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NETWORKS MODELING THE INVOLVEMENT OF THE FRONTAL LOBES IN
LEARNING AND PERFORMANCE OF FLEXIBLE MOVEMENT SEQUENCES

Raju S. Bapi and Daniel S. Levine
Department of Mathematics
University of Texas at Arlington
Arlington, TX 76019-9408

Abstract

Networks that model the planning and execution of goal-
directed sequences of movements are described, including
the involvement of both the prefrontal cortex and the
corpus striatum. These networks model behavioral data
indicating that frontal damage does not disrupt the
learning and performance of an invariant sequence of
movements. If the order of performance of the movements is
allowed to vary, however, frontal damage markedly reduces
ability to perform the sequence.

I: Introduction

The frontal 1lobes have been implicated in forming
strategies for goal-directed behavior (see Nauta, 1971;
Fuster, 1980; and Stuss and Benson, 1986 for summaries).
This general function seems to involve co-ordination of
subsystems that integrate motivational and cognitive
information (e. g. Milner, 1964; Pribram, 1961) with
other subsystems that 1link past events or actions across
time (Pinto-Hamuy and Linck, 1965; Fuster, 1980, 1985) and
anticipate future events or actions (Ingvar, 1985; Gevins
et al, 1987).

The motivational-cognitive linkages have previously
been simulated in neural networks by Leven and Levine
(1987) and Levine and Prueitt (1989). The network
architectures used 1in those simulations were based on
principles such as adaptive resonance (Carpenter and
Grossberg, 1987) and opponent processing (Grossberg, 1972).
In this article, we 1look at networks that model data of
Pinto-Hamuy and Linck (1965) on the performance of movement
sequences by frontally damaged monkeys.

The function of learning goal-directed sequences
involves classification of spatiotemporal patterns. Hence,
based on an idea of Dawes (1989), we combine the adaptive
resonance architecture, which classifies spatial patterns,
with the avalanche architecture (Grossberg, 1978) which
generates sequences. The simple spatiotemporal processing
areas would seem not to be located at the prefrontal
cortex, but possibly in the corpus striatum. The frontal
cortex, we believe, exerts higher-order controls over the
functions of this sequence-classifying region. Some of
these controls enable formation of complex rules for
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sequence classification (see Dehaene and Changeux, 1989,
for another model of this process). Others cause biases in
the competition between sequence representations, favoring
longer over shorter sequences to facilitate attention to a
motor plan. Possible architectures for such higher-order
controls will be described in Section III.

II: Experimental Data

Some effects of frontal 1lesions on performance of
sequential tasks were studied by Pinto-Hamuy and Linck
(1965) in immature macaque monkeys. Postoperative
retention was assessed in two types of test: one, in which
the subjects were to respond in such a way that they had to
push all of several cued panels without repetitions but in
any order (internally ordered or flexible sequence test),
and another, in which they had to respond in an exact order
by pushing a series of panels based on given cues
(externally ordered or invariant sequence test). The
hypothesis was that frontally damaged subjects would have
difficulty retaining or relearning flexible sequences, as
i o would call for interaction between an internal
representation of a sequence and a flexible recall based on
previous action performed so as to avoid repetitions. In
the case of invariant sequences, on the other hand, the
frontals would not have difficulty, as there are sensory
cues (lighted panels) available for guiding motor actions).

The experimental results for one subject are
illustrated in Figure 1, which shows the percentage of
correct responses for one each of the externally and
internally ordered sequences both pre- and post-
operatively. The subjects were to respond in the
internally ordered test situation, for example, if an "O"
and a green circle are lighted, by pressing them in either
order. In the externally ordered situation, for example,
the subjects were to respond by pressing a green circle and
a red circle, lighted on a panel, exactly in that order.

Another experiment, by Poppen et al (1965), explored
the effects of frontal lesions on sampling and search 1in
human patients, wherein the subjects were to modify their
strategies for winning candy, working through a sequence of

twenty programs. In each program, only one of the
geometric figures displayed randomly on a four-by-four
panel set-up 1s rewarding. These patients had similar

difficulties to the frontally lesioned monkeys 1in
maintaining the strategy required to complete the task to
criterion. Involvement of the frontal lobes in
coordination of movement sequences 1is also supported by
single cell data on the contingent negative variation or
expectancy wave (see Fuster, 1985 for discussion). Though
this work does not directly suggest neural architectures
modeling the capacity for spatiotemporal pattern
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processing, it give some evidence of where possible timing
controls lie. s
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Figure 1

In the next section, we describe possible neural
networks that can capture these various events and ways of
integrating them. In particular, we discuss methods for
qualitatively simulating the results of Pinto-Hamuy and
Linck (1965).

III: Network Architectures

First consider how a specific sequence of movements
might be encoded in a neural network. One possible
mechanism is shown in Figure 2. This architecture was
originally developed by Grossberg (1978) and was based on
his own previous notion of an avalanche. The avalanche is
a network for performance of a ritualistic sequence of
motor acts. The network shown here extends the avalanche
to include sensitivity to external feedback. The nodes
\2 in that figure are motor reprsentations. The v, , are
a&tlve in succession, but external events can altdt’ the
exact timing of their firings, or even interrupt the
sequence altogether. Hence, the goal-directed actions
encoded by the network can be overridden by significant
changes in context. Each v, has corresponding to it a
V. to keep it reverberat}n& in short-term memory as long
aé'aeeded, and a v, (influenced by an arousal source) to
shut off its reva&tBeration. Each Vi o also activates the
next stage v;., of the sequence. !

If the sequential performance network of Figure 1 is
combined with a two-layer network such as ART (Carpenter
and Grossberg, 1987) for coding spatial patterns, the
result can be a network for coding spatiotemporal patterns
(Figure 3). In Figure 3, each of the v, . from Figure 2
becomes a node at the category level F:1 The nodes at Fy
learn categories of activity vectors at £he input level F.°<
During learning, if the input pattern at F, mismatches tlie
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pattern of synaptic weights from to F node A causes
short-term memory reset, leading ta tes%lna of a new

category at Fz‘
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Nigrin (1990) developed another ART-based architecture
for coding spatiotemporal patterns, with particular
application to speech recognition. His network differs
from ours in that it transforms spatiotemporal patterns
into purely spatial patterns before encoding them, whereas
our network includes the time dimension explicitly.

Recall from above the result of Pinto-Hamuy and Linck
(1965) that learning and performance of externally ordered
sequences is not disrupted by prefrontal lesions. Hence,
if the spatiotemporal categorlzatlon network of Figure 3 is
analogous to any real brain locus, it is probably elsewhere
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than the prefrontal cortex. One good candidate location
for such a motor control structure is the corpus striatum,

a part of the basal ganglia. Extensive functional
connections exist between the prefrontal cortex and corpus
striatum (see, e. g., Gerfen, 1989). 1In the network of

Figure 3, such controls could be exerted through the
arousal node. This network hypothesis is in line with the
general theory (Nauta, 1971; Levine and Prueitt, 1989) that
the frontal lobes, through their reciprocal connections
with  the limbic system and hypothalamus, mediate
motivational influences on cognitive and motor functions.

In Leven and Levine (1987) and Levine and Prueitt
(1989), aspects of the frontal damage syndrome, namely,
perseverative behavior and excessive attraction to novelty,
were replicated in neural networks by the reduction of gain
from reinforcement signals. A similar decreased signal
from the arousal node in Figure 3 could make a motor plan
more subject to distraction by interfering events. 1Indeed,
frontal 1lesions often 1lead to distractibility (e. g.
Grueninger and Pribram, 1969; Wilkins et al, 1987).

But this simple diminution of a reinforcement
parameter is far from sufficient to model all effects of
the frontal lobes on behavior. We believe that the frontal
lobes also exert some higher-order controls on the striatal
spatiotemporal categorization field (F,). We shall now
discuss two types of controls o this field.
Speculatively, we suggest that these two controls are
mediated by the two major functional subdivisions of the
prefrontal cortex, the dorsal and orbital regions (cf.
Fuster, 1980).

One type of control 1is a bias in the competition
between nodes at the F., level of Figure 3. This bias is
designed to favor rep%esentations of longer sequences over
representations of shorter ones, so that if a long sequence
of actions is followed by reward, the entire sequence of
actions, not Jjust the set of actions close in time to the
reward, is likely to be positively reinforced.

An architecture for imposing such a bias on the
competition among sequence representations is the masking
field, developed by Cohen and Grossberg (1987) and applied
to speech recognition by Cohen et al (1987). 1In speech,
for example, representations of an entire word (e. g.
MYSELF) tend to dominate representations of parts of that
word which are themselves words (e. g. MY, SELF, or ELF).
An example of a masking field is shown in Figure 4. 1In
this field, F, and F, are as in the adaptive resonance
networks, but F., nbdes are interpreted as coding items in
sequences and F as coding sequences. In Figure 4(a),
connections from . to F grow randomly along positionally
sensitive gradien%s. fhe nodes in the masking field F,
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grow so that larger item groupings, up to some optimal
size, can activate nodes with broader and stronger
inhibitory interactions. In Figure 4(b), interactions
within F include positive feedback from a node to itself
and negative feedback from a node to its neighbors. Long
term memory traces at the ends of F,-to-F pathways
adaptively tune the filter defined by thédse pathways to
amplify the F response to item groupings which have
previously actifated their target F nodes. Tentatively,
we propose that sequences reprgsented at the corpus
striatum have "copies" at the dorsal frontal cortex which
are configured in a masking field.

ADAPTIVE
FILTER

ITEM FIELD F
(a) (b)
Figure 4

The other type of control that the frontal cortex is
likely to exert involves categorization of possible
sequences leading to reinforcement. In the case of the
internally ordered sequences studied by Pinto-Hamuy and
Linck (1965), a mechanism is needed for placing all
possible orderings of a sequence in the same category; for
example, if the panels to press are a green circle, a
letter "O", and a number "4", the sequences GO4, G40, 0G4,
04G, 4GO, and 40G should be categorized together. This
classification must be mediated by the association of all
these orderings with a reward. The role of the frontal
lobes in such higher-order rule generation has been studied
in another model by Dehaene and Changeux (1989).

We suggest that the orbital frontal cortex, through
its connections with limbic reinforcement areas, may exert
controls which allow many different orderings of the same
sequence to be classified together if all orderings are
rewarded. Such controls could be mediated by a selective-
vigilance criterion for matching sequences to prototypes
(see Leven and Levine, 1987, for an example of selective
vigilance in an ART network). In current simulations, we
are teaching the network several different orderings of the
same sequence, then testing it on yet another ordering
which may or may not have been presented.
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IV: Discussion

The frontal lobes are widely recognized as an
important part of a larger control circuit that mediates
context-dependent categorizations of both sensory event
sequences and motor plans. This circuit also includes
parts of the 1limbic system, basal ganglia, and midbrain,
and several monoamine transmitter systems. Foote and
Morrison (1987) summarize experimental results on functions
of these areas. Hestenes (1990) and several other articles
in Levine and Leven (1990) relate these results to possible
neural network models of mental illness. Our work herein
is part of this larger body of modeling research.
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