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Symmetry Detection and the Perceived Orientation of Simple Plane Polygons

Paul Kube

Institute of Cognitive Studies
and the
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

1. Introduction

Recent advances in the computa-
tional theory of vision have been impres-
sive. However, some simple and basic
aspects of human visual performance have
yet to be explained. For example, the
details of human performance in seeing
slanted  isolated  textureless plane
polygons as slanted plane polygons are
not predicted by any current theory.
Below, five constraints on any correct
theory in this domain are extracted from
psychological experiment and contrasted
with predictions of three of the best
current computational theories; no theory
meets them all. A detector model is pro-
posed which can qualitatively account for
the evidence. The model is one obtained
by simple elaboration of a symmetry
detection model introduced by Palmer
[15] to account for a number of other
perceptual phenomena in a unified way.

2. What experiment says

The study of the perception of the
perspective projection of simple polygons
dates from before the classic monograph
of Stavrianos [16]. By 1966 the literature
was fairly large (see, for example,
Freeman’s bibliography [10]), and contin-
ued to grow into the early seventies.
Most studies in this tradition were res-
tricted to stimuli perceptually indistin-
guishable from rectangles centered in the
line of sight and rotated on an axis paral-
lel to one side; i.e., stimuli which would
project under perspective into the frontal
plane as isosceles trapezoids. Data from
the presentation of other kinds of contour
stimuli is virtually absent. However, it

appears that facts about the perception of
even such simple objects are hard to
account for in a simple theory.

Data from this body of work
disagree on some points (concerning, for
example, how tight the coupling is
between a figure's perceived shape and
perceived slant, or how the accuracy of
slant judgments varies with stimulus
size), but there are at least two unequivo-
cal results worth noting. As summarized
by Flock et al., “the single untextured
rectangular shape when viewed monocu-
larly without parallax constitutes too
great a degree of impoverishment to elicit
accurate slant judgments from the human
visual system. . .” [9p. 58] That is,
human viewers aren’t very good (mean
regression no better than about 0.7 in the
reported experiments) at seeing the pre-
cise slant of slanted rectangles when out-
line is the only cue. On the other hand,
they are fairly likely to see slanted
rectangles,or figures which project out-
lines indistinguishable from slanted rec-
tangles, as slanted; see [5]. These simple
facts impose two constraints (C1 and C2,
below) which must be met by any candi-
date theory of human vision.

Two exceptions to the isosceles-
trapezoid-stimulus tradition yield three
additional constraints (C3, C4, and C5
below). An experiment reported by
Attneave [1] featured the solicitation of
slant judgments from subjects upon view-
ing frontal-plane parallelograms of vari-
ous shapes and orientations. Rectangles
at most orientations and aspect ratios
showed great resistance to being seen as
slanted in depth at all. Highly nonrec-
tangular parallelograms were relatively
easy to see as slanted figures. In a pilot



study at the Berkeley ICS, subjects are
shown outline quadrilaterals like those in
Figure 1.
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Figure 1, a-g

A series of seven perspective projections of a square
in a plane with slant o = 60 and tilt 1 = 90 de-
grees. The +’s are not part of the stimulus, they
merely mark here the origin of the image plane for
each projection. When a figure is foveated with the
center of the lens above the origin, and such that
the figure subtends fifteen degrees of arc vertically,
the retinal image approximates viewing the outline
of a meter-square tabletop, with near edge parallel
to the image plane, at a distance of about two me-
ters. (Of course, these reproductions need to be
scaled before being used as experimental stimuli;, at
the size reproduced here, the focus i1s only about 4
cm. above the page )

One of the figures at a time is monocu-
larly presented to a subject so that the
contour falling on the retina is the projec-

(g)

tion of a square slanted with respect to
the frontal plane; the subject is asked to
report whether or not she sees the figure
as flat and slanted (i.e., lying in a plane
not parallel to the frontal plane). Prelim-
inary results are shown in Figure 2, with
the vertical axis indicating increasing ease
in seeing the figure as a slanted plane
polygon. Some projections are consider-
ably easier to see in this way than others,
though all are equally correct projections
of slanted squares.
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Figure 2

Relative “goodness of depth illusion™ for the seven
stimuli shown in Figure 1. Goodness of illusion in-
creases upward along the vertical axis.

Thus, from experimental results,
there are at least these five straightfor-
ward constraints that any theory of
human visual capacity must meet:

C1. Viewers are fairly bad at judging the
precise slant of slanted rectangles,
even when they know they are view-
ing slanted rectangles.

C2. Figures which project isosceles tra-
pezoids into the frontal plane can be
easily seen as plane figures slanted in
depth.

C3. Figures which project rectangles into
the frontal plane are very hard to
see as slanted in depth.

C4. Figures which project highly nonrec-
tangular parallelograms into the
frontal plane are easy to see as
slanted plane figures.



C5. Of the actual perspective projections
of a slanted rectangle at various
orientations, some are more difficult
to see as slanted plane figures than
others.

3. What theory says

Following years of concentrated
work in the development of polyhedral
scene understanding systems (for example
(11] [8] [14]) which had nothing to say
about the perception of the orientation of
isolated surfaces, recently there has been
a flowering of interest in the construction
of computational theories which demon-
strate how, under plausible assumptions,
depth information can be extracted from
retinal images, and which sometimes do
have consequences for the perception of
slant of simple isolated polygons. To
their credit, these theories typically aim
for considerable generality and have these
consequences, if they do have them,
among many others of interest. The ones
whose predictions will be examined below
with respect to the experimental lessons
of the previous section are all expressions
of one sort or another of kind of principle
of Pragnanz they predict that an image
will be interpreted as having been pro-
jected by the object which, of all possible
projecting objects, best meets some cri-
terion of simplicity.!

Several recent theories of this sort
are not open for consideration because
they are not even well-defined for polygo-
nal stimuli. Witkin [19], for example,
proposes that the chosen interpretation of
a projection should be the one that max-
imizes the uniformity of distribution of
orientations of contours in the scene;
however, his mathematics require that the
contour orientations be statistically
independent, which is certainly not the

1 Or, at least, some criterion that is
correlated with simplicity. Steve Palmer has
suggested to me that, for example, the area-
divided-by-squared-perimeter measure of
Brady and Yuille (see below) should not be
seen as a simplicity measure itself, but rath-
er as a measure the maximization of which
happens, in a range of cases, to pick out
simple figures.

case for simple polygons. Barrow and
Tenenbaum (4] suggest that the contour
which minimizes the integral of the
square of its curvature over its length
should be chosen as the interpretation;
but curvature is either infinite or
undefined at each vertex of a polygon,
and zero everywhere else, so it fails to dis-
tinguish between any alternative projec-
tions. Barnard and Pentland [3] propose
that the selected interpretation be one
composed of circular arcs, and they offer
an ellipse-fitting algorithm that achieves
such an interpretation in some cases; but
it fails on polygons. Three theories which
do make predictions for the perception of
simple polygons are considered below.

3.1. Kanade

A bilaterally symmetric figure is one
whose shape is invariant over reflection
about a line, the axis of bilateral sym-
metry. Consequently, such a figure is
composed of pairs of points which lie at
equal distances in opposite directions
from the symmetry axis on lines that all
meet the axis of symmetry at a 90 degree
angle. If a figure is bilaterally symmetric,
any affine transformation of the figure
will be skew-symmetric: paired points in a
skew-symmetric figure lie on lines (the
skew-transverse azes) which all meet the
skew-symmetry axis at some arbitrary
angle, not necessarily 90 degrees. Since
orthographic projection is an affine
transformation, bilateral symmetries in
the scene will become, under orthographic
projection, skewed symmetries in the
image. This fact is exploited by Kanade
[12] [13], to derive constraints on per-
ceived object orientation upon detection
of image skewed symmetry, under the
Pragnanzlike assumption that the per-
ceptual system should prefer to see bila-
teral symmetries whenever possible.

To see how this constraint on orien-
tation from skewed symmetry is supposed
to work, consider the polygon in Figure 3
with its indicated skew symmetry. In this
case, either dashed line can be taken as
the skewed-symmetric axis, and the other
as a skewed-transverse axis. The Kanade



Figure 8

A skew-symmetric polygon. Dashed lines show axes
of skewed symmetry.

assumption is that a skewed symmetry
observed in an image was projected by a
real symmetry in the imaged scene, and
so the axes of skewed symmetry in the
image are projections of the axes of bila-
teral symmetry in the scene. But axes of
bilateral symmetry meet at right angles;
so the assumption constrains the orienta-
tion of the plane containing the bilateral
symmetry to be such that lines lying in it
and meeting at right angles could have
orthographically projected the observed
axes of skewed symmetry in the image.

Kanade has shown that this is not
sufficient to fix a unique interpretation for
the orientation of the viewed figure;
instead, the angle formed by the skewed-
symmetric and skewed-transverse axes
determines an orientation which must lie
on a hyperbola (or, if the angle is 90
degrees and so the image is already bila-
terally symmetric, a pair of perpendicular
lines) in gradient space. (Here, gradient
space is a two-dimensional space in which
each point represents the orientation of a
plane, and each of a set of parallel planes
maps to the same point. The mapping is
standardly defined as follows. Let there
be three-dimensional cartesian coordi-
nates in space such that the image plane
(e.g., the ‘plane’ of the retina) satisfies
2=0. Now an arbitrary plane in space
will satisfy an equation of the form
pz+qy+d=z, for some value of p, ¢, and
d; and the equation of any plane parallel
to this one will differ only in the value of
d, so specifying p and ¢ suffice to specify

the orientation of the plane. The point
(p,q) is then the map of the plane in gra-
dient space. Alternatively, the
arctangent of the length of the vector
<p,q > gives the slant o of the plane, and
the angle of the vector clockwise from the
p-axis gives the tilt 7; that is, to talk of
orientation in terms of slant and tilt is
just to impose polar coordinates on gra-
dient space.) In the present case, the
skewed-symmetry axes shown in Figure 3
constrain the object plane to have an
orientation lying on the hyperbola in Fig-
ure 4.

Figure 4

Gradient space constraints on the plane containing
the skewed symmetry shown in Figure 3 (solid hy-
perbolic curve) and in Figure 5 (dotted orthogonal
lines).

Thus Kanade would predict that
because of the detection of the indicated
skew symmetry, Figure 3 will be seen as a
rectangle (a parallelogram contralateral
bisectors meet at right angles) whose
orientation lies on the hyperbola in Fig-
ure 4; and Kanade [12] suggests further
that, in the absence of further con-
straints, the perceptual system should
select the least slanted of the orientations
that are possibile given a symmetry con-
straint, i. e., an orientation on one of the



apexes of the hyperbola: in this case, a
slant of about 65 degrees in the direction
of one or the other of the Necker-reversal
tilts.

This result seems plausible, but
there are inadequacies with the approach.
Note that the parallelogram of Figure 3
has another pair of skewed symmetry
axes, as shown by the dashed lines in Fig-
ure 3.

Filgure &

Another skewed symmetry for the polygon in Figure
3

These happen to be axes of true bilateral
symmetry, so they require that the plane
of the projecting object have an orienta-
tion that falls on one of a pair of perpen-
dicular lines in gradient space, which, for
this example, are the broken lines of Fig-
ure 4. The theory does not explain how
the constraints from these two skewed
symmetries should be combined, and no
reasonable combination seems to be con-
sistent with all of the experimental con-
straints:

If minimization of slant is to count
more heavily than reconstructing all pos-
sible symmetries, then the angle bisector
axes of Figure 5 should be the ones that
the Kanade constraints are meant to
apply to; this gives the prediction of see-
ing the figure in the frontal plane, i.e., at
zero slant. But this would violate con-
straint C4.

Perhaps, instead, the theory should
be understood as predicting that all possi-
ble symmetries will be reconstructed, and

that as a result the figure will be seen at
an orientation that simultaneously
satisfies the constraints imposed by both
pairs of axes. This would correspond to
the intersection, in the p,¢ plane, of the
curves given by the two skewed sym-
metries; see Figure 4. In this example,
this gives the same prediction as minimiz-
ing over the range of slants permitted by
the contralateral bisector symmetry
alone, which was a reasonable prediction.

But this suggestion fails on other
examples. Any parallelogram in the
image plane has two pairs of skewed sym-
metry axes, one pair connecting the mid-
points of its sides and the other connect-
ing its vertices. Now the skewed-
symmetry assumption is that a skewed
symmetry in the image was projected by
a true bilateral symmetry in the scene;
and so the skewed-symmetry axes must
have been projected by perpendicular
axes. But taking the intersection of the
constraints imposed by both pairs of axes,
this implies that the figure projecting a
paralellogram must be a convex quadrila-
teral whose diagonals, and whose
opposite-side bisectors, meet at right
angles: i.e., the projecting figure must, in
either case, be a square.

Figure 8

This rectangle, with its two skewed symmetries as
shown, has the same slant constraints as the paral-
lelogram in Figure 3

So, in avoiding a violation of C4, the
Kanade assumption seems forced to
predict seeing every nonsquare parallelo-
gram as a square at some nonzero slant.
This violates constraint C3, as can be
seen by considering Figure 6, a figure



whose two pairs of skewed axes are those
just those of Figure 3 rotated in the fron-
tal plane. As a result, it has orientation
constraints identical to those shown in
Figure 4 up to a rotation in the p,¢ plane,
and so the same slant constraints; but it
is not naturally perceived as a slanted
square in the manner of Figure 3, but
rather as a rectangle in the frontal plane.

If instead (and, so far as I can see,
without motivation from the theory)
opposite-side bisector symmetries are
taken as imposing the important orienta-
tion constraints, Figures 3 and 6 no
longer provide counterexamples. How-
ever, the theory would still violate experi-
mental constraint C2. Consider the pro-
jected isosceles trapezoid in Figure 1.1; it
has only one pair of skew symmetry axes,
which are also bilateral symmetry axes,
and so the figure should be seen only in
the frontal plane. There is nothing in
Kanade’s theory to account for its being
easy and natural to see as a slanted rec-
tangle.

3.2. Brady and Yuille

Brady and Yuille [6] have proposed
that an image plane polygon be inter-
preted as having been projected by the
object which, of all possible projecting
objects, maximizes the ratio of area to
perimeter squared. This measure tends to
favor compact, nonelongated figures, and
is maximized by squares within the class
of quadrilaterals, so their theory entails
the perception of a square whenever pro-
jectively possible.  But, since their
mathematics is developed under the
assumption of orthographic projection,
this (as for Kanade) leads to a violation
of constraint C3 when applied to Figure
6. Also, it is easy to show that (under
orthography) there is a family of image-
plane isosceles trapezoids which are self-
maximal over this measure; for these tra-
pezoids, the preferred projecting figure is
in the frontal plane, violating C2. Weiss,
in a recent paper [18], proposes an
improvement on the Brady and Yuille
measure, but it also assumes orthography,
and it violates C3.

Although the mathematics become
more difficult, it is conceptually simple to

consider Brady and Yuille measure max-
imization under perspective, instead of
orthographic, projection; then it would
predict that all image plane figures which
are perspective projections of squares will
be seen as squares. But this falls subject
to the same criticism we suggest for
Barnard’s approach in the next section—
that is, it would violate constraints Cl

and C5.

3.3. Barnard

Barnard [2]| suggests that angles in
an image plane quadrilateral be inter-
preted as right angles whenever possible,
and shows a way to obtain this interpre-
tation under perspective projection. The
problem of this approach, roughly, is that
it works too well; his Figure 12a (repro-
duced here as Figure 7) is one that sub-
jects find difficult to see as a slanted
plane figure, whereas Barnard’s method
flawlessly extracts the projectively dic-
tated interpretation of it as a slanted rec-
tangle. The mathematics is impressive,
but as a candidate psychological theory it
violates both constraints C1 and C5.

Figure 7

A perspective projection of a rectangle, from Bar-
nard [2:



4. A proposed detector model

If the points made in the previous
sections are correct, no single, simple
Pragnanzlike account of goodness of
interpretation of polygonal stimuli sug-
gested in the literature can account for
even a very modest range of results from
psychological experiment. Some reasons
why this might be so are discussed in the
final section of the paper. In this section,
a system of detectors is described which
would exhibit performance consistent
with constraints C1 - C5.

Note that C1 - C5 can reasonably
claim to all be satisfied by a theory which
at least qualitatively predicts the
difficulty distribution (graphed in Figure
2) for the stimulus sequence of Figure 1,
since this sequence contains both
isosceles-trapezoidal (Figure 1.a) and
(approximately) skew symmetric (Figure
1.g) stimuli,2 as long as it is able to
independently meet C3. This suggests a
detector architecture in which at least
some skewed symmetry and perspective
gradients — the depth cues which seem to
be presented by nonrectangular parallelo-
grams and isosceles trapezoids, respec-
tively — are detected independently and
combined to yield a judgment of slant.
Palmer [15] has argued that a wide range
of phenomena in the psychology of human
vision can be accounted for by appeal to a
processing model which detects sym-
metries over members of the Euclidean
similarity group exhibited in the stimulus
array, certain relations among these sym-
metries, certain further relations among
these relations, and so on. The model
sketched here can be seen as an extension
of Palmer's Euclidean symmetry detec-
tion model to incorporate higher-order
detectors for some skewed symmetries
and perspective gradients.?

2 Figure 1.g is even closer to a true
skew-symmetrical retinal stimulus than it
may appear in the reproduction, since with
the center of the lens at the focal point on
the image plane 2-axis and the figure foveat-
ed, the retina is slanted with respect to the
image plane by about 45 degrees.

3 Compare Clark, et al.'s |7] “retinal gra-
dient of outline''.

The present model supposes three
layers of detectors. The lowest level is an
array of first-order analyzers (in the sense
of Palmer [15]), whose patterns of sensi-
tivity to features of retinal stimulation
can be related to one another by transfor-
mations from the Euclidean similarity
group. For example, each can be taken as
detecting, for some location of interest on
the retina, the presence of line segments
of a certain restricted range of lengths
and orientations. (Obviously, such
analyzers are interrelatable by transla-
tion, rotation, and dilation transforma-
tions.)

A
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Figure 8

A translational symmetry detector element (TDE).

The second level consists of arrays
of two kinds of detector elements, each of
which is constructed by simple intercon-
nections between two first-order
analyzers. A translational symmetry
detector element (TDE) is shown in Fig-
ure 8. Such a detector is parameterized
by the retina-relative location of its
center (represented by the open circle),
the length and orientation (A and B,
respectively) of its constituent first-order
analyzers (with receptive fields
represented by the ellipses), and its own
width and orientation (w and a, respec-
tively). A reflectional symmetry detector
element (RDE), shown in Figure 9, is
defined by the same set of parameters as
a TDE, but its constituent first-order
analyzers are related to each other
differently: viz. by a reflection about a
line through its center and perpendicular
to its orientation, instead of a translation.

At the third level, TDE’s and RDE'’s
are connected to construct skewed sym-
metry and perspective gradient detectors
— SSD’s and PGD’s, respectively. A
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Figure 9

A reflectional symmetry detector element (RDE).

constant-width SSD is shown in Figure
10. Its constituent TDE’s differ from
each other only by a translation parallel
to the favored direction of their consti-
tuent first-order analyzers. A bilaterally
symmetric PGD, as depicted in Figure 11,
is composed of RDE’s which differ only by
a composition of an appropriately related
translation and dilation.

Figure 10

A constant-width skewed symmetry detector (SSD)

A detector d has associated with it a
level of activation A(d) which depends on
the activations of its constituent detec-
tors (or, in the case of first-order
analyzers, directly on patterns of sensory
stimulation). Let the activation of a TDE
or RDE d be a suitable nonlinear function
of the activation of its associated first-
order analyzers [,, /s

A(f,)+A(fs)  if A(f,)>8 and A(f,)>6
A(d) = {0 if A(f,)<0 and A(f,)<®
- lo\(f J-A(f;)| otherwise,

where 6 is a suitable threshold value.
(What’s important is that evidence for,
evidence against, and the absence of evi-
dence for or against the existence of a
symmetry each be encodable in a second-
level detector’s activity.) Let the activa-
tion of a SSD or PGD be a monotonic
function (say, the sum) of activations of
its constituent detector elements.

Flgure 11

A bilaterally symmetric perspective gradient detec-
tor (PGD).

Now the patterns of activations of
SSD’s and PGD’s can give rise to orienta-
tion judgments consistent with con-



straints C1 - C5 as follows. Suppose the
SSD or PGD with the highest activation
level, if it exceeds some threshold, is
taken as encoding the viewed figure's
most likely orientation in depth. The tilt
direction suggested by that detector is
then just r in Figures 10 or 11: the bisec-
tor of the angle between the SSD's axis
and the favored direction of its consti-
tuent TDE’s first order analyzers, or the
axis of the PGD. Slant is a not such a
simple function of detector parameters;
though it is, under reasonable assump-
tions, monotonic increasing from zero as
B in the Figures moves away from 90
degrees for both kinds of detectors. (This
is suggestive of Stevens’ [17] findings indi-
cating that tilt judgments are more accu-
rate than slant judgments.) This gives
the desired results: C1 is explained, since
slant is only imprecisely correlated with
detector activation; C2 and C4 are
satisfied, since PGD’s and SSD’s are suit-
ably activated by isosceles trapezoids and
nonrectangular parallelograms in the reti-
nal image, respectively; C3 is met, since
the most active detectors under stimula-
tion by frontal plane rectangles will be a
SSD or PGD with B = 90 degrees; and,
since for projections intermediate between
the shapes favored by the two types of
detectors there may be no detector very
activated, C5 is accounted for.

5. Discussion

We have extracted from the reports
of psychological experiments five uncontr-
oversial facts about human performance
in the perception of simple polygons
slanted in depth, and argued that no
current theory of orientation [rom con-
tour is consistent with all of them. We
have proposed a detector model which
would exhibit performance consistent
with the constraints.

The model, however, is not a com-
putational theory; it is a process model
4 Of course, the detectors need to be
thickly distributed enough to respond to
stimulus figures at various image locations,
orientations, and scales.

which in fact depends for its intelligibility
on computational theory (without
Kanade's theorems about skewed sym-
metry and facts about perspective projec-
tion, the correlation between B in Figures
10 and 11 and detected slant would be
unexplained). It succeeds where the
reported theories fail simply because it
embodies an interaction between distinct
kinds of evidence for orientation in depth.
But this success says something about
vision: the generation of orientation judg-
ments of simple figures is not simple. The
computational theories discussed in this
paper are, individually, inadequate; but
also the elementary two-factor model pro-
posed here is grossly inadequate as a gen-
eral account of vision, or even as an
account of the monocular perception of
simple plane figures. It fails on nonqua-
drilateral polygons and ellipses; it says
nothing about orientation effects (rectan-
gles, for example, present somewhat
better depth illusions when their sides are
not aligned with environmental horizontal
and vertical); it’s silent about how com-
plexes of polygons might be perceived as
three dimensional solids, and even about
how an isolated polygon can be seen at
different orientations in depth at different
times. But it’s unlikely that all the
phenomena of monocular vision are going
to be subsumed by a single computational
principle. What’s needed is a theory of
what underlies each of them, and a theory
of their interaction.
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