^{-})$		
2141.3+x [@] 4	$(23/2^+)$		
$2142.0+x^{a}5$	$(25/2^{-})$		
$2172.4 + x^{(0)} 6$	$(23/2^+)$		
2213.5+x [@] 4	$(25/2^+)$		
2322.0+x ^{<i>u</i>} 5	$(27/2^{-})$		
2426.4+x [@] 4	$(27/2^+)$		
2524.6+x ^{cc} 5	$(27/2^+)$		
$2526.8 + x^{\infty} 4$	$(29/2^+)$	0.4 7	Conf.: $v(i_{13/2}) \otimes \pi([505]9/2^- \otimes [514]7/2^-)_{K=8} + suggested in 1996Du18.$
2584.5+x ^e 5	(29/2)	9.4 ns /	
$2612.4 + x^{\circ}$ 3 2653 7 + x^{a} 7	$(33/2^+)$ $(27/2^-)$	180 ns 15	
$2671.0 \pm x^{\&} 6$	(21/2)		
2671.9 + x = 0 $2686.6 + x^{\circ}.6$	$(29/2^{-})$ $(31/2^{-})$		
$2707.0+x^{a}$ 6	$(29/2^{-})$		
2769.1+x ^{&} 5	$(29/2^+)$		
2938.8+x ^C 7	(33/2-)		
2994.7+ x^{a} 7	$(31/2^{-})$		
3079.9+x ^{&} 6	$(29/2^+)$		
$3128.4 + x^{a} 6$	$(31/2^{-})$		
3133.1+x ^{&} 5	$(31/2^+)$		
$3249.7 + x^{a} 8$	$(31/2^{-})$		
3260.4+x ⁰ 7	$(31/2^{-})$		
$3281.8 + x^{\circ} 7$	$(33/2^+)$		
$3320.3 + x^{\circ}$	(33/2)		
33/6.2+x 6	$(31/2^{+})$		
$3414.5 + x^{\circ} 6$	$(33/2^{+})$		
$3418.4 + x^{0} 7$	$(33/2^{-})$		
5541.7+X°° 9	(35/2)		

¹⁶⁸ Er(³⁰ Si 5n ₂)	1996Du18 (continued)
$Er(-5i,5ii\gamma)$	1990Dullo (continueu)

E(level) [†]	$J^{\pi \ddagger}$	S	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
3542.5+x ^{&} 6	$(33/2^+)$		4399.0+x ^a 11	$(39/2^{-})$	5425.5+x ^f 9	$(49/2^+)$
3639.9+x ^b 8	$(37/2^{-})$		4435.0+x ^a 11	$(39/2^{-})$	5436.6+x ^g 9	$(47/2^+)$
3672.7+x ^{&} 7	$(33/2^+)$		4445.2+x ^{&} 6	$(39/2^+)$	5439.4+x ^b 10	$(45/2^{-})$
3702.0+x ^{&} 6	$(33/2^+)$		4470.2+x ^c 8	$(41/2^{-})$	5501.3+x ^b 9	$(47/2^{-})$
3721.9+x ^C 7	$(37/2^{-})$		4532.5+x ^b 8	$(41/2^{-})$	5597.2+x ^d 9	$(49/2^{-})$
3741.6+x ^a 9	$(35/2^{-})$		4536.7+x ^f 7	$(43/2^+)$	5667.9+x ^b 15	$(45/2^{-})$
3771.8+x ^{&} 6	$(35/2^+)$		4538.4+x ^b 10	$(41/2^{-})$	5762.8+x ^g 10	$(49/2^+)$
3822.2+x ^{&} 9	$(35/2^+)$		4564.3+x ^{&} 9	$(39/2^+)$	5801.8+x ^b 11	$(47/2^{-})$
3839.2+x ^{&} 6	$(33/2^+)$		4576.9+x ^{&} 7	$(41/2^+)$	5815.1+x ^f 9	$(51/2^+)$
3906.2+x ^b 8	(35/2-)		4590.9+x ^b 8	$(41/2^{-})$	5824.9+x ^e 9	(49/2-)
3924.5+x ^{&} 6	$(35/2^+)$		4661.5+x ^{&} 11		5926.7+x ^d 9	$(51/2^{-})$
3991.4+x ^{&} 7	$(35/2^+)$		4760.3+x ^{&} 11	$(41/2^+)$	6001.2+x ^e 10	$(51/2^{-})$
3996.8+x ^{&} 6	$(37/2^+)$		4768.7+x ^f 8	$(45/2^+)$	6145.2+x ^g 11	$(51/2^+)$
4003.2+x ^{&} 6	$(35/2^+)$		4784.0+x ^{&} 7	$(41/2^+)$	6231.2+x ^f 10	$(53/2^+)$
4055.5+x ^b 9	(39/2 ⁻)		4827.8+x ^C 8	$(43/2^{-})$	6284.9+x ^e 10	$(53/2^{-})$
4062.7+x ^b 8	$(37/2^{-})$		4861.3+x ^b 8	$(43/2^{-})$	6302.3+x ^d 10	$(53/2^{-})$
4116.2+x ^{&} 10	$(37/2^+)$	1.7 <i>3</i>	4894.0+x ^a 11	$(43/2^{-})$	6596.8+x ^e 11	$(55/2^{-})$
4135.7+x ^c 8	(39/2-)		4916.6+x ^b 8	$(43/2^{-})$	6657.3+x ^f 10	$(55/2^+)$
4149.1+x ^{&} 6	$(37/2^+)$		4944.8+x ^g 8	$(43/2^+)$	6715.2+x ^d 11	$(55/2^{-})$
4166.8+x ^b 8	(39/2-)		5032.9+x ^b 9	$(43/2^{-})$	6927.2+x ^e 11	$(57/2^{-})$
4181.2+x ^{<i>a</i>} 8	(39/2-)		5060.3+x ^f 9	$(47/2^+)$	7090.0+x ^f 11	$(57/2^+)$
4191.1+x ^{&} 7	$(39/2^+)$		5092.5+x ^d 8	$(45/2^{-})$	7154.4+x ^d 12	$(57/2^{-})$
4210.7+x ^{&} 6	$(37/2^+)$		5165.6+x ^{<i>a</i>} 12	$(43/2^{-})$	7311.7+x ^e 12	$(59/2^{-})$
$4270.8 + x^{b} 8$	(39/2 ⁻)		5169.1+x ^g 9	$(45/2^+)$	7516.0+x? ^f	$(59/2^+)$
4297.7+x ^{&} 7	$(39/2^+)$		5181.6+x ^b 8	$(45/2^{-})$	7713.2+x ^e 13	$(61/2^{-})$
4313.1+x ^{&} 7	$(37/2^+)$		5218.1+x ^C 9	$(45/2^{-})$	7932.0+x? ^f	$(61/2^+)$
4360.5+x ^{&} 11	$(37/2^+)$		5280.7+x ^b 15	$(43/2^{-})$		
4387.8+x ^f 7	$(41/2^+)$		5331.6+x ^d 8	$(47/2^{-})$		

¹⁹³Pb Levels (continued)

[†] From least-squares fit to $E\gamma$.

[‡] From 1996Du18 based on $\gamma(\theta)$, rotational behaviour with regularly spaced transitions, and literature data.

From Adopted values.

[@] Group A Group of low-energy positive-parity states, which connect all higher-lying levels with the 13/2⁺ isomeric state.

[&] Group B Group of positive-parity states linking Bands 2 and 3, plus some other medium-energy positive-parity levels, with those of Group A.

^a Group C Negative-parity levels above the 1586-keV 21/2⁻ isomeric state.

^b Group D Negative-parity levels above the 2584-keV 29/2⁻ isomeric state, excluding those grouped in Bands 1, 1a and 1b.

^{*c*} Band(A): Magnetic dipole band 1 (A11). Configuration $\nu(i13/2) \otimes \pi([505]9/2^- \otimes [606]13/2^+)_{K=11}$. Extracted mean value B(M1)/B(E2)=22 7 (μ_n/eb)².

^d Band(B): Magnetic dipole band 1a (ABC11). Configuration $\nu(i13/2)^3 \otimes \pi([505]9/2^- \otimes [606]13/2^+)_{K=11^-}$

^e Band(C): Magnetic dipole band 1b. Configuration unknown.

^{*f*} Band(D): Magnetic dipole band 2 (ABE11). Configuration $\nu((i13/2)^2 \otimes ((p3/2) \text{ or } (f5/2))) \otimes \pi([505]9/2^- \otimes [606]13/2^+)_{K=11}$ -.

^g Band(E): Magnetic dipole band 3 (ABF11). Configuration $\nu((i13/2)^2 \otimes ((p3/2) \text{ or } (f5/2))) \otimes \pi([505]9/2^- \otimes [606]13/2^+)_{K=11^-}$.

				¹⁶⁸ Er(³⁰	Si,5ny)	1996Du 1	18 (continu	ued)	
					<u> </u>	v(¹⁹³ Pb)			
E_{γ}^{\dagger}	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^g	α^h	$I_{(\gamma+ce)}f$	Comments
(40.9 [‡])		2213.5+x	$(25/2^+)$	2172.4+x	$(23/2^+)$				
(41.5 [§])		4191.1+x	$(39/2^+)$	4149.1+x	$(37/2^+)$				
(66.5 [‡])		1585.9+x	$(21/2^{-})$	1519.5+x	$(19/2^+)$				
72.1 [‡]		2213.5+x	$(25/2^+)$	2141.3+x	$(23/2^+)$				
85.6 [§] 3		2612.4+x	$(33/2^+)$	2526.8+x	$(29/2^+)$	Q			
90.0 [°] 3		4387.8+x	$(41/2^+)$	4297.7+x	$(39/2^+)$				
98.2 [§] 3		2524.6+x	$(27/2^+)$	2426.4+x	$(27/2^+)$			5.5 5	
102.1 [#] 3		2686.6+x	$(31/2^{-})$	2584.5+x	(29/2-)	D		16.5 15	$A_2 = -0.35 \ 13.$
146.0 [§] 3	1.48 19	4149.1+x	$(37/2^+)$	4003.2+x	(35/2+)	D		6.2 8	$A_2 = -0.35 \ 11.$ α : 3.18 for (M1)
148 4 <mark>§</mark> 3		4297 7+x	$(39/2^+)$	4149 1+x	$(37/2^+)$	D		9716	$A_2 = -0.42$ 14
148.9 [°] 3		4536.7+x	$(43/2^+)$	4387.8+x	$(41/2^+)$	D		6.6 10	$A_2 = -0.62$ 19.
156.5 [@] 3		4062.7+x	$(37/2^{-})$	3906.2+x	$(35/2^{-})$			0.7 3	2
158.0 [@] 3	0.17 8	3418.4+x	$(33/2^{-})$	3260.4+x	$(31/2^{-})$	[M1]	2.54	0.6 3	
158.1 [‡] 3		2584.5+x	$(29/2^{-})$	2426.4+x	$(27/2^+)$	D		18.6 17	$A_2 = -0.21 \ 4.$
164.0 [§] 3	2.25 24	4003.2+x	(35/2+)	3839.2+x	(33/2 ⁺)	D		7.4 8	$A_2 = -0.41 \ 10.$ α : 2.29 for (M1).
175.9 [@] 3	0.07 7	5092.5+x	(45/2 ⁻)	4916.6+x	(43/2 ⁻)	D		0.2 2	$A_2 = -0.32 \ 15.$ α : 1.88 for (M1).
176.3 ^b 3		6001.2+x	$(51/2^{-})$	5824.9+x	(49/2 ⁻)	D+Q		0.6 2	$A_2 = -0.47 \ 9.$
180.0 ^{&} 3	3.4 2	2322.0+x	(27/2 ⁻)	2142.0+x	(25/2-)	D		5.7 4	A ₂ = -0.12 6. α : 0.69 for (M1).
184.0 [‡] 3		1585.9+x	$(21/2^{-})$	1401.7+x	$(21/2^+)$	D+Q		13.6 13	$A_2 = +0.12 5.$
196.9 [§] 3	1.48 <i>34</i>	4387.8+x	$(41/2^+)$	4191.1+x	(39/2+)	D		3.5 8	$A_2 = -0.19 \ 15.$ α : 1.368 for (M1).
204.6 ^{&} 3		2526.8+x	$(29/2^+)$	2322.0+x	$(27/2^{-})$			0.3 1	
$208.0^{\textcircled{0}}$ 3		4270.8+x	$(39/2^{-})$	4062.7+x	$(37/2^{-})$	D		1.2 3	$A_2 = -0.06 \ 12.$
212.9 [‡] 3		2426.4+x	$(27/2^+)$	2213.5+x	$(25/2^+)$	D		25.9 22	$A_2 = -0.18$ 7.
219.0 [‡] 3		2213.5+x	(25/2+)	1994.5+x	(25/2+)			8.4 8	A ₂ =+0.19 <i>11</i> . Mult.: The angular distribution coefficient value indicates stretched quadrupole. (M1) in Adopted Gammas.
224.3 ^d 3		5169.1+x	$(45/2^+)$	4944.8+x	$(43/2^+)$	D+Q		2.5 4	$A_2 = -0.57 \ 10.$
231.1 [@] 3	0.54 21	5092.5+x	(45/2 ⁻)	4861.3+x	(43/2 ⁻)	D		1.0 4	A ₂ = -0.22 15. α : 0.875 for (M1).
232.0 [°] 3		4768.7+x	$(45/2^+)$	4536.7+x	$(43/2^+)$	D		6.9 10	$A_2 = -0.34 \ 9.$
234.58 3	0.60 16	4445.2+x	$(39/2^+)$	4210.7+x	$(37/2^+)$	[M1]	0.840	1.1 3	
$239.1^{\text{cl}}3$		5331.6+x	(47/2)	5092.5+x	(45/2)	D		0.6 3	$A_2 = -0.20$ 14.
252.3" 3	0.50.10	2938.8+x	(33/2)	2686.6+x	(31/2)	D		17.2 11	$A_2 = -0.325.$
261.7 3	0.50 18	4532.5+x	(41/2)	4270.8+x	(39/2)	D		0.8 3	$A_2 = -0.32$ <i>11.</i> α : 0.62 for (M1).
263.1° 3	0.6 2	2322.0+x	$(27/2^{-})$	2058.8+x	$(23/2^{-})$	[E2]	0.1727	0.7 2	
$264.8 \overset{\circ}{=} 3$ $265.6^{a}_{a} 3$	0.19	5092.5+x 5597.2+x	(45/2 ⁻) (49/2 ⁻)	4827.8+x 5331.6+x	(43/2 ⁻) (47/2 ⁻)	[M1] D	0.601	$0.3\ 2 \\ 0.5\ 2$	A ₂ =-0.30 <i>16</i> .
267.5 ^d 3		5436.6+x	$(47/2^+)$	5169.1+x	$(45/2^+)$	D		2.8 3	$A_2 = -0.24 \ 12.$
279.2 [§] 3		4576.9+x	$(41/2^+)$	4297.7+x	$(39/2^+)$	D		5.4 6	$A_2 = -0.19 \ I9.$

108 Er(30 Si,5n γ) 1996Du18 (continued
--

 γ ⁽¹⁹³Pb) (continued)</sup>

E_{γ}^{\dagger}	Ιγ ^e	E _i (level)	J_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult. ^g	α^h	$I_{(\gamma+ce)}f$	Comments
283.7 <mark>b</mark> 3		6284.9+x	$(53/2^{-})$	6001.2+x	$(51/2^{-})$	D		0.5 2	A ₂ =-0.39 9.
291.6 ^c 3		5060.3+x	$(47/2^+)$	4768.7+x	$(45/2^+)$	D		7.0 7	$A_2^2 = -0.33 5.$
294.8 [§] <i>3</i>	0.18 9	3996.8+x	(37/2 ⁺)	3702.0+x	(33/2 ⁺)	(Q)		0.2 1	A ₂ =+0.13 <i>19</i> . α : 0.1217 for (E2).
295.2 [@] 3	0.21 14	4827.8+x	(43/2 ⁻)	4532.5+x	(41/2 ⁻)	D		0.3 2	$A_2 = -0.17$ 16. α : 0.446 for (M1).
296.3 [§] 3		3376.2+x	$(31/2^+)$	3079.9+x	$(29/2^+)$	D		7.9 5	$A_2 = -0.40 \ 9.$
296.4 [§] 3	0.42 21	4445.2+x	$(39/2^+)$	4149.1+x	$(37/2^+)$	[M1]	0.441	0.6 3	
303.4 [@] 3		4470.2+x	$(41/2^{-})$	4166.8+x	(39/2-)	D		0.8 <i>3</i>	A ₂ =-0.39 11.
311.1 [§] 3		2524.6+x	(27/2+)	2213.5+x	(25/2+)			16.3 10	Mult.: $A_2 = -0.32$ <i>10</i> indicates D. Placement from $(27/2^+)$ to $(23/2^+)$.
311.9 ^b 3		6596.8+x	$(55/2^{-})$	6284.9+x	$(53/2^{-})$	D		0.4 3	$A_2 = -0.38 \ 14.$
319.6 [@] 3		3639.9+x	$(37/2^{-})$	3320.3+x	$(35/2^{-})$	D		1.6 4	$A_2 = -0.39$ 19.
319.7 [@] 3		5501.3+x	$(47/2^{-})$	5181.6+x	$(45/2^{-})$	D		0.7 3	$A_2 = -0.27$ 19.
323.6 [@] 3		5824.9+x	$(49/2^{-})$	5501.3+x	$(47/2^{-})$	D		0.9 3	$A_2 = -0.34 \ 11.$
324.0 [§] 3	0.18 9	3996.8+x	$(37/2^+)$	3672.7+x	$(33/2^+)$	[E2]	0.0922	0.2 1	-
325.7 [@] 3		4916.6+x	$(43/2^{-})$	4590.9+x	$(41/2^{-})$			0.3 2	
326.2 ^d 3		5762.8+x	$(49/2^+)$	5436.6+x	$(47/2^+)$	D		2.2 2	$A_2 = -0.34 \ 10.$
328.8 [@] 3	0.30 15	4861.3+x	$(43/2^{-})$	4532.5+x	$(41/2^{-})$	[M1]	0.332	0.4 2	
329.5 ^{<i>a</i>} 3		5926.7+x	$(51/2^{-})$	5597.2+x	$(49/2^{-})$	D+Q		0.5 3	$A_2 = -0.53 \ 13.$
330.4 ^b 3		6927.2+x	(57/2 ⁻)	6596.8+x	(55/2-)	D+Q		0.4 2	$A_2 = -0.44 \ 10.$
334.5 [#] 3		4470.2+x	$(41/2^{-})$	4135.7+x	$(39/2^{-})$	D		2.8 2	$A_2 = -0.33 \ 13.$
338.7 [§] 3		4784.0+x	$(41/2^+)$	4445.2+x	$(39/2^+)$			0.5 2	
341.0 ^{&} 3		2994.7+x	$(31/2^{-})$	2653.7+x	$(27/2^{-})$	(Q)		0.6 2	A ₂ =+0.13 <i>19</i> .
342.7 [§] 3		2769.1+x	$(29/2^+)$	2426.4+x	$(27/2^+)$	D		10.5 6	$A_2 = -0.28 5.$
353.7 [@] 4		5181.6+x	$(45/2^{-})$	4827.8+x	$(43/2^{-})$	D		1.2 3	$A_2 = -0.31$ 9.
357.7 ^{<i>a</i>} 4	1.4 3	4827.8+x	(43/2 ⁻)	4470.2+x	(41/2 ⁻)	D		1.8 4	$A_2 = -0.57$ 16. α : 0.264 for (M1).
362.4 [@] 4		5801.8+x	$(47/2^{-})$	5439.4+x	$(45/2^{-})$			0.2 2	
364.0 [§] 4	6.2 4	3133.1+x	$(31/2^+)$	2769.1+x	(29/2+)	D		7.8 5	$A_2 = -0.36 \ II.$ α : 0.252 for (M1).
365.2 [°] 4	4.6 4	5425.5+x	(49/2 ⁺)	5060.3+x	(47/2 ⁺)	D		5.7 5	$A_2 = -0.38 5.$ α : 0.25 for (M1).
367.9 [§] 4		4944.8+x	$(43/2^+)$	4576.9+x	$(41/2^+)$	D		4.3 6	$A_2 = -0.19 8.$
375.6 ^{<i>a</i>} 4		6302.3+x	$(53/2^{-})$	5926.7+x	$(51/2^{-})$	D+Q		0.4 3	$A_2 = -0.59 \ 15.$
377.3 [§] 4	0.49 24	4149.1+x	$(37/2^+)$	3771.8+x	$(35/2^+)$	[M1]	0.229	0.6 3	
381.5 [#] 4		3320.3+x	$(35/2^{-})$	2938.8+x	$(33/2^{-})$	D		13.0 5	$A_2 = -0.36 5.$
382.0 [§] 4	2.0 3	3924.5+x	(35/2 ⁺)	3542.5+x	(33/2 ⁺)	D		2.4 4	$A_2 = -0.18$ 12. α : 0.221 for (M1).
382.4 ^{<i>d</i>} 4		6145.2+x	$(51/2^+)$	5762.8+x	$(49/2^+)$	D+Q		1.4 3	$A_2 = -0.43 \ 8.$
384.5 ^b 4		7311.7+x	(59/2-)	6927.2+x	$(57/2^{-})$	D		0.3 2	A ₂ =-0.21 <i>19</i> .
385.0 ^{&} 4		2707.0+x	(29/2 ⁻)	2322.0+x	$(27/2^{-})$			0.6 <i>3</i>	
388.7 [§] 4	1.0 4	4313.1+x	$(37/2^+)$	3924.5+x	$(35/2^+)$	[M1]	0.211	1.2 5	
389.6 [°] 4	3.41 <i>33</i>	5815.1+x	(51/2+)	5425.5+x	(49/2+)	D		4.1 4	$A_2 = -0.29$ 7. α : 0.21 for (M1).
390.3 ^a 4		5218.1+x	$(45/2^{-})$	4827.8+x	$(43/2^{-})$	D		1.3 <i>3</i>	$A_2 = -0.29 \ 13.$

				¹⁶⁸ Er(³⁰ Si,	5 n γ) 1	996Du18 (continued	l)	
					γ(¹⁹³ Pb) (continued)	<u>)</u>		
E_{γ}^{\dagger}	I_{γ}^{e}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^g	α^h	$I_{(\gamma+ce)}f$	Comments
390.8 4	0.33 25	4861.3+x	(43/2 ⁻)	4470.2+x	(41/2 ⁻)	D		0.4 3	$A_2 = -0.34 \ 21.$ α : 0.208 for (M1).
395.8 [§] 4		3771.8+x	$(35/2^+)$	3376.2+x	$(31/2^+)$	Q		5.6 6	$A_2 = +0.21 \ 6.$
396.6 [@] 4	0.34 25	4532.5+x	$(41/2^{-})$	4135.7+x	(39/2 ⁻)	[M1]	0.2	0.4 3	
401.5 ^b 4		7713.2+x	$(61/2^{-})$	7311.7+x	$(59/2^{-})$			0.2 1	
401.6 [#] 4		3721.9+x	$(37/2^{-})$	3320.3+x	$(35/2^{-})$	D		7.7 4	$A_2 = -0.37$ 7.
406.5 [@] 4		5439.4+x	$(45/2^{-})$	5032.9+x	$(43/2^{-})$	D		0.5 <i>3</i>	$A_2 = -0.18 \ 26.$
409.5 [§] 4		3542.5+x	$(33/2^+)$	3133.1+x	$(31/2^+)$	D		4.7 4	$A_2 = -0.46 \ 8.$
412.9 ^{<i>a</i>} 4		6715.2+x	$(55/2^{-})$	6302.3+x	$(53/2^{-})$			0.3 1	
413.8 [#] 4		4135.7+x	$(39/2^{-})$	3721.9+x	$(37/2^{-})$	D		4.0 3	$A_2 = -0.39 \ 14.$
415.6 [@] 4		4055.5+x	(39/2 ⁻)	3639.9+x	(37/2 ⁻)	(D)		1.3 3	$A_2 = -0.08 \ 15.$
416.1 ^c 4	2.74 34	6231.2+x	$(53/2^+)$	5815.1+x	$(51/2^+)$	[M1]	0.176	3.2 4	
416.1 ^{<i>ci</i>} 10		7932.0+x?	$(61/2^+)$	7516.0+x?	$(59/2^+)$			0.2 2	
419.68 4		4191.1+x	$(39/2^+)$	3771.8+x	$(35/2^+)$	Q		1.5 4	$A_2 = +0.23 \ 10.$
421.4 ^{<i>x</i>} 4		3128.4+x	$(31/2^{-})$	2707.0+x	$(29/2^{-})$			0.5 2	
424.1 ^{^w} 4		4590.9+x	$(41/2^{-})$	4166.8+x	$(39/2^{-})$	D		1.1 2	$A_2 = -0.20 \ 13.$
426.1° 4	1.04 17	6657.3+x	$(55/2^+)$	6231.2+x	$(53/2^+)$	[M1]	0.1652	1.2.2	
426.1 10		7516.0+x?	$(59/2^+)$	7090.0+x	$(57/2^+)$			0.4 3	
431.9+ 4		2426.4+x	(27/2+)	1994.5+x	(25/2+)			3.4 7	A_2 =+0.28 <i>14</i> . Mult.: A2 value implies Q, however, placement 27/2 ⁺ to 25/2 ⁺ in 1006Du18
432.7 [°] 4	0 52 17	7090 0+x	$(57/2^+)$	6657 3+x	$(55/2^+)$	[M1]	0 1586	062	to 23/2 III 1990Du18.
438 7 4	0.02 17	4210.7 + x	$(37/2^+)$	3771 8+x	$(35/2^+)$	D	0.1200	174	$A_{2} = -0.27 \ 10$
439.2 ^{<i>a</i>} 4		7154.4+x	$(57/2^{-})$	6715.2+x	$(55/2^{-})$	D		0.2 1	$A_2 = -0.20 \ 26.$
442.0 [@] 4		5032.9+x	$(43/2^{-})$	4590.9+x	$(41/2^{-})$	D		0.4 3	$A_2 = -0.49$ 19.
444.9 [@] 4		4166.8+x	$(39/2^{-})$	3721.9+x	$(37/2^{-})$	D		2.5 4	$A_2 = -0.23 \ 8.$
448.1 [§] 4	1.31 35	4445.2+x	$(39/2^+)$	3996.8+x	$(37/2^+)$	[M1]	0.1444	1.5 4	-
448.9 [§] 4		3991.4+x	$(35/2^+)$	3542.5+x	$(33/2^+)$			0.6 3	
455.3 [@] 5		4590.9+x	$(41/2^{-})$	4135.7+x	$(39/2^{-})$			0.6 3	
461.2 [§] 5	0.44 18	4003.2+x	$(35/2^+)$	3542.5+x	$(33/2^+)$	[M1]	0.1338	0.5 2	
461.5 [§] 5	0.56 24	3133.1+x	$(31/2^+)$	2671.9+x	$(29/2^+)$	[M1]	0.1335	0.7.3	
462.9 [§] 5		3839.2+x	$(33/2^+)$	3376.2+x	$(31/2^+)$	D		14.3 11	$A_2 = -0.35 \ 10.$
472.7 & 5		2058.8 + x	$(23/2^{-})$	1585.9+x	$(21/2^{-})$	D		1.3 5	$A_2 = -0.30 \ I3.$
482.9 [@] 5		4538.4+x	$(41/2^{-})$	4055.5+x	$(39/2^{-})$	D		1.0.2	$A_2 = -0.21$ 11.
487.8 @ 5		3906.2+x	$(35/2^{-})$	3418.4+x	$(33/2^{-})$	D		0.6.3	$A_2 = -0.18$ //
497 3 5		1519.5 + x	$(19/2^+)$	1022.2 + x	$(15/2^+)$	0		104	$A_{2} = +1.1.4$
510.2 [§] 5	0 46 18	3924.5 + x	$(35/2^+)$	3414.5+x	$(33/2^+)$	× [M1]		0.5.2	
$510.2 \ 5$ $520.1^{\ddagger} \ 2$	0.10 10	1401.7 + x	$(33/2^{+})$ $(21/2^{+})$	881 6+x	$(17/2^+)$	0		81 9 35	$A_{2} = +0.20.5$
520.1 2 527.8 [‡] 3		1550.0+x	$(21/2^{-})$ $(19/2^{+})$	$1022.2 \pm x$	$(17/2^+)$	Q O		13.8.10	$A_2 = +0.18 I0$
532.4 [§] 3		$2526.8 \pm x$	$(1)/2^{-})$ $(29/2^{+})$	1022.2 + x 1994 5+x	$(15/2^{+})$ $(25/2^{+})$	X		355	$A_2 = +0.10 \ 8$
540.48 5		3822.0.0 + x	$(25/2^+)$	$3781.8 \pm v$	$(23/2^+)$			0.2.2	112-10.10 0.
542 7 & 5		$3022.2\pm x$ $3240.7\pm x$	(35/2)	2707.0±v	$(39/2^{-})$			0.22	$A_2 = \pm 0.01.19$
5/15 3 5		7661 5 LV	(31/2)	4116 2 IV	(29/2)			0.+2	$112 - \pm 0.01$ 17.
547 0 ^{&} 5		35/11 7 LV	$(35/2^{-1})$	$7110.2 \pm X$	$(31/2^{-})$	0		121	$A_{2} = 0.26 12$
555.4 [§] 6		$3079.0 \pm v$	(33/2) $(29/2^+)$	$2574.7 \pm x$	(31/2) $(27/2^+)$	ч D		1221	$A_2 = -0.43.8$
JJJ.T 0		JUIJ.JTA	$(2\gamma/2)$	$2527.0\pm \Lambda$	(4114)			14.4 1	112- 0.TJ 0.

¹⁶⁸Er(³⁰Si,5nγ) **1996Du18** (continued)

γ ⁽¹⁹³ Pb) (continued)										
E_{γ}^{\dagger}	Ιγ ^e	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^g	α^{h}	$I_{(\gamma+ce)}f$	Comments	
$556.0^{\&} 4$		2142.0+x	$(25/2^{-})$	1585.9+x	$(21/2^{-})$	0		6.1 5	$A_{2}=+0.305.$	
565.0 ^{&} 6		2707.0+x	$(29/2^{-})$	2142.0+x	$(25/2^{-})$	C C		1.3 3	$A_2 = +0.26$ 12.	
567.5 [§] 6		4564.3+x	$(39/2^+)$	3996.8+x	$(37/2^+)$			1.2 4	2	
581.8 [§] 6	1.1 4	3996.8+x	$(37/2^+)$	3414.5+x	$(33/2^+)$	(Q)		1.1 4	$A_2 = +0.15 \ 14.$	
			,						α : 0.0206 for (E2).	
591.1 [‡] 4		2141.3+x	$(23/2^+)$	1550.0+x	$(19/2^+)$	Q		28.3 17	$A_2 = +0.22 \ 10.$	
593.1 [‡] 4		1994.5+x	$(25/2^+)$	1401.7+x	$(21/2^+)$	Q		34.6 21	A ₂ =+0.19 7.	
595.0 ^{&} 6		2653.7+x	$(27/2^{-})$	2058.8+x	$(23/2^{-})$			0.7 4		
609.9 [§] 6	1.2 3	3281.8+x	(33/2 ⁺)	2671.9+x	(29/2 ⁺)	Q		1.2 3	A ₂ =+0.50 <i>14</i> . α : 0.0185 for (E2).	
613.2 ^{&} 6		3741.6+x	$(35/2^{-})$	3128.4+x	$(31/2^{-})$	Q		1.7 5	A ₂ =+0.30 11.	
622.3 [‡] 6		2172.4+x	$(23/2^+)$	1550.0+x	$(19/2^+)$			4.4 8		
633.8 [#] 6		3320.3+x	$(35/2^{-})$	2686.6+x	$(31/2^{-})$			0.5 2		
638.7 ^{&} 6		4181.2+x	(39/2 ⁻)	3541.7+x	$(35/2^{-})$	Q		0.8 <i>3</i>	A ₂ =+0.21 <i>13</i> .	
644.1 [§] 6		4760.3+x	$(41/2^+)$	4116.2+x	$(37/2^+)$	Q		0.4 2	A ₂ =+0.39 23.	
656.8 [°] 7	0.6 2	5425.5+x	$(49/2^+)$	4768.7+x	$(45/2^+)$	[E2]	0.01576	0.6 2		
657.4 [°] 7		4399.0+x	$(39/2^{-})$	3741.6+x	$(35/2^{-})$	Q		0.4 2	$A_2 = +0.21 \ 25.$	
668.2 ⁺ 3		1550.0+x	$(19/2^+)$	881.6+x	$(17/2^+)$	D+Q		18.9 13	$A_2 = -0.46 \ 11.$	
672.6 [°] 7		2994.7+x	$(31/2^{-})$	2322.0+x	$(27/2^{-})$	Q		1.2 4	$A_2 = +0.19 \ 12.$	
675.8 [®] 7		3260.4+x	$(31/2^{-})$	2584.5+x	(29/2 ⁻)			1.0 3		
677.6 ⁸ 7 692.3 ^{<i>a</i>} 7	0.1 1	2671.9+x 4827.8+x	$(29/2^+)$ $(43/2^-)$	1994.5+x 4135.7+x	$(25/2^+)$ $(39/2^-)$	Q [E2]	0.01407	12.5 <i>12</i> 0.1 <i>1</i>	A ₂ =+0.19 8.	
693.4 ^{&} 7		4435.0+x	$(39/2^{-})$	3741.6+x	$(35/2^{-})$	Q		0.5 2	A ₂ =+0.39 22.	
701.7 [§] 7		4116.2+x	$(37/2^+)$	3414.5+x	$(33/2^+)$	Q			$A_2 = +0.24$ 12.	
706.7 [§] 7	1.6 2	3133.1+x	$(31/2^+)$	2426.4+x	$(27/2^+)$	[E2]	0.01346	1.6 2	$A_2 = +0.40 \ 23.$	
711.7 [@] 7		5181.6+x	$(45/2^{-})$	4470.2+x	$(41/2^{-})$			0.1 1		
712.8 & 7		4894.0+x	$(43/2^{-})$	4181.2+x	$(39/2^{-})$	Q		0.4 2	$A_2 = +0.83 \ 33.$	
730.6 7		5165.6+x	$(43/2^{-})$	4435.0+x	$(39/2^{-})$	Q		0.4 2		
739.7 [‡] 3		2141.3+x	$(23/2^+)$	1401.7+x	$(21/2^+)$	D+Q		23.8 14	$A_2 = -0.45$ 7.	
742.3 [§] 7		3414.5+x	$(33/2^+)$	2671.9+x	$(29/2^+)$	Q		5.3 8	$A_2 = +0.22 \ 8.$	
748.3 [#] 7		4470.2+x	$(41/2^{-})$	3721.9+x	$(37/2^{-})$			0.4 2		
754.7°8	0.8 2	5815.1+x	$(51/2^+)$	5060.3+x	$(47/2^+)$	[E2]	0.01173	0.8 2		
755.18 8	1.0 2	3281.8+x	$(33/2^+)$	2526.8+x	(29/2+)	Q		1.0 2	$A_2 = +0.37$ 12. α : 0.0117 for (E2).	
759.4 [§] 8		3839.2+x	$(33/2^+)$	3079.9+x	$(29/2^+)$	Q		2.6 3	A ₂ =+0.25 11.	
766.6 ^{&} 8		5165.6+x	$(43/2^{-})$	4399.0+x	$(39/2^{-})$			0.2 1		
770.2 [§] 8	0.4 5	4313.1+x	$(37/2^+)$	3542.5+x	$(33/2^+)$	[E2]	0.01124	0.4 5		
773.5 [§] 8		3542.5+x	$(33/2^+)$	2769.1+x	$(29/2^+)$			0.7 3		
783.1 [#] 8		3721.9+x	$(37/2^{-})$	2938.8+x	$(33/2^{-})$	Q		1.0 2	A ₂ =+0.20 <i>19</i> .	
791.5 [§] 8	0.8 2	3924.5+x	(35/2 ⁺)	3133.1+x	(31/2 ⁺)	Q		0.8 2	$A_2 = +0.8 \ 3.$ α : 0.01063 for (E2).	
805.6 [°] 8	0.2 1	6231.2+x	$(53/2^+)$	5425.5+x	$(49/2^+)$	[E2]	0.01025	0.2 1		
806.4 ^{&} 8		3128.4+x	$(31/2^{-})$	2322.0+x	$(27/2^{-})$	Q		2.0 4	$A_2 = +0.37 \ 18.$	
811.9 [‡] 4		2213.5+x	$(25/2^+)$	1401.7+x	$(21/2^+)$	Q		8.0 5	$A_2 = +0.25 \ 8.$	
815.4 [#] 8		4135.7+x	$(39/2^{-})$	3320.3+x	$(35/2^{-})$			0.8 2		

				¹⁶⁸ Er(³⁰	Si,5ny)	1996Du	18 (continue	ed)		
					<u>γ(¹⁹³Pt</u>	o) (continu	ed)			
E_{γ}^{\dagger}	Ιγ ^e	E _i (level)	\mathbf{J}_i^{π}	E_f	${f J}_f^\pi$	Mult. ^g	α^{h}	$I_{(\gamma+ce)}f$	Comments	
834.0 [@] 8	1.3 4	3418.4+x	(33/2 ⁻)	2584.5+x	(29/2 ⁻)	Q		1.3 4	$A_2 = +0.56 \ 14.$ α : 0.00955 for (E2).	
842.2 ^C 8	0.3 1	6657.3+x	$(55/2^+)$	5815.1+x	$(51/2^+)$	[E2]	0.00936	0.3 1		
846.5 [@] 8		4166.8+x	(39/2 ⁻)	3320.3+x	$(35/2^{-})$			0.2 1		
851.7 [§] 9		3376.2+x	$(31/2^+)$	2524.6+x	$(27/2^+)$	Q		15.4 12	$A_2 = +0.17 \ 9.$	
858.8 [°] 9	0.1 1	7090.0+x	$(57/2^+)$	6231.2+x	$(53/2^+)$	[E2]	0.009	0.1 1		
869.1 [@] 9		4590.9+x	$(41/2^{-})$	3721.9+x	$(37/2^{-})$			0.1 1		
881.6 [‡] 2		881.6+x	$(17/2^+)$	0.0+x	$(13/2^+)$	Q		100	$A_2 = +0.19 5.$	
946.0 [§] 9		4360.5+x	$(37/2^+)$	3414.5+x	$(33/2^+)$			0.1 <i>1</i>		
1022.3 [‡] 3		1022.2+x	$(15/2^+)$	0.0+x	$(13/2^+)$	D+Q		14.3 5	$A_2 = -0.11 \ 9.$	
1030.1 [§] <i>10</i>	0.1 1	3702.0+x	$(33/2^+)$	2671.9+x	$(29/2^+)$	[E2]	0.00629	0.1 1		
1129.5 [@] 11		5667.9+x	$(45/2^{-})$	4538.4+x	$(41/2^{-})$			0.2 1		
1145.2 [§] 11		3672.7+x	$(33/2^+)$	2526.8+x	$(29/2^+)$	Q		0.3 1	$A_2 = +0.38 \ 33.$	
1174.9 [§] <i>11</i>	0.2 1	3702.0+x	$(33/2^+)$	2526.8+x	$(29/2^+)$	[E2]	0.00489	0.2 1		
1225.2 [@] 12		5280.7+x	$(43/2^{-})$	4055.5+x	(39/2 ⁻)			0.2 1		

Energy uncertainty not specified by the authors. An uncertainty of $\approx 0.1\%$ (with a minimum uncertainty ≈ 0.3 keV) was assigned in previous evaluations (1998Ar07) from comparison with other results from EUROGRAM II (see e.g. 1996Du05). For the present revision the evaluator have adopted slightly narrower error bounds, based on the excellent overall agreement with the energy differences obtained from the least-squares level energy adjustment.

[‡] Group A. γ rays between low-lying positive-parity states, which carry all the transition intensity from higher-lying groups and bands, feeding the 5.8 min, $13/2^+$ isomeric level.

 $\frac{1}{2}$ Group B. γ rays between medium-energy positive-parity states, carrying the transitions intensity from Bands 2 and 3, and from some other medium-energy levels, and feeding those of Group A.

[&] Group C. γ rays connecting negative parity-levels above the 1586-keV isomeric state.

[@] Group D. γ rays connecting negative parity-levels above the 2584-keV isomeric state. Transitions in this group also connect to levels in Band 1, and to those deexciting Bands 1a and 1b.

Band 1 transition.

^a Band 1a transition.

^b Band 1b transition.

^c Band 2 transition.

^d Band 3 transition.

^e Deduced by evaluator using reported total transition intensity in 1996Du18 and conversion coefficients for assigned/assumed multipolarity. Assuming (M1) for d, (E2) for Q, and (M1+E2) for D+Q or from level scheme.

^f Total transition intensity values reported in 1996Du18.

^g Assigned by the evaluator based on A_2 values and proposed level scheme of 1996Du18. Assumed multipolarities in square brakets were used to obtain conversion coefficient to estimate I γ from reported total transition intensity by 1996Du18.

^h Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*i*} Placement of transition in the level scheme is uncertain.

¹⁷⁰Er(²⁸Si,5nγ) 2011Ba02,2005Gl09,2004Io01

Other: 2004Ba31.

2011Ba02: E=143 MeV. Pulsed beam with a width of 1.5 ns and repetition rate of 800 ns. The ¹⁹³Pb nuclei recoiled out of ¹⁷⁰Er foil and deposited into solid 0.2 mm Hg layer mounted on a Cu finger cooled to 170.0 K. Quadrupole interaction was investigated in the electric field gradient of solid polycrystalline Hg by time-differential perturbed angular distribution (TDPAD) method. The γ rays were detected using planar HPGe detectors placed at angles of 0° and 90°. Measured E γ , I γ , $\gamma(\theta)$, half-lives of isomers by $\gamma(t)$, TDPAD spectra.

2005Gl09: E=149 MeV, γ -rays were detected using $4\pi \gamma$ -ray spectrometer GASP, consisting of 40 Compton-suppressed Ge detectors, grouped in seven rings covering backward and forward angles. Measured lifetime by recoil-distance (RDDM) and Doppler-shift attenuation method (DSAM).

2004Io01: 97% enriched ¹⁷⁰Er target; Pulse ²⁸Si beam, E=143 MeV. The target was placed between pole tips of an electromagnet, γ rays were detected by two planar HPGe detectors and two HPGe detectors of 20% efficiency placed at 135° and 45° with respect to beam direction. The quadrupole interaction has been investigated in the electric field gradient (efg) of the polycrystalline lattice of metallic solid Hg. The excited lead nuclei recoiled out of the 0.5 mg/cm² target foil into a solid 0.2 mm Hg layer mounted on a Cu cold finger held at the temperature T_{1/2}=170.0 K. The γ rays were detected by the planar HPGe detectors placed at 0° and 90° to the beam direction. Measured isomer half-life and spectroscopic quadrupole moments.

¹⁹³Pb Levels

E(level) [†]	J ^π @	T _{1/2}	Comments
0+x	$(13/2^+)$	5.8 min 2	$\%\varepsilon + \%\beta^+ = 100$
			Configuration= $v(1i_{13/2}^{-2})$. T _{1/2} : From Adopted Levels.
882+x	$(17/2^+)$		
1022+x	$(15/2^+)$		
1402+x	$(21/2^+)$		
1519+x	$(19/2^+)$		
1550+x	$(19/2^+)$		
1586+x	(21/2 ⁻)	20.5 ns 4	Configuration= $\nu(1i_{13/2}^{-3}, 3p_{3/2})$. T _{1/2} : From 184 γ (t) (2004Io01).
1995+x	$(25/2^+)$		
2059+x	$(23/2^{-})$		
2141+x	$(23/2^+)$		
2142+x	$(25/2^{-})$		
2214+x	23/2+&		J^{π} : (25/2 ⁺) in Adopted Levels.
2322+x	$(27/2^{-})$	5.3 ns 6	$Q \le 0.5 (2011Ba02)$
			$g = +0.68 \ 3 \ (2011Ba02)$
			$T_{1/2}$: from time spectra of 180y and 556y (2011Ba02).
			Configuration= $v(1i_{12/2}^{-2}, 3p_{3/2})$ (2011Ba02).
2427+x	25/2+&		J^{π} : (27/2 ⁺) in Adopted Levels. See comments in Adopted Levels.
2527+x	$(29/2^+)$		
2585+x	27/2-&	9.4 ns 5	$\Omega = 2.6.3 (2011Ba02)$
	,_		$T_{1/2}$: From time spectra of 213 γ (2011Ba02).
			Configuration= $\nu(1i_{13/2}^{-1})\otimes \pi(1h_{9/2}1i_{13/2})_{11}$. Bandhead of a magnetic-dipole rotational (shears) band.
2613+x	$(33/2^+)$	180 ns 15	Configuration= $\nu(1i_{122}^{-3})$.
			$T_{1/2}$: From 532 $\gamma(t)$, placement from 2527+x (2004Io01).
2686.9+x [#] 6	$(31/2^{-})$		
2939+x [‡]	(33/2 ⁻)	2.2 ps 6	$T_{1/2}$: From measured lifetime of 3.2 ps 8 (2005Gl09).
3321+x [‡] 7	(35/2 ⁻)	≤0.7 ps	$T_{1/2}$: From measured lifetime of ≤ 1 ps (2005Gl09).

[†] From 2011Ba02 (except otherwise noted). An unknown quantity of "X" added to represent corresponding Adopted Levels.

[‡] From 20005Gl09.

[#] From Adopted Levels for γ ray placement from 2939+x and 3321+x levels (by the evaluator).

¹⁷⁰Er(²⁸Si,5nγ) 2011Ba02,2005Gl09,2004Io01 (continued)

¹⁹³Pb Levels (continued)

[@] From Adopted Levels, unless otherwise stated.

[&] Spin-parity assigned by 2011Ba02 based on revised assignment of $\Delta J=1$, M1+E2 for the 812 γ from 2214+x level. The value is 1 \hbar lower compared to those in the (³⁰Si,5n γ) and (¹⁶O,5n γ) datasets, where 812 γ assigned as $\Delta J=2$, E2.

$\gamma(^{193}\text{Pb})$

${\rm E_{\gamma}}^{\dagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ	Comments	
67	1586+x	$(21/2^{-})$	1519+x	$(19/2^+)$				
72	2214+x	$23/2^{+}$	2141+x	$(23/2^+)$				
86	2613+x	$(33/2^+)$	2527+x	$(29/2^+)$				
158	2585+x	$27/2^{-}$	2427+x	$25/2^+$				
180	2322+x	$(27/2^{-})$	2142+x	$(25/2^{-})$				
184	1586+x	$(21/2^{-})$	1402+x	$(21/2^+)$				
205	2527+x	$(29/2^+)$	2322+x	$(27/2^{-})$				
213	2427+x	$25/2^{+}$	2214+x	$23/2^{+}$	D+Q	-0.13 2	A ₂ =-0.38 9	
							δ: From 2011Ba02.	
219	2214+x	$23/2^{+}$	1995+x	$(25/2^+)$				
252.3 <i>3</i>	2939+x	$(33/2^{-})$	2686.9+x	$(31/2^{-})$			E_{γ} : From Adopted Gammas.	
263	2322+x	$(27/2^{-})$	2059+x	$(23/2^{-})$				
381.5 <i>3</i>	3321+x	$(35/2^{-})$	2939+x	$(33/2^{-})$	(M1)		E_{γ} ,Mult.: From Adopted Gammas.	
432	2427+x	$25/2^{+}$	1995+x	$(25/2^+)$				
473	2059+x	$(23/2^{-})$	1586+x	$(21/2^{-})$				
497	1519+x	$(19/2^+)$	1022+x	$(15/2^+)$				
520	1402 + x	$(21/2^+)$	882+x	$(17/2^+)$	Q		$R_{ADO} \approx 1.3.$	
528	1550+x	$(19/2^+)$	1022+x	$(15/2^+)$	Q		$R_{ADO} \approx 1.3.$	
532	2527+x	$(29/2^+)$	1995+x	$(25/2^+)$				
556	2142+x	$(25/2^{-})$	1586+x	$(21/2^{-})$	Q		$R_{ADO} \approx 1.3.$	
591	2141+x	$(23/2^+)$	1550+x	$(19/2^+)$				
593	1995+x	$(25/2^+)$	1402+x	$(21/2^+)$				
633.8 6	3321+x	$(35/2^{-})$	2686.9+x	$(31/2^{-})$			E_{γ} : From Adopted Gammas.	
669	1550+x	$(19/2^+)$	882+x	$(17/2^+)$				
740	2141+x	$(23/2^+)$	1402+x	$(21/2^+)$	D+Q		$R_{ADO} = 0.5 l.$	
812	2214+x	23/2+	1402+x	(21/2 ⁺)	D+Q		Mult.: 2011Ba02 revised the assignment. E2 in earlier literature/evaluation (1991La07, 2006Ac01).	
000	000	(17/0+)	0.	(12/2+)	0		$K_{ADO} = 1.0 I.$	
882	882+x	$(1/2^+)$	0+x	$(13/2^+)$	Q D.O		$K_{ADO} \approx 1.3.$	
1022	1022 + x	$(15/2^{+})$	0+x	$(13/2^{+})$	D+Q		K _{ADO} =0.9 <i>I</i> .	

[†] From 2011Ba02, except otherwise noted.

[‡] Assigned by evaluator based on $R_{ADO}=I\gamma(0^{\circ})/I\gamma(90^{\circ})$ values (2011Ba02). Values are ≈ 1.3 for $\Delta J=2$, Q transition, ≈ 0.8 for $\Delta J=1$, dipole, <0.8 for $\Delta J=1$, D+Q transition with δ <0, and >0.8 for $\Delta J=1$, D+Q transition with δ >0.

¹⁷⁴Yb(²⁴Mg,5nγ) **1996Ba54**

1996Ba54: ¹⁷⁴Yb(²⁴Mg,5n γ), HERA with E=129, 134 MeV and GAMMASPHERE with E=131 MeV; measured $\gamma\gamma$, $\gamma\gamma\gamma$, $\gamma(\theta)$.

¹⁹³Pb Levels

The level scheme proposed by 1996Ba54 expands on the one of 1991La07, but in several cases the transition intensities differ significantly among the two references. See the Adopted values dataset for further discussion.

There is a more or less systematic shift in the tabulated $E\gamma$ values from this work, as compared to results from other references. This adds up, shifting the energies of some of the higher lying levels downwards by up to ≈ 5 keV as compared with the adopted values.

E(level) [†]	J ^π g	$T_{1/2}^{\ddagger}$	Comments
0.0+x [#]	$(13/2^+)$	5.8 min 2	E(level), J^{π} : from Adopted Levels.
881.3+x [#] 2	$(17/2^+)$		
$1022.1 + x^{\#} 4$	$(15/2^+)$		
1400.9+x [#] 3	$(21/2^+)$		
1549.3+x [#] 3	$(19/2^+)$		
$1585.2 + x^{a}$ 4	$(21/2^{-})$	20.5 ns 4	
$1993.5 + x^{\#} 4$	$(25/2^+)$		
$2057.5 + x^{a}_{\mu} 6$	$(23/2^{-})$		
$2139.9 + x^{\#} 4$	$(23/2^+)$		
$2140.7 + x^{tt} 5$	(23/2)		
2212.5 + x'' 4	$(25/2^{+})$		
$2320.9 \pm x = 0$ $2404.1 \pm x^{a}.5$	(23/2)		E(level): Level not established by other groups.
$2425.5 + x^{\#} 5$	$(27/2^+)$		
$2523.3 + x^{@} 6$	(27/2)		
$2525.0 + x^{\&} 7$	$(29/2^+)$		
$2583.9 + x^{\#} 6$	$(29/2^{-})$	9.4 ns 7	
$2610.5 + x^{\&} 11$	$(33/2^+)$	180 ns 15	
$2652.0 + x^a 6$	(====)		
2670.5+x ^{&} 6	$(29/2^+)$		
$2686.4 + x^{c} 8$	$(31/2^{-})$		
$2705.5 + x^{a} 6$			
$2768.1 + x^{j} 6$	$(29/2^+)$		
$2938.6 + x^{e} 8$	(33/2)		
2992.0+x = 0 2078.2+x = 0	(29/2)		
$3126.7 + x^a 6$	(29/2) (29/2)		
$3131.5 + x^{f} 7$	$(31/2^+)$		$B(M1)/B(E2)(exp)=7.0$ 13 $(u_N/eb)^2$.
3247.7+x ^{<i>a</i>} 8	($-\langle \cdots \rangle = \langle \cdots \rangle \langle \cdots r \rangle + \langle \cdots \rangle \langle \cdots \rangle \langle \cdots \rangle \rangle$
3319.8+x ^C 8	$(35/2^{-})$		B(M1)/B(E2)(exp)=16.4 52 $(\mu_N/eb)^2$.
3364.9+x ^{&} 12			E(level): Level not established by other groups.
3374.6+x [@] 7	(31/2)		
3412.4+x ^{&} 8	$(33/2^+)$		
3417.9+x ^b 8			
$3539.1 + x^{a} 8$	(33/2)		
$3540.8 + x^{f}$ 7	$(33/2^+)$		$B(M1)/B(E2)(exp)=4.1 \ 8 \ (\mu_N/eb)^2.$
3607.0+x ^{&} 12			E(level): Level not established by other groups.

¹⁹³Pb Levels (continued)

E(level) [†]	J ^π g	Comments
$3639.3 + x^{b} 10$		
3721.1+x ^C 9	$(37/2^{-})$	$B(M1)/B(E2)(exp)=12.8\ 26\ (\mu_N/eb)^2.$
3739.3+x ^a 7	(33/2)	
3770.0+x [@] 8		
3837.2+x [@] 7	(33/2)	
3860.0+x ^{&} 10		E(level): Level not established by other groups.
3904.4+x ^{&} 13		E(level): Level not established by other groups.
3922.6+x ^f 8	$(35/2^+)$	B(M1)/B(E2)(exp)=4.9 10 $(\mu_N/eb)^2$.
3987.2+x ^a 9		E(level): Level not established by other groups.
$4001.5 + x^{(0)} 9$	(35/2)	
4054.6+x ^b 11		
4113.6+x ^{&} 9		
4134.3+x ^c 9	(39/2-)	B(M1)/B(E2)(exp)=7.9 20 $(\mu_N/eb)^2$.
4147.9+x [@] 10	(37/2)	
4165.6+x ^b 9	(39/2 ⁻)	
$4177.4 + x^{a} 10$	(37/2)	
4208.3+x [@] 10		
4239.2+x ^{&} 14		E(level): Level not established by other groups.
4296.6+x [@] 11	(39/2)	
$4395.0 + x^{a} 8$	(37/2)	
$4432.2 + x^{\alpha} 8$	(37/2)	
$4441.4 + x^{\circ} I2$	(41/2-)	E(level): Level not adopted. A comparable 581.8 γ placed from 399/.1+x in Adopted Levels.
$4408.0+x^{-9}$	(41/2)	$B(M1)/B(E2)(exp)=28.12 (\mu_N/e0)$.
$4493.0+x^{-1}$ 13 $4527.1+x^{-1}$ 12	(41/2)	
$4557.1 + x^{\circ} 12$		
45/5.7 + x = 12	(11/2-)	
$4588.9 + x^{a}$ 9 $4634.7 + x^{a}$ 11	(41/2)	F(level): Level not established by other groups
4034.7+x 11 4725.6+xeh 14	(13/2)	Elever). Eever not established by outer groups.
4723.0+x 14	(+3/2)	
$4826.0+x^{c}.10$	$(43/2^{-})$	$B(M1)/B(E2)(exp)=22.8 (u_N/eb)^2$
$4888.9 + x^a$ 11	(13/2)	$D(\mathbf{M})/D(\mathbf{H})/(\mathbf{M})/(\mathbf{H})/(\mathbf{M})/(\mathbf{M})$
4943.5+x [@] 13		
5017.0+x ^{eh} 15	(45/2)	
5030.6+x ^b 11		
5161.5+x ^{<i>a</i>} 8	(41/2)	Despite the 4.4 keV energy difference, this Group 4 level appears to be the equivalent of the 5165.9 keV (43/2 ⁻) Group C level in 1996Du18 (see note in caption for Level table, and footnote for Group 4 regarding the difference in J).
5167.8+x [@] 14		
5179.3+x ^c 10	$(45/2^{-})$	B(M1)/B(E2)(exp)=10.0 38 $(\mu_N/eb)^2$.
5381.9+x ^{eh} 15	(47/2)	
5770.9+x ^{eh} 15	(49/2)	B(M1)/B(E2)(exp)=8.2 22 $(\mu_N/eb)^2$.
6186.6+x ^{eh} 16	(51/2)	
6612.3+x ^{eh} 17	(53/2)	E(level): Level not confirmed in later work (30 Si,5n γ). 426.1 γ placed from 6657.6+x in Adopted Level. Level not adopted.

¹⁹³Pb Levels (continued)

E(level) [†]	J ^π g	Comments
7044.6+x ^{eh} 18	(55/2)	
$0.0+y^d$	J	J≈(47/2) (1996Ba54). E(level): In Adopted Levels y≈5092.5 keV+X, $J\pi$ =(45/2 ⁻).
239.1+y ^d 6	J+1	
504.2+y ^d 9	J+2	
833.6+y ^d 11	J+3	
1208.5+y ^d 12	J+4	

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted values.

[#] Group 1 Set of positive parity levels on top of the $13/2^+$ 5.8 min isomeric state. All the higher lying levels decay through this group.

- [@] Group 2 Group comprising levels below Band 2, as well as a few other states.
- & Group 3 Group of positive parity levels, feeding the 1993-keV level.
- ^{*a*} Group 4 Group of levels above the 1586-keV isomeric level. Note that the spin sequence adopted for several of the levels in this group differ by one unit from those proposed in 1996Du18. This is a consequence of the $\Delta J=2$ value adopted in this latter reference for the 556 keV transition feeding the isomeric state.
- ^b Group 5 Set of negative-parity levels above the 3320-keV level.

^c Band(A): Magnetic dipole band 1a. Group of negative parity levels connected by strong M1 γ rays, with E2 cross-over transitions.

^d Band(B): Magnetic dipole band 1b. Possible extension of Band 1a towards higher energies. The connecting transitions could not be observed, as the levels are only weakly populated in the reaction.

^{*e*} Band(C): Magnetic dipole band 2. Set of levels connected by a cascade of (M1) transition, feeding the 4297-keV bandhead level. The level and transition sequence is the same as in 1996Du18. Note however that the level spins and energies differ from those of Band 2 in 1996Du18, because there the 232-keV γ connects to the 4297-keV bandhead state via a sequence of two γ rays (149 and 90 keV), while the present authors show only a single 197-keV γ ray as first transition in the band. This produces a downward shift of about 45 keV in the Band 2 levels from the present dataset, as compared to the energies from 1996Du18. The different assignment for the lowest transitions for Band 2 also implies differences in the proposed J π values for the band levels.

^f Band(D): Magnetic dipole band 3. Weakly populated band, connected by M1 γ rays. with E2 cross-over transitions.

^g The authors have adopted spins and parities for Group 1 transitions from 1991La07.

^h Band 2 level. Its energy is about 45 keV lower than the same level in Band 2 from 1996Du18. See footnote comment for Band 2 for a discussion of the source of this difference.

γ ⁽¹⁹³Pb)

Eγ ^{&}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
72.7 [@] 10		2212.5+x	$(25/2^+)$	2139.9+x (23/2+)
85.5 ^a 8		2610.5+x	$(33/2^+)$	2525.0+x (29/2+)
97.7 [#] 5	2.2 8	2523.3+x	(27/2)	2425.5+x (27/2+)
102.5 ^d 5	3.4 8	2686.4+x	$(31/2^{-})$	2583.9+x (29/2 ⁻)
146.4 [#] 5	4.8 18	4147.9+x	(37/2)	4001.5+x (35/2)	DCO=0.48 21. The multipolarity of this transition is in doubt, since the authors, based on intensity balance arguments,

since the authors, based on intensity balance arguments, suggest an E1 character, and therefore a parity change between the connected levels. This change does not agree with the proposed character of positive-parity levels suggested by 1996Du18.

$\gamma(^{193}\text{Pb})$ (continued)

Eγ ^{&}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	Comments
148.7 [#] 5	4.5 23	4296.6+x	(39/2)	4147.9+x	(37/2)	D	DCO=0.53 18.
158.4 [@] 3	28 4	2583.9+x	$(29/2^{-})$	2425.5+x	$(27/2^+)$	D(+Q)	DCO=0.67 20.
164.3 [#] 5	7.5 21	4001.5+x	(35/2)	3837.2+x	(33/2)		DCO=0.51 <i>16</i> . From a comparison of the total intensity for the 462.6 keV transition with that for the one of 164.3 keV, the authors argue that this γ ray cannot have an M1 multipolarity, leading to an E1 assignment. While the resultant I(γ +ce)=8.4 24 is then in very good agreement with that reported in 1996Du18, the required parity change also implies that one (or possibly more) of the transitions on top of the 4001.5-keV level have to be of parity-changing character.
180.2 ^b 3	12.1 29	2320.9+x	(25/2)	2140.7+x	$(23/2^{-})$	D(+Q)	DCO=0.61 16.
184.3 ^b 3	19.5 <i>30</i>	1585.2+x	(21/2 ⁻)	1400.9+x	(21/2 ⁺)		Mult.: DCO=1.07 28 indicates Q, however, placement $21/2^{-}$ to $21/2^{+}$
197.0 ^{<i>f</i>} 6	2.0 8	4493.6+x	(41/2)	4296.6+x	(39/2)	D	DCO=0.52 <i>16</i> . E_{γ} : a comparable 196.9 γ placed as deexciting 4388+x in Adopted Levels. In 1996Ba54, authors propose it to be the lowest member of the cascade of magnetic dipole transitions in Band 2.
213.0 [@] 3	23.0 34	2425.5+x	$(27/2^+)$	2212.5+x	$(25/2^+)$	D(+Q)	DCO=0.60 17.
219.1 [@] 5	4.2 10	2212.5+x	(25/2+)	1993.5+x	(25/2+)		DCO=1.04 26 indicates Q, however, placement $25/2^+$ to $25/2^+$.
224.3 [#] 5	1.7 8	5167.8+x		4943.5+x			
232.0 5	5.5 17	4725.6+x	(43/2)	4493.6+x	(41/2)	D	DCO=0.44 12. E_{γ} : This γ ray has been placed by 1996Du18 as deexciting their 4769-keV level, which is not established by the present authors.
239.1° 6	1.0 6	239.1+y	J+1	0.0+y	J		
$252.3^{a} 3$ $265.1^{e} 6$	19 <i>4</i> 1.6 9	2938.6+x 504.2+y	(33/2) J+2	2686.4+x 239.1+y	(31/2) J+1	D	DCO=0.50 <i>10</i> .
279.1 [#] 5	3.4 13	4575.7+x		4296.6+x	(39/2)		
291.4/5	5.6 18	5017.0+x	(45/2)	4725.6+x	(43/2)	D	DCO=0.52 10. This γ ray has been placed by 1996Du18 as deexciting their 5061-keV level.
296.3 [#] 5	4.9 15	3374.6+x	(31/2)	3078.3+x	(29/2)	D	DCO=0.53 11.
301.6 ^b 5	1.8 6	2705.5+x		2404.1+x			This γ ray has not been reported in other references.
302.8 [°] 5	1.0 4	4468.6+x	$(41/2^{-})$	4165.6+x	(39/2 ⁻)	D	DCO=0.45 12.
310.8 [#] 5	9.9 19	2523.3+x	(27/2)	2212.5+x	(25/2+)		DCO= $0.63 \ 13$ indicates d(+Q), placement 27/2 to $25/2^+$ in 1996Ba54. $25/2^+$ at $2213.8+x$ is $23/2^+$ in Adopted Levels.
319.5 [°] 5	2.4 8	3639.3+x		3319.8+x	(35/2 ⁻)		DCO=0.53 10.
329.4° 6	1.1 7	833.6+y	J+3	504.2+y	J+2		
331.3 ⁰ 6	0.5 3	2652.0+x		2320.9+x	(25/2)		This γ ray not reported in other references. The closest match is the 330.4-keV transition from 1996Du18, placed there as deexciting their 6927-keV level.
334.4 ^d 5	3.5 9	4468.6+x	$(41/2^{-})$	4134.3+x	$(39/2^{-})$	D	DCO=0.51 7.
340.7 ^b 5	1.9 6	2992.8+x	(29/2)	2652.0+x			
342.6 ^g 5	6.4 12	2768.1+x	$(29/2^+)$	2425.5+x	$(27/2^+)$	D	DCO=0.48 7.

γ ⁽¹⁹³Pb) (continued)</sup>

Ε _γ &	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E_f	J_f^{π}	Mult. [†]	Comments
353.3 ^d 6	1.4 6	5179.3+x	$(45/2^{-})$	4826.0+x	$(43/2^{-})$	$\overline{D(+O)}$	DCO=0.59 12.
357.4^{d} 5	2.9 9	4826.0+x	$(43/2^{-})$	4468.6+x	$(41/2^{-})$	D	DCO=0.49 7.
363.5 ⁸ 5	4.7 10	3131.5+x	$(31/2^+)$	2768.1+x	$(29/2^+)$	D	DCO=0.41 7.
365.0 ^f 5	4.3 14	5381.9+x	(47/2)	5017.0+x	(45/2)	D	DCO=0.53 9.
367.8 [#] 5	2.5 10	4943.5+x		4575.7+x			
374.9 ^e 6	0.4 3	1208.5+y	J+4	833.6+y	J+3		
381.2 ^d 3	18.5 39	3319.8+x	$(35/2^{-})$	2938.6+x	$(33/2^{-})$	D	DCO=0.48 5.
381.7 <mark>8</mark> 6	1.5 5	3922.6+x	$(35/2^+)$	3540.8+x	$(33/2^+)$		DCO=0.38 8.
384.4 ^b 5	1.5 7	2705.5+x		2320.9+x	(25/2)		
389.1 ^{<i>f</i>} 5	2.5 8	5770.9+x	(49/2)	5381.9+x	(47/2)	D	DCO=0.53 11. This γ ray has been placed by 1996Du18 as deexciting their 5815-keV level (Band 2).
395.4 [#] 5	5.5 17	3770.0+x		3374.6+x	(31/2)		
401.3 ^d 4	11.1 24	3721.1+x	$(37/2^{-})$	3319.8+x	$(35/2^{-})$	D	DCO=0.48 5.
409.3 ⁸ 5	2.2 5	3540.8+x	$(33/2^+)$	3131.5+x	$(31/2^+)$	D	DCO=0.40 8.
413.3 ^d 5	6.8 16	4134.3+x	$(39/2^{-})$	3721.1+x	$(37/2^{-})$	D	DCO=0.50 6.
415.3° 5	1.9 10	4054.6+x		3639.3+x			
415.7 ^J 5	1.6 6	6186.6+x	(51/2)	5770.9+x	(49/2)	D	DCO=0.54 12.
421.2 ⁰ 5	4.4 13	3126.7+x	(29/2)	2705.5+x			DCO=0.89 <i>17</i> indicates Q. No $J\pi$ assignment for final level in 1996Ba54.
423.3 ^c 5	1.3 5	4588.9+x	$(41/2^{-})$	4165.6+x	(39/2 ⁻)	D	DCO=0.44 9.
425.7 ^{<i>f</i>} 6	0.9 4	6612.3+x	(53/2)	6186.6+x	(51/2)	D	DCO=0.50 13.
431.9 [@] 5	1.7 7	2425.5+x	$(27/2^+)$	1993.5+x	$(25/2^+)$	D(+Q)	DCO=0.59 14.
432.3^{f} 6	0.6 3	7044.6+x	(55/2)	6612.3+x	(53/2)		
438.3 [#] 5	2.1 8	4208.3+x		3770.0+x			
441.7 ^c 5	1.0 4	5030.6+x	(20)	4588.9+x	$(41/2^{-})$		
444.4° 5	3.4 11	4165.6+x	$(39/2^{-})$	3/21.1+x	$(37/2^{-})$	D	DCO=0.46 8.
$447.0^{\circ}0$ $454.6^{\circ}5$	0.95 074	$4588.9 \pm x$	$(41/2^{-})$	3412.4+x 4134.3+x	(35/2) $(39/2^{-})$		This γ ray has not been reported in other references.
$462.6^{\#}4$	13 0 33	3837.2+x	(11/2)	3374 6+x	(31/2)	D	DCO=0 49 7
$472.0^{b}5$	4 8 14	2057.2 + x	(33/2) $(23/2^{-})$	1585.2 + x	(31/2) $(21/2^{-})$	D	DCO=0.46.13
482.5 [°] 5	1.9 9	4537.1+x	(23/2)	4054.6+x	(21/2)	D	DCO=0.45 8.
519.6 [@] 2	82 10	1400.9+x	$(21/2^+)$	881.3+x	$(17/2^+)$	0	DCO=0.96 11.
$527.3^{@}4$	10.2.19	1549.3 + x	$(19/2^+)$	1022.1 + x	$(15/2^+)$	Õ	DCO=1.05.15
531.5 ^{<i>a</i>} 5	3.8 11	2525.0+x	$(29/2^+)$	1993.5+x	$(25/2^+)$	Q	DCO=0.93 17.
539.5 ^a 6	1.8 12	3904.4+x		3364.9+x			This γ ray may be the same as the 540.4 keV transition from 1996Du18, who place it as deexciting their 3822-keV level.
542.2 ^b 5	2.8 10	3247.7+x		2705.5+x			
546.3 ^b 5	6.4 17	3539.1+x	(33/2)	2992.8+x	(29/2)	Q	DCO=1.11 17.
555.0 [#] 4	6.6 23	3078.3+x	(29/2)	2523.3+x	(27/2)	D(+Q)	DCO=0.62 7.
555.5 ^b 3	30 10	2140.7+x	$(23/2^{-})$	1585.2+x	$(21/2^{-})$	D+Q	DCO=0.77 9.
564.6 ^b 4	7.2 19	2705.5+x	· · /	2140.7+x	(23/2 ⁻)		Mult.: DCO=0.89 15 indicates Q, however, no spin assigned for depopulating level in 1996Ba54
581.4 ^{<i>a</i>} 6	0.8 <i>3</i>	4441.4+x		3860.0+x			a 581.8 keV γ is placed from 3997.1+x in Adopted Levels
¹⁷⁴Yb(²⁴Mg,5nγ) **1996Ba54** (continued)

γ ⁽¹⁹³Pb) (continued)</sup>

Eγ ^{&}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	Comments
590.6 [@] 3	30 6	2139.9 + x	$(23/2^+)$	1549.3+x	$(19/2^+)$	0	DCO=0.97 15.
592.5 [@] 3	35 9	1993.5+x	$(25/2^+)$	1400.9+x	$(21/2^+)$	ò	DCO=1.08 14.
594.3 ^b 5	2.6 13	2652.0+x		2057.5+x	$(23/2^{-})$		
612.6 ^b 3	8.3 22	3739.3+x	(33/2)	3126.7+x	(29/2)	0	DCO=0.96 13.
632.2 ^{<i>a</i>} 6	1.3 9	4239.2+x	()	3607.0+x			This γ ray has not been reported in other references.
633.2 ^d 6	1.4 5	3319.8+x	$(35/2^{-})$	2686.4+x	$(31/2^{-})$	§	
638.3 ^b 5	3.2 10	4177.4+x	(37/2)	3539.1+x	(33/2)	Q	DCO=1.13 19.
644.0 ^a 6	0.6 3	4757.6+x		4113.6+x			
647.5 ^b 5	1.3 5	4634.7+x		3987.2+x			This γ ray has not been reported in other references.
655.7 ^b 4	1.9 8	4395.0+x	(37/2)	3739.3+x	(33/2)		
668.0 [@] 4	9.0 17	1549.3+x	$(19/2^+)$	881.3+x	$(17/2^+)$	D+Q	DCO=0.58 7.
672.0 ^b 4	6.9 18	2992.8+x	(29/2)	2320.9+x	(25/2)	Q	DCO=1.09 15.
677.0^{a} 4	9.9 19	2670.5+x	$(29/2^+)$	1993.5+x	$(25/2^+)$	Q	DCO=0.93 11.
691.7 ^{<i>a</i>} 6	0.3 1	4826.0+x	$(43/2^{-})$	4134.3+x	$(39/2^{-})$	8	
692.8° 4	3.2 10	4432.2+x	(37/2)	3739.3+x	(33/2)	Q	DCO=0.89 15.
701.2°° 5	1.6.5	4113.6+x	(21/2+)	3412.4+x	$(33/2^+)$	8	
$705.9^{\circ} 0$	1./4	3131.5+x	$(31/2^{+})$	2425.5+x	$(27/2^{+})$	8	
$/10.7^{a}$ 6	0.4 2	51/9.3+x	(45/2)	4468.6+x	(41/2)	9	
711.5° 6	0.7 4	4888.9+x	(11/2)	4177.4+x	(37/2)	0	
729.3° 4	1.5.6	5161.5+x	(41/2)	4432.2+x	(37/2)	Q	DCO=0.97 30.
739.0° 3	19 4	2139.9+x	$(23/2^+)$	1400.9+x	$(21/2^{+})$	D+Q	DCO=0.58 15.
139.3 5	1.8 0	3967.2+X		5247.7+X			This γ has not been reported in other references. 1996Du18 list a 739.7 keV γ with I γ =23.3 14. The sum of the γ intensities of the 739.0 and 739.5 keV τ ransitions from the present authors is 20.8 40. Therefore the transition seen in 1996Du18 may be an unresolved doublet.
741.9 ^a 5	4.5 12	3412.4+x	$(33/2^+)$	2670.5+x	$(29/2^+)$	Q	DCO=0.97 17.
747.6 ^d 6	0.5 2	4468.6+x	$(41/2^{-})$	3721.1+x	$(37/2^{-})$	§	
753.8 [†] 6	0.9 3	5770.9+x	(49/2)	5017.0+x	(45/2)	8	
754.4 ^{<i>a</i>} 5	5.6 30	3364.9+x		2610.5+x	$(33/2^+)$		1996Du18 report a 755.1 keV transition deexciting their level at 3282 keV.
758.9# 5	2.3 9	3837.2+x	(33/2)	3078.3+x	(29/2)	Q	DCO=1.16 31.
766.5 ⁰ 6	0.8 4	5161.5+x	(41/2)	4395.0+x	(37/2)	e	
$772.8^{g}_{a}6$	1.5 4	3540.8+x	$(33/2^+)$	2768.1+x	$(29/2^+)$	8	
782.5 ^{<i>a</i>} 6	2.8 7	3721.1+x	$(37/2^{-})$	2938.6+x	$(33/2^{-})$	Q ⁸	DCO=1.09 21.
791.1 ⁸ 6	1.2 3	3922.6+x	$(35/2^+)$	3131.5+x	$(31/2^+)$	8	
805.9 ⁰ 3	8.8 22	3126.7+x	(29/2)	2320.9+x	(25/2)	Q	DCO=0.91 11.
811.7 ^{^w} 4	9.8 19	2212.5+x	$(25/2^+)$	1400.9+x	$(21/2^+)$	Q	DCO=0.91 12.
814.5 ^{<i>a</i>} 5	3.0 9	4134.3+x	(39/2 ⁻)	3319.8+x	$(35/2^{-})$	8	
819.0 ⁰ 3	3.3 10	2404.1+x		1585.2+x	$(21/2^{-})$		This γ ray has not been reported in other references.
834.0° 5 845.8° 5	2.8 13	3417.9+x	$(30/2^{-})$	2583.9+x	(29/2)		
851 3 [#] 1	1.1 5	+105.0+X	(37/2)	2512.0+X	(35/2)	0	DCO = 0.96 IA
867.8 [°] 5	1.2.5	4588.9+x	$(41/2^{-})$	3721.1 + x	(27/2) $(37/2^{-})$	Y	DC0-0.70 17.
881.3 [@] 2	100 11	881.3+x	$(17/2^+)$	0.0+x	$(13/2^+)$	Q	DCO=0.96 11.

174 Yb(24 Mg,5n γ) 1996Ba54 (continued)

γ ⁽¹⁹³Pb) (continued)

Εγ&	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E _f	J_f^{π}	Mult. [†]	Comments
996.5 ^a 6	3.0 18	3607.0+x		2610.5+x	$(33/2^+)$		This γ ray has not been reported in other references.
1022.1 [@] 4	12.2 21	1022.1+x	$(15/2^+)$	0.0+x	$(13/2^+)$	D+Q	DCO=0.77 14.

[†] Assigned by the evaluator based on DCO ratios, normalized to E2 quadrupole transitions by 1996Ba54.

^{\ddagger} The quoted uncertainty for the γ intensity does not contain the uncertainty listed for the 881-keV transition.

[§] Crossover stretched quadrupole transition between alternate levels in magnetic dipole band, connected by stretched (M1)

transitions. & An uncertainty of 0.1% (with a minimum value of \pm 0.3 keV) has been assigned by the evaluator from comparison with previous HERA and GAMMASPHERE results. [@] Group 1.

Group 2.

^{*a*} Group 3.

^b Group 4.

^c Group 5.

^d Band 1a.

^e Band 1b.

f Band 2.

^g Band 3.

¹⁸²W(¹⁶O,5nγ) 1991La07

1991La07: ¹⁸²W(¹⁶O,⁵n γ) E(¹⁶O)=109 MeV; intrinsic Ge and Si(Li) detectors and magnetic spectrometer, pulsed beam (200 ns period); measured E γ , I γ , Ice, $\gamma\gamma$ coin, γ -ce coin, $\gamma(\theta)$, $\gamma\gamma(t)$.

¹⁹³Pb Levels

E(level)	J ^π	T _{1/2} †	Comments
0.0+x	$(13/2^+)$	5.8 min 2	J^{π} , $T_{1/2}$: From Adopted Levels.
881.6+x 2	$(17/2^+)$		
1022.0+x 2	$(15/2^+)$		
1401.8+x <i>3</i>	$(21/2^+)$		
1550.1+x 3	$(19/2^+)$		
1585.9+x 4	$(21/2^{-})$	22 ns 2	
1994.4+x 4	$(25/2^+)$		
2141.3+x 4	$(23/2^+)$		
2142.0+x 4	$(23/2^{-})$		
2214.0+x 5	$(25/2^+)$		
2322.4+x 5	$(27/2^{-})$		
2426.9+x 5	$(27/2^+)$		
2527.1+x 5	$(29/2^+)$		
2585.1+x 5	$(29/2^{-})$	11 ns 2	
2612.6+x 6	$(33/2^+)$	135 ns +25-15	
2966.8+x? 7	$(31/2^+)$		
3220.4+x? 7	(33/2+)		E(level): Uncertain level – not adopted. 253.6γ of this placed from $2939.2+x$ in Adopted Levels.

[†] Half-lives obtained here from $\gamma(t)$ or $\gamma\gamma(t)$, except as noted.

	$\frac{182}{160,5n\gamma}$ 1991La07 (continued)										
	$\frac{\gamma(^{193}\text{Pb})}{\gamma(^{193}\text{Pb})}$										
E_{γ}	${I_\gamma}^{\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	δ^{\dagger}	α ^{§&}	$I_{(\gamma+ce)}$	Comments	
72.6 5 85.5 5		2214.0+x 2612.6+x	(25/2 ⁺) (33/2 ⁺)	2141.3+x 2527.1+x	(23/2 ⁺) (29/2 ⁺)	M1+E2 E2	0.21 +4-3	5.3 <i>4</i> 12.1 <i>4</i>		Mult., δ : From α ((L1+L2)/L3)(exp)=8.8 20. Mult.: α (L12/L3)(exp)=0.93 19, α (L/M)(exp)=5.1 17; theory: α (L12/L3)(M1)=125.2, α (L12/L3)(E2)=1.23, α (L/M)(M1)=4.26, α (L/M)(E2)=3.79.	
158.2 2	45.0 <i>53</i>	2585.1+x	(29/2 ⁻)	2426.9+x	(27/2+)	E1		0.1394	50.8 60	Mult.: $A_2 = -0.15 5$, $A_4 = -0.002 74$. $\alpha_{L12}(exp) = 0.0077 71$; theory: $\alpha_{L12} = 0.0170$	
180.4 4	2.9 10	2322.4+x	(27/2 ⁻)	2142.0+x	(23/2 ⁻)				4.8 16	Mult., δ : E2 in 1991La07. But $\alpha_{\rm K}(\exp)=0.283 \ 51, \ \alpha_{\rm L}(\exp)=0.36 \ 4$ indicates M1+E2 and a mixing ratio of 4 $+5-1$ for which theory value is $\alpha_{\rm k}=0.28$ 5. Also A ₂ =+0.20 7, A ₄ =-0.21 <i>10</i> . In Adopted Levels placement from (27/2 ⁻) to (25/2 ⁻).	
184.1 <i>3</i>	53.0 <i>36</i>	1585.9+x	(21/2 ⁻)	1401.8+x	$(21/2^+)$	E1+M2	0.049 +15-20	0.116 14	59.1 40	Mult., δ : From $\alpha_{\rm K}(\exp)=0.0916$ 92. Also $A_{2}=+0.195$, $A_{4}=-0.026$	
204.8 4	0.7 6	2527.1+x	(29/2+)	2322.4+x	(27/2 ⁻)	E1+M2	0.63 14	0.0736	2.5 16	Mult., δ : From $\alpha_{\rm K}(\exp)=1.9$ 16, $\alpha_{\rm L12}(\exp)=0.21$ 12; Also A ₂ =-0.29 6, A ₄ =+0.33 12. theory: $\alpha_{\rm K}(\rm E1)=0.0594$, $\alpha_{\rm K}(\rm M2)=4.18$, $\alpha_{\rm L12}(\rm E1)=0.0090$, $\alpha_{\rm L12}(\rm M2)=1.087$.	
212.9 3	26.0 33	2426.9+x	$(27/2^+)$	2214.0+x	$(25/2^+)$	M1		1.100	54.5 70	Mult.: $A_2 = -0.194$, $A_4 = +0.037$.	
219.1 <i>3</i> 253.6 <i>10</i>	1.6 7	2214.0+x 3220.4+x?	(25/2 ⁺) (33/2 ⁺)	1994.4+x 2966.8+x?	(25/2 ⁺) (31/2 ⁺)	(M1)		1.015	3.1 12	Mult.: $\alpha_{\rm K}(\exp)=1.14$ 13, $\alpha_{\rm L12}(\exp)=0.140$ 10. 57; Theory: $\alpha_{\rm K}({\rm M1})=0.829$. The anomalously high $\alpha({\rm K})$ conversion coefficient might be due to a significant E0 component in the transition, $\Delta {\rm J=0}$. E _y : a comparable 252.3 γ from 2939.2+x in	
381.7 10		2966.8+x?	$(31/2^+)$	2585.1+x	$(29/2^{-})$					Adopted Levels.	
^x 497.7 4	8.3 5		(- ,-)		< · / = /	E2		0.0297	8.5 5	Mult.: $\alpha_{\rm K}(\exp)=0.0224\ 51;$ $\alpha_{\rm L2}(\exp)=0.0044\ 22$	
520.2 2	88.1 78	1401.8+x	(21/2 ⁺)	881.6+x	(17/2+)	E2		0.0267	90.4 80	Mult.: $A_2 = +0.24$ 5, $A_4 = -0.12$ 8. $\alpha_{\rm K}(\exp) = 0.0225$ 15, $\alpha_{\rm L12}(\exp) = 0.00433$ 32, $\alpha_{\rm L3}(\exp) = 0.0011$ 3.	
528.0 4	6.0 10	1550.1+x	(19/2+)	1022.0+x	$(15/2^+)$	E2		0.0258	6.2 10	Mult.: A_2 =+0.35 5, A_4 =-0.16 10. $\alpha_K(\exp)$ =0.0210 39.	
532.2 3	8.5 5	2527.1+x	(29/2 ⁺)	1994.4+x	(25/2+)	E2(+M3)	0.14 +5-7	0.0370 96	8.8 5	Mult.: A_2 =+0.10 3, A_4 =-0.01 5. $\alpha_{\rm K}(\exp)$ =0.0208 22, $\alpha_{\rm L12}(\exp)$ =0.0091	

327

 $^{193}_{82} \mathrm{Pb}_{111}\text{-}42$

 $^{193}_{82} \mathrm{Pb}_{111}\text{-}42$

Eγ	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α ^{§&}	$I_{(\gamma+ce)}$	Comments
										<i>15.</i> δ : Average of δ =0.08 +3-5 from $\alpha_{\rm K}$, and δ =0.20 +3-4 from $\alpha_{\rm L12}$.
556.1 <i>4</i>	6.5 5	2142.0+x	(23/2-)	1585.9+x	(21/2 ⁻)	E2		0.0229	6.6 5	Mult.: From $\alpha_{\rm K}(\exp)=0.015$ 3. Also A ₂ =+0.13 5, A ₄ =+0.06 9.
591.2 <i>4</i>	12.5 29	2141.3+x	$(23/2^+)$	1550.1+x	$(19/2^+)$	E2		0.0199	12.7 30	Mult.: $\alpha_{\rm K}(\exp)=0.0189\ 29$.
593.1 4	15.6 19	1994.4+x	$(25/2^+)$	1401.8+x	$(21/2^+)$	E2(+M3)	0.16 3	0.0289 85	16.0 20	Mult., δ : $\alpha_{\rm K}(\exp)=0.0232$ 35, $\alpha_{\rm L12}(\exp)=0.0048$ 10.
668.7 <i>3</i>	9.9 10	1550.1+x	$(19/2^+)$	881.6+x	$(17/2^+)$	M1+E2	1.8 + 9 - 5	0.023 4	10.1 10	Mult., δ : From $\alpha_{\rm K}(\exp)=0.0183$ 32.
739.6 <i>3</i>	13.9 24	2141.3+x	$(23/2^+)$	1401.8+x	$(21/2^+)$	M1+E2	0.63 17	0.031 <i>3</i>	14.3 25	Mult., δ : From $\alpha_{\rm K}(\exp)=0.0255\ 23$. Also A ₂ =-0.47 8, A ₄ =+0.27 10.
812.2 4	5.0 15	2214.0+x	(25/2+)	1401.8+x	(21/2+)	(E2)		0.01008	5.0 15	Mult.: $\alpha_{\rm K}(\exp)=0.0038\ 28$; Theory: $\alpha_{\rm K}(E2)=0.00785$ – inconsistent with experimental value.
881.6 2	100	881.6+x	(17/2 ⁺)	0.0+x	(13/2 ⁺)	E2		0.00854	100	Mult.: A_2 =+0.25 6, A_4 =-0.02 9. $\alpha_{\rm K}(\exp)$ =0.0074 5, $\alpha_{\rm L,12}(\exp)$ =0.00147 16.
1022.0 2	14.5 18	1022.0+x	(15/2 ⁺)	0.0+x	(13/2 ⁺)	(M1+E2)		0.0116 53	14.7 <i>18</i>	Mult.: $A_2 = -0.01 5$, $A_4 = +0.01 8$. $\alpha_{\rm K}(\exp) = 0.0051 7$.

328

[†] The multipolarities have been deduced from the measured conversion coefficients, and the angular distribution coefficients. The mixing ratio for a few transitions has been deduced from the experimental conversion coefficients. Additional information from the other (HI,xn γ) datasets has been also used in assigning the multipolarities listed here (see Adopted dataset).

^{\ddagger} The γ -ray intensities have been calculated by the evaluator using the measured total intensities and the conversion coefficients obtained from the quoted multipolarities. The calculated relative γ intensities have been normalized to 100 for the 881.6-keV transition.

[§] Theoretical total conversion coefficients for the stated multipolarities, and mixing ratio, if available.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

NUCLEAR DATA SHEETS

(HI,xnγ):SD 1999Ro21,1995Hu01,1996Du05

1999Ro21: ¹⁶⁸Er(³⁰Si,⁵nγ) E=160 MeV. Measured Eγ, Iγ, γγ using GAMMASPHERE array of 101 large Compton-suppressed Ge detectors. Three new SD bands were deduced while confirming six previously known SD bands. No evidence was found for three high energy transitions of 2222, 2282 and 2352 (as reported by 1996Du05) linking SD-1 band to normal-deformed states.
 1998Va18: ¹⁷²Yb(²⁶Mg,5nγ) E=139 MeV. GAMMASPHERE array of 98 large- volume Compton-suppressed Ge detectors.

Measured lifetimes by DSAM (line-shape and centroid-shift analyses).

1996Du05, 1996Pe20: ¹⁶⁸Er(³⁰Si,5nγ) E=159 MeV. Measured Eγ, Ιγ, γγ coin using EUROGAM 2 array with 15 escape suppressed Ge detectors at forward and backward angles and 24 "CLOVER" escape-suppressed Ge detectors near 90° to the beam direction. 1996Du05 confirm six SD bands; 1996Pe20 report transitions connecting SD1 band with the non-deformed levels. These transitions, however, have not been confirmed by 1999Ro21 using a larger detector array.

1995Hu01: 174 Yb(24 Mg, $5n\gamma$); E=131 MeV, GAMMASPHERE 36-detector array; measured E γ , I γ , $\gamma\gamma$ coin, γ asymmetry; deduced six SD bands: cranked-shell model calculations.

Calculations, compilations: 1997Hu13, 1997Wu06, 1999Ha56, 1991Ch36.

¹⁹³Pb Levels

E(level)	$J^{\pi^{\dagger}}$	Comments
у [‡]	J	E(level): 4217 relative to the $13/2^+$ isomer was suggested by 1996Pe20 on the basis of a tentative 2222γ to 1995+x level. But this transition has not been confirmed in the work of 1999Ro21 using a larger detector array. J ^{π} : \approx (23/2).
277.0+y [‡] 3	J+2	2282 γ (I γ =0.035 20) and 2352 γ (I γ =0.034 20) proposed by 1996Du05 as linking transitions to normal-deformed states have not been confirmed by 1999Ro21 using a larger detector array, thus these γ rays together with a 2222 γ (1996Du05) have been omitted here.
594.3+y [‡] 5	J+4	
951.6+y [‡] 6	J+6	
1349.1+y [‡] 6	J+8	
1786.9+y [‡] 7	J+10	
2264.3+y [‡] 8	J+12	
2781.6+y [‡] 9	J+14	
3337.7+y [‡] 9	J+16	
3932.5+y [‡] 10	J+18	
4565.9+y [‡] 11	J+20	
5237.7+y [‡] <i>13</i>	J+22	
5945.9+y? [‡] 15	J+24	
z#	J1	J^{π} : $\approx (17/2)$.
$190.2 + z^{\#} 5$	J1+2	
$422.8 + z^{\#} 6$	J1+4	
698.0+z [#] 7	J1+6	
1015.9+z [#] 8	J1+8	
1376.8+z [#] 8	J1+10	
$1780.3 + z^{\#} 9$	J1+12	
$2226.2+z^{\#}9$	J1+14	
2714.4+z [#] 10	J1+16	
3242.4+z [#] 11	J1+18	
3812.2+z [#] 13	J1+20	
4422.7+z [#] 15	J1+22	
5072.7+z [#] _16	J1+24	
5762.5+z? [#] 18	J1+26	
u [@]	J2	\mathbf{J}^{π} : \approx (21/2).

¹⁹³Pb Levels (continued)

E(level)	$J^{\pi \dagger}$	Comments
251.5+u [@] 6	J2+2	
543.0+u [@] 7	J2+4	
875.4+u [@] 8	J2+6	
1247.5+u [@] 8	J2+8	
1659.4+u [@] 9	J2+10	
2110.0+u [@] 9	J2+12	
2598.9+u [@] 10	J2+14	
3125.5+u [@] 11	J2+16	
3688.9+u [@] 11	J2+18	
4288.8+u [@] 13	J2+20	
4925.8+u [@] 14	J2+22	
5598.0+u [@] 15	J2+24	
6307.2+u [@] 16	J2+26	
v	J3	$\mathbf{J}^{\pi}:\approx(23/2).$
273.0+v? ² 7	J3+2	
$586.4 + v^{\infty} 10$	J3+4	
939.5+v ^{&} 10	J3+6	
$1331.4 + v^{\infty} II$	J3+8	
$1/61.4 + v^{\infty} II$	J3+10 J2+12	
$2228.5 + v^{22} I2$	J3+12	
$2/32.4 + v^{22}$ 13	J3+14 J2+16	
$32/1.9 + \sqrt{2}$ 13	J_{3+10} I_{2+18}	
$3347.0+\sqrt{14}$	13+10 13+20	
$51015 \pm v^{\&} 16$	13+20 13+22	
$5777.9 + v^{\&} 17$	J3+22	
6485.1+v ^{&} 19	J3+26	
w ^a	J4	$J^{\pi}: \approx (17/2).$
$100.5 + w^{b} 8$	J4+1	
$213.2 + w^{a}$ 4	J4+2	
$335.1 + w^0 6$	J4+3	
$467.9 + W^{2} 7$	J4+4	
$763.9 \pm w^{a}$	J4+5 I4+6	
$926.8 \pm w^{b}.8$	J4+7	
$1099.9 + w^a 8$	J4+8	
1282.6+w ^b 8	J4+9	
$1475.2 + w^a 9$	J4+10	
$1677.0 + w^{b} 9$	J4+11	
$1888.7 + w^{a} 9$	J4+12	
$2109.8 + W^{0} 9$ $2340.0 + W^{0} 10$	J4+13 I4+14	
$2540.0 \pm w^{b}$ 10	J4+14 I∆+15	
$2828.5 + w^{a}$ 12	J4+15 J4+16	
3087.8+w ^b 11	J4+17	

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
3355.0+w ^a 13	J4+18	s ^C	J5	5620.8+s ^c 20	J5+24	5158.9+t ^d 19	J6+22
3631.3+w ^b 12	J4+19	260.6+s ^c 7	J5+2	t ^d	J6	a ^e	J7
3917.2+w ^{<i>a</i>} 14	J4+20	560.4+s ^c 10	J5+4	281.8+t ^d 6	J6+2	212.9+a ^e 5	J7+2
4211.0+w ^b 13	J4+21	900.5+s ^c 10	J5+6	$603.2 + t^d 9$	J6+4	468.7+a ^e 7	J7+4
4513.4+w ^a 16	J4+22	1279.4+s ^c 12	J5+8	964.1+t ^d 10	J6+6	766.0+a ^e 10	J7+6
4825.6+w ^b 15	J4+23	1696.6+s ^c 13	J5+10	1362.6+t ^d 11	J6+8	1102.5+a ^e 11	J7+8
5144.7+w ^a 18	J4+24	2150.6+s ^c 14	J5+12	$1798.5 + t^d$ 12	J6+10	1478.3+a ^e 13	J7+10
5475.1+w ^b 16	J4+25	2641.7+s ^c 15	J5+14	2270.8+t ^d 14	J6+12	1894.2+a ^e 13	J7+12
5811.5+w ^a 20	J4+26	3167.8+s ^c 15	J5+16	2778.9+t ^d 15	J6+14	2349.7+a ^e 14	J7+14
6159.1+w ^b 17	J4+27	3729.1+s ^c 16	J5+18	3322.1+t ^d 16	J6+16	2845.3+a ^e 15	J7+16
6512.0+w ^a 22	J4+28	4325.5+s ^c 17	J5+20	3900.1+t ^d 17	J6+18	3380.7+a ^e 17	J7+18
6877.0+w ^b 18	J4+29	4956.6+s ^c 19	J5+22	4512.1+t ^d 18	J6+20	3956.0+a ^e 19	J7+20

¹⁹³Pb Levels (continued)

[†] Band SD-1 from 1996Pe20, others from 1996Du05; based on band structure and γ anisotropy. The lowest-level spin in each band has been estimated using the spin fit method.

[±] Band(A): SD-1 band. (1999Ro21,1995Hu01,1996Du05,1996Pe20). Configuration= $v3/2[761] \alpha = -1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.5%. Q(intrinsic)=17.3 +7-8 (1998Va18).

[#] Band(B): SD-2 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $v3/2[761] \alpha = +1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.3% (1995Hu01). Band intensity relative to SD-1 band=50% (1996Du05), 38% 8 (1999Ro21). SD-1 and SD-2 represent favored and unfavored signature components (with a large observed splitting) of the low-K, 3/2[761], N=7 neutron orbital (from (²⁴Mg,5n γ)).

^(a) Band(C): SD-3 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $v3/2[642] \alpha = +1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.25% (1995Hu01). Band intensity relative to SD-1 band=50% (1996Du05), 46% 9 (1999Ro21).

& Band(D): SD-4 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $v3/2[642] \alpha = -1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.25% (1995Hu01). Band intensity relative to SD-1 band=50% (1996Du05), 23% 5 (1999Ro21). SD-3 and SD-4 are interpreted as signature partners (no signature splitting) based on a high K, 3/2[642] neutron orbital. The 5/2[512] neutron orbital suggested by 1995Hu01 is not supported by calculations and experimental comparisons of 1996Du05 and 1999Ro21.

^{*a*} Band(E): SD-5 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $\nu 9/2[624] \alpha = +1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.2% (1995Hu01). Band intensity relative to SD-1 band=30% (1996Du05), 15% 3 (1999Ro21).

^b Band(F): SD-6 band. (1999Ro21,1995Hu01,1996Du05). Configuration= $v9/2[624] \alpha = -1/2$. From (²⁴Mg,5n γ); band intensity relative to total ¹⁹³Pb channel is 0.2% (1995Hu01). Band intensity relative to SD-1 band=30% (1996Du05), 20% 4 (1999Ro21). SD-5 and SD-6 are interpreted as signature partners (no signature splitting) based on a high K, 9/2[624] neutron orbital. From dipole interband transitions, 1996Du05 deduce B(M1)/B(E2)=0.15 4. g_K=-0.39 *12* (1996Du05), -0.27 *9* (1999Ro21) from M1/E2 branching ratios, using Θ_0 =18.4 and K=9/2.

^c Band(G): SD-7 band. (1999Ro21). Band intensity relative to SD-1 band=17% 3 (1999Ro21). SD-7 and SD-8 are proposed as signature partners with configuration=v5/2[512].

^d Band(H): SD-8 band. (1999Ro21). Band intensity relative to SD-1 band=14% 3 (1999Ro21). SD-7 and SD-8 are proposed as signature partners with configuration=v5/2[512].

^e Band(I): SD-9 band. (1999Ro21). Band intensity relative to SD-1 band=5% 1 (1999Ro21). Configuration=v7₃ intruder orbital.

γ (¹⁹³Pb)

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Comments
101‡@		100.5+w	J4+1	w	<u>.</u>]4	
112 ^{‡@}		213.2+w	J4+2	$100.5 \pm w$	J4+1	
$122 0^{\ddagger} 5$		335.1 + w	I4+3	213.2+w	I4+2	
122.0 ± 5		467 9±w	J+13 I/⊥/	215.2 + W $335.1 \pm W$	J+12 I/1+3	
132.9 + 5 142.5 ± 5		$407.9 \pm W$	J4+4 I4+5	467 0 LW	J++J I4+4	
142.5 5		010.0+w	J4+J	407.9+w	J4+4	
153.27 5		763.9+W	J4+0	610.0+W	J4+5	
163.0+ 5		926.8+w	J4+7	763.9+w	J4+6	
172.8 5		1099.9+w	J4+8	926.8+w	J4+7	
182.7 ⁴ 5		1282.6+w	J4+9	1099.9+w	J4+8	
190.2 5	0.19 5	190.2+z	J1+2	Z	J1	I_{γ} : 0.40 7 (1995Hu01).
193.0 ⁴ 5		1475.2+w	J4+10	1282.6+w	J4+9	
201.9 [‡] 5		1677.0+w	J4+11	1475.2+w	J4+10	
211.7 [‡] 5		1888.7+w	J4+12	1677.0+w	J4+11	
212.9 5	0.40 5	212.9+a	J7+2	а	J7	
213.2 4	0.53 10	213.2+w	J4+2	W	J4	I_{γ} : 0.96 <i>19</i> (1995Hu01).
221.0 [‡] 5		2109.8+w	J4+13	1888.7+w	J4+12	
231 ^{‡@}		2340.0+w	J4+14	2109.8+w	J4+13	
232.6 3	0.55 5	422.8+z	J1+4	190.2+z	J1+2	I_{γ} : 0.61 9 (1995Hu01).
234.6 5	0.13 7	335.1+w	J4+3	100.5+w	J4+1	I_{γ} : 0.26 6 (1995Hu01).
251.5 6	0.077	251.5+u	J2+2	u 212.2	J2 14+2	$I = 1.00 I0 (1005 II_{10} 01)$
255.8.5	1.00.12	407.9+w 468.7+a	J4+4 I7⊥4	$213.2 \pm W$ 212 0 ± 2	J4+2 I7⊥2	I_{γ} : 1.00 <i>19</i> (1995Hu01).
255.8 5	0.24.4	$260.7 \pm a$	17+4 15+2	212.9+a S	J7+2 I5	
273.0^{200} 7	0.17.7	$273.0 \pm y^2$	13+2	v	13	
275.0° 7	0.177	698.0+7	13+2 11+6	422 8+7	JJ 11+4	L: $1.00.70$ (1995Hu01)
275.5 5	0.35 7	610.6+w	J4+5	335.1+w	J4+3	$I_{\gamma}: 0.39 \ 6 \ (1995Hu01).$
277.0 3	0.47 5	277.0+y	J+2	у	J	I _γ : 0.51 7 (1995Hu01).
281.8 6	0.15 2	281.8+t	J6+2	t	J6	
291.5 <i>3</i>	0.76 7	543.0+u	J2+4	251.5+u	J2+2	I_{γ} : 0.58 8 (1995Hu01).
296.2 5	0.71 14	763.9+w	J4+6	467.9+w	J4+4	I_{γ} : 0.60 <i>10</i> (1995Hu01).
297.3 6	0.36 5	766.0+a	J'/+6	468.7+a	J'/+4	
299.8 0	0.517 0.447	500.4+s 586.4+y	JS+4 I3±4	200.0+s 273 0+y2	J_{3+2}	$I \cdot 0.42.8 (1005 Hp 01)$
316.2.5	0.447 0.457	926 8+w	JJ+4 I4+7	610.6+w	13+2 14+5	I_{γ} . 0.42.8 (1995Hu01).
317.3 3	0.95 9	594.3+y	J+4	277.0+y	J+2	$I_{\gamma}: 0.82 \ 7 \ (1995Hu01).$
317.9 <i>3</i>	0.91 9	1015.9+z	J1+8	698.0+z	J1+6	I _γ : 0.84 10 (1995Hu01).
321.5 6	0.43 7	603.2+t	J6+4	281.8+t	J6+2	
332.4 3	0.86 7	875.4+u	J2+6	543.0+u	J2+4	I_{γ} : 0.77 9 (1995Hu01).
336.1 4	0.91 10	1099.9+w	J4+8	763.9+w	J4+6	I_{γ} : 0.45 <i>10</i> (1995Hu01).
336.6 6	0.54 7	1102.5 + a	J'/+8	766.0+a	J7+6	
340.1 4	0.52 /	900.5+8 930.5+y	J3+0 J3+6	$586.4 \pm v$	J3+4 I3+4	$I \cdot 0.71 IO (1005 Hu01)$
355.0.5	0.087 8	$1282.5 \pm w$	J3+0 I4+9	$926.8 \pm w$	J_{3+4} I_{4+7}	I_{γ} . 0.71 10 (1995)1001). L : 0.70.9 (1995)Hu01)
357.3 3	0.90 9	951.6+v	J+6	594.3+v	J+4	$I_{\alpha}: 0.82 \ 7 \ (1995Hu01).$
360.9 3	1.07 10	1376.8+z	J1+10	1015.9+z	J1+8	I_{γ} : 0.76 <i>10</i> (1995Hu01).
360.9 5	0.62 11	964.1+t	J6+6	603.2+t	J6+4	
372.1 3	1.03 9	1247.5+u	J2+8	875.4+u	J2+6	I _γ : 1.00 <i>11</i> (1995Hu01).
375.1 5	0.92 10	1475.2+w	J4+10	1099.9+w	J4+8	I_{γ} : 0.90 <i>18</i> (1995Hu01).
375.8 5	0.63 7	1478.3+a	J7+10	1102.5 + a	J7+8	
5/8.95 201 0 2	0.63 10	12/9.4+s	J5+8	900.5+s	J5+6	I = 0.80 II (1005 H = 0.1)
391.9 3	0.05 /	1551.4+V 1677.0±w	J3+8 I4+11	939.3+V 1282.6±₩	13+0 14±0	I_{γ} . 0.00 <i>II</i> (1995Hu01). I · 0.60 7 (1995Hu01)
577.7 5	0.75 9	10//.0TW	9-1-11	1202.0±W	3712	iy. 0.007 (1775Hu01).

γ ⁽¹⁹³Pb) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^π	Comments
397.5.3	1.05 11	1349.1 + v	J+8	951.6+v	J+6	L ₄ : 0.84 7 (1995Hu01).
398.5.5	1.00 17	1362.6+t	J6+8	964.1+t	J6+6	
403.5.3	0.97 10	1780.3 + z	J1+12	1376.8+z	J1+10	$L_{\rm c}: 0.98 \ 10 \ (1995 Hu01).$
411.9.3	1.04 9	1659.4+u	J_{2+10}	1247.5 ± 0.012	J2+8	$I_{\rm eff} = 0.95 \ 11 \ (1995 Hu01).$
413 5 5	1.04 14	1888 7+w	J_{4+12}	1475.2+w	14+10	L : 0.90 I8 (1995Hu01)
415.9.4	0.62.7	1804.7 ± 3	17+12	1478.3 ± 3	17 ± 10	ly. 0.90 10 (1995)1001).
41725	1 00 18	$1696.6 \pm s$	15+10	1770.3 + a 1270 $4 + s$	15+8	
430.0.3	0.81.8	1000.0+3 1761 $4\pm y$	13 ± 10	1277.4+3 1331 $1\pm y$	13+8	$I : 0.65 \ 10 \ (1005Hu01)$
132 8 1	1 02 10	$2100.8\pm w$	J_{J+10} J_{J+13}	$1677.0 \pm w$	J_{J+11}	I_{γ} : 0.05 10 (1995)1001).
435.9.4	0.58 11	$17985 \pm t$	J_{++10}	1362.6+t	16+8	lγ. 0.75 9 (1995Hu01).
137 8 3	0.00 0	$1796.9 \pm v$	$J_{\pm 10}$	1302.0+t 1340 1+v	J0+8 I⊥8	I : 0.82.7 (1005Hu01)
437.83	0.90 9	$1780.9 \pm y$	$J \pm 10$ $I1 \pm 14$	1349.1+y	$J \pm 0$ $I1 \pm 12$	I_{γ} . 0.82 / (1995Hu01). L · 0.82 /0 (1005Hu01)
445.95	0.787	2220.2+2	J_{1+14} J_{2+12}	1/60.3+2 1650 4 ± 11	J_{1+12} J_{2+10}	I_{γ} . 0.82 10 (1995Hu01). L : 0.70 10 (1005Hu01)
450.05	0.80 10	2110.0+u	$J \angle \pm 1 \angle $ $J \angle \pm 1 \angle 1 \angle$	1039.4+u	J_{4+10}	I_{γ} . 0.75 10 (1995)1001).
451.2 5	0.69 10	2340.0+w	J_{4+14} I_{5+12}	1606./+w	J_{4+12} J_{5+10}	1_{γ} . 0.87 18 (1995Hu01).
454.05	0.09 11	2130.0+8 2240.7+8	J_{3+12} I_{7+14}	1090.0+8 1804.2+8	J_{7+10}	
433.34	0.00 J	$2349.7 \pm a$	J/+14 I2+12	$1694.2 \pm a$	J/+12 I2 + 10	$I = 0.76 \ 10 \ (1005 \text{Hz} \ 01)$
407.14	0.97 10	2228.3+V	J_{3+12}	1/01.4+V	J_{3+10}	I_{γ} : 0.70 10 (1995Hu01).
470.04	0.90 9	2580.4+W	J4+15 I6+12	2109.8+W	J_{4+13}	I_{γ} : 0.90 10 (1995Hu01).
472.50	0.51 /	2270.8+1	J0+12 L+12	1798.5+l	J0+10	I = 0.75.7 (1005 H = 0.1)
4//.4 3	0.86 9	2204.3+y	J+12	1780.9+y	J+10	I_{γ} : 0.75 / (1995Hu01).
488.24	0.68 0	2/14.4+Z	J1+10	2226.2+Z	J1+14	I_{γ} : 0.59 9 (1995Hu01).
488.0 3	0.73 10	2828.5+W	J_{4+10}	2340.0+W	J_{4+14}	I_{γ} : 0.69 <i>I</i> 0 (1995Hu01).
488.9 3	1.00 10	2598.9+u	J2+14	2110.0+u	J2+12	I_{γ} : 0.94 <i>11</i> (1995Hu01).
491.1.5	0.54 11	2641.7+s	J5+14	2150.6+s	J5+12	
495.6.0	0.40 /	2845.3+a	J/+10	2349.7+a	J/+14	
503.9 4	1.00 10	2732.4+v	J3+14	2228.5+v	J3+12	I_{γ} : 1.00 16 (1995Hu01).
507.4 4	0.83 9	3087.8+w	J4+17	2580.4+w	J4+15	I_{γ} : 1.00 <i>10</i> (1995Hu01).
508.1.6	0.58 8	2778.9+t	J6+14	22/0.8+t	J6+12	
517.3 4	0.73 6	2781.6+y	J+14	2264.3+y	J+12	I_{γ} : 1.00 <i>10</i> (1995Hu01).
526.1 5	0.82 12	3167.8+s	J5+16	2641.7+s	J5+14	
526.5 5	0.95 16	3355.0+w	J4+18	2828.5+w	J4+16	I_{γ} : 0.30 <i>19</i> (1995Hu01).
526.6 4	0.95 10	3125.5+u	J2+16	2598.9+u	J2+14	I_{γ} : 0.88 <i>II</i> (1995Hu01).
528.0 5	0.30 5	3242.4+z	J1+18	2714.4+z	J1+16	I_{γ} : 0.46 8 (1995Hu01).
535.4 7	0.29 5	3380.7+a	J7+18	2845.3+a	J7+16	
539.5 4	1.02 10	3271.9+v	J3+16	2732.4+v	J3+14	I_{γ} : 0.51 9 (1995Hu01).
543.2 6	0.36 7	3322.1+t	J6+16	2778.9+t	J6+14	
543.5 5	0.75 7	3631.3+w	J4+19	3087.8+w	J4+17	I_{γ} : 0.72 8 (1995Hu01).
556.1 <i>3</i>	0.74 6	3337.7+y	J+16	2781.6+y	J+14	I_{γ} : 0.93 7 (1995Hu01).
561.3 5	0.80 12	3729.1+s	J5+18	3167.8+s	J5+16	
562.2 6	0.71 <i>13</i>	3917.2+w	J4+20	3355.0+w	J4+18	
563.4 4	0.54 7	3688.9+u	J2+18	3125.5+u	J2+16	I _γ : 0.74 <i>10</i> (1995Hu01).
569.8 6	0.15 5	3812.2+z	J1+20	3242.4+z	J1+18	
575.1 <i>3</i>	0.82 8	3847.0+v	J3+18	3271.9+v	J3+16	I_{γ} : 0.53 9 (1995Hu01).
575.3 8	0.12 4	3956.0+a	J7+20	3380.7+a	J7+18	
578.0 5	0.67 8	3900.1+t	J6+18	3322.1+t	J6+16	
579.7 5	0.44 7	4211.0+w	J4+21	3631.3+w	J4+19	I _γ : 0.48 6 (1995Hu01).
594.8 <i>4</i>	0.46 5	3932.5+y	J+18	3337.7+y	J+16	I _γ : 0.60 7 (1995Hu01).
596.2 7	0.35 10	4513.4+w	J4+22	3917.2+w	J4+20	
596.4 6	0.65 12	4325.5+s	J5+20	3729.1+s	J5+18	
599.9 <i>5</i>	0.36 7	4288.8+u	J2+20	3688.9+u	J2+18	I_{γ} : 0.40 8 (1995Hu01).
610.0 5	0.66 7	4457.0+v	J3+20	3847.0+v	J3+18	I_{γ} : 0.57 8 (1995Hu01).
610.5 7	0.08 5	4422.7+z	J1+22	3812.2+z	J1+20	
612.0 6	0.29 5	4512.1+t	J6+20	3900.1+t	J6+18	
614.6 7	0.35 7	4825.6+w	J4+23	4211.0+w	J4+21	
631.1 7	0.44 10	4956.6+s	J5+22	4325.5+s	J5+20	

γ ⁽¹⁹³Pb) (continued)</sup>

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
631.3 8	0.43 10	5144.7+w	J4+24	4513.4+w	J4+22	
633.4 5	0.22 5	4565.9+y	J+20	3932.5+y	J+18	I _ν : 0.22 7 (1995Hu01).
637.0 5	0.30 7	4925.8+u	J2+22	4288.8+u	J2+20	
644.5 6	0.31 7	5101.5+v	J3+22	4457.0+v	J3+20	
646.8 7	0.43 7	5158.9+t	J6+22	4512.1+t	J6+20	
649.5 5	0.25 7	5475.1+w	J4+25	4825.6+w	J4+23	
650.0 7	0.05 4	5072.7+z	J1+24	4422.7+z	J1+22	
664.2 7	0.35 10	5620.8+s	J5+24	4956.6+s	J5+22	
666.8 9	0.18 9	5811.5+w	J4+26	5144.7+w	J4+24	
671.8 6	0.14 5	5237.7+y	J+22	4565.9+y	J+20	
672.2 6	0.15 6	5598.0+u	J2+24	4925.8+u	J2+22	
676.4 6	0.20 7	5777.9+v	J3+24	5101.5+v	J3+22	
684.0 <i>6</i>	0.13 7	6159.1+w	J4+27	5475.1+w	J4+25	
689.8 ^{§@} 8	0.04 4	5762.5+z?	J1+26	5072.7+z	J1+24	
700.5 8	0.18 9	6512.0+w	J4+28	5811.5+w	J4+26	E_{ν} : from 1999Ro21 only.
707.2 8	0.07 7	6485.1+v	J3+26	5777.9+v	J3+24	E_{γ} : 707.3 6 (1996Du05) was assigned to SD-3 band.
708.2 ^{§@} 8	0.05 4	5945.9+y?	J+24	5237.7+y	J+22	
709.2 7	0.07 6	6307.2+u	J2+26	5598.0+u	J2+24	E_{γ} : 709.3 6 (1996Du05) was assigned to SD-4 band.
717.9 7	0.07 7	6877.0+w	J4+29	6159.1+w	J4+27	

[†] From 1999Ro21. Values are also available from 1995Hu01 and 1996Du05 for SD-1 to SD-6. SD-7, SD-8 and SD-9 bands are reported by 1999Ro21 only.

[‡] From 1996Du05.

§ From 1996Du05, but not confirmed by 1999Ro21.

[&] Relative transition intensities within each band, read by evaluator of 1998Ar07 from Fig. 1 of 1996Du05. Values from 1995Hu01 (Fig. 1) are given in comments. Intensity plots are given by 1999Ro21 for SD-7, SD-8 and SD-9 bands.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^{-}) = -7559 \ 16$; $S(n) = 1.042 \times 10^{4} \ 3$; $S(p) = 618 \ 15$; $Q(\alpha) = 6307 \ 5$ 2017Wa10 Identification: 181 Ta(20 Ne,8n), mass separation (1970Ta14); excitation functions and cross bombardments for several (HI,xn γ) reactions (1974Le02).

¹⁹³Bi Levels

Cross Reference (XREF) Flags

- ¹⁹⁷At α decay (381 ms) ¹⁹⁷At α decay (2.0 s) ¹⁶⁵Ho(32 S,4nγ) A
- В
- С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(9/2-)	63.6 s <i>30</i>	A C	$ \frac{1}{\sqrt[9]{}} \frac$
278.44 ^{^w} 18 305 ^c 6	7/2 ⁻ (1/2 ⁺)	3.12 s 26	C BC	%α=84 16; %ε+%β ⁺ =16 16 μ=1.500 33 (2016Ba42) δ <r<sup>2>²⁰⁹⁻¹⁹³ = -0.606 fm² 8 (stat) 42 (syst) (2016Ba42). δ<r<sup>2>^{m,g}=0.123 fm² 7 (stat) 9 (syst) (2016Ba42). E(level): From NUBASE2016 (2017Au03). J^π: This level decays by an E(α)=6475 keV 5 transition to the (1/2⁺) ¹⁸⁹Tl g.s. Values for the hindrance factor for this decay are HF=0.75 45 (1985Co06), and 0.9 2 (1986Co12), indicating that the initial and final states have the same configuration. T_{1/2}: From 1.4 s +38-6 (2005Uu02), 3.5 s 2 (1974Le02, 1972Ga27), 1.9 s 4 (1985Co06), and 3.07 s 7 (2015He27) using the Limitation of Relative Statistical Weight (lwm) method (1985ZiZY). Other: 3.15 s (1970Ta14). %α: Average from: a) comparison of intensity of ¹⁹³Bi (3.3 s) α peak with that of ¹⁹⁷At (2.0 s) parent peak, 90 +10-20 (1986Co12), and b) 75 25 (1985Co06). μ: from in-source laser spectroscopy (2016Ba42). Value is given as 1.500 μ_N 14 (stat) 30 (syst); compiler has combined uncertainties in quadrature. μ=4.1103 5 for ²⁰⁹Bi was used as reference value.</r<sup></r<sup>
464.66 [@] 18 505.1 ^c 3	9/2 ⁻ 3/2 ⁺		C C	
605.53 [#] 18	$13/2^{+}$	153 ns 10	С	%IT=100

 $T_{1/2}$: From 2004Ni06 (³²S,4n γ).

¹⁹³Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
619.60 [@] 15	$11/2^{-}$	С
641.8 5	$(7/2^{-})$	С
662.08 ^a 20	9/2-	С
734.2 ^c 3	$5/2^{+}$	С
817.72 [@] 17	$13/2^{-}$	С
915.30 ^a 17	$11/2^{-}$	С
928.93 [#] 21	$15/2^{+}$	С
964.6 5		С
1013.3° 4	$(7/2^+)$	C
1066.35 17	$\frac{13}{2^{-}}$	C
1117.06 22	13/21	C
1169.67 [®] 18	$15/2^{-}$	C
1203.5° 4	(9/2+)	C
1228.13# 21	17/2+	C
1249.06 ^{<i>u</i>} 21	$13/2^{-}$	C
1257.88 21	(11/2)	C
1321.0 8	. =	C
1414.64 22	$1'/2^{-}$	C
1514.34 21	$(1/2^{+})$	C
1517.4° 0	$(11/2^{-1})$ $12/2^{-1}$	C
1520.95 21	15/2 $15/2^+$	C
1555.7521 1555.20#25	10/2+	C
$1555.50 \ 25$ $1562 \ 41^{a} \ 21$	$\frac{19/2}{15/2^{-}}$	C
1609.9.4	$(15/2^{-})$	C
1636.5 [°] 5	$(13/2^+)$	C
1651.5 4	$(15/2^{-})$	C
1673.49 <i>19</i>	$17/2^{+}$	С
1736.96 24	$17/2^{-}$	С
1762.3 4	$(15/2^{-})$	С
1794.03 [@] 25	$19/2^{-}$	С
1858.5 4	$(17/2^+)$	С
1859.1 4	$15/2^{-}$	C
1875.1 [#] 3	$21/2^{+}$	С
1910.06 ^{<i>u</i>} 23	17/2-	C
1950.09 24	19/2+	C
19/9.8 5	$(10/2^{-})$	C
2043.8 4	(19/2) $(21/2^+)$	C
$2048.7^{@}$	(21/2)	C
2048.7 5	$\frac{21}{2}$	C
2090 41 18	$\frac{21}{2}$ $\frac{17}{2}$	C
2109.7 3	$19/2^+$	C
2128.8 4	$21/2^{+}$	Ċ
2139.6 ^c 6	$(17/2^+)$	С
2193.75 ^{&} 21	19/2-	С
2220.6 [#] 3	23/2 ⁺	C
2240.3^{a} 6	$\frac{10}{2^{-10}}$	c
2253.6 4	-, -	Ċ

¹⁹³Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
2265.8 5	$25/2^+$		С	
2278.6 5	$25/2^+$		С	
2321.7 4	$(21/2^+)$		С	
2336.9 ^{&} 3	$21/2^{-}$		С	
2349.6 6	$29/2^+$	85 μs 3	С	%IT=100
				T _{1/2} : measured by 2015He27 (32 S,4n γ) from (recoil)(455.4 γ)(t). Proposed configuration= $\pi i_{13/2}$ coupled to oblate 8 ⁺ state in 192 Pb with configuration= $\pi h_{9/2}^2$.
2356.3 4	$25/2^{-}$		C	
2405.1 ⁰ 7	$(29/2^{-})$	3.02 µs 8	C	%IT=100
• (••• • • (aa /a_			$T_{1/2}$: measured by 2015He27 (³² S,4n γ) from (recoil)(307.4 γ)(t).
2428.3 4	$\frac{23}{2^{-}}$		C	
2432.9 3	23/21		C	
2440.1 J	22/2-		C	
2462.9 3	23/2		C	
2483.9 ^{cc} 3	$\frac{23}{2^{-}}$		C	
2509.8 0	23/2		C	
2525.44	25/2		C	
2535.8 4	$\frac{25}{2^{-1}}$		C	
2578.0.4	(21/2) $23/2^{-}$		C	
2570.07	25/2-		C	
2591 5 4	$25/2^+$		C	
2669 4 4	25/2-		C	
2708.9 4	$(25/2^+)$		C	
2710.3 5	()		C	
2718.0 6	$27/2^+$		С	
2721.7 [@] 4	$27/2^{-}$		С	
2723.4 4	$25/2^{-}$		С	
2756.0 [#] 4	$27/2^+$		С	
2762.8 4	$25/2^+$		С	
2774.8 5			C	
2804.1 ^b 8	$(31/2^{-})$		С	
2832.3 5	29/2-		C	
2873.2# 5	$29/2^+$		С	
2893.0 4	$(25/2^+)$		C	
2921.9 ^{cc} 5	$27/2^{-}$		C	
2928.0 [@] 5	$(29/2^{-})$		С	
2956.7 5	$25/2^{(+)}$		C	
2958.7 6	31/2+		C	
2963.5# 6	$31/2^+$		C	
2986.9 6	29/2		C	
2990.17	29/2		C	
3117.1# 6	33/2+		C	
3118.4 7	$(23/2^{-})$		C	
3159.2^{b}	$(33/2^{-})$		C	
3139.2 0	(33/2)		C	
3200.4-2 3	29/2		C	
3282.9 8	(33/2 ⁻)		C	

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
3304.2 6	33/2+	С	3976.7 9		С	4961.2 12		С
3321.0 [#] 7	$35/2^+$	С	4008.8 ^{&} 6	$35/2^{-}$	С	5679.6 14		С
3349.2 8	33/2+	С	4028.7 ^b 9	(39/2-)	С	x ^d	$(11/2^+)$	С
3448.6 ^b 8	(35/2-)	С	4029.7 11		С	$126.6 + x^d 4$	$(15/2^+)$	С
3496.3 ^{&} 5	31/2-	С	4059.1 6	$(35/2^{-})$	С	294.9+x ^d 5	$(19/2^+)$	С
3560.9 [#] 7	$37/2^+$	С	4137.3 [#] 8	$41/2^{+}$	С	$504.4 + x^{d} 6$	$(23/2^+)$	С
3563.1 8	$(31/2^+)$	С	4213.2 6	$(37/2^{-})$	С	755.3+x ^d 7	$(27/2^+)$	С
3622.7 7		С	4240.7 ^{&} 8	$(37/2^{-})$	С	$1047.0 + x^d 8$	$(31/2^+)$	С
3638.6 11		С	4272.2 7	$(37/2^+)$	С	$1378.7 + x^d 8$	$(35/2^+)$	С
3669.3 9	$(37/2^{-})$	С	4284.0 9		С	$1750.9 + x^d 9$	$(39/2^+)$	С
3709.9 ^b 8	$(37/2^{-})$	С	4292.3 8		С	$2162.7 + x^d 9$	$(43/2^+)$	С
3749.1 9		С	4345.1 8	37/2-	С	2613.1+x ^d 10	$(47/2^+)$	С
3796.0 ^{&} 5	33/2-	С	4467.7 [#] 8	$43/2^{+}$	С	3102.3+x ^d 11	$(51/2^+)$	С
3816.5 7	35/2-	С	4544.1 9		С	3630.1+x ^d 11	$(55/2^+)$	С
3837.4 [#] 7	39/2+	С	4574.5 9		С	4196.1+x? ^d 12	$(59/2^+)$	С
3886.2 7	$35/2^+$	С	4586.7 9		С	4800.6+x? ^d 12	$(63/2^+)$	С
3910.7 8		С	4824.4 [#] 9	$45/2^{+}$	С			
3969.1 9	$37/2^+$	С	4898.1 <i>10</i>		С			

¹⁹³Bi Levels (continued)

[†] From least-squares adjustment to γ -ray energies.

[‡] From (³²S,4n γ), based on rotational structure and γ -ray multipolarities, and systematics of shell-model intruder states in odd-mass Bi and Tl nuclei.

Band(A): $\pi 13/2[606]$, $i_{13/2}$ orbital. A sharp band crossing is observed at $\hbar\omega \approx 0.2$ MeV, $J\pi = 25/2^+$, interpreted as due to two $i_{13/2}$ neutrons.

[@] Band(B): $\pi 7/2[514], (h_{9/2}/f_{7/2}).$

& Band(C): 3-qp band based on 19/2⁻. Possible configuration= $\pi i_{13/2} \otimes \nu(i_{13/2}^{-1} p_{3/2}^{-1})$ mixed with $\pi i_{13/2} \otimes \nu(i_{13/2}^{-1} f_{5/2}^{-1})$.

^a Band(D): π9/2[505].

^b Band(E): 3-qp band based on (29/2⁻). Proposed configuration= $\pi h_{9/2} \otimes \nu i_{13/2}^{-2} i_{2}^{-2}$.

^c Band(F): Band based on $1/2^+$. This band is built on $1/2^+$ proton-intruder state of 2p-1h configuration.

^{*d*} Band(G): SD band built on $\pi 1/2[651], i_{11/2}$.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	J_f^{π} M	lult.‡	α^{\S}	Comments
278.44	$7/2^{-}$	278.5 3	100	0.0 (9/	(2^{-}) D			
464.66	9/2-	186.3 <i>3</i>	100 4	278.44 7/2	2- D			
		465.2 7	17 4	0.0 (9/	/2 ⁻) D			
505.1	$3/2^{+}$	200.2 3	100	305 (1/	$/2^+)$ D			
605.53	$13/2^{+}$	604.7 <i>3</i>	100	0.0 (9/	$/2^{-})$ [N	A2]	0.193	B(M2)(W.u.)=0.063 5
619.60	$11/2^{-}$	155.2 <i>3</i>	1.96 <i>14</i>	464.66 9/2	2-			
		341.1 4	1.51 20	278.44 7/2	2^{-}			
		619.7 <i>3</i>	100 8	0.0 (9/	$/2^{-})$ M	[1	0.0666	
641.8	$(7/2^{-})$	363.4 <i>4</i>	100	278.44 7/2	2- D			
662.08	9/2-	383.8 <i>3</i>	100 5	278.44 7/2	2- D			
		661.6 4	44 7	0.0 (9/	$/2^{-})$ D	+Q		
734.2	$5/2^{+}$	229.3 <i>3</i>	100 5	505.1 3/2	2 ⁺ M	[1	0.974	
		429.0 4	80 12	305 (1/	$/2^{+})$			
817.72	$13/2^{-}$	198.2 <i>3</i>	7.7 5	619.60 11	l/2 ⁻ D			
		353.1 4	2.04 16	464.66 9/2	2-			

 $\gamma(^{193}\text{Bi})$

$\gamma(^{193}\text{Bi})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α [§]
817.72	13/2-	817.9 3	100 5	$0.0 (9/2^{-})$	E2	0.01043
915.30	$11/2^{-}$	253.1 3	14.4 10	662.08 9/2-	M1	0.741
		450.6 <i>3</i>	20.5 13	464.66 9/2-	M1	0.1546
		636.7 <i>3</i>	36 <i>3</i>	278.44 7/2-	Q	
		915.5 <i>3</i>	100 7	$0.0 (9/2^{-})$	M1+E2	0.016 8
928.93	$15/2^{+}$	323.4 <i>3</i>	100	605.53 13/2+	M1	0.378
964.6		459.5 4	100	505.1 3/2+		
1013.3	$(7/2^+)$	278.9 8	5.1 20	734.2 5/2+		
		508.2 <i>3</i>	100 6	$505.1 3/2^+$	Q	
1066.35	$13/2^{-}$	446.8 <i>3</i>	25.0 19	619.60 11/2-	M1	0.1581
		1066.6 <i>3</i>	100 10	$0.0 (9/2^{-})$	Q	
1117.06	$13/2^{+}$	188.3 <i>3</i>	13.3 11	928.93 15/2+		
		299.4 5	5.3 13	817.72 13/2-		
		497.5 <i>4</i>	17.1 <i>13</i>	619.60 11/2	(E1)	0.01001
		511.3 <i>3</i>	100 9	$605.53 13/2^+$	M1+E2	0.07 4
1169.67	$15/2^{-}$	352.1 3	89 <i>3</i>	817.72 13/2-	M1	0.300
		550.0 <i>3</i>	100 4	619.60 11/2-	E2	0.0245
1203.5	$(9/2^+)$	190.1 <i>3</i>	29.5 21	$1013.3 (7/2^+)$		
		469.3 <i>3</i>	100 6	734.2 5/2+		
1228.13	$17/2^{+}$	299.2 3	100 3	928.93 15/2+	M1	0.467
		622.4 3	46.9 19	$605.53 13/2^+$	E2	0.0186
1249.06	13/2-	333.7 3	100 5	915.30 11/2-	D	
		587.0 <i>3</i>	86 <i>5</i>	662.08 9/2-		
		784.5 4	40 3	464.66 9/2-	Q	
1257.88	$(11/2^{-})$	638.1 4	16 3	619.60 11/2-		
		793.1 3	33 4	464.66 9/2-	D+Q	
		1258.1 3	100 11	$0.0 (9/2^{-})$	D	
1321.0	. = /2 -	356.4 6	100	964.6		
1414.64	17/2	245.2 3	16.2 8	1169.67 15/2	MI	0.808
1514.04	(17/0+)	597.0 3	100 4	817.72 13/2	E2	0.0204
1514.34	$(1/2^{+})$	585.3 3	100 4	928.93 15/2	MI F2	0.0773
1517 4	(11/0+)	908.7 3	86.5	$605.53 13/2^{+}$	E2	0.00844
1517.4	$(11/2^{-})$	504.1 4	100	$1013.3 (1/2^{+})$	D	
1520.95	13/2	351.1 3	6.718	1169.67 15/2	D	
		455.1 6	4.2 18	1066.35 13/2-	_	
		605.2 4	36 3	915.30 11/2-	D	
		901.7 3	100 6	619.60 11/2-	M1+E2	0.017 9
1535.73	15/2+	469.5 3	27.6 17	1066.35 13/2-	D	
		717.9 3	69 <i>3</i>	817.72 13/2	El	0.00482
1555.00	10/2+	930.0 3	100 7	605.53 13/2+	MI	0.0232
1555.30	19/2+	327.4 3	100 3	1228.13 17/2+	MI	0.366
		626.2 3	52.0 20	928.93 15/2+	E2	0.0183
1562.41	15/2	313.3 3	26.7 16	1249.06 13/2	MI	0.412
1 (00 0	(15/0-)	647.3 3	100 5	915.30 11/2	Q	
1609.9	(15/2)	352.3 3	100	1257.88 (11/2)	
1636.5	$(13/2^+)$	433.0 3	100	$1203.5 (9/2^+)$		
1631.5	(15/2)	393.4 3	100	$125/.88 (11/2^{-})$ $1525.72 \cdot 15/2^{+}$) Q MI	4 10 7
10/3.49	1//2'	15/.0 3	20.0 10	$1555./5$ $15/2^+$	MI	4.10 /
		159.3 3	11.2 8	$1514.34 (17/2^+)$) D	
		445.4 4	21.2 IO	1228.13 17/2	F 1	0.00075
		304.0 3	/0 4	1109.0/ 15/2		0.00975
		330.4 3	100 4	$111/.00 13/2^+$	У Л	
		/44./ 4 1067 9 2	23.0 18 86 6	928.93 15/2	D E2	0.00414
		1007.8 3	80 0	005.53 13/21	E2	0.00010

					$\gamma(^{19}$	³ Bi) (continu	ed)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\$}$	Comments
1736.96	$17/2^{-}$	567.0.3	92.8	1169.67	$\frac{15/2^{-}}{15/2^{-}}$	M1	0.0841	
1750.70	17/2	670.3 3	100.8	1066.35	$13/2^{-}$	0	0.0011	
1762.3	$(15/2^{-})$	1156.8 4	100	605.53	$13/2^+$	×		
1794.03	$19/2^{-1}$	379.4 3	61.8 22	1414.64	$17/2^{-}$	M1	0.245	
	- /	624.3 <i>3</i>	100 4	1169.67	$15/2^{-}$	E2	0.0184	
1858.5	$(17/2^+)$	929.6 <i>3</i>	100	928.93	$15/2^{+}$	(M1+E2)	0.016 8	
1859.1	15/2-	793.5 4	100	1066.35	$13/2^{-}$	Ď		
1875.1	$21/2^+$	319.8 <i>3</i>	100 4	1555.30	$19/2^{+}$	M1	0.390	
		646.9 <i>3</i>	86 4	1228.13	$17/2^{+}$	E2	0.01706	
1910.06	$17/2^{-}$	347.6 <i>4</i>	26 4	1562.41	$15/2^{-}$			
		661.1 <i>4</i>	60 <i>6</i>	1249.06	$13/2^{-}$			
		844.0 <i>3</i>	100 12	1066.35	$13/2^{-}$			
1950.09	$19/2^{+}$	435.7 <i>3</i>	100 5	1514.34	$(17/2^+)$	M1	0.1691	
		721.6 <i>3</i>	51.2 25	1228.13	$17/2^{+}$	D		
		1021.2 3	46.3 25	928.93	$15/2^{+}$			
1979.8		913.4 <i>4</i>	100	1066.35	$13/2^{-}$			
2045.8	$(19/2^{-})$	394.0 <i>3</i>	100 6	1651.5	$(15/2^{-})$	Q		
		436.3 4	33 5	1609.9	$(15/2^{-})$	Q		
2048.6	$(21/2^+)$	534.3 4	100	1514.34	$(1'/2^{+})$	Q	0.505	
2048.7	$21/2^{-}$	255.1 3	12.4 6	1794.03	19/2-	D	0.725	
2057 (21/2+	634.1 3	100 4	1414.64	$1^{1/2}$	E2 D	0.0178	
2057.6	21/21	502.5 3	100 5	1555.30	$19/2^{+}$	D		
2000 41	17/0-	543.2 3	36.6 22	1514.34	$(1/2^{-})$	Q		
2090.41	17/2	232.14	4.29	1859.1	$\frac{15}{2}$			
		320.24	15.0 22	1702.5	(13/2)			
		578 2 4	10.1 19	1562.41	$\frac{17}{2}$	D		
		569 / 3	14.5 IU 04 6	1520.05	13/2 $13/2^{-}$	0		
		862 4 3	49 4 25	1220.95	13/2 $17/2^+$	Q F1	0.00341	
		920.9.3	100.6	1169.67	$15/2^{-1}$	M1	0.0238	
		1023.6.4	28.8.19	1066 35	$13/2^{-1}$	1011	0.0250	
		1272.8.3	46.4 25	817.72	$13/2^{-}$	0		
2109.7	$19/2^{+}$	436.2 3	100 4	1673.49	$17/2^+$	M1	0.1686	
		695.1 <i>3</i>	17.0 12	1414.64	$17/2^{-}$	D		
		881.3 4	16.9 <i>13</i>	1228.13	$17/2^{+}$	D		
2128.8	$21/2^{+}$	455.4 <i>3</i>	100 5	1673.49	$17/2^{+}$	E2	0.0386	
2139.6	$(17/2^+)$	503.1 4	100	1636.5	$(13/2^+)$			
2193.75	19/2-	103.4 <i>3</i>	40.4 21	2090.41	$17/2^{-1}$	D		
		242.9 <i>4</i>	22.9 17	1950.09	$19/2^{+}$			
		284.0 <i>3</i>	24.6 21	1910.06	$17/2^{-}$			
		631.4 <i>3</i>	55 4	1562.41	$15/2^{-}$			
		679.2 <i>3</i>	100 5	1514.34	$(17/2^+)$	E1	0.00536	
2220.6	$23/2^{+}$	345.7 <i>3</i>	100 4	1875.1	$21/2^{+}$	M1	0.315	
		665.2 <i>3</i>	93 4	1555.30	$19/2^{+}$	E2	0.01606	
2240.3	19/2-	677.9 5	100	1562.41	$15/2^{-}$	E2	0.01542	
2253.6		459.2 <i>4</i>	26.0 24	1794.03	19/2-			
		839.2 3	100 5	1414.64	17/2-			
2265.8	25/2+	137.1 3	100	2128.8	21/2+	E2	1.84	
2278.6	25/2+	149.8 3	100	2128.8	21/2+	E2	1.299 21	
2321.7	$(21/2^+)$	3/1.7 4	66 7	1950.09	19/2*	MI	0.259	
00000	21/2-	807.34	100 9	1514.34	$(1^{\prime}/2^{+})$	(E2)	0.010/1	
2336.9	21/2	143.0 3	100	2193.75	19/2	MI E2	3.6/	$D(E_2)(W_{re}) = 0.00157 + 10$
2349.0	29/2'	84.00	100	2203.8	25/2'	E2 E2	14.5 0	B(E2)(W.U.)=0.0015/ 10
2330.3	23/2	307.43	100	2048.7	21/2	E2	0.1122	

$\gamma(^{193}\text{Bi})$	(continued)
(D)	(continueu)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	Mult. [‡]	α§	Comments
2405.1	$(29/2^{-})$	48.8 6	100	2356.3	25/2-	[E2]	196 13	$B(E2)(W.u.)=0.052\ 5$
2428.3	$23/2^{-1}$	634.3 <i>3</i>	100	1794.03	$19/2^{-}$	Q		
2432.9	$23/2^{+}$	212.3 4	20.1 22	2220.6	$23/2^{+}$			
		375.4 <i>3</i>	100 5	2057.6	$21/2^{+}$	D		
		557.5 4	38 4	1875.1	$21/2^{+}$			
2448.1		654.1 <i>4</i>	100	1794.03	$19/2^{-}$			
2462.9	23/2-	414.3 3	40.6 18	2048.7	21/2-	M1	0.194	
	a a /a _	668.9 <i>3</i>	100 4	1794.03	19/2-	E2	0.01587	
2483.9	$23/2^{-}$	146.8 3	100 4	2336.9	$21/2^{-}$	D		
		435.6 3	32.6 23	2048.7	21/2	D		
2500.9	22/2+	689.6 3	45.8 23	1/94.03	19/2	Q	0.242	
2509.8	23/2	381.0 4	100	2128.8	$\frac{21}{2}$	MI E2	0.242	
2525.4	25/2	/51.4 5	100 95 2	1/94.05	$\frac{19/2}{22/2^+}$	E2 D	0.01515	
2353.8	23/2	515.2 5	83 3 100 <i>4</i>	1075 1	25/2	D E2	0.01620	
2547 3	$(21/2^{-})$	501.5.3	100 4	2045.8	$\frac{21}{2}$ (10/2 ⁻)	E2 M1	0.01030	
2578.0	(21/2) $23/2^{-}$	784.0.3	100	170/ 03	(19/2)	$\hat{\mathbf{O}}$	0.1105	
2578.0	25/2	124.6.3	27 2 14	2462.0	19/2 23/2 ⁻	Q		
2567.2	23/2	538 4 3	100 7	2048 7	$\frac{23/2}{21/2^{-}}$	F2	0.0258	
2591.5	25/2+	371.0.3	30.0.79	2220.6	$\frac{21}{2}$	112	0.0250	
2071.0	20/2	716.3.3	100 4	1875.1	$\frac{23}{2}$	E2	0.01372	
2669.4	$25/2^{-}$	185.5 3	100	2483.9	$\frac{23}{2}$	D	0.01072	
2708.9	$(25/2^+)$	276.0 3	100 7	2432.9	$\frac{23}{2^+}$	-		
	(-1)	488.3 4	85 7	2220.6	$23/2^{+}$	D+O		
		651.5 5	38 8	2057.6	$21/2^+$			
2710.3		619.9 ^{&} 4	100&	2090.41	$17/2^{-}$			
2718.0	$27/2^{+}$	452.2 3	100	2265.8	$25/2^+$	D		
2721.7	$27/2^{-}$	134.7 <i>3</i>	100 4	2587.2	$25/2^{-}$	D		
		365.1 4	33 4	2356.3	$25/2^{-}$	D		
2723.4	$25/2^{-}$	295.1 6	8.3 22	2428.3	$23/2^{-}$			
		674.6 <i>3</i>	100 5	2048.7	$21/2^{-}$	Q		
2756.0	$27/2^+$	164.5 <i>3</i>	11.3 7	2591.5	$25/2^+$			
		220.4 3	100 5	2535.8	$25/2^{+}$	M1	1.087	
		535.2 <i>3</i>	37.9 17	2220.6	$23/2^{+}$	Q		
2762.8	$25/2^+$	542.2 4	30 6	2220.6	23/2+	D		
		887.7 3	100 7	1875.1	21/2+	Q		
2774.8	(21/2-)	726.0 4	100	2048.7	$\frac{21}{2^{-}}$	1/1	0.014	
2804.1	(31/2)	398.8 3	100	2405.1	(29/2)	MI	0.214	
2832.3	29/2	4/6.0 3	100	2356.3	25/2	Q		
28/3.2	$\frac{29}{2}$	117.1 3	100	2730.0	21/2	D (M1)	0.280	
2893.0	(23/2)	557.04 672.5.3	40 4	2333.8	23/2	(MII) D	0.289	
2021.0	27/2-	252 5 3	100 5	2660 /	25/2	M1	0.745	
2721.7	21/2	252.55	65 10	2007.7	25/2	1411	0.745	
		334.7 - 4	6.5 <i>10</i>	2387.2	23/2			
2028.0	$(20/2^{-})$	436.1 3	100	2465.9	25/2			
2926.0	(29/2)	200.3 3	100	2721.7	21/2	(D)		
2930.7	23/2	/ 50.1 5	100	2220.0	25/2	(D) M1	0.0606	
2936.7	$\frac{31}{2}$	009.1 5	100	2549.0	29/2	IVI I	0.0090	
2903.3	51/2	614.0.3	40 J 100 7	2013.2 2340.6	29/2 29/2+	M1	0.0682	
2986.9	29/2+	268.9.3	67 4	23 4 9.0 2718.0	29/2 27/2+	M1	0.0082	
2700.9		200.75	100 9	2710.0	25/2+	(E2)	0.027	
2006-1	20/2+	721.1 - 4	100 ð 100	2203.8	23/2*	(E2) M1	0.01353	
2990.1	29/2	2/0.1 4	100	2/10.0	2112	1111	0.571	

$\gamma(^{193}\text{Bi})$ (continued) I_{γ}^{\dagger} α[§] E_γ^{\dagger} \mathbf{J}_i^{π} J_f^{π} Mult.[‡] E_i(level) \mathbf{E}_{f} 2349.6 29/2+ 3103.6 754.0 6 100 $33/2^{+}$ 2963.5 31/2+ 100 4 3117.1 153.6 3 D 2958.7 31/2+ 158.5 4 8.6 14 3118.4 $(23/2^{-})$ 571.1 4 100 2547.3 (21/2-) D 3159.2 100 4 $2804.1 (31/2^{-})$ 0.293 $(33/2^{-})$ 355.3 3 M1 753.9 4 40 5 $2405.1 (29/2^{-})$ $29/2^{-}$ 2921.9 27/2-3200.4 278.6 4 100 5 M1 0.568 530.9 4 18.3 15 2669.4 25/2-Q $388.2^{\textcircled{0}}6$ 3220.5 100 2832.3 29/2-478.5 3 100 5 2804.1 (31/2-) 3282.9 $(33/2^{-})$ D 0.1317 879.0 6 29 4 2405.1 (29/2-) 2958.7 31/2+ 3304.2 $33/2^{+}$ 345.4 3 25.0 23 D 954.7.3 2349.6 29/2+ 0.00766 100 14 E2 3321.0 $35/2^{+}$ 203.9 3 100 3117.1 33/2+ M1 1.351 $33/2^{+}$ 2958.7 31/2+ 3349.2 390.5 4 100 D 100 5 3159.2 (33/2-) 0.512 3448.6 $(35/2^{-})$ 289.5 3 M1 644.1 5 18 5 2804.1 (31/2-) 3496.3 295.7 3 100 5 3200.4 29/2-M1 0.483 $31/2^{-}$ 574.3 3 45 3 2921.9 27/2-E2 0.0222 3560.9 $37/2^{+}$ 239.8 3 $100 \ 4$ 3321.0 35/2+ M1 0.860 3117.1 33/2+ 443.8 5 18.7 20 567.5[@] 3563.1 $(31/2^+)$ 3 100 6 2996.1 $29/2^{+}$ 2986.9 29/2+ 576.2 4 73 6 D 100 2958.7 31/2+ 3622.7 664.0 3 3638.6 535.0 6 100 3103.6 3669.3 $(37/2^{-})$ 3282.9 (33/2-) 386.4 4 100 Q 3709.9 $(37/2^{-})$ 261.3 3 100 7 $3448.6 (35/2^{-})$ D 3159.2 (33/2-) 550.6 4 64 10 Q 3749.1 100 3282.9 (33/2-) 466.2 4 3796.0 $33/2^{-}$ 298.8 4 100 7 3496.3 31/2-M1 0.469 595.9 3 66 4 3200.4 29/2-3816.5 $35/2^{-}$ 512.3 3 100 3304.2 33/2+ E1 0.00942 3560.9 37/2+ $39/2^+$ 276.5 3 100 4 M1 3837.4 0.580 516.4 4 28.43321.0 35/2+ Q $35/2^{+}$ 582.1 4 100 10 3304.2 33/2+ Ď 3886.2 927.9 5 20 5 2958.7 31/2+ 3910.7 606.5 4 100 3304.2 33/2+ 619.9[&] 4 $100^{\&}$ 3969.1 3349.2 33/2+ E2 0.0187 $37/2^+$ 3976.7 627.5 5 100 3349.2 33/2+ 4008.8 $35/2^{-}$ 212.7 3 61 5 3796.0 33/2-D 100 6 512.7 3 3496.3 31/2-4028.7 $(39/2^{-})$ 318.8 *3* 100 8 3709.9 (37/2-) 3448.6 (35/2-) 580.2 4 52 8 $725.5^{@}9$ 4029.7 100 3304.2 33/2+ 3796.0 33/2- $(35/2^{-})$ 263.1 3 4059.1 100 D $41/2^{+}$ 299.8 *3* 3837.4 39/2+ 4137.3 100 6 D 576.6 7 35 6 3560.9 37/2+ $(37/2^{-})$ 100 4008.8 35/2-4213.2 204.4 3 D 4240.7 $(37/2^{-})$ 231.9 5 100 4008.8 35/2- $(37/2^+)$ 3886.2 35/2+ 4272.2 386.5 5 64 15 3304.2 33/2+ 967.7 4 100 15 4284.0 661.3 5 100 3622.7 4292.3 454.9 4 100 3837.4 39/2+

					γ ⁽¹⁹³ Bi)	(continued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]
4345.1	$37/2^{-}$	528.6 3	100	3816.5	35/2-	D
4467.7	$43/2^{+}$	330.3 4	100 10	4137.3	$41/2^{+}$	D
	,	630.4 5	46 8	3837.4	$39/2^{+}$	
4544.1		271.9 6	100	4272.2	$(37/2^+)$	
4574.5		229.4 4	100	4345.1	37/2-	
4586.7		294.4 <i>3</i>	100	4292.3		
4824.4	$45/2^{+}$	356.7 4	100	4467.7	$43/2^{+}$	D
4898.1		323.6 4	100	4574.5		
4961.2		677.2 8	100	4284.0		
5679.6		718.4 7	100	4961.2		
126.6+x	$(15/2^+)$	126.6 4	100	х	$(11/2^+)$	
294.9+x	$(19/2^+)$	168.3 <i>3</i>	100	126.6+x	$(15/2^+)$	
504.4+x	$(23/2^+)$	209.5 <i>3</i>	100	294.9+x	$(19/2^+)$	
755.3+x	$(27/2^+)$	250.9 <i>3</i>	100	504.4+x	$(23/2^+)$	
1047.0+x	$(31/2^+)$	291.7 <i>3</i>	100	755.3+x	$(27/2^+)$	
1378.7+x	$(35/2^+)$	331.7 <i>3</i>	100	1047.0+x	$(31/2^+)$	
1750.9+x	$(39/2^+)$	372.2 3	100	1378.7+x	$(35/2^+)$	
2162.7+x	$(43/2^+)$	411.8 <i>3</i>	100	1750.9+x	$(39/2^+)$	
2613.1+x	$(47/2^+)$	450.4 <i>4</i>	100	2162.7+x	$(43/2^+)$	
3102.3+x	$(51/2^+)$	489.2 <i>4</i>	100	2613.1+x	$(47/2^+)$	
3630.1+x	$(55/2^+)$	527.8 <i>3</i>	100	3102.3+x	$(51/2^+)$	
4196.1+x?	$(59/2^+)$	566.0 [@] 4	100	3630.1+x	$(55/2^+)$	
4800.6+x?	$(63/2^+)$	604.5 [@] 3	100	4196.1+x?	$(59/2^+)$	

[†] From $({}^{32}S,4n\gamma) - 2015He27$.

[‡] Multipolarities from $({}^{32}S,4n\gamma) - 2015He27$, based on γ -ray angular distribution (DCO ratio) and linear polarization measurements.

[§] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

9/2

7/2

 $^{193}_{83}\text{Bi}_{110}$

¹⁹³₈₃Bi₁₁₀

¹⁹⁷At α decay (381 ms) 1999Sm07,1986Co12,2014Ka23

Parent: ¹⁹⁷At: E=0.0; $J^{\pi} = (9/2^{-})$; $T_{1/2} = 381$ ms 6; $Q(\alpha) = 7104$ 3; % α decay=96.1 12

¹⁹⁷At-Q(*α*): From 2017Wa10.

¹⁹⁷At-T_{1/2}: Weighted average of 388 ms 6 (1999Sm07), 354 ms +17–15 (2014Ka23), 400 ms 100 (1967Tr06), 350 ms 40 (1986Co12), 390 ms 16 (2005De01), 340 ms 20 (2005Uu02), and 370 ms +90–60 (1996En01).

 197 At-% α decay: From 197 At Adopted Levels.

1999Sm07: ¹⁹⁷At produced from ¹⁶⁵Ho(³⁶Ar,4n), E=178 MeV; Recoiling fusion-evaporation products were magnetically separated in-flight from the primary beam and fission products using the RITU gas-filled recoil separator. The recoils were implanted into a 16-strip Si detector, three Clover-type Ge detectors for prompt γ -ray and another four Ge detectors for delayed γ ray detection. Measured E γ , E α , and half life using recoil-decay-tagging technique.

Sources from ^{185,187}Re(²⁰Ne,xn) (E(²⁰Ne)=100-200 MeV (1967Tr06), E(²⁰Ne) \leq 240 MeV (1986Co12)); helium-jet transport; measured E α , I α (silicon surface-barrier detectors).

2014Ka23: ¹⁹⁷At obtained from ²⁰¹Fr decay. ²⁰¹Fr produced in ¹⁴⁹Sm(⁵⁶Fe,p3n), E=275 MeV; Target=370 μ g/cm² thick enriched to 96.9% in ¹⁴⁹Sm. Evaporation residues were separated using SHIP facility at GSI, and implanted into the detection system consisting of 16-strip position sensitive Si detectors (PSSD), a pack of six Si strip detectors (BOX) at the back to detect escaping α particles, and three time-of-flight detectors in front of PSSDs. Measured position and time correlations between evaporation residues (Er) and α events, E α , half-lives of ground states and isomers of ²⁰¹Fr and ¹⁹⁷At, Er- α - α correlations.

¹⁹³Bi Levels

E(level)	\mathbf{J}^{π}	T _{1/2}		Comments			
0.0	(9/2-)	63.6 s <i>30</i>	J	$J^{\pi}, T_{1/2}$: From Adopted Levels.			
				α radiations			
Eα	E(level)	$\mathrm{I}\alpha^{\dagger}$	HF	Comments			
6960 <i>3</i>	0.0	100	1.6	HF: Using $r_0(^{193}\text{Bi})=1.529$, average of $r_0(^{192}\text{Pb})=1.506\ 6$ and $r_0(^{194}\text{Po})=1.551\ 10\ (1998\text{Ak04})$. 1999Sm07 calculated a HF=0.95 11, assuming I(α)=100%. E α : Weighted average of 6957 5 (1967Tr06), 6960 5 (1999Sm07), 6959 6 (2005Uu02), and 6963 5 (2014Ka23).			

Reduced α width $\delta_{\alpha}^2 = 57 \text{ keV} + 4 - 3 (2014 \text{ Ka} 23)$.

[†] For absolute intensity per 100 decays, multiply by 0.961 *12*.

¹⁹⁷At α decay (2.0 s) 1999Sm07,1986Co12,2014Ka23

Parent: ¹⁹⁷At: E=52 10; $J^{\pi} = (1/2^+)$; $T_{1/2} = 2.0$ s 2; $Q(\alpha) = 7104$ 3; $\% \alpha$ decay ≤ 100

¹⁹⁷At-Q(α): From 2017Wa10. E_{ex}(¹⁹⁷At) from α -ray energy differences (1986Co12). ¹⁹⁷At-T_{1/2}: From 1999Sm07. Other values: 3.7 s 25 (1986Co12), 1.1 s +11-4 (2005Uu02), and 2.8 s +38-10 (2014Ka23).

¹⁹⁷At- $\%\alpha$ decay: From ¹⁹⁷At Adopted Levels.

Other: 2005Uu02.

1999Sm07: ¹⁹⁷At produced from ¹⁶⁵Ho(³⁶Ar,4n), E=178 MeV; Recoiling fusion-evaporation products were magnetically separated in-flight from the primary beam and fission products using the RITU gas-filled recoil separator. The recoils were implanted into a 16-strip Si detector, three Clover-type Ge detectors for prompt γ -ray and another four Ge detectors for delayed γ ray detection. Measured $E\gamma$, $E\alpha$, and half life using recoil-decay-tagging technique.

1986Co12: Sources from 185,187 Re(20 Ne,xn), E(20 Ne) \leq 240 MeV; helium-jet transport; measured E α , I α (silicon surface-barrier detectors).

2014Ka23: ¹⁹⁷At obtained from ²⁰¹Fr decay. ²⁰¹Fr produced in ¹⁴⁹Sm(⁵⁶Fe,p3n), E=275 MeV; Target=370 μ g/cm² thick enriched to 96.9% in ¹⁴⁹Sm. Evaporation residues were separated using SHIP facility at GSI, and implanted into the detection system consisting of 16-strip position sensitive Si detectors (PSSD), a pack of six Si strip detectors (BOX) at the back to detect escaping α particles, and three time-of-flight detectors in front of PSSDs. Measured position and time correlations between evaporation residues (Er) and α events, E α , half-lives of ground states and isomers of ²⁰¹Fr and ¹⁹⁷At, Er- α - α correlations.

¹⁹³Bi Levels

E(level)	J^{π}	T _{1/2}		Comments
308 7	$(1/2^+)$	3.12 s 26	E(level), J^{π} , $T_{1/2}$: From Adopted Levels.	

α radiations

Εα	E(level)	$I\alpha^{\dagger}$	HF	Comments
6707 4	308	100	≥0.84	HF: Using $r_0(^{193}Bi)=1.529$, average of $r_0(^{192}Pb)=1.506$ 6 and $r_0(^{194}Po)=1.551$ 10 (1998Ak04). 1999Sm07 obtained a HF=1.2 8, assuming I(α)=100%. E α : Weighted average of 6707 5 (1999Sm07,2014Ka23) and 6706 9 (2005Uu02). Other: 6707 (1986Co12). Reduced α width $\delta_{\perp}^2=70$ keV +90-30 (2014Ka23).

[†] Absolute intensity per 100 decays.

¹⁶⁵Ho(³²S,4nγ) 2015He27

2015He27: $E(^{32}S)=152$ MeV from JYFL K-130 cyclotron facility. Target=350 μ g/cm² thick foil of ¹⁶⁵Ho. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, $\gamma\gamma(linear pol)$, ce, $\gamma(ce)$ coin, isomer half-life using JUROGAM II array with 24 clover and 15 Eurogam Phase-1 or GASP Compton-suppressed HPGe detectors. RITU separator was used to select the nuclei of interest, which were passed through multiwire proportional counters and implanted in GREAT focal plane spectrometer for the identification of fusion products of interest. Double-sided silicon strip detectors (DSSD) were used for the implantation of recoils and for the detection of subsequent α decays. The data were analyzed by recoil-gating, recoil- α tagging and isomer-tagging techniques. Deduced high-spin levels, J, π , multipolarity, bands, SD band, B(M1)/B(E2), and configurations.

2004Ni06,2003NiZZ,2001Ni04 references published by the same research group of 2015He27. The latest publication contains extended data with better statistics. Most of the earlier data are consistent with the data in 2015He27. Evaluator considers 2015He27 data as a superceeding set over earlier data sets.

¹⁹³Bi Levels

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
278.44 [@] 18 7/2 ⁻ 305 [°] 6 1/2 ⁺ 3.07 s 13 % $a=84.16$; % $e+\%\beta^+=16.16$ E(level): Level energy from 2017Au03: NUBASE-2016. 2015He27 list as 307 keV. % $a:$ From Adopted Levels. T _{1/2} : Measured by 2015He27 from distribution of time difference between recoil implantations and detection of α particle from the decay of 1/2 ⁺ isomer. 464.66 [@] 18 9/2 ⁻ 505.1 [°] 3 3/2 ⁺ 605.53 [#] 18 13/2 ⁺ 153 ns 10 T _{1/2} : From 604.7 γ (t) (2004Ni06). 619.60 [@] 15 11/2 ⁻ 641.8 5 7/2 ⁻ 642.08 ⁰ 20 9/2 ⁻ 734.2 [°] 3 5/2 ⁺ 817.73 [@] 17 13/2 ⁻ 915.30 ^a 17 13/2 ⁻ 915.30 ^a 17 13/2 ⁻ 928.93 [#] 21 15/2 ⁺ 964.6 5 1013.3 [°] 4 (7/2 ⁺) 1066.35 17 13/2 ⁻ 1203.5 [°] 4 (9/2 ⁺) 1228.13 [#] 21 17/2 ⁺ 1239.13 [#] 21 17/2 ⁺ 1249.06 ^a 21 13/2 ⁻ 1257.88 22 (11/2 ⁻)	0.0	9/2-	63.6 s <i>30</i>	T _{1/2} : From Adopted Levels.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	278.44 [@] 18	$7/2^{-}$		
E(level): Level energy from 2017Au03: NUBASE-2016. 2015He27 list as 307 keV. % α : From Adopted Levels. T _{1/2} : Measured by 2015He27 from distribution of time difference between recoil implantations and detection of α particle from the decay of 1/2 ⁺ isomer. 464.66 ^(a) 18 9/2 ⁻ 505.1 ^c 3 3/2 ⁺ 605.53 [#] 18 13/2 ⁺ 153 ns 10 T _{1/2} : From 604.7 γ (t) (2004Ni06). 619.60 ^(a) 15 11/2 ⁻ 641.8 5 7/2 ⁻ 662.08 ^a 20 9/2 ⁻ 734.2 ^c 3 5/2 ⁺ 817.73 ^(a) 17 13/2 ⁻ 915.30 ^a 17 11/2 ⁻ 928.93 [#] 21 15/2 ⁺ 964.6 5 1013.3 ^c 4 (7/2 ⁺) 1066.35 17 13/2 ⁻ 117.06 22 13/2 ⁺ 1169.67 ^(a) 18 15/2 ⁻ 1203.5 ^c 4 (9/2 ⁺) 128.13 [#] 21 17/2 ⁺ 128.13 [#] 21 17/2 ⁺ 128.13 [#] 21 17/2 ⁺ 1249.06 ^a 21 13/2 ⁻ 127.88 21 (11/2 ⁻)	305 [°] 6	$1/2^{+}$	3.07 s 13	$\% \alpha = 84 \ 16; \ \% \varepsilon + \% \beta^+ = 16 \ 16$
%ac: From Adopted Levels. T _{1/2} : Measured by 2015He27 from distribution of time difference between recoil implantations and detection of α particle from the decay of $1/2^+$ isomer. $464.66 \stackrel{(0)}{=} 18 9/2^ 505.1^c \ 3 3/2^+$ $605.53^{\#} 18 13/2^+$ $153 \text{ ns } 10$ $619.60 \stackrel{(0)}{=} 15 11/2^ 641.85 7/2^ 620.8^a \ 20 9/2^ 734.2^c \ 3 5/2^+$ $817.73 \stackrel{(0)}{=} 17 13/2^ 915.30^a \ 17 11/2^ 928.93^{\#} 21 15/2^+$ 964.65 $1013.3^c \ 4 (7/2^+)$ $1066.35 \ 17 13/2^ 117.06 \ 22 13/2^+$ $1169.67 \stackrel{(0)}{=} 18 15/2^ 1228.13^{\#} 21 17/2^+$ $1249.06^c \ 21 13/2^ 127.88 \ 21 (11/2^-)$				E(level): Level energy from 2017Au03: NUBASE-2016. 2015He27 list as 307 keV.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\%\alpha$: From Adopted Levels.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\Gamma_{1/2}$: Measured by 2015He27 from distribution of time difference between recoil implantations and detection of α particle from the decay of $1/2^+$ isomer.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	464.66 [@] 18	9/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	505.1 ^c 3	$3/2^{+}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	605.53 [#] 18	$13/2^{+}$	153 ns 10	$T_{1/2}$: From 604.7 γ (t) (2004Ni06).
	619.60 [@] 15	$11/2^{-}$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	641.8 5	$7/2^{-}$		
$734.2^{\circ} 3 \qquad 5/2^{+}$ $817.73^{\circ} 17 \qquad 13/2^{-}$ $915.30^{a} 17 \qquad 11/2^{-}$ $928.93^{\#} 21 \qquad 15/2^{+}$ $964.6 5$ $1013.3^{\circ} 4 \qquad (7/2^{+})$ $1066.35 17 \qquad 13/2^{-}$ $1117.06 22 \qquad 13/2^{+}$ $1169.67^{\circ} 18 \qquad 15/2^{-}$ $1203.5^{\circ} 4 \qquad (9/2^{+})$ $1228.13^{\#} 21 \qquad 17/2^{+}$ $1249.06^{a} 21 \qquad 13/2^{-}$ $1257.88 21 \qquad (11/2^{-})$	$662.08^a 20$	9/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	734.2° 3	$5/2^{+}$		
915.30 ^{<i>d</i>} 17 11/2 ⁻ 928.93 ^{<i>f</i>} 21 15/2 ⁺ 964.6 5 1013.3 ^{<i>c</i>} 4 (7/2 ⁺) 1066.35 17 13/2 ⁻ 1117.06 22 13/2 ⁺ 1169.67 ^{<i>@</i>} 18 15/2 ⁻ 1203.5 ^{<i>c</i>} 4 (9/2 ⁺) 1228.13 ^{<i>f</i>} 21 17/2 ⁺ 1249.06 ^{<i>a</i>} 21 13/2 ⁻ 1257.88 21 (11/2 ⁻)	817.73 ^{^w} 17	13/2-		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	915.30 ^{<i>a</i>} 17	11/2-		
964.6 5 1013.3 ^{<i>C</i>} 4 (7/2 ⁺) 1066.35 17 13/2 ⁻ 1117.06 22 13/2 ⁺ 1169.67 ^{<i>Q</i>} 18 15/2 ⁻ 1203.5 ^{<i>C</i>} 4 (9/2 ⁺) 1228.13 [#] 21 17/2 ⁺ 1249.06 ^{<i>a</i>} 21 13/2 ⁻ 1257.88 21 (11/2 ⁻)	928.93 [#] 21	$15/2^{+}$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	964.6 5	(7/2+)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1015.5° 4	$(1/2^{+})$ 13/2 ⁻		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1117.06 22	$13/2^+$		
$\begin{array}{rcl} 1203.5^{\circ} & 4 & (9/2^{+}) \\ 1228.13^{\#} & 21 & 17/2^{+} \\ 1249.06^{a} & 21 & 13/2^{-} \\ 1257.88 & 21 & (11/2^{-}) \end{array}$	1169.67 [@] 18	$15/2^{-}$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1203.5 [°] 4	$(9/2^+)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1228.13 [#] 21	$17/2^{+}$		
$1257.88\ 21$ (11/2 ⁻)	1249.06 ^a 21	13/2-		
	1257.88 21	$(11/2^{-})$		
1321.0 8	1321.0 8			
$1414.64^{(0)} 22 17/2^{-1}$	1414.64 [@] 22	17/2-		
$1514.34 21 17/2^{+}$	1514.34 21	$17/2^+$		
$151/.4^{\circ} 0$ (11/2') 1520.05.27 13/2 ⁻	151/.4° 0	$(11/2^+)$ $13/2^-$		
1520.75 21 15/2+	1535.73 21	$15/2^+$		
$1555 30^{\#} 25 \qquad 19/2^+$	$1555 30^{\#} 25$	19/2+		
$1562.41^a 21 15/2^-$	$1562.41^a 21$	$15/2^{-1}$		
1609.9 4 $(15/2^{-})$ J ^{π} : from Figure 2 of 2015He27, listed as $(13/2^{-})$ in Table I.	1609.9 4	$(15/2^{-})$		J ^{π} : from Figure 2 of 2015He27, listed as (13/2 ⁻) in Table I.

¹⁹³Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
1636.5 ^c 5	$(13/2^+)$		
1651.5 4	$(15/2^{-})$		
1673.49 19	$17/2^+$		
1/36.96 24	$\frac{1}{2}$		
1702.34 1704.02 25	(13/2)		
1794.05 23	$(17/2^+)$		
1859.1 4	$15/2^{-1}$		
1875.1 [#] 3	$21/2^+$		
1910.06 ^{<i>a</i>} 23	17/2-		
1950.09 24	$19/2^{+}$		
1979.8 5	(10/2-)		
2045.8 4	(19/2) $(21/2^+)$		
2048.05	(21/2)		
2048.7 5	$\frac{21/2}{21/2^+}$		
2090.41 18	$\frac{17}{2^{-1}}$		
2109.65 25	$19/2^{+}$		
2128.8 4	$21/2^+$		
2139.6° 6	$(17/2^{+})$		
2193.75 ^{cc} 21	19/2-		
2220.6" 3	23/2*		
2240.5 0	19/2		I^{π} . Assigned as (19/2 ⁻) in 2015He27. First author later stated that level should have no
2233.0 1			$J\pi$ assignment due to lack of information on the depopulating transition (private
			communication by e-mail between first author and XUNDL compiler).
2265.8 5	$25/2^+$		
2278.6 5	$25/2^+$		
2321.7 4	$(21/2^+)$		
2336.9 3	21/2 20/2+	85 115 3	The massured by 2015 He27 from (recoil)(455 Av)(t)
2349.00	29/2	85 μs 5	Proposed configuration= $\pi_{1,2,0}$ coupled to oblate 8^+ state in ¹⁹² Pb with
			configuration $\pi n_{13/2}^{13/2}$ coupled to obtain 0 state in 1.0 with configuration $=\pi h_{2/2}^{2}$.
2356.3 4	$25/2^{-}$		·····g/2·
2405.1 ^b 7	$(29/2^{-})$	3.02 µs 8	$T_{1/2}$: Measured by 2015He27 from (recoil)(307.4 γ)(t).
2428.3 4	23/2-		-,- · · · · · · · · · · · · · · · · · ·
2432.9 3	$23/2^{+}$		
2448.1 5	22/2-		
2462.9 3	23/2		
2483.9°° 3	$\frac{23}{2}$		
2525.4 4	$\frac{23}{2}^{-}$		
$2535.8^{\#}4$	$25/2^+$		
2547.3 5	$(21/2^{-})$		
2578.0 4	$23/2^{-}$		
2587.2 [@] 4	25/2-		
2591.5 4	$25/2^+$		
2669.4 [°] 4	$25/2^{-}$		
271035	(25/21)		
2718.0 6	$27/2^{+}$		
	., .		

¹⁹³Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
$2721.7^{@}$ 4	27/2-	
2723.4 4	$\frac{25}{2^{-1}}$	
2756.0 [#] 4	$27/2^{+}$	
2762.8 4	$25/2^+$	
2774.8 5		
2804.1 ^b 8	$(31/2^{-})$	
2832.3 5	29/2-	
2873.2" 5	$29/2^+$	
2893.0 4	$(25/2^{+})$	
2921.9 ^{cc} 5	21/2	
2928.0 5	$(29/2^{-})$	
2956.7 5	$25/2^{(+)}$ $31/2^{+}$	
2958.70	31/2	
2986.9 6	$\frac{31/2}{29/2^+}$	
2996.1 7	$\frac{29}{2^+}$	
3103.6 9		
3117.1 [#] 6	33/2+	
3118.4 7	$(23/2^{-})$	
3159.2 ^b 8	$(33/2^{-})$	
3200.4 5	29/2-	
3220.5 8	$(22/2^{-})$	
3282.9 8	(33/2)	
$3321.0^{\#}7$	35/2+	
3349.2 8	$33/2^+$	
3448.6 ^b 8	$(35/2^{-})$	
3496.3 ^{&} 5	31/2-	
3560.9 [#] 7	$37/2^+$	
3563.1 8	$(31/2^+)$	
3622.7 7		
3638.6 11	$(27/2^{-})$	
3009.39	(37/2)	
3709.9 8	(37/2)	
$37960^{\&} 5$	33/2-	
3816.5 7	$35/2^{-}$	
3837.4 [#] 7	39/2+	
3886.2 7	35/2+	
3910.7 8		
3969.1 9	37/2+	
39/0./ 9	25/2-	See comment for 4050 local shout hand continuent
4008.8×6	35/2	See comment for 4059 level about band assignment.
4028.70 9	(39/2 ⁻)	
4059.1 6	$(35/2^{-})$	This level or the 4009 level is $35/2^-$ member of band #3 shown in Figure 2 of 2015He27.
4137.3 [#] 8	$41/2^+$	
4213.2 6	$(37/2^{-})$	This level or the 4241 level is $37/2^{-}$ member of band #3 shown in Figure 2 of 2015He27.
4240.7 ^{&} 8	$(37/2^{-})$	See comment for 4213 level about band assignment.
4272.2 7	$(37/2^+)$	

E(level) [†] 4284.0 9 4292.3 8 4345.1 8 4467.7 [#] 8 4544.1 9	<u>J</u> ^π ‡ 37/2 ⁻ 43/2 ⁺	$\frac{\text{E(level)}^{\dagger}}{4824.4^{\#} 9}$ 4898.1 <i>10</i> 4961.2 <i>12</i> 5679.6 <i>14</i> x ^d 12666.4 4	$\frac{J^{\pi \ddagger}}{45/2^+}$ (11/2 ⁺)	$\frac{\text{E(level)}^{\dagger}}{504.4+x^{d} \ 6} \\ 755.3+x^{d} \ 7} \\ 1047.0+x^{d} \ 8} \\ 1378.7+x^{d} \ 8} \\ 1750.9+x^{d} \ 9} \\ 2162 \ x^{d} \ 6} \\ 2162 \ x^{d} \ 6} \\ 2162 \ x^{d} \ 6} \\ 300 \ x^{d} \ 7} \ 700 \ 7} \ 700 \ 7$	$\frac{J^{\pi^{\ddagger}}}{(23/2^{+})}$ $(27/2^{+})$ $(31/2^{+})$ $(35/2^{+})$ $(39/2^{+})$ $(42/2^{+})$	$\frac{\text{E(level)}^{\dagger}}{3102.3 + x^{d} 11}$ $3630.1 + x^{d} 11$ $4196.1 + x^{?d} 12$ $4800.6 + x^{?d} 12$	$\frac{J^{\pi \ddagger}}{(51/2^+)}$ (55/2 ⁺) (59/2 ⁺) (63/2 ⁺)
4544.1 9		x ^d	$(11/2^+)$	$1750.9 + x^d 9$	$(39/2^+)$		
4574.59 4586.79		$126.6 + x^d 4$ 294.9 + $x^d 5$	$(15/2^+)$ $(19/2^+)$	$2162.7 + x^d 9$ $2613.1 + x^d 10$	$(43/2^+)$ $(47/2^+)$		

¹⁹³Bi Levels (continued)

[†] From least-squares fit to γ -ray energies with 305 keV level holding fixed.

[‡] From 2015He27, based on γ -ray angular distribution distribution, linear polarization asymmetry factor, and band assignments.

[#] Band(A): $\pi 13/2[606]$, $i_{13/2}$ orbital. A sharp band crossing is observed at $\hbar \omega \approx 0.2$ MeV, $J\pi = 25/2^+$, interpreted as due to two $i_{13/2}$ neutrons.

[@] Band(B): $\pi 7/2[514], (h_{9/2}/f_{7/2}).$

& Band(C): 3-qp band based on 19/2⁻. Possible configuration= $\pi i_{13/2} \otimes \nu (i_{13/2}^{-1} p_{3/2}^{-1})$ mixed with $\pi i_{13/2} \otimes \nu (i_{13/2}^{-1} f_{5/2}^{-1})$.

^{*a*} Band(D): *π*9/2[505].

^b Band(E): 3-qp band based on (29/2⁻). Proposed configuration= $\pi h_{9/2} \otimes \nu i_{13/2}^{-2} i_{2+}^{-2}$.

^c Band(F): Band based on $1/2^+$. This band is built on $1/2^+$ proton-intruder state of 2p-1h configuration.

^d Band(G): SD band built on $\pi 1/2[651]$, $i_{11/2}$. Band was found by tagging on α decays of the $1/2^+$ intruder state at 308 keV. Population intensity is $\approx 3.9\%$. The connection of the SD band to the $1/2^+$ isomer at 308 keV was searched for by 2015He27. An 1836-keV transition, observed in coincidence with SD band transitions is a possible candidate, but confirmatory evidence is lacking due to poor statistics. The two lowest transitions in the SD band, expected to be at 87 and 46 keV were not observed, possibly due to interference from x rays for the former and high conversion coefficient for the latter transition.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	Comments
(19.1)	0.044 3	2128.8	21/2+	2109.65	19/2+		E_{γ} : 19.1 keV 5 from level-energy difference in 2015He27.
48.8 6		2405.1	(29/2 ⁻)	2356.3	25/2-	[E2]	Mult.: α_{tot} =185 20 from intensity-balance I2015He27). Theory: $\alpha(E2)$ =196 13.
84.0 6		2349.6	$29/2^{+}$	2265.8	$25/2^{+}$	E2	
90.0 6	2.2 2	2963.5	$31/2^+$	2873.2	$\frac{29}{2^+}$		
^x 97.5	0.9 1						Uncertain γ seen in prompt coincidence with 143.0-, 146.8-, 185.5-, 252.5-, and 278.6-keV transitions.
103.4 <i>3</i>	0.97 5	2193.75	$19/2^{-}$	2090.41	$17/2^{-}$	D	DCO=0.41 3
117.1 <i>3</i>	1.59 6	2873.2	$29/2^{+}$	2756.0	$27/2^{+}$	D	DCO=0.69 4
124.6 <i>3</i>	0.79 4	2587.2	$25/2^{-}$	2462.9	$23/2^{-}$		
126.6 4	0.7 [§] 2	126.6+x	(15/2 ⁺)	Х	$(11/2^+)$		I_{γ} : from α -tagged γ spectrum. Intensity from recoil-gated $\gamma\gamma\gamma$ spectrum could not be obtained.
134.7 <i>3</i>	1.29 5	2721.7	$27/2^{-}$	2587.2	$25/2^{-}$	D	DCO=0.62 9
137.1 <i>3</i>	0.86 5	2265.8	$25/2^+$	2128.8	$21/2^+$	E2	DCO=1.38 12
							expα(L+M+)=1.35 20 for 137.1+137.6 doublet from isomer-gated ce spectrum.
137.6 <i>3</i>	1.00 5	1673.49	$17/2^{+}$	1535.73	$15/2^{+}$	M1	DCO=0.77 8
							expα(L+M+)=1.35 20 for 137.1+137.6 doublet from isomer-gated ce spectrum.
143.0 <i>3</i>	3.4 2	2336.9	$21/2^{-}$	2193.75	$19/2^{-}$	M1	DCO=0.95 5
$x_{146.0}^{\ddagger} 6$	0.41 4						
146.8 <i>3</i>	3.1 1	2483.9	23/2-	2336.9	$21/2^{-}$	D	DCO=0.83 4

 $\gamma(^{193}\text{Bi})$

$\gamma(^{193}\text{Bi})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	Comments
149.8.3	1.11.6	2278.6	$25/2^+$	2128.8	$\frac{1}{21/2^{+}}$	E2	DCO=1.32.17
153.6.3	2.9 1	3117.1	$\frac{-3}{32}$	2963.5	$\frac{21}{2^+}$	D	DCO=0.78 4
155.2.3	0.70.5	619.60	$11/2^{-}$	464.66	$9/2^{-}$	2	
158.5 4	0.25 4	3117.1	$33/2^+$	2958.7	$31/2^+$		
159.3 3	0.56 4	1673.49	$17/2^{+}$	1514.34	$17/2^{+}$	D	DCO=1.08 15
164.5 3	0.53 3	2756.0	$27/2^{+}$	2591.5	$25/2^+$		
168 3 3	0.886	20/ 0±v	$(10/2^+)$	126.6±v	$(15/2^+)$		$I : 15.3$ in α -tagged spectrum
185 5 3	362	2669.4	(1)/2	2483.9	(15/2)	D	DCO=0.71.6
186.3.3	2.02 241	464 66	$9/2^{-}$	278 44	$\frac{23}{2}$	D	DCO=0.52 14
188 3 3	1 01 8	1117.06	$13/2^+$	928.93	$15/2^+$	D	000-0.52 11
190.1.3	0.43.3	1203 5	$(9/2^+)$	1013 3	$(7/2^+)$		
198.2.3	2.9.2	817.73	$13/2^{-1}$	619.60	$11/2^{-1}$	D	DCO=0.73 7
200.2.3	5.0.2	505.1	$3/2^+$	305	$1/2^+$	D	DCO=0.78 7
203.9 3	4.0 2	3321.0	$35/2^+$	3117.1	$\frac{1}{2}$ $\frac{3}{2}$	M1	DCO=0.63.3
							POL = -0.13 I.
204.4.3	1.05.5	4213.2	$(37/2^{-})$	4008.8	$35/2^{-}$	D	DCO=0.67 4
206.3 3	1.26 6	2928.0	$(29/2^{-})$	2721.7	$\frac{27}{2^{-}}$	2	
209.5 3	1.2 [§] 3	504.4+x	$(23/2^+)$	294.9+x	$(19/2^+)$		I_{γ} : 2.0 2 in α -tagged spectrum.
212.3 4	0.38 4	2432.9	$23/2^+$	2220.6	$23/2^{+}$		
212.7 3	0.51 4	4008.8	$35/2^{-}$	3796.0	33/2-	D	DCO=0.76 5
220.4 <i>3</i>	4.7 2	2756.0	$27/2^{+}$	2535.8	$25/2^+$	M1	DCO=0.73 2
							POL=-0.073 4.
229.3 <i>3</i>	1.62 8	734.2	$5/2^{+}$	505.1	$3/2^{+}$	M1	DCO=0.94 11
220 1 1	0.14.3	1571 5		1315 1	37/2-		POL = -0.05 3.
229.44	0.14 J 0.12 3	4374.3	$(37/2^{-})$	4008.8	35/2-		
231.95 23214	0.12.5 0.14.3	2000 41	(37/2)	1850 1	$15/2^{-}$		
232.14	301	2090.41	$\frac{17/2}{37/2^+}$	3321.0	35/2+	M1	DCO = 0.60.3
257.0 5	5.01	5500.7	51/2	5521.0	55/2	NII	POL=-0.016 13.
242.9 4	0.55 4	2193.75	19/2-	1950.09	$19/2^{+}$		
245.2 <i>3</i>	4.2 2	1414.64	$17/2^{-}$	1169.67	$15/2^{-}$	M1	DCO=0.67 5
							POL=-0.12 2.
250.9 <i>3</i>	2.0 [§] 4	755.3+x	$(27/2^+)$	504.4+x	$(23/2^+)$		I_{γ} : 1.9 4 in α -tagged spectrum.
252.5 3	4.3 2	2921.9	$27/2^{-}$	2669.4	$25/2^{-}$	M1	DCO=0.61 6
							POL=-0.008 1.
253.1 <i>3</i>	0.88 6	915.30	$11/2^{-}$	662.08	9/2-	M1	POL=-0.14 2.
255.1 <i>3</i>	1.83 8	2048.7	$21/2^{-}$	1794.03	19/2-	D	DCO=0.66 10
261.3 <i>3</i>	0.76 5	3709.9	$(37/2^{-})$	3448.6	$(35/2^{-})$	D	DCO=0.81 14
263.1 <i>3</i>	0.62 4	4059.1	$(35/2^{-})$	3796.0	33/2-	D	DCO=0.67 5
268.9 <i>3</i>	0.53 <i>3</i>	2986.9	$29/2^+$	2718.0	27/2+	M1	DCO=0.386
27196	0.09.3	4544 1		4272.2	$(37/2^{+})$		1 OL = -0.040 0.
276.0.3	0.075	2708.9	$(25/2^+)$	2432.9	$\frac{(37)2}{23/2^+}$		
276.5.3	2299	3837.4	$(25/2)^{-}$	3560.9	$\frac{25}{2}^{+}$	M1	DCO=0.76.3
270.5 5	2.2))	5057.1	572	5500.7	51/2		POI = -0.06 l
278 1 4	0 50 5	2996 1	$29/2^{+}$	2718.0	$27/2^+$	M1	DCO=0.51.6
	0.000		_>,_		,_		POL=-0.23 3.
278.5 <i>3</i>	10.3 4	278.44	$7/2^{-}$	0.0	9/2-	D	DCO=0.9 1
278.6 4	4.1 2	3200.4	29/2-	2921.9	27/2-	M1	DCO=0.92 8
							POL=-0.053 4.
278.9 8	0.18 7	1013.3	$(7/2^+)$	734.2	$5/2^{+}$		
284.0 3	0.59 5	2193.75	19/2-	1910.06	$17/2^{-}$		
^289.0 6	0.9 <i>3</i>						Seen in prompt coincidence with transitions in band

#1 in Figure 2 of 2015He27.

				¹⁶⁵ Ho (³²	S,4n γ)	2015He27	(continued)				
	γ ⁽¹⁹³ Bi) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	Comments				
289.5 3	1.65 8	3448.6	(35/2-)	3159.2	(33/2 ⁻)	M1	DCO=0.93 9 POL=-0.033 5.				
291.7 <i>3</i> 294.4 <i>3</i>	1.8 [§] 3 0.59 4	1047.0+x 4586.7	(31/2 ⁺)	755.3+x 4292.3	(27/2 ⁺)		I _{γ} : 1.8 4 in α -tagged spectrum.				
295.1.6	0.19.5	2723.4	$25/2^{-}$	2428.3	$23/2^{-}$						
295.7 3	2.4 1	3496.3	$\frac{31}{2^{-1}}$	3200.4	$\frac{29}{2^{-}}$	M1	DCO=0.57 5				
			,		,		POL=-0.096 6.				
298.8 4	3.2 2	3796.0	33/2-	3496.3	31/2-	M1	DCO=0.60 5				
							POL=-0.093 6.				
299.2 <i>3</i>	25.8 8	1228.13	$17/2^{+}$	928.93	$15/2^{+}$	M1	DCO=0.68 2				
							$POL = -0.032 \ I.$				
299.4 5	0.4 1	1117.06	$13/2^{+}$	817.73	$13/2^{-}$						
299.8 <i>3</i>	1.70 9	4137.3	$41/2^{+}$	3837.4	39/2+	D	DCO=0.6 1				
307.4 <i>3</i>	2.7 1	2356.3	25/2-	2048.7	21/2-	E2	DCO=1.28 <i>13</i> Mult.: From EKC/(ELC+EMC+)=1.37 <i>12</i> from γ (ce) coin data. Theory: For E2 $\alpha_{\rm K}/(\alpha_{\rm L}+\alpha_{\rm M}+)=1.26$. POL=-0.002 <i>1</i> . Note: negative POL is inconsistent with E2				
212 2 2	1 15 7	1562 41	15/2-	1240.06	$12/2^{-}$	M1	WILL E2. $DCO=0.61.8$				
515.5 5	1.15 /	1302.41	13/2	1249.00	13/2	1011	POI = 0.040.0				
315 2 3	632	2535.8	25/2+	2220.6	23/2+	Л	POL = -0.049 9.				
318.8.3	0.5 2	4028.7	$(30/2^{-})$	3709.9	$(37/2^{-})$	D	DC0=0.794				
310.8.3	1254	4028.7	(39/2)	1555 30	(37/2) 10/2+	M1	DCO = 0.60.2				
519.8 5	12.5 4	1675.1	$\angle 1/\angle$	1555.50	19/2	1011	DCO=0.002				
272 / 2	100.0.57	028.03	15/2+	605 53	$12/2^+$	M1	POL = -0.0392.				
525.4 5	100.0 57	928.95	15/2	005.55	13/2	1011	DCO=0.74.4				
373 6 1	0.55.6	4808 1		1571 5			10L = -0.012 1.				
323.04	10.6.6	4090.1	$10/2^{+}$	4374.3	$17/2^{+}$	M1	DCO = 0.68.2				
527.4 5	19.0 0	1555.50	19/2	1226.13	1//2	1011	POI = -0.001 I				
378 7 1	0.45.7	2000/11	17/2-	1762.3	$(15/2^{-})$		10L = -0.004 I.				
320.2 4	0.437	2090. 4 1 4467 7	13/2+	1137.3	(13/2)	р	DCO = 0.82.16				
221 7 2	0.414	1270.7	+3/2	4137.3	+1/2	D					
331.73	2.3 3	13/8./+x	$(35/2^+)$	1047.0+x	$(31/2^{+})$	D	I_{γ} : 1.6 4 in α -tagged spectrum.				
333.73	2.2 1	1249.06	13/2	915.30	11/2	D	DCO=0.66 10				
334.7 [#] 4	0.28 4	2921.9	$27/2^{-}$	2587.2	$25/2^{-}$						
341.1 4	0.54 7	619.60	11/2-	278.44	7/2-	_	// .				
345.4 3	1.1 1	3304.2	33/2+	2958.7	$31/2^+$	D	DCO=0.66 9				
345.7 3	8.6 3	2220.6	23/2+	18/5.1	$21/2^{+}$	MI	DCO=0.68 2				
0.4 7 < 4	0.45.6	1010.04	17/0-	15/0 /1	1 5 10-		POL = -0.059 6.				
347.6 4	0.45 6	1910.06	$17/2^{-1}$	1562.41	15/2-	P					
351.1.3	0.22.6	1520.95	$13/2^{-1}$	1169.67	15/2-	D	DCO=0.99 9				
352.13	15.4 5	1169.67	15/2	817.73	13/2	MI	DCO=0.72 6				
		1 (0 0 0	(1 - 1 -)		<i></i>		POL = -0.036 4.				
352.3 3	1.33 10	1609.9	(15/2 ⁻)	1257.88	(11/2 ⁻)		 DCO=0.73 16 POL=-0.023 7. Mult.: M1 listed in Table I of 2015He27 is consistent with DCO and POL, but inconsistent with (15/2⁻) to (11/2⁻) placement in Figure 2, which implies (E2). First author later opined no multipolarity assignment for this transition (private communication by e-mail between first author and ÂUNDL compiler). 				
352.4 4	0.53 6	2090.41	$17/2^{-}$	1736.96	$17/2^{-}$		•				
353.1 4	0.77 6	817.73	13/2-	464.66	9/2-						

$\gamma(2^{-1} \text{ bi})$ (continued)									
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult.&	Comments		
355.3 3	3.2 1	3159.2	(33/2 ⁻)	2804.1	(31/2 ⁻)	M1	DCO=0.80 7 POL=-0.06 2.		
356.4 6	0.11 3	1321.0		964.6					
356.7 4	0.25 3	4824.4	$45/2^{+}$	4467.7	$43/2^{+}$	D	DCO=0.7 2		
357.0 4	0.56 5	2893.0	$(25/2^+)$	2535.8	25/2+	(M1)	DCO=0.82 7 POL=-0.178 14.		
363.4 4	0.95 9	641.8	$7/2^{-}$	278.44	$7/2^{-}$	D	DCO=1.16 11		
365.1 4	0.42 4	2721.7	$27/2^{-}$	2356.3	$25/2^{-}$	D	DCO=0.86 16		
371.0 <i>3</i> 371.7 <i>4</i>	0.81 5 0.67 7	2591.5 2321.7	$25/2^+$ (21/2 ⁺)	2220.6 1950.09	$23/2^+$ 19/2 ⁺	M1	DCO=0.61 9		
372.2.3	1782	1750.9 + x	$(39/2^+)$	13787 + x	$(35/2^+)$		L: 1.1.3 in α -tagged spectrum		
375.4.3	1.89.9	2432.9	$\frac{(3)}{2}^{+}$	2057.6	$\frac{(33)}{21}$	D	DCO=0.84 12		
379.4 3	8.4 3	1794.03	19/2-	1414.64	$17/2^{-}$	M1	DCO = 0.64 4 POL = 0.050 l		
381.0.4	131	2509.8	23/2+	2128.8	$21/2^{+}$	M1	DCO=0.98 12		
501.0 /	1.5 1	2509.0	23/2	2120.0	21/2		POL = -0.27 4.		
383.8 <i>3</i>	4.3 2	662.08	9/2-	278.44	$7/2^{-}$	D	DCO=0.91 5		
386.4 4	0.20 3	3669.3	$(37/2^{-})$	3282.9	$(33/2^{-})$	Q	DCO=1.32 24		
386.5 5	0.18 4	4272.2	$(37/2^+)$	3886.2	35/2+	-			
388.2 [#] 6	0.12 3	3220.5		2832.3	$29/2^{-}$				
390.5 4	1.04 9	3349.2	$33/2^{+}$	2958.7	$31/2^{+}$	D	DCO=0.92 14		
393.4 <i>3</i>	2.7 1	1651.5	$(15/2^{-})$	1257.88	$(11/2^{-})$	Q	DCO=1.26 16		
							POL=-0.076 11. Mult.: DCO and POL for 394.0+393.4 doublet. γ ray placement from (15/2 ⁻) to (11/2 ⁻) implies (E2), however, negative POL value not consistent with (E2). E_{γ} : Ordering of the 394.0 – 393.4 γ cascade is not established.		
394.0 3	0.83 5	2045.8	(19/2 ⁻)	1651.5	(15/2 ⁻)	Q	DCO=1.26 <i>16</i> POL=-0.076 <i>11</i> . Mult.: DCO and POL for 394.0+393.4 doublet. γ ray placement from (19/2 ⁻) to (15/2 ⁻) implies (E2), however, negative POL value is inconsistent with (E2). E_{γ} : ordering of the 394.0 – 393.4 γ cascade is not established.		
398.8 <i>3</i>	5.5 2	2804.1	(31/2 ⁻)	2405.1	(29/2 ⁻)	M1	DCO=0.61 <i>6</i> POL=-0.016 <i>5</i> .		
411.8 <i>3</i> 414 3 3	$1.3^{\$} 2$	2162.7+x 2462.9	$(43/2^+)$ 23/2 ⁻	1750.9+x 2048 7	$(39/2^+)$ 21/2 ⁻	M1	I_{γ} : 0.8 2 in α -tagged spectrum.		
117.5 5	2.05 /	2402.7	25/2	2010.7	21/2	1011	POL=(-0.12 2).		
429.0 4	1.3 2	734.2	$5/2^{+}$	305	$1/2^{+}$				
433.0 <i>3</i>	1.90 9	1636.5	$(13/2^+)$	1203.5	$(9/2^+)$				
435.6 <i>3</i>	1.01 7	2483.9	23/2-	2048.7	21/2-	D	DCO=0.89 16		
435.7 3	4.1 2	1950.09	19/2+	1514.34	17/2+	M1	DCO=0.58 6 POI =-0.005 1		
436.2 <i>3</i>	7.7 3	2109.65	19/2+	1673.49	17/2+	M1	DCO=0.7 <i>I</i> $\alpha(K)\exp=0.133$ <i>19</i> POL=-0.11 2. $\alpha(K)\exp$; from ce spectrum		
436.3 4	0.27 4	2045.8	$(19/2^{-})$	1609.9	$(15/2^{-})$	0	DCO=1.5.5		
438.1 5	0.29 6	2921.9	$\frac{27}{2^{-1}}$	2483.9	$\frac{23}{2^{-1}}$	×.			
443.8 5	0.56 6	3560.9	37/2+	3117.1	33/2+				

$\gamma(^{193}\text{Bi})$ (continued)

γ ⁽¹⁹³ Bi) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. ^{&}	Comments				
$x^{x}444.0^{\ddagger} 6$ 445.4 4	0.45 3	1673.49	17/2+	1228.13	17/2+						
446.8 <i>3</i>	2.6 2	1066.35	13/2-	619.60	11/2-	M1	DCO=0.85 <i>11</i> POL=-0.09 <i>1</i> .				
450.4 4	1.3 [§] 2	2613.1+x	$(47/2^+)$	2162.7+x	$(43/2^+)$		I_{γ} : 0.4 <i>1</i> in α -tagged spectrum.				
450.6 <i>3</i>	1.25 8	915.30	$11/2^{-}$	464.66	9/2-	M1	POL=-0.035 4.				
452.2 <i>3</i>	1.49 7	2718.0	27/2+	2265.8	$25/2^+$	D	DCO=0.8 1				
454.9 4	0.19 4	4292.3		3837.4	39/2+						
455.1 [#] 6	0.14 6	1520.95	$13/2^{-}$	1066.35	$13/2^{-}$						
455.4 3	6.1 <i>3</i>	2128.8	21/2+	1673.49	17/2+	E2	DCO=0.98 20 α (K)exp=0.032 6 POL=+0.119 14. α (K)exp: from ce spectrum				
45924	0777	2253.6		1794 03	$19/2^{-}$		$u(\mathbf{R})$ exp. nom ce spectrum.				
459.5 4	0.52 5	964.6		505.1	$3/2^+$						
465.2 7	0.4 1	464.66	9/2-	0.0	$9/2^{-}$	D					
466.2 4	0.19 3	3749.1		3282.9	$(33/2^{-})$						
469.3 <i>3</i>	1.46 8	1203.5	$(9/2^+)$	734.2	$5/2^{+}$						
469.5 3	1.6 1	1535.73	$15/2^+$	1066.35	13/2-	D	DCO=0.80 16				
476.03	1.05 5	2832.3	$\frac{29}{2}$	2356.3	$\frac{25}{2}$	Q	DCO=1.2.2				
4/8.3 3	2.01	3282.9 2708 9	(33/2) $(25/2^+)$	2804.1	(31/2) $23/2^+$	D D+O	DCO=0.039				
480.2 4	0.740	2102.2 + #	$(23/2^{-})$	2612 1	$(47/2^{+})$	D∓Q	L 0.4 Lin a tagged spectrum				
489.24 497.5 <i>4</i>	0.9° 2 1.3 <i>I</i>	5102.3+X 1117.06	(31/2 ⁺) 13/2 ⁺	2013.1+x 619.60	(47/2*) 11/2 ⁻	(E1)	I_{γ} : 0.4 <i>T</i> in α -tagged spectrum. DCO=0.85 <i>12</i> POL=-0.053 <i>9</i> . Note: negative POL is inconsistent with E1. Presence of a strong contaminant is a possible reason for the discrepancy (private communication by e-mail between first author and \hat{X} UNDL compiler – dated November 26, 2015).				
501.5 3	0.97 5	2547.3	$(21/2^{-})$	2045.8	(19/2 ⁻)	M1	DCO=0.9 <i>1</i> POL=-0.053 <i>8</i> .				
502.5 <i>3</i>	4.1 2	2057.6	$21/2^+$	1555.30	19/2+	D	DCO=0.62 5				
503.1 4	0.44 6	2139.6	$(17/2^+)$	1636.5	$(13/2^+)$						
504.0 3	3.8 2	1673.49	17/2+	1169.67	15/2-	E1	DCO=0.80 6 POL=+0.15 <i>1</i> .				
504.1 4	0.58 8	1517.4	$(11/2^+)$	1013.3	$(7/2^+)$						
508.2 3	3.5 2	1013.3	$(7/2^+)$	505.1	$3/2^+$	Q	DCO=0.95 12				
511.3 3	7.6 7	1117.06	13/2+	605.53	13/2+	M1+E2	DCO=0.93 8				
512.3 3	2.5 2	3816.5	35/2-	3304.2	33/2+	E1	POL=-0.162. DCO=0.73 12 POL=+0.080 14.				
512.7 3	0.84 5	4008.8	35/2-	3496.3	31/2-						
516.4 4	0.63 8	3837.4	39/2+	3321.0	$35/2^{+}$	Q	DCO=1.6 5				
527.8 <i>3</i>	1.4 [§] 2	3630.1+x	$(55/2^+)$	3102.3+x	$(51/2^+)$		I_{γ} : 0.3 1 in α -tagged spectrum.				
528.2 4	0.48 5	2090.41	17/2-	1562.41	15/2-	D	DCO=0.74 10				
528.6 <i>3</i>	0.86 6	4345.1	37/2-	3816.5	35/2-	D	DCO<1				
530.9 4	0.75 6	3200.4	$\frac{29}{2^{-}}$	2669.4	$\frac{25}{2^{-}}$	Q	DCO = 2.1.3				
53506	0.55 9	2048.0 3638.6	(21/2)	1314.34	1//2	Q	DCU=1.10 ð				
535.00	0.13 3	2756 0	27/2+	2220.6	23/2+	0	DCO = 1.4.2				
538.4 3	2.9 2	2587.2	$\frac{27}{25/2}$	2048.7	$\frac{23}{21}$	Ĕ2	DCO=1.40 17				
			,_		, -		POL=+0.07 I.				
542.2 4	0.32 6	2762.8	$25/2^+$	2220.6	$23/2^+$	D	DCO=0.74 9				

				¹⁶⁵ Ho(³² S,4	n γ) 20	15He27 (co	ontinued)					
	γ ⁽¹⁹³ Bi) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.&	Comments					
543.2 <i>3</i> 550.0 <i>3</i>	1.50 9 17.3 6	2057.6 1169.67	21/2 ⁺ 15/2 ⁻	1514.34 619.60	17/2 ⁺ 11/2 ⁻	Q E2	DCO=1.28 <i>13</i> DCO=1.27 <i>10</i> POL=+0.06 <i>2</i> .					
550.6 <i>4</i> 556.4 <i>3</i> 557.5 <i>4</i>	0.49 7 5.0 2 0.71 7	3709.9 1673.49 2432.9	(37/2 ⁻) 17/2 ⁺ 23/2 ⁺	3159.2 1117.06 1875.1	(33/2 ⁻) 13/2 ⁺ 21/2 ⁺	Q Q	DCO=1.5 2 DCO=1.37 9					
566.0 [#] 4 567.0 3	1.1 [§] 2 2.3 2	4196.1+x? 1736.96	(59/2 ⁺) 17/2 ⁻	3630.1+x 1169.67	(55/2 ⁺) 15/2 ⁻	M1	I _{γ} : 0.2 <i>1</i> in α -tagged spectrum. DCO=0.83 8 POL=-0.155 <i>14</i> .					
567.5 [#] 3	0.84 5	3563.1	$(31/2^+)$	2996.1	$29/2^{+}$							
569.4 <i>3</i> 571.1 <i>4</i> 574.3 <i>3</i>	3.1 <i>2</i> 0.44 <i>4</i> 1.09 <i>7</i>	2090.41 3118.4 3496.3	17/2 ⁻ (23/2 ⁻) 31/2 ⁻	1520.95 2547.3 2921.9	13/2 ⁻ (21/2 ⁻) 27/2 ⁻	Q D E2	DCO=1.32 <i>12</i> DCO=0.6 <i>1</i> DCO=2.2 <i>3</i>					
576.2 <i>4</i> 576.6 7	0.61 5 0.6 <i>1</i>	3563.1 4137.3	(31/2 ⁺) 41/2 ⁺	2986.9 3560.9	29/2+ 37/2+	D	POL=+0.105 14. DCO= $0.85 19$ DCO= $0.85 25$ Mult.: DCO ratio indicates dipole transition, placement (41/2 ⁺ to 37/2 ⁺) indicates quadrupole					
580.2 4	0.33 5	4028.7	$(39/2^{-})$	3448.6	$(35/2^{-})$		transition.					
582.1 4	0.96 9	3886.2	35/2+	3304.2	33/2+	D	DCO=0.9 2					
585.3 3	8.6 3	1514.34	17/2+	928.93	15/2+	M1	DCO=0.66 <i>3</i> POL=-0.04 <i>1</i> .					
587.0 3	1.9 1	1249.06	$\frac{13}{2^{-}}$	662.08	9/2-							
595.9 5 597.0 3	2.1 <i>T</i> 26.0 <i>9</i>	3796.0 1414.64	33/2 17/2 ⁻	817.73	29/2 13/2 ⁻	E2	DCO=1.05 <i>10</i> POL=+0.016 <i>1</i> .					
604.5 [#] 3 604.7 3	2.0 [§] 3	4800.6+x? 605.53	(63/2 ⁺) 13/2 ⁺	4196.1+x? 0.0	(59/2 ⁺) 9/2 ⁻		I_{γ} : 0.2 1 in α -tagged spectrum.					
605.2 4	1.2 1	1520.95	$13/2^{-}$	915.30	$11/2^{-}$	D	DCO=0.95 13					
606.5 <i>4</i> 609.1 <i>3</i>	0.8 <i>1</i> 3.9 2	3910.7 2958.7	31/2+	3304.2 2349.6	33/2+ 29/2+	M1	DCO=0.88 13					
614.0 <i>3</i>	4.6 3	2963.5	31/2+	2349.6	29/2+	M1	POL=-0.017 4. DCO=0.7 1 POL0.07 2					
619.7 <i>3</i>	35.8 29	619.60	11/2-	0.0	9/2-	M1	DCO=0.85 9 POL=-0.059 6.					
619.9 [@] 4	$1.1^{@} 2$	2710.3		2090.41	$17/2^{-}$							
619.9 [@] 4	0.58 [@] 9	3969.1	37/2+	3349.2	33/2+	E2	DCO=1.18 <i>12</i> POL=+0.13 2.					
622.4 3	12.1 5	1228.13	$17/2^{+}$	605.53	13/2+	E2	DCO=1.30 <i>16</i> POL=+0.086 <i>10</i> .					
624.3 <i>3</i>	13.6 5	1794.03	19/2-	1169.67	15/2-	E2	DCO=1.20 5 POL=+0.024 2.					
626.2 3	10.2 4	1555.30	19/2+	928.93	15/2+	E2	DCO=1.48 6 POL=+0.094 9.					
627.5 5	0.07 6	3976.7		3349.2	$33/2^+$							
630.4 5	0.19 3	4467.7	43/2+	3837.4	39/2+							
631.4 3	1.33 8	2193.75	19/2-	1562.41	$15/2^{-1}$	50						
634.1 <i>3</i>	14.8 5	2048.7	21/2-	1414.64	17/2-	E2	PCU=1.57 9 POL=+0.07 <i>I</i> .					
634.3 <i>3</i> 636.7 <i>3</i>	3.4 2 2.2 2	2428.3 915.30	$\frac{23/2^{-}}{11/2^{-}}$	1794.03 278.44	19/2 ⁻ 7/2 ⁻	Q Q	DC0=1.35 / DC0=1.15 7					

					<u>/ </u>		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.&	Comments
638.1 4	0.31 5	1257.88	$(11/2^{-})$	619.60	$\frac{11}{2^{-}}$		
644.1 <i>3</i> 646.9 <i>3</i>	0.30 7 10.8 4	3448.0 1875.1	(33/2) 21/2 ⁺	2804.1 1228.13	(31/2) $17/2^+$	E2	DCO=1.47 6 POI =+0.091 4
647.3 <i>3</i> 651.5 <i>5</i>	4.3 2 0.33 7	1562.41 2708.9	$\frac{15/2^{-}}{(25/2^{+})}$	915.30 2057.6	$\frac{11/2^{-}}{21/2^{+}}$	Q	DCO=1.53 16
654.1 <i>4</i>	0.45 7	2448.1		1794.03	$19/2^{-}$		
660.7 <i>3</i>	7.4 3	2535.8	25/2+	1875.1	21/2+	E2	DCO=1.15 <i>14</i> POL=+0.060 <i>3</i> .
661.1 <i>4</i> 661.3 <i>5</i>	1.02 9 0.22 5	1910.06 4284.0	17/2-	1249.06 3622.7	13/2-		
661.6 4	1.9 3	662.08	9/2-	0.0	9/2-	D+Q	DCO=0.60 11
664.0 3	1.6 1	3622.7	22/2+	2958.7	$\frac{31}{2}$	E2	$DCO_{-1,2,1}$
003.2 3	8.0 5	2220.0	25/2	1555.50	19/2	E2	POL=+0.072 7.
668.9 <i>3</i>	5.0 2	2462.9	23/2-	1794.03	19/2-	E2	DCO=1.48 <i>12</i> POL=+0.103 <i>11</i> .
670.3 <i>3</i>	2.5 2	1736.96	17/2-	1066.35	13/2-	Q	DCO=1.85 22
672.5 3	1.39 8	2893.0	$(25/2^+)$	2220.6	$23/2^+$	D	DCO=0.86 6
							POL=+0.010 1. Mult : Placement $(25/2^+)$ to $23/2^+$ implies (M1)
							positive POL value is inconsistent with (M1).
674.6 <i>3</i>	2.3 1	2723.4	$25/2^{-}$	2048.7	$21/2^{-}$	Q	DCO=1.6 3
677.2 8	0.07 3	4961.2		4284.0			
677.9 5	1.00 8	2240.3	19/2-	1562.41	15/2-	E2	DCO=1.41 23
679.2 3	2.4 1	2193.75	19/2-	1514.34	$17/2^{+}$	EI	DCO=0.8 2 POL = +0.15 2
689 6 3	1 42 7	2483 9	23/2-	1794 03	19/2-	0	POL=+0.15 2. DCO-1 45 30
69513	1.42 7	2109.65	$\frac{23/2}{19/2^+}$	1414 64	$17/2^{-1}$	D	DCO=1.47.21
716.3 3	2.7 1	2591.5	$\frac{15}{2}$	1875.1	$\frac{11}{2^{+}}$	E2	DCO=1.33 8
			,				POL=+0.12 1.
717.9 3	4.0 2	1535.73	15/2+	817.73	13/2-	E1	DCO=1.02 20 POL=+0.10 1.
718.4 [#] 7	0.09 3	5679.6		4961.2			
721.1 [#] 4	0.79 6	2986.9	29/2+	2265.8	25/2+	(E2)	27/2 ⁻ to 23/2 ⁻ transition shown in Table I of 2015He27 should be 29/2 ⁺ to 25/2 ⁺ as given in level-scheme Figure 2. Confirmed by first author through private communication (e-mail)
721.6 3	2.1 <i>I</i>	1950.09	19/2+	1228.13	17/2+	D	DCO=0.63 6
725.5 [#] 9	0.10 6	4029.7		3304.2	$33/2^{+}$		
726.0 4	0.79 6	2774.8		2048.7	$21/2^{-}$		
731.4 3	1.54 9	2525.4	23/2-	1794.03	19/2-	E2	DCO=1.33 23 POL=+0.08 1.
736.1 <i>3</i>	1.28 7	2956.7	$25/2^{(+)}$	2220.6	$23/2^+$	(D)	DCO=0.74 9
744.7 4	1.15 9	1673.49	17/2+	928.93	15/2+	D	DCO=0.79 14
753.94	1.27 14	3159.2	$(33/2^{-})$	2405.1	$(29/2^{-})$		
754.0 0	1.02 8	2578 0	22/2-	2549.0	$\frac{29}{2}^{-10}$	0	DCO = 1.25 IA
784.5 4	0.887	1249.06	$\frac{25/2}{13/2^{-}}$	464 66	9/2-	Q Q	DCO=1.23 14 DCO=1.81 22
793.1.3	0.62 7	1257.88	$(11/2^{-})$	464.66	$9/2^{-}$	× D+0	DCO=0.44 5
793.5 4	0.9 1	1859.1	$15/2^{-1}$	1066.35	$13/2^{-}$	D	DCO=0.64 10
807.3 4	1.01 9	2321.7	$(21/2^+)$	1514.34	17/2+	(E2)	DCO=0.83 19
817.9 <i>3</i>	37.7 18	817.73	13/2-	0.0	9/2-	E2	DCO=1.22 4 POL=+0.039 3.

$\gamma(^{193}\text{Bi})$ (continued)

х

¹⁶⁵Ho(³²S,4nγ) **2015He27** (continued)

γ ⁽¹⁹³ Bi) (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	Comments				
839.2 3	2.96 14	2253.6		1414.64	17/2-		Mult.: Assigned as E2 in 2015He27; First author later stated that there is insufficient information to determine multipolarity (private communication between first author and XUNDL compiler, dated November 26, 2015).				
844.0 <i>3</i>	1.7 2	1910.06	$17/2^{-}$	1066.35	$13/2^{-}$						
862.4 3	1.63 8	2090.41	17/2-	1228.13	17/2+	E1	DCO=0.92 8 POL=+0.040 5.				
879.06	0.58 8	3282.9	$(33/2^{-})$	2405.1	$(29/2^{-})$						
881.3 4	1.3 <i>I</i>	2109.65	19/2+	1228.13	17/2+	D	DCO=0.79 13				
887.7 <i>3</i>	1.08 7	2762.8	$25/2^+$	1875.1	$21/2^+$	Q	DCO=1.9 4				
901.7 <i>3</i>	3.3 2	1520.95	$13/2^{-}$	619.60	$11/2^{-}$	M1+E2	DCO=0.7 1				
							POL=+0.127 14.				
908.7 <i>3</i>	7.4 4	1514.34	$17/2^{+}$	605.53	$13/2^{+}$	E2	DCO=1.30 12				
							POL=+0.056 12.				
913.4 4	0.57 9	1979.8		1066.35	$13/2^{-}$						
915.5 <i>3</i>	6.1 4	915.30	$11/2^{-}$	0.0	9/2-	M1+E2	DCO=0.45 8				
							POL=+0.012 2.				
920.9 <i>3</i>	3.3 2	2090.41	$17/2^{-}$	1169.67	$15/2^{-}$	M1	DCO=0.77 8				
							POL=-0.12 3.				
927.9 5	0.19 4	3886.2	$35/2^+$	2958.7	$31/2^{+}$						
929.6 <i>3</i>	2.2 2	1858.5	$(17/2^+)$	928.93	$15/2^{+}$	(M1+E2)	DCO=0.48 7				
							POL=+0.13 2.				
930.0 <i>3</i>	5.8 4	1535.73	$15/2^{+}$	605.53	$13/2^{+}$	M1	DCO=0.89 9				
							POL=-0.18 2.				
954.7 <i>3</i>	4.4 6	3304.2	$33/2^{+}$	2349.6	$29/2^+$	E2	DCO=1.31 18				
							POL=+0.060 3.				
967.7 4	0.28 4	4272.2	$(37/2^+)$	3304.2	$33/2^{+}$						
1021.2 3	1.9 <i>I</i>	1950.09	$19/2^{+}$	928.93	$15/2^{+}$						
1023.6 4	0.95 6	2090.41	$17/2^{-}$	1066.35	$13/2^{-}$						
1066.6 <i>3</i>	10.4 10	1066.35	$13/2^{-}$	0.0	9/2-	Q	DCO=1.37 20				
1067.8 <i>3</i>	4.3 <i>3</i>	1673.49	$17/2^{+}$	605.53	$13/2^{+}$	E2	DCO=1.08 15				
							POL=+0.07 3.				
1156.8 4	0.5 2	1762.3	$(15/2^{-})$	605.53	$13/2^{+}$						
1258.1 <i>3</i>	1.9 2	1257.88	$(11/2^{-})$	0.0	9/2-	D	DCO=0.82 11				
1272.8 <i>3</i>	1.53 8	2090.41	$17/2^{-}$	817.73	$13/2^{-}$	Q	DCO=1.28 24				
1836 5	0.9 [§] 2						E_{γ} : γ seen in coincidence with 168.3- and 331.7-keV transitions in the SD band.				
							r_{γ} . nom α -tagget γ spectrum.				

[†] From 2015He27. γ -ray energies of 2015He27 are more precise compared with the data in 2004Ni06 and within statistical agreement. Unplaced γ rays in 2004Ni06, 355.3 7, 432 1, 458.5 7, 468.8 7, seem to have been placed in the level scheme by 2015He27. Statistical uncertainty of 0.3 keV added in quadrature by evaluator. Fitting uncertainty is listed by 2015He27 as 0.1 keV for most E γ values, and 0.2-0.7 keV for others.

[‡] The γ seen in delayed coincidence with transitions in Band #2 in Figure 2 of 2015He27, and the 307-keV transition.

[§] Relative intensity within the SD band. Values are from recoil-gated $\gamma\gamma\gamma$ spectrum, unless otherwise stated. Corresponding values from α -tagged γ spectrum are given in comments.

[&] Assigned by the evaluator based on angular distribution and linear polarization data of 2015He27. DCO ratios are angular distribution ratios R_{exp} deduced from two γ - γ matrices obtained from recoil-gated prompt coincidence events, one with events at 157.6° versus all angles and the other with events at 75.5° versus all angles. In this arrangement, expected values are 1.3 for stretched quadrupoles and 0.8 for stretched dipoles Linear polarization values listed as POL are integrated polarization-directional correlations from oriented nuclei (IPDCO). Expected values of POL are \approx +0.1 for electric and \approx -0.1 for magnetic transitions.

[@] Multiply placed with intensity suitably divided.

 165 Ho(32 S,4n γ) 2015He27 (continued)

 $\gamma(^{193}\text{Bi})$ (continued)

[#] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.
Adopted Levels, Gammas

 $Q(\beta^{-}) = -8258\ 26$; $S(n) = 8326\ 18$; $S(p) = 2080\ 30$; $Q(\alpha) = 7094\ 4$ 2017Wa10

2013Se03, 2014Se07: beam of ¹⁹³Po produced at the CERN ISOLDE facility by impinging 1.4 GeV protons on a 50 g/cm² thick, UC_x target. Reaction products diffused out and transferred to the RILIS. Deduced nuclear charge radius from the measured isotope shifts; magnetic dipole and electric quadrupole moments from measured hyperfine structure. Systematic uncertainties in $\delta \langle r^2 \rangle$ arising from electronic factor and mass-shift calculations are not included. Their magnitude is similar to the quoted experimental uncertainty.

2015AnZZ: Measured ¹⁹³Po production cross section, 5 μ *I*, from ⁵⁶Fe+¹⁴¹Pr fusion-evaporation reaction at E=50 MeV.

¹⁹³Po Levels

Identification: ${}^{185}\text{Re}({}^{19}\text{F,xn})$ excitation functions (1967Si09); ${}^{182}\text{W}({}^{20}\text{Ne,xn})$ excitation functions (1977De32); ${}^{nat}\text{Ce}({}^{56}\text{Fe,xn})$ and ${}^{141}\text{Pr}({}^{56}\text{Fe,p3n})$ excitation function (1981Le23).

The level scheme is from 1999He32.

Cross Reference (XREF) Flags

A ¹⁹⁷ Rn α decay (55 1	ms)	
--	-----	--

- B 197 Rn α decay (24 ms)
- C 160 Dy $(^{36}$ Ar, $3n\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(3/2 ⁻)#	399 ms <i>34</i>	A	$%\alpha \le 100$ μ=-0.389 37 (2014Se07) Q=-1.31 30 (2014Se07) δν(¹⁹³ Po, ¹⁹⁶ Po)=-0.59 GHz 15; δ(r ²)(¹⁹³ Po, ²¹⁰ Po)=-0.576 fm ² 13 (2013Se03). The uncertainties are statistical only. $(β_2^2)^{1/2}$ =0.21 (2013Se03,2014Se07). μ,Q: hyperfine structure studies using in-source resonance ionization spectroscopy at CERN-ISOLDE facility (2014Se07). Total (statistical and systematic) uncertainties are given. %α: Only α decay observed. Tuo: weighted average of 450 ms 150 (1977De32), 360 ms 50 (1981Le23), 450
100 [@] 6	(13/2 ⁺) [#]	245 ms 11	BC	1/2: weighted average of 430 his 150 (1977De32), 500 his 50 (1981Le23), 430 ms 40 (1993Wa04), 180 ms +150-60 (1995Mo14), 290 ms +110-60 (1996En02). %α≤100 μ =-0.742 65 (2014Se07) Q=+1.08 50 (2014Se07) δv (¹⁹³ Po, ¹⁹⁶ Po)=-1.11 GHz 15; δ (r ²)(¹⁹³ Po, ²¹⁰ Po)=-0.532 fm ² 13 (2013Se03) The uncertainties are statistical only. $\langle \beta_2^2 \rangle^{1/2}$ =0.22 (2013Se03,2014Se07). E(level): From NUBASE2016 – (2017Au03). Other: 95 keV 7 in 2013Sa43. J ^π : spin consistent with optical hyperfine spectrum shown in Fig. 6 of 2014Se07. μ ,Q: hyperfine structure studies using in-source resonance ionization spectroscopy at CERN-ISOLDE facility (2014Se07). Total (statistical and systematic) uncertainties are given. %α: Only α decay observed. T _{1/2} : weighted average of 420 ms 100 (1977De32), 260 ms 20 (1981Le23), 240 ms 10 (1993Wa04), 150 ms +110-40 (1995Mo14), 370 ms +160-90 (1996En02). Other: 70 ms +330-30 (2005Uu02).
351.4 [@] 5 375.0 ^{&} 5	(17/2 ⁺) (15/2 ⁺)		C C	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁹³Po Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
712.3 [@] 7	$(21/2^+)$	С
744.3 ^{&} 8	$(19/2^+)$	С
1176.0 [@] 9	$(25/2^+)$	С
1229.7 ^{&} 10	$(23/2^+)$	С

[†] Level energies from a least-squares fit to adopted γ -ray energies, keeping energy of $(13/2^+)$ level fixed at 100 keV. [‡] From ¹⁶⁰Dy(³⁶Ar,2n γ) unless otherwise noted. The assignments are based on band structures. [#] From systematics and from shell model two isomers are expected in a N=109 nucleus: high spin 1i_{13/2}, and low spin 3p_{3/2} (¹⁸⁹Hg).

^(a) Band(A): Band based on (13/2⁺). [&] Band(B): Band based on (15/2⁺).

 $\gamma(^{193}\text{Po})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π
351.4	$(17/2^+)$	251.4 5	100	100	$(13/2^+)$
375.0	$(15/2^+)$	274.9 [‡] 5	100	100	$(13/2^+)$
712.3	$(21/2^+)$	360.9 5	100	351.4	$(17/2^+)$
744.3	$(19/2^+)$	369 [‡] 1	100 28	375.0	$(15/2^+)$
		393 [‡] 1	83 22	351.4	$(17/2^+)$
1176.0	$(25/2^+)$	463.7 5	100	712.3	$(21/2^+)$
1229.7	$(23/2^+)$	485 [‡] 1		744.3	$(19/2^+)$
		518 [‡] 1		712.3	$(21/2^+)$

[†] From 1999He32.

[‡] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

¹⁹³₈₄Po₁₀₉

¹⁹⁷Rn α decay (55 ms) 2008An05,1995Mo14,1996En02

Parent: ¹⁹⁷Rn: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=55 \text{ ms} +7-5$; $Q(\alpha)=7411$ 7; $\%\alpha \text{ decay} \le 100$ ¹⁹⁷Rn- J^{π} : From ¹⁹⁷Rn Adopted Levels (2005Hu03).

¹⁹⁷Rn-T_{1/2}: Weighted average of 53 ms +7–5 (maximum-likelihood method from α decay curve,2008An05); 65 ms +25–14 (1996En02), 51 ms +35–15 (1995Mo14). Uncertainty is the lowest input value.

Measured E α (1995Mo14,1996En02), half-life (2008An05,1995Mo14,1996En02) of ¹⁹⁷Rn isotope.

¹⁹³Po Levels

E(level)	J ^π	T _{1/2}	_	Comments
0.0	$(3/2^{-})$	388 ms 4	0	E(level), J^{π} , $T_{1/2}$: From Adopted Levels.
				α radiations
Eα	E(level)	$I\alpha^{\ddagger}$	HF	Comments
7260 7	0.0	100	1.8	E α : From 1996En02. Other value: 7261 keV 30 (1995Mo14). HF: assumed 100% α decay.

[†] Deduced using $r_0=1.568$ 13, from interpolation of radius=1.585 fm 16 for ¹⁹²Po and 1.551 fm 10 for ¹⁹⁴Po.

[‡] Absolute intensity per 100 decays.

7356 7

100

¹⁹⁷Rn α decay (24 ms) 1996En02,2005Uu02,1995Mo14

Parent: ¹⁹⁷Rn: E=199 *11*; $J^{\pi} = (13/2^+)$; $T_{1/2} = 24$ ms +3-2; $Q(\alpha) = 7411$ 7; % α decay ≤ 100

¹⁹⁷Rn-E: From NUBASE2016 (2017Au03). Others: 194 keV 12 in 2013Sa43, deduced from Eα values in ¹⁹⁷Rn -> ¹⁹³Po -> ¹⁸⁹Pb -> ¹⁸⁵Hg -> ¹⁸¹Pt α-decay chain; 0+X in ¹⁹⁷Rn Adopted Levels (2005Hu03).

¹⁹⁷Rn-J^{π}: From ¹⁹⁷Rn Adopted Levels (2005Hu03).

¹⁹⁷Rn-T_{1/2}: Weighted average of 25 ms +3-2 (maximum-likelihood method from α decay curve, 2008An05); 19 ms +8-4 (1996En02), 18 ms +9-5 (1995Mo14). Others: 30 ms +150-15 (2005Uu02); 20 ms +68-14 (1997Pu01).

Other: 2013Sa43, 2008An05, 1997Pu01.

Measured E α (1996En02,2005Uu02,1995Mo14), half-life (1996En02,2005Uu02,1995Mo14,2008An05,1997Pu01) of ¹⁹⁷Rn isotope.

¹⁹³Po Levels

E(level)	J^{π}	T_1/2		Comments
100 6	(13/2+)	245 ms 11	% α ≤100 E(level),J ^{π} ,T _{1/2} : from Adopted Levels.	
			α radiations	
Eα	E(level)	$I\alpha^{\ddagger}$ HF [†]		Comments

Eα: From 1996En02. Other values: 7370 keV 30 (1995Mo14), 7358 keV 14 (2005Uu02).

[†] Deduced using $r_0=1.568$ 13, from interpolation of radius=1.585 fm 16 for ¹⁹²Po and 1.551 fm 10 for ¹⁹⁴Po.

HF: assumed 100% α decay.

[‡] Absolute intensity per 100 decays.

100

1.6

¹⁶⁰**Dy**(³⁶**Ar,3n**γ) **1999He32,1997Fo06**

Includes $Er(^{32}S,xn\gamma)$ E=164 MeV from 1997Fo06.

1999He32: ¹⁶⁰Dy(³⁶Ar,3n γ) E=178 MeV; gas-filled recoil fragment separator (RITU); DORIS multi-detector array for γ -ray detection; position sensitive Si detector for recoil identification, α -ray detection, and α - γ correlation studies. Recoil-decay tagging and recoil gating methods. Measured E γ , I γ , α -tagged γ coincidence matrix, and $\gamma\gamma$ coincidences. Deduced levels and suggest J π values.

1997Fo06: $Er({}^{32}S,xn\gamma) E=164$ MeV; recoil fragment mass separator; (recoil) γ and (recoil) $\gamma\gamma$. Measured E γ . The 234 keV γ -ray reported in this work is not confirmed by 1999He32.

¹⁹³Po Levels

Level scheme built on the basis of γ -ray energies and intensities, and $\gamma\gamma$ coincidences from 1999He32. Energy of the (13/2⁺) level was kept fixed. Band structure and tentative J π assignments proposed by 1999He32.

E(level) [†]	J^{π}	T _{1/2}	Comments	
100 [‡] 6	(13/2+)	245 ms 11	$%\alpha$ ≤100 E(level),J ^π ,T _{1/2} : From Adopted Levels.	
351.3 [‡] 5	$(17/2^+)$			
375.0? [#] 5	$(15/2^+)$			
712.1 [‡] 7	$(21/2^+)$			
744.3?# 8	$(19/2^+)$			
1175.8 [‡] 9	$(25/2^+)$			
1229.7? [#] 10	$(23/2^+)$			

[†] From a least-squares fit to γ -ray energies, (13/2⁺) state at 100 keV 6 kept fixed.

[‡] Band(A): Band based on (13/2⁺). Intraband transitions identified from (13/2⁺) α -decay tagged coincidences.

[#] Band(B): Band based on $(15/2^+)$. Tentative arrangement based on energy sums.

γ ⁽¹⁹³Po)

Two distinct γ -ray groups identified on the basis of prompt singles γ -ray spectra obtained by gating with α decays of the (3/2⁻) and (13/2⁺) ¹⁹³Po states, respectively.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Comments
^x 206.7 [‡] 5	100 [@] 20					
251.4 [§] 5	100 7	351.3	$(17/2^+)$	100	$(13/2^+)$	$E\gamma = 251 \text{ keV } 1 \text{ (1997Fo06)}.$
274.9 ^{§#} 5	21 4	375.0?	$(15/2^+)$	100	$(13/2^+)$	
^x 349.1 [‡] 5	100 [@] 40					
360.9 [§] 5	59 7	712.1	$(21/2^+)$	351.3	$(17/2^+)$	
^x 367 [‡] 1	50 [@] 20					
369 ^{§#} 1	18 5	744.3?	$(19/2^+)$	375.0?	$(15/2^+)$	$E\gamma = 368 \text{ keV } 1 \text{ (1997Fo06)}.$
393 ^{§#} 1	15 4	744.3?	$(19/2^+)$	351.3	$(17/2^+)$	
463.7 [§] 5	22 6	1175.8	$(25/2^+)$	712.1	$(21/2^+)$	
485 ^{§#} 1	15 5	1229.7?	$(23/2^+)$	744.3?	(19/2 ⁺)	1997Fo06 report a 486 keV γ ray placed from tentative levels 1105 to 619 in their level scheme, not confirmed by 1999He32.
518 ^{§#} 1		1229.7?	$(23/2^+)$	712.1	$(21/2^+)$	
^x 549 [§] 1	12 4					
^x 574 [§] 1	73					

¹⁶⁰Dy(³⁶Ar,3nγ) 1999He32,1997Fo06 (continued)

γ (¹⁹³Po) (continued)

[†] From 1999He32.

[‡] Placement above the $(3/2^{-})$ level on the basis of $3/2^{-} \alpha$ -decay tagged coincidences.

§ Placement above the $(13/2^+)$ level on the basis of $13/2^+ \alpha$ -decay tagged coincidences.

& Intensities normalized to 100 for the 251.4 keV γ ray, except where noted.

[@] Intensities normalized to 100 for the 206.7 keV γ ray.

[#] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Adopted Levels

 $Q(\beta^{-})=-9110 \ 30$; S(n)=11060 40; S(p)=-714 24; Q(α)=7572 7 2017Wa10 Identification: parent of ¹⁸⁹Bi; produced by heavy ion induced fusion (⁵⁶Fe+¹⁴¹Pr, E=265 MeV) (1995Le15).

¹⁹³At Levels

Level properties from ¹⁹³At α decay (2003Ke08). Levels populated by the ¹⁴¹Pr(⁵⁶Fe,⁴n γ) reaction, at E(target)=264-272 MeV; recoil fragment mass separation; measurement using recoil-tagged α - α and α - γ coincidences, and considering α -decay links to levels in the daughter nuclides ¹⁸⁹Bi and ¹⁸⁵Tl.

E(level) [†]	J^{π}	T _{1/2} ‡	Comments
0.0	(1/2 ⁺)	28 ms +5-4	$%\alpha$ ≈100 This level decays by an 7235-keV α particle to the 187 keV 9 1/2 ⁺ level in ¹⁸⁹ Bi (2003Ke08). Based on the properties of this transition, 2003Ke08 propose this level as the ¹⁹³ At g.s. In the ¹⁸⁹ Bi Adopted Levels, 1/2 ⁺ state located at 184 keV 8 (2017Jo05). J ^π : Spin-parity assigned from 2003Ke08 on the basis of observed favored α decay to the (1/2 ⁺) level in ¹⁸⁹ Bi, and subsequent favored α transition to the 1/2 ⁺ g.s. of ¹⁸⁵ Tl. For the underlying configuration 2003Ke08 suggest a π(4p-1h) 1/2 ⁺ intruder state, originated by the promotion of an s _{1/2} proton across the Z=82 shell gap. This is similar to the case of
5 10	(7/2 ⁻)	21 ms 5	 the ¹³¹At ground state, which is also assigned Jπ=(1/2⁺). %α≈100 (2003Ke08) This level is proposed as the first excited state in ¹⁹³At by 2003Ke08, based on the α-decay properties to both the 7/2⁻ 100-keV level in ¹⁸⁹Bi and the 9/2⁻ ¹⁸⁹Bi g.s., as well as on the α-γ coincidences. Two α branches deexcite this state to levels in ¹⁸⁹Bi: a) E(α)=7325 5 keV, I(α)=98 2 %, HF=1.1 3, to the (7/2⁻) 100-keV level in ¹⁸⁹Bi; b) E(α)=7423 5 keV, I(α)=2 2 %, HF = 64 64, to the ¹⁸⁹Bi g.s. The hindrance factors imply an ΔL=0 unhindered α transition in the first case. Note that the quoted HF values are as given in 2003Ke08, based on their reinterpretation of the observed values, by assuming the existence of an unobserved ≈34-keV γ ray connecting the ¹⁹³At 13/2⁺ isomeric state at 39 7 keV, with the 5-keV isomeric level. E(level): The uncertainty in the excitation energy, obtained from α-particle energy
39 7	(13/2+)	27 ms +4-3	 E(level): The uncertainty in the excitation energy, obtained from α-particle energy differences, is too great to establish the actual sequence of the 1/2⁺ and 7/2⁻ levels. The adopted ordering is that suggested in 2003Ke08, with support from the α-decay properties to levels in ¹⁸⁹Bi, and the observed α particle coincidences with the 100-keV γ ray in ¹⁸⁹Bi (2003Ke08). %α=24 10; %IT=76 10 (2003Ke08) This level depopulates via a 7106 5 keV α decay to the 13/2⁺ 358-keV state in ¹⁸⁹Bi. The hindrance factor calculated in 2003Ke08 for this transition, assuming an 100% α branch, is 0.24 4. To explain this anomalously low value of HF, 2003Ke08 propose that there exists an IT decay branch deexciting this state to the 7/2⁻ level, taking about 76 10 % of the decay strength, and thus leaving 24 10 % for the α intensity. The unobserved ≈34-keV IT branch would probably have an E3 character, consistent with the observed half-life for the level. J^π: Proposed in 2003Ke08, based on observed 7106 5 keV α-decay to the 13/2⁺ level in ¹⁸⁹Bi.

[†] From 2003Ke08, based on α -particle energy difference.

[‡] Values from 2003Ke08.

 ${}^{193}_{86}\text{Rn}_{107}$ -1

Adopted Levels

 $S(p)=1170 \ 40; \ Q(\alpha)=8040 \ 12 \ 2017Wa10$

S(n)=9060 (1997Mo25 - calculated value).

First identification of ¹⁹³Rn nuclide by 2006An36.

 193 Rn produced and identified in 144 Sm(52 Cr,3n) reaction at E=252 MeV; 144 SmF₃ rotating target onto a carbon backing.

UNILAC heavy-ion facility at GSI, with SHIP velocity filter for separating evaporation residues.

Detector system: Several different types of detectors were used: The decays of the evaporation residues were measured by implanting residues in a thick 16-strip position-sensitive silicon detector (PSSD) with a typical FWHM ≈ 20 keV for α particles in 6-8 MeV range. An array of six silicon detectors of similar shape (BOX detectors), mounted upstream of PSSD detector, was used to measure the energies of α , β and conversion electrons. Three thin time-of-flight detectors in front of the PSSD and BOX detectors permitted identification of reaction products from the scattered beam particles; and distinction between the decay events and implantation events through anti-coincidence technique. An additional thick Si detector was installed as a veto detector behind the PSSD detector in an anti-coincidence mode. This allowed distinction between the decays and the punch-through events (from high-energy protons and α particles produced in the reactions on the carbon backing). For γ rays, a four-fold segmented 'Clover' Ge detector was used behind the PSSD detectors for prompt and delayed γ (residues) coin and/or $\alpha\gamma$ coin measurements.

Measured α , γ , $\alpha\gamma$ coin, α (residues) coin, γ (residues) coin. Results are also discussed in 2007An19.

¹⁹³Rn Levels

E(level)	T _{1/2}	Comments
0.0	1.15 ms 27	%α≈100 (2006An36) Calculated β decay half-life=0.527 s (1997Mo25) suggests negligible $ε+β^+$ decay mode. E(level): assumed as the ground state of ¹⁹³ Rn.
		J ^π : (3/2 ⁻) from systematics (2006An36). T _{1/2} : from analysis of 19 full-energy (recoil)(7670-7890 keV α) decays (2006An36). Energy of α particles: 7685 15, I_{α} =74% 20 and 7875 20 I_{α} =26% 12. A 194γ is seen in coin with 7685α (2006An36).
		 From systematics of decays of odd-A Rn isotopes, the decay pattern of ¹⁹³Rn is found to be different from higher mass Rn isotopes, which, according to 2006An36, suggests a possible prolate deformed shape for this nucleus. Production cross section (at E(⁵²Cr)=248 MeV)=50 pb 20 (2006An36).

REFERENCES FOR A=193

1947GO01	L.J.Goodman, M.L.Pool - Phys.Rev. 71, 288 (1947).
1948WI01	G.Wilkinson - Phys.Rev. 73, 252 (1948).
1949WI08	Some Isotopes of Platinum and Gold. G.Wilkinson - Phys.Rev. 75, 1019 (1949).
	Radioactive Isotopes of Platinum and Gold.
1950CH11	T.C.Chu - Phys.Rev. 79, 582 (1950). New Radioactive Isotopes of Iridium
1950NE77	H.M.Neumann, I.Perlman - Phys.Rev. 78, 191 (1950).
1052EI06	Isotopic Assignments of Bismuth Isotopes Produced with High Energy Particles. P.W.Fink, F. O.Wiig, J. Am. Chem. Soc. 74, 2457 (1952)
19521100	Neutron Deficient Mercury Isotopes.
1953CO13	J.M.Cork, J.M.LeBlanc, W.H.Nester et al Phys.Rev. 90, 444 (1953).
1052SW20	Radioactive Decay of Cs^{134} , Os^{185} , Os^{191} and Os^{193} .
19555 W 20	<i>Badioactivity of Pt</i> ¹⁹¹ and Pt^{193m} .
1954CO29	J.M.Cork, M.K.Brice, L.C.Schmid et al Phys.Rev. 94, 1218 (1954).
10540004	Neutron Capture in the Separated Isotopes of Platinum.
1954DE04	H.dewaard - Physica 20, 41 (1954). The Decay of 193 Osmium
1954GI04	L.P.Gillon, K.Gopalakrishnan, A.deShalit et al Phys.Rev. 93, 124 (1954).
10550010	Nuclear Spectroscopy of Neutron Deficient Hg Isotopes.
1955BR12	J.Brunner, H.Guhl, J.Halter et al Helv.Phys.Acta 28, 475 (1955). T_{var} Zerfall von Hal ⁹⁵ Ha ¹⁹⁴ und Ha ¹⁹³
1955BR41	J.Brunner, H.Guhl, J.Halter et al Helv.Phys.Acta 28, 85 (1955).
	Ein 3.8 sec Isomer $Au^{193}m$.
1955FI30	V.K.Fischer - Phys.Rev. 99, 764 (1955).
1956BR04	Metastable States of Re ¹⁰⁰ , Ir ¹¹¹ , Au ¹¹⁵ , Pb ²⁰¹ and Pb ²⁰⁵ . I Brunner, I Halter, H.I.Leisi, - Helv Phys Acta 20, 238 (1956)
19500104	Die Konversionsspektren hoher Energie von Hg ¹⁹⁵ und Hg ¹⁹³ .
1956DA40	R.H.Davis, A.S.Divatia, D.A.Lind et al Phys.Rev. 103, 1801 (1956).
105/11140	Coulomb Excitation of Elements of Medium and Heavy Mass.
1956HU49	I.Huus, J.H.Bjerregaard, B.Elbek - Kgl.Danske Videnskab.Selskab, MatFys.Medd. 30, No.17 (1956). Measurement of Conversion Electrons from Coulomb Excitation of the Elements in the Rare Earth Region
1957BE56	E.M.Bernstein, H.W.Lewis - Phys.Rev. 105, 1524 (1957).
10570.010	Internal Conversion Electrons Following Coulomb Excitation of Highly Deformed Nuclei.
195/BO12	F.Boehm, P.Marmier - Phys.Rev. 105, 9/4 (1957). Isomer in Iridium-193
1957BR53	J.Brunner, J.Halter, C.Perdrisat - Helv.Phys.Acta 30, 269 (1957).
	Die Zerfallschemata von Hg-Au ¹⁹⁵ und Hg-Au ¹⁹³ .
1957EW34	G.T.Ewan - Can.J.Phys. 35, 672 (1957). The Decrement A_{2} [23] and L_{2} [24] [24] [25]
1957MC34	EK McGowan, PH Stelson - Phys Rev. 107, 1674 (1957).
	Internal Conversion Coefficients for Pure E2 and Mixed E2 + M1 Transitions.
1958BR88	J.Brunner, J.Halter, P.Scherrer - Helv.Phys.Acta 31, 335 (1958).
1958DU76	Kernspektroskopische Untersuchungen der radioaktiven Isotope Hg-Au ¹⁷⁵ Und Hg-Au ¹⁷⁵ . VS Dubey S S Malik C E Mandeville et al Phys Rev. 111, 920 (1958): Erratum Phys Rev. 112, 2139 (1958)
19502070	Radiations of Osmium-193 and Osmium-191.
1958MA50	T.V.Malysheva, I.P.Alimarin - Zhur.Eksptl.i Teoret.Fiz. 35, 1103 (1958); Soviet Phys.JETP 8, 772 (1959).
1958MC02	A Radiochemical Study of the (p,pxn), (p,4pxn), and (p,5pxn) Reactions. EK McGowan, PH Stelson - Phys Rev. 109, 901 (1958)
195011002	Yields, Angular Distributions, and Polarization of Gamma Rays from Coulomb Excitation.
1958NA15	S.V.Nablo, M.W.Johns, A.Artna et al Can.J.Phys. 36, 1409 (1958).
1050 A N/20	The Decay of Os^{191} and Os^{195} . A LAndrosonka D.L. Bradar, A.L. ashuk Atomnaya Energy 7, 268 (1050); L.Nuclear Energy 12A, 126 (1060)
1939AN30	<i>Gamma Rays Accompanying the Inelastic Scattering of 3 MeV Neutrons.</i>
1960CH05	K.F.Chackett, G.A.Chackett - J.Inorg.Nuclear Chem. 13, 1 (1960).
10(00000	New Light Isotopes of Thallium Produced by Bombardment of Tungsten with Nitrogen Ions.
1960FE03	L.Feuvrais - Ann.Phys.(Paris) 5, 181 (1960). Les Novaux de Nombre de Masse A et de Nombre de Charge 7 Impairs de la Region Ou A Est Vaisin de 100
1960MA28	T.B.Malysheva, B.A.Khotin, A.K.Lavrukhina et al Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 1109 (1960); Columbia
	Tech. Transl. 24, 1113 (1961).
	invesugation of them themiton-Deficient Filminum isotopes.

1961AN03	G.Andersson, I.B.Haller, R.Ringh - J.Inorg.Nuclear Chem. 17, 15 (1961). Thallium Isotopes 192 and 193.
1961FO06	W.Forsling - Arkiv Fysik 19, 369 (1961).
1961KR02	 L.N.Kryukova, V.V.Muraveva, L.Duda et al Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 1257 (1961); Columbia Tech.Transl. 25, 1269 (1962).
1961RE12	Investigation of the Conversion Electron Spectrum of Neutron-Deficient Platinum Isotopes. P.Reyes-Suter, T.Suter - Arkiv Fysik 20, 415 (1961). Electromagnetic Transition in Odd-A Mercury Isotopes
1962DI03	J.St.A.Dionisio - Compt.Rend.Acad.Sci. 254, 1972 (1962). Le Spectre de Raies d'Electrons Emis au Cours de la Transmutation du Mercure 193 en or 193.
1962DI05	J.St.A.Dionisio - Compt.Rend.Acad.Sci. 254, 3851 (1962). Les Spectres de Raies d'Electrons Emis au Cours des Transitions Isomeriques du Mercure 193 et de la Transmutation du
1962HA24	Mercure 193 en or 193. B.Harmatz, T.H.Handley, J.W.Mihelich - Phys.Rev. 128, 1186 (1962). Proparties of Nuclear Levels in a Number of Odd A Nuclei (151 < A < 101)
1962JA04	J.Jastrzebski, P.Kilcher - Compt.Rend.Acad.Sci. 254, 1411 (1962).
1962MA18	Vie Moyenne des Premiers Etats Excites des Noyaux des Ors 192, 193, 195 et du Mercure 195. I.Marklund, E.Karlsson, K.Korkman - Arkiv Fysik 22, 289 (1962).
1963DI10	R.M.Diamond, F.S.Stephens - Nucl.Phys. 45, 632 (1963). Isomeric Levels in the Light Thallium Isotones
1963KA17	M.Karras, G.Andersson, M.Nurmia - Arkiv Pysik 23, 57 (1963).
1965KAZZ	Search for Alpha Activity in Neutron Deficient Isotopes of Pb, 11, Hg, Pt, and Ie. S.B.Kaufman - PPAD-2137-566, p.27 (1965).
1965MU05	Au ¹⁹⁷ (p,Xn) Reactions at 2.8 GeV. P.Mukherjee - Nucl.Phys. 64, 65 (1965). Nuclear Structure Studies in the Pt Region with (d p) (d t) and (d d') Reactions
1966HA47	 A.J.Haverfield - Thesis, Univ.California (1966); UCRL-16969 (1966). I. The Measurement of Internal Conversion Coefficients Utilizing Semiconductor Detectors. II. Decay Scheme Studies of
1966SY01	the Odd-Mass Gold Isotopes. G.I.Sychikov, O.D.Kovrigin, G.D.Latyshev et al Izv.Akad.Nauk SSSR, Ser.Fiz. 30, 162 (1966); Bull.Acad.Sci.USSR, Phys.Ser. 30, 169 (1967).
1967AG06	Conversion Electron Spectrum of the Iridium Fraction from Proton-Bombarded Gold. G.P.Agin, G.E.Clark, C.E.Mandeville et al Phys.Rev. 164, 1495 (1967).
1967AT03	U.Atzmony, E.R.Bauminger, D.Lebenbaum et al Phys.Rev. 163, 314 (1967). Mossbauer Effect in Ir ¹⁹³ in Intermetallic Compounds and Salts of Iridium.
1967HE11	A.Heuberger, F.Pobell, P.Kienle - Z.Physik 205, 503 (1967). Magnetfelder am Kern Ir ¹⁹³ in Verbindungen von Iridium mit Seltenen Erden
1967JO14	A.Johansson, G.Malmsten, A.Marelius et al Phys.Letters 26B, 83 (1967).
1967LE21	Y.Le Beyec, M.Lefort - Arkiv Fysik 36, 1967).
1967ME12	F.R.Metzger - Phys.Rev. 161, 1249 (1967).
1967PE03	Nuclear Resonance Fluorescence in Ir ¹⁵³ . F.C.Perry, E.S.Murphy, Jr Nucl.Phys. A99, 497 (1967).
1967SI09	A.Siivola - Nucl.Phys. A101, 129 (1967). 193–200 De Jacken of Through Heart Ler Bowhardmante
1967TR06	W.Treytl, K.Valli - Nucl.Phys. A97, 405 (1967).
1967WA12	F.Wagner, J.Klockner, H.J.Korner et al Phys.Letters 25B, 253 (1967).
1967WA20	F.Wagner, G.Kaindl, P.Kienle et al Z.Physik 207, 500 (1967).
1968AT01	M.Atac, B.Chrisman, P.Debrunner et al Phys.Rev.Letters 20, 691 (1968).
1968AV01	Test of Time-Reversal Invariance Using the Mossbauer Transmission of the 73-keV Transition in Ir ¹⁷³ . R.Avida, J.Burde, A.Molchadzki et al Nucl.Phys. A114, 365 (1968). The Fraited States of ¹⁹³ In Populated by the Poter Description of ¹⁹³ Oc
1968AV02	R.Avida, J.Burde, A.Molchadzki - Nucl.Phys. A115, 405 (1968).
1968MA51	Absolute Transition Probabilities in ¹⁹³ Ir. A.Marelius - Arkiv Fysik 37, 427 (1968).

1968NA01	<i>Lifetime of 1.6 keV Level in ¹⁹³Pt Measured in Different Chemical Environments.</i> A.Narath - Phys.Rev. 165, 506 (1968); Erratum Phys.Rev. 175, 696 (1968).
1968PL03	<i>Magnetic Dipole Moments of</i> ¹⁹¹ <i>Ir and</i> ¹⁹³ <i>Ir.</i> Z.Plajner, V.Brabec, L.Maly et al Nucl.Phys. A121, 367 (1968).
	The Level Structure of ¹⁹³ Ir.
1968RA24	P.B.Rao, V.Lakshminarayana - Indian J.Phys. 42, 621 (1968).
1968SA13	C.Samour, H.E.Jackson, J.Julien et al Nucl.Phys. A121, 65 (1968).
1968SV01	B.Svahn, A.Johansson, B.Nyman et al Z.Physik 210, 466 (1968).
1969AV01	An Internal Conversion Study of the Decay of ¹⁵⁵ Au. R.Avida, Y.Dar, P.Gilad et al Nucl.Phys. A127, 412 (1969). Lifetime Magguements Following Coulomb Excitation
1969AV03	R.Avida, M.B.Goldberg, G.Goldring et al Nucl.Phys. A135, 678 (1969).
1969BA28	T.Badica, A.Gelberg, C.Protop et al Rev.Roumaine Phys. 14, 471 (1969).
1969BA42	Angular Correlation and Lifetime Measurements in ¹⁹⁵ Ir. A.Backlin, F.Fogelberg, V.Berg et al Nucl.Phys. A138, 429 (1969).
1969BI01	E2 and M1 Transition Probabilities in Odd-Mass Hg Nuclei. K.M.Bisgard, R.J.Hanson - Nucl.Phys. A125, 305 (1969).
1969CO08	<i>Evidence for a 9/2⁻(505) Isomeric State in ¹⁹³Os.</i> C.R.Cothern, H.J.Hennecke, J.C.Manthuruthil et al Phys.Rev. 182, 1286 (1969).
	Beta Decay of Os^{193} to Levels in Ir^{193} .
1969DE09	S.de Barros, V.D.Huynh, J.Julien et al Nucl.Phys. A131, 305 (1969). Determination du Spin et des Parametres des Resonances pour ¹⁰⁷ , ¹⁰⁹ Ag+n, ¹⁶⁰ Tm+n, Pt+n de 4 eV a 830 eV.
1969HO14	P.K.Hopke, R.A.Naumann - Phys.Rev. 185, 1565 (1969). Decay of Pt ¹⁹³ .
1969LI13	J.Lindskog, KG.Valivaara, Z.Awwad et al Nucl.Phys. A137, 511 (1969). Lifetimes of Excited States in ¹⁹³ Ir
1969PE05	G.J.Perlow, W.Henning, D.Olson et al Phys.Rev.Letters 23, 680 (1969). Humorfing Anomaly in ¹⁹³ Ir by Mossbauer Effect and its Application to Determination of the Orbital Part of Hyperfine
1969PR02	Fields. R.H.Price, M.W.Johns, N.M.Ahmed et al Can J.Phys. 47, 727 (1969).
1969ST04	Levels Populated in ¹⁹³ Ir from the Beta Decay of ¹⁹³ Os. P.Steiner, F.Gerdau, W.Hautsch et al Z.Physik 221, 281 (1969).
1969VA36	Determination of the Mean Life of Some Excited Nuclear States by Mossbauer Experiments. K.G. Valiyaara, I.Kozyczkowski, A. Marelius - IIIIIP-662 (1969)
1070 AV02	Lifetimes of the 557.3 and 559.2 keV Levels in ¹⁹³ Ir.
1970AV02	Angular Correlation Measurements on ¹⁹¹ , ¹⁹³ Ir Following CoulombExcitation.
1970BA56	A.Backlin, V.Berg, S.G.Malmskog - Nucl.Phys. A156, 647 (1970). Negative Parity States in Odd-Mass Ir and Au Nuclei.
1970BE06	V.Berg, S.G.Malmskog, A.Backlin - Nucl.Phys. A143, 177 (1970). The Level Structure in ¹⁹³ Ir
1970FO08	B.Fogelberg, A.Backlin, V.Berg et al Nucl.Phys. A153, 301 (1970). F2 and M1 Transition Probabilities in ¹⁹³ Au and ¹⁹⁵ Au
1970ME16	F.R.Metzger - Phys.Rev. C2, 2024 (1970).
1970PL01	Z.Plajner, J.Frana, I.Rezanka et al Z.Phys. 233, 122 (1970).
1970PL02	Z.Plajner, J.Frana, I.Rezanka et al Czech.J.Phys. 20B, 132 (1970).
1970RA37	Gamma-Radiation of ¹³ Au. D.E.Raeside - Nucl.Instrum.Methods 87, 7 (1970).
1970TA14	Gamma Ray Energies in the Energy Interval between 45 and 1275 keV. N.I.Tarantin, A.P.Kabachenko, A.V.Demyanov - Yad.Fiz. 12, 455 (1970); Sov.J.Nucl.Phys. 12, 248 (1971). Identification and Study of the Radioactive Properties of Bismuth Isotopes with an Electromagnetic Mass Separator in a
1970WA18	Heavy-Ion Beam. F.Wagner, U.Zahn - Z.Phys. 233, 1 (1970).
1970ZE04	Mossbauer Isomer Shifts, Hyperfine Interactions, and Magnetic Hyperfineanomalies in Compounds of Iridium. E.Zech - Z.Phys. 239, 197 (1970).
1971BB09	<i>Test der Zeitumkehrinvarianz der elektromagnetischen Wechselwirkung am 73 keV-γ-Ubergang von</i> ¹⁹³ <i>Ir.</i> T.Badica - Stud.Cercet.Fiz. 23, 877 (1971).

	Studiul Dezintegrarii Unfor Nuclee Deformate Si de Tranzitie (Os ¹⁸⁵ , Os ¹⁹³ , Ir ¹⁸⁴ , Ir ¹⁸⁶ , Ir ¹⁸⁸).
1971HO01	P.Hornshoj, K.Wilsky, P.G.Hansen et al Nucl.Phys. A163, 277 (1971).
	Alpha Decay of Neutron-Deficient Radon and Polonium Isotopes.
1971HO17	P.K.Hopke, R.A.Naumann - Phys.Rev. C4, 606 (1971).
	¹⁹³ Pt L-Electron-Capture Half-Life.
1971LU08	M.A.Ludington, D.E.Raeside - Nucl.Instrum.Methods 94, 193 (1971).
	Precision Energy Measurements of Gamma Rays Occurring in the Decay $of^{165}Dy$ and ¹⁹³ Os.
1971MAYD	B.Martin, D.Merkert, R.Schule - Ann.Rept. Max-Planck Institut fur Kernphysik(Heidelberg), p.54 (1971).
	Suche Nach Einem Isomeren Zuszand im ¹⁹³ Os.
1971MO24	P.A.Moskowitz, C.H.Liu, G.Fulop et al Phys.Rev. C4, 620 (1971).
	Optical-Pumping Determination of the Nuclear Magnetic Moments of the Radioisotopes Mercury-193, -193m, -195m,
	and -197m.
1971NO01	P.Norgaard, K.M.Bisgard, K.Gregersen et al Nucl.Phys. A162, 449 (1971).
	Inelastic Scattering of Deuterons and α -Particles on ¹⁹¹ Ir and ¹⁹³ Ir.
1971OW01	W.R.Owens, R.M.Wilenzick, J.A.Hicks - Phys.Rev. C3, 411 (1971).
	Coulomb Excitation of the '140'-keV Level in Ir^{193} .
1971PR13	R.H.Price, D.G.Burke, M.W.Johns - Nucl.Phys. A176, 338 (1971).
	Proton States in ¹⁹¹ Ir and ¹⁹³ Ir Populated by the (³ He,d) and (α ,t) Reactions.
1971RA18	H.L.Ravn, P.Bogeholt - Phys.Rev. C4, 601 (1971).
	Measurement of the M/L Electron-Capture Ratio in the Decay of 193 Pt.
1972BE85	R.B.Begzhanov, O.S.Kobilov, P.S.Radzhapov et al Izv.Akad.Nauk Uzb.SSR, Ser.FizMat.Nauk No.4, 48 (1972).
	Nature of Nuclear Levels in ¹⁹³ Ir, ¹⁷⁷ Lu, ¹⁷¹ Tm and ¹⁵⁹ Tb.
1972DE67	M.de Bruin, P.J.M.Korthoven - J.Radioanal.Chem. 10, 125 (1972).
	Low-Energy Gamma Rays from Isotopes Produced by (n, γ) Reactions.
1972GA27	H.Gauvin, Y.Le Beyec, M.Lefort et al Phys.Rev.Lett. 29, 958 (1972).
	α Decay of Neutron-Deficient Isotopes of Bismuth and Lead Produced in (Ar,xn) and (Kr,xn) Reactions.
1972LO06	K.E.G.Lobner, M.E.Bunker, J.W.Starner - Nucl.Phys. A181, 11 (1972).
	Search for Isomerism in ¹⁹³ Os.
1972PR04	R.H.Price, M.W.Johns - Nucl.Phys. A187, 641 (1972).
	Energy Levels in ¹⁹³ Ir.
1972RA38	U.Raff, K.Alder, G.Baur - Helv.Phys.Acta 45, 427 (1972).
	Influence of Chemical Environment on M1 Internal Conversion Rates and their Connection with the Mossbauer Isomer
	Shift.
1973IL02	N.A.Ilkhamdzhanov, P.S.Radzhapov, K.T.Salikhbaev - Izv.Akad.Nauk Uzb.SSR, Ser.FizMat.Nauk No.4, 79 (1973).
	Spectroscopy of ¹⁹³ Ir, ¹⁹¹ Ir and ¹⁷⁷ Lu.
1973KR05	K.S.Krane, W.A.Steyert - Phys.Rev. C7, 1555 (1973).
	Nuclear Orientation Studies of the Decays of ¹⁸⁷ W and ¹⁸⁵ , ¹⁹¹ , ¹⁹³ Os.
1973RE04	R.J.Reimann, M.N.McDermott - Phys.Rev. C7, 2065 (1973).
	Precision Magnetic Moment Determinations for 43-min ^{190m} Hg and Other Isomers of Mercury.
1973WA05	F.E.Wagner, G.Wortmann, G.M.Kalvius - Phys.Lett. 42A, 483 (1973).
	Systematics of Mossbauer Isomer Shifts in Transition Metals.
1974BA77	H.Backe, R.Engfer, E.Kankeleit et al Nucl.Phys. A234, 469 (1974).
	Nuclear Excitation and Isomer Shifts in Muonic Atoms (I). Experiment and Evaluation.
1974BE11	H.Beuscher, W.F.Davidson, R.M.Lieder et al Phys.Rev.Lett. 32, 843 (1974).
	High-Spin States and Coriolis-Decoupled Bands in $^{190-194}$ Hg.
1974BE78	T.S.Belanova, A.G.Kolesov, V.A.Safonov et al At.Energ. 37, 437 (1974); Sov.At.Energy 37, 1204 (1975).
	Neutron Resonances in Osmium Isotopes in the 4-300 eV Range.
1974LE02	Y.Le Beyec, M.Lefort, J.Livet et al Phys.Rev. C9, 1091 (1974).
	New Neutron-Deficient Pb and Bi Nuclides Produced in Cross Bombardments with Heavy Ions.
1974MA14	I.Mahunka, Z.Mate, F.Tarkanyi - ATOMKI Kozlem. 16, 133 (1974).
	EC/β^+ Elagazasi Tenyezok a ¹⁹¹ , ¹⁹³ , ¹⁹⁵ , ¹⁹⁷ Tl IzotopokBomlasanal.
1974NE16	J.O.Newton, F.S.Stephens, R.M.Diamond - Nucl.Phys. A236, 225 (1974).
	Rotational Bands in the Light Odd-Mass Tl Nuclei.
1974SA08	D.Salomon, D.A.Shirley - Phys.Rev. B9, 29 (1974).
	Quadrupole Coupling at ¹⁹⁵ Ir Nuclei in Iron.
1974TJ02	P.O.Tjom, M.R.Maier, D.Benson et al Nucl.Phys. A231, 397 (1974).
	High-Spin States in ¹⁹¹ , ¹⁹⁵ Au.
1974VA23	T.B.Vandlik, J.Vandlik, N.G.Zaitseva et al Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 689 (1974); Bull.Acad.Sci.USSR,
	Phys.Ser. 38, No.4, 21 (1974).
	Decay Scheme of ¹⁹⁵ Tl.
1974VIZS	C.L.M. Vieu - CSNSM-T-74-01 (1974).
	Studies of 193 and 195 Gold Isotopes.

1975BA35	B.P.Bayhurst, J.S.Gilmore, R.J.Prestwood et al Phys.Rev. C12, 451 (1975).
1975BE29	Cross Sections for (n,xn) Reactions between 7.5 and 28 MeV. V.Berg, C.Bourgeois, R.Foucher - J.Phys.(Paris) 36, 613 (1975).
	Some Features of Odd Au Nuclei Revealed by Half-Life Measurements.
1975KA16	M.Kanashiro, M.Nishi, N.Kunitomi et al J.Phys.Soc.Jap. 38, 897 (1975).
	Mossbauer Effect of Ir ¹⁹³ in Fe-Pt-Ir Alloys.
1975LAYS	V.Lakshminarayana, R.Brock, H.Hubel et al Proc.Nucl.Phys.Solid State Phys.Symp. 18B, 239 (1975).
	<i>The Level Structure of</i> ¹⁹¹ , ¹⁹³ <i>Au by Inbeam Spectroscopy.</i>
1975LI16	R.M.Lieder, H.Beuscher, W.F.Davidson et al Nucl.Phys. A248, 317 (1975).
	Excitation of High-Spin States in ¹⁹⁰ , ¹⁹¹ , ¹⁹² , ¹⁹³ , ¹⁹⁴ Hg Through (α ,xn) Reactions.
1975MA32	B.Martin, D.Merkert, J.L.Campbell - Z.Phys. A274, 15 (1975).
	Intensity Ratios of L, M, N, O Subshell Conversion Electrons in M3 and M4 Transitions.
1975PI02	M.Piiparinen, J.C.Cunnane, P.J.Daly et al Phys.Rev.Lett. 34, 1110 (1975).
10750777	High-Spin Level Systematics in ^{160–194} Pt and Rotation-Alignment Coupling.
19/581ZE	H.Strusny, F.Dubbers, L.Funke et al ZFK-295, p.38 (1975).
10757001	Hochspinzustande in ¹³³ Au.
19/5ZG01	E.F.Zganjar, J.L. wood, K. W. Fink et al Phys.Lett. 388, 159 (1975).
1076D115	Kotation-Aligned Coupling and Axial Asymmetry in ¹⁰⁹ - ¹⁰⁹ Au.
19/00115	J.S.Diollisio, C. vieu, C.M. Huolig et al Nucl. Institutil. Methods 159, 161 (1970).
1976DIZM	Lis Dionisio Ch Vieu W De Wieclawik et al Proc Int Conf Nuclei Far from Stability Cargese Corsica n 447 (1976):
	CERN-76-13 (1976)
	On the $(9/2)^-$ Level Excitation Energy of Odd Tl,Au and Ir Isotopes.
1976EK03	C.Ekstrom, G.Wannberg, Y.S.Shishodia - Hyperfine Interactions 1, 437 (1976).
	Hyperfine Structure and Nuclear Magnetic Moments of Some Neutron-Deficient Thallium Isotopes.
1976FU06	G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976).
	Nuclear Spins and Moments.
1976GO22	Y.Gono, R.M.Lieder, M.Muller-Veggian et al Phys.Rev.Lett. 37, 1123 (1976).
	Blocking Effect in the Transitional Nuclei ¹⁸⁹ , ¹⁹¹ , ¹⁹⁵ Au.
1976GOZP	G.M.Gowdy, A.G.Schmidt, E.F.Zganjar et al ORNL-5137, p.14 (1976).
107(11) 05	Structure of the Odd-Mass $^{101-191}$ Hg Levels.
1976HA25	J.H.Hamilton, K.K.Baker, C.K.Bingnam et al IZV.Akad.Nauk SSSK, Ser.Fiz. 40, 2 (19/6); Bull.Acad.Sci.USSK,
	Phys. Sel. 40, No.1, 1 (1970). New Isotone ¹⁹³ Ph and the Structure of ¹⁹³ Tl: Shape Coeristence in ¹⁸⁸ Ha and in ¹⁸⁹ Au: and a New Ion Source: Recent
	INISOR Research
1976PI03	M.Piiparinen, S.K.Saha, P.J.Daly et al Phys.Rev. C13, 2208 (1976).
	$vi_{13/2}$ and $vh_{9/2}$ Isomers in Odd-A Pt Nuclei.
1976SA22	A.I.Saleh, R.A.Braga, R.W.Fink - Z.Phys. A279, 27 (1976).
	The K-Shell Conversion Coefficient of the 135.5 keV M4 Transition in ^{195m} Pt Decay.
1976VIZM	Ch. Vieu, J.S.Dionisio, V.Berg et al Proc.Int.Conf.Nuclei Far from Stability, Cargese, Corsica, p.462 (1976); CERN-
	76-13, p.462 (19/6).
1077DE22	The ¹⁷¹ , ¹⁷³ Hg and ¹⁷¹ , ¹⁷³ Au Positon Decays. S Dollo Nagra, B Logarda, N La Douga, J Dhug (Daria), Lett. 28, L. 202 (1077).
1977DE52	S.Della Negla, D.Lagalue, I.Le Deyec - J.Fllys. (Falls), Lett. 56, L-395 (1977).
1077D007	Very Neuron-Deficient Polonium Isotopes Produced Infougn We Induced Reactions. K PDostal M Nagel D Pabet 7 Naturforsch 32a 345 (1077)
1)///2007	Variations in Nuclear Decay Rates
1977GO12	Y.Gono, R.M.Lieder, M.Muller-Veggian et al Phys.Lett. 70B, 159 (1977).
17770012	Particle-Hole Symmetry Observed in the Angular Distributions of v-Rays in ¹⁸⁹ ¹⁹¹ ¹⁹³ Au
1977LI20	R.Link, H.Backe, R.Engfer et al Hyperfine Interactions 3,381 (1977).
	Magnetic Hyperfile Anomaly in Muonic ¹⁹³ Ir.
1977SA01	S.K.Saha, M.Piiparinen, J.C.Cunnane et al Phys.Rev. C15, 94 (1977).
	High-Spin Levels in ¹⁹¹ Pt and ¹⁹³ Pt and the Triaxial Rotor Model.
1977SM03	G.R.Smith, N.J.Di Giacomo, M.L.Munger et al Nucl.Phys. A290, 72 (1977).
	<i>Neutron Pickup from</i> ¹⁹⁴ <i>Pt</i> , ¹⁹⁶ <i>Pt and</i> ¹⁹⁸ <i>Pt</i> .
1978BA38	C.Baktash, J.X.Saladin, J.J.O'Brien et al Phys.Rev. C18, 131 (1978).
	Electromagnetic Properties of ¹⁹⁴ Pt and the Question of its Triaxiality.
1978BE09	G.Berrier-Ronsin, M.Vergnes, G.Rotbard et al Phys.Rev. C17, 529 (1978).
	Nuclear Levels in ¹⁹¹ , ¹⁹³ , ¹⁹⁵ , ¹⁹⁷ Pt Excited via Neutron Pickup.
1978BE22	D.Benson, Jr., P.Kleinheinz et al Z.Phys. A285, 405 (1978).
	Nuclear Levels in ¹⁹⁵ Os.
1978BU17	S.Buttgenbach, R.Dicke, H.Gebauer et al Z.Phys. A286, 333 (1978).

1978ME11	D.Mertin, R.Tischler, A.Kleinrahm et al Nucl.Phys. A301, 365 (1978). Investigation of Level Energies and R(F2) Values for Rotation-AlianedRands in Ha Isotones
1978RO21	F.Rosel, H.M.Friesen, K.Alder et al At.Data Nucl.Data Tables 21, 291 (1978).
1978TI02	R.Tischler, D.Mertin, A.H.El Farrash et al Z.Phys. A288, 67 (1978).
1978YA03	Lifetimes of Rotation-Aligned States in ^{190–193} Pt. Y.Yamazaki, R.K.Sheline, D.G.Burke - Z.Phys. A285, 191 (1978).
1979ER09	Proton States in ¹⁹³ Ir and ¹⁹⁵ Ir Populated via the (t,α) Reaction. H.Ernst, E.Hagn, E.Zech - Nucl.Phys. A332, 41 (1979).
	Measurement of the Ground State Spectroscopic Quadrupole Moments of ¹⁹¹ Os and ¹⁹³ Os.
1979GO15	Y.Gono, R.M.Lieder, M.Muller-Veggian et al Nucl.Phys. A327, 269 (1979). In-Beam γ -Ray Study of ¹⁸⁹ , ¹⁹¹ , ¹⁹³ Au.
1979VI06	C.Vieu, S.E.Larsson, G.Leander et al Z.Phys. A290, 301 (1979).
1979WA04	D.D.Warner, W.F.Davidson, H.G.Borner et al Nucl.Phys. A316, 13 (1979).
1980DA12	The Nuclear Structure of ¹⁹³ Os. B.R.Davis, S.E.Koonin, P.Vogel - Phys.Rev. C22, 1233 (1980).
	Atomic Screening of Nuclear Transitions.
1980EK04	C.Ekstrom, L.Robertsson, S.Ingelman et al Nucl.Phys. A348, 25 (1980).
	Nuclear Ground-State Spin of ¹⁸⁵ Au and Magnetic Moments of ¹⁸⁷ , ¹⁸⁸ Au: Further evidence for coexisting nuclear shapes
1980HA47	M.N.Harakeh, P.Goldhoorn, Y.Iwasaki et al Phys.Lett. B97, 21 (1980).
	The Supersymmetry Scheme and E2 Transition Rates in the Pt Region.
1980RO07	G.Rotbard, G.Berrier-Ronsin, M.Vergnes et al Phys.Rev. C21, 1232 (1980).
100000004	States in ¹⁹⁵ Pt Using the (p,t) Reaction.
1980K I 04	M.Rysavy, O.Dragoun - Comput.Phys.Commun. 19, 95 (1980). A Computer Program for Determination of Nuclear Parameters from Initial Conversion Experiments
1981CI02	J.A.Cizewski, D.G.Burke, E.R.Flynn et al Phys.Rev.Lett. 46, 1264 (1981).
	Dynamical Supersymmetries and Single-Particle Strengths in Iridium Nuclei.
1981IW01	Y.Iwasaki, E.H.L.Aarts, M.N.Harakeh et al Phys.Rev. C23, 1477 (1981).
10011 E02	¹⁵⁴ Pt(d, ⁵ He) ¹⁵³ Ir Reaction: Spectroscopic factors and supersymmetry predictions.
1981LE23	M.E.Leno, S. Fashila, A.Gniorso - Phys.Rev. C24, 2570 (1981). Alpha Decay of Neutron Deficient Polonium and Bismuth Isotopes
1981SC01	W.Schier, J.Chervenak, A.C.DiRienzo et al Phys.Rev. C23, 261 (1981).
	Excitation Functions for Evaporation Residues from the ${}^{37}Cl + {}^{169}Tm$ Fusion Reaction.
1981SH13	V.S.Shirley - Nucl.Data Sheets 32, 593 (1981).
10920004	Nuclear Data Sheets for $A = 193$.
1962D004	Alpha Spectroscopy of Nuclides Produced in the Interaction of 5 GeV Protons with Heavy Element Targets.
1983CI01	J.A.Cizewski, D.G.Burke, E.R.Flynn et al Phys.Rev. C27, 1040 (1983).
	Single Proton Structure of ¹⁹³ , ¹⁹⁵ , ¹⁹⁷ Ir and Perturbed Spin(6) Symmetry.
1983HA10	E.Hagn, E.Zech - Nucl.Phys. A399, 83 (1983).
10921004	Nuclear Magnetic Moment of the 3.9 $s(11/2)^{-1}$ Isomer ¹⁹⁵¹¹ Au.
1983J004	B.JONSON, J.U.Andersen, G.J.Beyer et al Nucl.Phys. A390, 479c (1985). Determination of the Flectron-Neutrino Mass from Experiments on Flectron-Canture Reta Decay
1983KE07	W.P.Kells, J.P.Schiffer - Phys.Rev. C28, 2162 (1983).
	Possibility of Observing Recoilless Resonant Neutrino Absorption.
1983LI21	H.J.Ligthart, H.Postma - Hyperfine Interactions 14, 125 (1983).
1094DU15	Magnetic Dipole Moments of the (11/2) ⁻ Isomers of ¹⁹⁵ , ¹⁹⁵ , ¹⁹⁷ Au.
1984BU15	K.H.Burger, S.Buttgenbach, K.Dicke et al Phys.Lett. 140B, 17 (1984). Direct Measurement of the Nuclear Magnetic Dirole Moments of ¹⁹¹ Irand ¹⁹³ Ir by High Precision Atomic Ream Magnetic
	Resonance
1984CO13	E.Coenen, K.Deneffe, M.Huyse et al ATOMKI Kozlem. 26, 56 (1984). The β^+/EC Decay of ¹⁹⁷ ¹⁹⁵ ¹⁹³ Bi Isotopes.
1984GH01	H.H.Ghaleb, K.S.Krane - Nucl.Phys. A426, 20 (1984).
	Angular-Correlation Study of the Level Scheme of ¹⁹³ Ir.
1984MU19	S.J.Mundy, J.Lukasiak, W.R.Phillips - Nucl.Phys. A426, 144 (1984).
108/174.04	The Spin(6) Scheme and Electromagnetic Transitions in ¹⁹¹ Ir and ¹⁹³ Ir. V Tanaka, P.M. Staffan, F.B. Shara et al. Phys. Pay. C20, 1820 (1984)
17041AU4	Systematics of Ground-State Quadrupole Moments of Odd-A Deformed Nuclei Determined with Muonic M X Rays
1984YA02	S.W.Yates, E.W.Kleppinger - ATOMKI Kozlem. 26, 49 (1984).

Supersymmetric Multiplets in Transitional Nuclei from $(n,n'\gamma)$ Reaction Studies.

1985BE03	I.Berkes, B.Hlimi, G.Marest et al J.Phys.(London) G11, 287 (1985).
	The Static Electromagnetic Moments of ¹⁹³ Os(GS).
1985CO06	E.Coenen, K.Deneffe, M.Huyse et al Phys.Rev.Lett. 54, 1783 (1985).
	α Decay of Neutron-Deficient Odd Bi Nuclei: Shell-model intruder states in Tl and Bi isotopes.
1985DE51	J.W.C.de Vries, R.C.Thiel, K.H.J.Buschow - J.Phys.(London) F15, 2403 (1985).
10058012	<i>Un the Interpretation of Mossbauer Isomer Shifts.</i>
1985K015	V.Kolschbach, P.Schuler, K.Hardt et al Nucl.Phys. A459, 189 (1985).
10950105	On the Rolation-Allghea Coupling of the $n_{1/2}$ Proton-Inde States in $(5, 7)$ Au.
1965KI05	K.K. Hisagel, A.DeKujula, F.O. Hallsell et al Flips. Sci. 51, 521 (1965). The Internal Promostrablum Spectra from the EC Pata Decay of 193 Dt and 163 He
10858C15	G Schutz E Hagn D Kienle et al Hyperfine Interactions 22, 163 (1985)
19055015	Detection of NMR via the Anisotropy of X-Rays (X-NMR-ON)
1985ST10	J.Streib, HJ.Kluge, H.Kremmling et al Z.Phys. A321, 537 (1985).
	Isotope Shifts of Neutron-Deficient Gold Isotopes with $193 \ge A \ge 190$.
1985ST28	R.M.Steffen - Hyperfine Interactions 24, 223 (1985).
	Precision Measurements of Nuclear Quadrupole Moments by Muonic X-Rays.
1985TH02	T.F.Thorsteinsen, J.S.Vaagen, G.Lovhoiden et al Nucl. Phys. A435, 125 (1985).
	Distributions of $i_{13/2}$ Transfer Strength in (τ, α) -Induced Population of Odd-A Platinum Isotopes.
1985ZIZY	W.L.Zijp - ECN FYS/RASA-85/19 (1985).
100(0012	On the Statistical Evaluation of Inconsistent Measurement Results.
1980C012	E. Coenen, K. Denelle, M. Huyse et al Z. Phys. A324, 485 (1980).
108611102	Hubbl A DBurne S Orega et al. Nucl Dbus A 452, 216 (1086)
1960HU02	High Spin Structure of ^{190–194} Hg and the Cranked Shell Model
1986KO20	W R Kolbl I Billowes I Burde et al Nucl Phys. A456, 349 (1986)
19001020	g-Factor and Lifetime Measurements in ¹⁹¹ ¹⁹³ Ir
1986SC04	G.Schutz, E.Hagn, P.Kienle et al Phys.Rev.Lett. 56, 1051 (1986).
	Detection of Nuclear Magnetic Resonance on Oriented ^{193m} PtFe via the Anisotropy of Characteristic X Rays.
1986UL02	G.Ulm, S.K.Bhattacherjee, P.Dabkiewicz et al Z.Phys. A325, 247 (1986).
	Isotope Shift of 182 Hg and an Update of Nuclear Moments and ChargeRadii in the Isotope Range 181 Hg – 206 Hg.
1987BO44	J.A.Bounds, C.R.Bingham, H.K.Carter et al Phys.Rev. C36, 2560 (1987).
	Nuclear Structure of Light Thallium Isotopes as Deduced from Laser Spectroscopy on a Fast Atom Beam.
1987LI16	M.Lindner, R.Gunnink, R.J.Nagle - Phys.Rev. C36, 1132 (1987).
	Determination of the Absolute K through O Conversion Coefficients of the 80-keV M4 Transition in ^{193m} Ir.
1987MC01	F.K.McGowan, N.R.Johnson, I.Y.Lee et al Phys.Rev. C35, 968 (1987).
	Test of the Triaxial Rotor Model and the Interacting Boson-Fermion Approximation Model Description of Collective States
1987PR10	n ^{1/3} Ir. PT Prokofey, G.L. Rezvava, L.L.Simonova - Izy Akad Nauk, SSSR, Ser Fiz, 51, 1889 (1987): Bull Acad Sci USSR.
170711110	Phys.Ser. 51, No.11, 14 (1987).
	Study of the Excited States for 191 , 193 Ir in (n,n' γ) Reactions.
1988FE11	A.P.Feresin - Izv.Akad.Nauk SSSR, Ser.Fiz. 52, 2127 (1988); Bull.Acad.Sci.USSR, Phys.Ser. 52, No.11, 46 (1988).
	Irregular Electromagnetic Transitions of Atomic Nuclei.
1988ZH11	V.A.Zheltonozhsky, P.N.Muzalev, A.F.Novgorodov et al Zh.Eksp.Teor.Fiz. 94, 32 (1988); Sov.Phys.JETP 67, 16
	(1988).
10000 176	Decay of ^{155m} Ir via an Electron Briage. IM Dend MAL interpreter M. D. Tercheskowskow, 7h Electron Eig. 06, 525 (1000), Sey Dhys IETD 60, 207 (1000).
1969DA70	1.M.Dahu, M.A.Listenganen, M.D. 112haskovskaya - Zh.Eksp. 1col.Fiz. 90, 525 (1969), Sov.Filys.JE1F 09, 297 (1969).
1080FD01	On the Decay of T^{-1} . R Eder E Hagn E Zech - Phys Rev. C40, 2246 (1080)
19092201	Magnetic Moment of the $(3/2)^{-1}$ [512] Ground State of ¹⁹³ Os
1989ME77	R Menges - GSI-89-06 (1989)
1) O) MILLEL	Kollineare Laserspektroskopie an Radioaktiven Neutronenarmen Blei-undThalliumisotopen.
1989PI14	K.Pisk, Z.Kaliman, B.A.Logan - Nucl.Phys. A504, 103 (1989).
	Calculation of Nuclear Excitation in an Electron Transition.
1989SA31	G.Sawatzky, R.Winkler - Z.Phys. D14, 9 (1989).
	Isotope Shift and Hyperfine Structure in the Iridium I Spectrum.
1989VIZT	I.N. Vishnevsky, V.A. Zheltonozhsky, M.A. Ukhin - Program and Thesis, Proc. 39th
	Ann. Cont. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, p. 224 (1989). Measurement of high multipolarity internal conversion coefficients
1989WA11	K.Wallmeroth, G.Bollen, A.Dohn et al Nucl Phys. A493, 224 (1989)
	Nuclear Shape Transition in Light Gold Isotopes.
1990ANZR	A.N.Andreev, D.D.Bogdanov, A.V.Eremin et al Program and Thesis, Proc.40th
	Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.124 (1990).
	Measurement of Absolute Values of α -Branching for Neutron-Deficient Isotopes of ¹⁹³ , ¹⁹⁵ Bi.

1990BA48	I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya - Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 15 (1990); Bull.Acad.Sci.USSR,
	Phys.Ser. 54, 14 (1990). Internal Conversion Coefficients in the Dirac-Fock Atomic Field
1990BU26	D G Burke G Kairys - Nucl Phys A517 1 (1990)
19900020	Single Nucleon Transfor Tests of the U(6/12) Supersymmetry in Plantinum Isotones
1000CU05	D M Cullen M A Biley A Alderson et al Phys Rev L ett. 65, 15477 (1900).
19900000	Landou Zanar Crossing in Sunadoformad ¹⁹³ Hay Evidence for notively considering in superdeformed rulai
100001106	Landau-zener Crossing in superaejormea \neg Hg: Evidence jor occupote correlations in superaejormea nuclei.
19900000	D.M.Cunen, M.A.Khey, A.Anderson et al Nucl. Phys. A520, 105c (1990).
10000007	Evidence for Octupole Softness of the Superaeformed Shape from Bana Interactions in, Hg.
1990FE07	P.B. Fernandez, M.P.Carpenter, R.V.F.Janssens et al Nucl. Phys. A517, 386 (1990).
100011500	Proton Excitations in the Superdeformed Well of 1911.
1990HE09	E.A.Henry, M.J.Brinkman, C.W.Beausang et al Z.Phys. A335, 361 (1990).
10000	Superdeformed Bands in ¹⁵⁵ Hg and ¹⁵⁴ Hg.
1990HE23	E.A.Henry, J.A.Becker, M.J.Brinkman et al Nucl.Phys. A520, 115c (1990).
100077101	Properties of Superdeformed Bands in the $A = 194$ Region.
1990KA04	S.Kato, S.Kubono, T.Miyachi et al Nucl.Instrum.Methods Phys.Res. A287, 499 (1990).
100000000000	A Focal-Plane Counter Equipped with a Large Silicon Detector.
1990KEZW	W.H.Kelly, F.Azaiez, W.Korten et al Proc.Inter.Conf.Nuclear Structure of the Nineties, Oak Ridge, Tennessee, Vol.1, p.24 (1990).
10002006	Superaejormation in ²² 11.
1990K006	V.M.Kolomietz, V.N.Konaratjev - Z.Phys. A335, 379 (1990).
10001022	Nuclear Gamma-Transitions via the Accompanying Atomic Excitations.
1990K022	V.M. KOIOINIEUS, V.N. KOIIIIIAUV - TAU.FIZ. 51, 051 (1990); SOV.J.NUCL.FIIYS. 51, 400 (1990).
10001029	Nuclear Y-Ray Transmons with Excitation of the Atom.
1990K028	V.M. KOIOINELZ, V.N. KOIRITER - Typerime Interactions 39, 173 (1990).
10000108	Nuclear y-riansmons and Electronic Drages.
19901108	A.E.I may, N.Masino - J.Radioanai.Nucl.Ciclin. 144, 417 (1990).
100051130	VS Shirlay. Nucl Data Shaats 61 510 (1000)
199031130	v.s.sinitey - Nucl. Data Sheets (01, 517 (1990). Nuclear Data Sheets ($r_{A} = 103$
1991BA63	I M Band M B Trzhaskowskawa - Izv Akad Nauk SSSR Ser Fiz 55 2121 (1991). Bull Acad Sci USSR Phys Ser 55
1991 D A05	No.11. 30 (1901)
	Tables of Internal Conversion Coefficients for a Series of Low-EnergyNuclear Transitions.
1991CH36	R.R.Chasman - Phys.Lett. 266B, 243 (1991).
	Superdeformed and Hyperdeformed Banana Shaped Nuclides Near $A = 190$.
1991DU07	S.B.Dutta, R.Kirchner, O.Klepper et al Z.Phys. A341, 39 (1991).
	Measurement of Isotope Shift and Hyperfine Splitting of ¹⁹⁰ , ¹⁹¹ , ¹⁹³ , ¹⁹⁷ Pb Isotopes by Collinear Laser Spectroscopy.
1991LA07	J.M.Lagrange, M.Pautrat, J.S.Dionisio et al Nucl. Phys. A530, 437 (1991).
	High-Spin States in the ¹⁹² Ph and ¹⁹³ Ph Isotones.
1991RY01	A Rytz - At Data Nucl Data Tables 47, 205 (1991).
199111101	Recommended Energy and Intensity Values of Alpha Particles from Radioactive Decay.
1991SA33	LA Sawicki BD Sawicka EE Wagner - Nucl Instrum Methods Phys Res B62 253 (1991)
1777101100	Conversion Flectron Mossbauer Spectroscopy of the 73 0 keV ¹⁹³ Ir Resonance
1991SC28	E Scheidemann, R Eder, E Hagn et al Z Phys. A340, 235 (1991).
17710020	A Mini Transmission y-Ray Compton Polarimeter and Measurements of the Sign of Magnetic Moments of Radioactive
	Nuclei.
1992AN13	M.S.Antony, D.Oster, A.Hachem - J.Radioanal.Nucl.Chem. 164, 303 (1992).
	Precise Determination of Half-Lives of ${}^{56}Mn$, ${}^{193}Os$ and 197 , ${}^{199}Pt$.
1992HI07	Th.Hilberath, St.Becker, G.Bollen et al Z.Phys. A342, 1 (1992).
	Ground-State Properties of Neutron-Deficient Platinum Isotopes.
1992RE03	D.Reusser, M.Treichel, F.Boehm et al Phys.Rev. D45, 2548 (1992).
	Final Report on the Search for Neutrinoless Double- β Decay of ⁷⁶ Ge from the Gotthard Underground Experiment.
1992RE08	W.Reviol, M.P.Carpenter, U.Garg et al Nucl.Phys. A548, 331 (1992).
	Shape-Driving Effects in ¹⁹³ Tl from the Spectroscopy of Yrast and Near-Yrast States.
1992SHZR	J.F.Sharpey-Schafer, D.M.Cullen, M.A.Riley et al Proc.Int.Conf.Future Directions in Nuclear Physics with 4π Gamma
	Detection Systems of the New Generation, Strasbourg, France (1991), J.Dudek, B.Haas, Eds., American Institute of
	Physics, New York, p.64 (1992).
	Octupole Correlations, Spin Assignments and Identical Bands in ¹⁹³ Hg.
1992TK01	E.V.Tkalya - Nucl.Phys. A539, 209 (1992).
	Nuclear Excitation in Atomic Transitions (NEET Process Analysis).
1992WU01	C.S.Wu, J.Y.Zeng, Z.Xing et al Phys.Rev. C45, 261 (1992).
	Spin Determination and Calculation of Nuclear Superdeformed Bands in $A \approx 190$ Region.

¹⁹⁹³AN19 A.N.Andreyev, D.D.Bogdanov, V.I.Chepigin et al. - Nucl.Instrum.Methods Phys.Res. A330, 125 (1993).

	4π -Ionization Chamber – a Detector for a Kinematic Separator of Heavy Ion Reaction Products.
1993CU02	D.M.Cullen, I.Y.Lee, C.Baktash et al Phys.Rev. C47, 1298 (1993).
	X-Ray Yields of Superdeformed States in ¹⁹³ He.
1993DE42	IK Deng, WC Ma, I H Hamilton et al Phys Lett. 319B, 63 (1993).
	High-Shin Single-Particle States in ¹⁹³ Ha
1003EA07	Feiling I Burde, B Cedenvall et al. – Phys Rev Lett. 70, 2600 (1903)
19951A07	Franch, J. Burde, D. Ceder wait et al Thys. Rev. Lett. (9, 2090 (1995).
100211110	Evidence for M1 Transitions between Superactorized States in ²⁵ Hg.
1993HI10	B.Hinfurtner, C.Konig, E.Hagn et al Nucl.Phys. A562, 205 (1993).
	Measurements of Spectroscopic Quadrupole Moments of Neutron-DeficientAu Isotopes with Quadrupole-Interaction-
100311106	Resolved NMR-ON. LHu, C Zbeng, Chin I Nucl Phys. 15, No.1, 45 (1993)
199511000	Sain Cataming - Chini J. Muchini Hys. 15, No. 1, 45 (1795).
10021000	Spin Determination of Superaejornea banas, A – 190 ana A – 150 Regions. M Llova LE Sharrey Scholer DLTwin et al. – Dhys David Ht 71, 2176 (1002)
1995J009	Mi.J.Joyce, J.F.Sharpey-Scharet, F.J.Twin et al Phys.Rev.Lett. 71, 2170 (1995).
1000000000	First Measurement of Magnetic Properties in a Superdeformed Nucleus: ¹⁹⁵ Hg.
1993RO03	N.Roy, J.A.Becker, E.A.Henry et al Phys.Rev. C47, R930 (1993).
	Collective Band in ¹⁹³ Hg with $E(x) \ge 5.7$ MeV.
1993WA04	J.Wauters, P.Dendooven, M.Huyse et al Phys.Rev. C47, 1447 (1993).
	α-Decay Properties of Neutron-Deficient Polonium and Radon Nuclei.
1994JO10	M.J.Joyce, J.F.Sharpey-Schafer, M.A.Riley et al Phys.Lett. 340B, 150 (1994).
	The $N = 7$ Unfavoured Superdeformed Band in ¹⁹³ Hg: Coriolis splitting and neutron shell structure at extreme deformation.
1994LA33	L.Lakosi, I.Pavlicsek, N.C.Tam - Nucl.Instrum.Methods Phys.Res. A339, 226 (1994).
	Anticoincidence Counting of Low Intensity Isomeric Transitions.
1994PA37	G.Passler, J.Rikovska, E.Arnold et al Nucl.Phys. A580, 173 (1994).
	Ouadrupole Moments and Nuclear Shapes of Neutron-Deficient Gold Isotopes.
1994TK02	E V Tkalva - Zh Eksp Teor Fiz 105 449 (1994): Sov Phys JETP 78 239 (1994)
1777111102	Dynamical Effect of Finite Nuclear Size in the Nuclear Excitation Process During Electron Transitions in an Atomic Shell
1994 7H 40	C Zhou T Liu - Chin I Nucl Phys. 16 No. 1, 85 (1994)
177721140	Laval Spin Assignment of Superformed Rands for A ~ 100 Region
1005EO13	N Fotisdae S Harissonnellas C A Kalfas at al. – I Phys (London) G21, 011 (1005)
19951-015	Ni otiades, S.Halissophios, C.A.Kalas et al J.Hiys.(London) 621, 911 (1995).
100511101	Highly Excited $\Delta I = I$ Structure in $G H g$.
1995HU01	J.R.Hughes, J.A.Becker, L.A.Bernstein et al Phys.Rev. C51, R447 (1995).
	Supedeformation in ¹⁹⁵ Pb and the Effects of the $N = 7$ Intruder Orbital.
1995LA16	L.Lakosi, N.C.Tam, I.Pavlicsek et al Phys.Rev. C52, 1516 (1995).
	Photoexcitation of ^{189m}Os and ^{193m}Ir . II. Excitation by ^{137}Cs and $^{60}Co \gamma$ Rays.
1995LE15	M.Leino, J.Aysto, T.Enqvist et al Acta Phys.Pol. B26, 309 (1995).
	Research on Heavy Elements Using the JYFL Gas-Filled Recoil SeparatorRITU.
1995MO14	K.Morita, Y.H.Pu, J.Feng et al Z.Phys. A352, 7 (1995).
	New α -Decaying Neutron Deficient Isotopes ¹⁹⁷ Rn and ²⁰⁰ Fr.
1996BA54	G.Baldsiefen, M.A.Stover, J.A.Cizewski et al Phys.Rev. C54, 1106 (1996).
	Shears Bands in ¹⁹³ Ph
1996BO02	S Bouneau A N Wilson F Azaiez et al Phys Rev. C53, R9 (1996)
1))00002	5. Dominant, Alix, which, Firzance et al Thysice, 253, R. (1996).
	The 113/2 From hurder Orbita in the superaeformed and the Nucleus. Effective magnetic moment and blocking of proton
1006BO15	pairing. S Boumann A N Wilson F Azaiaz et al. Acta Phys Pol. B27, 107 (1006)
19900015	S. Doulleau, A.N. wilson, F.Azarez et al Acta Flys. 10, D27, 197 (1990).
1006DU05	I Durante A Action B Duffait et al. Blue Bay C52 2701 (1006)
19900003	L.Ductoux, A.Astiel, K.Dullat et al Phys. Rev. C55, 2701 (1990).
100/57740	Configurations of Superdeformed Bands in USPb.
1996DU18	L.Ducroux, A.Astier, R.Duffait et al Z.Phys. A356, 241 (1996).
	Dipole Bands and Multi-Quasiparticle Excitations in ¹⁹³ Pb.
1996EN01	T.Enqvist, K.Eskola, A.Jokinen et al Z.Phys. A354, 1 (1996).
	Alpha Decay Properties of ^{200–202} Fr.
1996EN02	T.Enqvist, P.Armbruster, K.Eskola et al Z.Phys. A354, 9 (1996).
	Alpha Decay of the New Isotope 197 Rn.
1996LA27	L.Lakosi - Z.Phys. A356, 155 (1996).
	Production of Long-Lived Isomers by 4 MeV Endpoint Energy Bremsstrahlung.
1996PE20	S Perries, A Astier I, Ducroux et al Z Phys. A356, 1 (1996).
	Possible Candidates for Discrete Gamma Rays Linking Superdeformed and Vrast States in an Odd Nucleus. ¹⁹³ Ph
19965 4 711	T Saitch N Hashimoto II u et al - Univ Tsukuba Tandem Accel Center Ann Rent 1005 n 54 (1006). UTTAC 63
1770SALU	(1996)
	(1990). Maggurament of Internal Conversion Flectron and F2/M1 Mixing Patio of $(11/2)^{-1} \times (0/2)^{-1}$ Transition in ¹⁹³ T1
19965006	F Schonfeld H Janssen - Nucl Instrum Methods Phys Res. $\Delta 360$, 527 (1006)
17705000	Evoluation of Atomic Shell Data
	Dramaron of monte black batta

1996SE06	G.Seewald, E.Hagn, E.Zech et al Nucl.Phys. A602, 41 (1996).
1996ST22	<i>Measurements of the Spectroscopic Quadrupole Moments of the (11/2)⁻ Isomers</i> ^{193m} Au, ^{195m} Au and ^{197m} Au with MAPON. A.E.Stuchbery, S.S.Anderssen, E.Bezakova - Hyperfine Interactions 97/98, 479 (1996).
	IMPAC In-Beam and Out-of-Beam; g-Factors and pre-equilibrium effects following ion-implantation.
1996TA18	R.B.E.Taylor, S.J.Freeman, J.L.Durell et al Phys.Rev. C54, 2926 (1996).
	γ Decay from States at Low Excitation Energy in the Neutron-Deficient Isotope, ²⁰⁰ Rn,Identified by Correlated Radioactive Decay
1996WIZY	A.Wilson - Priv.Comm. (1996).
1997CH33	S.Chmel, F.Brandolini, R.V.Ribas et al Phys.Rev.Lett. 79, 2002 (1997).
	g Factor of a Magnetic-Rotational Band Head in ¹⁹³ Pb.
1997DR04	SE.Drissi - Nucl.Phys. A621, 655 (1997).
	Geometric and Algebraic Descriptions of the ¹⁹³ Ir Nucleus.
1997FA15	P.Fallon - Z.Phys. A358, 231 (1997).
1007E006	Gammasphere Results – A Californian Perspective.
1997FO06	N.Fotiades, J.A.Cizewski, D.P.McNabb et al Phys.Rev. C56, 723 (1997).
1007EO7X	Spectroscopy of 55, 55, 57 Po. N Foriades Priv Comm (1007)
1997HU13	$7 \times H_{\rm H}$ I V Zeng - Phys Rev. C56 (2523 (1997))
177711015	Comparison of the Harris and ab Expressions for the Description of Nuclear Superdeformed Rotational Bands
1997MO25	P.Moller, J.R.Nix, KL.Kratz - At.Data Nucl.Data Tables 66, 131 (1997).
	Nuclear Properties for Astrophysical and Radioactive-Ion-Beam Applications.
1997PU01	Y.H.Pu, K.Morita, M.G.Hies et al Z.Phys. A357, 1 (1997).
	New α -Decaying Neutron-Deficient Isotope ¹⁹⁶ Rn.
1997WU06	C.S.Wu, Z.N.Zhou - Phys.Rev. C56, 1814 (1997).
1008 4 1204	$\Delta I = I \text{ Staggering in Odd Superdeformed Nuclei.}$
1998AK04	1.A.AKovali - Nucl.Data Sneets 84, 1 (1998). Review of Alpha Decay Data from Doubly Even Nuclei
1998AR07	A Artna-Cohen - Nucl Data Sheets 83, 921 (1998)
1990/11(07	Nuclear Data Sheets for $A = 193$.
1998BO20	S.Bouneau, F.Azaiez, J.Duprat et al Eur.Phys.J. A 2, 245 (1998).
	Decay from Superdeformed Yrast States to Normal Deformed States in ¹⁹³ Tl.
1998BO32	S.Bouneau, F.Azaiez, J.Duprat et al Phys.Rev. C58, 3260 (1998).
	Intrinsic Proton States Around the Superdeformed Shell Closure $Z = 80$.
1998BU03	B.C.Busse, P.Fallon, R.Krucken et al Phys.Rev. C57, R1017 (1998).
1000 CL 0/	Lifetime Measurements of Yrast and Excited Superdeformed Bands in ¹⁹² , ¹⁹³ Hg.
1998CL06	R.M.Clark, R.Krucken, S.J.Asztalos et al Phys.Lett. 440B, 251 (1998). The Sheave Mechanism in the Lead Isotones
1998F002	N Fotjades I A Cizewski D P McNabb et al Phys Rev. C57, 1624 (1998)
17701 002	Weak Coupling and Dipole Bands in ¹⁹¹ Ph
1998IS08	M.Ismail - Pramana 50, 173 (1998).
	Measurement and Analysis of the Excitation Function and Isomeric Cross Section Ratios for α -Induced Reaction on
	Ir,Au,Re and Ta Nuclei.
1998L154	S.X.Liu, J.Y.Zeng - Phys.Rev. C58, 3266 (1998).
	Variation of Moments of Inertia with Angular Momentum and Systematicsof Bandhead Moments of Inertia of Superde-
1998VA18	Jormea Banas. U.I. van Severen, R.M. Clark, R.Krucken et al Phys Lett. 434B, 14 (1998).
1990 1110	Comparative Quadrupole Moments of Superdeformed Bands in ^{193–196} Ph
1998WE19	L.Weissman, M.Hass, N.Benczer-Koller et al Nucl.Instrum.Methods Phys.Res. A416, 351 (1998).
	A' Global Fit' Method for Analysis of Angular Precession Measurements at Large Ge γ Arrays.
1998WE23	L.Weissman, R.H.Mayer, N.Benczer-Koller et al Nuovo Cim. 111A, 675 (1998).
	Average g-Factor of High-Spin Nuclear States in the Quasi-Continuum Region.
1999BE63	J.Benlliure, KH.Schmidt, D.Cortina-Gil et al Nucl.Phys. A660, 87 (1999); Erratum Nucl.Phys. A674, 578 (2000).
100051105	Production of Neutron-Rich Isotopes by Cold Fragmentation in the Reaction ¹⁹⁷ Au + Be at 950 A MeV.
1999FU05	K.Furuno, M.Oshima, I.Komatsubara et al Nucl.Instrum.Methods Phys.Res. A421, 211 (1999).
1000HA56	A γ -Kay Delector Array for Joint Spectroscopy Experiments at the JAERI Tandem-Booster Facility. X_I Han_C I Wu = At Data Nucl Data Tables 73–43 (1000)
177711730	Nuclear Superdeformation Data Tables.
1999HE32	K.Helariutta, J.F.C.Cocks, T.Enqvist et al Eur.Phys.J. A 6, 289 (1999).
-	Gamma-Ray Spectroscopy of ^{192–195} Po.
1999KR19	R.Krucken, Z.Wang, S.J.Asztalos et al Eur.Phys.J. A 5, 367 (1999).
	Quadrupole Moments of Superdeformed Bands in ¹⁹³ Tl.

¹⁹⁹⁹RO21 D.Rossbach, A.N.Wilson, C.Barton et al. - Nucl.Phys. A660, 393 (1999).

	Superdeformation in ¹⁹³ Pb: Observation of three additional excitedbands.
1999SM07	M.B.Smith, R.Chapman, J.F.C.Cocks et al Eur.Phys.J. A 5, 43 (1999).
	First Observation of Excited States in ¹⁹⁷ At: The onset of deformation in neutron-deficient astatine nuclei.
1999WE02	L.Weissman, R.H.Mayer, N.Benczer-Koller et al Nucl.Phys. A645, 191 (1999).
	Time-Decay History of Normal-Deformation High-Spin States in ^{193,194} Hg.
1999WE04	L.Weissman, R.H.Mayer, G.Kumbartzki et al Phys.Lett. 446B, 22 (1999).
	Single Particle Signatures in High-Spin, Quasicontinuum States in ^{193,194} Hg from g-Factor Measurements.
2000BE07	E.Bezakova, A.E.Stuchbery, H.H.Bolotin et al Nucl.Phys. A669, 241 (2000).
	Electromagnetic Properties of Low-Excitation States in ¹⁹¹ Ir and ¹⁹³ Ir and Supersymmetry Schemes.
2000ZW03	G.Zwartz, T.E.Drake, M.Cromaz et al J.Phys.(London) G26, 1723 (2000).
	Investigation of the use of an α + Xn Reaction Channel to Enhance the Population of Superdeformed States in ¹⁹³ He and
	$^{195}H_{e}$
2001GL05	M.Gloris, R.Michel, F.Sudbrock et al Nucl.Instrum.Methods Phys.Res. A463, 593 (2001).
	Proton-Induced Production of Residual Radionuclides in Lead at Intermediate Energies.
2001GU31	E.Gueorguieva, M.Kaci, C.Schuck et al Nucl.Instrum.Methods Phys.Res. A474, 132 (2001).
	The Recoil Shadow Anisotropy Method.
2001MO07	R.Moustabchir, G.Royer - Nucl.Phys. A683, 266 (2001).
	Analytic Expressions for the Proximity Energy, the Fusion Process and the α Emission.
2001NI04	P.Nieminen, J.F.C.Cocks, O.Dorvaux et al Acta Phys.Pol. B32, 1019 (2001).
	Gamma-Ray Spectroscopy of ^{191,193} Bi.
2001SH20	A.Shrivastava, S.Kailas, A.Chatterjee et al Phys.Rev. C63, 054602 (2001).
	Collectivity Against Nucleon Transfer in Sub-Barrier Fusion of ${}^{12}C+{}^{194,198}Pt$.
2001TA31	E.Tavukcu, L.A.Bernstein, K.Hauschild et al Phys.Rev. C64, 054614 (2001).
	¹⁹⁶ Pt(n,xnypy) Reactions using Spallation Neutrons from $E_n = 1$ to 250 MeV.
2002BA66	F.Barrue, S.Basnary, A.Chbihi et al Nucl.Instrum.Methods Phys.Res. B193, 852 (2002).
	Nuclear Fission Time Measurements as a Function of Excitation Energy: A crystal blocking experiment.
2002BO66	V.A.Bondarenko, J.Honzatko, V.A.Khitrov et al Fizika(Zagreb) B 11, 83 (2002).
	Cascade γ -decay of the ¹⁹³ Os compound nucleus and some aspects of dynamics of change in nuclear properties below $B_{\rm p}$.
2002MA18	N.Marnada, H.Miyahara, N.Ueda et al Nucl.Instrum.Methods Phys.Res. A480, 591 (2002).
	γ -Ray Emission Probabilities of ¹⁹³ Os.
2002VA13	K.Van de Vel, A.N.Andreyev, M.Huyse et al Phys.Rev. C65, 064301 (2002).
	Identification of Low-Lying Proton-Based Intruder States in ^{189–193} Pb.
2003GL05	K.A.Gladnishki, Zs.Podolyak, J.Gerl et al Acta Phys.Pol. B34, 2395 (2003).
	Isomer spectroscopy in the neutron-deficient lead region following projectile fragmentation.
2003KE08	H.Kettunen, T.Enqvist, T.Grahn et al Eur.Phys.J. A 17, 537 (2003).
	Alpha-decay studies of the new isotopes 191 At and 193 At.
2003NIZZ	P.Nieminen, S.Juutinen, J.F.C.Cocks et al Proc.Frontiers of Nuclear Structure, Berkeley, California, P.Fallon and
	R.Clark, Eds., p.63 (2003); AIP Conf.Proc. 656 (2003).
200443114	Gamma-ray Spectroscopy Of Very Neutron-Deficient Bi Isotopes.
2004AN14	I.Angeli - At.Data Nucl.Data Tables 87, 185 (2004).
2004D A 21	A consistent set of nuclear rms charge radii: properties of the radius surface $R(N,Z)$.
2004DA31	D.L.Darabanski, M.Ionescu-Bujor, A.Iordachescu et al Eur.Phys.J. A 20, 191 (2004).
2004CL 04	Spectroscopic quaarupole moments of nigh-spin isomers in ⁵⁷ Fb.
20040L04	K.A. Gradinistiki, Z.S. FOUDIJAK, F.H. Kegan et al Filys, Kev. C. $99, 024017 (2004)$.
20041001	Angular momentum population in the projectule fragmentation of 0 at 750 MeV, nucleon. M Jonescy Purise A Lordophosey, DL Palabarski et al., Phys. Rev. C 70, 024205 (2004)
20041001	Mitoliescu-Dujol, Alfordachescu, D.L.Balabaliski et al Filys. Rev. C 70, 054505 (2004).
2004NU06	Quaarupole moments and g factors for high-spin neutron isomers in 57 Pb.
200411100	Finteninieri, S.Juutineri, A.I.Andreyev et al Filys.Kev. C 09, 004320 (2004).
2004NU14	y-ray spectroscopy of the Br.
200411114	N. Nea, J.C. Hardy, V.E. Iacob et al Filys. Kev. C. 70, 034505 (2004).
20050 4.02	Precise measurement of $\alpha_{\rm K}$ for the M4 transition from $^{-1}$ Trans A test of internal-conversion theory.
2003CA02	Isomera in a withon with A as 100 multida from 208 Db for constration
2005DE01	Some is in neuron-rich $A \approx 190$ nucleus from $-rof nagmentation.$
2003DE01	h.be white, A.N.Ahdreyer, S.Dean et al Eur. Flys. J. A 23, 245 (2003).
2005GL09	Apria-aecuy of neuron-aeficieni – 17 ana neuvier neignoonis. K A Gladnishki D I Balabanski P Petkov et al I Phys (London) G21, \$1550 (2005)
20030107	Lifetime measurements in the Vrast magnetic hand in ¹⁹³ Ph
2005HU03	X Huang C Zhou - Nucl Data Sheets 104 283 (2005)
200311003	Nuclear Data Sheets for $A = 197$.
2005KI01	S.Kishimoto, Y.Yoda, Y.Kobayashi et al Nucl. Phys. A748. 3 (2005).
	,,

Evidence for nuclear excitation by electron transition on ¹⁹³Ir and its probability.

2005UU02	J.Uusitalo, M.Leino, T.Enqvist et al Phys.Rev. C 71, 024306 (2005).
	α decay studies of very neutron-deficient francium and radium isotopes.
2005ZA15	G.S.Zahn, C.B.Zamboni, F.A.Genezini et al Braz.J.Phys. 35, 843 (2005).
2006 1 C01	Investigation of Excited Levels in ¹³³ Ir From the Beta Decay of ¹³³ Os.
2006AC01	E.Achierberg, O.A.Capurro, G. V.Marti et al Nucl.Data Sneets 107, 1 (2000). Nuclear Data Sheets for 4 – 193
2006AN36	A.N. Andrevey, S. Antalic, M. Huyse et al Phys. Rev.C. 74, 064303 (2006).
200011100	α decay of the new isotopes ^{193,194} Rn.
2006MUZX	S.F.Mughabghab - Atlas of Neutron Resonances, 5ed., Resonance Parameters and Thermal Cross Sections, $Z = 1-100$,
	Elsevier, Amsterdam (2006).
2006SI17	B.Singh - Nucl.Data Sheets 107, 1531 (2006).
200(1)[[10	Nuclear Data Sheets for A = 194.
2006VE10	D. verney, L.Cabarel, J.E.Crawford et al Eur.Phys.J. A 50, 489 (2006).
2007AN19	S Antalic A N Andrevey D Ackermann et al - Acta Phys Pol B38 1557 (2007)
200711(1)	The New Isotopes in Po-Rn Region.
2007OK05	Y.Oktem, D.L.Balabanski, B.Akkus et al Phys.Rev. C 76, 044315 (2007); Erratum Phys.Rev. C 78, 069904 (2008).
	High-spin states in ^{191,193} Au and ¹⁹² Pt: Evidence for oblate deformation and triaxial shapes.
2007SI17	S.Siem, M.Guttormsen, R.Chankova et al Acta Phys.Pol. B38, 1499 (2007).
	Level Densities and γ Strength Functions in ^{146,147} Sm Nuclei.
2007ZAZZ	G.S.Zahn, C.B.Zamboni, J.Y.Zevallos-Chavez et al Proc.VI Latin American Symp,on Nuclear Physics and Appli-
	cations, Iguazu, Argentina, 3-7 Oct. 2005, O.Civitarese, C.Dorso, G.Garcia Bermudez, A.J.Kreiner, A.J.Pacheco,
	N.N.Scoccola, Eds. p.442 (2007); AIP Conf.Proc. 884 (2007). Angular Correlation Study of Excited Levels in ¹⁹³ Ir
2008AN05	K Andoren B Cederwall I I Jusitalo et al Phys Rev. C 77, 054303 (2008)
2000/11/05	Excited states in the neutron-deficient nuclei ^{197,199,201} Rn.
2008ER03	A.N.Ermakov, B.S.Ishkhanov, I.M.Kapitonov et al Phys.Atomic Nuclei 71, 397 (2008); Yad.Fiz. 71, 419 (2008).
	Multineutron photodisintegration of the ¹⁹⁷ Au nucleus behind the giant dipole resonance.
2008KI07	T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya et al Nucl.Instrum.Methods Phys.Res. A589, 202 (2008).
	Evaluation of theoretical conversion coefficients using BrIcc.
2008STZY	S.J.Steer - University of Surrey (2008).
20097473	Isomer Decay Spectroscopy of $N \le 126$ Neutron-Rich Nuclei.
2008ZAZ Y	U.S.Zann, F.A.Genezini, C.B.Zamboni et al Proc.Intern.Cont.Nuclear Data for Science and Technology, Nice, France, April 22 27, 2007, O Bergillon, E.Gunging, E.Bauge, P.Jacamin, and S.Laray, Eds., p. 455 (2008); EDB Sciences, 2008
	A new procedure to analyze angular correlation experimental data.
2009AL16	N.Alkhomashi, P.H.Regan, Zs.Podolyak et al Acta Phys.Pol. B40, 875 (2009).
	β^- -Delayed and Isomer Spectroscopy of Neutron-Rich Ta and W Isotopes.
2009AL30	N.Alkhomashi, P.H.Regan, Zs.Podolyak et al Phys.Rev. C 80, 064308 (2009).
200005716	β^+ -delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes.
20098116	S.J.Steer, Zs.Podolyak, S.Pietri et al Int.J.Mod.Phys. E18, 1002 (2009).
2010CO13	TSOMETIC decay studies in neutron-rich $N \approx 120$ nuclei. TE Cocolios A N Andrevey S Antalic et al I Phys (London) G37, 125103 (2010)
20100015	Structure of ¹⁹¹ Ph from α_{-} and β_{-} decay spectroscopy
2010ZAZX	G.S.Zahn, F.A.Genezini, J.W.M.Oliva et al XXXII Brazilian Workshop on Nuclear Physics, Sao Paulo, Brazil, 7-11
	Sept. 2009 p.128 (2010); AIP Conf.Proc. 1245.
	The Half Life of $^{193}Os \beta$ -decay.
2011BA02	D.L.Balabanski, M.Ionescu-Bujor, A.Iordachescu et al Phys.Rev. C 83, 014304 (2011).
	Spin, quadrupole moment, and deformation of the magnetic-rotational band head in ¹⁹³ Pb.
2011FA07	Y.D.Fang, Y.Shi, Y.H.Zhang et al Phys.Rev. C 83, 054323 (2011).
20110721	Properties of the $\pi h_{11/2}$ band in the stable nucleus ¹⁵⁵ Ir.
20115121	S.J.Steer, Zs.Podolyak, S.Pietri et al Phys.Rev. C 84, 044313 (2011).
20120422	Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a ²⁰⁰ Pb beam.
2012DA32	Hyperfine structure anomaly and magnetic moments of neutron deficient Tl isomers with I=9/2
2012DR02	G.D.Dracoulis, G.J.Lane, A.P.Byrne et al Phys.Lett. B 709, 59 (2012).
	Long-lived three-quasiparticle isomers in ¹⁹¹ Ir and ¹⁹³ Ir with triaxial deformation.
2012KR05	K.S.Krane - Phys.Rev. C 85, 044319 (2012).
	<i>Neutron capture cross sections of</i> ^{184,189,190,192} <i>Os and the decaysof</i> ¹⁸⁵ <i>Os</i> , ¹⁹⁰ <i>Os</i> ^m , ¹⁹¹ <i>Os, and</i> ¹⁹³ <i>Os.</i>
2012KU26	J.Kurcewicz, F.Farinon, H.Geissel et al Phys.Lett. B 717, 371 (2012).
	Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with
2013SA43	the FRS. J.Sauvage, B.Roussiere, J.Genevev et al Eur.Phys.J. A 49, 109 (2013).
	Decay of ^{185}Tl , $^{185m+g}He$, $^{189m+g}Pb$ and energy location of the $13/2^+$ isomeric states in ^{185}He , ^{189}Pb , ^{193}Po and ^{197}Rn

2013SE03	M.D.Seliverstov, T.E.Cocolios, W.Dexters et al Phys.Lett. B 719, 362 (2013).
	Charge radii of odd-A ^{191–211} Po isotopes.
2013STZZ	N.J.Stone - REPT INDC(NDS)-0650 (2013).
	Table of nuclear electric quadrupole moments.
2014GA14	B.S.Gao, XH.Zhou, YD.Fang et al Chin.Phys.C 38, 064001 (2014).
	Identification of a $9/2^{-}[505]$ isomer in the neutron-rich ¹⁹³ Os nucleus.
2014KA23	Z.Kalaninova, S.Antalic, A.N.Andreyev et al Phys.Rev. C 89, 054312 (2014).
	$Decay of 2^{01-203}Ra and 2^{00-202}Fr.$
2014KU02	T.Kurtukian-Nieto, J.Benlliure, KH.Schmidt et al Phys.Rev. C 89, 024616 (2014).
	Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around $A=195$.
2014PR09	B.Pritychenko, E.Betak, B.Singh et al Nucl.Data Sheets 120, 291 (2014).
	Nuclear Science References Database.
2014SE07	M.D.Seliverstov, T.E.Cocolios, W.Dexters et al Phys.Rev. C 89, 034323 (2014).
	Electromagnetic moments of odd-A ^{193–203,211} Po isotopes.
2014STZZ	N.J.Stone - REPT INDC(NDS)-0658 (2014).
	Table of nuclear magnetic dipole and electric quadrupole moments.
2014TH02	T.Thomas, C.Bernards, JM.Regis et al Nucl.Phys. A922, 200 (2014).
	The structure of ¹⁹³ Au within the Interacting Boson Fermion Model.
2014TH04	M.Thoennessen - Nucl.Data Sheets 118, 85 (2014).
	Exploring New Neutron-rich Nuclei with the Facility for Rare Isotope Beams.
2015ANZZ	B.Andel - Proc.Intern.Conf.on Nuclear Structure and Dynamics, 15, Portoroz, Slovenia, 14-19 June 2015, M.Lipoglavsek
	, Matko Milin , T.Niksic , S.Szilner, D.Vretenar, Eds., p.030012 (2015); AIP Conf.Proc.1681 (2015).
	Production and decay spectroscopy of ¹⁹² Po and ¹⁹⁴ Po.
2015BA20	J.S.Barrett, W.Loveland, R.Yanez et al Phys.Rev. C 91, 064615 (2015).
	$^{130}Xe^{+208}Pb$ reaction: A test of models of multinucleon transferreactions.
2015HE27	A.Herzan, S.Juutinen, K.Auranen et al Phys.Rev. C 92, 044310 (2015).
	Detailed spectroscopy of ¹⁹³ Bi.
2015JU02	Y.Q.Ju, X.Y.Zhang, F.Ma et al J.Phys.(London) G42, 125102 (2015).
001533/10	The production of residual radionuclides by a 250 MeV proton beam.
2015WE13	I.A. Werke, D.A. Mayorov, M.C.Alfonso et al Phys.Rev. C 92, 034613 (2015).
20160425	Hot fusion-evaporation cross sections of ²⁵ Sc-induced reactions with lanthanide targets.
2016BA25	A.K.Balabekyan, G.S.Karapetyan, N.A.Demekhina et al Phys.Rev. C 93, 054614 (2016).
20160 4 42	Isomer production in intermediate-energy deuteron-induced reactions on a gold target.
2010BA42	A.E.Barzakn, D. V.Fedorov, V.S.Ivanov et al Phys.Rev. C 94, 024534 (2016).
001 (IZ A 2 (Laser spectroscopy studies of intruder states in User BL.
2010KA30	G.S.Karapetyan, A.Deppman, V.Guimaraes et al Phys.Rev. C 94, 024018 (2016).
201(NID77	Interaction of "B with "B and "I la targets at intermediate energies.
2010NDZZ	J.Ndayisminye - Thesis, Stellenbosch Univ. (2010).
2017 41102	Multiple chiral banas in 1911.
2017A003	G.Audi, F.G.Kondev, M. Wang et al Chin. Phys. C 41, 050001 (2017).
20171005	The NUDASE2010 evaluation of nuclear properties.
20173003	Nuclear Data Sheets for $A = 180$
2017WA10	M Wang G Audi E G Kondev et al Chin Phys C 41, 030003 (2017)
2017 00110	The AME2016 atomic mass evaluation (II). Tables, graphs and references.