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Abstract

Creative conceptual change involves (a) the construction
of new concepts and of coherent belief systems, or theo-
ries, relating these concepts, and (b) the modification and
extrapolation of existing concepts and theories in novel
situations. I discuss these and other types of conceptual
change, and present computational models of construc-
tive and extrapolative processes in creative conceptual
change. The models have been implemented as computer
programs in two very different task domains, autonomous
robotic navigation and fictional story understanding.

Introduction

Much research in conceptual change has focussed on develop-
mental conceptual change in children, and scientific conceptual
change in expert adults. Keil (1989), for example, is concerned
with the nature of children’s concepts, their differences from
concepts that adults have, and how children’s concepts change
through cognitive development. Such conceptual change is
qualitative; not only do children learn new concepts, the na-
ture of the concepts themselves changes through development.
The study of scientific conceptual change is concerned with
how new conceptual structures come to replace existing con-
ceptual structures through scientific revolutions (Kuhn, 1962)
or through longer-term enterprise (Gruber, 1989). Nersessian
(1991) argues that “the problem-solving strategies scientists
have invented and the representational practices they have de-
veloped over the course of the history of science are very so-
phisticated and refined outgrowths of ordinary reasoning and
representational processes.”

The conceptual change that I am concerned with here is
the everyday kind. It involves everyday reasoning by reason-
ing systems, human or machine, in situations that allow (or
require) creativity and learning. Conceptual change requires
two kinds of creative processes: the construction of new con-
cepts from input information, and the extrapolation of existing
concepts in novel and unfamiliar situations. The first kind of
process involves reformulating low-level information, such as
sensorimotor data, into higher-level abstractions. For example,
a reasoner in a strange environment may improve its ability
to act in that environment by learning about the effects of its
actions in that environment (for example, learning to control a
car on the highway). The actions themselves may be new and
unfamiliar; a reasoner may need to learn about its own actions
and the interactions of these actions with the environment (for
example, learning to drive a car in the first place). The reasoner
may also need to learn about the structure of the environment
itself (for example, learning the layout of the roads in a city).

17

All of these scenarios require creative conceptual change of a
particular kind: the construction of conceptual representations
to represent causal and predictive relationships between sen-
sory inputs, motor actions, and the environment. I will call this
constructive conceptual change since it involves the construc-
tion of new concepts from sensorimotor experience. Although
this process is not usually thought of as “creative,” I will argue
that the process is in fact so because it results in representations
that are novel, useful, and qualitatively different from those
that the reasoner initially starts out with.

Another kind of process involved in creative conceptual
change is that commonly associated with fictional and imagi-
native scenarios. Reading a science fiction story, for example,
requires a temporary suspension of disbelief and the extension
or adaptation of existing concepts to create a conceptual model
of the described situation (which may be very different from
the reasoner’s real-world experience). I will call this extrap-
olative conceptual change since it involves extrapolation from
existing concepts to create new ones. In addition to guiding the
reasoner in the current situation, the new concepts (or systems
of concepts) may be useful in other contexts as well. As I will
argue, the mechanisms and knowledge involved in such rea-
soning are not unique to understanding fiction; they are really
no different from the mechanisms and knowledge involved in
reasoning in nonfictional or real-world situations. Although
models of creativity and conceptual change have traditionally
been developed separately from models from everyday reason-
ing, the constructive and extrapolative processes discussed here
are not viewed as being extraordinary or special; they, and the
creative conceptual change that they result in, are an integral
part of everyday reasoning.

Both constructive and extrapolative conceptual change have
much in common with each other, as well as with develop-
mental and scientific conceptual change. Keil (1989) argues
that systematic belief systems, or “theories,” are important in
developmental conceptual change, and that causal relations are
essential and more useful in such theories than other sorts of
relations (see also Neisser, 1987). Causal belief systems are
critical in extrapolative conceptual change as well since they
guide and constrain the creative adaptations performed by the
reasoner. Keil views concepts as partial theories in that they
embody explanations or mental models of the relations be-
tween their constituents, of their origins, and of their relations
to other clusters of features (see also Johnson-Laird, 1983; Mur-
phy & Medin, 1985). Similarly, the representations constructed
through extrapolative and constructive conceptual change also
embody such explanations (albeit not always “correct” ones).
Analogy and mental modelling play a crucial role in theories
of scientific conceptual change (e.g., Nersessian, 1991), and in


mailto:ashwin@cc.gatech.edu

extrapolative conceptual change as well. All these types of con-
ceptual change rely both on inductive and analytical reasoning
processes, though sometimes to different extents. Typically,
analytical processes are used when appropriate theories are
available to support analysis (such as in experts), and induc-
tive processes are used when such theories are not available
(such as in novices). In addition to the creation of individual
concepts and their gradual evolution through experience, con-
ceptual change may also involve the reorganization of an entire
system of concepts.

The decomposition of the processes of conceptual change
into constructive and extrapolative is a functional one. Rather
than discuss conceptual change in children and adults, in layper-
sons and scientists, or in physics and mathematics, I will focus
on the underlying functions of conceptual change (the construc-
tion and evolution of concepts), on the mechanisms that achieve
these functions, and on the knowledge that these mechanisms
rely on. Such a decomposition is methodologically useful be-
cause itallows us to study the types of knowledge and processes
that underlie conceptual change and their commonalities across
different performance tasks, domains, and levels of expertise
of the reasoners. In this paper, I will discuss computational
models of constructive and extrapolative conceptual change,
focussing in particular on two computer programs that instanti-
ate the models in two very different “everyday” task domains.
The computer programs aid in the development and evalua-
tion of the models, and provide an experimental framework for
further exploration of theoretical ideas. 1 will conclude with
a discussion of a framework for the integration of these (and
other) methods of conceptual change into a single “multistrat-
egy” system.

Case studies in creative conceptual change

The computer programs presented here serve as case studies of
constructive and extrapolative processes in conceptual change.
The first program, called SINS (Self-Improving Navigation
System) is an autonomous robotic navigation system that learns
to navigate in an obstacle-ridden world (Ram & Santamaria,
1993). Autonomous robotic navigation is the task of find-
ing a path along which a robot can physically move through
a given environment and then executing the actions to carry
out the movement in a real or simulated world. The ability to
adapt to changes 1n the environment, and to learn from expe-
riences, is crucial to adequate performance and survivability
in the real world. SINS uses fast robotic control augmented
with multiple learning methods that allow the system to adapt
to novel environments and to learn from its experiences. The
core of the system is a constructive conceptual change mecha-
nism that autonomously and progressively constructs represen-
tational structures that encapsulate the system’s experiences.
These structures comprise a higher-level representation of the
system’s perceptual and sensorimotor interactions with its en-
vironment, and are used to aid the navigation task in two ways:
they allow the system to dynamically select the appropriate
robotic control behaviors in different situations, and they also
allow the system to adapt selected behaviors to the immediate
demands of the environment.

The second case study is based on a computer program
called ISAAC (Integrated Story Analysis And Comprehen-
sion), which is a natural language understanding system that
reads short stories from the science fiction genre (Moorman &
Ram, 1993). Such stories require creative understanding, in
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which the reader must learn enough about an alien world in a
short text in order to accept it as the background for the story,
and simultancously must understand the story itself. ISAAC
implements a process of extrapolative conceptual change which
is based on the creative extrapolation, modification, or exten-
sion of existing concepts and theories to invent new ones. The
extrapolation is constrained by the content of the story, by the
system’s existing concepts and theories, and by the require-
ments of the reading and understanding task.

As the casce studics will reveal, there is much in common be-
tween these two systems despite their superficial differences.
Both systems use multiple types of knowledge, and multiple
types of reasoning processes. Both rely on multiple sources of
constraints on these processes, including theories, knowledge
and knowledge organization, and actual experience. Creative
conceptual change in both systems is a process of gradual evolu-
tion of concepts to create better approximations of the observed
world. Both systems learn autonomously through experience.
The new concepts contribute significantly to the systems’ abili-
ties to carry out their respective tasks, and may be very different
from those that the systems initially started out with.

The differences between the systems are also of interest.
SINS relies directly on its experiences in the real world, whereas
ISAAC's real world is that of natural language texts which vi-
cariously describe fictional world experiences of fictional char-
acters. ISAAC integrates its processes using explicit arbitration
and control; thus, conceptual change in ISAAC is guided by the
particular needs and goals of the program. SINS, in contrast,
learns “‘automatically” through its task performance, and thus
is better characterized as having an implicit orientation or goal
to learn (Barsalou, discussed in Leake & Ram, 1993).

The two systems are discussed in more detail below.

Constructive conceptual change

Many machine learning and conceptual change systems have
traditionally been used in problem domains that can be ad-
equately described using discrete, symbolic representations.
However, an important type of conceptual change is that which
occurs in continuous problem domains. In order to actually per-
form a task in the real world, for example, an agent (human or
robot) must be able 10 accept perceptual or sensory inputs from
the environment, select an appropriate action based on its goals,
the input, and the task at hand, and then carry out that action
through appropriate motor control commands to its effectors.
Perception and action are inherently continuous in three ways:
they require representations of continuous information, they
require continuous performance (for example, driving a car),
and they require continuous adaptation and learning.

For example, consider the problem of spatial representation
and exploration in a real-world environment. An agent leam-
ing about its physical environment through exploration might
build a cognitive map representing topological and metrical
information about the space around it. Several studies have
suggested that cognitive maps are organized into layers (€.g.,
Lynch, 1960; Piaget & Inhelder, 1967; Siegel & White, 1975).
The cognitive map contains information about space, locations,
connectivity, and distance, learned gradually through interac-
tion with and exploration of the environment. These studies
have motivated computational models of robot map-learning
as well. For example, Kuipers & Byun (1991) describe a sim-
ulated robot, NX, that learns a hierarchy of types of spatial
knowledge organized into sensorimotor, control, procedural,
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topological, and metrical knowledge. At the lowest level, the
robot has access to raw sensory data from the environment. The
robot’s representation of the space surrounding it undergoes a
series of conceptual changes as sensorimotor data (which is
continuous and numerical) is reformulated and abstracted into
successively higher-level descriptions (which are discrete and
symbolic). This is an example of what I am calling constructive
conceptual change in this paper.

The SINS system discussed here also learns from continuous
sensorimotor information, but addresses a somewhat different
problem in constructive conceptual change: that of learning
the appropriate concepts for dynamic and adaptive control of
action. In addition to leaming about the environment around
it, an agent must also learn about the interactions of its be-
haviors with the environment. It must learn what effects its
actions have and when different actions are appropriate. This
problem is different from the map-learning problem because
it involves constructing representations, not just of the envi-
ronment, but of the agent’s interactions with the environment.
Often, action and learning are incremental of necessity because
the agent’s knowledge is limited and because the environment
is unpredictable; the agent can at best execute the most promis-
ing short-term actions available to it and then re-evaluate its
progress. An agent navigating in an unfamiliar environment,
for example, may not know where obstacles lie until it actu-
ally encounters them. As the problems encountered become
more varied and difficult, it becomes necessary to use avail-
able knowledge in an incremental manner to act, and to rely
on continuous feedback from the environment to adapt actions
and learn from experiences. The problem solving and learning
process must operate continuously; there is no time to “stop
and think,” nor a logical point in the process at which to do
so. Through this on-going process, the agent must construct
higher-level conceptual representations that constitute its “un-
derstanding” of the world and of its interactions with the world.

SINS addresses this problem by constructing conceptual
structures that encapsulate continuous sensorimotor experi-
ence. These structures are modified continuously even as they
are used to guide action. Through experience, these struc-
tures evolve into stable perception-action models and result in
improved performance on a wide range of input environments.

Technical details: The SINS system

Autonomous robotic navigation is defined as the task of finding
a path along which a robot can move safely from a source point
to adestination point in a obstacle-ridden terrain (path planning)
and executing the actions to carry out the movement in a real
or simulated world (plan execution). Several methods have
been proposed for this task, ranging from high-level planning
methods to reactive methods.

High-level planning methods use extensive world knowl-
edge and inferences about the environment they interact with
(e.g., Fikes, Hart & Nilsson, 1972; Sacerdoti, 1975). Knowl-
edge about available actions and their consequences is used to
formulate a detailed plan before the actions are actually exe-
cuted in the world. These methods can successfully perform
the path-finding required by the navigation task, but only if an
accurate and complete representation of the world, and of avail-
able actions and their effects, is available to the agent. Situated
or reactive control methods have been proposed as an alterna-
tive to high-level planning methods (e.g., Arkin, 1989; Brooks,
1986; Kaelbling, 1986; Payton, 1986). In these methods, no
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Figure 1: Architecture of the self-improving robot navigation
system.

planning is performed; instead, a simple sensory representation
of the environment is used to select the next action that should
be performed. Actions are represented as simple behaviors,
which can be selected and executed rapidly, often in real-time.
These methods can cope with unknown and dynamic environ-
mental configurations, but only those that lie within the scope
of predetermined behaviors.

In a complex and dynamic environment, an agent needs to
develop a combination of the above abilities: a fast and ac-
curate perception process, the ability to reliably map sensory
inputs to higher-level representations of the world, the ability
to reliably predict the effects of its actions, and the ability to
respond immediately to unexpected situations. Furthermore,
to ensure adequate performance and survivability in the real
world, the agent’s ability to perform these functions must adapt
to changes in the environment and improve through experi-
ence. In the SINS system, we have focussed on the problem
of constructing representations of the agent’s interactions with
its environment. These representations model the environment
and the effects of the agent’s actions in that environment, and
provide a basis for selecting appropriate actions in a possibly
unfamiliar environment.

SINS uses schema-based reactive control for fast perfor-
mance (Arkin, 1989), augmented with multistrategy learning
methods that allow the system to adapt to novel environ-
ments and to learn from its experiences (see figure 1). The
system autonomously and progressively constructs representa-
tional structures that encapsulate its experiences into “cases”
that are then used to aid the navigation task in two ways: they
allow the system to dynamically select the appropriate robotic
control behaviors in different situations, and they also allow the
system to adapt selected behaviors to the immediate demands
of the environment (see figure 2).

The system’s cases are automatically constructed using a
hybrid case-based and reinforcement learning method without
extensive high-level reasoning. The learning and navigation
modules function in an integrated manner. The learning mod-
ule is always trying to find a better model of the interaction of
the system with its environment so that it can tune the navi-
gation module to perform its function better. The navigation
module provides feedback to the learning component so it can
build a better model of this interaction. The behavior of the
system is the result of an equilibrium point established by the
learning module, which is trying to refine the model, and the
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Figure 2: Typical navigational behaviors of the autonomous
robotic system. The figure on the left shows the non-learing
system with high obstacle avoidance and low goal attraction.
On the right, the learning system has lowered obstacle avoid-
ance and increased goal attraction, allowing it to “squeeze”
through the obstacles and then take a relatively direct path to
the goal.

environment, which is complex and dynamic in nature. This
equilibrium may shift and need to be re-established if the en-
vironment changes drastically; however, the model is generic
enough at any point to be able to deal with a very wide range
of environments.

The learning methods are based on a combination of ideas
from case-based reasoning and learning, which deals with the
issue of using past experiences to deal with and learn from
novel situations (e.g., Hammond, 1989), and from reinforce-
ment learning, which deals with the issue of updating the con-
tent of system’s knowledge based on feedback from the envi-
ronment (e.g., Sutton, 1992). Each case in SINS represents an
observed regularity between a particular environmental con-
figuration and the effects of different actions, and prescribes
the values of the control parameters that are most appropri-
ate (as far as the system can determine based on its previous
experience) for that environment.

The learning module performs the following tasks in a cyclic
manner: (1) perceive and represent the current environment;
(2) retrieve a case which represents an environment most sim-
ilar to the current environment; (3) adapt the motor control
parameters in use by the navigation module based on the rec-
ommendations of the case; and (4) learn new associations
and/or adapt existing associations represented in the case to re-
flect any new information gained through the use of the case in
the new situation to enhance the reliability of their predictions.

Since leamning is not supervised by an outside expert, one
of the issues to be addressed is how the system can determine
whether the current experience should be used to modify and
improve an existing case, or whether a new case should be
created. In SINS, this is done through an inductive procedure
that uses information about prior applications of the case. When
acase is retrieved and applied to the current situation, a “relative
similarity measure” is used to quantify how similar the current
environment configuration is to the environment configuration
encoded by the case, relative to how similar the environment
has been in previous utilizations of the case. Intuitively,if acase
matches the current situation better than previous situations it
was used in, it is likely that the situation involves the very
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regularities that the case is beginning to capture; thus, it is
worthwhile modifying the case in the direction of the current
situation. Alternatively, if the match is not quite as good, the
case should not be modified because that will Lake it away from
the regularity it has been converging towards. Finally, if the
current situation is a very bad fit to the case, it makes more
sense Lo create a new case Lo represent whal is probably a new
class of situations.

A case in SINS represents a set of associations between sen-
sory inputs and control parameters. Sensory inputs provide
information about the configuration of the environment, and
control parameters specifly how o adapt the motor outputs of
the navigation module in the environments to which the case is
applicable. Each type of information is represented as a vector
of analog values. Each analog value corresponds to a quan-
titative variable (a sensory input or a control parameter) at a
specific time, and a vector of such values represents the trend
or recent history of the corresponding variable. This represen-
tation has three essential properties. First, the representation
is capable of capturing a wide range of possible associations
between of sensory inputs and schema parameters. Second, it
permits continuous progressive refinement of the associations.
Finally, the representation captures trends or patterns of input
and output values over time. This allows the system to detect
patterns over larger time windows rather than having to make
a decision based only on instantaneous values of perceptual
inputs.

Sets of sensory inputs and control paramelters are associated
by grouping their vectors together into a single case. This
grouping induces (albeit implicitly) a set of concepts that can
be used to describe a control strategy or an environmental reg-
ularity. For example, if SINS is getting deeper into a crowded
area, the values of the sensory inputs responsible for object
detection will increase over time. A useful strategy in such
a situation might be to back out and go around the obstacles.
However, such a strategy cannot be expressed in purely percep-
tual terms; it requires the concepts of crowdedness, retreat, and
so on, which are qualitatively different from the sensorimotor
information that is initially available to the system.

Since learning and adaptation are based on a relative simi-
larity measure, the overall effect of this process is to cause the
cases Lo converge on stable associations between environment
configurations and control parameters. Stable associations rep-
resent regularities in the world that have been identified by
the system through its experience, and provide the predictive
power necessary 10 navigate in future situations. The assump-
tion behind this method is that the interaction between the
system and the environment can be characterized by a finite set
of causal patterns or associations between the sensory inputs
and the actions performed by the system. The method allows
the system to learn these causal patterns and to use them to
modify its actions by updating its motor control parameters as
approprate.

One disadvantage of the analog representations is that they
are not easy to interpret, making it difficult for a human ob-
server to characterize the regularities and concepts that SINS
actually learns in a given environment. To evaluate the method,
we have developed a three-dimensional interactive visualiza-
tion of a robot navigating through a simulated obstacle-ridden
world, and used it to test the SINS system through extensive
empirical simulations on a wide variety of environments us-
ing several different performance metrics. The system is very



robust and can perform successfully in (and learn from) novel
environments without any user intervention oOr supervisory in-
put, yet it compares favorably with traditional reactive methods
in terms of speed and performance (Ram & Santamaria, 1993).
Furthermore, the system designers do not need to foresee and
represent all the possibilities that might occur since the system
develops its own “understanding” of the world and 1ts actions.

SINS carries out a constructive conceptual change process in
which new conceptual representations of regularities in system-
environment sensorimotor interactions are created through ex-
perience. The process results in a qualitative shift in the sys-
tem’s internal “theory” of perception and action, and results in
new concepts that are creative by virtue of being both origi-
nal and useful (Koestler, 1964; Turner, 1991). As one might
expect, the creation of new concepts in SINS (and in other
systems such as NX) is an incremental process and involves,
in addition to the abstraction of low-level inputs into higher-
level representations, the modification of such representations
in response to future experiences. In this sense, constructive
conceptual change involves some degree of extrapolation as
well. However, since this extrapolation does not require the
kinds of creative leaps as those needed in the ISAAC system,
the latter provides a better case study of extrapolative concep-
tual change and is discussed next.

Extrapolative conceptual change

In developing the SINS system, we were interested in the prob-
lem of constructing conceptual representations from contin-
uous sensorimotor experience. Another type of conceptual
change, however, is that which occurs when conceptual rep-
resentations are used to understand a new and unfamiliar do-
main. The more different the domain, the more radical the
change. In the ISAAC system, we are focussing on the con-
struction of new concepts (and associated theories) through
creative theory-guided transfer of existing concepts to a new
domain. This process is largely analytical and involves analog-
ical and metaphorical reasoning. There are two central issues
here: what are the processes by which existing theories are
extrapolated, and what is the nature of the constraints on these
processes?

ISAAC explores these ideas in the domain of reading short
stories from the science fiction literature. Consider the follow-
ing short story, Men Are Different by Alan Bloch (1963).

I’'m an archaeologist, and Men are my business. Just
the same, I wonder if we’ll ever find out about Men—I
mean really find out what made Man different from us
Robots—by digging around on the dead planets. You see,
I lived with a Man once, and I know it isn’t as simple as
they told us back in school.

We have a few records, of course, and Robots like
me are filling in some of the gaps, but I think now that
we aren’t really getting anywhere. We know, or at least
the historians say we know, that Men came from a planet
called Earth. We know, too, that they rode out bravely
from star to star; and wherever they stopped, they left
colonies—Men, Robots, and sometimes both—against
their return. But they never came back.

Those were the shining days of the world. But are
we so old now? Men had a bright flame—the old word
is “divine,” I think—that flung them far across the night
skies, and we have lost the strands of the web they wove.
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Our scientists tell us that Men were very much like
us—and the skeleton of a Man is, to be sure, almost the
same as the skeleton of a Robot, except that it’s made
of some calcium compound instead of titanium. Just the
same, there are other differences.

It was on my last field trip, to one of the inner planets,
that I met the Man. He must have been the last Man in this
system, and he’d forgotten how to talk—he’d been alone
s0 long. I planned to bring him back with me. Something
happened to him, though.

One day, for no reason at all, he complained of the heat.
I checked his temperature and decided that his thermostat
circuits were shot. I had a kit of field spares with me, and
he was obviously out of order, so I went to work. I pushed
the needle into his neck to operate the cut-off switch, and
he stopped moving, just like a Robot. But when I opened
him up he wasn’t the same inside. And when I put him
back together I couldn’t get him running again. Then he
sort of weathered away—and by the time I was ready to
come home, about a year later, there was nothing left of
him but bones. Yes, Men are indeed different.

In order to understand this story, the reader must infer that the
narrator is a robot, that robots are the dominant lifeform in the
future, that humans have practically died out, that robots are
capable of making logical errors such as the ones that the narra-
tor made, and so on. The reader must construct an appropriate
model of this world, and interpret the story with respect to this
model even as the model evolves. The reader must also be
willing to suspend disbelief to understand concepts which do
not fit into a standard world view.

In ISAAC, new theories (and associated concepts) are con-
structed through extrapolation and modification of existing the-
ories and concepts. The extrapolation is constrained by the ac-
tual content of the story, by the system’s existing theories and
concepts, and by the cognitive constraints on the reading and
understanding mechanisms that are responsible for processing
the story. No reader, machine or human, could have the time,
memory, and other resources to read every single word in a
story in-depth and to consider all the ramifications of each
word. The reader’s environment (the story), knowledge (ex-
isting concepts), goals and tasks (e.g., Ram & Hunter, 1992),
and cognitive resources available to the processing machinery
(e.g., Just & Carpenter, 1992) interact to constrain the possible
extrapolation to a more manageable level.

The story understanding processes in ISAAC are not unique
to science fiction stories, of course. Understanding any fictional
story requires similar kinds of processing. The same is true of
nonfictional stories as well as unfamiliar real-world scenar-
ios, although the types and degree of conceptual modifications
required may be different.

Technical details: The ISAAC system

The ISAAC system consists of six “supertasks,” each of which
is made up of several subtasks that interact with each other.
The tasks are based on research in psycholinguistics (e.g., Hol-
brook, Eiselt & Mahesh, 1992; van Dijk & Kintsch, 1983),
reading comprehension (e.g., Black & Seifert, 1981; Graesser,
Golding, & Long, 1991), story understanding (e.g., Bimbaum,
1986; Ram, 1991; Rumelhart, 1977), episodic memory (e.g.,
Kolodner, 1984; Schank, 1982), analogy (e.g., Falkenhainer,
1987; Gentner, 1989), creativity (e.g., Gruber, 1989; Schank



& Leake, 1990), and metacognition (e.g., Gavelek & Raphael,
1985; Schneider, 1985; Weinert, 1987; Wellman, 1985). The
supertasks and their functions are summarized below.

Language understanding is rcsponsible for low-level text
understanding, including lexical retrieval, syntactic parsing,
pronoun reference, punctuation analysis, and tensc analysis.

Story structure understanding focusses on details of the
text which relate to story structure, including character iden-
tification (protagonist, antagonist), setting identification (time,
location), plot description, and genre identification.

Episodic understanding carries out the event representation
(agent, action, state, object, location), agent modelling (agents’
goals, knowledge, and beliefs), and action modelling tasks that
are central to understanding fictional, narrative or real-world
episodes.

Explanation and reasoning is responsible for high-level
reasoning and learning tasks, including those supporting spe-
cific language understanding tasks such as unknown word defi-
nition, and general tasks such as belief management, inference,
creative analogy, interest management, and learning.

Memory management carries out memory storage and re-
trieval, including spontaneous reminding and case construction.

Metacontrol is responsible for integration of the other su-
pertasks, and for focus of attention, time management, and
suspension of disbelief. Since it is unreasonable to assume that
the system would have complete metacognitive access to all
its internal processes (Nisbett & Wilson, 1977), metacontrol
and metareasoning operate on supertasks and do not access the
individual tasks directly. The supertasks in turn control the
individual tasks that they are responsible for.

We chose science fiction stories as the domain for ISAAC
because it is a particularly good one to study what one might
call “creative understanding.” People can comprehend stories
which have no basis in fact, and which may require invention
of concepts and theories which are radically different from
those in the real world. The process of understanding the
un-understandable involves the extrapolative type of creative
conceptual change. A central requirement is the willingness of
the reader to suspend his or her disbelief of the material being
presented or the assumptions being made about the fictional
world (Corrigan, 1979). Consider the ambiguous title of a
Larry Niven (1973) story, Flight of the Horse. This phrase
could refer to a fleeing horse, a horse on an airplane flight, or to
aflying horse. If a story understanding system relied on a belief
in the validity of world knowledge, it would disambiguate the
phrase to eliminate the latter meaning since it “knows” horses
cannot fly. This may be incorrect if the story was about a
flying horse (or a pegasus), which is perfectly reasonable in a
science fiction or mythological story. As I argued earlier, these
considerations are not unique to science fiction stories; even
factual stories (such as newspaper stories) in domains that are
not completely understood may require the system to consider
the possibility that its current understanding of the domain is
incomplete or incorrect (e.g., Ram, 1993).

To understand concepts which do not fitinto a standard world
view, the system attempts to modify existing concepts (Schank,
1986). This usually involves extending or adapting not just
a single concept, but systems of concepts—that is, theories.
This modification can occur in several ways. Definitional con-
straints may be relaxed to produce concepts with alternative
constraints. For example, relaxing the definitional constraint
that a horse’s primary mode of locomotion is its legs may result
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Figure 3: Knowledge representation grid.

in a “horse” with wings—a pegasus. Another option is to add
new constraints or features Lo existing concepts, or to combine
two concepts together. Suitcases, for example, do not nor-
mally have a mode of locomotion; adding one may result in an
independently mobile suitcase, much like the one depicted in
Terry Pratchett’s (1983) story, The Colour of Magic. Creativ-
ity may also result from relaxed constraints on memory search
processes, such as in the “imaginative memory” of Turner’s
(1991) MINSTREL system.

A problem with such concept manipulation is that it is dif-
ficult to specify principled constraints on this process. Could
a toaster be a good mode of horse locomotion? Up to a cer-
tain limit, constraint manipulation will result in concepts which
could be called creative, after which the resulting concepts may
be too bizarre to be useful. However, utility and interestingness
are not inherent in particular concepts, but can only be evalu-
ated with respect to the reasoner’s knowledge, the organization
of this knowledge, the reasoner’s goals, the task at hand, the
environment in which the reasoner is carrying out its tasks (in
the case of ISAAC, the story), and general processing heuristics
(Pinto, Shrager & Berthenthal, 1992; Ram, 1990).

In ISAAC, the knowledge organization scheme provides a
structure for the conceptual change process. ISAAC’s knowl-
edge base is organized into a semantic network, which is in-
dexed through a multidimensional grid (see figure 3). The
rows of the grid represent “thematic roles” for adaptation; for
concepts representing events, these include action, agent, state,
and object. The columns of the grid represent “conceptual do-
mains,” such as physical, mental, social, emotional, and tempo-
ral. For example, a transfer is a generic action. Different types
of transfers can be represented as physical (e.g., the PTRANS
primitive of Schank, 1972), mental (e.g., MTRANS), and social
(e.g., ATRANS). The grid also allows the system to represent
emotional and temporal transfers (see also Domeshek, 1992).

Concept extrapolation is accomplished by moving around
the grid, leading to creative and metaphorical interpretations
of known concepts. Each type of movement incurs a cost to
the system, depending on the degree to which the concept has
been altered. Movement within a single cell is the easiest type
to perform, movement along a single row or a single column
is more difficult, and adaptations requiring movement across
both rows and columns are the most difficult. Although the
details of the grid are still under development, the point is
that the system tries to perform the least amount of adaptation
necessary, guided by the grid, such that the resulting concepts
can explain and provide a structure for the input.

For example, many temporal metaphors can be represented
as analogies between the physical and temporal columns of the
grid (Lakoff & Johnson, 1980). In a sentence such as ““Time has



passed her by,” for example, a temporal event is described in
physical terms, and an abstract object (time) is described as the
agent of the physical action. Similarly, in the second paragraph
of Men Are Different, “we aren’t really getting anywhere” is a
metaphorical use of knowledge of physical actions to describe
a mental action. Such a metaphor requires a larger creative
leap than an adaptation within the physical column alone, such
as in Schank’s (1986) example in which an analogy is drawn
between a jogger and a racehorse. Continuing with the earlier
horse locomotion examples, a horse with wings involves an
adaptation in which a known mode of locomotion (wings) is
substituted for another one (legs), and is less bizarre than an
independently mobile suitcase with wings in which an inani-
mate object is viewed as an animate agent with an invented (but
plausible) mode of locomotion where none existed previously.
As before, however, utility and interestingness are not absolute;
a suitcase with wings (perhaps airplane wings rather than bird
wings) might make sense in the right context.

In Men Are Different, robots, which in the real world are
physical objects used as tools in manufacturing, are conceptu-
alized as independent volitional agents. The reader must adopt
this view to build an appropriate story model. Interestingly,
the irony in this story derives from the fact that the robot in the
story performs what one might view as the reverse inference,
conceptualizing the man as a physical object to be repaired in a
manner that one might use to repair a physical robotic device.
It is important to note that the invented concepts are “real”
within the context of the story, in contrast to the “bright flame
of Men” which is metaphorical even within the fictional world.
Similarly, a sentence such as “Winter is rapidly approaching”
uses a spatial metaphor to describe a temporal event, whereas
time travel may in fact be a “real” concept in a story. Un-
derstanding this concept involves adapting knowledge about
actions, states, and causality from the physical column of the
grid to the temporal. Such adaptation is the heart of the ex-
trapolative conceptual change process. Once the new concepts
and theories are built, they can be used to understand the story
within the framework of these concepts; in turn, this may result
in further modification of the concepts.

In addition to aiding in the story comprehension process, the
new concepts and theories can also provide a basis for future
problem solving in the real world (e.g., Koestler, 1964). Forex-
ample, reading about a fictitious device may prompt the reader
to develop a similar device in the real world, or may help the
reader understand a similar device when it is actually encoun-
tered at some later point. Motorola’s MicroTAC hand-held
personal cellular phone, for instance, has a strong resemblance
to the hand-held personal communicators used in the Star Trek
television series. Goodman, Waterman & Alterman’s (1991)
SPATR system uses a similar case-based reasoning process to
understand novel devices (such as an Airphone) and natural
language instructions for using these devices based on hier-
archical spatial models of known devices (such as an ATM).
Reading about a creative problem solving episode may also
allow the reader to replay the observed solution process on a
real-world problem in a manner similar to Carbonell’s (1986)
derivational analogy.

Stories that are not creative can also be understood and used
insuch ways, of course. The mechanisms of conceptual change
discussed here are an integral part of ordinary reasoning. Cre-
ative understanding in ISAAC is not implemented through a
separate “creativity” process, but rather through normal pro-
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cesses of reasoning and learning (Gruber, 1989). Similarly,
conceptual change in SINS also occurs through the normal
processes of perception and control of action. Everyday rea-
soning is robust, adaptive, and creative; no special process need
be postulated to model or explain these capabilities.

Discussion

On the surface, the models of constructive and extrapolative
conceptual change presented above appear very different. The
SINS model is inherently experiential and can be characterized
as constructive induction of representations from sensorimotor
input, whereas the ISAAC model is based on vicarious expe-
rience and can be characterized as theory-guided transfer of
concepts to a new domain. The former is mostly inductive,
whereas the latter is mostly analytical. In ISAAC, multiple
processes are integrated through (some degree of) explicit ar-
bitration and control; in SINS, the processes are automatic and
the integrative control mechanisms are implicit.

It is an open question how these models which are, in some
sense, at opposite ends of the spectrum of creative conceptual
change might be unified into a single framework. Quine (1977)
suggests that early concepts may be more perceptual, being de-
fined inductively using an “innate similarity notion or spacing
of qualities,” and later concepts may become more “scientif-
ically sophisticated,” conceptual, and theory-embedded (see
also Keil, 1989). Quine was interested in the issue of develop-
ment of natural kinds, but perhaps a similar idea could be used
to integrate perceptual and conceptual change in an “adult”
reasoning system.

To facilitate integration, it is useful to look at commonalities
between the models. Although the SINS model is closer to ac-
tual perceptual features in real world and the ISAAC model is
closer to theories and mental models, both are based in real ex-
perience (whether personal or vicarious), and are constrained
by the interaction between the system and the environment.
Both are creative processes, and result not just in learning
but in conceptual change as well. In SINS, raw sensorimotor
information is encapsulated into predictive perception-action
models, and in ISAAC, existing theories are modified to pro-
vide a belief structure for new and unfamiliar concepts. Both
require inductive and analytical processes (although to differ-
ent degrees), and both combine multiple methods of learning,
concept formation, and conceptual change. Both are based on
multiple types of knowledge. In both, existing knowledge pro-
vides constraints on reasoning and learning processes. Both
types of creative conceptual change model a gradual evolution
of concepts to better approximate the observed world and in
both, evolving concepts are used in the performance task even
as they are modified. These points also highlight many of sim-
ilarities between the models of constructive and extrapolative
conceptual change presented here and other models of concep-
tual change, including models of developmental and scientific
conceptual change.

One framework for integration of these (and other) meth-
ods of conceptual change is through a multistrategy learning
model, in which various learning methods are combined into
a unified framework. Recent attention to such models is evi-
dent in machine learning (e.g., Carbonell, Knoblock & Minton,
1991; Michalski & Tecuci, 1993) and cognitive psychology
(e.g., Anderson, 1983; Wisniewski & Medin, 1991). Multi-
strategy approaches provide the flexibility and power required
in practical, real-world domains.



There are several methods of integrating multiple lcarning
algorithms into a single system (see Michalski & Tecuci, 1993).
One such framework is that used in the Meta-AQUA and Meta-
TS systems (Ram & Cox, 1993; Ram, Cox & Narayanan, 1992).
In this model, the reasoning system actively selects and com-
bines learning methods based on an analysis of its learning goals
which are represented explicitly in the system. Some learning
goals may be low-level and always active, such as in SINS and
NX. These systems can be described as performing *“goal rele-
vant” learning, in that learning is relevant to the overall goals of
the system (Thagard) but the system only has an implicit goal
to learn (Barsalou, both discussed in Leake & Ram, 1993).
Other learning goals may be selected based on a higher-level
analysis of utility of knowledge and relevance to the system’s
tasks, such as in ISAAC, Meta-AQUA, IVY (Hunter, 1990),
and PAGODA (desJardins, 1992). These systems are better de-
scribed as “‘goal directed” since goals are explicitly represented
and used to drive the selection and execution of reasoning and
learning strategies (Leake & Ram, 1993; Ram & Cox, 1993;
Ram & Hunter, 1992).

Although I do not want to suggest that humans have perfect
or conscious metacognitive knowledge of, and control over,
their learning processes, such a model could be used to take an
intentional stance (Dennett, 1987) towards a computational the-
ory of multistrategy reasoning, both as a description of human
reasoning processes and as a basis for the design of creative Al
systems. Meta-TS, for example, implements a computational
model of human operators learning to troubleshoot physical
devices (Narayanan & Ram, 1992). The model is based on
observations of human troubleshooting operators and protocol
analysis of the data gathered in the test area of an operational
electronics assembly manufacturing plant. In Meta-TS, mul-
tiple learning methods for knowledge compilation (Anderson,
1989), interactive transfer of expertise (Davis, 1979), postpone-
ment (Ram, 1991, 1993), and forgetting are integrated through
metacognitive analysis. Experimental results in metacogni-
tion also suggest that such analysis can facilitate reasoning and
learning (e.g.. Alexander, 1992; Carr, 1992; Schneider, 1985;
Weinert, 1987). An open issue in the design of such models
is the integration of “automatic” learning strategies, such as
those used in SINS, that are goal-relevant rather than explicitly
goal-directed.

In conclusion, creative conceptual change is an everyday
process involving multiple integrated mechanisms that are con-
strained by existing knowledge and by the task at hand. This
process is situated in, and therefore also constrained by, the real
world, and results in original, useful and qualitatively different
representations of systems of beliefs. The process involves the
on-going construction and extrapolation of concepts and theo-
ries in the context of, in service of, and in response to a real-
world performance task. The constructive and extrapolative
processes are modelled computationally through specification
of functions (tasks), mechanisms and knowledge; these mod-
els are then instantiated as computer programs and evaluated
empirically. In this paper, I have used robotic navigation in
dynamic environments and comprehension of actual science
fiction short stories as the task domains in which to present two
case studies of creative conceptual change. These case studies
highlight the issues involved in conceptual change, provide a
basis for the development and evaluation of models that address
these issues, and raise several new issues for future research.

Acknowledgements

Juan Carlos Santamaria and Kenneth Moorman contributed to
the research and program implementations described here. 1
would also like to thank Mike Cox and Eric Domeshek for their
comments on an carlier draft of this paper.

References

Alexander, J. (1992). Metacognition and Giftedness. Paper pre-
sented at The SouthEast Cognitive Science Conference, ab-
stracted in Technical Report #1, Cognitive Science Program,
Georgia Institutc of Technology, Atlanta, GA.

Anderson, J.R. (1983). The Architecture of Cognition. Harvard
University Press, Cambridge, MA.

Anderson, J.R. (1989). A Theory of the Origins of Human
Knowledge. Artificial Intelligence, 30:313-351.

Arkin, R.C. (1989). Motor Schema-Based Mobile Robot Naviga-
tion. The International Journal of Robotics Research, 8(4):92-
112,

Birnbaum, L. (1986). [Integrated Processing in Planning and
Understanding. Ph.D. thesis, Research Report #489, Yale Uni-
versity, Department of Computer Science, New Haven, CT.

Black, J.B. & Seifert, C.M. (1981). The Psychological Study of
Story Understanding. Technical Report #18, Yale University,
New Haven, CT.

Brooks, R. (1986). A Robust Layered Control System for a
Mobile Robot. /EEE Journal of Robotics and Automation,
RA-2(1):14-23.

Bloch, A.(1963). Men Are Different. In 1. Asimov & G. Conklin,
editors, 50 Short Science Fiction Tales, Macmillan Publishing
Company, New York.

Carbonell, J.G. (1986). Derivational Analogy: A Theory of Re-
constructive Problem Solving and Expertise Acquisition. In
R.S. Michalski, J.G. Carbonell, & T.M. Mitchell, editors, Ma-
chine Learning Il: An Artificial Intelligence Approach, Morgam
Kaufman Publishers, San Mateo, CA.

Carbonell, J.G., Knoblock, C.A., & Minton, S. (1991).
PRODIGY: An Integrated Architecture for Planning and Learn-
ing. In K. Van Lehn, editor, Architectures for Intelligence,
pages 241-278, Lawrence Erlbaum Associates, Hillsdale, NJ.

Carr, M. (1992). Metacognitive Knowledge as a Predictor of De-
composition Strategy Use. Paper presented at The SouthEast
Cognitive Science Conference, abstracted in Technical Report
#1, Cognitive Science Program, Georgia Institute of Technol-
ogy, Atlanta, GA.

Corrigan, R.W. (1979). The World of the Theatre. Scott, Fores-
man and Company, Glenview, IL.

Davis, R. (1979). Interactive Transfer of Expertise: Acquisition
of New Inference Rules. Artificial Intelligence, 12:121-157.
Dennett, D. (1987). The Intentional Stance. Bradford Books/

MIT Press, Boston, MA.

desJardins, M. (1992). Goal-Directed Learning: A Decision-
Theoretic Model for Deciding What to Learn Next. In Pro-
ceedings of the ML-92 Workshop on Machine Discovery, pages
147-151, Ninth International Machine Learning Conference,
University of Aberdeen, Scotland.

Domeshek, E.A. (1992). Do the Right Thing: A Component
Theory for Indexing Stories as Social Advice. Ph.D. thesis, Yale
University, Department of Computer Science, New Haven, CT.

Falkenhainer, B. (1987). Scientific Theory Formation through
Analogical Inference. In Proceedings of the Fourth Inter-



national Workshop on Machine Learning, Morgan Kaufman
Publishers, Los Altos, CA.

Fikes, R.E., Hart, PE., & Nilsson, N.J. (1972). Leaming and
Executing Generalized Robot Plans. Artificial Intelligence,
3:251-288.

Gavelek, J.R. & Raphael, R.E. (1985). Metacognition, Instruc-
tion and the Role of Questioning Activities. In D.L. Forrest-
Pressley, G.E. MacKinnon, & T.G. Waller, editors, Metacogni-
tion, Cognition, and Human Performance, Volume 2 (Instruc-
tional Practices), pages 103—136, Academic Press, New York.

Gentner, D. (1989). Mechanisms of Analogical Learning. In
S. Vosniadou & A. Ortony, editors, Similarity and Analogical
Reasoning, Cambridge University Press, London.

Goodman, M., Waterman, S., & Alterman, R. (1991). Interactive
Reasoning about Spatial Concepts. Proceedings of the Thir-
teenth Annual Conference of the Cognitive Science Society,
pages 734-738, Lawrence Erlbaum Associates, Hillsdale, NJ.

Graesser, A., Golding, J.JM., & Long, D.L. (1991). Narrative
Representation and Comprehension. In R. Barr, M.L. Kamil,
P. Mosenthal & P.D. Pearson, editors, Handbook of Reading
Research, volume 2, chapter 8, Longman Publishing Group,
White Plains, NY.

Gruber, H.E. (1989). The Evolving Systems Approach to Cre-
ative Work. In D.B. Wallace & H.E. Gruber, editors, Creative
People at Work, pages 3-24, Oxford University Press, New
York.

Hammond, K.J. (1989). Case-Based Planning: Viewing Plan-
ning as a Memory Task. Academic Press, Boston, MA.

Holbrook, J.K., Eiselt, K.P., & Mahesh, K. (1992). A Unified
Process Model of Syntactic and Semantic Error Recovery in
Sentence Understanding. In Proceedings of the Fourteenth
Annual Conference of the Cognitive Science Society, pages
195-200, Lawrence Erlbaum Publishers, Hillsdale, NJ.

Hunter, L.E. (1990). Planning to Learn. In Proceedings of the
Twelfth Annual Conference of the Cognitive Science Society,
pages 261-276, Boston, MA.

Johnson-Laird, PN. (1983). Mental Models: Towards a Cogni-
tive Science of Language, Inference, and Consciousness. Har-
vard University Press, Cambridge, MA.

Just, M.A. & Carpenter, PA. (1992). A Capacity Theory of
Comprehension: Individual Differences in Working Memory.
Psychological Review, 99(1):122-149.

Kaelbling, L. (1986). An Architecture for Intelligent Reactive
Systems. Technical Note #400, SRI International.

Keil, EC. (1989). Concepts, Kinds, and Cognitive Development.
MIT Press, Cambridge, MA.

Koestler, A. (1964). The Act of Creation. MacMillan Publishers,
New York.

Kolodner, J.L. (1984). Retrieval and Organizational Strategies in
Conceptual Memory: A Computer Model. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Kuhn, T.S. (1962). The Structure of Scientific Revolutions, Uni-
versity of Chicago Press, Chicago, IL.

Kuipers, B.J. & Byun, Y.-T. (1991). A Robot Exploration and
Mapping Strategy Based on a Semantic Hierarchy of Spa-
tial Representations. Robotics and Autonomous Systems, 8(1-
2):47-63.

Lakoff, G. & Johnson, M. (1980). Metaphors We Live By. Uni-
versity of Chicago Press, Chicago, IL.

Leake, D. & Ram, A. (1993). Goal-Driven Learning: Funda-
mental Issues and Symposium Report, Technical Report #85,

Indiana University, Cognitive Science Program, Bloomington,
IN.

Lynch, K. (1960). The Image of the City. MIT Press, Cambridge,
MA.

Michalski, R.S. & Tecuci, G. (1993), editors. Machine Learn-
ing: A Multistrategy Approach, Volume 1V, Morgan Kaufman
Publishers, San Mateo, CA. (In press.)

Moorman, K. & Ram, A. (1993). A New Perspective on Story
Understanding. In Proceedings of the Thirty-First Southeast
ACM Conference, Birmingham, AL.

Murphy, G.L. & Medin, D.L. (1985). The Role of Theories in
Conceptual Coherence. Psychological Review, 92:289-316.
Narayanan, S. & Ram, A. (1992). Learning to Troubleshoot
in Electronics Assembly Manufacturing. In Proceedings of
the ML-92 Workshop on Integrated Learning in Real-World
Domains, Ninth International Machine Learning Conference,

University of Aberdeen, Scotland.

Neisser, U. (1987), editor. Concepts and Conceptual Develop-
ment: Ecological and Intellectual Factors in Categorization.
Cambridge University Press, 1987.

Nersessian, N.J. (1991). How Do Scientists Think? Capturing
the Dynamics of Conceptual Change in Science. In R.N. Giere,
editor, Minnesota Studies in the Philosophy of Science, Volume
XV (Cognitive Models of Science), University of Minnesota
Press, Minneapolis, MN.

Nisbett, R.E. & Wilson, T.D. (1977). Telling More Than We Can
Know: Verbal Reports on Mental Processes. Psychological
Review, 84(3).

Niven, L. (1973). The Flight of the Horse. Ballantine Books,
New York.

Payton, D. (1986). An Architecture for Reflexive Autonomous
Vehicle Control. In Proceedings of the 1986 IEEE Conference
on Robotics and Automation, pages 1838-1845, IEEE.

Piaget, J. & Inhelder, B. (1967). The Child’s Conception of Space.
Norton Publishers, New York.

Pinto, J., Shrager, J. & Berthenthal, B.I. (1992). Developmental
Changes in Infants’ Perceptual Processing of Biomechanical
Motions. In Proceedings of the Fourteenth Annual Confer-
ence of the Cognitive Science Society, pages 60—65, Lawrence
Erlbaum Associates, Hillsdale, NJ.

Pratchett, T. (1983). The Colour of Magic. Penguin Books, New
York.

Quine, W.V.O. (1977). Natural Kinds. In S.P. Schwarts, edi-
tor, Naming, Necessity, and Natural Kinds, Cornell University
Press, Ithaca, NY.

Ram, A. (1990). Knowledge Goals: A Theory of Interesting-
ness. In Proceedings of the Twelvth Annual Conference of the
Cognitive Science Society, pages 206-214, Lawrence Erlbaum
Associates, Hillsdale, NJ.

Ram, A. (1991). A Theory of Questions and Question Asking.
The Journal of the Learning Sciences, 1(3&4):273-318.

Ram, A. (1993). Indexing, Elaboration and Refinement: Incre-
mental Learning of Explanatory Cases. Machine Learning,
10:201-248. (In press.)

Ram, A. & Cox, M.T. (1993). Introspective Reasoning using
Meta-Explanations for Multistrategy Learning. InR.S. Michal-
ski & G. Tecuci, editors, Machine Learning: A Multistrategy
Approach, Volume IV, Morgan Kaufman Publishers, San Ma-
teo, CA. (In press.)

Ram, A., Cox, M.T., & Narayanan, S. (1992). An Architecture for
Integrated Introspective Learning. In Proceedings of the ML-
92 Workshop on Computational Architectures for Supporting

25



Machine Learning and Knowledge Acquisition, Ninth Interna-
tional Machine Learning Conference, University of Aberdeen,
Scotland.

Ram, A. & Hunter, L. (1992). The Use of Explicit Goals for
Knowledge to Guide Inference and Learning. Applied Intelli-
gence, 2(1):47-73.

Ram, A. & Santamaria, J.C. (1993). A Multistrategy Case-Based
and Reinforcement Leamning Approach to Self-Improving Re-
active Control Systems for Autonomous Robotic Navigation.
In Proceedings of the Second International Workshop on Mul-
tistrategy Learning, Center for Artificial Intelligence, George
Mason University, Fairfax, VA. (To appear.)

Rumelhart, D.E. (1977). Understanding and Summarizing Brief
Stories. In D.L. Berge and J. Samuels, editors, Basic Pro-
cesses in Reading and Comprehension, Lawrence Erlbaum As-
sociates, Hillsdale, NJ.

Sacerdoti, E.D. (1975). A Structure for Plans and Behavior.
Technical Note #109, SRI International. Summarized in PR.
Cohen & E.A. Feigenbaum, Handbook of Al, Volume 111, pages
541-550.

Schank, R.C. (1972). Conceptual Dependency: A Theory
of Natural Language Understanding. Cognitive Psychology,
3(4):552-631.

Schank, R.C. (1982). Dynamic Memory: A Theory of Learning
in Computers and People. Cambridge University Press, New
York.

Schank, R.C. (1986). Explanation Patterns: Understanding
Mechanically and Creatively. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Schank, R.C. & Leake, D.B. (1990). Creativity and Learning in
a Case-Based Explainer. In J.G. Carbonell, editor, Machine
Learning: Paradigms and Methods, MIT Press, Cambridge,
MA,

Schneider, W. (1985). Developmental Trends in the
Metamemory-Memory Behavior Relationship: An Integrative
Review. In D.L. Forrest-Pressley, G.E. MacKinnon, & T.G.
Waller, editors, Metacognition, Cognition, and Human Perfor-
mance, Volume 1, Academic Press, New York,

Siegel, A.W. & White, S.H. (1975). The Development of Spa-
tial Representations of Large-Scale Environments. In H.W.
Reese, editor, Advances in Child Development and Behavior,
Academic Press, New York.

Sutton, R.S. (1992), editor. Machine Learning, 8(3/4), special
issue on Reinforcement Leaming.

Turner, S.R. (1991). A Case-Based Model of Creativity. In Pro-
ceedings of the Thirteenth Annual Conference of the Cognitive
Science Society, pages 933-937, Lawrence Erlbaum Associates,
Hillsdale, NJ.

van Dijk, T.A. & Kintsch, W. (1983). Strategies of Discourse
Comprehension. Academic Press, New York.

Weinert, F.E. (1987). Introduction and Overview: Metacog-
nition and Motivation as Determinants of Effective Learning
and Understanding. In FE. Weinert & R.H. Kluwe, editors,
Meracognition, Motivation,and Understanding, Lawrence Erl-
baum Associates, Hillsdale, NJ.

Wellman, H.M. (1985). The Origins of Metacognition. In D.L.
Forrest-Pressley, G.E. MacKinnon, & T.G. Waller, editors,
Metacognition, Cognition, and Human Performance, Volume
1, Academic Press, New York.

Wisniewski, EJ. & Medin, D.L. (1991). Harpoons and Long
Sticks: The Interaction of Theory and Similarity in Rule Induc-
tion. In D. Fisher & M.J. Pazzani, editors, Concept Formation:

26

Knowledge and Experience in Unsupervised Learning, Morgan
Kaufman Publishers, San Mateo, CA.



	cogsci_1993_17-26



