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Oxidative phosphorylation, the primary source of cellular energy
in eukaryotes, requires gene products encoded in both the nuclear
and mitochondrial genomes. As a result, functional integration
between the genomes is essential for efficient ATP generation.
Although within populations this integration is presumably main-
tained by coevolution, the importance of mitonuclear coevolution
in key biological processes such as speciation and mitochondrial
disease has been questioned. In this study, we crossed populations
of the intertidal copepod Tigriopus californicus to disrupt puta-
tively coevolved mitonuclear genotypes in reciprocal F2 hybrids.
We utilized interindividual variation in developmental rate among
these hybrids as a proxy for fitness to assess the strength of se-
lection imposed on the nuclear genome by alternate mitochondrial
genotypes. Developmental rate varied among hybrid individuals,
and in vitro ATP synthesis rates of mitochondria isolated from
high-fitness hybrids were approximately two-fold greater than
those of mitochondria isolated from low-fitness individuals. We
then used Pool-seq to compare nuclear allele frequencies for high-
or low-fitness hybrids. Significant biases for maternal alleles were
detected on 5 (of 12) chromosomes in high-fitness individuals of
both reciprocal crosses, whereas maternal biases were largely ab-
sent in low-fitness individuals. Therefore, the most fit hybrids
were those with nuclear alleles that matched their mitochondrial
genotype on these chromosomes, suggesting that mitonuclear ef-
fects underlie individual-level variation in developmental rate and
that intergenomic compatibility is critical for high fitness. We con-
clude that mitonuclear interactions can have profound impacts on
both physiological performance and the evolutionary trajectory of
the nuclear genome.

copepod | mitonuclear | coevolution | intergenomic | incompatibilities

Oxidative phosphorylation in the mitochondria is central to
the functioning of essentially all eukaryotic cells and thus is

critical for the majority of complex life (1–4). Over evolutionary
time most mitochondrial genes have translocated to the nucleus,
but a small number that are necessary for ATP generation are
still encoded within metazoan mitochondria: typically 13 protein-
coding, 2 ribosomal RNA, and 22 transferQ:12 RNA (tRNA) genes
in bilaterian animals (5). These genes require functional inter-
actions with nuclear-encoded proteins, and thus mitochondrial
performance relies upon integration between the nuclear and
mitochondrial genomes (1–3). Consequently, there is predicted
to be strong selection for mitonuclear compatibility between
interacting genes (i.e., coevolution) in isolated populations and
species (6, 7).
If strong selection leads to coevolved mitonuclear interactions

within populations, then one would predict that these interactions
might be disrupted by hybridization when isolated populations
experience secondary contact (8). Indeed, mismatches between
mitochondrial-encoded and nuclear-encoded alleles in hybrids can
have profound negative phenotypic consequences across many
traits (8), and this “hybrid breakdown” has been demonstrated
across many eukaryotic taxa, ranging from diseases in humans (9)
to life-history effects in invertebrates (10–12). These mitonuclear
examples of Bateson–Dobzhansky–Muller incompatibilities (13–15)
may have important implications for key biological processes,

including development of postzygotic isolation between species
(16–18) and potential health consequences of mitochondrial
replacement therapies in humans (19). However, the ubiquity
and relevance of these implications have been questioned (7, 20).
Therefore, determining the extent to which mitonuclear interac-
tions influence evolution of the nuclear genome and the degree to
which intergenomic incompatibilities result in negative fitness
consequences is critical for understanding the role of mitochon-
drial DNA in shaping the physiological performance and evolution
of eukaryotes.
In the current study, we address these issues with interpopu-

lation hybrids of San Diego, California (SD) and Santa Cruz,
California (SC) Tigriopus californicus. This species of copepod is
found in supralittoral tidepools along the west coast of North
America from Baja California, Mexico, to Alaska, United States,
with extremely low gene flow between isolated populations on
different rocky outcrops (21). This isolation has led to high levels
of genetic divergence among populations (21–26), and F2 hybrids
from this interpopulation laboratory cross typically display a
breakdown of mitochondrial ATP synthesis and several fitness-
related life-history traits, including fecundity and developmental
rate (10, 11, 27–29). The loss of performance in hybrids is re-
covered by backcrosses to the maternal, but not the paternal,
parental population (11, 30), which, since mitochondrial DNA is
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maternally inherited (8), clearly implicates a role for mitonuclear
interactions in hybrid breakdown in this species.
Here, we reasoned that, if there is strong selection for

mitonuclear compatibility throughout ontogeny (6), then there
should be clear physiological and genetic associations with vari-
ation in fitness-related traits among F2 hybrids. Specifically, we
hypothesized that high-fitness hybrids have improved mitochon-
drial performance compared to low-fitness hybrids and that this
improved performance is associated with biases for maternal
nuclear alleles that match the mitochondrial genotype in both
SD\×SC_ and SC\×SD_ high-fitness hybrids (i.e., biases for
different parental alleles in each cross). We utilized interindi-
vidual differences in developmental rate and ATP synthesis rate
among hybrids in combination with Pool-seq to test these hy-
potheses and to assess the potential strength of selection for
compatible mitochondrial and nuclear genomes in eukaryotes.

Results
Developmental rates were similar in both parental populations
of T. californicus with metamorphosis to the copepodid I stage
occurring 8 to 22 days post hatch (dph) for ∼98% of nauplii
(maximum dph of 29 and 24 for SD and SC, respectively; Fig.
1A). In contrast, the distributions of developmental times among
F2 hybrids from both reciprocal crosses demonstrated substantial
shifts toward more dph to metamorphosisQ:13 compared to the pa-
rental populations, which is consistent with hybrid breakdown
(Fig. 1B). In both crosses, metamorphosis was observed 8 to 30 dph
with 8 of 473 SD\×SC_ nauplii and 245 of 1,242 SC\×SD_
nauplii still present on day 30, which were scored as >30 dph.
Preliminary data for pure SD and SC nauplii suggest that the
majority of offspring underwent metamorphosis 9 to 16 dph, and
as a result F2 hybrids were split into 8 to 10, 11 to 13 and ≥17 dph
groups to assess maximal mitochondrial ATP synthesis rates.
Complex I-fueled ATP synthesis rates were significantly affected
by both cross (F1,30 = 11.32; P = 2.1 × 10−3) and developmental
group (F2,30 = 13.44; P = 6.8 × 10−5) with no interaction between
factors (F2,30 = 0.44; P = 0.65), and post hoc tests indicated that
faster developing (8 to 10 dph) copepods had higher ATP syn-
thesis rates than more slowly developing (≥17 dph) copepods in
both crosses (P ≤ 0.04; Fig. 2). ATP synthesis rates in copepods
with intermediate developmental rates (11 to 13 dph) were
similar to those of faster developing hybrids in the SC\×SD_
cross (P = 0.99) and intermediate between faster and slower
developing hybrids in the SD\×SC_ cross (P ≥ 0.13; Fig. 2).
F2 hybrids from a second set of reciprocal crosses were divided

into those that metamorphosed 8 to 12 or >22 dph (fast or slow
developers, respectively), and Pool-seq was used to test if nuclear
allele frequencies responded to differences in mitochondrial
genotype between the crosses (i.e., SD versus SC). Comparisons
between reciprocal fast-developing hybrids demonstrated signif-
icant differences in nuclear allele frequencies across large re-
gions of chromosomes 1 to 5 (Fig. 3 and Dataset S1), and these
deviations were consistent with substantial biases favoring mater-
nal (i.e., coevolved) alleles in both crosses. In contrast, significant
allele frequency deviations between the crosses were essentially
absent in slow developers with few differences in individual single-
nucleotide polymorphisms (SNPs) (Fig. 4). Tests based on indi-
vidual SNPs have relatively low power to detect allele frequency
variations in F2 hybrids. Thus, we performed an additional ex-
ploratory analysis using Kolmogorov–Smirnov (KS) tests, which
have greater statistical power but increase the possibility of false
positives (see SI Appendix for details). In fast developers, these
tests confirmed excesses of coevolved alleles on chromosomes 1 to
5 (P ≤ 5.8 × 10−4), but also found biases for paternal (i.e., mis-
matched) alleles on chromosomes 6 and 9 (P = 1.6 × 10−4 for
both), and in slow developers, mismatched alleles were in excess
on chromosomes 1, 3, 4, and 7 (P ≤ 7.4 × 10−4).

As a secondary examination of potential mitonuclear effects
on F2 hybrid allele frequencies and fitness, we compared fast and
slow developers within each reciprocal cross. When SNPs were
tested independently, there was limited support for variation
between fast and slow developers, most likely due to relatively
small differences between these pools (SI Appendix, Fig. S1). In
general, the results of exploratory analyses with KS tests between
fast and slow developers suggest similar patterns of variation as
the intercross comparisons between fast developers (SI Appen-
dix, Fig. S1). Fast developers had higher coevolved allele fre-
quencies than slow developers on chromosomes 1, 3, 4, and 5 in
SD\×SC_ hybrids and on chromosomes 1, 2, 3, 4, 5, 7, and 8 in
SC\×SD_ hybrids. Only one chromosome demonstrated the
opposite pattern with elevated mismatched allele frequencies in
fast developers compared to slow developers on chromosome 11
in the SC\×SD_ cross. Taken together, our results suggest that
mitonuclear interactions are major genetic factors contributing
to interindividual variation in developmental rate among F2 hy-
brids and that in the majority of cases at least partial maintenance
of coevolved mitonuclear genotypes is critical for enhanced per-
formance in this fitness-related trait.

Discussion
Mitochondrial DNA contains relatively few genes, but because of
the functional products encoded by these genes and their inter-
actions with nuclear gene products, differences in mitochondrial
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Fig. 1. Developmental time to metamorphosis for T. californicus nauplii as
proportions of all individuals. (A) SD (red; n = 963) and SC (blue; n = 1,071).
(B) SD\×SC_ (pink; n = 473) and SC\×SD_ (light blue; n = 1,242) F2 hybrids.
The pink and light blue numbers in B display the number of nauplii remaining
at 30 dph for each cross.
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genotype have been predicted to exert strong selection pressures
on the nuclear genome throughout ontogeny (6). Our study
demonstrates variations in developmental rate, ATP synthesis
rate, and nuclear allele frequencies among F2 hybrids that are
consistent with strong selection favoring compatible mitonuclear
interactions within even a single generation. Mitochondrial ge-
notype had an overall effect on variation in ATP synthesis rate
between the reciprocal crosses, but in both crosses fast developers
had higher synthesis rates than slow developers. In the high-fitness
(i.e., fast-developing) hybrids, there were also substantial devia-
tions from expected neutral nuclear allele frequencies of 0.5 that
favored alleles from the same population as the mitochondrial
genome. Effects of mitonuclear coevolution were not evenly
spread across the nuclear genome, but involved at least 5 of the 12
chromosomes with clear deviations favoring coevolved alleles on
chromosomes 1 to 5. Relative to previous studies in T. californicus
hybrids (31–33), this clear pattern toward partial recovery of
coevolved mitonuclear genotypes is most likely a consequence of
selecting individuals based on variation in a fitness-related trait
that has been correlated with mitochondrial performance in this
species (30).
Although the average chromosome-wide allele frequency de-

viations favoring coevolved nuclear alleles in the current study
may appear modest (ranging from 0.032 to 0.120 with some
chromosomal regions reaching ∼0.147; Fig. 3), the magnitudes of
these deviations need to be interpreted relative to general ex-
pectations for F2 hybrids. In T. calfornicus, there is little evidence
for selection against heterozygous F2 hybrids (31, 33), and F1
hybrids between SD and SC (heterozygous across all fixed SNPs)
generally show enhanced fitness compared to parentals (11).
Therefore, it is likely that the major allele frequency deviations
in our study are consequences of negative effects associated with
one of the two possible homozygous genotypes. As a result, given
Mendelian segregation ratios of 1:2:1 in F2 hybrids, the most
extreme biases for maternal alleles observed here are likely in-
dicative of up to 77 to 91% deficits of homozygous paternal
genotypes in fast developers on some regions of these chromo-
somes. These calculations exclude any error associated with the
allele frequencies estimated for our DNA pools; however, even if
these deficits represent moderate overestimates, they are suffi-
ciently large that our data clearly demonstrate strong selection
favoring mitonuclear compatibility. Additionally, we observed little
evidence for allele frequency variation consistent with nuclear-only

effects. If these potential effects are examined as in Lima et al.
(32), only frequency variations on chromosome 8 in fast devel-
opers and on chromosome 11 in slow developers may be indicative
of modest effects of nuclear genetic variation alone. Yet, devia-
tions favoring coevolved alleles in fast developers were rarely
symmetrical between the reciprocal crosses. This may simply re-
flect sampling or technical variation associated with our experi-
ment, and the effects of mitonuclear incompatibilities are not
necessarily of equal magnitudes in reciprocal crosses (6). An al-
ternative possibility is that relatively weak nuclear-only effects on
chromosomes 1 to 5 also shape allele frequency variation in our
study. Regardless, our results support a key role for mitonuclear
incompatibilities in loss of fitness in these hybrids.
Previous studies have demonstrated at least three candidate

mechanisms involved in coevolution in T. californicus: electron
transport system complex activities (11, 34–37), mitochondrial
transcription (38), and mitonuclear ribosomal interactions (39).
Yet, these candidate gene studies do not directly reveal the
number or relative importance of mitonuclear incompatibilities
contributing to hybrid breakdown in this species. In comparison,
our Pool-seq approach provides an unbiased examination of the
genomic architecture of breakdown of developmental rate in hy-
brids between SD and SC. The increased frequencies of maternal
alleles across multiple genomic regions in our most fit hybrids
clearly indicate a polygenic basis for mitonuclear coevolution,
which may be attributable to the high level of divergence between
the mitochondrial genomes of these populations (21.7%) (22).
However, due to the central role of the mitochondrion in metab-
olism, even minor disruption of mitonuclear interactions may have
major fitness effects (6, 8). For example, mutations in a single
nuclear-encoded mitochondrial tRNA synthetase and one mito-
chondrial tRNA lead to mitochondrial dysfunction in Drosophila
hybrids (12). The allele frequency variation in our slowly de-
veloping hybrids is likely consistent with large effects of relatively
few interactions in T. californicus as well. Despite an approximately
two-fold reduction in both developmental rate and ATP synthesis
rate (Figs. 1 and 2), strong deviations favoring paternal alleles in
slow developers were largely absent in our study (with the ex-
ception of chromosome 4 in SD\×SC_; Fig. 4). Therefore, our
data indicate that mismatched genotypes across most sites of
mitonuclear interactions on chromosomes 1 to 5 are not necessary
to observe these substantial negative fitness effects. Instead, it is
likely that different subsets of these potential mismatches among
F2 hybrids are sufficient to cause similar decreases in develop-
mental rate. This is in stark contrast to the situation in high-fitness
hybrids in which large biases favoring maternal alleles were ob-
served across chromosomes 1 to 5, suggesting that highly com-
patible mitonuclear genotypes are necessary for high fitness.
Of the 1,000 to 1,500 nuclear-encoded mitochondrial (N-mt)

genes (nuclear genes encoding products that are imported into
the mitochondria) in metazoans, at least 180 are expected to
have intimate functional interactions with either mitochondrial
DNA or mitochondrial-encoded gene products (NO-mt genes)
(40). Barreto et al. (22) identified 599 putative N-mt genes, in-
cluding 139 NO-mt genes, in the T. californicus genome (Fig. 3C).
Although our data begin to resolve which of these candidates
may play the largest roles in intergenomic coevolution, there was
little resolution of allele frequency deviations beyond the level of
chromosomes in our hybrids. This is likely a consequence of only
a single opportunity for interpopulation recombination in F2
hybrids (41) or the involvement of multiple loci on the same
chromosome (42). Although N-mt genes were not more common
on the chromosomes with biases for coevolved alleles than on
other chromosomes in our study, chromosomes demonstrating
allelic biases tended to have relatively higher ratios of NO-mt
genes to other N-mt genes (SI Appendix, Fig. S2), which is consis-
tent with a disproportionate role for NO-mt genes in mitonuclear
interactions.
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Taken together, our data demonstrate strong selection against
disruption of coevolved genes following hybridization and, con-
versely, strong selection for intergenomic compatibility within
populations and species. These effects of mitonuclear interac-
tions were sufficiently strong in T. californicus that selection for
rapid development within a single generation identified key sites
of mitonuclear interactions across the genome. Mitonuclear co-
evolution in this species may be exceptionally strong (27), but
our results also suggest that even small numbers of mitonuclear
incompatibilities may result in substantial losses of fitness. Thus,
the findings of the current study demonstrate the possibility of
large effects of intergenomic incompatibilities in eukaryotes and
suggest that these incompatibilities have the potential to contrib-
ute to reproductive isolation between populations across many
taxa (16–18).

Materials and Methods
Adult copepods were collected from intertidal splash pools near San Diego,
California (SD: 32° 45′ N, 117° 15′ W) and Santa Cruz, California (SC: 36° 56′ N,
122° 02′ W) and were split into 200-mL laboratory cultures in glass beakers

containing filtered seawater at 20 °C, 36 ppt Q:14, and 12 h light:12 h dark ; 15. Cul-
turing procedures generally followed the methods of Tsuboko-Ishii and Burton
(43), but virgin females of each population were obtained by separating pre-
copulatory breeding pairs (44, 45). Separated males and females were used to
make reciprocal interpopulation crosses: 40 matings for ATP synthesis assays
and 120 matings for Pool-seq for each reciprocal. Mature (red) egg sacs were
dissected from gravid parental and F1 females, and developmental time to
metamorphosis in offspring (i.e., from hatching to copepodid stage I) was
scored individually (as in ref. 46).

For ATP synthesis assays, F2 hybrids from each reciprocal cross were di-
vided into those that metamorphosed 8 to 10, 11 to 13, and ≥17 dph and
were allowed to reach adulthood. Assays for six pools of six adults were
conducted for each group following the protocols of Harada et al. (46), and
variation in synthesis rates among groups was assessed by two-way ANOVA
with cross and developmental group as factors followed by Tukey post hoc
tests in R v3.4.0 (The R Foundation, Vienna; α = 0.05). For Pool-seq, F2 hybrids
from each reciprocal cross were grouped into those that metamorphosed 8
to 12 dph (“fast developers”) or >22 dph (“slow developers”). A total of 180
adults were pooled for each group, and genomic DNA was isolated by
phenol-chloroform extraction (47). Whole-genome 150-bp paired-end se-
quencing was performed at Novogene (Sacramento, CA) on a NovaSEq. 6000
(Illumina, San Diego, CA). Sequencing reads were trimmed and filtered as in
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Lima et al. (32) and mapped to the SD T. californicus reference genome v2.1
and an updated reference genome for the SC population (22) with BWA
MEM v0.7.12 (48). Allele frequencies at fixed SNPs between the parental
populations were determined with PoPoolation2 (49) as described elsewhere
(32, 41). As large blocks of parental chromosomes are inherited together in
F2 hybrids due to only one generation of interpopulation recombination
(41), allele frequencies for 1,910,010 SNPs with ≥50× coverage were then
averaged for 250-kb windows along each chromosome (759 windows total).
Frequency differences between pools were assessed by calculation of
Z-statistics as in Huang et al. (50) for individual SNPs with ≥80× coverage
(42,502 SNPs; α = 0.01). As these tests have low power to detect small allele
frequency deviations, such as those expected in most cases in F2 hybrids
(32, 41), we also performed additional exploratory analyses at the chromosomal-
level using KS tests similar to previously published approaches (32, 41). The
numbers of SNPs, windows, SNPs per window (μ ± σ), coverages, summary

allele frequencies, and KS test P values for each chromosome are presented
in SI Appendix, Tables S1 and S2. Additional details for all methods used in
the current study are also provided in SI Appendix, Supplemental Methods.

Data Availability. The raw sequencing Q:16reads and associated sample metadata
generated in this report have been deposited in the National Center for
Biotechnology Information Sequence Read Archive and BioProject databases,
and all other datasets have been deposited in the European Bioinformatics
Institute Biostudy Q:17.
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