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Abstract

Determination of the amino acid phenylalanine is important for lifelong disease management in 

patients with phenylketonuria, a genetic disorder in which phenylalanine accumulates and persists 

at levels that alter brain development and cause permanent neurological damage and cognitive 

dysfunction. Recent approaches for treating phenylketonuria focus on injectable medications that 

efficiently break down phenylalanine but sometimes result in detrimentally low phenylalanine 

levels. We have identified new DNA aptamers for phenylalanine in two formats, initially as 

fluorescent sensors and then, incorporated with field-effect transistors (FETs). Aptamer-FET 

sensors detected phenylalanine over a wide range of concentrations (fM-mM). para-
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Chlorophenylalanine, which inhibits the enzyme that converts phenylalanine to tyrosine, was used 

to induce hyperphenylalaninemia during brain development in mice. Aptamer-FET sensors were 

specific for phenylalanine vs para-chlorophenylalanine and differentiated changes in mouse serum 

phenylalanine at levels expected in patients. Aptamer-FETs can be used to investigate models of 

hyperphenylalanemia in the presence of structurally related enzyme inhibitors, as well as naturally 

occurring amino acids. Nucleic acid-based receptors that discriminate phenylalanine analogs, 

some that differ by a single substituent, indicate a refined ability to identify aptamers with binding 

pockets tailored for high affinity and specificity. Aptamers of this type integrated into field-effect 

transistors enable rapid, electronic, label-free phenylalanine sensing.

Graphical Abstract

Keywords

Phenylketonuria; DNA; electronic sensor; serum; amino acid

INTRODUCTION

Phenylketonuria (PKU) is an autosomal recessive genetic disorder involving mutations in the 

gene that encodes phenylalanine hydroxylase (PAH), a liver enzyme that converts the 

essential amino acid phenylalanine to tyrosine (Figure 1A).1–7 In the United States, PKU 

occurs in ~1/10,000–15,000 babies yearly. Diagnosis at birth is critical.1,3,4,7,8 This ‘inborn 

error of metabolism’ leads to hyperphenylalaninemia in the blood and brain.1–5,7,9 Elevated 

phenylalanine causes abnormalities in brain development associated with permanent 

intellectual impairment. Screening newborns for PKU involves laboratory testing by a 

bacterial inhibition assay, i.e., the Guthrie test,10 or more recently, tandem mass 

spectrometry.11 Although sufficient for diagnosis, these methods involve turnaround times of 

days to inform treatment providers and families.12

Phenylketonuria is primarily managed through strict avoidance of phenylalanine-containing 

foods.1,3,4,7,13,14 Early-life dietary management largely prevents the damaging effects of 

PKU on brain development.15–17 However, even modestly uncontrolled blood phenylalanine 

levels in children and adults have been correlated with cognitive and psychiatric sequelae.
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1,7,18–21 Nevertheless, studies on this topic are sparse, partly because technologies for 

straightforward monitoring of blood phenylalanine levels in clinical studies are not readily 

available.1,18

Phenylalanine serum concentrations in healthy individuals are 60±30 μM.17 Current 

treatment guidelines for individuals with PKU are to maintain blood phenylalanine levels 

between 120 and 360 μM. Moderate hyperphenylalaninemia is associated with blood levels 

ranging from 360 to 600 μM, while untreated PKU is characterized by phenylalanine levels 

>1000 μM (with concentrations >3000 μM having been reported).1,3,7,22

Emerging treatments for PKU are based on enzyme replacement with pegylated versions of 

bacterial phenylalanine ammonia lyase.23 Enzyme substitution decreases phenylalanine 

levels in patients with PKU and reduces the need for dietary restrictions, which can be 

exceedingly difficult to maintain over a lifetime.23 In 2017, the U.S. Food and Drug 

Administration approved the first enzyme substitution therapy, pegvaliase (Palynziq™).23 

However, pegvaliase and related treatment strategies can result in hypophenylalaninemia, 

which negatively affects protein synthesis, and thus, growth in children, and 

neurotransmitter synthesis in children and adults.17,23 In light of the present clinical picture, 

improvements in phenylalanine monitoring are indicated to provide insights into the 

pharmacokinetics24 and efficacy of current and future PKU treatment strategies and their 

combinations.25 Enabling patients to determine their own blood phenylalanine levels will be 

empowering. Regardless, there are no at-home or point-of-care options for measuring 

phenylalanine.26–28

Field-effect transistors (FETs) modified with protein receptors have been developed for 

rapid electronic, reagentless detection of biological targets.29–37 Receptor recognition of 

charged targets and/or target-induced receptor reorientation gate the semiconductor channels 

of FETs to modulate transconductance. However, bioFETs based on protein receptors or 

antibodies are not feasible for direct sensing in biological fluids because large receptors (~10 

nm) are too far away from semiconductor channels relative to the Debye screening length. 

At physiological ion concentrations, the Debye length is on the order of 1 nm.30,38

Recently, we developed thin-film metal oxide FETs functionalized with oligonucleotide 

stem-loop receptors (aptamers).39–42 We discovered that target-mediated reorganization of a 

portion of the highly negatively charged backbones of small oligonucleotides (and 

rearrangement of associated counter ions) occurs near enough to the semiconductor surfaces 

to circumvent Debye-length limitations under biological conditions.43–46 Aptamer-FETs 

have enabled sensitive and selective detection of small molecules, including neutral targets, 

in physiological buffers and fluids, and complex biological matrices.30

Here, previously unreported aptamers for direct phenylalanine detection were coupled with 

nanometer-thin In2O3 FETs. Phenylalanine was detected over many orders of magnitude in 

physiological solutions. Selectivity for phenylalanine over closely structured endogenous 

and exogenous aromatic amino acid analogs (Figure 1B) and metabolites was excellent, 

particularly for one of the phenylalanine aptamers. Phenylalanine sensing was carried out in 

serum from mice with induced hyperphenylalaninemia, demonstrating the ability of 
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aptamer-FETs to detect biologically important differences in phenylalanine concentrations. 

Aptamer sequences were rationally modified to shift device sensitivities towards 

physiologically relevant concentrations. These findings portend the use of aptamer-

functionalized FETs for phenylalanine monitoring in PKU patients and other relevant 

populations.

Experimental Section

No unexpected or unusually high safety hazards were encountered.

Materials

All materials were purchased from Sigma-Aldrich Co. (St. Louis, MO), unless otherwise 

noted. The amino acids used throughout were the L-forms, i.e., L-phenylalanine (Sigma 

P5482 and P2126), L-tyrosine (Sigma T3754), and L-tryptophan (Sigma 93659 and T0254). 

Oligonucleotides were obtained from Integrated DNA Technologies (Coralville, IA). The 

SYLGARD 184 used to make polydimethylsiloxane (PDMS) wells was from Dow Corning 

Corporation (Midland, MI). Water was deionized before use (18.2 MΩ) with a Milli-Q 

system (Millipore, Billerica, MA).

para-Ethynylphenylalanine (PEPA) was synthesized by a previously reported route47 with 

minor modifications. Trimethylsilyl acetylene was coupled under palladium catalysis to to 

N-acetyl 4-iodophenylalanine methyl ester,48 followed by deprotection and purification. The 

nuclear magnetic resonance spectroscopy (NMR) data matched spectra reported in the 

literature (Figure S1).

Phenylalanine aptamer selection

Phenylalanine aptamer selection was carried out as per a previously reported strategy.41 

Initial selection resulted in isolation of an aptamer for phenylalanine complexed with 

pentamethylcyclopentadienyl rhodium(III) (Cp*Rh). This previously reported aptamer, 

which we designate Phe-Cp*Rh 1, showed cross-reactivity with the analogous tryptophan-

Cp*Rh complex (Trp-Cp*Rh), limiting its use in practical applications. To reduce cross-

reactivity, additional selections for Phe-Cp*Rh were performed with Trp-Cp*Rh counter-

selection,41,42 which resulted in the isolation of two new Phe-Cp*Rh aptamers, which we 

designate Phe-Cp*Rh 2 and Phe-Cp*Rh 3 (Table S1). These previously unreported Phe-

Cp*Rh aptamers were not cross-reactive with Trp-Cp*Rh (Figure S2C,S3). However, Phe-

Cp*Rh 2 showed cross reactivity with Tyr-Cp*Rh (Figure S2C).

Unexpectedly, as byproducts of the selections for additional Phe-Cp*Rh aptamers, we 

identified three aptamers that directly recognize phenylalanine, rather than the Phe-Cp*Rh 

complex. These previously unreported, direct-binding aptamers are designated Phe 1, Phe 2, 

and Phe 3 (Table S1). An excess of phenylalanine (1 mM) was used in the selection 

procedures to produce the Phe-Cp*Rh complex such that Cp*Rh was the limiting reagent. 

Under these conditions, a large excess of free phenylalanine, which also interacted with the 

oligonucleotide sequences, was present along with the Phe-Cp*Rh complex in the target 

solutions. We compared the responses of Phe 1 to phenylalanine with and without Cp*Rh 
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(Figure S4). In the presence of Cp*Rh, phenylalanine prefers to complex with Cp*Rh, 

however the remaining free phenylalanine in solution was detected by Phe 1.

Fluorescence assays were carried out in 20 mM HEPES, 1 M NaCl, 10 mM MgCl2, and 5 

mM KCl (pH 7.5) using a Victor II microplate reader (PerkinElmer). Each aptamer sequence 

was modified with fluorescein at the 5’ end. Complementary strands were 3’-modified with 

dabcyl for solution quenching determination of dissociation constants (Kd) (Table S1) and 

for selectivity testing. Concentrations of aptamers and complementary strands were 

empirically determined and aptamer Kd values were calculated as per previously published 

methods.30,40,41 Putative aptamer secondary structures shown were predicted using Mfold 
(http://unafold.rna.albany.edu/?q=mfold).

Aptamer-functionalized field-effect transistors

Field-effect transistors were fabricated using ~4 nm In2O3 semiconductor films as channel 

materials with high surface-to-volume ratios. Aqueous solutions (0.1 M) of indium(III) 

nitrate hydrate (In(NO3)3•xH2O, 99.999%) were spin-coated at 3000 rpm for 30 s onto 

heavily doped silicon wafers (University Wafer, Boston, MA or WaferPro, San Jose, CA) 

with 100-nm thermally grown oxide layers. After coating, substrates were pre-heated at 

150 °C for 10 min followed by 3 h of annealing at 350 °C.29,49 Source and drain electrodes 

(10 nm Ti/30 nm Au) were deposited by electron-beam evaporation and patterned via 
standard photolithography.

To functionalize thin-film FETs with thiolated phenylalanine aptamers, we first self-

assembled mixed monolayers of (3-aminopropyl)trimethoxysilane and 

trimethoxy(propyl)silane (1:9 v/v ratio) using vapor-phase deposition on In2O3 surfaces at 

40 °C for 1 h. Substrates were then incubated with a 1 mM ethanolic solution of 1-

dodecanethiol for 1 h to passivate Au electrodes via alkanethiol monolayer formation. After 

rinsing with ethanol, substrates were incubated with a 1 mM solution of 3-maleimidobenzoic 

acid N-hydroxysuccinimide ester (MBS) in 1:9 (v/v) dimethyl sulfoxide and phosphate-

buffered saline (1× PBS, pH 7.4) for 30 min. Thiolated DNA aptamers (Table S2) were 

diluted to 1 μM in nuclease-free water and heated for 5 min at 95 °C followed by rapid 

cooling in an ice bath. Substrates were then immersed in aptamer solutions for 24 h, rinsed 

with deionized water, and dried under N2 gas.

A scrambled aptamer sequence for Phe 3 was designed using mfold to have a secondary 

structure that was predicted to differ from the correct phenylalanine aptamer sequence, while 

maintaining the same numbers and types of nucleotides (Figure S5B and Table S2).

Field-effect transistor measurements

Polydimethylsiloxane wells were sealed on individual FETs to hold sensing solutions. 

Substrates had inter-FET distances (~2 mm) that were large enough to enable isolation of 

single FET devices within the PDMS wells (Figure S6). Ringer’s solution (147 mM NaCl, 4 

mM KCl, 2.25 mM CaCl2) was used as the electrolyte solution. The Ag/AgCl reference 

electrodes (World Precision Instruments, Inc., Sarasota, FL) were placed in sensing solutions 

in a top-gate (solution-gate) device configuration. Measurements were performed using a 
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manual analytical probe station (Signatone, Gilroy, CA) equipped with a Keithley 4200A-

SCS (Tektronix, Beaverton, OR) semiconductor parameter analyzer.

Source-drain current (IDS) transfer curves were obtained wherein gate voltages (VGS) were 

varied from 0 to 400 mV with a step voltage of 5 mV. The drain voltage (VD) was held at 10 

mV throughout. Five sweeps were averaged for each transfer curve. Calibrated responses 

were calculated by dividing the absolute sensor response (ΔI), which takes into account 

baseline subtraction, by the change in source-drain current with voltage sweep (ΔIDS/ΔVG).
50 Aptamer-FET responses at VG=375 mV were used to calculate mean calibrated 

responses.

Mouse serum

Mice were generated at the University of California, Los Angeles (UCLA) from a core 

colony of a serotonin transporter (SERT)-deficient lineage maintained on a mixed CD1 × 

129S6/SvEv background via heterozygous SERT-deficient (SERT+/−) pairings. For this 

study, three pairs of SERT wildtype (SERT+/+) mice from the core colony were bred to 

produce 18 wildtype pups. All mice were maintained on a 12-h light/dark cycle (lights on at 

0600 h (Zeitgeber time 0)) with ad libitum food and water. The Association for Assessment 

and Accreditation of Laboratory Animal Care International has fully accredited UCLA. All 

animal care and use met the requirements of the NIH Guide for the Care and Use of 

Laboratory Animals, revised 2011. The UCLA Chancellor’s Animal Research Committee 

(Institutional Animal Care and Use Committee) preapproved all procedures.

For postnatal treatment, pups from each litter were randomly assigned to one of three 

groups: (1) Saline (vehicle control); (2) 100 mg/kg para-chlorophenylalanine (Sigma 

#C3635);51 or (3) 10 mg/kg para-ethynylphenylalanine.52 Doses were calculated based on 

the free base form of each compound. The pH values of PEPA and PCPA saline were 

adjusted to pH 7.4 prior to injection. Dosing solutions were filtered via 0.22 μm filters for 

sterilization.

Each litter contained all treatment groups. Each pup received a subcutaneous injection of the 

assigned treatment daily during ZT 6–8 on postnatal days (P)4–21. The injection volume 

was 10 mL/kg during P4–11, and 5 mL/kg during P12–21. A total of three of the 18 pups 

were excluded from this study: 1/6 saline-treated and 1/6 PCPA-treated subjects died during 

the postnatal period. In addition, 1/6 PEPA-treated subjects stopped receiving injections at 

P17 due to body weight loss for two continuous days. The data from the remaining N=5 

mice per treatment group are reported.

Pups were weaned after the last injection on P21 and housed with their same-sex siblings. 

Two hours after the last injection, subjects were euthanized by decapitation under deep 

anesthesia with isoflurane. Whole blood samples were collected via cardiac puncture and 

placed in microcentrifuge tubes pre-chilled on ice for 30–60 min. Following coagulation, 

blood samples were centrifuged at 16,000 g for 15 min at 4 °C twice. After each 

centrifugation, supernatants were removed and transferred to clean microcentrifuge tubes on 

ice.
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Serum samples were aliquoted and stored at −80 °C until analysis. Aptamer-FET and high 

performance liquid chromatography (HPLC) measurements were carried out by investigators 

blind to the treatment group identification of each sample. All serum samples for aptamer-

FET measurements were diluted to ~10 pM phenylalanine in 1× Ringer’s buffer, using the 

same serial dilution strategy, i.e., first 1:10, then 1:100, and finally 1:1.5, which was based 

on the average phenylalanine concentration determined in mouse serum by HPLC.

Circular dichroism spectroscopy

Intensities and positions of positive and negative peaks for oligonucleotides in circular 

dichroism (CD) spectra correspond to exciton interactions induced by stacking of 

hydrophobic bases in asymmetric helices.45,46,53 Aptamer and target concentrations were 2 

μM in 1× Ringer’s buffer. Thiolated aptamers were heated at 95 °C for 5 min and cooled to 

room temperature slowly to relax DNA molecules into extended conformations. Spectra 

were collected using a JASCO J-715 circular dichroism spectrophotometer (Oklahoma City, 

OK). Four scans with 0.5-nm resolution, 1.0-nm bandwidth, a 4-s response time, and a 20 

nm/min scan rate were acquired per sample. Scans of 1× Ringers solution were subtracted as 

background.

Statistics

Data for fluorescence assays and FET calibrated responses are reported as means ± standard 

errors of the means and were analyzed using GraphPad Prism 7.04 (GraphPad Software Inc., 

San Diego, CA) via one-way analysis of variance followed by Tukey’s multiple comparisons 

post hoc tests. Cross-validation data for phenylalanine levels were analyzed by linear 

regression analysis. In all cases, P<0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Three previously unreported DNA aptamer sequences that directly recognize the amino acid 

phenylalanine were identified via solution-phase, in vitro systematic evolution of ligands by 

exponential enrichment (SELEX) (Figure 1C–E).39,41,42 Dissociation constants were 

determined using competitive fluorescence assays.30,40,41 Quencher-labeled complementary 

sequences (Table S1 and Figure S7) were displaced from fluorescently labeled aptamer 

sequences upon phenylalanine binding resulting in increases in fluorescence intensities, as 

shown in Figure 1C–E.30,40,41 Solution dissociation constants (Kd) were 10 μM, 7 μM, and 

16 μM for Phe 1, Phe 2, and Phe 3, respectively. Dissociation constants measured for Phe 1 

and 2 via dye displacement assays were consistent with those measured via competitive 

binding assays (Figure S8). Dye displacement did not work for the Phe 3 aptamer. This 

result is sometimes the case for dye displacement, which is why we do not use this method 

as a primary means of determining dissociation constants.

Selections initially had been carried out using a strategy to try to increase aptamer selectivity 

towards low epitope targets by associating targets with metal complexes.41 In addition to a 

previously reported aptamer sequence recognizing phenylalanine complexed with 

pentamethylcyclopentadienyl rhodium(III) (Cp*Rh) (sequence herein referred to as Phe-
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Cp*Rh 1),41 two previously unreported sequences, Phe-Cp*Rh 2 and Phe-Cp*Rh 3 were 

characterized (Figures S2,S3).

Selectivity testing for the three direct-detection phenylalanine aptamers using competitive 

florescence assays showed reduced (Phe 1 and Phe 2) or negligible (Phe 3) responses 

towards the endogenous aromatic amino acids tyrosine and tryptophan (Figure 1C–E). We 

also investigated selectivity of the direct-detection phenylalanine aptamers for two 

phenylalanine analogs, para-chlorophenylalanine (PCPA) and para-ethynylphenylalanine 

(PEPA) (Figure 1B), which potentially induce hyperphenylalaninemia in animal models 

(vide infra).54–58 The Phe 3 aptamer showed minimal responses to PCPA or PEPA via 
competitive fluorescence assays (Figure 1E), in contrast to Phe 1 and Phe 2 (Figure 1C–D), 

and the Phe-Cp*Rh aptamers (Figure S9), all of which had appreciable responses to PCPA.

Next, each of the phenylalanine-specific aptamers was attached to the semiconducting 

channels of FETs for electronic detection of phenylalanine (Figure 2A).29,30 As in our prior 

aptamer-FET studies, shortened,59,60 thiolated aptamers were attached to In2O3 surfaces via 
covalent modification to self-assembled silanes using m-maleimidobenzoyl-N-

hydroxysuccinimide as a crosslinker.29,30 Field-effect transistors were operated in a top-gate 

setup. The source-drain current (IDS) was measured while sweeping the gate voltage (VGS) 

during target exposure (Figure 2A).29,30 Reorganization of surface-tethered negatively 

charged oligonucleotides occurred in close proximity to metal-oxide semiconducting 

surfaces upon target capture to gate FET transconductances resulting in target-concentration-

dependent current changes under physiological ionic conditions (Figure 2B).30

Phenylalanine-aptamer-FETs showed a wide range of concentration-dependent responses to 

phenylalanine (fM detection limit) in 1× Ringer’s solution, which mimics the ionic 

composition of the plasma fraction of human blood (Figure 2B). Sensing in physiological 

buffers that have similar ion concentrations to the target biological matrix is important for 

evaluating oligonucleotide receptors because interactions with different types and 

concentrations of solution ions may result in alternate aptamer secondary structures and 

thus, differences in sensor sensitivities and selectivities.61,62

We also tested one of the aptamers recognizing phenylalanine complexed with Cp*Rh when 

attached to FETs, as an example of the use of this type of aptamer. The Phe-Cp*Rh 2 

aptamer showed similar concentration-dependent responses (Figure S2D) to those of the 

direct detection sequences (Figure 2B), suggesting that metal complexation to increase 

sensitivity, which would complicate point-of-care or at-home monitoring approaches, is 

unnecessary41 and direct phenylalanine detection is sufficient in the context of FET sensors.

Target-concentration-dependent decreases in current were observed for FET transfer curves 

(IDS-VGS sweeps) for each of the three direct sensing aptamers (Figures 2C,S10). We 

attribute decreases in FET transfer characteristics on n-type semiconductors to a dominant 

effect of negatively charged DNA aptamer backbones moving closer to semiconductor 

channel surfaces to increase electrostatic repulsion of charge carriers (band bending) and to 

gate transconductance upon target binding.30 We previously determined that aptamer-FET 

small-molecule sensing is due to gating associated with the reorganization of charged DNA 
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aptamer backbones and not to target charge. Target-aptamer interaction can reorient aptamer 

charge toward or away from semiconductor channels, based on specific aptamers.30

We performed circular dichroism (CD) spectroscopy to investigate target-induced changes in 

aptamer secondary structures for the three phenylalanine direct-sensing aptamers, as we 

have been able to associate CD spectral changes with individual aptamer-FET responses.30 

The spectra for Phe 3 showed a small but reproducible decrease in peak intensity at 280 nm 

after target capture, potentially corresponding to target-induced formation of hairpin motifs 

(Figure 2D).53 Spectra showed negligible changes in peak positions or intensities for Phe 1 

or Phe 2 upon association with phenylalanine (Figure S11). These findings suggest that the 

latter two aptamers do not form new secondary structural motifs upon target recognition and 

that all three aptamers primarily undergo adaptive target binding largely involving pre-

formed secondary structures.30

Of the three direct-detection phenylalanine aptamers, Phe 3 showed the largest target-related 

responses and the smallest replication variability when integrated with FETs (Figure 2B). 

The Phe 3 aptamer also showed the highest selectivity towards nonspecific targets compared 

to Phe 1 and Phe 2 in competitive fluorescence assays (Figure 1C–E); thus, we focused on 

investigating this sequence further. To test selectivity on FETs, we measured the responses 

of Phe 3-aptamer-FETs to the aromatic amino acid tryptophan, the phenylalanine 

metabolites tyrosine, phenylpyruvic acid, and 2-phenylethylamine, and the two 

phenylalanine analogs (Figure 2E). Sensor responses upon exposure to 100 μM solutions of 

five of the nonspecific targets were <10% of the average response to an equivalent 

concentration of phenylalanine; responses to PCPA were 15% of the average phenylalanine 

response. Concentrations of nonspecific targets were selected based on their physiologically 

relevant concentrations.63–65 As a further indication of selectivity, responses of FETs 

functionalized with a scrambled version of the Phe 3 sequence having the same numbers and 

types of nucleotides as the correct Phe 3 aptamer sequence but with a different predicted 

secondary structure were negligible (Figure S5).

To investigate Phe 3-aptamer-FET detection of clinically relevant phenylalanine levels, we 

measured phenylalanine in serum (diluted with 1× Ringers, see Experimental Section) from 

mice injected daily with PCPA, PEPA, or saline during postnatal days 4–21 (Figure 3A). 

This postnatal period in mice is the human developmental equivalent of the last trimester of 

pregnancy and the first postnatal year.66,67 We selected this treatment period because it is 

important for determining the impact of elevated phenylalanine levels on cortical axon 

development.68 Both para-substituted phenylalanine analogs inhibit tryptophan hydroxylase 

(TPH), which converts dietary tryptophan to 5-hydroxytryptophan. The latter is 

decarboxylated to produce the neurotransmitter serotonin (5-hydroxytryptamine).52,69–71 

However, whereas PCPA has been reported to inhibit PAH activity, in addition to TPH,54–58 

PEPA has been suggested to lack inhibitory effects on PAH.52

Mice receiving PCPA showed a doubling of the concentration of serum phenylalanine levels 

(individual levels ranging from ~90 to 160 μM) compared to mice exposed to PEPA or saline 

(Figure 3B). Phenylalanine concentrations in mouse serum samples were cross-validated via 
HPLC with electrochemical detection (Figure S12 and Supplemental Methods). Individual 
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phenylalanine serum sample levels determined using aptamer-FETs were highly correlated 

when compared to those measured by HPLC (R2=0.95; Figure 3C). The slope of the 

regression line correlating phenylalanine levels determined by both methods was ~1 

indicating that Phe 3-aptamer-FETs accurately reported phenylalanine levels.

Phenylalanine levels detected by aptamer-FETs in PCPA-treated mice (~120 μM) were at the 

low end of the range of serum levels in humans with modestly elevated phenylalanine, i.e., 

PKU patients adhering to dietary restrictions, and possibly, phenylalanine levels in some 

PKU carriers, i.e., individuals with one mutant PAH allele (ca. one in 50 Caucasians)72,73. 

Thus, aptamer-FETs can be used to differentiate modest yet physiologically relevant changes 

in phenylalanine levels.

The Phe 3 aptamer-FETs were sufficient to detect biologically relevant differences in 

phenylalanine levels in diluted serum (Figure 3). Removing base pairs from aptamer stem 

regions destabilizes aptamer secondary structures, particularly in stem-loop aptamers 

isolated by solution SELEX where stem closure plays an important role in identifying target-

specific sequences.59,74–76 We reasoned that stem truncation could be used to shift aptamer-

FET sensitivity ranges closer to the therapeutic range of PKU patients, thereby reducing the 

need for serum dilution.

Strategically deleting complementary C-G base pairs (C-G base pairs form three hydrogen 

bonds vs. A-T base pairs, which are weaker in forming only two H-bonds) in the stem 

regions of Phe 1 and Phe 3 (Table S2) shifted the corresponding aptamer-FET concentration 

curves to the right, i.e., towards higher phenylalanine concentrations (Figure 4). These 

modifications also increased the steepness of the concentration curves such that small 

differences in phenylalanine levels in the steepest regions of these curves would be more 

highly differentiable.

Notably, the serum phenylalanine concentration range in PKU patients is ~10–1000 μM.1 

Thus, narrowing the sensitivity range of aptamer-FET sensors, in addition to reducing the 

binding affinity, i.e., shifting to higher Kd, advances this strategy toward an at-home 

monitoring scenario wherein phenylalanine might be determined in whole blood from finger 

or heel sticks without the need for dilution. Stem destabilization, in addition to decreasing 

aptamer densities,30 and/or tuning FET characteristics77 and measurement parameters can 

eventually be combined to achieve phenylalanine detection in undiluted blood.

There are numerous benefits and opportunities for at-home phenylalanine monitoring. In a 

National Institutes of Health (NIH) consensus panel on “PKU: screening and management”, 

the NIH recommended the development of reliable home testing methods for measuring 

phenylalanine to increase adherence to dietary treatments.78 There is consensus from PKU 

patients that at-home measurement of phenylalanine will make disease management, i.e., 

following a PKU diet and/or enzyme substitution dosing, easier to achieve and to maintain 

throughout life.26 National Institutes of Health guidelines for monitoring frequency in PKU 

patients are once weekly during the first year of life, twice per month for individuals 1–12 

years of age, and at least monthly thereafter. In women with PKU prior to and during 

pregnancy and lactation, frequency should increase to at least weekly.
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Phenylalanine has been determined using chromatographic,79,80 plasmonic,81 and 

fluorimetric techniques.79,82–84 These methods involve specialized laboratory 

instrumentation and sometimes, complex extractions. As such, these methods are largely 

incompatible with point-of-care or at-home monitoring. Colorimetric, paper-based detection 

platforms show promise for PKU diagnosis and monitoring in low-resource settings,85,86 but 

use enzyme-based recognition elements, which can lose activity over time due to 

denaturation.87 Electrochemical signal transduction has been used for phenylalanine 

sensing88,89 or a conductive electrode design involving graphene oxide, which is 

intrinsically defect prone and synthetically heterogeneous.90 Hasanzadeh and coworkers91,92 

reported an electrochemical strategy involving phenylalanine capture via a previously 

reported RNA phenylalanine aptamer (Kd~120 μM)93 followed by phenylalanine oxidation 

at gold electrodes. Compared to RNA, aptamers comprised of DNA are advantageous in 

terms of higher stability when exposed to biological matrices, such as serum.94

CONCLUSIONS AND PROSPECTS

We have identified three new DNA-based receptors that recognize the biochemically and 

medically important target phenylalanine. We also report two new aptamers that recognize a 

phenylalanine-organometallic complex (Phe-Cp*Rh). The direct-binding phenylalanine 

aptamers (and one of the Phe-Cp*Rh aptamers) were integrated with thin-film metal-oxide 

field-effect transistors (FETs). Phenylalanine-FET sensors detected phenylalanine under 

physiological ionic conditions over six orders of magnitude with fM detection limits. 

Sensors incorporating the Phe 3 direct-detection aptamer showed exceptional selectivity for 

phenylalanine vs. similarly structured aromatic amino acids and metabolites. The accuracy 

and precision of Phe 3 aptamer-FET sensors were excellent compared to a gold-standard 

laboratory method.62

The ability to differentiate clinically relevant differences in serum phenylalanine levels with 

a minimal dilution step demonstrates the capability of aptamer-FETs for future use in 

electronic point-of-care devices for PKU diagnosis and management. In principle, aptamer-

FET sensors can also be used for in vivo monitoring to investigate transiently induced or 

permanently maintained (through continuous administration of PCPA or via mice with 

constitutive reductions in PAH)95 elevations in phenylalanine. Rapid monitoring in PKU 

animal models will enable investigating how changes in PAH activity or diet impact 

temporally resolved phenylalanine levels.

In sum, DNA aptamers are readily synthesized96 and the FET fabrication methods used here 

are straightforward and easily scaled up. We have miniaturized29 and nanostructured77 

In2O3 thin-film FETs using low-cost soft-lithographic methods.97–99 We have also 

fabricated In2O3 FETs on flexible substrates100 demonstrating capabilities to tailor device 

performance and architectures for specific biomedical applications.

Aptamer-FET sensors can be rapidly deployed, with minor adjustments, at the point-of-care 

level, e.g., in clinical laboratories. While not the focus of this work, we have developed 

prototype instrumentation and analysis software that is low-cost, has a relatively small 

footprint, and can perform multiplexed FET sensing. Translation for at-home monitoring 

Cheung et al. Page 11

ACS Sens. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will require additional development of FET-measurement technology to reduce size for 

portability, i.e., hand-held devices, and validation in clinical samples.101 We anticipate that 

phenylalanine sensing via aptamer-FETs will improve phenylketonuria disease management 

and monitoring in other at-risk populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Aptamers for phenylalanine.
(A) In humans and mice, phenylalanine is para-hydroxylated to form tyrosine by the liver 

enzyme phenylalanine hydroxylase (PAH). The genetic disorder phenylketonuria is caused 

by mutations in the PAH gene, which result in high blood and brain levels of phenylalanine. 

(B) Phenylalanine analogs para-chlorophenylalanine (PCPA) and para-ethynylphenylalanine 

(PEPA). (C-E) Three phenylalanine-specific aptamer sequences (Phe 1, Phe 2, and Phe 3) 

were isolated for sensor development. All three aptamers showed concentration-dependent 

responses towards phenylalanine determined via competitive fluorescence assays. Responses 

were measured for other aromatic amino acids (tyrosine and tryptophan) and the 

phenylalanine analogs (PCPA and PEPA). Fluorescence concentration curves enabled 

determination of solution dissociation constants (Kd) for Phe 1 (10 μM), Phe 2 (7 μM), and 

Phe 3 (16 μM). Here, N=6 for each phenylalanine concentration; N=3 for each nonspecific 

target concentration. Standard errors of the means for each datum were too small to be 

displayed in some cases; RFU is relative fluorescence units.
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Figure 2. Detection of phenylalanine via aptamer-field-effect transistor sensors.
(A) Schematic of the FET platform and surface chemistry. Here, FETs were composed of 4-

nm thin-film In2O3 as the channel material, with a 10-nm Ti adhesion layer and a 30-nm top 

Au layer patterned as interdigitated electrodes over the semiconductor layer. Sensing was 

performed by applying a source-drain bias voltage, sweeping the gate voltage with respect to 

a Ag/AgCl reference electrode in a solution-gated configuration, and measuring changes in 

source-drain currents. Thiolated aptamers were tethered to semiconductor surfaces using m-

maleimidobenzoyl-N-hydroxysuccinimide ester to crosslink thiol groups to amine-

terminated silanes, co-self-assembled with methyl-terminated silanes, which served as 

spacer molecules to optimize aptamer surface densities for target recognition. (B) Each of 

three phenylalanine aptamers attached to FETs (Phe 1, Phe 2, Phe 3) produced 

concentration-dependent responses in 1× Ringer’s solution. (C) Representative transfer (IDS-

VGS) curves for Phe 3 aptamer-FETs upon increasing phenylalanine concentrations. (D) 
Circular dichroism spectra of Phe 3 in 1× Ringer’s solution before and after introduction of 

phenylalanine (2 μM). Spectra shown are averages of N=3 spectra each. (E) The Phe 3 

aptamer, when incorporated into FETs, had negligible responses to nonspecific targets, 

including tryptophan (Trp), tyrosine (Tyr), phenylypyruvic acid (PPA), 2-phenylethylamine 

(2-PEA), para-chlorophenylalanine (PCPA), or para-ethynylphenylalanine (PEPA) compared 

to phenylalanine (all targets at 100 μM) [F (6, 10)=76; P<0.001]. Error bars, are standard 

errors of the means with N=3 for B, and N=3 for phenylalanine, PCPA, and PEPA and N=2 

for Trp, Tyr, PPA, and 2-PEA in E. ***P<0.001 vs. all nonspecific targets.
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Figure 3. Aptamer-field-effect transistors (FETs) differentiate serum phenylalanine levels.
(A) Schematic illustration of the in vivo experimental design. Mice were treated once per 

day with para-chlorophenylalanine (PCPA) or para-ethynylphenylalanine (PEPA) during 

postnatal days (P)4–21. These phenylalanine analogs inhibit tryptophan hydroxylase (TPH). 

Some studies suggest that PCPA may also inhibit phenylalanine hydroxylase (PAH). Serum 

samples were collected 2 h after the final injection of each analog on P21. Phenylalanine 

concentrations were measured by Phe 3-aptamer-FETs and cross-correlated with high-

performance liquid chromatography (HPLC) as a reference method (Figure S12). (B) Mice 

treated with PCPA had modestly elevated serum phenylalanine concentrations compared to 

mice treated with PEPA or saline [F(2,12)=17.3; P<0.01]. Data points depict levels from 

individual animals. Error bars are standard errors of the means with N=5 for each treatment 

group. **P<0.01 vs. PCPA; ***P<0.001 vs. PCPA. (C) Correlation of phenylalanine 

concentrations measured in individual mouse serum samples via aptamer-FETs vs. HPLC 

with the corresponding linearity index (R2) and regression slope (m). P=0.762 (Run’s test), 

deviation from linearity is not significant.
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Figure 4. Tuning aptamer-field-effect transistor (FET) responses via aptamer stem truncation.
(A-B) Aptamer-FET sensing of phenylalanine with truncated versions of Phe 1 and Phe 3 

aptamers, respectively (truncated sequences are shown in the corresponding insets). 

Normalized response data for phenylalanine sensing on FETs using unmodified Phe 1 and 

Phe 3 sequences are presented for comparison and are reproduced from Figure 2B. Error 

bars are standard errors of the means with N=3 for all data.
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