
UC Berkeley
UC Berkeley Previously Published Works

Title
Foreword

Permalink
https://escholarship.org/uc/item/9g47786h

ISBN
9781509052141

Authors
Morris, K
Yelick, KA
Zheng, Y
et al.

Publication Date
2017-01-30

DOI
10.1109/PAW.2016.004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g47786h
https://escholarship.org/uc/item/9g47786h#author
https://escholarship.org
http://www.cdlib.org/


Foreword 
 
 
In an effort to enable extreme-scale computing, system architectures and technologies 
are undergoing dramatic transformations, involving complex memory hierarchies, 
hardware heterogeneity, many- and multi-core architectures, and different levels of 
parallelization. In order to effectively exploit these transformations when producing 
scalable applications, scientific researchers must increasingly have cross-cutting 
technical expertise in hardware, software, and algorithm development. Given this 
landscape, programming models that provide scientific researchers with a more 
effective approach for developing their parallel applications are of the utmost 
importance. 
 
The partitioned global address space (PGAS) parallel programming model effectively 
combines the productive data reference semantics of shared memory systems with a 
strong locality model in which programmers can reason about the mapping of data to 
distributed memories.  This combination of features simplifies programming complexity 
while enhancing performance by supporting shared namespaces in a way that exposes 
data locality in support of scalability.  Many PGAS models rely on the single-program, 
multiple-data (SPMD) programming model commonly used for distributed memory 
programming.  Others provide more of a global view of execution in which language 
concepts are used to map data and control structures to the target nodes. 
           
There are many programming languages within the PGAS family, including Fortran 
2008, Unified Parallel C (UPC), X10, and Chapel.  Such languages provide users with 
rich syntax for expressing locality-aware parallel computations.  By embedding PGAS 
concepts into a language’s type system and execution semantics, compilers can be 
leveraged to help with error checking and optimization.  PGAS models also take the 
form of meta-languages and libraries, such as Unified Parallel C++ (UPC++), Coarray 
C++, OpenSHMEM, MPI-3, and Global Arrays. These have the benefit of being 
integrated with existing languages, simplifying the learning curve for existing 
programmers. 
 
PGAS Applications Workshop (PAW) includes work from case studies of PGAS 
programming models in the context of real-world applications as a means of better 
understanding practical applications of PGAS technologies. The work characterizes the 
scalability and performance, expressiveness and programmability, as well as any 
downsides or areas for improvement in existing PGAS models. 
 
 

Karla Morris - Sandia National Laboratories 
Katherine A. Yelick - Lawrence Berkeley National Laboratory 

Yili Zheng - Google 
Salvatore Filippone - Cranfield University 

Bradford L. Chamberlain - Cray Inc. 
Bill Long - Cray Inc.   

iiiiv




