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RESEARCH ARTICLE Open Access

Genome-enabled insights into the biology
of thrips as crop pests
Dorith Rotenberg1* , Aaron A. Baumann2, Sulley Ben-Mahmoud3, Olivier Christiaens4, Wannes Dermauw4,
Panagiotis Ioannidis5,6, Chris G. C. Jacobs7, Iris M. Vargas Jentzsch8, Jonathan E. Oliver9, Monica F. Poelchau10,
Swapna Priya Rajarapu1, Derek J. Schneweis11, Simon Snoeck12,4, Clauvis N. T. Taning4, Dong Wei4,13,14,
Shirani M. K. Widana Gamage15, Daniel S. T. Hughes16, Shwetha C. Murali16, Samuel T. Bailey17,
Nicolas E. Bejerman18, Christopher J. Holmes17, Emily C. Jennings17, Andrew J. Rosendale17,19, Andrew Rosselot17,
Kaylee Hervey11, Brandi A. Schneweis11, Sammy Cheng20, Christopher Childers10, Felipe A. Simão6,
Ralf G. Dietzgen21, Hsu Chao16, Huyen Dinh16, Harsha Vardhan Doddapaneni16, Shannon Dugan16, Yi Han16,
Sandra L. Lee16, Donna M. Muzny16, Jiaxin Qu16, Kim C. Worley16, Joshua B. Benoit17, Markus Friedrich22,
Jeffery W. Jones22, Kristen A. Panfilio8,23, Yoonseong Park24, Hugh M. Robertson25, Guy Smagghe4,13,14,
Diane E. Ullman3, Maurijn van der Zee7, Thomas Van Leeuwen4, Jan A. Veenstra26, Robert M. Waterhouse27,
Matthew T. Weirauch28,29, John H. Werren20, Anna E. Whitfield1, Evgeny M. Zdobnov6, Richard A. Gibbs16 and
Stephen Richards16

Abstract

Background: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant
virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the
processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are
largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set.
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(Continued from previous page)

Results: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking
Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 =
948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The
genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0)
contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on
manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in
the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and
large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification
(CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of
salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate
immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with
progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either
incomplete or complete metamorphosis in the Insecta.

Conclusions: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect
pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here
enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary
insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary
investigations of other Thysanoptera species.

Keywords: Thysanoptera, Western flower thrips, Hemipteroid assemblage, Insect genomics, Tospovirus, Salivary
glands, Chemosensory receptors, Opsins, Detoxification, Innate immunity

Background
Thrips are small, polyphagous, and cosmopolitan insects
that comprise the order Thysanoptera. Thysanoptera lies
within the Paraneoptera, also commonly called the
“hemipteroid assemblage” which also includes the orders
Hemiptera, Psocoptera, and Phthiraptera. Among the
over 7000 reported thrips species classified into nine
families with an additional five identified from fossil spe-
cies [1], the plant-feeders and crop pests are the most
well-characterized members of the order due to their
agricultural importance. Thysanopterans present a di-
verse array of biological, structural, and behavioral attri-
butes, but share characteristics that are unique to insects
in the order. Among these are fringed wings (Fig. 1a,
Adult panel) and a complex mouthcone (Fig. 1b, c) that
houses asymmetrical mouthparts composed of three sty-
lets (Fig. 1d). The paired, maxillary stylets interlock
when extended during ingestion, forming a single tube,
i.e., food canal, that is also thought to serve as a conduit
for saliva, while the single, solid-ended mandibular stylet
(peg) is used to pierce substrates (its counterpart is re-
sorbed during embryonic development) [6, 7]. All the
stylets are innervated, giving thrips control of stylet dir-
ection and movement in response to sensory cues [8].
Thrips also have mechano- and chemosensory structures
likely governing host finding and choice. The external
surface of the mouthcone supports 10 sensory pegs on
each paraglossa, nine of which appear to have a dual
chemosensory and mechanosensory function (sensory
pegs 1–5, 7–10), and one with a mechanosensory

function (sensory peg 6) (Fig. 1e). In addition, internally,
there are precibarial and cibarial chemosensory struc-
tures, likely important in feeding choices [8].
Also remarkable is their postembryonic development,

referred to as “remetaboly” [9] and more recently termed
“neometabolous” [10] (Fig. 1a). This developmental strat-
egy has been described as intermediate between holo- and
hemimetabolous because the two immobile and non-
feeding pupal stages (propupae and/or pupae) (Fig. 1a,
Pupae panel) undergo significant histolysis and histogen-
esis, yet the emergent adult body plan largely resembles
that of the larva except for the presence of wings and ma-
ture reproductive organs (Fig. 1a, Adult panel).
Frankliniella occidentalis (suborder Terebrantia, family

Thripidae, subfamily Thripinae) is a devastatingly invasive
crop pest species with a global geographical distribution
and an extraordinarily broad host range, capable of feed-
ing on hundreds of diverse plant species, tissue types,
fungi, and other arthropods. Additionally, this species has
developed resistance to diverse insecticides with varying
modes of action [11–13]. For example, on cotton, there
have been 127 cases reported of field-evolved resistance to
19 insecticides belonging to six groups (modes of action)
of insecticides [14]. The insect is haplo-diploid, i.e., hap-
loid males arise from unfertilized eggs, while diploid fe-
males develop from fertilized eggs [15]. The short
reproductive cycle and high fecundity of this species con-
tributes to its success as an invasive species.
In addition to direct damage to plants, F. occidentalis

and other thrips vectors interact with and transmit
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Fig. 1 Illustration of how curated gene sets intertwine with understanding of biological processes of Frankliniella occidentalis. a Developmental
stages. Vertical bars: (left) embryonic and postembryonic stages associated with developmental and sex-specific expression analyses of genes
underlying molting and metamorphosis through neometaboly; (right) larval and adult stages feed and are associated with divergent clades and
expansions in gene families related to host selection and feeding (vision, chemosensation) and detoxification of xenobiotics; propupal and pupal
stages do not feed; adults reproduce by arrhenotokous parthenogenesis. Modified from [2], permission of CAB International through PLSclear. b
Cartoon depicting principal and tubular salivary glands (PSG, TSG) associated with enriched expression of specific genes, and the midgut (MG),
hindgut (HG), Malpighian tubules (MPT), and fat body (FB), important sites for detoxification and innate immunity gene sets along with the
hemolymph and cuticle. Modified from [3], permission by Elsevier. c Scanning electron micrograph (SEM) of adult pre-probing behavior highlights
compound eyes used in visual aspects of host finding (associated with opsin genes); external antennal and mouthcone sensory structures
essential to host finding, choice, and feeding; likely associated with expanded gene families underlying chemosensation. Internal leaf anatomy
shows cells most commonly fed on. Modified from [4], permission from Springer-Verlag. d SEM showing the tips of the single mandible (Md) and
paired maxillae (Mx) forming the feeding tube. Modified from [5], permission of Elsevier. e Mouthcone paraglossal sensory pegs (numbered, left
paraglossa)—pegs 1–5, 7–10, are dual function (mechano- and chemosensory), peg 6 is mechanosensory; their location suggests importance in
detecting plant surface microtopography and chemistry during host and feeding-site selection and association with divergent and expanded
gene families related to environmental sensing. Modified from [5], permission of Elsevier
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diverse types of plant pathogens [16–19], most notori-
ously orthotospoviruses [20–22], to a wide array of food,
fiber, and ornamental crops around the globe. With re-
gard to orthotospovirus-thrips interactions, global ex-
pression analyses of whole bodies of F. occidentalis [23,
24] and other thrips vectors [25, 26] indicated the occur-
rence of insect innate immune responses to virus infec-
tion. In addition to serving as crop disease vectors,
thrips support vertically transmitted, facultative bacterial
symbionts that reside in the hindgut [27, 28].
While there are numerous studies centered on thrips

systematics, feeding behaviors, ecology, virus transmis-
sion biology, pest biology and insecticide resistance [29],
the underlying genetic mechanisms of the complex and
dynamic processes governing these areas of research are
largely unknown. Here we present the F. occidentalis
genome assembly and annotation, with phylogenetic
analyses and genome-referenced transcriptome-wide ex-
pression data of gene sets centered on primary themes
in the life histories and activities of plant-colonizing in-
sects: (1) host-locating and chemical sensory perception
(Fig. 1c–e), (2) plant feeding and detoxification (Fig. 1b,
c), (3) innate immunity (Fig. 1b), and (4) development
and reproduction (Fig. 1a). Analysis of the F. occidentalis
genome highlights evolutionary divergence and host ad-
aptations of plant-feeding thysanopterans compared to
other taxa. Our findings underscore the ability of F. occi-
dentalis to sense diverse food sources, to feed on and de-
toxify an array of natural compounds (e.g., plant
secondary compounds) and agrochemicals (e.g., insecti-
cides), and to combat and/or support persistent microbial
associations. We also provide insights into thrips develop-
ment and reproduction. This is the first thysanopteran
genome to be sequenced, and the annotations and re-
sources presented herein provide a platform for further
analysis and better understanding of not just F. occidenta-
lis, but all members of this intriguing insect order.

Results and discussion
Genome metrics
The assembly size of the F. occidentalis draft genome
(Focc_1.0) was determined to be 416Mb (Table 1), in-
cluding gaps, which is larger than the published genome
size estimate obtained by flow cytometry of propidium
iodide-stained nuclei of adult males (337.4 ± 4.3Mb) and
females (345 ± 5Mb) of F. occidentalis (see Table 1
in [31]). The assembly consists of 6263 scaffolds (N50 =
948 kb). One striking feature of the genome is the GC
content of ~ 50%, extraordinarily larger than other in-
sects to date [32]. Updated assemblies with reduced pro-
portions of gaps yielded total assembly sizes of 275–
278 Mbp (see “Methods”); however, already accumulated
manual annotations could not be comprehensively

mapped to these new assemblies so the community
reverted to using the original assembly.

Phylogenomics with a complete and well-annotated
genome assembly
Phylogenomic analysis correctly placed F. occidentalis
(Insecta: Thysanoptera) basal to Acyrthosiphon pisum and
Cimex lectularius (Insecta: Hemiptera) (Fig. 2a). Unex-
pectedly, however, the body louse Pediculus humanus
(Insecta: Psocodea) appears as an outgroup to all other in-
sects, which disagrees with previous findings [33]. This
discordance is most likely due to taxon sampling and
would likely be resolved when more genome sequences
become available from early-diverging insect lineages (e.g.,
Paleoptera). BUSCO assessments (see “Methods”) showed
that both the genome assembly (Fig. 2b, left bars, C:99.0%,
S:97.6%, D:1.4%, F:0.5%, M:0.6% n:1066) and the official
gene set (OGS) (Fig. 2b, right bars, C:99.1%, S:97.6%, D:
1.5%, F:0.6%, M:0.4% n:1066) of F. occidentalis are very
complete when compared to those of other arthropods.
Moreover, the OGS-based BUSCO scores are slightly bet-
ter than the genome-based scores, resulting in reduced
numbers of missing BUSCOs. These findings indicate that
the F. occidentalis gene annotation strategy successfully
managed to capture even difficult-to-annotate genes.

Assembly quality assessment via Hox gene copy number
and cluster synteny
The Hox and Iro-C gene clusters that encode homeodo-
main transcription factors are highly conserved in bila-
terian animals and in insects, respectively [34–36], and
offer an additional quality appraisal for genome assem-
bly. All single-copy gene models for the expected Hox
and Iro-C orthologs were successfully constructed (Add-
itional file 1: Section 1, Table S1.1), and with regard to

Table 1 Genome metrics of Frankliniella occidentalis

Feature Metric

Assembly size 415.8 Mb (263.8 Mb, contigs only)

Genome coverage 158.7×

Number of contigs 76,021

Contig N50 6.2 kb

Number of scaffolds 6263

Scaffold N50 948.9 kb

GC content 50.9%
aRepeat content 9.86%
bBUSCO scores C:99.0%, S:97.6%, D:1.4%, F:0.5%, M:0.6%, n:1066

OGS v.1 (# curated) 16,859 genes (1694); 16,902 mRNAs (1738)
aRepeat content retrieved from Petersen et al. [30]
bBUSCO = Benchmarking Universal Single-Copy Orthologs (Arthropoda gene
set = 1066 single-copy genes present in at least 90% of selected representative
arthropods); performed on the genome assembly, orthologs classified as
complete (C), single (S), duplicate (D), fragmented (F), or missing (M)
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Fig. 2 Phylogeny and orthology of Frankliniella occidentalis with other arthropods, with genome and gene set completeness assessments. a The
phylogenomic analysis was based on the aligned amino acid sequences of 1604 single-copy orthologs and placed F. occidentalis (shown in red)
as basal to the hemipteran species Acyrthosiphon pisum and Cimex lectularius (shown in purple). All nodes have bootstrap support of 100% and
the scale bar corresponds to substitutions per site. OrthoDB orthology delineation with the protein-coding genes from the F. occidentalis official
gene set identify genes with orthologs in all or most of the representative insects and the outgroup species, Daphnia pulex, as well as those with
more limited distributions or with no confidently identifiable arthropod orthologs. b Assessments using the 1066 arthropod Benchmarking
Universal Single-Copy Orthologs (BUSCOs) show few missing genes (5 for the assembly, 4 for the OGS) from F. occidentalis, with better OGS
completeness than A. pisum, C. lectularius, and P. humanus. The F. occidentalis official gene set (OGS) scores better than its genome assembly,
indicating that the gene annotation strategy has successfully managed to capture even difficult to annotate genes. The left bars for each species,
also outlined with a dashed line, show the results based on the genome, whereas the right bars show the results for the OGSs. Species names
abbreviations: Dmela—Drosophila melanogaster, Dplex—Danaus plexippus, Tcast—Tribolium castaneum, Amell—Apis mellifera, Phuma—Pediculus
humanus, Apisu—Acyrthosiphon pisum, Clect—Cimex lectularius, Focci—Frankliniella occidentalis, Dpule—Daphnia pulex
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synteny, we could reconstitute the small Iro-C cluster and
partially assemble the larger Hox cluster (Additional file 1:
Section 1, Figure S1.1), with linkage for Hox2/3/4, Hox5/6/7,
and Hox8/9/10. All linked Hox genes occurred in the ex-
pected order and with the expected, shared transcriptional
orientation, albeit with some missing coding sequence for
some gene models. However, direct concatenation of the
four scaffolds with Hox genes would yield a Hox cluster of
5.9Mb in a genome assembly of 416Mb, which is dispropor-
tionately large (3.5-fold larger relative cluster size compared
to the beetle Tribolium castaneum and other, de novo insect
genomes [37–40]).
Interestingly, although orthology is clear for all ten

Hox genes, they are rather divergent compared to other
insects. Specifically, several F. occidentalis Hox genes
have acquired novel introns in what are generally highly
conserved gene structures, and several Hox genes en-
code unusually large proteins compared to their ortho-
logs, corroborating a previous, pilot analysis on unique
protein-coding gene properties in this unusually GC-rich
genome ([38], see supplement). Global comparisons of
structural properties with other insects further confirm
that the F. occidentalis genome is unusual for the com-
bination of high GC content, large protein sizes, and
short exons [41]. It will be interesting to see whether
these trends are borne out as genome data become avail-
able for more Thysanoptera.

Genome-wide analysis of transcription factors
In addition to the selected homeodomain proteins, we
comprehensively identified likely transcription factors
(TFs) among our entire OGS by scanning the amino acid
sequences of predicted protein-coding genes for putative
DNA-binding domains (DBDs). When possible, we also
predicted the DNA-binding specificity of each TF. Using
this approach, we discovered 843 putative TFs in the F.
occidentalis genome, which is similar to other insect ge-
nomes (e.g., 701 for Drosophila melanogaster). Likewise,
the number of members of each F. occidentalis TF fam-
ily is comparable to that of other insects (Fig. 3a). Of the
843 F. occidentalis TFs, we were able to infer motifs for
197 (23%) (Additional file 2: Table S5), mostly based on
DNA-binding specificity data from D. melanogaster (120
TFs), but also from species as distant as human (43 TFs)
and mouse (12 TFs). Many of the largest TF families
have inferred motifs for a substantial proportion of their
TFs, including homeodomain/Hox (64 of 78, 82%),
bHLH (30 of 36, 83%), and nuclear receptors (11 of 17,
65%). As expected, the largest gap is for C2H2 zinc fingers
(only 24 of 321, ~ 7%), which evolve quickly by shuffling
their many zinc finger arrays, resulting in largely dissimilar
DBD sequences (and hence, DNA-binding motifs) across
organisms [42]. Weighted gene correlation network analysis
(WGCNA) [43] revealed stage-specific patterns in TF

expression (Fig. 3b; Additional file 3). For example, Fer3, a
basic Helix-Loop-Helix (bHLH) TF—previously linked to
reproductive mechanisms [44]—showed increased expres-
sion in F. occidentalis adults compared to the larvae and
propupae. In addition, multiple Hox genes exhibited in-
creased expression in the propupae, which is consistent
with their role in morphological development [45].

Genome-wide search for putative lateral gene transfers
(LGTs) of bacterial origin
Once thought to be rare, LGTs from microbes into ge-
nomes of arthropods are now considered to be relatively
common [46]. Although LGTs are expected to degrade
due to mutation and deletion, natural selection can lead to
the evolution of functional genes from LGTs, thus
expanding the genetic repertoire of the recipient species
[47]. We investigated candidate LGTs in F. occidentalis
using a modification of the pipeline originally developed
by Wheeler et al. [48], which has been used to identify
LGTs in a number of arthropod species (e.g., [38, 49, 50]).
Three ancient LGT events from different bacterial sources

were detected in the F. occidentalis genome, involving a leva-
nase, a mannanase, and an O-methyltransferase, with subse-
quent gene family expansions (Additional file 1: Section 2,
Table S2.1, Figures S2.1–S2.3) [24, 28, 38, 48, 51–57]. A
PCR-based approach was used to confirm physical linkage
between the candidate LGTs and the nearest annotated
thrips genes found on the same genomic scaffolds (Add-
itional file 1: Section 2, Table S2.2).
Two of these LGTs show evidence of subsequent evo-

lution into functional thrips genes, based on mainten-
ance of an open reading frame, transcriptional activity,
and a signature of purifying selection indicated by re-
duced levels of non-synonymous to synonymous substi-
tution (Additional file 1: Table S2.1). Both of these are
glycoside hydrolases (GHs), which are a large class of
proteins involved in carbohydrate metabolism [58]. One
is a mannanase (GH5) which was acquired from a Bacil-
lus or Paenibacillus based on phylogenetic analysis. This
gene subsequently underwent expansion into three para-
logs in Frankliniella. The second ancient LGT is a leva-
nase (GH32) that has undergone duplication subsequent
to transfer. The possible origin of this gene is a bacter-
ium in the genus Streptomyces or Massilia, although the
phylogenetic reconstruction precludes a clear resolution
of its source. These LGTs could be important in carbo-
hydrate metabolism and therefore impact the feeding
ecology of F. occidentalis, although their actual functions
remain a topic for future study.
The O-methyltransferase LGT is likely derived from a

bacterium in the Silvanigrellales or a related proteobac-
teria in the class Oligoflexia. O-methyltransferases in-
duce the addition of a methyl moiety to small molecules
and can affect many biological processes [52]. Subsequent
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to transfer, the gene has expanded into a three-gene family
and two show transcriptional activity based on currently
available RNA sequencing data. Whether any of these copies
has evolved function in F. occidentalis is less clear. There is
not strong evidence for purifying selection in any of the para-
logs; however, one shows a significant signature of direc-
tional selection (Additional file 1: Section 2, Table S2.1).
All three LGT events appear to be ancient. A search of

the NCBI transcriptome sequence assembly (TSA) data-
base for Thysanoptera indicates that O-methyltransferase
and levanase were acquired prior to divergence of the
thrips suborders Terebrantia and Tubulifera approxi-
mately 260 MYA [54], while the mannanase was acquired
after divergence of the Thripidae and Aeolothripidae ap-
proximately 175 MYA. A better understanding of LGT
history in thrips will come as additional genomes and

more complete phylogenies are available. Further analyses
could help to elucidate their functional evolutionary roles
in thrips.

Gene set annotations and analyses
Here we report on the consortium’s analysis of Frankli-
niella occidentalis gene sets and, in select cases, gene ex-
pression associated with four primary themes centered
on interactions between phytophagous insects, plants,
and their environment:

i) Host-locating, sensing, and neural processes;
ii) Plant feeding and detoxification;
iii) Innate immunity, including RNA interference; and
iv) Development and reproduction.

Fig. 3 Distribution of transcription factor families across insect genomes and stage-specific expression in Frankliniella occidentalis. a Heatmap
depicting the abundance of transcription factor (TF) families across a collection of insect genomes. Each entry indicates the number of TF genes
for the given family in the given genome, based on presence of DNA-binding domains (DBD). Color key is depicted at the top (light blue means
the TF family is completely absent)—note log (base 2) scale. Species were hierarchically clustered using average linkage clustering. F. occidentalis
is boxed. See Additional file 2: Table S5 for TF genes with predicted DBDs. b Expression of specific TFs enriched within each developmental stage
(larvae, propupae, and adult) based on data presented in Additional file 3. Sample designations: L1 = first-instar larvae, P1 = propupae, and A1 =
adults (mixed males and females) of healthy cohorts (H) from three biological replicates (0, 1, 2)
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Host-locating, sensing and neural processes
Chemosensory receptors
Chemosensation is important for most insects, including
thrips, and the three major gene families of chemorecep-
tors, the odorant and gustatory receptors (ORs and GRs)
in the insect chemoreceptor superfamily [59], and the
unrelated ionotropic receptors (IRs) [60], mediate most
smell and taste abilities [61]. Chemosensory organs have
been described on the antennae of several thrips species,
and on the mouthcone, and within the precibarium and
cibarium of F. occidentalis [5, 8, 62]. Chemosensation
plays an important role in the sequence of behaviors in-
volved in host exploration by F. occidentalis. This behav-
ioral repertoire includes surface exploration (antennal
waving, presumably perceiving olfactory cues; labial dab-
bing, detecting surface chemistry with paraglossal sensory
pegs) (Fig. 1c) and internal exploration (perception of plant
fluids with precibarial and cibarial sensilla) (Figure 13 in
[8]). The OR, GR, and IR gene families from F. occidentalis
were compared with those from other representative hemi-
pteroids, specifically the human body louse P. humanus
[63], the pea aphid A. pisum [64], and the bedbug C. lectu-
larius [39], as well as conserved representatives from D.
melanogaster [59, 60] and other insects (Additional file 1:
Section 3 [37, 39, 61, 65–107]; Additional file 2: Table S7;
Additional file 4). The OR family consists of a highly con-
served 1:1 ortholog, the Odorant receptor co-receptor
(Orco), found in most insects, including F. occidentalis as
determined here, plus a variable number of “specific” ORs
that bind particular ligands. Comparable to the number re-
ported for A. pisum [64], F. occidentalis has 84 specific OR
genes and all form a divergent clade in phylogenetic ana-
lysis of the family (Additional file 1: Figure S3.1), reflecting
the generally rapid sequence divergence of ORs in insects
and the divergence of thrips from other hemipteroids or
Paraneoptera [33]. In addition, F. occidentalis has 102
GRs—second to the milkweed bug, Oncopeltus fasciatus
(115 GR genes) [38] and third in a ranking with other well-
curated hemipteran genomes [108]. Phylogenetic analysis
of the F. occidentalis GRs revealed large expansions within
the candidate sugar (18 genes) and carbon dioxide (30
genes) receptor subfamilies (Additional file 1: Figure S3.2).
It is unclear how the expansion of sugar receptors might be
involved in Frankliniella utilization of flowers on host
plants, in part because we have yet to fully understand how
the eight Drosophila sugar receptors [59] are deployed to
sense diverse sugars [94]. The large expansion of 30 genes
in the carbon dioxide receptor subfamily is comparable to a
similar expansion of this subfamily in the dampwood ter-
mite Zootermopsis nevadensis [109] and the German cock-
roach Blattella germanica [95], but not all are expected to
be involved in perception of this gas. The F. occidentalis
GR repertoire also includes a small expansion of the candi-
date fructose receptor subfamily to five genes compared to

one in other hemipteroids. This subfamily belongs to a dis-
tinct lineage of GRs, and in D. melanogaster, which have
been implicated in detecting “bitter” compounds typically
from plants [99]. The remaining 49 GRs, perhaps playing a
similar role in detecting “bitter” plant defensive com-
pounds, are highly divergent from those of other hemipter-
oids. With indication of old and young gene duplications
(Additional file 1: Figure S3.2), this group includes a recent
expansion of very similar GRs (GR54–67) perhaps involved
in sensing host plant chemicals.
The IR family consists of several proteins that are con-

served throughout most pterygote insects including the
three known co-receptors (Ir8a, 25a, and 76b) and a set
of four proteins involved in perception of temperature
and humidity (Ir21a, 40a, 68a, and 93a) [102]. Like other
hemipteroids and most other insects, F. occidentalis has
single orthologs of each of these seven genes. This insect
species also has eight members of the Ir75 clade that is
commonly expanded in insects and involved in percep-
tion of acids and amines [103]. The IR family commonly
has a set of divergent proteins, some encoded by intron-
containing genes, while most are intronless. F. occidenta-
lis has one intron-containing gene (Ir101) with relatives
in other hemipteroids, and a large divergent clade of 167
IRs including several sets of recently duplicated genes
that are encoded by mostly intronless genes (the few
with single introns apparently gained them idiosyncrati-
cally after expansion of an original intronless gene)
(Additional file 1: Figure S3.3). This is a considerable ex-
pansion of IRs, with the number of IR genes in F. occi-
dentalis being at least five times that reported for other
hemipteroids (see Table 2 in [108]). By analogy with the
divergent IRs of D. melanogaster that appear to function
in gustation [106], these genes likely encode gustatory
receptors that perhaps mediate perception of host plant
chemicals and, hence, host and feeding choices.
There is considerable evidence that chemosensation is

important to host, feeding, and oviposition choices made
by F. occidentalis. For example, F. occidentalis detects
pheromones and prefers specific plant volatiles [84, 110].
In choice tests with diverse tomato cultivars, adult fe-
male F. occidentalis preferred fully developed flowers
with sepals and petals fully open to those in earlier
stages of development and opening, fed preferentially on
specific portions of the flower depending on tomato cul-
tivar, and avoided specific acylsugar exudates from Type
IV trichomes of tomatoes [111]. Adult females also dis-
tinguished between acylsugar molecules, different acyl-
sugar amounts and fatty acid profiles with differentially
suppressed oviposition [111–113].

Vision genes
In contrast to their uniquely modified wings and mode
of flight, thrips are equipped with the canonical pair of
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lateral compound eyes (Fig. 1c) and three dorsal ocelli,
as is typical for winged insects [114]. The success of a
multitude of color and light enhanced thrips-trapping
devices highlights the importance of vision for host plant
recognition in this insect order [115]. For instance, fe-
male F. occidentalis have been found to exhibit prefer-
ence for mature host plant flowers over senescent ones
during dispersal within a radius of 4 m [116]. In photo-
taxis assays, F. occidentalis displayed conspicuous peak
attraction to UV (355 nm) and green (525 nm) light
sources in comparison to blue (405, 470 nm), yellow
(590 nm), and red (660 nm) [117]. Electroretinogram
studies suggested the presence of UV-, blue-, and green-
sensitive photopigments in both sexes [117].
Compared to hemipteran genome species studied so

far [38, 39, 66], the F. occidentalis genome contains a
rich repertoire of the opsin G-protein-coupled receptor
subfamilies that are expressed in the photoreceptors of
the insect compound eye retina. This includes singleton
homologs of the UV- and blue (B) opsin subfamilies as
well as three homologs of the long wavelength (LW)-
opsin subfamily (Additional file 2: Table S8). The latter
are closely linked within a 30-k region, indicative of a
tandem gene duplication-driven gene family expansion.
Gene tree analysis provided tentative support that the

F. occidentalis LW opsin cluster expansion occurred in-
dependently of the previously reported LW opsin expan-
sions in different hemipteran groups such as water
striders, shield bugs, and seed bugs (Additional file 1:
Section 4, Fig. S4.1) [38, 66, 67, 108, 118–130]. At the
same time, the considerable protein sequence divergence
of the three paralogs, which differ at over 140 amino
acid sites in each pairwise comparison, indicated a more
ancient origin of the cluster, potentially associated with
elevated adaptive sequence change. Comparative
searches for possible wavelength-sensitivity shifting/tun-
ing substitutions paralleling those identified in the water
strider LW opsin paralogs did not produce compelling
evidence of candidate changes (not shown) [66]. Under-
standing the functional significance of the F. occidentalis
LW opsin gene cluster thus requires future study.
By comparison to the differential deployment of three

LW opsins in Drosophila [131], it seems likely that one F.
occidentalis LW opsin paralog is specific to the ocelli, while
the remaining two paralogs may be expressed in subsets of
the compound eye photoreceptor cells. Overall, the pres-
ence of homologs of all three major insect retinal opsin
subfamilies correlates well with the previous findings on
the visual sensitivities and preferences in this species [117].
The F. occidentalis genome also contains singleton ho-

mologs of two opsin gene families generally expressed in
extraretinal tissues and most often the central nervous
system: c-opsin [123] and Rh7 opsin [122]. We failed to
detect sequence conservation evidence for Arthropsins,

the third extraretinal opsin gene family discovered in ar-
thropods [121], despite the fact that all three extraretinal
opsins are present, although at variable consistency, in
hemipteran species [38, 66].

Neuropeptide signaling
Insect genomes contain large numbers of neuropeptide
and protein hormones (> 40), and their receptors, many
of which play significant roles in modulating sensory sig-
nals and feeding. Neuropeptides are generally encoded
by small genes and occasionally evolve rapidly including
the loss and duplications of these genes in different evo-
lutionary lineages. While a number of neuropeptides are
missing in several insect genomes, the genome of F. occi-
dentalis still seems to have a complete set of neuropep-
tides (Additional file 2: Table S10), including all three
allatostatin C-like peptides, which is a rather rare case in
insects. Alternatively spliced exons encoding similar, but
distinctive, mature peptides are also conserved: mutually
exclusive exons of ion transport peptide A and B [132]
and orcokinin A and B [133]. Exceptions occurred in
natalisin and ACP signaling pathways [134, 135], for
which both neuropeptides and the receptors are missing
in this species. A surprising finding in this genome is a
second corazonin gene that encodes a slightly different
version of corazonin [136]. The gene clearly arose from
a duplication of the corazonin gene and it has accumu-
lated a substantial number of changes in the sequence
(Additional file 5). The duplicated gene encoding the
corazonin precursor does not contain disruptive muta-
tions in the open reading frame and its signal peptide is
expected to be functional. The transcripts were also con-
firmed by RNA-seq evidence provided with the genome
resources. Together, this evidence collectively suggests
that it is unlikely to be a pseudogene.
Similar to the case of conserved gene number, the

motif sequences of the putative mature peptides are also
well conserved in F. occidentalis (Additional file 5). An
exception in this case is found in MIP (myoinhibitory
peptide or allatostatin B) [137]. While its peptide motif
is highly conserved not only in insects but also in mol-
lusks and annelids, in F. occidentalis, the C-terminal
tryptophan is replaced by a phenylalanine and 23 of the
25 MIP paracopies of the precursor have this unusual
sequence. The predicted presence of a disulfide bridge in
the N-terminal of the longest pyrokinin is another un-
usual and noteworthy structural feature.
Receptors associated with the set of F. occidentalis neuro-

peptides and hormones were also cataloged (Additional file 2:
Table S9). In Drosophila, only a few neuropeptide genes have
more than one receptor. However, in the F. occidentalis gen-
ome, there are duplicate G-protein-coupled receptors (GPCR)
for SIFamide, PTH, the CRF-like diuretic hormone 44, and
CNMamide. These are ancestral and are generally conserved
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in other insect species as single copies. What is unusual in the
F. occidentalis genome is that GPCRs for trissin, vasopressin,
leucokinin, and RYamide as well as the orphan GPCR moody
all have local duplications, which are likely generated by recent
events in this species. These recently duplicated GPCRs in-
clude receptors for neuropeptides implicated in water homeo-
stasis: vasopressin, leucokinin, and RYamide [138–140],
implying that osmoregulatory processes are tightly regulated
in F. occidentalis.

Plant feeding
Salivary gland-associated genes
Among piercing-sucking insects, salivation is a key com-
ponent of their ability to feed on plants. Saliva may form
a protective sheath for the stylets, permit intra and inter-
cellular probing, and serve as elicitors that interact with
plant defense pathways in ways that may benefit the in-
sect (reviewed in [141, 142]). While little is known about
the function of F. occidentalis saliva, it is expected to
play a key role in this insect’s capacity to feed on an
extraordinarily large number of plant species and its
ability to transmit viruses (reviewed in [20]). Many insect
SG-associated genes, in particular those that encode pro-
teins that elicit or suppress host defenses, are species-
specific, are highly divergent, and evolve rapidly [143–146].
Furthermore, arthropod SG transcriptomes and proteomes
have unveiled significant proportions of novel proteins, i.e.,
with no known homology in other, even closely related,
species [143, 144]. Among highly polyphagous arthropods
(i.e., the spider mite, Tetranychus urticae, or the green
peach aphid, Myzus persicae), transcriptomic analyses re-
vealed an especially large collection of salivary proteins and
many genes that lack homology to genes of known function
[147–150]. In light of these findings and the highly pol-
yphagous nature of F. occidentalis, we used a comprehen-
sive set of putative F. occidentalis salivary gland-associated
genes and performed comparative analyses of RNA-seq
datasets derived from salivary glands (SGs: principal salivary
glands and tubular salivary glands, Fig. 1b) [151] relative to
the entire body. The analysis revealed 141 and 137 tran-
script sequences in SGs of F. occidentalis females and
males, respectively, and 127 in a combined sex analysis that
were significantly greater in abundance compared to
whole-body expression. There were 123 sequences that
overlapped between the three salivary gland sets (Fig. 4a;
Additional file 2: Table S11). These 123 sequences repre-
sent 83–88% of all reads mapped in salivary gland libraries
and only a maximum of 14.7% of the reads from the whole-
body samples (Fig. 4b). Many of the SG-enriched sequences
(~ 69%) have fewer than one million reads mapped per sal-
ivary gland dataset and very few (11%) are highly expressed
with over 2.5 million reads mapped per sequence (Fig. 4c).
Among the 123 putative SG-enriched genes, fewer than half
(41%) match described proteins. The majority (~59%) are

either unknown proteins (12%), i.e., matches proteins in
other species that are not yet functionally characterized, or
F. occidentalis-specific (46%), uncharacterized proteins with
no significant match to known proteins (Additional file 2:
Table S11). Of the 14 highly expressed genes (Fig. 4d),
structural prediction analyses revealed that nine are pre-
dicted to be extracellular (among these, one has a signal
peptide predicting a secreted protein), indicating that these
proteins may be saliva components, and one has a pre-
dicted transmembrane domain (specific proteins denoted
in Additional file 2: Table S11, Excerpt D). At least 11 of
the predicted SG-enriched proteins have provisional func-
tions expected to be enzymatic, suggesting they likely have
specific roles related to the breakdown of plant materials or
response to the host during feeding (Fig. 4e). Among these,
five are predicted to be extracellularly localized, one of
which has a predicted signal peptide and two are robustly
predicted to be secreted proteins based on all three cri-
teria: presence of a signal peptide cleavage site on the N
terminus, predicted to be extracellularly localized, and
predicted to be transmembrane proteins associated with
outer membranes (details regarding function denoted in
Additional file 2: Table S11, Excerpt E). One of the proteins
predicted to be secreted, the pancreatic tricylglycerol lipase-
like gene (FOCC002454, original maker ID: FOCC003652-
RA) and three additional thrips-specific proteins with signal
peptides were included in validation of enriched expression by
real-time quantitative reverse-transcription PCR. Expression
analysis confirmed that the predicted SG sequences are either
specifically expressed in SGs, or enriched in SGs when com-
pared to thrips heads and bodies (Additional file 1: Section 5,
Fig. S5.1) [4, 20, 151–163]. Validation with these genes yielded
a Pearson correlation coefficient of 0.845, indicating that the
comparative analysis we performed accurately identified puta-
tive salivary gland-enriched sequences. The SG gene set
will be very valuable in future investigations aimed at
understanding the diverse diet of F. occidentalis, and
the role of saliva as a vehicle for virus inoculation
and possibly a means by which the insect manages
plant defenses by its many hosts. Prior to the SG-
enrichment analysis, other gene models encoding di-
gestive enzymes were annotated as potential SG
genes; we therefore consider these likely gut-
associated genes (Additional file 2: Table S12).
The thrips genome has enabled identification of SG-

enriched transcripts, greatly refining our understanding
of the sialotranscriptome of this highly polyphagous in-
sect [151]. The salivary glands of thrips are of particular
importance due to their role in extra-oral digestion,
defense against host responses, and delivery of viruses to
plants. Annotation and analysis of the SG genes revealed
a suite of novel thrips genes, some encoding proteins
predicted to be secreted extracellularly, thus likely com-
ponents of the insect saliva, and may play roles in
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digestion and/or elicitation or suppression of innate
plant defenses. Like other polyphagous herbivores studied
to date, many of the thrips SG-enriched genes lack homology
to genes of known function [147, 149]. Further genomic and
functional comparisons between polyphagous and oligopha-
gous thrips will determine whether the high proportion of
thrips-specific genes among the SG-enriched genes is related
to the thrips wide host range and further enable the identifi-
cation of genes that play a role in host specificity.

Detoxification
Cytochrome P450s
Cytochrome P450s (CYPs) are a large, ancient superfam-
ily of enzymes identified in all domains of life and are in-
volved in the metabolism of multiple substrates with
prominent roles in hormone synthesis and breakdown,
development, and detoxification [164, 165]. In agricul-
tural systems, F. occidentalis has shown a propensity for
developing resistance to insecticides commonly utilized

Fig. 4 Genes/contigs with enriched expression in the salivary glands of Frankliniella occidentalis. RNA-seq reads generated from male and female
principal and tubular salivary glands collectively [151] and whole bodies (this study) were used for the enrichment analysis. a Venn diagram
depicting the overlap in transcript sequences enriched in the salivary glands of males, females, and combined sexes compared respectively to
whole bodies. b Percent reads from salivary glands and whole-body RNA-seq datasets mapped to the putative 123 salivary gland-associated
sequences. c Number of reads from the female salivary gland RNA-seq dataset mapping to each of the 123 salivary gland-associated sequences.
d Reads mapped by fold change for 14 sequences with the highest number of mapped reads denoted in panel c. “Thrips-specific unknown
protein” signifies hypothetical proteins with no match to proteins in other organisms and “unknown” indicates uncharacterized proteins in other
arthropods. Details of expression and potential functions are denoted in Additional file 2: Table S11 (Excerpt D). e Specific sequences with
functional assignments suggesting they are enzymatic, and based on comparison with other insects systems, could be involved in plant feeding
and digestion. Details of expression and potential functions are denoted in Additional file 2: Table S11 (Excerpt E)
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to manage this species, and P450s have been specifically
implicated in the detoxification of insecticides by F. occi-
dentalis [166, 167]. Within the F. occidentalis genome
we identified and classified, using CYP nomenclature
[168], a relatively large number of P450s—130 CYP gene
models (Additional file 2: Table S13) comprising 112 dif-
ferent CYP genes (Additional file 6). There was evidence
of CYP gene clusters on some scaffolds as noted to
occur in other insect genomes including D. melanogaster
and T. castaneum [169, 170]. The repertoire of F. occi-
dentalis P450 genes represents 24 CYP families distrib-
uted across four known clans (CYP 2, 3, 4, and mito)
(Additional file 1: Section 6.1.3, Table S6.1) [168–178].
As with other insects, gene families in CYP clans 3 and
4 are overrepresented—these families include members
frequently associated with the breakdown of toxic plant
products and insecticides [166]. Family members belong-
ing to clan 2 and mito, i.e., those associated with the
synthesis and turnover of the 20-hydroxyecdysone (20E)
and cuticle formation, were also represented in the gen-
ome (refer to “Postembryonic development” section
below). The majority of annotated F. occidentalis P450s
showed relatively low amino acid identity to other insect
P450s, a common aspect of insect genomes [179]. In
fact, of the 24 CYP families represented in the F. occi-
dentalis genome, we identified 10 new families (= 40 of
the 112 CYP genes) (Additional file 1: Table S13), and
therefore we consider these thrips-specific. Of these 40
thrips-specific CYP genes, 90% belong to clan 4, with
the remaining members in clan 3, and phylogenetic ana-
lysis revealed gene duplications and subsequent expan-
sions in gene family members of these two clans in F.
occidentalis (Additional file 1: Fig. S6.1). Given the
already described importance of P450s in insecticide re-
sistance [166, 167], the prevalence of insecticides in the
management of thrips species [166], and the multitude
of plant defense compounds encountered during the
their phytophagous lifestyle [165], knowledge of the di-
versity of P450s present within the F. occidentalis gen-
ome is likely essential for optimizing management of
this important agricultural pest. The annotation of these
P450 genes will enable future functional studies in F.
occidentalis related to the detoxification of insecticidal
and plant defense compounds.

ATP-binding cassette (ABC) transporters and carboxyl/
choline esterase (CCE) genes
The ABC protein family is one of the largest protein
families and present in all kingdoms of life. The majority
functions as primary active transporters, hydrolyzing
ATP to transport substrates across membranes. Some
ABC proteins, however, are receptors or are involved in
translation. The carboxyl/cholinesterase (CCE) enzyme
family catalyzes the hydrolysis of carboxylesters and

plays a role in many biological processes, such as neuron
signaling, development, and detoxification of xenobi-
otics, including insecticides [180–182]. Forty-five and 50
putative ABC and CCE genes were annotated in the F.
occidentalis genome, respectively (Additional file 2:
Table S15 and S16; Additional file 7). The number of F.
occidentalis ABC genes is on the lower side among those
reported for other insect species (Additional file 1: Sec-
tion 6.2.2, Table S6.3) [54, 125, 129, 130, 180–203] in-
cluding Bemisia tabaci of the Hemiptera, the sister-
group of the Thysanoptera [54]. Nevertheless, we did
identify a lineage-specific expansion of ABCH genes
within the F. occidentalis genome (Additional file 1: Figure
S6.6). Lineage-specific arthropod ABCH genes were previ-
ously shown to respond to environmental changes or
xenobiotic exposure [183, 187, 190] and hence these
ABCH genes might have a similar function in F. occiden-
talis. In contrast to ABC genes, the number of F. occidenta-
lis CCE genes is among the highest of those identified in
any insect species (Additional file 1: Table S6.4). This high
number of CCEs is due to a lineage-specific expansion
within the dietary/detoxification class of CCEs (Additional
file 1: Figure S6.7), and with exception to Bombyx mori, it is
the largest CCE expansion compared to other orders (Add-
itional file 1: Table S6.4). Future work should confirm
whether these 28 F. occidentalis-specific CCEs are actually
detoxification CCEs and whether the polyphagous nature
and/or rapid development of insecticide resistance in F.
occidentalis [200] might be related to this CCE expansion.

Innate immunity
Canonical signaling pathways
Insects rely on innate immunity to respond to and limit
infections by myriad microbes, viruses, and parasites en-
countered in their environments [204–211]. Here we re-
port the annotation of genes associated with pathogen
recognition, signal transduction, and execution of
defense in F. occidentalis, and support these findings
with a comparative analysis of immune-related tran-
scripts in two other thrips vector species, F. fusca and
Thrips palmi [24–26].
In total, 96 innate immune genes were curated from the gen-

ome (Additional file 2: Table S17) [38, 39, 129, 197, 212–223].
Toll and JAK-STAT pathway members were well represented,
and all but two members of the IMD pathway were located.
Based on the number of different pathogen recognition recep-
tors, F. occidentalis has a well-developed surveillance system—
14 PGRPs and 8 GNBPs—greatly exceeding the number
reported for other insects [38, 224]. The broad plant host range
and biogeography of this thysanopteran species may have ex-
panded the repertoire of receptors capable of recognizing di-
verse pathogen and/or microbial-associated molecular patterns
in these diverse biomes. Expansion of these surveillance systems
could be due to the close contact of pupal stages with the soil
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environment during their development. Likewise, the melaniza-
tion pathway encoded by the F. occidentalis genome is notably
extensive compared to other insect genomes [38, 224]. The
melanization pathway is triggered by the binding of pathogen
recognition molecules to PGRPs and is the first line of defense
in insects. Prophenoloxidase (PPO) and serine proteases are the
primary players of the melanization pathway. These primary
players are well represented in the F. occidentalis genome, with
six PPOs and serine proteases, compared to the closest plant
feeding hemipteran relatives that have only two PPOs each
(Acyrthosiphon pisum and Oncopeltus fasciatus).
The most striking finding is the absence of the signal

transducing molecule IMD, as well as FADD, another
death domain-containing protein that acts downstream of
IMD to activate transcription of antimicrobial peptides
(AMPs) [225] in response to Gram-negative bacteria [205]
and viruses [211]. Absence of IMD has also been reported
for the hemipteran species A. pisum, Bemisia tabaci, and
Diaphorina citri [129, 197, 212, 213, 224]. In Oncopeltus,
IMD could not be identified by homology searches, but
was identified by cloning the gene using degenerate
primers [38]. IMD was also reported missing from the
bedbug C. lectularius [39], but was later found using the
Plautia stali IMD sequence as a query [214]. These find-
ings in hemipterans illustrate that IMD sequences can be
highly divergent and conclusions about their absence
using solely a homology-based (in silico analysis) approach
should be drawn with care.
It has been suggested for A. pisum that its phloem-

limited diet and dependence on Gram-negative endo-
symbionts accounts for a generally reduced immune
repertoire and the absence of IMD [129, 215, 224]. This
does not seem valid for the polyphagous, mesophyll feeding
thrips. In contrast to A. pisum, almost all other components
of the IMD signaling pathway are present in Frankliniella,
including two Relish molecules (Additional file 2: Table
S17). In conclusion, the apparent absence of IMD in
F. occidentalis does not seem to suggest a reduced
immune repertoire, but rather a different way of mediating
the response to Gram-negative bacteria, possibly by Toll
signaling components. In Drosophila, DAP-type peptidogly-
cans of Gram-negative bacteria moderately induce Toll sig-
naling [216, 217]. In Tenebrio molitor, PGRP-SA recognizes
both Gram-positive and Gram-negative bacteria [218]. Ex-
tensive cross-reactivity of the Toll and IMD signaling path-
way is the currently emerging picture from studies on other
insects [214, 219, 220] and might have set the stage for
multiple independent IMD losses in evolution [214].

Comparative analysis of innate immune transcripts in three
thrips vector species
With the apparent absence of IMD and FADD genes in
the F. occidentalis genome, we used a custom database
of innate immune protein sequences to identify a diverse

repertoire of transcripts implicating the activities of ca-
nonical humoral and cellular innate immunity from a
previously assembled transcriptome of F. occidentalis
adults [24] (Additional file 2: Table S18) [226–234] and
similarly for two other known vectors of orthotospo-
viruses: F. fusca [25] and Thrips palmi adults [26]. Com-
parative analysis revealed the occurrence of shared and
species-specific innate immune-associated transcripts
(Fig. 5; Additional file 8). Both IMD and FADD tran-
scripts were apparently absent (E-value cut-off = 10− 5) in
all three species which agrees with the annotation of the
F. occidentalis genome. Relaxing the cut-off (10− 3) re-
sulted in weak and ambiguous matches to IMD or IMD-
like sequences (Additional file 1: Section 7.4, Table S7.2)
[38, 212, 224] of other hemipterans. Absence of transcripts
encoding these two canonical genes suggests either cross-
reactivity with the other immune signaling pathways or
evolution of an atypical signaling pathway which is yet to
be deciphered. All components of the JAK/STAT pathway
were identified in all three thrips species. There appeared
to be an over-representation of sequence matches to cyto-
kine receptors in F. occidentalis and F. fusca, and while
some of these may be involved in innate immunity, they
likely play roles in other biological processes as well. Anti-
oxidants, autophagy-related proteins, and inhibitors of
apoptosis were well represented among the three tran-
scriptomes. Differences in the number of immune-related
transcripts identified between the species should be taken
with caution—different biological and experimental fac-
tors, including thrips rearing conditions, sampling strat-
egies, and sequencing/assembly parameters may
contribute to this variation.

Small RNA-mediated gene silencing pathways and auxiliary
genes
The RNAi-related gene set examined in this study consti-
tutes a group of genes that are all members of a diverse
range of gene (super)families that are evolutionarily unre-
lated but are linked based on their roles in RNAi [235, 236].
This group includes core machinery genes for the siRNA
and miRNA pathways, including several dicer and argo-
naute genes, drosha, pasha, aubergine, loquacious as well as
several genes involved in antiviral immune response and
genes encoding auxiliary proteins (stau, maelstrom, fmr-1,
clp-1, translin, gawky, prmt5, hen-1, p68 RNA helicase,
ars2, egghead). Also, the gene encoding the transmembrane
channel protein sid1 implicated in cellular uptake of
dsRNA was identified in the F. occidentalis genome. F. occi-
dentalis transmits seven described orthotospovirus species
(Order Bunyavirales, Family Tospoviridae) of economic im-
portance, including tomato spotted wilt virus (TSWV)
(reviewed in [22]). These plant-pathogenic viruses are
transmitted in a persistent-propagative manner by the
thrips vector, i.e., retained through molts, replicating in

Rotenberg et al. BMC Biology          (2020) 18:142 Page 13 of 37



infected tissues, and inoculative over the lifespan of the
adult. In the case of F. occidentalis, however, virus infection
does not appear to have a negative effect on thrips develop-
ment or fitness [237, 238]. As RNAi is a potent innate anti-
viral defense in arthropods, the activities of the core cellular
machinery in thrips vectors may be associated with ortho-
tospovirus persistence.
Of the 24 RNAi-related genes queried against the gen-

ome, 23 were identified (Additional file 2: Table S19). One
gene, r2d2, which encodes a co-factor of Dicer-2 and is
therefore an element of the siRNA pathway, was not lo-
cated. This could be due to the absence of r2d2 in this spe-
cies, extensive divergence precluding its identification using
orthologs, or location in a region of the genome that was
not covered by our sequencing. Using pre-existing tran-
scriptome sequence databases for F. occidentalis, dsRNA-
binding proteins were located; however, they did not match

the r2d2 sequences used as queries. For example, in a pub-
lished F. occidentalis EST library of first-instar larvae [239],
one sequence (GT302686) was annotated as “tar RNA
binding” containing a predicted conserved domain indica-
tive of double-stranded RNA binding (DSRM), matching a
staufen-like homolog, while one sequence (contig01752)
obtained from a 454 de novo-assembled transcriptome
representing mixed stages of F. occidentalis matched RISC-
loading complex subunit tar RNA-binding proteins [23]. In
the F. occidentalis genome sequence, one gene coding for
an RNA-binding protein similar to r2d2 was located, but it
appeared to encode the very similar protein Loquacious
(Loqs) and had a significant match (99.8%) to contig01752.
Given their similarity, a phylogenetic tree was constructed
with the four isoforms identified to be coded by this gene,
clearly confirming that it is indeed the loqs homolog (Add-
itional file 1: Section 7.5, Fig. S7.8) [240].

Fig. 5 Unique and shared innate immunity-associated transcripts in three thrips vector species of orthotospoviruses. Whole-body, assembled
transcriptomes obtained from published orthotospovirus-thrips RNA-seq studies [24–26] were mined for putative innate immune transcripts using an
innate immune-associated protein database derived from ImmunoDb (http://cegg.unige.ch/Insecta/immunodb). a Venn diagram depicting overlap in
orthologous clusters (bold) and transcripts (in parentheses) of innate immune-associated protein sequences in Frankliniella occidentalis (tomato spotted
with virus), F. fusca (tomato spotted wilt virus), and Thrips palmi (capsicum chlorosis virus) using Orthovenn.v2. b Number of transcripts classified into
innate immune categories (roles) and shared across all three vector species. Sequences may fall into more than one category. See Additional file 2:
Table S17 and S18, respectively, for innate immune genes and transcript sets; Additional file 8 for Orthovenn outputs
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r2d2 has been reported to be missing in other annotated
winged and wingless arthropod genomes and transcrip-
tomes. For example, r2d2 is missing from the hemipteran
D. citri [241]. A recent study on the phylogenetic origin
and diversification of RNAi genes reported that the gene
could not be found in the transcriptomes of any of the
wingless insects investigated and did not occur in some
older orders of winged insects [240]. Furthermore, r2d2
also seems to be missing in non-insect arthropods. In the
common shrimp Crangon crangon for example, no r2d2
could be found in the transcriptome [235] and data-mining
of other Crustacea such as Daphnia pulex [240] and Arte-
mia franciscana [242] and in the chelicerates T. urticae and
Ixodes scapularis [147, 240] also suggested that r2d2 is
missing in those respective genomes. It has been suggested
that in these arthropods and insects, the role of r2d2 and
its interaction with Dicer-2 in the siRNA pathway may have
been replaced by Loqs, which serves a similar function,
interacting with Dicer-1 in the miRNA pathway. In fact, the
involvement of Loqs in the siRNA pathway has been re-
ported in the fruitfly D. melanogaster, where four dsRNA-
binding proteins interacting with Dicer enzymes have been
found, one encoded by the r2d2 gene and three by the loqs
gene through alternative splicing. In these fruit flies, Fuku-
naga and Zamore [243] have shown that one of the Loqs
isoforms interacts with Dicer-2 and is involved in siRNA
processing. A dual role in both pathways has also been de-
scribed for Loqs in Aedes aegypti [244]. Whether or not this
is also the case in non-dipteran insects, such as F. occiden-
talis, or other arthropods is yet to be determined.

Antioxidants
Twenty-nine putative proteins in seven families related to anti-
oxidant capacity were identified within the F. occidentalis gen-
ome (Additional file 2: Table S20). Consequently, the suite of
antioxidant proteins identified in F. occidentalis was largely as
expected, and further investigation into the antioxidant system
of F. occidentalis will further elucidate the players. The
twenty-nine antioxidant response proteins showed high hom-
ology to related proteins in other published genomes includ-
ing A. pisum, Apis mellifera, Bombyx mori, C. lectularius, D.
melanogaster, P. humanus, and T. castaneum. In most com-
parisons, homologs in T. castaneum showed the highest de-
gree of similarity followed by A. pisum and P. humanus.

Development
Embryonic development
The Wnt pathway is a signal transduction pathway with
fundamental regulatory roles in embryonic development
in all metazoans. The emergence of several gene families
of both Wnt ligands and Frizzled receptors allowed the
evolution of complex combinatorial interactions with
multiple layers of regulation [245]. Wnt signaling affects
cell migration and segment polarity as well as segment

patterning and addition in most arthropods [246]. Sur-
veying and comparing the gene repertoire of conserved
gene families within and between taxonomic groups is
the first step towards understanding their function dur-
ing development and evolution.
Here we curated gene models for the main components of

the Wnt signaling pathway in the F. occidentalis genome
(Additional file 1: Section 8.1, Table S8.1) [37, 38, 247–252]
and confirmed their orthology by phylogenetic analysis. We
found 9 Wnt ligand subfamilies, three Frizzled transmem-
brane receptor subfamilies, the co-receptor arrow, and the
downstream components armadillo/beta-catenin, dishev-
elled, axin, and shaggy/ GSK-3. All of these genes, with the
exception of the Frizzled family (three fz-2 paralogs), were
present in single copy in the assembly. Three Wnt genes,
wingless, Wnt6, and Wnt10, were linked on the same scaf-
fold, reflecting the ancient arrangement of Wnt genes in
Metazoa. One of the Wnt ligands, Wnt16, has so far only
been reported in the pea aphid A. pisum [253], the Russian
wheat aphid Diuraphis noxia [254], and O. fasciatus [38]—
adding F. occidentalis to this list suggests that the hemipter-
oid assemblage (clade Acercaria) has retained a Wnt ligand
that was subsequently lost within the Holometabola.

Postembryonic development
Neometaboly is an atypical developmental adaptation
that emerged independently in a few lineages of Para-
neoptera, namely thysanopterans, Aleyrodoidea (white-
flies), and males of Coccomorpha (scales) [10]. Unlike
most Hemimetabola, the transition from the penultimate
juvenile stage, i.e., the second instar larva of F. occiden-
talis, to the adult stage involves at least one quiescent
pupal stage; propupal (P1) and pupal (P2) stages in F.
occidentalis (see Fig. 1a). These pupal stages mark a
period of rapid dissolution of larval structures and dra-
matic regeneration of the muscle tissues, nervous sys-
tem, digestive tract, and eyes [15]. Underscoring the
morphological transition from larvae to adults, the glo-
bal network analysis in the present study revealed stage-
enriched suites (modules) of co-expressed genes in F.
occidentalis. There were ~ 2000–3000 stage-associated
genes (transcripts) and the network assembled into 35
modules, with one, nine, and 11 modules significantly
associated (P < 0.05) with L1, P1, and adults, respectively
(Fig. 6a, Additional file 3). Enrichment in particular gene
ontologies (provisional functions) of the stage-associated
transcript sequences exemplifies the biological separ-
ation between the three stages. In L1, there was an en-
richment of gene ontologies associated with metabolism
and growth processes (Fig. 6b), which was similarly re-
ported for nymphal stages for Oncopeltus fasciatus [38].
The propupae varied widely from the larvae in that there
was significant enrichment in processes associated with
systems development, which included anatomical

Rotenberg et al. BMC Biology          (2020) 18:142 Page 15 of 37



Fig. 6 (See legend on next page.)
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structure development, such as neuron recognition,
photoreceptor cell development, and muscle structure,
respiratory, and sensory system development—a reflec-
tion of the turbulent changes observed during morpho-
genesis of this non-feeding, quiescent stage [15]
(Fig. 6c). Adult-enriched categories implicated genes
involved in transcriptional and posttranscriptional
regulation of gene expression (coding and non-coding
RNA-associated processes, RNA localization and RNP
biogenesis), cell division (mitosis), and anatomical struc-
ture development (Fig. 6d).
In a more targeted approach, we curated (Additional file 2:

Table S21) and developmentally profiled expression
(Additional file 2: Table S22) of molting and meta-
morphosis genes. These included genes associated
with the juvenile hormone (JH) and ecdysone and re-
lated signaling pathways, as well as insulin signaling
and myriad transcription factors associated with the
regulation of various developmental processes. Post-
embryonic development in insects is largely controlled
by the action of two developmental hormones, JH
and ecdysone. During development, JH action pre-
vents early metamorphosis by blocking the hetero-
chronic expression of certain ecdysone-inducible
genes. JH titers maintain the juvenile-juvenile transi-
tions, and when JH titer drops at a developmentally
appropriate time, the penultimate larva/nymph de-
velops into the pupal stage (holometabolous) or dir-
ectly into the adult (hemimetabolous). Ecdysteroids
(ecdysone and its derivative, 20-hydroxyecdysone
(20E)) control molting at each transition. In the F.
occidentalis genome, JH and ecdysone pathway genes
were determined to be generally conserved. The
MEKRE93 pathway [256]—consisting of the JH action
transcription factors Met, Kr-h1, and E93—was fully
annotated, along with the pupal-specifying gene
Broad. Together, this gene battery coordinately speci-
fies distinct developmental stages. The antimeta-
morphic gene Kr-h1 in F. occidentalis was previously
identified [257], and the published sequence is con-
sistent with the genome annotation. In our dataset,
Met expression was associated with L1 as expected
for hemi- and holometabolous insects. E93, the

specifier for adult development that is thus expected
to increase in expression during late nymph or pro-
pupae stages [256], was indeed upregulated and
enriched in the P1 stage. In contrast, while Broad
showed low expression in L1 as previously reported
[257], expression was exceptionally low in P1—a find-
ing that may be explained by P1 age at time of sam-
pling [257]—and appeared to be associated with the
young adult (Additional file 2: Table S22). This find-
ing differs from previous findings for F. occidentalis
adults [257] and Holometabola [258]. It may be that
the broad transcript quantified in our dataset was one of
possibly multiple isoforms that play a role in other pro-
cesses, such as nutritional or steroid signaling associated
with reproduction reported for other insects [259], but this
remains to be investigated. Three copies of xanthine de-
hydrogenase (rosy), a protein essential in mediating JH ac-
tion in the developing abdominal epidermis of D.
melanogaster [260], were identified. Of the three copies as-
sociated with F. occidentalis, xanthine dehydrogenase-2 was
supported by expression data and was relatively more abun-
dant in the adult stage. Finally, both Taiman, the steroid re-
ceptor coactivator (AaFISC in [261], TcSRC in [262]), and
FtzF1, which serves as a physical bridge between the JH re-
ceptor machinery and ecdysone, were identified with their
transcripts upregulated in the P1 stage, during which these
two hormones coordinately promote metamorphosis. In
Aedes aegypti, [263] Ftz-F1 recruits Taiman to the ecdyster-
oid receptor complex to upregulate 20E-inducible genes
with developmental roles [264]. Taiman knockdown in
mosquitoes likewise reduces expression of the ecdysone tar-
get genes E75A and E74B and impedes ecdysone-driven
morphological development [264]. E75A plays a critical role
at the onset of metamorphosis [265] and requires Ftz-F1
expression; several E75A enhancers were shown to be oc-
cupied by Ftz-F1 [266]. Therefore, Ftz-F1 and Taiman ex-
pression during the F. occidentalis propupal stage is
concordant with hormone-driven developmental repro-
gramming during transitory pupal development.
Ecdysone-associated genes were identified with varying

levels of expression during development. These included
13 ecdysone cascade genes and coactivators (Additional
file 2: Table S21) and eight P450 (CYP) “Halloween”

(See figure on previous page.)
Fig. 6 Identification of co-expressed genes (modules) and gene ontologies associated with three developmental stages of Frankliniella
occidentalis. a Association between modules of co-expressed genes (colored boxes stacked on left of figure) and developmental stage, depicting
the gene correlation network. Weighted gene co-expression network analysis [43] was performed on a matrix of normalized read counts (FPKM
values) obtained from a published F. occidentalis RNA-seq study involving three biological replicates of healthy first-instar larvae, propupae, and
adults (mixed males and females) [24]. Modules of co-expressed genes were determined by the dynamic tree cutting algorithm with a minimum
of 20 genes per module. Modules that exhibited the highest correlation (red color) with a developmental stage are indicated by an asterisk (*).
Transcript IDs of co-expressed genes within these significant stage-associated modules are presented in Additional file 3. b–d REVIGO (REduce
and Visualize Gene Ontologies, [255]) was used to visualize specific GO terms comprised of non-redundant sequences enriched in each
developmental stage; sizes of delineated blocks indicate the number of genes within each GO category. Refer to Additional file 3 for more
detailed REVIGO maps with identities of each GO term (block) indicated
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family genes, members of P450 clans 2 and mito that
catalyze the biosynthesis or inactivation of 20E, were
identified (Additional file 2: Table S13; Additional file 1:
Section 6.1.3, Table S6.2) [176, 177]. The biosynthesis
pathway for 20E includes several conserved P450s [176],
and as expected, these evolutionarily conserved develop-
mental CYP genes showed some of the highest amino
acid conservation observed among the collection of
P450s from the F. occidentalis genome versus P450s in
other insect genomes. The P450 genes responsible for
the synthesis of 20E, i.e., CYP307B1/A2, CYP306A1,
CYP302A, CYP315A1, and CYP314A1, were located in
the F. occidentalis genome (Additional file 1: Table S13),
with four of six of these CYP transcripts differentially
expressed in L1, P1, and adult stages (Additional file 2:
Table S22). CYP18A1, a key enzyme involved in the in-
activation of 20E and essential for metamorphosis in D.
melanogaster [177], was also identified, exhibiting high
expression in the P1 stage. Cyp18A1 expression in Dros-
ophila was during the prepupal to pupal transition [267],
and in B. mori, Cyp18A1 was highly expressed in late
wandering silk glands through the white prepupal stage
[268]. Therefore, Cyp18A1 inactivation of ecdysone via
26-hydroxilation is a conserved phenomenon that pre-
cedes pupation across insect taxa and suggests that the
propupal of F. occidentalis shares transcriptional charac-
teristics of the white prepupal stage in these holometab-
olous species. In addition to these 20E-associated P450s,
two copies of CYP301A1, a conserved gene shown to
play a key role in the formation of adult cuticle in D.
melanogaster [178], were located in the thrips genome in
close proximity (on the same scaffold), possibly an indi-
cation of a tandem duplication event.
JH and ecdysone titers are tightly regulated via the ac-

tion of biosynthetic and metabolic genes. Mevalonate
kinase, an enzyme in the mevalonate pathway involved
in JH biosynthesis in D. melanogaster and other insects,
was not identified in F. occidentalis. However, CYP15A1,
a single-copy P450 gene in some insects involved in the
synthesis of JH, was located in the genome, and similar
to A. pisum [269], there are three copies; in the F. occi-
dentalis genome, these genes (CYP15A1/P1/P2) occur
on different scaffolds (Additional file 2: Table S13). With
regard to JH degradation—which is performed by JH ep-
oxide hydrolase (JHEH) and JH esterase (JHE) —a single
obvious JHEH gene was identified in contrast to three
orthologs in D. melanogaster and showed marked upreg-
ulation and enrichment in the L1 stage. The F. occiden-
talis genome, however, carries an additional four
epoxide hydrolase orthologs, any of which may have
JHEH activity—all four showed expression in L1s. Not-
ably, several of the F. occidentalis carboxylesterase anno-
tations meet a “diagnostic” criterion (GQSAG motif; A
replaced by S in F. occidentalis) of functional JHE

proteins [270] (Additional file 1: Section 8.2.1, Figure
S8.1); however, based on the developmental expression
profiles, only one of the putative JHE genes in the F. occi-
dentalis genome is predicted as the true JHE (Additional
file 2: Table S22). Three apterous (Ap) orthologs were
identified, apparently the result of tandem duplications.
The apterous mutation in Drosophila results in misregu-
lated JH production, leading to female sterility. In light of
this reproductive fitness cost, expression of Ap during F.
occidentalis larval and adult life—during which JH is neces-
sary for development and reproduction—is expected. In
addition to its role in promoting JH synthesis, Ap is a
homeodomain protein that establishes dorsoventral bound-
ary in the developing wing disc and Ap misexpression has a
range of developmental consequences on wing morphology
[271]. It is therefore intriguing to ponder a role for apterous
duplications in the context of thrips’ unique wing
morphology.
Many of the annotated postembryonic genes belonged

to the bHLH superfamily (Additional file 1: Section
8.2.2), transcription factors that regulate various devel-
opmental processes across all domains of life. In F. occi-
dentalis, 45 bHLH-PAS/myc family members were
conclusively annotated (Additional file 2: Table S21).
This gene superfamily showed putative duplication
events—three Enhancer of split (E(spl)-bHLH) paralogs, two
hairy orthologs, two presumed paralogs of the dimmed,
and similarly, knot (syn. Collier) (Additional file 1: Section
8.2.3) [252]—and their expression profiles may indicate
stage-specific sub/neofunctionalization (Additional file 1:
Table S22).

Cuticular proteins
Sequence motifs that are characteristic of several fam-
ilies of cuticle proteins [272] were used to search the
genome of F. occidentalis for putative cuticle proteins.
In total, 101 genes were identified, analyzed with
CutProtFam-Pred, a cuticular protein family prediction
tool described in Ioannidou et al. [273], and assigned to
one of seven families (CPR, CPAP1, CPAP3, CPF, CPCF
C, CPLCP, and TWDL) (Additional file 2: Table S23).
As with most insects, the CPR RR-1 (soft cuticle), RR-2
(hard cuticle), and unclassifiable types, constituted the
largest group of cuticle protein genes in the F. occidenta-
lis genome (Additional file 1: Section 9, Table S9.1). The
number of genes in the protein families CPR, CPAP1,
CPAP3, CPCFC, and CPF were similar to the number in
other insects [272]. However, the 10 genes in the TWDL
family was greater than that found in most insect orders
and is reminiscent of the expansion of this family ob-
served in Diptera (Additional file 1: Section 9, Figure
S9.1). Many of the cuticle protein-encoding genes (~ 40%)
were arranged in clusters of 3 to 5 genes (Additional file 1,
Table S9.2) that were primarily type-specific. However,
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the sizes of gene clusters were smaller than those observed
in other insects, which are typically 3 to ~ 20 genes in size.
Additionally, a larger portion (50–70%) of cuticle proteins
is typically found in clusters in other insects—clustering of
these genes could allow for the coordinated regulation of
cuticle proteins and thereby facilitate the development of
insecticide resistance.

Nuclear receptors
Nuclear receptors (NRs) play important roles in develop-
ment, reproduction, and cell differentiation in eukary-
otes. In insects, many are part of the ecdysteroid
signaling cascade. Most of these NRs contain a highly
conserved DNA-binding domain (DBD) and a more
moderately conserved ligand-binding domain (LBD).
These molecules have a very specific working mechan-
ism, being simultaneously a transcription factor and a
receptor for small amphiphilic molecules such as ste-
roids, thyroids, vitamins, and fatty acids. In this way,
they allow a direct response to certain hormone stimuli
by controlling gene expression without requiring a com-
plex cellular signaling cascade. The proteins in this
superfamily are categorized into six major subfamilies
(NR1-NR6) based on phylogenetic relationships, with an
additional subfamily (NR0) containing non-canonical
NRs usually lacking either a DBD or LBD [274, 275]. All
expected nuclear receptor genes (21 in total) commonly
found in insect species were identified in the F. occiden-
talis genome (Additional file 2: Table S24). All known in-
sect members of the NR1-NR6 subfamilies were identified
including the NR2E6 and NR1J1 genes that were previ-
ously reported to be missing in the hemipteran A pisum,
the nearest relative to thrips and the first hemimetabolous
insect to have its genome sequenced [129, 276]. In the
NR0 group, three receptors were identified (Egon, Knirps,
and Knirps-like), as was the case with other members of
the hemipteroid assemblage (A. pisum and P. humanis)
and Drosophila. It is possible that the three NR0 genes
found in the F. occidentalis genome are orthologous to
those in Hemiptera; however, phylogenies of the arthro-
pod NR0 genes are notoriously difficult to resolve due to
the lack of semi-conserved LBD and the high divergence
between these different NRs.

Reproduction
Curation and WGCNA of postembryonic developmental
genes revealed members of JH, ecdysone, and insulin sig-
naling pathways in F. occidentalis that are known to be re-
quired in other insects for vitellogenesis, functioning
uniquely across taxonomic lines. For instance, ecdysone
and JH have opposing functions in reproductive tissue
maturation in Tribolium and Drosophila. In F. occidenta-
lis, there were nine adult-stage, co-expressed genes impli-
cated in oocyte development and reproductive biology

(Additional file 2: Table S22)—hydroxymethylglutaryl-CoA
synthase 1 and farnesoic acid O-methyltransferase are in-
volved in JH biosynthesis, while the others are involved in
nutritional (e.g., insulin) and steroid signaling. One oddity
that begs further research is the finding that methoprene
tolerant (Met) was not upregulated in the sampled adult
stage of F. occidentalis, since this JH receptor has roles in
oocyte maturation and vitellogenesis, as well as accessory
gland development and function, and in courtship behav-
iors. Of two lipase-3 like annotations, one was enriched in
adults, while the other was enriched in larvae. Larval ex-
pression is likely related to nutritional signaling and feed-
ing, whereas the adult transcript is likely required for
reproduction.

Comparison of reproductive gene expression in male and
female thrips
To identify male- and female-enriched genes, we performed
a comparative RNA-seq analysis between females, males,
and larvae (Additional file 9). Following the F. occidentalis-
specific analysis, specific sets were compared to previous de
novo assemblies for other thysanopteran species (Fig. 7).
Based on these comparative analyses, 644 female-enriched,
343 male-enriched, and 181 larvae-enriched genes were
identified in common among the thrips (Fig. 7a–c). These
overlapping sets for females included many factors ex-
pected to be increased in this egg generating stage, includ-
ing vitellogenin and vitellogenin receptors along with other
factors associated with oocyte development (Fig. 7d, Add-
itional file 9: Table S1). Males had enriched expression for
many factors associated with sperm generation and sem-
inal fluid production (Fig. 7e; Additional file 9: Table S2).
Many of these male-associated genes are hypothetical and
not characterized, which is common for seminal proteins
[277]. One of the male-enriched transcripts included one
“myrosinase-like” transcript. Insect-expressed myrosinases
have been implicated in alarm pheromone signaling in
aphids [278], and the byproduct of its activity (i.e., isothio-
cyanates) during predation has been shown to act syner-
gistically with the alarm pheromone E-β-farnesene [279].
By analogy to aphids, thrips-expressed myrosinases may
serve roles in volatile-mediated communication and ag-
gregation on plants [278]. The larvae datasets were
enriched for aspects associated with growth and develop-
ment, such as cuticle proteins (Additional file 9: Table S3).
Overall, these gene expression profiles provide putative
male- and female-associated gene sets for future study.

Gene family expansions
Focusing our curation efforts on selected gene sets of rele-
vance to an herbivorous agricultural pest, we identified
and characterized expansions of chemosensory receptors
(ORs, GRs, IRs), vision genes (opsins), detoxification genes
(CYPs, ABCHs, CCEs), innate immunity (PGRPs, GNBPs,
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PPOs), and cuticle-associated genes (TWDL family cuticle
proteins). In order to contextualize these expansions with
respect to the entire genome, we examined the outputs
from the largest arthropod gene content evolution study
to date [280]. Examination of Gene Ontology terms
enriched among F. occidentalis gene family gains from
Thomas et al. [280] revealed independent support for ex-
pansions of ORs (odorant binding, olfactory receptor ac-
tivity), CYPs (oxidoreductase activity, acting on paired
donors, with incorporation or reduction of molecular oxy-
gen), ABCHs (transporter activity); PGRPs (peptidoglycan
binding), GNBPs (1->3-beta-D-glucan binding), PPOs

(monophenol monooxygenase activity), and TWDLs (chi-
tin binding). PGRPs and ABCHs also appear among the
60 families with significantly rapid expansions in F. occi-
dentalis [280]. GO terms and annotations of rapidly ex-
panded families point to additional gains in gene families
involved in lipopolysaccharide binding (putative toll re-
ceptors), inhibition of apoptosis, and chitin binding (cu-
ticle-related). Other families with significantly rapid
expansions were mostly of unknown function; however,
they include several C2H2 zinc finger families, which in
our analysis of transcription factors (Fig. 3), were
determined to be the most numerous. In summation,

Fig. 7 Conserved sex-specific gene expression in thrips. Genome-assembled transcripts derived from RNA-seq reads for females, males, and pre-
adults (larval and pupal combined) of Frankliniella occidentalis (this study, PRJNA203209) were compared to transcripts generated de novo from
publicly available RNA-seq data sets for Frankliniella cephalica (PRJNA219559), Gynaikothrips ficorum (PRJNA219563), and Thrips palmi
(PRJNA219609). Venn diagrams depict the number of transcript sequences associated with a females, b males, and c pre-adult stages of thrips.
Highly enriched sequences (> 1000 unique reads and > 4-fold difference) conserved in d female and e male thrips. Open circles in d and e
represent highly enriched gene ontology (GO) terms; especially notable genes are labeled. See methods for enrichment criteria and Additional
file 9 for sex-specific genes sets and associated normalized (TPM = transcripts per million) fold change values (relative to the other sex)
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genome-wide gains in gene families associated with che-
mosensation, detoxification, and innate immunity under-
score the adaptive capacity of F. occidentalis to invade and
thrive in diverse environments utilizing a wide array of
plant hosts.

Conclusions
The F. occidentalis genome resources fill a missing taxon
in phylogenomic-scale studies of thysanopterans and he-
mipterans. On the ecological level, the genome will forge
new frontiers for thrips genetics and epigenetics studies,
genome-wide analyses of biotic and abiotic stress en-
countered by this pest in diverse environments, a deeper
understanding of this insect’s ability to rapidly build
pesticide resistance, and identification of genes and gene
products associated with plant-microbe/virus-thrips vec-
tor interactions. Importantly, the availability of this gen-
ome may also provide a means to address the challenge
of determining whether F. occidentalis is a single wide-
spread, interbreeding gene pool or a series of weakly in-
terbreeding (even non-interbreeding) gene pools (i.e.,
sibling species) (Mound, personal communication, [29]).
From a pest management perspective, the genome pro-
vides tools that may accelerate genome-editing for devel-
opment of innovative new-generation insecticides and
population suppression of targeted thrips.
The first look at gene annotations presented here

points to unique features underlying the ecological suc-
cess of this herbivorous pest and plant virus vector, such
as the repertoire of salivary gland proteins, the majority
of which are thrips-specific. Salivary components play
critical roles in insect vector-plant virus interactions, in-
cluding feeding, modulation of plant defenses, and virus
inoculation into new hosts. Tomato spotted wilt ortho-
tospovirus progressively invades and replicates in mul-
tiple F. occidentalis organs, including the SGs from
which the virus is inoculated during feeding [152]. This
intimate relationship also provides an opportunity for
virus infection to modulate gene expression in insect
vector SGs, which in turn may regulate insect feeding
and plant defenses mediating successful inoculation. It is
likely that when virus infection of SGs alters gene ex-
pression, whether genes encode proteins that facilitate
feeding or mount/suppress defense, plant, insect, and/or
virus may accrue substantial benefits. As we attempt to
harness host plant defenses against insects and viruses
and create more sustainable host plant resistance, know-
ledge of the F. occidentalis salivary protein repertoire
provided by this genome will reveal functional roles of
salivary proteins and how interplay between virus and
insect modulates plant defense, insect physiology, inocu-
lation competence, and behavior. The F. occidentalis de-
toxification and chemosensory genes also likely play a
large role in the generalist lifestyle of this insect species.

We found thrips-specific expansions within these gene
families and this is consistent with the known role of these
genes in perception and acceptance in diverse hosts and
processing secondary metabolites. Notably, comparative
transcriptomic studies of diverse plant-associated organ-
isms revealed common themes in host-specialized tran-
scriptomes and document the enrichment of genes that
are secreted and may function as effectors, nutrient as-
similation genes, and others involved in detoxification
[148]. The rich and detailed information provided by this
genome analysis opens broad, new avenues of basic and
translational research for F. occidentalis and other thysan-
opteran species that will deeply impact the community of
scientists and practitioners engaged in understanding this
insect’s systematics, ecology, and role as a direct pest and
as a vector of plant viruses.

Methods
Thrips rearing and genomic DNA isolation
A 10th generation sibling-sibling line of F. occidentalis
(Pergande) was inbred for genome homozygosity from a
lab colony originating from a progenitor isolated from
the Kamilo Iki valley on the island of O’hau, Hawaii
[281]. Thirty-one males and females were singly paired
in small 1-oz clear plastic cups with lids fitted with
thrips-proof-screen, and each cup contained a small cut
segment of surface-disinfested green bean pod serving as
the rearing and oviposition substrate. To reduce the like-
lihood of parthenogenetic reproduction in subsequent
generations—as unfertilized female F. occidentalis pro-
duce only male progeny—early second instar larvae (L2)
developing from each mating pair were removed with a
fine, water-moistened paintbrush and transferred as sin-
gle pairs to individual cups with a fresh cut bean to
develop to adulthood. Pairs that did not develop into
male-female pairs were discarded from their lineage. By
the 10th generation, four inbred lines were moved to lar-
ger colony-size, 12-oz deli cups to initiate amplification
of the lines, of which one thrived to establish a healthy,
reproductive colony. Pools of adult females from this
colony served as the biological material for genomic
DNA isolation. Genomic DNA (gDNA) was isolated
from eight, 10-mg subsamples of CO2-anesthetized fe-
males (hundreds of individuals per subsample) that were
flash-frozen in liquid nitrogen, pulverized by hand with
Kontes pestles (DWK Life Sciences, Thermo Fisher Sci-
entific, Inc) then processed using the OmniPrep Gen-
omic DNA Isolation Kit (G-Biosciences, Geno
Technology, Inc., Saint Louis, MO, USA) following the
manufacturer’s instructions, with the added step of 15
min room-temperature incubation of the dissolved pellet
with 1 μl of LongLife RNAse (G-Biosciences) to remove
residual RNA. The concentration of gDNA determined
by a Nanodrop spectrophotometer (Thermo Fisher
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Scientific Inc.) ranged from 48 to 89 μg of DNA. Gel elec-
trophoresis (2% agarose gel) resolved single bands of
gDNA of greater than 24 kb in size. The gDNA samples
were sent to the Baylor College of Medicine Human Gen-
ome Sequencing Center (BCM-HGSC) for sequencing.

Genome sequencing and assembly of Focc_1.0
Frankliniella occidentalis was one of 28 arthropod spe-
cies sequenced and assembled as a part of a pilot project
for the i5K arthropod genomes project at the Baylor Col-
lege of Medicine Human Genome Sequencing Center
[280]. As with the other i5k species, an enhanced
Illumina-ALLPATHS-LG sequencing and assembly
strategy for F. occidentalis enabled multiple species to be
approached in parallel at reduced costs. We sequenced
four libraries of nominal insert sizes 180 bp, 500 bp, 3
kb, and 8 kb. The amount of sequence generated from
each of these libraries is noted in Additional file 2: Table
S1 with NCBI SRA accessions.
To prepare the 180-bp and 500-bp libraries, we used a

gel-cut paired end library protocol. Briefly, 1 μg of the
DNA was sheared using a Covaris S-2 system (Covaris,
Inc. Woburn, MA) using the 180-bp or 500-bp program.
Sheared DNA fragments were purified with Agencourt
AMPure XP beads, end-repaired, dA-tailed, and ligated
to Illumina universal adapters. After adapter ligation,
DNA fragments were further size selected by agarose gel
and PCR amplified for 6 to 8 cycles using Illumina P1
and Index primer pair and Phusion® High-Fidelity PCR
Master Mix (New England Biolabs). The final library was
purified using Agencourt AMPure XP beads and quality
assessed by an Agilent Bioanalyzer 2100 (DNA 7500 kit)
determining library quantity and fragment size distribu-
tion before sequencing.
The long mate pair libraries with 3-kb or 8-kb insert

sizes were constructed according to the manufacturer’s
protocol (Mate Pair Library v2 Sample Preparation
Guide art # 15001464 Rev. A PILOT RELEASE). Briefly,
5 μg (for 2- and 3-kb gap size library) or 10 μg (8–10-kb
gap size library) of genomic DNA was sheared to desired
size fragments by Hydroshear (Digilab, Marlborough,
MA), then end repaired and biotinylated. Fragment sizes
between 3 and 3.7 kb (3 kb) or 8–10 kb (8 kb) were puri-
fied from 1% low melting agarose gel and then circular-
ized by blunt-end ligation. These size selected circular
DNA fragments were then sheared to 400-bp (Covaris
S-2), purified using Dynabeads M-280 Streptavidin Mag-
netic Beads, end-repaired, dA-tailed, and ligated to Illu-
mina PE sequencing adapters. DNA fragments with
adapter molecules on both ends were amplified for 12 to
15 cycles with Illumina P1 and Index primers. Amplified
DNA fragments were purified with Agencourt AMPure
XP beads. Quantification and size distribution of the

final library was determined before sequencing as de-
scribed above.
Sequencing was performed on Illumina HiSeq2000s

(Casava Version 1.8.3_V3) generating 100 bp paired end
reads. Reads were assembled using ALLPATHS-LG
(v35218) [282] on a large memory computer with 1 TB
of RAM and further scaffolded and gap-filled using in-
house tools Atlas-Link (v.1.0) [283] and Atlas gap-fill
(v.2.2) [284]. The Focc_1.0 assembly was deposited in
the NCBI GenBank (GCA_000697945.1) on 06/04/2014.

Automated gene annotation using a Maker 2.0 pipeline
tuned for arthropods
The 28 i5K pilot genome assemblies including F. occi-
dentalis were subjected to automatic gene annotation
using a Maker 2.0 annotation pipeline tuned specifically
for arthropods. The pipeline is designed to be system-
atic: scalable to handle 100s of genome assemblies,
evidence-guided using both protein and RNA-seq evi-
dence to guide gen models, and targeted to utilize extant
information on arthropod gene sets. The core of the
pipeline was a Maker 2 [285] instance, modified slightly
to enable efficient running on our computational re-
sources. The genome assembly was first subjected to de
novo repeat prediction and CEGMA analysis to generate
gene models for initial training of the ab initio gene pre-
dictors. Three rounds of training of the Augustus [286]
and SNAP [287] gene predictors within Maker were
used to bootstrap to a high-quality training set. Input
protein data included 1 million peptides from a non-
redundant reduction (90% identity) of Uniprot Ecdyso-
zoa (1.25 million peptides) supplemented with
proteomes from eighteen additional species (Strigamia
maritime, Tetranychus urticae, Caenorhabditis elegans,
Loa loa, Trichoplax adhaerens, Amphimedon queenslan-
dica, Strongylocentrotus purpuratus, Nematostella vec-
tensis, Branchiostoma floridae, Ciona intestinalis, Ciona
savignyi, Homo sapiens, Mus musculus, Capitella teleta,
Helobdella robusta, Crassostrea gigas, Lottia gigantean,
Schistosoma mansoni) leading to a final non-redundant
peptide evidence set of 1.03 million peptides. RNA-seq
transcription data derived from one sample each of adult
males, females, and mixed larval and pupal stages (Add-
itional file 2: Table S1) was used judiciously to identify
exon-intron boundaries but with a heuristic script to
identify and split erroneously joined gene models. We
used CEGMA models for QC purposes: of 1977
CEGMA single-copy ortholog gene models, 1952 were
found in the Focc_1 assembly and 1922 in the final pre-
dicted gene set—a reasonable result given the small con-
tig sizes of the assembly. Finally, the pipeline used a
nine-way homology prediction with human, Drosophila
and C. elegans, and InterPro Scan5 to allocate gene
names. The automated gene sets are available from the
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BCM-HGSC website [288] as well as the National Agri-
culture Library (NAL) i5k workspace sequence repository,
data-share, and curation site for all i5k projects [67, 289]
where a web-browser of the genome, annotations, and
supporting annotation data is accessible.

RNA evidence used to support manual genome curation
Both newly obtained and published F. occidentalis tran-
scriptome resources were used to aid in manual annota-
tion efforts. Using the cloud computing resources of
CYVERSE (formerly iPlant Collaborative Discovery En-
vironment) [290] and the Focc_1 genome assembly, the
paired end Illumina HiSeq RNA-seq reads generated by
BCM-HGSC for regular-lab-colony females, males, and
pre-adults (pool of L1, L2, P1, and P2 stages) (this study,
described above) were trimmed and cleaned with
Prinseq-lite (version 0.20.4, [291]) and aligned and
mapped to the genome with Tophat2-PE (v2.1.0). Two
de novo assemblies (contigs) from published studies with
F. occidentalis—one comprised of 454 sequencing reads
for mixed stages of TSWV-infected and non-infected in-
sects [23], and the other of Illumina RNA-seq reads for
salivary glands of adult females and males [151] (NCBI
TSA accession GAXD00000000.1), were mapped to the
genome using GMAP locally [292]. These transcriptome
resources were shared as RNA evidence tracks at the i5k
Workspace@NAL [67]. In addition, Trinity de novo-
assembled contigs [171] from Illumina HiSeq single-end
reads (DNA Core Facility, University of Missouri, USA)
were obtained from larval, pupal, and adult stages of F.
occidentalis (+/− TSWV) (NCBI Bioproject
PRJNA454326) to locate and connect fragmented cyto-
chrome p450 (CYP) gene models using the BLAST tool
at the i5k workspace.

Phylogenomic analysis of the official gene set
The OrthoDB v8 resource [293] was queried to find
shared orthologs among F. occidentalis and another
eight arthropods genomes; Daphnia pulex, Pediculus
humanus, Acyrthosiphon pisum, Cimex lectularius, Apis
mellifera, Tribolium castaneum, Danaus plexippus, and
Drosophila melanogaster. Custom Perl scripts (Add-
itional file 10) were used to compute the number of
genes in each category shown in Fig. 2a. For the phylo-
genomic analysis, only the single-copy orthologs were
used to build a concatenated protein sequence alignment
from which to estimate the phylogenetic tree using
RAxML version 7.6.6 [294]. Briefly, a multiple sequence
alignment was performed using muscle version 3.8.31
[295] for each orthologous group separately. Then, the
resulting alignments were trimmed using trimAl version
1.2rev59 [70] with parameters “-w 3 -gt 0.95 -st 0.01”.
The trimmed alignments were concatenated using the
“seqret” program from the EMBOSS suite version 6.6.0.0

[296]. This concatenated alignment was used to build
the phylogeny using RAxML version 7.6.6 with the
PROTGAMMA model of amino acid substitutions and
100 bootstrap replicates.

Assessment of gene set completeness and genome
assembly quality
For evaluating the completeness of the F. occidentalis offi-
cial gene set, and genome assembly, we used Benchmark-
ing Universal Single-Copy Orthologs (BUSCO) [297] of
the Arthropoda gene set, which consists of 1066 single-
copy genes that are present in at least 90% of selected
representative arthropods (shown in Fig. 2b). BUSCO as-
sessments were run with the default parameters.

Community curation of the thrips genome
Seventeen groups were recruited from the i5k pilot pro-
ject and thrips research community to manually curate
MAKER-predicted models (Focc_v0.5.3) of gene sets of
interest to thrips consortium members using the Focc_1
assembly. The consortium used Web Apollo/JBrowser
tools, online training, and written guidelines made avail-
able by the National Agriculture Library (NAL) i5k
workspace, along with the RNA evidence described
above, to locate and correct 1694 genes, 1738 mRNAs,
and 13 pseudogenes. Gene set members were located
with BLAST queries of hemipteroid and Drosophila
orthologs using customized parameters provided in
Additional file 1, sections entitled “Gene set manual an-
notations—customized strategy and phylogenetic ana-
lysis”. At the completion of the community curation
period, the manually curated models were exported in
gff3 format and quality-checked for formatting and cur-
ation errors, and then integrated with the MAKER-pre-
dicted gene models (Additional File 2: Table S2) to
generate a non-redundant official gene set (OGS v1.0)
(Additional File 2: Table S3). After removal of bacterial
sequence contamination, the OGS v1.0 includes 16,859
genes, 16,902 mRNAs, and 13 pseudogenes.

Phylogenetic analyses of gene families
To identify cases where there is clear evidence of mul-
tiple gene duplications in F. occidentalis leading to ex-
panded repertoires of certain gene (sub)families of
special interest, we (i) invested heavily in manual cur-
ation of F. occidentalis family members; (ii) retrieved
high-quality previously curated sequences from other
taxa, intentionally choosing exemplar species where
prior curation provides confidence that comparisons
would be fair, and therefore, inferences of gene family
expansions would be expected to be robust; (iii) built
phylogenetic trees for each family and/or subfamily; and
(iv) compared the counts and branching/clustering of
genes from each species in each tree. Particular
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algorithms and parameters used to generate the trees are
provided in Additional file 1, sections entitled “Gene set
manual annotations—customized strategy and phylogen-
etic analysis”, for each gene family examined
phylogenetically.

Improved assembly contiguity
Well after community curation of OGSv1.0 and subse-
quent analyses with targeted genes sets, a second assem-
bly was generated in an attempt to improve contig and
scaffold contiguity. This assembly (Focc_2) was gener-
ated using Platanus [298] followed by haplotype collapse
with Redundans [299], two tools designed for short-read
genome assembly of polymorphic short-read datasets, as
described by Thomas et al. [280]. While the genome as-
sembly had better contiguity statistics, the biological
utility was judged not to be as good by the community,
based on attempts to transfer and identify gene models
in the new assembly. Because of this, the community
reverted to the original version with manually annotated
gene models as described in this paper, and this version
(Focc_3.0) has been designated GCA_000697945.4 in
NCBI. Focc_2.0 was deposited in NCBI as GCA_
000697945.3 on 12/15/17.

Identification of transcription factors
We identified likely transcription factors (TFs) by scan-
ning the amino acid sequences of predicted protein-
coding genes for putative DNA-binding domains
(DBDs), and when possible, we predicted the DNA-
binding specificity of each TF using the procedures de-
scribed in Weirauch et al. [300]. Briefly, we scanned all
protein sequences for putative DBDs using the 81 Pfam
[301] models listed in Weirauch and Hughes [302] and
the HMMER tool [303], with the recommended
detection thresholds of Per-sequence Eval < 0.01 and
Per-domain conditional Eval < 0.01. Each protein was
classified into a family based on its DBDs and their order
in the protein sequence (e.g., bZIPx1, AP2x2, Homeodo-
main+Pou). We then aligned the resulting DBD se-
quences within each family using clustalOmega [127]
with default settings. For protein pairs with multiple
DBDs, each DBD was aligned separately. From these
alignments, we calculated the sequence identity of all
DBD sequence pairs (i.e., the percent of AA residues
that are exactly the same across all positions in the
alignment). Using previously established sequence iden-
tify thresholds for each family [300], we mapped the pre-
dicted DNA-binding specificities by simple transfer. For
example, the DBD of FOCC004897 (OGS ID) is 98%
identical to the Drosophila melanogaster mirr protein
(Additional file 2: Table S5). Since the DNA-binding
specificity of mirr has already been experimentally deter-
mined, and the cut-off for Homeodomain family of TFs

is 70%, we can infer that FOCC004897 will have the
same binding specificity as mirr.

Bacterial scaffold detection method
Bacterial scaffolds in F. occidentalis genome were identi-
fied using a modified nucleotide-based pipeline devel-
oped by Wheeler et al. [48] and as described previously
[38]. Briefly, 1 kbp DNA fragments from each scaffold
were searched for bacterial homologs against an in-
house bacterial database containing 2100 bacterial spe-
cies using BLASTn algorithm (Additional File 2: Table
S25). The bacterial database was masked for low com-
plexity regions by NCBI Dustmasker [304], and similar-
ity matches of bitscore above 50 were retained. To
accurately determine the bacterial scaffolds, parameters
including the number of bacterial matches per scaffold,
proportion of the scaffold covered by bacterial matches,
and total hit width (encompassing the distance between
the leftmost and rightmost bacterial match in the scaf-
fold) were considered. Candidate bacterial scaffolds were
called based on a cut-off of ≥ 0.40 proportion bacterial
hit width as this criterion with manual curation of the
sequences. It should be noted, however, that represented
in this set could be larger lateral gene transfers in rela-
tively small scaffolds, as the latter cannot be readily
identified without flanking eukaryotic sequences and/or
further manual curation. The procedure for detecting
bacterial scaffolds was performed twice with modifica-
tions—once during the early stages of the curation
process (2015) using an “older” method [48] and a sec-
ond time more recently as described above using this
“new” method after the curation process ended and
OGS v1.0 was frozen and submitted for publication.

Lateral gene transfer detection method
Candidate bacterial lateral gene transfers were identified
using the method above for detecting bacterial scaffolds
[38, 48, 304]. Analysis was limited to scaffolds more than
100 kb due to the need for flanking sequences to prop-
erly evaluate candidate LGTs. We examined each bacter-
ial match with a bitscore > 75 that also showed a
bitscore = 0 in a reference eukaryote database. Fragments
flanking the 1-kbp positive hits were examined and com-
bined for LGT analysis.
Manual curation was conducted on candidates surviv-

ing the initial filtering steps. Each candidate was
searched with BLASTn to the NCBI nr/nt database. Se-
quences homologous to insect genes with the exception
of a possible LGT in the common ancestor of closely re-
lated insects were removed. In cases where the matches
to other insects were sporadic, the candidate was
retained, as our experience has indicated that these can
be independent LGTs into different lineages. The region
was additionally searched with BLASTx to the NCBI nr/
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nt database. Sequences with no hits to multiple insect
proteins were identified as an LGT candidate. The best
bacterial match to the candidate was called using the
NCBI nr and protein databases, and flanking genes within
the scaffold were examined to determine whether they are
eukaryotic or bacterial. We examined whether the LGT
region was associated with an annotated gene within the
insect genome, and if RNA sequencing data showed evi-
dence of transcriptional activity in the LGT region. In a
few cases, polymerase chain reactions were also conducted
using primers that bridge the LGT candidate and flanking
eukaryotic-like sequences (Additional file 1: Section 2,
Table S2.2).

PCR of LGT candidate flanking regions
The overlapping primers used to verify whether the po-
tential LGTs were present in the thrips genome were de-
signed using DNAMAN 7.0 (Lynnon Biosoft, Quebec,
Canada). The PCR was carried out in a 20-μL reaction
volume containing 4 μL 5x Phusion HF Buffer or 5x
Phusion GC Buffer (depending on the difficulty in amp-
lifying the target fragment), 0.4 μL 10mM dNTPs, 1.0 μL
10mM each primer, 0.6 μL DMSO, 0.2 μL Phusion DNA
High-Fidelity DNA Polymerase (Thermo Scientific),
1.0 μL genome DNA template, and 11.8 μL ddH2O. The
cycling program was set at 98 °C for 30 s, and then 34 cy-
cles of 98 °C for 10 s, and 72 °C for ~ 2min (30 s/kb),
followed by a final extension step of 72 °C for 10 min
and 4 °C hold. The PCR products were checked on a
1.0% gel after electrophoresis and then purified using a
Wizard SV Gel and PCR Clean-Up System (Promega).
The purified fragments were cloned into pGEMT Easy
vector (Thermo Scientific) and transformed into DH5α
competent cells. The positive transformants were cul-
tured for plasmid purification using the E.Z.N.A. Plas-
mid Mini Kit I, (V-spin) (Omega Bio-tek) and then sent
for sequencing by LGC genomics (https://www.lgcgroup.
com). Overlapping sequences obtained from the differ-
ent amplification reactions were then re-assembled and
used to verify if the LGT was indeed present in the
thrips genome.

Phylogenetic analysis and nucleotide sequence evolution
of putative LGTs
The most promising LGT candidates were further analyzed
by evaluating phylogenetic relationships and conducting
branch specific synonymous and non-synonymous rate
analysis with homologous references from NCBI to detect
signatures of stabilizing or directional selection.
For phylogenetic analysis of protein sequences, the top

proteins with the strongest bitscores (up to 50–60 pro-
teins) to the translated region of the F. occidentalis pro-
teins were aligned using muscle in MEGA. Protein
alignments were assessed for misalignment and large in-

del regions were removed. Phylogenetic trees were con-
structed by RAXML protein model “LG” with 1500
bootstrap replications. Outgroups were identified by
identifying the bacterial species closest to the LGT in
the constructed phylogeny and taking the bacteria pro-
tein and blasting to NCBI’s nr protein database re-
stricted to the bacteria’s taxonomic group (e.g., family or
order). Another phylogenetic tree including proteins
within different genera from the bacteria taxonomic
family was constructed.
To characterize nucleotide sequence evolution of the

LGT and related sequences (e.g., synonymous and non-
synonymous substitution rates), the translated nucleo-
tide sequence were identified using the protein query
from representative species throughout the protein tree
and by comparing the similarity to the NCBI nucleotide
database restricted to the specific species. The sequences
obtained were then aligned using MUSCLE and large in-
del regions were removed. A pruned version of the pro-
tein tree was created with the same representative
sequences obtained for the nucleotide alignment. HYPH
Y’s BUSTED and BUSTEC (Branch-site Unrestricted
Statistical Test of Episodic Diversification/Conservation),
as described in [56], were both performed to validate the
open reading frame using the nucleotide aligned se-
quences and the pruned protein tree by testing for posi-
tive and purifying selection respectively. The branch
specific non-synonymous (dN) and synonymous (dS)
were calculated using PAML CODEML free-model rate
with fixed-branch lengths corresponding to the con-
densed protein tree and using the representative nucleo-
tide alignment. Protein trees in Newick format used for
the PAML, BUSTEC, and BUSTED analysis with NCBI
accession numbers (Example XP_026279074.1: Frankli-
niella occidentalis) and corresponding branch lengths
are provided in Additional file 1: Section 2.

Use of expression data and published transcriptomes to
infer provisional functionality of genes involved in
selected processes of interest
Identification of salivary gland (SG)-associated genes and
enriched expression
Using methods developed by Telleria et al. [305] and
Ribeiro et al. [306], with modifications, a comparative
analysis of transcript-level expression in SG tissues to
whole bodies was performed on existing RNA-seq data-
sets to unambiguously identify SG-associated genes in
the F. occidentalis genome and to identify genes/contigs
exhibiting SG-enriched expression. Because feeding be-
haviors, tissue damage caused by feeding, and virus inocu-
lation efficiency appear to be sexually dimorphic traits in
F. occidentalis, we capitalized on male and female RNA-
seq data sets that were generated to assist in gene predic-
tion for this genome project (Additional file 2: Table S1,
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NCBI SRA Accession = SRX897632 and SRX897634), and
from salivary gland tissues (principal and tubular com-
bined) of males and females (SRS549985, SRS549981,
SRS549977, SRS549984, SRS549980, SRS54997) as previ-
ously published [151].
RNA-seq datasets were individually mapped to pre-

dicted genes from the F. occidentalis genome project
using CLC Genomics Workbench 11.0 based upon set-
tings previously described [305] with the exception that
transcripts per million (TPM) was used as a proxy for
gene expression. Fold changes were determined as the
TPM for the salivary gland RNA-seq sets divided by the
TPM for whole-body datasets. Baggerly’s test (t-type test
statistic) [307] followed by a false discovery rate (FDR)
at 0.05 [308] was used to identify genes with significant
enrichment in the salivary glands. Enriched genes were
removed, and mapping and expression analyses were re-
peated to ensure low expressed genes were not missed.
In addition, the RNA-seq data sets were mapped to the
transcriptome previously generated from the salivary
gland RNA-seq datasets [151], enriched contigs were
identified as before, and a second mapping and analysis
following removal of initially enriched contigs was uti-
lized to identify low expressed salivary gland-enriched
contigs. This secondary analysis was conducted to iden-
tify transcripts that were not predicted in the genome or
may have not been present on an assembled scaffold.
Contigs and genes were compared to reduce overlap

to a combined final SG-enriched sequence set that was
generated. Briefly, blastn comparison was utilized to
match sequences and only the longest sequence was
retained if 100% matched was noted. After merging the
non-overlapping predicted genes and contigs, the SG-
enriched sequence was searched (BLASTx) against mul-
tiple NCBI non-redundant proteins databases including
those for arthropods, hemipterans, viral, bacterial, plant,
Drosophila, and the complete nr set with an expectation
value (E-value) of at least 0.001. For transcripts with a
blast hit with an E-value above 0.001, the identification
was based upon the best match that included previously
assigned biological function (lipase, cellulase, etc.). Fol-
lowing this process, transcripts with enriched expression
in the salivary glands of male, females, and combined
(males and females) relative to the entire body were
compared to determine those that overlap between each
set. Publicly available bioinformatics tools were used to
make in silico predictions of structural features in the
SG peptide sequences—SignalP (v.5.0) software [309] to
determine the presence of a eukaryotic signal peptide
cleavage site on the N terminus of the protein; TMHM
M (v.2.0) software [310] to identify transmembrane do-
mains of 18 amino acids or greater; and DeepLoc (v.1.0)
[311] to predict cellular localization of the protein. SG
proteins that were determined to contain a canonical

signal peptide, to have an extracellular or cytoplasmic
localization pattern, and/or a transmembrane domain as-
sociated with outer membranes were considered putative
secretory proteins.
Real-time quantitative reverse-transcription PCR (qRT-

PCR) was performed on a subset of putative SG gene tran-
scripts to validate the comparative RNA-seq approach
(Additional file 1: Section 5). Frankliniella occidentalis fe-
males were obtained from a colony originally collected
from the same Hawaiian isolate used in this study, and
maintained on green bean pods [4]. Females were col-
lected 48 h post-eclosion and salivary glands were surgi-
cally removed as previously described [151] to achieve
three sample groups: salivary glands (PSG and TSG com-
bined), head (minus SG), and body (i.e., carcass). Each
sample group consisted of five females to ensure adequate
quantities of total RNA, and six biological replications of
dissection and total RNA was isolated for each sample
group. Dissections were conducted at the same time of
day within a 2-h window to minimize experimental vari-
ation (error) between sample groups.
Total RNA was extracted from thrips tissues using the

Arcturus® PicoPure® RNA isolation kit (Life Technolo-
gies, USA), yields were determined by Nanodrop ND-
1000 (Thermo Scientific, DE, USA), and 2 ng of total
RNA templates was used to synthesis first-strand cDNA
with 0.5 M of gene-specific reverse primers of the target
gene and reference gene (see Additional file 1: Table
S5.1) with the Verso™ cDNA synthesis Kit (Thermo Sci-
entific, DE, USA), including the RT enhancer to remove
residual DNA, in 10 μL reaction volumes for 60 min in-
cubation at 45 °C, followed by a 10-min denaturation
step at 85 °C. No-RT controls were also included in the
cDNA step to ensure that possible contribution of DNA
contamination to real-time PCR values (Cq) was negli-
gible. Real-time PCR reaction mixtures (10 μl volumes)
were prepared with 2 μL of cDNA, 0.2 μM of forward
and reverse gene-specific primers, and SsoAdvanced™
Universal SYBR® Green Supermix (Bio-Rad Laboratories,
CA), and run on a CFX96™ real-time PCR detection sys-
tem (Bio-Rad Laboratories, CA) with an amplification
protocol as follows: 95 °C for 30 s, 40 cycles of 95 °C for
10 s, 55 °C for 10 s, and 60 °C for 25 s, followed by a
melting protocol to evaluate product quality (absence of
primer-dimer and single peaks). Each plate was run with
one biological replicate of each sample group (SGs,
heads, bodies), four primer pairs (two putative SG genes
and two reference genes) in separate wells, and three
technical replicates of each PCR reaction. The two refer-
ence genes selected were F. occidentalis actin (Act,
[154], and cytochrome oxidase 1 (COX [155]). Normal-
ized expression of each of the four SG-enriched tran-
scripts was calculated using the 2−ΔCq method [156] and
the geometric mean of Act/COX reference Cqs.
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Normalized expression was log transformed prior to
one-way ANOVA followed by Tukey’s multiple compari-
son tests with GraphPad Prism software.

Comparative analysis of innate immune gene transcripts in
three thrips vector species
One key finding of the F. occidentalis genome annota-
tion was the apparent absence of an IMD gene—a core
signal transducing protein in one of the evolutionarily
conserved pathways involved in the production of anti-
microbial peptides in insects—and the downstream
FADD gene. With the availability of transcriptome se-
quences of three thrips vector species, we performed
comparative analyses to mine for IMD pathway mem-
bers and other core innate immunity-associated genes. A
genome-enabled, transcriptome assembly representing
TSWV-infected and non-infected adult F. occidentalis
(PRJNA454326, [24]) and two de novo-assembled tran-
scriptomes, one representing mixed stages of TSWV-
infected and non-infected F. fusca (PRJNA385691, [25]
and the other representing CaCV-infected and non-
infected adult Thrips palmi (PRJNA498538, [26] were
annotated against a custom made database of arthropod
innate immunity genes downloaded from ImmunoDB
[312] using the blastx algorithm in local BLAST+ v.
2.8.1 with an E-value cut-off of 10− 5. Blast annotations
were filtered to retain annotations with highest bit score,
lowest E-value, and longest alignment length.
Transcripts encoding immune-related genes in F. occi-

dentalis, F. fusca, and T. palmi were translated in six
frames using TransDecoder (Version5.5.0, [221]) with a
minimum peptide length of 100 amino acids. Translated
transcripts were annotated against the UniProt database
downloaded on April 9, 2019, using Blastp with an E-
value cut-off of 10− 5. Redundant translated proteins
were removed by k-mer analysis to develop an initial
training set for constructing Markov Model to discrim-
inate between coding and non-coding regions. Predicted
proteins homologous to proteins in the UniProt database
were retained for further analysis. Orthologous innate
immunity genes between these three species were identi-
fied by Orthovenn2, a web-tool used to identify ortholo-
gous and paralogous genes, with a pairwise sequence
similarity cut-off of 10− 5 and an inflation of 1.5 to define
orthologous cluster structure [222]. Orthologous clusters
were analyzed by UniProt search and GO Slim for func-
tional annotation.

Gene expression patterns associated with postembryonic
development
To aid in annotation of molting and metamorphosis
genes, notably those with multiple copies and putative
duplicates in the genome, and to globally characterize
gene expression associated with progression from F.

occidentalis larvae to adulthood, we performed weighted
correlation network analysis (WGCNA) on normalized
read counts (FPKM values) generated for healthy first-
instar larvae (L1), propupae (P1), and adults (mixed
males and females) across three biological replicates per
developmental stage from a previously published RNA-
seq study [24] (NCBI Bioproject PRJNA454326, SRA ac-
cessions: SRX4015378, SRX4061765, SRX4061766,
SRX4159448, SRX4159449, SRX4159450, SRX4159451,
SRX4159452). WGCNA is a clustering method that
places highly correlated transcripts into colored modules
based on similar patterns of expression across samples
[43]. The resulting modules are used to form a correlation
network to identify correlated genes in transcriptome-
wide expression data sets (e.g., RNA-seq count data) and
to identify the strength of associations (statistically signifi-
cant correlations) between these groups of co-expressed
genes (modules) and external sample traits of interest (de-
velopmental stage in the present study). Genes of zero
variance were filtered out from the RNA-seq data in prep-
aration for WGCNA. A scale-free topology threshold of
0.8 was used to identify the proper soft power of 16 for
analysis. Adjacency matrix was calculated for signed net-
work construction. Modules were determined by the dy-
namic tree cutting algorithm with a minimum of 20 genes
per module. After relating modules to external sample
traits, modules with the highest correlations were selected
for further analysis using REVIGO [255] on stage-
associated genes and gene ontologies (GO terms) to filter
out functional redundancies between gene ontology (GO)
terms (e.g., genes enriched in child terms that are counted
in their associated parent terms) prior to visualization of
semantically similar GO clusters for each developmental
stage. Using a targeted approach, we repeated the
WGCNA analysis on the curated molting and metamor-
phosis gene set using the same parameters, validating 60–
85% clustering of these genes into modules discriminated
by the global network analysis.

Identification of sex-specific genes
To generate a repertoire of sex-specific genes and to
identify genes associated with F. occidentalis
reproduction, we performed differential gene expres-
sion analyses on RNA-seq data for male, female, and
pre-adult (larvae and pupae mixed) samples that were
generated to assist in gene prediction for this genome
project (Additional file 1: Table S1, NCBI Bioproject:
PRJNA203209, SRA accessions: SRX897632,
SRX897634, SRX897633) using a previously described
strategy [313, 314]. Additional thrips species se-
quenced as a part of the 1KITE project (Frankliniella
cephalica, PRJNA219559; Gynaikothrips ficorum,
PRJNA219563; Thrips palmi; PRJNA219609) were
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used for identification of conserved sex- and stage-
specific genes between these thrips species.
The F. occidentalis RNA-seq set was assessed with

FastQC and trimmed with CLC Genomics. Reads were per-
mitted to match up to five locations with only two mis-
matches and required at least 90% similarity at 70% of
transcript length. Transcript levels were normalized to tran-
scripts per million (TPM) and significant enrichment was
determined with Baggerly’s test (beta-binomial distribution
statistic) followed by Bonferroni correction (at 0.01) and a
two-fold difference between samples. Gene identification
was obtained through BLASTx searches against an NCBI
non-redundant protein arthropod database with an E-value
cut-off of 0.001. RNA-seq sets for the other thrips species
were BLAST-searched against the finalized female, male,
and pre-adult F. occidentalis sets (E-value ≤ 1.00 × 10− 20).
Venn diagrams [315] (http://bioinformatics.psb.ugent.be/
webtools/Venn/) were used to depict the number of shared
genes in female, male, and pre-adult thrips. Fold change
and the number of unique gene reads from the conserved
female and male thrips genes were used to identify highly
enriched genes (> 1000 unique reads, > 4-fold difference) in
female and male thrips.
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