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Abstract

Prospects for Finding

Primordial Black Holes

with the Rubin Observatory

by

Duncan Wood

New tools are presented to generate simulated catalogs of microlensing events

in the Milky Way from populations of primordial black holes tracing the dark

matter halo. These Monte Carlo methods are orders of magnitude faster than the

state-of-the-art simulations, and reduce the computational requirements from a

large computer cluster to a laptop for full-sky surveys.

A new statistic and method is demonstrated for highly efficient detection of

microlensing events in multi-color star surveys. The background filtering is suf-

ficiently strong to reject all lightcurves in a subset of NOIRLab Source Catalog

data, while maintaining high efficiency on simulated events injected on the same

data.

These insights are combined to predict the exclusions on PBH dark matter the

Legacy Survey of Space and Time will create over the ten-year survey.
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Chapter 1

Introduction

The microscopic nature of dark matter has been a major topic of research for

many decades. One candidate theory is that it consists of black holes created in

the early universe, known as primordial black holes (PBHs) [2]. The upcoming

Rubin Observatory [3] and its ten-year Legacy Survey of Space and Time (LSST)

will have a wide-ranging impact on astrophysics and cosmology, and it will have

unique capabilities to characterize this dark matter. In this dissertation, I present

work that predicts its ability to detect PBHs through gravitational microlensing

events.

The first step is predicting the number of these events we can expect to see over

the course of the ten-year survey. This is accomplished with analytical models of

the dark matter density in our galaxy, and a simulated star catalog for Rubin. In
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addition to the total number of events, I use Monte Carlo methods to generate

catalogs of events that trace the parameter space predicted from the models. I

then use simulated surveys to estimate the detection efficiency for these events.

The second aspect is a new detection algorithm to find these rare events in

stellar lightcurves. It is particularly well-suited to make use of multi-color data,

a unique aspect of the survey. By running this analysis pipeline on data from

the NOIRLab Source Catalog (NSC) [4], I demonstrate strong background rejec-

tion for non-microlensing variations. I also show very high detection efficiency

on real lightcurve data by superimposing the effects of the previously generated

microlensing events.

This introduction provides a brief review of relevant background topics includ-

ing the field of cosmology, the Vera C. Rubin Observatory, primordial black holes,

and microlensing.

1.1 Cosmology

Cosmology is the study of nature at the largest distance scales. It asks ques-

tions about the universe as a whole. The field as we know it was arguably born

with the publication of the general theory of relativity by Einstein in 1915 [5],
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where he presented his field equations for gravity:

Gµν = 8πG
c4

Tµν (1.1)

Einstein’s insights into the connection between space on the left side and mat-

ter on the right provided a framework to understand how the components of the

universe affect its evolution through cosmic history. Because of this connection,

the study of the largest scales is deeply intertwined with the physics at the small-

est scales. A universe composed entirely of light would evolve differently under

gravity from one composed entirely of ordinary matter, in a way that follows from

matter-energy equivalence. The interplay between baryons, radiation, and dark

matter left its mark in Large Scale Structure through Baryon Acoustic Oscillations

[6–8], and it can be seen in the Small Scale Structure of galaxies [9].

The practice of cosmology also relies heavily on an understanding of micro-

scopic physics. Doppler shifting of atomic emission spectra allows us to calculate

the relative motion of distant light sources, and through Hubble’s Law [10], in-

fer their distances. Nuclear physics gives insight into the consistent explosions

of Type Ia supernova, and lets us use them as “standard candles” to calibrate

distances. Laser interferometry allowed us to measure gravitational waves on

Earth [11], giving us an alternate window into the cosmos from electromagnetic

radiation, via gravity’s effect on electromagnetic radiation.

The core motivation for the work presented here is to test a model of one

3



of the components of the universe: dark matter. Although there’s much we do

understand about dark matter on the cosmic scale, we know little to nothing

about its microscopic properties despite decades of research. It could be ultra-

light axions, and it could be black holes an order of magnitude heavier than the

sun. Proponents of “modified gravity” believe it has no microscopic properties,

and that the evidence displays a misunderstanding of gravity on certain scales [12].

However, this study on Primordial Black Holes (PBHs) requires no new particles,

and relies on the same gravity we were presented with over a hundred years ago.

I discuss PBHs as a candidate for dark matter in 1.3, but first, a bit of pedagogy.

1.1.1 ΛCDM

The Λ Cold Dark Matter model (Λ CDM) is known as the Standard Model

of cosmology [13]. With just 6 parameters, it accurately reproduces many of the

observed features of the cosmos, from present-day Large Scale Structure all the

way back to the oldest observable light, the Cosmic Microwave Background. It is

a particular realization of the Friedmann–Lemaître–Robertson–Walker (FLRW)

solution to Einstein’s Field Equations [14,15]:

ds2 = dt2−a(t)dΣ2 (1.2)

Here, a(t) is a scale factor, and contains all the time dependence of the metric. Σ is

the spatial metric for the comoving geometry. Observations constrain this metric
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to very close to flat on relevant scales, making dΣ2 ≈ dx2 +dy2 +dz2. The FLRW

metric is the most general metric which is both homogeneous and isotropic. This

means every point in the comoving space is equivalent, and any time dependence

is the same in all spatial directions.

The scale factor a(t) is constrained by a choice of stress-energy tensor Tµν ,

and the EFE. In ΛCDM, we take the content of the universe to be a perfect fluid,

with stress tensor

Tµν = (ρ+p)uµuν +pgµν (1.3)

with energy density ρ and pressure p, using units where c= 1. uµ is the 4-velocity

of the fluid. These are decomposed into contributions from radiation, matter, and

dark energy as ρ = ρr + ρm + ρΛ and p = pr + pm + pΛ. Each constituent has a

different equation of state, relating the energy to the pressure:

1. Radiation: pr = 1
3ρr

2. Matter: pm = 0

3. Dark energy: pΛ =−ρΛ.

The density and pressure, like the scale factor, are only functions of time. This

follows from the homogeneity and isotropy assumption. By considering Equa-

tions 1.2 and 1.3 as an ansatz to the Einstein Field Equations, one can derive the

5



Friedmann equations for a universe with curvature parameter k [16]:

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 (1.4)

ä

a
=−4πG

3 (ρ+ 3p) (1.5)

The first is found by looking at the 00 component of the EFE, and the second

is found by looking at its trace. The ratio ȧ/a is known as the Hubble expansion

rate, denoted H, and H0 is the present day value. The equations can be combined

to give:

ρ̇=−3H (ρ+p) (1.6)

Considering a general perfect fluid with equation of state p=wρ, we can solve

the above ODE:

ρ̇=−3(ȧ/a)ρ(1 +w) (1.7)

dρ

da
=−3(1 +w)

a
ρ (1.8)

For w 6=−1, this has the solution ρ= ρ0a−3(1+w). For w= 1, we see ρ̇= 0, and

ρ must be a constant.

If we consider a universe containing different species of fluids which don’t

interact with each other, each of these densities will follow its own Equation 1.8,

and the total density ρ will be a linear combination of these solutions:

ρ(a) = ρ0,ra
−4 +ρ0,ma

−3 +ρ0,Λ (1.9)
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We can rewrite the first Friedmann equation in terms of this solution, intro-

ducing a few variables [17]:

ρc ≡
3H2

0
8πG (1.10)

Ωi ≡
ρi
ρc

(1.11)

H2

H2
0

=
(
ȧ

a

)2 1
H2

0
= Ω0,ra

−4 + Ω0,ma
−3 + Ω0,ka

−2 + Ω0,Λ (1.12)

This ODE can be solved to find the scale factor a as a function of time, given

the density parameters for these components of the universe. The Ωi are not di-

rectly observable. Using astronomical data, cosmologists fit these parameters to

the values that best match the measurements. In the late 1990s, two independent

groups led by Riess and Perlmutter [18, 19] used Type Ia supernova measure-

ments to demonstrate that not only was ΩΛ nonzero, it was likely the dominant

component of the universe at present day. This component was dubbed “Dark

Energy” by Michael Turner in 1998 [20], and like Dark Matter, its microscopic

properties remain unknown.

1.1.2 Dark Matter

Discussion about unseen mass contributions to the cosmos far predates Dark

Energy, and even predates Relativity [21]. Lord Kelvin in 1904 was the first

to be credited with finding kinematic evidence in the motions of stars, in that

their velocity dispersions were inconsistent with those implied by their density
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and mass [22]. In 1933, Fritz Zwicky’s studies of the Coma Cluster revealed that

the velocity dispersion of individual galaxies in the cluster was over an order of

magnitude higher than would be predicted by the virial theorem [23].

The next genre of kinematic analysis would be that of rotation curves of galax-

ies, meaning the average velocity of stars as a function of their distance from

the center of the galaxy. Although anomalies were reported in M31 as early as

1939 by Babcock in his Ph.D. dissertation [24], the idea that dark matter halos

were responsible for the flattening of galactic rotation curves reached widespread

popularity with Vera Rubin and Kent Ford’s observations of M31 with a newly

developed spectrograph [25].

As computers became more capable, it became feasible to simulate structure

formation in the universe. The results of the simulations serve as a test of the

cosmological models by comparing to observed distributions of galaxies on the

sky, for example in [26,27]. Simulations where dark energy and cold dark matter

dominate are able to accurately reproduce the so-called Large Scale Structure seen

in observations.

All the evidence listed so far is based on present-day measurements of the local

universe. But the imprint of dark matter can be seen in the oldest electromagnetic

signals available, the Cosmic Microwave Background (CMB). Anisotropies in the

CMB were first revealed by COBE in 1992 [28, 29] and later characterized more
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precisely by WMAP [30] and Planck [6]. The scale and amplitude of these tem-

perature fluctuations reveal the interaction between dark matter, baryons, and

radiation in the very early universe, which we call Baryon Acoustic Oscillations

(BAO). These features set the density ratios of the three major components of

the universe at the moment where the primordial plasma recombined into atoms.

This is a critical measurement for distinguishing the dark matter content from

baryonic matter on cosmic scales in the context of ΛCDM.

1.2 Vera C. Rubin Observatory

Astronomers have been anticipating the power of the Rubin Observatory for

many years. It will produce a dataset which is the first of its kind, a movie in

six colors across 10 years covering ∼ 20,000 square degrees of the sky. It has

required decades of research, design, construction, optimization, and verification.

As a result of all this work, it is expected to start producing data in 2025.

In this section I will give a brief introduction to the motivation, design, and

capabilities of the observatory. For thorough references, see [3, 31].

1.2.1 Scientific goals

The list of science cases for such a dataset can fill a large book [31]. After 10

years it is expected to contain 20 billion galaxies, 17 billion resolved stars, and 6
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million solar system objects. As impressive as those numbers are already, much

of the power of the survey lies in the fact that we will not measure these objects

once, but hundreds of times each. We will see the dynamic nature of the universe

around us — a movie, not a photo. And while the most powerful results will

come from the full survey, the discoveries in the final few years will be marginal

compared to the wealth of previously inaccessible power gained in the first few

years.

The four main pillars organizing the scientific goals of the survey are: Taking an

Inventory of the Solar System, Mapping the Milky Way, Exploring the Transient

Optical Sky, and Probing Dark Energy and Dark Matter. All these topics warrant

a different observing strategy for optimizing the power of the survey. For a simple

example, a solar system survey would want to spend a lot of time observing within

the plane of the solar system. A Milky Way survey would spend a lot of time in a

different plane — that of the galaxy. A transient survey might spend more time on

the galactic center, where the density of stars is higher. And a dark energy/dark

matter survey would want to find distant galaxies, and preferentially point away

from all of these planes. But the Legacy Survey of Space and Time (LSST) plans

to take data that’s useful for all these topics! Designing a survey strategy - or

cadence - that achieves this balance is a nontrivial task. The details are still under

deliberation. In Section 3.3, I present a comparison of the capabilities of different
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proposed survey strategies to detect Primordial Black Holes of different masses

based on simulations of the full 10-year survey.

1.2.2 Camera design

At 3.2 gigapixels, the LSST camera is the largest digital camera ever built [32].

The pixels are 10 µm × 10 µm, which is around the scale needed to Nyquist sample

the PSF on a night with ideal seeing, around 0.67 arcsec, given the plate scale of

50 µm/arcsec [33]. The massive number of pixels is necessary to cover the large

9.6 deg2 field of view, which enables rapid revisit times of a few days for objects

across the sky. The photometry is extremely precise, with detector noise near the

level of atmospheric noise on a clear night, . 9 e−.

The focal plane is composed of 189 4K × 4K CCD sensors 1, grouped into 3×3

rafts which share electronics including readout and power supplies. This parallel

readout configuration allows a fast readout time of 2 seconds for the entire focal

plane. High quantum efficiency from 320 to 1080 nm is achieved with 100 µm thick

deep depleted silicon. High voltage back-bias reduces diffusion between pixels to

minimize the point-spread function (PSF) of the detector. Six bandpass filters

are available with an automatic changer: u, g, r, i, z and y. Having data in

several colors is important for characterizing transient phenomena. In particular,

microlensing events are achromatic - the amplification of light is the same across
1Described in more detail in Section 2.1
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the spectrum. This is a key feature that lets us distinguish those events from

other astrophysical variations.

1.2.3 Data management

The camera will produce ∼ 10−20 TB 2 of raw image data every night for 10

years. That’s challenging enough to move straight to archives around the world

for scientists to access. Every image must undergo Instrument Signature Removal

(ISR) to correct biases, dark currents, cosmic rays, and many other effects, in

order to produce a Calibrated Exposure fit for science.

In addition, there will be real-time processing at the base facility to generate

alert streams, enabling rapid followup with other facilities. This includes Differ-

ence Imaging Analysis (DIA), which compares the brightness of objects to base-

lines estimated from previous measurements. This technique gives us a shortcut

to examine dynamic objects in the sky, including sources undergoing microlensing

events. Reducing the search domain to only those showing sufficient changes will

expedite searches for not only microlensing, but also variable stars, supernova,

solar system objects, and more. These real-time alerts will include postage-stamp

images of the transient objects, catalog information, and history of the objects.

Annual Data Releases will be produced containing all data from the beginning
2For years the plan was to take 2× 15 second exposures for each visit, in part to mitigate

cosmic ray events. It seems more likely now that the observatory will take 1× 30 s exposures
instead, halving the data requirements, and reducing read noise.
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of the survey to the cutoff date of the release. They will contain data products

including:

1. Calibrated exposures

2. Coadded images produced from several exposures

3. Object, Source, and FaintSource tables, constructed with a stack of expo-

sures. Includes shapes, positions, fluxes, kinematics, and limited classifica-

tion.

4. DIASources from the alert production

5. Orbits for Solar System Objects

6. An atmospheric model for every exposure

Since these releases are cumulative, containing all previous data every year,

the processing can improve with every release, and remain self-consistent for every

Data Product within the same release.

1.3 Primordial Black Holes as Dark Matter

Primordial Black Holes (PBHs) are, in a sense, the least speculative proposal

for dark matter. They are unique in that they don’t require undiscovered particles.

They are simply black holes produced in the very early universe. For this reason,
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and in part due to potential excesses in mass gap object detections with LIGO-

Virgo [34], they have seen renewed interest in recent years.

Though we don’t have evidence that the conditions were right for PBH pro-

duction during inflation (or any indication about the details of inflation), we have

plenty of evidence for black holes, both as stellar remnants and supermassive black

holes [11, 35,36].

1.3.1 Production methods

For a review of the various models capable of producing PBH’s, see [2]. The

general picture is that the extreme densities during inflation allows overdensities

to overcome expansion pressure and gravitationally collapse. There are numerous

studies proposing and exploring the PBH production of various inflation models.

These models have a great deal of freedom to produce PBHs anywhere between

10−38 and 105M�, though as described below, the ability to account for present

day dark matter is much more limited.

1.3.2 Existing constraints

On the light mass end, we are constrained by Hawking radiation. Even in

his first paper on the topic [37], Hawking notes that PBHs produced lighter than

∼ 10−18M� would have evaporated by now. Directly above this limit, light black
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Figure 1.1: A composite of existing PBH constraints as a fraction of Dark Matter,

taken from [1]. The red regions are from gravitational wave experiments, and the

blue regions are from other measurements. Dashed lines show projected sensitiv-

ities from upcoming searches.
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holes with M . 10−17M� would produce an abundance of positrons [38]. Annihi-

lation with nearby electrons would produce detectable γ-rays, particularly at the

energy of the annihilated particles, me = 511 keV. Measurements of this emission

line from INTEGRAL constrain the abundance of PBHs to fDM < 10−3 below

∼ 10−17M�, and stronger for smaller masses [39].

On the high mass end, strong constraints are provided by anisotropies in the

CMB, though these are highly dependent on modeling of the accretion history of

the PBHs [40]. These limit the abundance around and above 103M�.

In the vicinity of 10−11−10−6M�, the Hyper-Supreme Cam/Subaru observa-

tions of the Andromeda Galaxy (M31) [41] place strong limits via microlensing,

the subject of this dissertation. This mass sensitivity window is set by models of

the M31 halo, velocity dispersions of the stars and PBHs, the distance to M31,

the 2-minute sampling cadence of the observations, and the 7-hour duration of

the program. As we will see in Chapter 3, for a fixed halo mass distribution

and velocity profile, microlensing events have timescales tE proportional to the

square root of the individual PBH mass. This means faster observations are more

sensitive to lighter lenses.

The slower cadence, longer duration surveys OGLE [42], EROS [43] and MA-

CHO [44] constrain the higher masses 10−7−100M� by measuring the Magellanic

clouds and the Milky Way Galactic Bulge.
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1.3.3 Rubin’s potential contributions

Unlike MACHO, EROS, and OGLE, Rubin’s Wide-Fast-Deep survey isn’t tai-

lored to microlensing event discovery. The survey strategy balances a great deal

of scientific goals. Nonetheless, the consistent revisiting of many sources over

such a long period with strong photometric repeatability is the ideal condition for

discovering long duration events.

One distinct and powerful advantage for Rubin in this domain is the broad

quantum efficiency of the camera from IR to UV wavelengths, and its 6 available

filters. Previous major microlensing surveys have only used one or two filters. As

previously mentioned, the achromaticity of microlensing events is an important

feature which can be leveraged to strongly reject background astrophysical varia-

tions. It is central to the approach described in Chapter 4. With only one filter,

one learns nothing about the color variations in a transient event, and must rely

on the quality of fit to an ideal microlensing curve, and contextual information

like whether the source has displayed variations in the past. In contrast, with

multiple filters, certain variable stars can be kept as potential lensing sources,

since intrinsic variation is typically chromatic to some degree, with each band

changing a different amount. If one were to be lensed during a period of stability,

the event would be distinguished by its profile in color space. With such rare

events, background rejection becomes indispensable.
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1.4 Microlensing

1.4.1 Derivation of microlensing curve from General Rel-

ativity

1.4.1.1 Null geodesics of the Schwarzchild metric

The most general static spherically-symmetric solution to the Einstein Field

Equations in (1,3) dimensions is the Schwarzchild metric, first presented in [45]:

ds2 =
(

1− rs
r

)
dt2−

(
1− rs

r

)−1
dr2− r2dθ2− r2 sin2 θdφ2 (1.13)

with rs ≡ 2GM and units where c= 1.

We want to understand what happens to light rays traveling through this

metric. Light follows null geodesics, paths with ds2 = 0. Without loss of generality,

let’s just consider paths along the equatorial plane, with θ = π/2. Then we’re left

with:

0 =
(

1− rs
r

)
dt2−

(
1− rs

r

)−1
dr2− r2dφ2 (1.14)

We can use the geodesic equation to find some conserved quantities:

d2xµ

dλ2 + Γµνρ
dxν

dλ

dxρ

dλ
= 0 (1.15)

with the Christoffel symbols Γµνρ and an affine parameter λ.
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From [46], the definition of the Christoffel symbols is:

Γλµν = 1
2g

λσ

(
∂gσν
∂xµ

+ ∂gσµ
∂xν

− ∂gµν
∂xσ

)
(1.16)

We will compute the nonzero Christoffel symbols below. Since the Schwarzchild

metric is expressed diagonally above, the symbols simplify first because the in-

verse metric is simply given by the inverse of the diagonal elements, and second

because the sum over σ reduces to just the σ = λ terms.

Γttr = Γtrt = 1
2

(
1− rs

r

)−1(rs
r

)
(1.17)

Γrrr =−1
2

(
1− rs

r

)((
1− rs

r

)−2(rs
r2

))
(1.18)

=−1
2
rs
r2

(
1− rs

r

)−1
(1.19)

Γrtt = 1
2
rs
r2

(
1− rs

r

)
(1.20)

Γrφφ =−1
2

(
1− rs

r

)
(2r) =−r

(
1− rs

r

)
(1.21)

Γφφr = Γφrφ =− 1
2r2 (−2r) = 1

r
(1.22)

We can plug these in to get constraints on the geodesics in each coordinate.

From now on we will repurpose the coordinate symbols to refer to functions of an

affine parameter λ describing the path taken by a light ray: t= t(λ), r = r(λ),φ=

φ(λ).

The geodesic equation for φ is:

d2φ

dλ2 + 2
r

dφ

dλ

dr

dλ
= 0 (1.23)
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We can multiply both sides by r2 to see this is equivalent to a total derivative

equal to zero:

d2φ

dλ2 r
2 + dφ

dλ

(
2r dr
dλ

)
= 0 (1.24)

d

dλ

(
dφ

dλ
r2
)

= 0 (1.25)

This implies that dφ

dλ
r2 ≡ L is a constant along the geodesic.

Similarly, for the t equation:

d2t

dλ2 + rs

r2
(
1− rs

r

) dt
dλ

dr

dλ
= 0 (1.26)

d2t

dλ2

(
1− rs

r

)
+ rs
r2
dt

dλ

dr

dλ
= 0 (1.27)

d

dλ

(
dt

dλ

(
1− rs

r

))
= 0 (1.28)

Implying another constant dt

dλ

(
1− rs

r

)
≡ E . Now we can refactor these into

the metric for the light path, dividing by dλ2, and using dr
dλ = dr

dφ
dφ
dλ = dr

dφ
L
r2 .

0 =
(

1− rs
r

)(
dt

dλ

)2
−
(

1− rs
r

)−1(dr
dλ

)2
− r2

(
dφ

dλ

)2
(1.29)

0 =
(

1− rs
r

)−1
E2−

(
1− rs

r

)−1 L2

r4

(
dr

dφ

)2
− L

2

r2 (1.30)

L2

r4

(
dr

dφ

)2
= E2− L

2

r2

(
1− rs

r

)
(1.31)

(
dr

dφ

)2
= r4E

2

L2 − r
2
(

1− rs
r

)
(1.32)

E and L being dependent on an arbitrary parametrization of the coordinates

via the λ derivative makes it unclear how to physically interpret them. But since
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just their ratio appears in the above differential equation, we can use the chain

rule to reduce these to something independent of λ:

L

E
≡ b= dφ/dλ

dt/dλ

r2

1− rs/r
(1.33)

= dφ

dt

r2

1− rs/r
(1.34)

We can understand the impact parameter b by going back to Equation 1.32,

and considering the moment of closest approach, when r = rmin. At this point,

since r is at a minimum along its trajectory, its derivative vanishes along λ. There

must still be motion along φ, so dr/dφ= 0. Then we have:

1
b2

= 1
r2

min
− rs
r3

min
(1.35)

b2 = r2
min (1− rs/rmin)−1 (1.36)

So assuming rmin is meaningfully larger than rs, b is on the same order as rmin.

We can see that for rs = 0, b= rmin.

1.4.1.2 Deflection angle

Now, to find the angle at which light is deflected by the black hole, we must

evaluate
∫ rmin
∞ dr[dφ/dr]. First rearrange Equation 1.32:

dφ

dr
=
(
r4/b2− r2 + rrs

)−1/2
(1.37)

∆φ= 2
∫ rmin

∞
dr
(
r4/b2− r2 + rrs

)−1/2
(1.38)
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The factor of 2 comes from integrating the function along a curve from r =∞

back to r=∞ - we must integrate the path coming toward the minimum approach

distance, then back out. Since it’s symmetric, we just multiply 2.

It turns out this is an intricate integral, resulting in an analytic solution in-

volving the Weierstrass elliptic function, which Mathematica will produce after

a long evaluation time. And it makes sense that this is something complicated.

After all, this is an exact solution so far. It has to include all the chaotic funny

business one could imagine when a light ray gets close to the photon sphere. For-

tunately, in the case of microlensing, we have a small parameter: rs/rmin� 1. To

start, there is a hard constraint from the black hole shadow limiting light rays to

rmin >
√

27 [47]. Numerical evaluation shows the approximation below is off by

∼ 20% at that limit. But from the geometric arguments in the next section, for

microlensing, this small parameter is more like 10−6 in the least generous cases,

and generally much smaller3.
3This is for a 100M� lens 10 pc away from a bulge source.
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We can organize terms in powers of rs:

∆φ= 2
∫ rmin

∞
dr
(
r4/r2

min(1− rs/rmin)− r2 + rrs
)−1/2

(1.39)

= 2
∫ rmin

∞
dr
(
r4/r2

min− r4rs/r
3
min− r2 + rrs

)−1/2
(1.40)

= 2
∫ rmin

∞
dr
(
r4/r2

min− r2− rs
(
r4/r3

min− r
))−1/2

(1.41)

= 2
∫ rmin

∞
dr

1
r

(
r2/r2

min−1− rs
r

(
r3/r3

min−1
))−1/2

(1.42)

= 2
∫ rmin

∞
dr

1
r

(
r2/r2

min−1
)−1/2

(
1− rs

r

(
r3/r3

min−1
r2/r2

min−1

))−1/2
(1.43)

Near r→∞, the outer 1/r term pushes the integrand to 0. Near r→ rmin, the

second term is well approximated by a series expansion of (1−x)−1/2 ≈ 1 + 1
2x.

∆φ≈ 2
∫ rmin

∞
dr

1
r

(
r2/r2

min−1
)−1/2

(
1 + rs

2r

(
r3/r3

min−1
r2/r2

min−1

))
(1.44)

The first term in this integral evaluates to 2arctan(
√
r2/r2

min−1)rmin∞ = −π.

This corresponds to no change in direction with no black hole, rs = 0.

The first order term in rs is:

α≡ π−∆φ≈−rs
∫ rmin

∞
dr

1
r2

 r3/r3
min−1(

r2/r2
min−1

)3/2

 (1.45)

(1.46)
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Substitute x= r/rmin, then evaluate the integral over x by substituting u= sec(x):

α≈− rs
rmin

∫ 1

∞

dx

x2

 x3−1
(x2−1)3/2

 (1.47)

≈− rs
rmin

(
2x2−x−1
x
√
x2−1

)1

∞
(1.48)

α≈ 2rs
rmin

(1.49)

This matches the result of Einstein first presented much more concisely in [5].

1.4.1.3 The lens equation

The deflection angle is all the gravitational input we need. The rest is geometry

and optics. We will proceed in the Point Source-Point Lens (PSPL) approximation

4.

Call the true angular distance between the source and the lens β, and the

position of the deflected image from the lens θ. Of course, these are really solid

angles ~β and ~θ, but for simplicity and without loss of generality, consider the angle

restricted to the plane made by the observer, source, and lens, since they are not

perfectly collinear.

We can make a few observations given the geometry of Figure 1.2. Since the

deflection angle is small, rmin ≈ DLθ. We also see (θ−β)DS ≈ αDLS . We can
4A point source refers to anything unresolved by a given optical system. All stars (except

the Sun) are point sources for ground-based telescopes like Rubin, but if a galaxy is lensed, its
shape comes into play.
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Figure 1.2: A schematic diagram of the lensing geometry. The upper path has

deflection angle α−, image location θ−, and closest approach radius rmin−, and

the lower path has α+, θ+, and rmin+. Only one parameter is shown per pair to

maintain visibility. In reality, α± is an extremely small angle, and the objects are

very nearly aligned. The dashed lines are the null geodesics between the observer

and source. The images will appear at the angle θ± away from the lens, and the

true position of the source is β away from the lens.
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solve for β to get:

β = θ−αDLS

DS
(1.50)

= θ− 2rsDLS

DLDSθ
(1.51)

= θ− θ
2
E

θ
(1.52)

where we have defined the Einstein angle θE ≡
√

2rs DLS
DSDL

. This parameter

sets the angular scale of the lensing event. Now we have a quadratic equation for

θ given β, and it has two solutions:

θ± = 1
2

(
β±

√
β2 + 4θ2

E

)
(1.53)

1.4.1.4 Magnification

The deflection of light distorts areas when mapping from the source plane to

the image plane. As a result, although the light intensities and frequencies stay

the same, the fluxes reaching the observer do not. They vary proportionally to

the area of their images, as described in depth in Section 5.2 of [48].

Because of the circular symmetry of Equation 1.53, we can think of β and θ

as radial coordinates from the lens, and a corresponding angle φ about the lens,

which is unaffected by the transformation. An infinitesimal solid angle in the

source plane is β dφdβ, and in the image plane θdφdθ. Thus, after cancelling the
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dφ, the ratio of the areas is

µ=
∣∣∣∣∣ dθdβ θβ

∣∣∣∣∣ (1.54)

µ± =
∣∣∣∣∣12
(

1±β
(
β2 + 4θ2

E

)−1/2) θ±
β

∣∣∣∣∣ (1.55)

µ± = 1
4

(
1±β

(
β2 + 4θ2

E

)−1/2)( 1
β

√
β2 + 4θ2

E±1
)

(1.56)

µ± = 1
4

(
β
(
β2 + 4θ2

E

)−1/2
+ 1
β

√
β2 + 4θ2

E±1±1
)

(1.57)

µ± = 1
4

(
u
(
u2 + 4

)−1/2
+ 1
u

√
u2 + 4±2

)
(1.58)

(1.59)

where we substitute the dimensionless impact parameter u= β/θE .

Since there are two images, to get the total flux from the source, we simply

add the magnifications.

µ= 1
2

(
u
(
u2 + 4

)−1/2
+ 1
u

√
u2 + 4

)
(1.60)

µ= 1
2

(
u2 + (u2 + 4)
u
√
u2 + 4

)
(1.61)

µ= u2 + 2
u
√
u2 + 4

(1.62)

1.4.1.5 Lightcurves

If we assume the lens and source have linear trajectories on the sky, the impact

parameter can be parametrized as:

u(t) =

√√√√u2
min +

(
t− t0
tE

)2
(1.63)
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where umin is the smallest value of u along the trajectory, which is reached at

the peak time t0, and the Einstein crossing time tE is the time it takes for the

lens to traverse one Einstein angle θE in the frame of the source. Computing the

magnification as a function of time using this impact parameter gives the blue

curves in Figure 1.4.

1.4.1.6 Astrometric shifts

Even though the two images from a single lens are rarely resolved, the shift

from the source position can be described in terms of the centroid of the two

deflected images, given in [35] as:

δ(u) = u

u2 + 2θE (1.64)

For a bulge source lensed by a large 100M� PBH halfway to the bulge with

umin = 1, this corresponds to a shift of ∼ 5 mas. Rubin’s astrometric accuracy

spec of 50 mas [33] indicates this will not be a relevant effect for most events,

though if it is pronounced, it can be combined with inference on the lightcurve to

better constrain the Einstein angle θE .

1.4.2 Parallax effects

Assuming the motions of sources and lenses are linear trajectories on the sky

on these time and distance scales is reasonable considering the rotation curves of
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the Milky Way and the distance to the bulge and Magellanic Clouds. However,

the motion of Earth around the sun is a relevant effect to microlensing in certain

regimes. Ref [35] contains a thorough and generic presentation of the relevant

kinematic equations.

Copied from the above reference, the concise form reads:

u(t) = u0 + (t− t0)u̇0 +πEδγ(t) (1.65)

where u is the 2D impact parameter on the sky, u̇0 is the linear trajectory as-

suming a stationary observer, for example centered at the sun, and δγ(t) is the

projection of Earth’s orbit onto a plane perpendicular to the vector toward the

source star.

Figure 1.3 shows an extreme example of the effect of parallax on a microlensing

curve, with an especially long duration event for the size of the lens, whereas

Figure 1.4 shows a typical case, where there is little effect.

The algorithm described in Section 4.4 does assume a PSPL curve with no

parallax for the fitting in Round 2. But Round 1 is model-independent, and only

looks for achromatic brightening, which is the case with or without parallax. The

information gained in pronounced parallax effects is a good thing for parameter

inference. Without it, we only infer one degree of freedom from the curve —

the crossing time 5. With an additional feature to fit in a model with parallax,
5The distribution of the minimum impact parameter umin is uniform across all relevant PBH

masses, and doesn’t help infer lens masses.
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combined with a known parallax from a source star, we can start to break the

degeneracy between distance and mass baked into the formula for the Einstein

angle. This characterization was used to discover an isolated stellar mass black

hole in [35].
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Figure 1.3: A point source point lens microlensing curve with parallax (red) and

without parallax (blue), from a bulge source and a 0.1M� lens halfway to the bulge

from Earth, with an atypically (∼ 4σ) long crossing time of 370 days. The left

shows the trajectory in impact parameter u, and the right shows the corresponding

change in magnitude over time, given in Modified Julian Days (MJD).
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Figure 1.4: A median timescale event of ∼ 6 days from a 0.1M� PBH, showing

the marginal effect of parallax on the typical event.
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Chapter 2

Camera work

In this Chapter, I describe some of the key contributions I made to the science

verification and testing of the LSST Camera. First I will provide some background

information on the sensors which form the basis for its operation.

2.1 Charge Coupled Devices (CCDs)

Humans have been gathering data from the night sky for millennia, in one way

or another. On that timescale, digital technologies and methods are still in their

infancy. Yet, it would be hard to overstate the revolutionary impacts the field has

seen as a result of their adoption in astronomy.

Astronomers’ interest in the use of digital computers grew significantly during

the 1960s, but even through the next decade, the principal methods for recording
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images from telescopes relied on photographic emulsions [49]. Early adopters of

digital methods measured the brightness of objects with machines that scanned

the photographs and converted them to digital records. This interface between

analog and digital methods was a major point of data friction in this transition

period. The process of scanning and storing photographs required significant

human intervention and storage of physical media. The logical progression seemed

to require a natively electronic method of photon detection.

One of the first was the Charge Coupled Device (CCD), developed by Willard

Boyle and George E. Smith at Bell Labs in 1969 as a data storage device [50].

J. Anthony Tyson, now Chief Scientist for the Rubin Observatory, pioneered its

application to astronomy in the late 1970s by searching for faint galaxies [51].

Though there were several options in the context of rapid hardware and materials

innovation of the era, by 1977 astronomers predicted that CCDs would eventu-

ally become the standard tools of the trade [52]. In the decades since then, the

linearity, low noise, and high quantum efficiency of the technology would enable a

new era of precision astronomy. The invention of the CCD would receive half the

Nobel Prize in Physics in 2009 [53] for its impact on this field and many others.
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2.1.1 Detection and integration of photons

CCDs are fundamentally composed of a semiconducting bulk, usually silicon

based, and a set of control gates for each pixel, galvanically isolated from the

bulk with a layer of insulation. The CCD’s operation as a detector relies on the

photoelectric effect [54] to create electron-hole pairs within a depletion region

when an incident photon has enough energy to excite an electron across the gap

between the valence band and the conduction band. The free electrons follow

the electric field induced by the gate voltages, and collect in a potential well.

The LSST Camera sensors use high-resistivity crystalline silicon, with a layer of

n-doped silicon closer to the gates, and p-doped silicon on the back. This forms

the depletion region, where electrons from the n-type region diffuse into the p-

type region to recombine with holes, eliminating the available charge carriers.

The depletion region is extended throughout the bulk by applying a high voltage

substrate bias, nominally −70 V.

The redistribution of charges in the depletion region creates an electric field,

which separates the conduction band electrons and holes quickly once they are

produced by a photon, bringing the electrons toward the gates and the holes

toward the back. Without this field, opposite charge carriers recombine before

they could be collected and measured.

The depth of the depletion region is important for the absorption of long-
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wavelength infrared photons. The key principle for detection is for a photon to

supply an electron with enough energy to exceed the band gap of ∼ 1.14 eV 1 and

become conducting. However, for a photon to be absorbed with this minimum

energy requires an interaction with an electron in the highest-energy valence band

state. The density of states gets sparser near the band gap, as can be seen in

Figure 1 of [55]. Since higher energy photons can excite electrons in lower energy

valence states across the band gap, they have more opportunities to be absorbed,

and therefore higher quantum efficiency. Additionally, interactions with phonons

introduce a temperature dependence, which further reduces the absorption paths

available to low energy photons compared to those with higher energies when

operating at low temperatures [56]. Making the depletion region deeper gives the

low-energy photons more opportunities to be absorbed and detected.

2.1.2 Readout operation

Once the photoelectrons have been integrated within the substrate and col-

lected by the central gate of each pixel, they are read out in a process dubbed the

“bucket brigade.” By controlling the voltage levels of the gates with a collection

of clock signals, the charges from each pixel can be coherently shifted to adjacent

pixels, and sequentially fed into the output electronics to be effectively counted

and digitized. Figure 2.1 displays both parallel and serial shifts. The parallel
1A photon with wavelength ∼ 1090 nm
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Figure 2.1: The bucket brigade operation of charge shifting in a CCD.

shifts move charges between rows, with charges from every column moving in

sync. When a row of charges reach the final row, called the serial register, they

are shifted in the orthogonal direction, as each charge packet reaches the readout

chain at the end. Here, the sense node converts the charge packet via a capacitor

to a voltage, which is then amplified by a MOSFET to the CCD video output

channel.

The readout electronics make use of correlated double sampling to reduce the

effects of variation of the reset level in the video output. After each readout, the

sense node clears charges via a gate connecting it to the reset drain. The output

electronics use a Sample-and-Hold Amplifier (SHA) to integrate, then hold this

voltage at the inverting input of a differential amplifier, before the serial clocks
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bring the next charge packet to the sense node. With the charges in place, the

video level is integrated and held on the noninverting input. Now the differential

amp’s output is proportional to the difference between the reset level and the

output level measured with the sense node [57]. This voltage is then sent to

an ADC for digitization. The measurement is encoded in Analog-Digital Units

(ADU), and in the LSST Camera, our gain is O(1) ADU/photon.

2.1.3 Bias correction

The bias level of a CCD readout chain is an offset level that persists through

the ADC stage, and needs to be subtracted during Instrument Signature Removal

(ISR). It would be nice if we could say “constant offset level,” but this is not the

case, despite the readout electronics being designed with this in mind. The reality

is that the bias level is a dynamic feature of the measurement, and requires careful

consideration to avoid introducing systematic effects.

There are a few levels at which we can think about the variable nature of the

bias:

1. Stochastics from Johnson noise in the circuits (each readout)

2. Profiles along the parallel shift direction (parallel bias profile)

3. Profiles along the serial shift direction (serial bias profile)
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4. Non-factorizing profiles along the image readout (2D bias profile)

5. Variations across images (bias stability)

The per-pixel noise we can’t do much about, besides stacking multiple images.

One standard tactic is to take bias frames, which are CCD readouts performed

with no integration time on the sensor. These are meant to assess the response of

the system when there are zero photon detections in a measurement. To correct

the bias in an image Aij , one can first take a bias frame Bij , then simply subtract

it to get a corrected image Cij = Aij−Bij . This can be improved by considering

the inherent read noise. If both A and B contain Gaussian read noise with width

σ, their difference will contain noise with width σ
√

2. Averaging N bias frames

together reduces the standard deviation by 1/
√
N and produces a superbias with

arbitrarily small variance, leaving the corrected image with just the read noise of

the original measurement, theoretically. For an extremely stable camera, this is

a good strategy. One can take an arbitrary number of bias frames, average them

together, and subtract the same superbias for every readout indefinitely.

But real cameras are dynamic. They respond to their environment. Changes

in temperature, readout history, and power supply, to name a few, can have

difficult-to-predict effects on the response of the system. In the LSST Camera, at

least, relying on superbias alone is too optimistic — no single bias frame will be

well-approximated by a superbias. To do the best ISR job possible, we need some
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more data.

As far as bias correction, another powerful tool is overscans. To read out the

charges integrated on a CCD, one shifts according to the number of rows and

columns of pixels on the sensor (segment). After shifting all the columns to the

readout chain, any further readouts will not correspond to pixels. Instead, they

will read the level corresponding to no charge — the bias 2. But now, instead of

extrapolating the bias from a separate image, we have an almost instantaneous

indication of the bias level, taken at the end of the readout of every row. We can

use this data as a proxy for the serial bias profile.

Parallel overscans are measured by continuing to read rows after all the pixels

have been read. Reading entire rows worth of pixels gives insight into how the bias

changes within each row. There can be substantial left-to-right structure within

each row, and subtracting an average parallel overscan profile can be effective for

removing it.

If the bias in an image could be factorized as serial and parallel overscans,

i.e. Bij = Bserial
i +Bparallel

j , we would have a good solution here. And in fact, for

many sensors this is perfectly suitable for correction - many sensors don’t even

need the parallel correction. But there are a handful of sensors for which the bias
2There is a caveat here: due to Charge Transfer Inefficiency (CTI), something like 1/105

electrons are leftover in the previous pixel during each shift. This smearing of charge leaves a
remnant of the last few pixels in the overscans, and by using hi-flux flat test images, we can
leverage this fact to characterize the CTI.
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does not factorize in this way. For these sensors we have to rely on superbiases,

and be careful to assess their stability.

2.2 Multi-modal behavior of LSST Camera am-

plifiers

Through the course of Electro-Optical (EO) testing for the LSST Camera,

it became clear that there was some state-dependent behavior in the readout

electronics. This is exemplified by looking at the bias levels, which appear quasi-

stable at the row-level (after removing parallel structure), until a transition to

another internal state causes them to jump to a different baseline. Figure 2.2

shows the clustering of overall bias levels per image for the same CCD segment,

compared across 16 different sequencer settings. The mean bias levels of the upper

and lower segments, associated with one ASPIC 3 each, are correlated depending

on their state, making this clustering behavior around different baselines.

This statefulness can be seen not only at the per-image level, but also within

images. This is known as the “bias-shift” issue described in detail in Section 2.2.1

below.
3Analog Signal Processing Integrated Circuit, a custom designed circuit with output elec-

tronics for the LSSTCam [58]
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Figure 2.2: Visualizing the changes in bias level in response to different sequencer

settings. Each datapoint is derived from one image, where the x and y positions

are the mean of the bias level over all segments associated with one of the two

ASPIC chips. Multimodal structure persists in different ways through all tested

settings.
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2.2.1 Bias shifts

One strong example of the serial overscans’ utility is in the bias shift issue.

For certain readout configurations of the camera, we observe a rapid change in the

average bias level from row to row (e.g. Figure 2.3). The precise location of the

shift is not consistent among different images for the same sensor, which makes

this impossible to correct with the superbias method. This location variation can

be seen at a significant level in Figure 2.9, but even at the smaller level seen

in Figure 2.10, inconsistencies in the location of these shifts break all correction

strategies except those that make direct use of the serial overscans. The serial

overscans give us insight into the timing of the shift, though we don’t know where

it happens in the image between overscans. We can assess the shift in more detail

by looking at a bias frame, as in Figure 2.4. We can see a trend climbing up from

the middle of row 66 to the end of row 67, suggesting a time constant much slower

than the pixel readout time. In a science image, we can only make use of the

overscans to characterize the bias. Thus, we wouldn’t have enough information to

fully calibrate these two rows - subtracting the mean of the overscan region would

leave this increasing gradient.

42



0 100 200 300 400 500

0

250

500

750

1000

1250

1500

1750

2000

Bias shift in R10_S02_C10
Run 13162 - MC_C_20211212_000272

24850

24855

24860

24865

24870

Rows

Columns

Raw 
ADU
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the bias level ∼ 25k times higher than

the marginal contribution of a photon.
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Figure 2.4: Figure 2.3 as a time series near the shift. This is different from the

raw image as the parallel (left-right) structure has been removed. The blue dots

show the individual pixel values, and the green lines are a moving average.
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2.2.2 Bias shift detection algorithm

The shift detection algorithm is implemented in the Github repo lsstcam-bias-

shifts, as well as in the main electro-optical test (EOTest) pipeline:

https://github.com/lsst-camera-dh/eo_pipe

1. Extract the serial overscans for each segment from an image, in readout

order

2. Compute the mean Mi of each row’s overscan, skipping the first nskip

values, default 3 (to avoid CTI leftover charges)

3. Compute the high-frequency noise σ as the standard deviation of Mi after

a 1st order Butterworth filter at 30 pixels.

4. Compute the convolution Si of Mi with the odd_local_kernel k defined

below, which detects rapid changes in average level before and after the

center of the kernel.

5. Compute the shift detection metric Di = Si/σ.

6. Detect contiguous regions where Di exceeds the threshold parameter, 3 by

default. This corresponds to a shift in baseline above 3σ of the HF noise.

Ignore any excursions in the first skip_rows rows, by default 30.
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7. For each region, find the row with the highest value of Di. Fit two lines in

Mi for window pixels on either side of the peak. If the trend spans more

than half the size of the shift in the same direction as the shift on either

side, reject the shift. This is the “flatness” condition.

This kernel measures the difference in average level on either side of the center,

with a stronger weighting near the center. It is normalized so that the result of

the convolution approximates the average difference between the two sides, under

that weighting scheme. The kernel is visualized in Figure 2.5.

def odd_local_kernel(window=30):

kernel = np.concatenate([np.arange(window), np.arange(-window+1,0)])

kernel = kernel/np.sum(kernel[:window])

return kernel

2.2.3 Association with bright pixels

The bias shifts were first recognized around 2019. They appeared as in Figure

2.6, with each shift appearing near a bright pixel defect. This was confirmed with

an early version of the above algorithm, which found that there were no bias shifts

in any of the test data without a nearby saturated pixel, above ∼ 180 kADU. This

was assumed to be causal. After a reduction in the gain of the readout amplifier,

such that the bright defects stayed below ∼ 180 kADU, another search showed

46



0 10 20 30 40 50 60
Data index

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ke
rn

el
 v

al
ue

Odd Local Kernel

Figure 2.5: Visualizing the kernel used in bias shift detection.

there were no more bias shifts.

This effect was presumed to have been solved, until its recurrence in EO Testing

Run 5 in late 2021. This time, there would be no such obvious causal connection.

The algorithm ran over all test data, not just bias frames. There were a few

particularly bad offenders — the “shiftiest sensors” — and a broad distribution of

shifts across the focal plane, with about half the segments displaying the behavior,

and a quarter showing more than one shift (Figures 2.7,2.8).

Although an operational mitigation has not been found for this new manifesta-

tion of the effect, its implementation in the standard EO test pipeline means a plot

is generated for every test sequence, allowing it to be easily monitored. As men-
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Figure 2.6: Bias shifts associated with a bright pixel. The vertical stripes are

parallel structure.

tioned before, this issue demonstrates why serial overscan correction is necessary

in certain cases. Since the locations of the shifts appear at random throughout

the readout (Figure 2.9), we need the nearly real-time bias measurement provided

by the serial overscans, taken after each row of data, to know what bias level to

subtract.
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Figure 2.7: Distribution of the fraction of images with shifts for all amps in the

focal plane. A few problematic sensors dominate the number of shifts.
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Figure 2.8: Shiftiest sensors - distribution of the amplifiers (equivalently, CCD

segments) exhibiting the most bias shifts, partitioned by sensors on the x-axis

and segments in different colors.

50



Figure 2.9: Distribution of shift locations and magnitudes for a
sensor with shifts in many different rows in different images. Only
two segments display shifts.

Figure 2.10: Distribution of shift locations and magnitudes for a
sensor with shifts in nearby rows, although not perfectly consis-
tent.
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Chapter 3

Projected constraints on

primordial black holes with the

Legacy Survey of Space and Time

In this chapter, I use models for the dark matter profile and kinematics in the

Milky Way, in conjunction with the simulated LSST SIM catalog [59], to predict

total rates for microlensing events for LSST. I produce representative sets of such

events with a Monte Carlo method. I then leverage the rubinsim [60] software

to simulate LSST surveys, and its existing MicrolensingMetric to assess the

detection efficiency of a set of simulated microlensing events.
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3.1 Modeling the Milky Way

3.1.1 LSST SIM Catalog

The LSST SIM catalog was developed as a synthetic stellar catalog for galac-

tic modeling in rubinsim [59], using the established TRILEGAL software [61].

This catalog simulates single stars based on evolutionary tracks from PARSEC

v1.2S [62], COLIBRI PR16 [63], and additional post-AGB and white dwarf cool-

ing tracks. Stellar sources are distributed according to a four-component Galactic

model — thin disk, thick disk, halo, and bulge — each characterized by distinct

star formation histories, metallicity distributions, and density profiles. These

models were calibrated using photometric data from surveys such as the Deep

Multicolor Survey [64], EIS data for the South Galactic Pole [65], and the Chan-

dra Deep Field South [66].

TRILEGAL simulations rely on five primary input datasets: stellar evolution-

ary tracks, bolometric corrections for the photometric passbands, an initial mass

function (IMF), parameterized star formation histories and age-metallicity rela-

tions for each Galactic component, and an analytic model of Galactic geometry,

specifying the spatial distribution of stellar density and interstellar extinction.

These inputs are combined to produce a realistic synthetic catalog of Milky Way

sources.
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3.1.2 Milky Way density profile of dark matter

In addition to the stellar contents of the Milky Way, one needs a model for

the dark matter halo. In the case of PBHs, I take a density profile ρ and as-

sume the compact objects are randomly distributed according to that profile. As

implemented in LensCalcPy [67], I make use of an NFW profile for the halo:

ρNFW(r,ρs,Rs) = ρs

(r/Rs)(1 + (r/Rs))2 (3.1)

with the scale density ρs = 4.88×106M� kpc−3 and scale radius Rs = 21.5 kpc,

following [68]. This model is fit to a variety of observational constraints, including:

1. Satellite dynamics from observations of the Magellanic Clouds constraining

the total mass within 100 kpc [69]

2. Outer rotation curve constrained by neutral hydrogen measurements [70]

and classical cepheids [71]

3. Surface density of gas and stellar components at the solar radius [72]

4. Local vertical force KZ at 1.1 kpc above the Galactic plane using kinematics

of K dwarfs limit the total density of matter inside 1.1 kpc [72]

5. Oort’s constants constraining the circular velocity curve at the solar ra-

dius [69]
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6. Terminal velocities constrain the mass distribution and rotational velocities

inside the solar radius [73]

7. Kinematics of OH/IR stars in the bulge constrain the mass within∼ 100pc [74]

8. Total K-band luminosity LK = 8.9×1010L� from [75]

3.2 Generating microlensing events

3.2.1 Simulation with PopSyCLE

The state-of-the-art tool for generating microlensing events is PopSyCLE [76].

The procedure is as follows:

1. Simulate a stellar catalog with Galaxia. The catalog has a circular footprint

on the sky, or a cone in space. For each source, it generates: “position,

velocity, age, mass, photometry in several filters, 3-D extinction, metallicity,

surface gravity, and more”.

2. Generate compact objects. First, star clusters are simulated with PyPop-

Star [77]. Then, using an initial-final mass relation (IFMR), a catalog of

white dwarfs, black holes, and neutron stars is generated. This is done

such that the populations are consistent with the Galaxia simulated stellar

catalog in kinematics, size, age, etc.
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3. Simulate a microlensing survey, by linearly evolving all the objects accord-

ing to their kinematics. Bin the objects by their on-sky positions, and at

each sampling time, check for object pairs within some minimum impact

parameter.

3.2.2 Monte-Carlo approach

The approach employed by PopSyCLE generates a complete list of sources

and lenses (Population Synthesis), and evolves their positions through time. At

first, it’s an attractive idea to generate a catalog of objects that trace the density

profile of interest. It gives concrete examples of lensing events and a realistic

picture of the history of these persistent objects. However, this requires a massive

amount of memory and computation time. It generates objects tracing the entire

density profile, even though only a very small fraction of objects exhibit the right

alignment event with a source. Furthermore, I would argue that in the case of

microlensing events, the utility of the information gained from this procedure is

minimal. Considering how extraordinarily infrequent the events are per source,

the odds of the same unbound object lensing two different sources are vanishingly

small. Therefore, with a density and velocity distribution for the lenses, it makes

sense to simplify the problem to one where each source independently samples

from a Poisson distribution with a rate matching the analytic event rate.
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With a dark matter model for the Milky Way halo in hand, one can predict

how many lenses pass through a particular pointing in a given amount of time.

Instead of constructing one specific realization of the DM model, I leverage the

fact that the rate of lensing Γ is a small parameter. The problem is factorized

into one where each source has its own rate according to its position on the

sky, distance from the observer, and the DM profile along the line of sight. This

defines an event space of a few variables with a corresponding probability function,

which can be sampled via standard Monte Carlo methods. MC methods are fast,

and instead of following ∼ 1011 objects through the galaxy, I generate only the

∼ 106 that generate microlensing events, plus ∼ 50% of rejected samples in the

MC procedure. This reduces a months-long computation with PopSyCLE on a

computer cluster down to minutes on a laptop.

3.2.3 Estimating the density of events at one pointing

Supplementary Section 1.2 of Ref [41] contains a full derivation of the event

rate. I provide a summary here.

Assume the PBHs comprising the DM halo follow an isotropic Maxwellian

velocity distribution:

f(v;r)d3v = 1
π3/2vc(r)3 exp

[
− |v|

2

vc(r)2

]
d3v (3.2)
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and assume the velocity dispersion vc(r)to be:

vc(r) =
√
GMNFW(< r)

r
(3.3)

where MNFW(< r) is the mass within radius r of the center of the Milky Way

halo. The differential rate of events is given by:

dΓ
dM ddL dt̂dumin

= 2√
u2
T −u2

min

v4
T

v2
c

exp
[
− v

2
T

v2
c

]
n(dL)f(M)ε(t̂) (3.4)

with vT ≡ 2RE

t̂

√
u2
T −u2

min, where t̂ is the Einstein crossing time, umin is the min-

imum impact parameter of the lens, uT is the maximum value of umin to consider

an event, dL is the distance of the lens from Earth, n(dL) is the number density

of lenses along the line of sight, f(M) is the mass function of lenses, and ε(t̂)

is the detection efficiency. This study looks at delta function mass distributions,

and does not assume a detection efficiency, rather evaluating it with simulated

surveys.

LensCalcPy [67] provides tools to evaluate the resulting integral, including

implementations of the NFW and velocity dispersion profiles. By integrating this

equation for the desired bounds, I get a predicted rate of microlensing events.

3.2.3.1 Using differential rates as Monte Carlo probabilities

With LensCalcPy [67], one can evaluate integrals for the rate of microlensing

events, with the derivative given by Equation 3.4. For a given domain of this

58



integral, it provides a number of events expected per unit time Γ for a source.

Calculating this integral for a number of different sources, keeping in mind the

relevant boundaries, will yield a total microlensing rate across those sources. Given

a stellar catalog, one could compute the total number of events across the sky

from that survey by evaluating Γi for each source, labeled by i. This would

schematically look like

Γtot =
∑
i

∫
dΓi (3.5)

This rate is static in time, so we can imagine an arbitrarily long survey with

observing time T , and predict it could see N = TΓtot events. If we were to

discretize the above integral, we could take the constant factor T inside to get

N =
∑
i,j

T∆Γi(~θj) (3.6)

where ~θj is a coordinate in the domain of the integral. Taking T large enough,

we start to see that a catalog making up all the events of the survey would contain

a number of events at each point in parameter space ~θj proportional to the differ-

ential rate at that point. Now we can think of the differential rate as a probability

density in the same space as the total rate integral, including a discrete choice of

which source we’re looking at.

Computing the total rate of Equation 3.4 is expensive. Figure 3.1 demonstrates

that the total is stable under randomly sampling a sufficiently sized subset of the
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sources. But the differential rate dΓ is fast enough (after some optimization)

to compute many times in a Monte Carlo simulation. The Metropolis-Hastings

algorithm [78] gives a standard, straightforward way to draw samples from the

high-dimensional event space with density proportional to dΓ. I use a trivial

(uniform) proposal function over the source index, lens distance, crossing time,

and minimum impact parameter, which is fast enough for our needs.

3.2.3.2 Implementation in Python

When scanning the sky for microlensing events, one will essentially be looking

for sources with consistent baselines which have some characteristic transient am-

plification. The LSST SIM catalog provides this list of baselines. Dimmer sources

do not contribute here 1. Then, based on a model of PBHs, one can compute the

rate at which a lens passes in front of each source.

To generate microlensing events, I adopt a Monte Carlo procedure with discrete

options for the pointings given by the catalog, and the probability densities given

by the differential rate within the subspace of the remaining parameters: lens

distance from Earth, crossing time, and impact parameter. This is implemented
1Dimmer sources don’t contribute as sources, but they certainly will contribute as lenses!

60



101 102 103

Number of sources for estimate

0.4

0.2

0.0

0.2

0.4

M
ea

n 
fra

ct
io

na
l d

iff
er

en
ce

 fr
om

 fu
ll 

su
rv

ey
 m

icr
ol

en
sin

g 
ra

te

Accuracy of microlensing rate extrapolated from random sources

Figure 3.1: Demonstrating the stability of the total on-sky rate calculation esti-

mated from using small subsets of the available sources. A “full” rate is calculated

with 336265 sources, corresponding to the number of expected events for a partic-

ular simulation (though any number could have been used here). Subsets of these

sources were taken with sizes specified by the x-axis, and 200 random subsets were

taken for each size. The central line is the (signed) fractional difference between

the average total rate of these 200 subsets and the full rate, and the error bars are

the average fractional distance of each subset from the full rate. Since there are

many other systematic and modeling uncertainties in this simulation, . 10% error

would be acceptable. The errors from the subset sizes used here are considerably

better.
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via the following:

1. Uniformly randomly select sources from the LSST SIM catalog.

2. For each source, use its pointing and distance to calculate the microlensing

event rate via the methods in LensCalcPy.

3. Sum the calculated rates and rescale by the fractional size of the subsamples

compared to the full catalog to estimate the total rate across the survey.

4. MCMC sample from the sources using differential rates as probabilities as

described in Section 3.2.3.1, to generate a representative set of microlensing

events.

5. Use the original simulated magnitudes as baselines for the events within the

Microlensing Metric in rubinsim, described in 3.2.4.2.

6. Use the detection efficiency calculated in rubinsim, combined with the pre-

dicted total rates, to find the total number of expected detections for the

survey.

3.2.3.3 Resource usage/complexity comparison to simulation

Generating microlensing events via Monte Carlo is extremely fast. On an M1

Pro MacBook, depending on the parameter boundaries, typical speeds are 2000-

5000 samples per second. The memory required is only as large as the baseline
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source data, and the generated events. For the results shown, these are on the

scale of a couple GB at most.

On the other hand, PopSyCLE is a job for a computing cluster. Depending on

the sky pointing, generating hundreds of events (out of the hundreds of thousands

predicted) took weeks on 64 nodes with hundreds of GB of memory, and produced

hundreds of GB of data. Most of the data produced and moved around is not

useful for PBH microlensing studies — age, metallicity, surface temperature.

3.2.4 Extension to generic cadences

3.2.4.1 rubinsim for simulating proposed LSST strategies

There is still much discussion about Rubin’s survey strategy. As described in

Section 1.2.1, since there are many different goals for the survey, it takes careful

thought to design a single strategy that balances the potential scientific results.

In order to make predictions about the performance of the survey, members of the

Rubin community developed rubinsim [60]. This set of software tools provides a

framework to evaluate arbitrary metrics over different realizations of the LSST,

including different survey strategies. It can simulate information about the dy-

namic observing conditions across the full survey, including seeing information,

sky brightness, pointings, filter usage, timing and more. The Metric Analysis

Framework (MAF) includes dozens of metrics to characterize the effects of differ-
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ent survey strategies on the various studies one might perform on the resulting

images. By comparing the improvement or decline of these metrics across simula-

tions of proposed cadences, one can learn about the scientific trade offs inherent to

choosing a strategy, and make more informed decisions about what to implement

when the observatory comes online.

3.2.4.2 MicrolensingMetric for detection efficiency

One of the metrics implemented within rubinsim is the MicrolensingMetric

[79]. It takes a list of sources with their magnitudes and positions, and a set

of microlensing event parameters, and within the context of a simulated survey,

calculates whether the lensing amplification of the event contains enough statis-

tically significant measurements to constitute a detection. The options available

for output of the metric include

1. Npts - returns the number of observations within 1 crossing time of the event

peak

2. detect - returns a boolean, whether N observations are present before the

peak, N defaulting to 2

3. Fisher - returns the fractional confidence on the crossing time, σtE/tE based

on a Fisher matrix analysis
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Whereas detect seems to have followup observations with other instruments

in mind, the other two options can be used to estimate how detectable each event

is.

I modified this metric to include Poisson noise in the signal-to-noise calculation,

which is necessary to cut out undetectable high-impact-parameter events on dim

sources.

3.3 Results

Figures 3.3 and 3.4 show the numbers of alignment events predicted for the 10-

year LSST. These contain no considerations about the cadence of the survey, but

do come with integration boundaries including: umin ∈ [0,5], tE ∈ [1 hour,20 years].

These should be thought of as a normalization for the integral of the density traced

by the Monte Carlo procedure. For example, to simulate all the events in a sur-

vey, one would compute the rate_total N as in Equation 3.6, then generate N

samples with the MC procedure.

To predict the number of “in-principle” detectable events, I make use of

rubinsim for a particular cadence. I compute these numbers using the base-

line survey strategy, but the efficiency only changes a few percent with different

strategies. Figures 3.5 and 3.6 show the theoretical detection efficiency from the

MicrolensingMetric. The normalized comparison indicates that alternative sur-

65



vey cadences can improve efficiency by 1–4%, especially in the lower-mass regime

where events have shorter crossing times.

These efficiency estimates make use of the seeing of the observatory and the

ideal microlensing lightcurves, but do not include information about the measured

variations in brightness from stars. In the next chapter, I demonstrate detection

on real lightcurves from an existing dataset. The efficiencies here are dependent

on the parameter boundaries selected in the MC procedure. For example, one

can generate events up to arbitrarily high impact parameters, but above umin ∼ 5,

these couldn’t be detected. Setting a threshold of umin = 10 instead of umin = 5

would cut the efficiency roughly in half, because the events are distributed evenly

in umin. However, the total number of detections would stay the same, because

the total rate normalization would compensate for the drop in efficiency. In this

sense, the raw efficiency numbers here are not the result of interest.

Figure 3.2 confirms the tE ∝M1/2 scaling expected from the lensing geometry,

with color indicating the event density across crossing times. The normalization

across masses in the figure isolates the effect of PBH mass on total event rate.

Comparing Figures 3.3 and 3.4 shows the impact of source selection. Inclusion

of distant sources (e.g., from the Magellanic Clouds) boosts the total event rate

and enhances sensitivity to lower mass PBHs. In the final results, I exclude these

Magellanic Cloud sources, because a good prediction for the event rate would
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require a model of the subhalo, which is not included here. The additional lenses

in the subhalo would increase the rate, so this is erring on the conservative side.

Exclusions would be even stronger after including this population.

In summary, when combined with realistic survey parameters via rubinsim,

this Monte Carlo method suggests that LSST will be sensitive to PBHmicrolensing

events across a range of masses, particularly in the few decades near 10−1M�.

These results provide the simulated events that will be applied to real lightcurve

data in the next chapter.

67



10 3 10 2 10 1 100 101

PBH Mass (M )

100

101

102

103

104

105

t E
 (h

ou
rs

)
Simulated crossing times for events from 

PBH distributions of varying mass

0

250

500

750

1000

1250

1500

1750

2000

Figure 3.2: Showing the tE ∝ M1/2 relationship in simulated events, without

considering detection efficiency. Events were cutoff below 1 hour and above 20

years. For easier comparison, total number of events is normalized across different

masses, though in reality the rate varies. Color corresponds to the density of events

at a crossing time.
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Figure 3.3: Total number of in-principle detectable microlensing events across the

sky for populations of delta-function mass distribution PBHs comprising 100% of

Milky Way dark matter. This includes sources from the Magellanic Clouds, but

not PBH lenses. Including a subhalo with these lenses would increase the low-

mass sensitivity, although these events are mostly too fast for Rubin’s cadence.
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Figure 3.4: Same as 3.3, excluding the most distant sources corresponding to the

Magellanic Clouds.
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Chapter 4

A novel microlensing detection

algorithm

4.1 Time series analysis

Much of physics is formulated in terms of the evolution of states through time.

Developing techniques to analyze time-dependent data is central in science. This

is broadly called Time-Series Analysis. It applies to any situation with measure-

ments yi taken at times ti, and provides tools to understand the relationships

between the two.

One of the most powerful and straightforward techniques is convolution. Al-

though perhaps opaque at first glance, convolution is a wonderfully rich and ver-
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satile tool in signal processing, and serves as the basis for a wide swath of other

techniques. In Section 2.2.2, I describe an algorithm that searches for a particular

behavior in the bias level of a CCD amplifier. It is implemented as a convolution

between the bias signal and a specially designed kernel. In this chapter, I describe

a microlensing detection method implemented as an unevenly-sampled convolu-

tion over magnitude measurements using a different kernel. Since the technique

is so central to these methods, I give a general introduction here.

The continuous convolution for a function y(t) and a kernel g(t) is defined as:

(y ∗g)(t) =
∫ ∞
−∞

y(τ)g(t− τ)dτ

Although I have distinguished the roles of y and g, it’s easy to show (u-

substitution) that the operation commutes: y ∗ g = g ∗ y. In signal processing,

we pick a kernel to either perform a transformation to y or detection on y. This

dissertation contains examples of both.

When working with real data, we need a discrete analog. The most common

situation in practice has data which is evenly sampled, i.e. ti+1− ti = ∆t, a

constant sampling rate.

4.1.1 Evenly sampled

Let’s consider samples yi = y(ti) for some ti, i ∈ {0, . . . ,N−1} sampled evenly

at intervals of ∆t such that ti+1− ti = ∆t, and a discrete kernel gi with the same
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timescale. Although g can have any length, the easiest to interpret has an odd

number 2M + 1 of entries, j ∈ {−M,. . . ,M}. This gives a natural center of the

kernel at g0. We can derive a discrete version of the above formula:

(y ∗g)(ti) =
M∑

j=−M
y(tj)g(ti− tj) (4.1)

(y ∗g)i =
M∑

j=−M
yjgi−j (4.2)

This can be expressed as a matrix product by defining gij ≡ gi−j = g(ti− tj):

~yg ≡ ~y ∗~g = g~y (4.3)

The above equation requires some further specification. Although there are dif-

ferent useful choices for the shape of the resulting convolution, relating to choices

about boundary conditions, in the use cases presented here, the shape of ~yg will

be the same as the input data ~y. In any case, one dimension of g does need to

match ~y. So here, we consider g to be an N ×N matrix. For the elements far

from the diagonal gij where |i−j|>M , we implicitly take the values to be 0. We

also typically specify a kernel that’s smaller than the input data. In the case of

even sampling, the rows of this matrix look like the original kernel, transposed

such that the center always lines up on the diagonal elements.

Even though modern computers are quite good at computing matrix products
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like this, the convolution is generally much easier than a generic matrix product.

This is because (a) it usually has a lot of entries that are 0 (away from the

diagonal), and (b) in the evenly sampled case, every row contains the same few

values transposed, allowing for easy cache locality optimizations. However, we

don’t even need to think about the matrix in this case. The simple form of

(Equation 4.2) is much faster to compute than the naive general form of (Equation

4.3). It can be implemented as a cumulative sum along a sliding window, resulting

in complexity of O(NM), instead of O(N2). In the case of a kernel much smaller

than the input data, this is a massive difference in performance.

4.1.2 Unevenly sampled

The situation is more complicated with unevenly sampled data. In the evenly

sampled case, the kernel “scans” over the input data, and encodes something

about the relative distances between datapoints. Since the distances of adjacent

points are always the same, the same list of kernel values applies across the whole

list of data. When the data has different distances in time between points, we

are forced to go back to a continuous function for the kernel to deal with the

continuum of possibilities for ti− tj . We can still compute the convolution as the

matrix product Equation 4.3. However, the matrix no longer has the same simple

form. It must be computed explicitly from its definition, gij ≡ g(ti− tj). The
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one simplifying fact is that the diagonal of the matrix still contains the center

of the kernel g(0). Additionally, the matrix inherits symmetries from the kernel,

such as an even kernel making a symmetric matrix and an odd kernel making an

antisymmetric one.

The product has no fixed windowed sum implementation as described in Sec-

tion 4.1.1, because each row depends on the distances between the unevenly sam-

pled times. There is no way to avoid computing the distinct elements in each

row. There are a couple optimizations to avoid computing large matrix products,

though.
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Consider a kernel g(t) with support over a finite range, t ∈ [−a,b], and some

datapoints yi ordered by their corresponding times ti. We want to evaluate the

convolution g ∗~y. A simple optimization here would be to implement a window

analogous to the evenly sampled case. Although a fixed window is impossible, we

can use dynamic windowing to achieve similar complexity. The idea is as follows:

1. Iterate over sample times ti from i= 0 to N .

2. Initialize the window: begin with a window starting at j = 0 for the

smallest ti. This window will contain indices for which g(ti− tj) is

non-negligible.

3. Advance the window’s lower bound: increment the window’s starting

index until the condition

ti− tj ≤ a

is satisfied. Terms with ti−tj >a can be excluded from the convolution

sum.

4. Accumulate contributions: for each j within the window, compute the

kernel value

gij = g(ti− tj)

and add the product gij yj to yg[i].

5. Update the window for subsequent iterations: adjust the lower window

edge to ensure that for the next target time ti+1, the window starts at

the first index where the time difference satisfies the kernel’s support

threshold (e.g., ti− tj ≥ b, if a lower support bound b is specified).

This procedure will work for any kernel with finite support, and the number
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Figure 4.1: Visualizing the windowed approach to computing the convolution of

an unevenly sampled dataset (yi, ti).

of iterations is cut in half if the kernel has parity symmetry. Furthermore, most

kernels for signal processing can be clipped to a finite domain. For the Weighted

Moving Average in Section 4.4.1, the Gaussian kernel is symmetric and falls off

such that I can, without consequence, clip it to 0 at 5 standard deviations. Ap-

pendix A.1 contains an explicit implementation in Python.

4.2 Precursor dataset: NOIRLab Source Cata-

log

By using a precursor dataset with stellar lightcurves, I can set an upper bound

on the backgrounds to the signal of interest in a PBH search. In order to make

exclusions (or detections) of compact dark matter, one needs to characterize our

ability to find microlensing events in the data, considering both detection efficiency

and background rejection. These events have a very particular shape, given by
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the family of curves derived in Section 1.4.1. There are no known astrophysical

phenomena which have exactly this shape. However, our instruments aren’t per-

fectly precise, stellar sources aren’t perfectly stable, and we’re working with finite

revisit times. Our ability to distinguish these events is limited to the properties

of our dataset, and is fundamentally statistical. One can do quite a good job of

it, as shown in this chapter, but it’s important to understand just how well, and

in what situations.

To this end, I apply the search algorithm to data from the NOIRLab Source

Catalog (NSC) [4]. This is an aggregate dataset in seven filters 1 from several

ground-based telescopes taken over seven years. Even though it doesn’t contain

enough data to expect to find many microlensing lightcurves, by applying a mi-

crolensing search to this precursor data, one can characterize the real lightcurves

that might issue false positive detections when scaling up to the massive vol-

ume of measurements expected for the LSST. These potential false positives are

considered backgrounds to the microlensing signal. By showing there are no mi-

crolensing detections in this dataset, I derive an upper bound on the background

rate for these events, and set a corresponding lower bound on the exclusion power

of LSST, when combined with our models’ predictions.

The idea is simple: I assume there are no microlensing events in this dataset.

Based on the rates calculated in Section 3 with 100% compact DM, there is not
1Similar, but not identical, filters to Rubin
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enough volume of time × sources to see one detection. So, if the algorithm flags

any detections which can’t be ruled out as microlensing, either there is a successful,

however unlikely, detection, or the background to the real signal is too high to

perform this analysis. If the algorithm manages to scan all lightcurves without

a detection, then I’ve shown there is substantial power in the algorithm to see

through the background, and there’s an upper bound to the background rate.

Cutting out all backgrounds is useless if the same algorithm doesn’t detect real

events. One also needs to measure its detection efficiency. A real microlensing

event should closely follow the ideal point source-point lens curve. This is a

straightforward amplification of the flux in every color band. Barring nonlinear

instrumental effects and source blending, if one of these events were to happen for

any the sources in our dataset, one would see the same lightcurve, but with the

ideal microlensing curve superimposed (in magnitudes). Therefore, a slick way

to measure detection efficiency is to take exactly the same curves used to assess

background rejection, add the ideal microlensing curve, and run exactly the same

detection pipeline. This puts it on exactly the same footing for measurement

cadence, photometric repeatability, source variations, and all the details that come

with real data. By dividing the detection efficiency by (1 minus) the rejection rate,

one has an analog to a signal-to-noise (S/N) ratio. Furthermore, the detection

efficiency needs to be taken into account when computing model exclusions. If
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the model predicts some number of microlensing events, one can’t infer its fit to

data without understanding if we expect to detect all of them, 1% of them, or

somewhere in-between. Although one can’t really know the efficacy until looking

at real Rubin data, this analysis will demonstrate that the search algorithm really

does pick out microlensing events and ignores the rest.

It’s worth noting again that the detection efficiency here is different from that

evaluated in Chapter 3. The MicrolensingMetric measures if there is enough

statistical significance in the microlensing amplification during observation with

some simulated seeing for a particular source. In this chapter, the question also in-

volves background rejection, and with limited measurements on dynamic sources,

there will certainly be some false negatives. These aren’t possible in the prior

assessment.

4.2.1 Compatibility with Rubin lightcurves, criteria on

measurement frequency

The following conditions define the domain of data searched by the detection

algorithm described in Section 4.4.

1. Cut 1. Filter out objects using provided columns in NSC object table.

(a) Requirement for the NSC star classifier: class_star > 0.9

(b) Require more than 20 detections: ndet > 20.
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2. Cut 2. Filter on the cadence of measurements in NSC for each object to have

datapoints on the right timescale for relevant events for Rubin. Called the

“well-sampled” requirement. Requires object to have at least one sequence

of measurements with the following properties:

(a) Maximum revisit time of maxrevisit ≤ 10 days.

(b) Number of detections seqlen ≥ 10.

(c) Time spanning interval > 50 days.

These cuts are not a part of the detection algorithm. They are used to find a

reasonable dataset that can give us an idea of the background rejection capabilities

of a survey like LSST, which will have revisit times of ∼ 3 days on average. A

key difference is that LSST will maintain a cadence comparable to this for 10

years, for basically every persistent source like the stars targeted here. Because

of this, we should have excellent baseline characterization for every source, except

extraordinarily slow variable sources and microlensing events. In contrast, the

NSC dataset does not contain many sources sampled so quickly and for so long.

In order to target median events for 1M� MACHOs, I am looking to detect

events with crossing time tE ∼ 40 days. For this reason, I look for “well-sampled”

(WS) regions of time that span at least 50 days, to get somewhat beyond the

characteristic timescales of main interest. We will see that since the majority of

WS regions in this subset span the lower range of this requirement, i.e. around 50
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days, the detection efficiency drops off for longer timescale microlensing events.

There is simply not enough information in the lightcurve to constrain the fit.

However, these events do seem to make it past the first round of filtering, which

doesn’t rely on the quality of fit to any family of curves, rather only requiring a

persistent excursion in all available filters.

4.2.2 Footprints of objects in consideration

The NSC dataset happens to contain enough coverage that the models would

expect to see somewhat less than 1 microlensing event if the PBH mass is within

a few decades of 10−1M�, given the sources are randomly selected across the

sky. However, the pointings measured in this dataset are clustered, with strong

preference against the galactic bulge 2 (Figure 4.2, compared to Figure 4.3 for

Rubin). This means a far lower chance of finding a real microlensing event. But

as far as assessing backgrounds, this is a feature, not a bug. One can measure

just as many sources, which are unlikely to contain any microlensing events, but

should contain similar levels of variability as the sources toward the bulge. Though

there are differences in the stellar populations at different pointings in the Milky

Way [80], microlensing rates roughly trace the density squared, and cover many

orders of magnitude at different pointings.
2This is just a result of the selections from various studies included in the dataset. It wasn’t

designed for any coherent scientific goal since it’s an aggregate from many instruments and many
projects.
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Figure 4.2: Spatial distribution of NSC sources on the sky, with galactic center at

(0,0)

Figure 4.3: Spatial distribution of a random subset of LSST SIM sources in galactic

coordinates. In contrast to the NSC data, there will be many galactic sources

sampled in the densest regions. The small patches in the lower left are the Large

and Small Magellanic Clouds.
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4.3 Background Characterization for LSST

In section 3, I predict the amount of detectable microlensing events that would

result from PBH dark matter. LSST will contain lightcurves from many billions of

objects over 10 years, and even with 100% PBH dark matter, I predict a maximum

of ∼ 106 events. This means we’re looking for needles in a haystack. This is fine,

but requires some understanding of how much hay can be confused for needles.

In other words, how many lightcurves have transient events that might look like

microlensing in LSST data? There are several known classes of objects that would

exhibit this behavior, and I enumerate them in this section.

Stellar Origin Black Holes (SOBHs) microlensing

We have well-established models for the production of black holes as stellar

remnants [81–83]. These allow us to predict the numbers of astrophysical black

holes arising from a stellar population, based on age, metallicity, size, and thermo-

dynamic factors. There will certainly be microlensing events due to these lenses

during LSST, as we’ve already seen some [35,42]. These are “backgrounds” in the

sense they are a known signal that we expect to find in this search. However, they

are perfectly valid contributions to the present-day dark matter.

They are distinguished from PBHs in a few key ways: firstly, the Chan-

drasekhar limit [81] puts a lower bound on the mass of these objects, famously
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near 1.4M�, whereas PBHs can, in principle, take any mass, since they aren’t due

to the collapse of a star.

Secondly, SOBH’s should have different kinematics to those of PBHs. Whereas

one would expect PBHs to be virialized, having existed since near the big bang,

black holes produced in supernova appear to experience a “natal kick” of σ >

260 km/s [84]. Microlensing events involving these lenses would happen with

somewhat faster crossing times.

Though production is well-understood, real abundances are not. In this work,

I follow the results of [85] and assume the Milky Way contains ∼ 108 SOBH’s.

I further assume they follow the mass spectrum reported in [86]. Both of these

assumptions are poorly constrained at present.

Binary stars microlensing

Binary stars could be a common source of microlensing signals. According

to [87, 88], “about half of all solar-type stars are members of binary systems”.

They have a wide spread of periods for their orbits, from a few days to 105 days.

There have been catalogs generated in the above references which could help to

calculate the number of expected alignments causing microlensing events.

In contrast to isolated SOBHs, which would be indistinguishable from a PBH

of the same mass, lightcurves from binary star systems would have two effects to
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distinguish them: occlusion when the stars align, and blending of their flux, since

both objects are sources. Both of these imprint on the lightcurve. Additionally,

the lightcurve will be periodic with the orbit of the system.

In the case of a source paired with a stellar remnant, like a black hole, neutron

star, or white dwarf, it would be harder to distinguish, as the remnant may not

be bright enough compared to the source star to exhibit blending, and a remnant

could be small enough that the occlusion can’t be detected. This system would

still be periodic, and given enough time, these could be distinguished.

Variable stars

These are mostly chromatic events - as long as we have measurements in a few

bands, and especially if we include followup observations from other instruments,

it should be straightforward to discriminate these from microlensing events. The

MACHO project describes the cuts required to rule out lightcurves that initially

look like microlensing [89] . They report huge cuts in their dataset, from 17,440

sources with a reasonable lightcurve fit, down to 3 final candidates. Some of their

cuts are based on statistics on the lightcurve data, while others are explicit cuts

based on known nebulas with greater transient activity.

The two most relevant categories for microlensing backgrounds are eruptive/-

cataclysmic variables and pulsating variables.
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Eruptive/cataclysmic variables

These include several types of novae, plus symbiotic stars. For example, dwarf

novae become elevated in brightness by 2 to 5 magnitudes over the course of a few

days [90]. This is the right timescale and magnitude amplification to get confused

with a microlensing event. For example, see Figure 1 of [91] for the lightcurve of

a nova which looks a lot like microlensing if one only has a measurement in 1455

Å. Looking at multiple color bands shows that this event is chromatic and is not

due to microlensing.

Pulsating variables

Pulsating variables can change their color both via surface temperature change,

and due to Doppler shift as the surface expands and contracts [92]. Given mea-

surements in different bands with sufficient S/N, this could be used to discriminate

such sources from microlensing events.

4.4 A new microlensing discovery algorithm:

Weighted Overlapping Outlier Detection

The algorithm described in this section uses photometry measurements in any

number of filters (including 1) to find microlensing events. It leverages the achro-
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maticity of gravitational lensing to discriminate these events from the astrophys-

ical variations of stars, which tend to change their color profile. This is imple-

mented by considering only the change in baseline magnitude within each band.

The first step in looking for microlensing events is to find where there is a

statistically significant positive deviation from the typical brightness of a source.

One wants to find a contiguous period where the source’s brightness is measured

with the following properties:

1. Brighter than normal

2. Achromatic: consistent brightening in all bands

It turns out these two properties alone are very powerful in removing astro-

physical variations and preserving microlensing events, given a thoughtful imple-

mentation. Both of these descriptions require some interpretation. For “brighter

than normal,” my condition is implemented as an effective z-score on a moving

average of the deviations from baseline in each filter. The numerator of the z-score

is the weighted moving average (WMA) with a tunable timescale, 2 days by de-

fault. The denominator is the sum in quadrature of the confidence on the WMA,

the clipped standard deviation of variations from baseline for the object, and a

metric I’ve called the Weighted Moving Scatter (WMS), visualized in Figure 4.4.

The latter measures the proximity in magnitude of nearby measurements with the

same envelope as the WMA. It can be thought of as a second moment of residuals
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on the WMA, again weighted by the same kernel. It is designed to modulate the

significance of bright deviations by the similarity between nearby measurements.

This serves as an implicit check of achromaticity - if measurements in different

filters diverge from each other, they will produce a larger WMS, and a bright

excursion will require a larger deviation to trigger. It also reduces variations that

happen much faster than the timescales of interest. For example, a lightcurve

with a measurement close to baseline, quickly followed by a bright measurement,

will have high WMS, and is less likely to trigger the threshold.
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Figure 4.4: The Weighted Moving Average and Weighted Moving Scatter com-

puted continuously for synthetic data. WMS is visualized as an envelope around

the WMA. This continuous version is not computed during the analysis, but is

a generalization of the discrete formula described below, found by substituting

κij → κ(t− tj), giving functions A(t) and S(t). The discrete version is trivially

equivalent to evaluating the functions at the same times as the datapoints, ti.

One must avoid interpreting the envelope as a confidence interval on the moving

average. It is only a measure of the consistency between nearby measurements.
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4.4.1 Algorithm specification

1. Round 1: detection. Look for persistent excursions in the average level

across all filters.

(a) Calculate deltamag (δi) for each measurement, by subtracting the NSC

calculated object baseline in the respective band from each measure-

ment3.

(b) Calculate the outlier-excluded standard deviation std for the object.

Exclude outliers by:

i. Compute the median δ̄.

ii. Compute median of the absolute deviation of each point from the

sample median: ∆̄ = Med(Abs(~δ− δ̄)).

iii. Exclude measurements deviating by a factor of this median devia-

tion:

|~δ− δ̄|<md× ∆̄, with md = 3 by default.

iv. Calculate std = σ̄ as the standard deviation of the remaining δi.

(c) Calculate the weighted moving average (WMA) of changes in baseline
3An outlier-excluded estimate of the baseline should be even more accurate for Rubin, given

the expected number of measurements per source.
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as

Ai
(
~δ,~ε
)

=
∑
j

κijwjδj×

∑
k

κikwk

−1

(4.4)

with κ(∆t)≡ exp
(
−(∆t/τ)2/2

)
(4.5)

κij ≡ κ(ti− tj) (4.6)

wj ≡
(
ε2j +mw∆̄2

)−1
(4.7)

where δi is the deltamag deviation calculated above in mags, εi is its

measurement error in mags, ti is its time of measurement in MJD, and

τ =timescale is the smoothing time4. Notice the weights wj are not

simply the inverse squared errors, but are “tempered” by the clipped de-

viation ∆̄ with a factor mw (parameter name temper_errors) set to 1

by default. This prevents low-error outlier measurements, whether un-

derestimated or genuine, from pulling these metrics much more strongly

than other measurements. These adjusted weights are used in place of

the measurement errors throughout the algorithm.

(d) Calculate the confidence on the above WMA:

σi
(
~δ,~ε
)

=
∑

j

κ2
ijwj

1/2

×

∑
k

κikwk

−1

(4.8)

4In practice, the windowing kernel function κ is clipped as described in A.1, because it is
expensive to compute over all N2 pairs of measurements for each object, when most of them
evaluate effectively to 0.
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(e) Calculate the Weighted Moving Scatter (WMS):

Si
(
~δ,~ε
)

=
∑

j

κijwj(δj−Aj)2

1/2

×

∑
k

κikwk

−1/2

(4.9)

This metric quantifies the variation in temporally nearby measure-

ments.

(f) Calculate an effective z-score for each measurement as Zi =Ai/
√
σ2
i +S2

i + σ̄2.

Flag “excursions” as measurements where Zi > z_threshold.

(g) Look for consecutive excursion points (regions) with the following prop-

erties:

i. Region contains at least n_measured=4 measurements.

ii. First and last measurement are separated by at least duration =

5 days.

2. Round 2: selection. Quality of fit to the ideal microlensing curve. Iterate

over all excursion regions found in Round 1:

(a) Extend the region to include all datapoints within ±context_size of

the original boundaries. By default, context_size = 100 days.

(b) Fit the ideal point source-point lens (PSPL) microlensing curve to the

data in the extended region, yielding fit parameters impact_parameter,

crossing_time, and peak_time, and a condition number of the covari-

ance matrix. If the fitting procedure doesn’t converge, reject the event.
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If two or more flagged regions converge to the same curve, consolidate

them.

(c) Compute the residuals of the fit throughout the extended region. Check

whether the residuals are statistically consistent with the lightcurve

outside the extended excursion region:

i. If there are at least n_min_outside_fit measurements for the ob-

ject outside the fit region, perform a weighted two-sample Kolmogorov-

Smirnov (KS) test between the residuals on the fit and the data-

points outside the fit region, yielding a p-value p for each excursion.

ii. Otherwise, perform a weighted one-sample KS test on the residuals

with a Gaussian with the same mean and standard deviation as the

residuals, i.e. check that the residuals are Gaussian distributed.

(d) Filter out events with condition number of the covariance matrix greater

than condnum (default 105), optionally combined with the calculated

p-values of residuals to the fit.
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4.4.2 Table of default parameters

Parameter Default
value

Description

outliers_cutoff 3 Scale to remove outliers in stdev calcula-
tion

cut_outliers False Option to remove outliers entirely from
consideration in excursions

outliers_cutoff_data 20 Scale to remove outliers with low measure-
ment errors

z_threshold 3 Effective z-score threshold to flag excur-
sion points

timescale 5 (days) Timescale of smoothing for WMA and
WMS

n_measured 4 Minimum number of measurements to flag
an excursion

duration 5 (days) Minimum duration to flag an excursion

restrict_to_indices [Well-
Sampled
regions]

Only consider a subset of datapoints for
excursions - used to exclusively parse re-
gions with fast enough cadence in NSC
data, while still using all the data for char-
acterizing baseline

usescatter True Use Weighted Moving Scatter to modulate
detection significance

temper_errors 1 Relative scale between clipped stdev and
measurement errors in contributing to
data weights

context_size 100
(days)

Number of days to extend the PSPL fit
data on either side of the region detected
in Round 1

condnum 105 Cut on condition number of the covariance
matrix from the PSPL curve fit
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Subset # of objects

All NSC sources 3.9×109

NSC cut 1 (star classifier, n_detected) 2.9×108

NSC cut 2 (well-sampled) 264,295

Round 1 Detections 33

Round 2 Selections 0

Table 4.1: Counts of objects and regions before and after NSC data selection, and

two rounds of selections on real lightcurves with default parameters applied. The

NSC cuts are described in Section 4.2.1.

4.4.3 Examples of detections and near detections, descrip-

tions of parameters

Round 1 flags contiguous, positive excursions from the baseline. Figure 4.5

shows an example lightcurve with some bright measurements above baseline. On

the right, the WMS is not considered in the denominator of the z-score. This is

visualized as the blue envelope around the WMA. Without the WMS, the algo-

rithm assesses a high confidence on the WMA, because the error bars are relatively

small on the datapoints. However, this deviation is not consistent between bands.

This fact is seen on the left, when adding the WMS to the envelope. After this

addition, this event is no longer flagged in Round 1, and the background event is
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successfully rejected.

In Figure 4.6, we see an example where a couple bright, low-error measure-

ments pull up the moving average substantially and flag an excursion. The PSPL

fit at first seems plausible, but the Y-band measurement near the inferred peak is

many sigma away from the fit, as is the earlier g-band point. Combined with an-

other high outlier ∼ 30 days later, this event comes with a high condition number

and is removed in the final cuts.

This example also justifies the temper_errors strategy, where I weight the

moving average not just by the individual measurement errors, but also by the

typical variation of the source as a clipped stdev. By adding the two in quadrature

(with an assignable weight factor defaulting to 1), one avoids the issues caused by

underestimated photometric errors. While experimenting with different strategies,

I found that this technique is more effective than explicitly removing outliers from

consideration, letting me keep the cut_outliers option off by default. Note that

outliers are always removed when calculating stdev.

The cut on condition number of the covariance matrix, condnum, has the de-

fault value of 105. This came from comparing the values of the Round 2 fits from

synthetic events, and real lightcurves which were flagged in Round 1. As can be

seen in Figure 4.9, the synthetic events (histogrammed values) and background

events (large red dots) are well partitioned by a cut at condnum = 105. The con-
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dition number’s scale is set by the scale of the original variables, and with the

synthetic events mostly appearing near and above 104, this seems to correspond

to the scale of the MJD times, via the fit of the peak event time. It is possible

to remove this scale by centering the data before the fit, but since classification

has been successful without adjustment, I leave this to future investigation. An

alternative strategy using the covariance matrix is to make explicit cuts on un-

certainties and covariances, though one must still deal with the parameter scales.

The default parameters are somewhat tuned for finding events typical ofMPBH∼

M�, with tE ∼ 40 days, and they reflect a good response on the NSC dataset in

particular. Used on a telescope with faster cadence, for example, this algorithm

would want to use lower values for timescale, duration and context_size to

catch shorter events. For Rubin, with comparable revisit times to the precur-

sor data, I would expect the default parameters to be appropriate. When Rubin

lightcurves become available, one must repeat this procedure with synthetic mi-

crolensing events to assess the efficacy of the parameters as was done here.

4.4.4 Extended rejection techniques

The two filtering stages described above succeed in eliminating all background

events in the NSC data while detecting a majority of synthetic ones. Without try-

ing to simulate more lightcurves, we’ve reached the end of the line for background
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Figure 4.5: Loosely visualizing the effect of including (left) or not including (right)

the weighted moving scatter as part of the confidence on the WMA. Without the

WMS, high-confidence measurements in different bands can conflict to high sigma,

and the WMA is reported at high confidence, even though the bands are very

discrepant. This triggers a Round 1 detection when it could clearly be excluded

due to high chromaticity.
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Figure 4.6: A background event, rejected for a poor fit (high condition number)

to the PSPL curve in Round 2.
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Figure 4.7: Even without particularly dense sampling, a good fit is inferred to

this synthetic injected microlensing curve with tE = 40 days and umin = 1.
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Figure 4.8: A lightcurve with a consistent bright excursion (away from 0), but not

enough context to constrain the fitting procedure, resulting in a high condition

number.
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assessment in this data. However, there are more stages that could be used to

extend this algorithm and improve the rejection power for the much higher volume

of Rubin data.

4.4.4.1 More sophisticated cuts on fit parameters

I showed that a cut on condition number is sufficient to remove all backgrounds

in the NSC data, and detect ∼ 50% of synthetic events. This can be improved

quite a lot by including more parameters in the cut. For example, Figure 4.9

achieves total background rejection with condnum < 105, but detection efficiency

of only ∼ 50% in the second stage. If I were to include a 2-dimensional cut

involving the p-value of the KS test on residuals (y-axis), I could achieve a much

higher efficiency, > 90%. However, in this case with so few NSC background events

in Round 2, this would feel like overfitting. With Rubin data, one will be able

to use the same procedure with the much larger data volume to determine more

robust cuts and achieve higher detection efficiency.

4.4.4.2 Moving baselines

Although stable sources are ideal for this type of search, every star is dynamic

on some timescale. This algorithm makes use of fixed baseline estimates for each

source, separately in each band. This could be replaced with a set of moving

averages, with a much slower timescale than the one used for triggering excursions.
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Figure 4.9: 1M� synthetic events and real backgrounds plotted by the condition

number and p-value of their fits to the PSPL lightcurve in Round 2. The color

histogram shows the density of the large population of synthetic events. One

could draw a curve delineating the two populations, while preserving > 90% of

synthetic events, at the risk of overfitting and generalizing poorly. Note that this

plot includes all events that pass Round 1, including those synthetic events with

poorly inferred curve parameters.
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This would improve detection efficiency on variable sources with long periods. A

more involved system could flag variable sources, construct a model for their

dynamics, and use that model to predict baselines. One could even jointly fit

variable star models with the microlensing curves.

One reason to not implement this in the present search is that it introduces

another hyperparameter which must be tuned depending on which timescale of

events one looks for. Additionally, Round 1 is designed to be a fast algorithm for

flagging excursions, and doing any intricate additional fitting would slow it down

substantially. Round 2 is meant to contain the statistical heavy lifting after the

domain has been reduced.

4.4.4.3 Repeat offenders

Microlensing events involving unbound objects are exceedingly rare. It would

be extremely unlikely to see a source exhibit microlensing more than once. Other

variability in stars, however, is commonly periodic. For this reason, many searches

explicitly ignore events coming from sources that display multiple candidate events.

My search has not implemented any such cuts, but they could easily be added.

4.4.4.4 Achromaticity

A key signature for microlensing in a multi-color survey is that light of all

wavelengths is amplified the same amount. In other words, the lightcurves in all
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color bands will move together. Round 1 of my algorithm makes implicit use of

this fact when computing the WMS along the lightcurve, including measurements

of every color. The “tightness” of the variation is used to modulate the threshold

required for a detection, and a chromatic lightcurve would show large WMS.

An explicit cut could be implemented to further reject backgrounds. For exam-

ple, one could require the residuals on the microlensing curve fit to be consistent

between bands, perhaps with a KS test. If one band is pulling the average more

than others, a test like this would show the difference.

4.4.4.5 Symmetry

Assuming linear trajectories for a source and lens, the microlensing amplifi-

cation is symmetric in time when reflected across the peak (Eqn. 4.10). This is

broken by the parallax from Earth’s orbit, but for sufficiently short timescales or

large PBH masses, it could be used to discriminate events.

4.4.4.6 Dynamic context

The Round 2 fitting adds context to the detected excursion region, to give more

information to the curve fitter, and ensure the lightcurve returns to baseline on the

right timescale. These examples have hard-coded 100 days of context (if available)

on either side of the excursions. This would likely be improved with a dynamic

selection. For example, in Figure 4.10, which shows the closest background event
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to acceptance, the fitting procedure did not include the datapoints shown on the

rightmost edge. These points clearly don’t return to baseline on the right timescale

for a good fit, and their inclusion would have pushed both condition number and

p-value further away from acceptance.

4.5 Detection efficiency with synthetic microlens-

ing events

As described in Section 4.2, I evaluate the detection efficiency of the algorithm

by superimposing the real data with ideal microlensing curves. The parameters

of these curves can be specified arbitrarily, but to assess the efficacy for Rubin,

I randomly sample the events generated with the methods in Section 3.2, and

add the corresponding curve to a copy of the real lightcurve data. Explicitly,

given original lightcurve magnitudes yi taken at time ti, I compute the simulated

lightcurve data ỹi as:

ỹi = yi−2.5log10 (A(u(ti))) (4.10)

A(u) = u2 + 2
u
√
u2 + 4

(4.11)

u(t) =

√√√√u2
min +

(
t− t0
tE

)2
(4.12)

For each Well-Sampled region in the dataset, potentially several per source, I

make a copy of the entire original lightcurve, and inject one random event into
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Figure 4.10: The closest background to acceptance, seen as the furthest top-left

red point in Figure 4.9. Just the excursion is shown on top, and the full set of

datapoints below.
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the center of the WS region. While using this data as a precursor to Rubin,

this is without loss of generality - every lightcurve coming from Rubin should be

Well-Sampled for most of the survey.

4.5.1 Ensuring consistency between injected and detected

events

In comparing performance of various options and parameters for the search

algorithm, one must compare the background detection rate vs. the synthetic

detection rate. For the backgrounds, it’s as simple as counting every event that is

flagged as microlensing. For the synthetic events, it’s a little more complicated.

It’s not enough to trigger an event, though that is a good preliminary indicator

that something is working if there isn’t a corresponding event in the unmodified

lightcurve. Really, one wants to know that the detected event infers the same

characteristics that were injected. Since the detection of an event at datapoint i

is dependent not just on the value of that measurement, but also of those in its

vicinity, it’s possible for the injection of an event to cause a nearby borderline

detected event to peek over the threshold and become a detection. Additionally,

by comparing the injected parameters and those inferred during the curve fitting

procedure in Round 2, one can quantify the confidence on the inferred microlensing

parameters.
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To accomplish these comparisons, I save all the “ground-truth” information

while generating the synthetic lensing events, within the function

nsctools.generate_synthetic_microlensing_events_from_population. In

addition to generating new copies of existing lightcurves with synthetic events

superimposed, I save a *-info.pickle file which contains a tuple. The first ele-

ment is a dictionary with meta-information about the original lightcurve files,

event population to draw from, and output location. The second element is

a pandas.DataFrame containing columns for the original objectid, the new

synthetic objectid, index of the superimposed event within the sampled event

DataFrame, and all the microlensing parameters of the event. With this infor-

mation I can unambiguously reference the injected event’s information, given the

synthetic object id.

Now, I can feed the synthetic lightcurves through the detection algorithm and

compare the inferred parameters to the real parameters. Since every detection

from Round 1 is fit during Round 2, one can look at distributions of the fit results

even before making the final cuts. For example, in Figure 4.11, we see all the

Round 1 detections for a sample of 1M� PBH events. Closest to the correctly

inferred peak time (0 days difference) is the largest population of events by 2.5

orders of magnitude. During Round 2, I make a cut on condition number, shown

here as color in log scale. Notice the well-inferred bin has median condition number
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over 2 orders of magnitude lower than adjacent bins, and over 10 orders lower than

the wings. This plot demonstrates that the cut successfully removes detections

with poorly-inferred peak times.

After the Round 2 cuts, one can assess performance of the entire procedure.

Figure 4.12 shows the distance between real and inferred peak times as a fraction

of their real crossing times. We can see the distances are tightly peaked near 0,

with 95% of event peaks inferred within 9.5% of their crossing times from the true

peaks. While the peaks are useful for verification, in practice the most important

parameter to measure is the crossing time. This is the main dimension along which

one can discriminate between different PBH populations. Figure 4.13 shows the

distribution of inference performance, with 95% of events measured within 12.9%

of the correct crossing time, and 99% measured within 27.7%.

4.5.2 Exclusions for different masses of PBH

Exclusions are calculated by considering monochromatic PBH models com-

prising a fraction f of the dark matter profile for the Milky Way. For a model

with PBH massM , I predict a total 10-year rate λ0 for f = 1, giving the expected

number of events for 100% PBH dark matter. This includes the detection effi-

ciency estimates from the MicrolensingMetric (Section 3.2.4.2). I assume the

number of real events detected follows a Poisson distribution with rate λ = fλ0.

112



4000 3000 2000 1000 0 1000 2000 3000 4000

100

101

102

103

104

105

Histogram of distances between
injected peak time and detected peak time

6

8

10

12

14

16

M
edian log of condition num

ber in bin

Real peak time - detected peak time (MJD)

Figure 4.11: Before performing Round 2 cuts on fit quality, we can see a strong

correlation between distance of the inferred peak time from actual peak time with

the condition number on the fitting procedure.
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Figure 4.12: Validation of inferred microlensing peak time versus injected peak

time after the Round 2 cut on condition number. Population standard deviation

is a distance ∼ 5% of the crossing time, FWHM of 3.6%.
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Figure 4.13: Validation of inferred microlensing crossing time versus injected cross-

ing time after the Round 2 cut on condition number.
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Given a number of detections, one can calculate the 95% confidence upper bounds

on the value of f .

Since the NSC data only has a small fraction of the power of the full LSST,

the best one can do is provide an upper bound on the background signal. For-

tunately, we have reached nearly the best-case scenario, with a set of reasonable

parameters that detects 0 events in the real data, and detects a meaningful frac-

tion of the synthetic events. The only room for improvement at this stage would

be to increase the detection efficiency while keeping the background detections at

0. Potential strategies for this are described in 4.4.4.

To make the exclusions in Figure 4.14, I take the upper bound assuming a

rate of one background event in the NSC data. To extrapolate to the number of

events in LSST, I divide the volume of time×sources for Well-Sampled objects,

by the number of LSST SIM sources × 10 years. This gives us a ratio between

the amount of WS observations of galactic sources in the two datasets. The

upper bound, with 1 background event in the NSC data, becomes 819,236 events

as an upper bound in Rubin. I assume these events are log-evenly distributed

in crossing time, and for each monochromatic PBH mass population, I consider

backgrounds only relevant if their crossing time falls within the [5,95] percentile

range of the simulated events. The same percentile clipping is applied to the

simulated microlensing rates for each population.

116



10 10 10 7 10 4 10 1 102 105

PBH Mass (M )

100

3 × 10 1

4 × 10 1

6 × 10 1

f D
M

95% Exclusions on PBH fraction of dark matter for baseline LSST
with worst-case backgrounds

Figure 4.14: 95% confidence exclusions for LSST, given a number of detections

corresponding to the upper bound of a background rate in NSC data, assuming

they are log-evenly distributed in crossing time. There’s no reason to expect

backgrounds this high, but it’s impossible to know what will be found in the

novel LSST dataset. But even in the worst case, there will be some exclusion

power in the slightly sub-solar mass range.
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Figure 4.15: 95% confidence exclusions for LSST, given 0 detections over ten

years, shown in green. Exclusions are superimposed on a collection of existing

bounds from [1]. Despite the strongest exclusions coming from ∼ 10−1M�, the

strongest “new” exclusions are in the 1− 100 M� range. In any case, LSST

provides independent coverage to areas which previously were only excluded by

gravitational wave measurements. The dashed region around 10M� is due to the

expected background of Stellar Origin Black Holes, which is described in Section

4.3. Although it will be difficult, if not impossible, to distinguish these from

PBH’s of the same size with these methods, Rubin should provide novel insights

into this currently poorly constrained population.
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Chapter 5

Results and Discussion

5.1 Anticipated benefits and challenges with Ru-

bin data

As discussed in Section 1.2.3, the Difference Imaging Analysis pipeline will

enable nearly real-time reporting of transient phenomena in billions of sources

across the sky. If an object makes a meaningful change from baseline, we will

know about it quickly. Much of the power of a massive, centralized, accessible

survey like LSST is not just contained in its own measurements, but in its ability

to direct scientists where to look on short notice. If a significant deviation is

detected on a stable star, for example, an alert will be generated, and followup

measurements can be taken with another instrument. Without the large coverage
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and fast revisit times of Rubin, a small telescope has little chance to catch a

microlensing event. But by cutting down the domain of sources, we start to have

a chance. Other instruments could provide rapid exposures in multiple colors, or

even spectroscopy, to much more accurately characterize events as astrophysical

variations or microlensing.

As with any ground-based telescope, the atmosphere will diffuse unresolved

sources like most stars, changing them from points to a shape characterized by

a Point Spread Function (PSF). The atmospheric PSF will change according to

weather conditions, for example, and will have to be approximated in each image

[31]. This diffusion of point sources makes so-called crowded-field photometry a

difficult task, as flux from nearby sources will blend together in ways that can

potentially be impossible to untangle with one image. Difference imaging has

been used successfully to find microlensing events in crowded fields, for example

the Subaru search of M31 [41]. One must be careful of blending effects while

looking for microlensing events in crowded fields, since generally only one of the

blended objects will be magnified. This means the change in blended flux will not

necessarily be achromatic, and the PSPL curve will have a somewhat different

shape [79]. A careful analysis of these effects should be undertaken with real

Rubin crowded-field images and calibrated exposures when they become available.
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5.2 Limitations of the NSC precursor data

5.2.1 Pointings

As discussed in Section 4.2.2, the preference against the galactic bulge means

there was little chance of finding a genuine microlensing event in this NSC dataset.

This is good in the sense that I get to assess lightcurves that are almost certainly

100% background events to real microlensing signals. However, it does come

with the caveat that I assume the types of variations seen outside the bulge are

comparable to the distribution within the denser pointings. The LSST should

provide new insights into the populations of variable sources in different regions

of the Milky Way, and will help us understand how good an assumption this is.

5.2.2 Timescales

The two principal limitations of the NSC data in this study are (a) the total

volume of Well-Sampled data, which is ∼ 105 times less than anticipated for LSST,

and (b) the length of each of these regions which rarely exceeds 60 days.

The implications of (a) are simply that there are not enough sources observed

over long enough time to expect to find any events, given the predicted numbers

from Chapter 3. This affects events with any crossing time, and therefore any

size PBH population. In any case, I was able to set an upper bound on the back-
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grounds, and show that LSST will have some constraining power, even assuming

the background events reach the upper bound set by the precursor data. This is

shown in Figure 4.14.

As for (b), this is the primary distinguishing capability of LSST. Astronomers

have never measured such a large number of sources so frequently for so long

with the same instrument. With the NSC data, though there are some sources

measured frequently for years, there is a trade-off with the number of objects that

get this treatment. In contrast, the LSST cadence is designed to achieve fast

revisits for most of the available sky for most of the survey. These long duration

observations will be necessary to characterize events associated with larger PBH

masses, since they have longer crossing times. Without covering a large portion of

the lensing event time-frame, it would be difficult to properly infer crossing times,

or even confirm that the event in from lensing instead of another astrophysical

event.

It’s worth noting that there could be more space for discovery in the full NSC

dataset by modifying the Well-Sampled conditions described in Section 4.2.1. For

example, for events with crossing times of a hundred days or more, a revisit

condition of 5 days is far too strict. There would be a different subset of the NSC

lightcurves that is ideal to study longer timescales, although I would also require a

longer timespan for the observations. On the other side, for few-hour-long events,
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there could be more data volume in the subset with a revisit timescale of an hour,

and a timespan of several hours. The WS conditions in this study were designed

to match the expected revisit times of LSST, and to have a long enough span of

measurements to detect the median timescale of events from populations of PBH’s

near 1M�.

5.3 Rubin’s sensitivity through the years

Figure 5.1 shows the expected 95% confidence exclusions of various PBH

masses over the course of the survey, assuming zero microlensing detections in the

corresponding range of crossing times for each bin. Efficiencies were generated

with the MicrolensingMetric in rubinsim (Section 3.2.4.2), with a detection

condition requiring at least 10 nights of measurement of the object, at least 10

total measurements during the microlensing event, and a characterization of the

crossing time within 5% according to the Fisher matrix. This plot will be mod-

ified once real Rubin lightcurves are available to assess detection efficiency with

synthetic events.

We can start to see exclusions around 100 days, at which point we quickly

get to leading levels of upper bounds on the PBH fraction of dark matter in the

near-solar mass range. By the end of the 10-year survey, we reach the green curve

in Figure 4.15.
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Figure 5.1: PBH exclusions over the course of the LSST, with time on a log scale

and mass in units of solar masses.

124



5.4 Future work

5.4.1 Finding Stellar Origin Black Holes

Exactly the same methods described in chapter 4 are applicable to finding

SOBHs as well as PBHs. As discussed in 4.3, I expect to find a large number

of these stellar remnants with Rubin, but the total number in the Milky Way

is currently not well bounded. In this work I have assumed there are 108 total

SOBHs, following an exponential distribution starting at 6.3M�, from [86]. If we

make the simplification that the SOBHs have the same distribution as the modeled

PBHs, one would expect to detect around 400 microlensing events after the 10

years of LSST, in the range of 30-100 day crossing times. Fortunately there will

be good detection efficiency in this range, catching ∼ 40% of events with umin < 5.

In the first data release, we should expect to tighten the constraints on total

SOBH abundance in the Milky Way. It is beyond the scope of this work to make

more concrete predictions, since precisely simulating SOBH crossing times would

require modeling of the natal kicks, which will push the distribution toward faster

events. PopSyCLE [76] has tools for this, but simulating a full-sky survey may

prove computationally infeasible.

125



5.4.2 Search other datasets with the these methods

Prior microlensing searches have found convincing events, providing constraints

described in Section 1.3.2. Each search uses a different set of methods. Another

check of the efficacy of the method presented here would be searching the same

surveys, and seeing whether one finds the same events, or perhaps new events.

One reason I selected the NSC dataset in this initial study is that it contains

exposures in many colors. Whereas the existing microlensing datasets contain

only one or two filters, working with the NSC data let me demonstrate the power

of the implicit achromaticity tests in these methods. It was designed with the

LSST in mind, and the multi-color data availability is a distinguishing element.

It is not yet clear how it will fare on data with only one or two filters.

In any case, the version implemented in nscml is designed for the NSC data

format employed by NOIRLab, and will require an interface to apply it to other

datasets, including Rubin. This is hopefully as simple as changing the column

names. A more general version may be implemented in a new package.

It may also prove valuable to make a specialized version that can catch po-

tential events early, and filter or prioritize sources for follow-up with other instru-

ments. There will be many variable sources to observe, and microlensing discovery

could be greatly improved with a decent ordering scheme. The NSC dataset, or

early Rubin data, could be used to assess the performance of such a metric by
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injecting synthetic microlensing events, and cutting off datapoints such that only

the beginning of the curve is represented. This could show the discovery efficiency

and background rejection as a function of the number of transient measurements,

or of the time measured before the peak of the event.
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Appendix A

Search algorithm implementation

notes

The full code is available in the nsctools package. Here, I will note some of

the challenges and surprises made during its development.

A.1 Windowing for WMA and WMS

For my initial implementation, I used the very naive N2 windowing tactic of

computing temporal weights as a matrix of values between every pair of datapoints

for each object:

windows = window_fn(t.reshape(-1,1)-t.reshape(1,-1), timescale)
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where t is a numpy array of the MJD times of each measurement, and by default

window_fn is a Gaussian centered at 0.

This method seems very wasteful, and indeed was a pretty expensive part of

the code. The timescales are much smaller than the span of time measured, and

most of this matrix contains values close to zero. Exploring the available options

for the parameters in the algorithm, and running on many synthetic lightcurves

for different PBH populations, makes it valuable to spend time optimizing such a

bottleneck. I first tried to leverage the fact that most of these values are zero by

designing and implementing a more clever algorithm to construct a sparse matrix

which let me only store values above a certain threshold - something like 10−6,

for example, which would correspond to very conservative changes in weights

considering the inherent scatter and errors in the data.

@njit
def sparse_gaussian_window_iter(t, timescale=2, nclip=10):

rows = []
cols = []
vals = [np.float64(x) for x in range(0)]
windowstart = 0
for i, ti in enumerate(t):

dt = ti - t[windowstart]
while dt > timescale*nclip and dt >= 0:

windowstart += 1
dt = ti - t[windowstart]
continue

for j in range(windowstart, i):
dt = ti - t[j]
rows.append(i)
rows.append(j)
cols.append(j)
cols.append(i)
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newval = np.exp(-((dt/timescale)**2)/2)
vals += [newval]*2

rows.append(i)
cols.append(i)
vals += [1]

return (vals, (rows, cols))
def sparse_gaussian_window(t, timescale=2, nclip=10):

sparse_matrix =
scipy.sparse.csr_array(sparse_gaussian_window_iter(t,
timescale, nclip), shape=(t.shape[0], t.shape[0]))

With Just-In-Time (JIT) compilation from numba and a reasonable clipping set-

ting,

sparse_gaussian_window_iter is much faster than the naive implementation.

However, in a bit of a Catch-22, the initialization of the scipy.sparse.csr_array

takes almost as much time as the JIT compiled naive code. The use of this scipy

tool is incompatible with numba, and requires most of the WMA/WMS code to

run without its optimization.

Instead of constructing a sparse matrix and using the same matrix products

as before, I decided to calculate the entire WMA sum in one iteration.

@njit
def sparse_gaussian_wma(y, t, weights, timescale=2, nclip=10):

wma = np.copy(weights*y)
wme = weights.copy()
windows_X_weights = weights.copy()
windowstart = 0
for i, ti in enumerate(t):

dt = ti - t[windowstart]
while dt > timescale*nclip and dt >= 0:

windowstart += 1
dt = ti - t[windowstart]
continue
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for j in range(windowstart, i):
dt = ti - t[j]
window = np.exp(-((dt/timescale)**2)/2)
window_X_weight_i = window*weights[i]
window_X_weight_j = window*weights[j]
wma[i] += window_X_weight_j * y[j]
wme[i] += window * window_X_weight_j
windows_X_weights[i] += window_X_weight_j
wma[j] += window_X_weight_i * y[i]
wme[j] += window * window_X_weight_i
windows_X_weights[j] += window_X_weight_i

wma = wma/windows_X_weights
wme = np.sqrt(wme)/windows_X_weights
return wma, wme, sparse_gaussian_wms(y, t, weights, wma,

timescale=timescale, nclip=nclip)

sparse_gaussian_wms is constructed analogously, but it runs in a second it-

eration because it relies on the WMA which hasn’t been computed yet during

the first iteration. Fortunately, running a second iteration doesn’t increase the

complexity, and we’ve gone from O(N2) to O(NM) where N is the number of

datapoints and M is the typical number of datapoints in a clipped window. Gen-

erally, M � N . This has taken a typical computation of the WMA down from

∼ 30 ms to ∼ 1 ms, and the time to run Round 1 over the entire dataset from ∼ 40

mins to ∼ 4 mins. When searching the space of parameter options, this makes an

enormous difference in agility.
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