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Abstract 

Previous research has found that verbs are more likely to adapt 
their meaning to the semantic context provided by a noun than 
the reverse (verb mutability). One possible explanation for this 
effect is that verbs are more polysemous than nouns, allowing 
for more sense-selection. We investigated this possibility by 
testing polysemy as a predictor of semantic adjustment. Our 
results replicated the verb mutability effect. However, we 
found no evidence that polysemy predicts meaning adjustment 
in verbs. Instead, polysemy was found to predict meaning 
adjustment in nouns, while semantic strain was found to predict 
meaning adjustment in verbs (but not nouns). This suggests 
that processes of meaning adjustment may be different for 
nouns vs verbs. 

Keywords: polysemy, mutability, computational linguistics, 
word2vec, semantics 

Introduction 
A remarkable aspect of language is that it is both stable 
enough to reliably convey meaning and flexible enough to 
accommodate unusual or semantically-strained utterances. 
For example, the sentence “The hostess galloped to the door” 
is a bit odd, but we can readily understand it as meaning “The 
hostess moved rapidly and somewhat gracelessly.” While 
overt metaphorical language has been studied extensively, 
there is much less work on how people resolve semantically-
strained utterances of this type, which may be far more 
prevalent than traditional “X-is-a-Y” metaphors.  

Gentner and France (1988) found that, in paraphrases of 
simple intransitive sentences of the form The noun verbed, 
participants tended to adjust verb meaning to a greater extent 
than noun meaning – a phenomenon termed the verb 
mutability effect. Mutability can be defined as the degree to 
which a word’s semantic interpretation differs across 
contexts. The verb mutability effect was found to be strongest 
when the stimulus sentence was semantically strained – that 
is, when the noun was incompatible with the paired verb’s 
expected argument, resulting in a nonliteral sentence. For 
example, one participant paraphrased The lizard worshipped 
as The reptile stared unblinkingly at the sun, largely 

                                                           
1 Our descriptions of sense-selection and online adjustment are 

similar (but not identical) to sense-selection and sense-creation as 
discussed by Gerrig (1989). 

preserving the meaning of the noun lizard while shifting the 
meaning of the verb worshipped dramatically.  

Little research has examined the processes that drive 
mutability – that is, how semantic structures are altered 
during these types of adjustments. In an initial investigation, 
Gentner and France (1988, Experiment 3b) proposed that 
verbs are adjusted in a graduated manner, by altering the 
domain-specific aspects of meaning just as far as is necessary 
to render a meaningful interpretation – a process they called 
minimal subtraction. We refer to accounts like these as online 
adjustment accounts, as they involve the adjustment of 
meaning in situ, constrained by the context provided by the 
noun. 

Another possibility, however, is that mutability is simply a 
matter of selecting an appropriate alternate meaning from a 
word’s extant senses. There is evidence suggesting that verbs 
are more polysemous than nouns across all frequency levels 
(Gentner, 1981).  Thus, higher verb mutability may simply be 
due to there being more available senses to choose from. We 
refer to this account as the sense-selection view.1  

Indeed, Gentner and France did not control for polysemy 
in their original study. We evaluated the polysemy of their 
stimuli by counting the number of synsets (i.e., senses or 
meanings) for each word in WordNet 2.1 (Miller, 1995).2 Our 
analysis found that the verbs from their study were 
significantly more polysemous than the nouns, MV = 4.13, 
SDV = 2.17, MN = 2.25, SDN = 1.39, t(14) = 2.06, p = .03 – 
leaving open the possibility that the greater verb mutability 
they observed was due to the relatively higher polysemy of 
the stimulus verbs.  

Thus, a more precise characterization of the processes 
underlying these types of semantic adjustments is needed – 
specifically, the extent to which sense-selection and/or online 
adjustment drive mutability needs to be better understood.  

To investigate this question, we tested polysemy as a 
predictor of mutability. If polysemy is found to predict 
mutability, it would provide evidence for the sense-selection 
account of meaning adjustment. If no such relationship is 
found, this would instead favor the online adjustment view. 

2 We chose WordNet 2.1 over newer versions due to concerns of 
a proliferation of synsets in later iterations. 
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In addition, we seek to understand whether the processes 
employed vary by word class. 

This study follows the paradigm established by Gentner 
and France. Participants were asked to paraphrase intransitive 
sentences of varying levels of semantic strain. These 
sentences were generated by combining 6 nouns and 6 verbs 
for a total of 36 stimulus sentences (see Figure 1).  

For verbs, two expected a human argument (complain, 
suffer), two expected a dynamic artifact object artifact (i.e., a 
man-made object that functions in some way) as an argument 
(pause, fail), and two expected a static inanimate object as an 
argument (dry, burn). For nouns, two were human (professor, 
queen), two were a dynamic artifact object (motor, bell), and 
two were static inanimate objects (tree, box). Combinations 
in which the noun was incompatible with the verb’s expected 
argument resulted in semantically-strained sentences (e.g., 
The box suffered), while those that were compatible resulted 
in unstrained sentences (e.g., The professor complained). 

Half the nouns and verbs used were highly polysemous (at 
least 10 senses) and half were low in polysemy (1-2 senses; 
see Figure 1). This resulted in both “balanced” combinations, 
where the noun/verb polysemy matched—both high (N+/V+) 
or both low (N-/V-)—and “unbalanced” combinations, where 
the noun/verb polysemy differed greatly (N+/V- or N-/V+). 
Thus, across the 36 stimulus sentences, every possible 
combination of high- and low- polysemy nouns and verbs 
was realized.  

Assessing Meaning Adjustment 
A thorny issue in this research is how to quantify meaning 
adjustment. Gentner and France, using human raters, 
approached this from three different angles. Across these 
techniques, they obtained converging evidence for the verb 
mutability effect; however, each method had drawbacks. 

In their divide and rate method, raters were asked to divide 
each paraphrase into the part that came from the noun (in the 
stimulus sentence) and the part that came from the verb. They 
then rated the similarity of each part to the original word. This 
was problematic for several reasons. It was time-consuming 
and labor-intensive, and judges often had difficulty deciding 
how to properly divide the sentence, resulting in a high 
amount of data loss. Worse, in some cases, some words in the 
paraphrase were clearly affected by both the original verb and 
noun, making division impossible. For example, consider the 
following paraphrase of The motor complained: The badly-
functioning engine let out a strange noise from its exhaust. 
Here, badly-functioning modifies the noun in a context-
specific manner (i.e., a motor can function badly but a rock 
cannot), but it also seems to owe its presence in the 
paraphrase to the original verb complained. The same case 
can be made for the phrase from its exhaust.  

                                                           
3 In the double paraphrase task, a new group of participants 

paraphrased the original paraphrases, and any reoccurrences of the 
original nouns and verbs were scored. There were higher rates of 
reoccurrence for nouns, indicating greater meaning preservation in 
the paraphrase. In the retrace task, a new group of participants were 

Therefore, a way to assess semantic change without 
dividing paraphrases into noun- and verb-originating 
components is necessary. Gentner and France employed two 
such methods: a double paraphrase and retrace task.3 While 
both these methods mirrored the results of the divide-and-rate 
approach in finding verb mutability, they were similarly labor 
intensive.  

In an attempt to address these issues, we used word2vec 
(Mikolov et al., 2013) to assess meaning adjustment. This 
allowed us to quantify semantic change by comparing each 
paraphrase as a whole to the initial noun and initial verb, 
without having to divide the paraphrases into components. 
This provided a hands-off approach that the reduced the time 
and labor costs of using human judges, as well as data-loss 
due to low inter-rater agreement. In addition, we hoped to 
obtain a finer-grained quantification of adjustment than was 
possible with Gentner and France’s methods. 

Against these advantages, however, we must ask whether 
vector-space word embedding models (WEMs) like 
word2vec can adequately capture human similarity 
judgments. We next describe these models and discuss issues 
in using them to assess similarity. 

Vector Space Word Embedding Models 
WEMs take as their foundation the notion that words are 
similar or related to the extent that they appear in similar 
contexts. WEMs are trained on a large corpus and derive a 
vector representation for each word (typically 100 to 300 
dimensions) based on co-occurrence patterns in the corpus. 
Thus, each word’s meaning is represented as a point in an n-
dimensional vector space. The relatedness between any two 
words is calculated by taking the cosine of the angle between 
their two associated vectors, resulting in a score between -1 
and 1. Scores closer to 1 indicate high levels of relatedness, 
and scores closer to 0 indicate low levels of relatedness.  

While promising in some areas, the evidence regarding 
WEMs’ ability to approximate human similarity judgments is 
mixed. Latent Semantic Analysis (LSA; Landauer & Dumais, 
1997) has been shown in a number of studies to match human 
judgments of similarity fairly well in certain contexts 
(Günther et al., 2016; Landauer & Dumais, 1997; Landauer 
et al., 1998). In addition, previous work has used it as a 
measure of semantic change over time (Sagi et al., 2011). 
Other studies, however, suggest that it fails to approximate 
human intuition, both in literal similarity judgments (cf., 
Simmons & Estes, 2006), and in relational similarity tasks 
(Chen et al., 2017) .  That the vectors used in WEMs lack 
explicit relational structure calls into question whether these 
problems are fully surmountable.   

Perhaps the deepest problem lies in the fact that WEMs do 
not provide a pure measure of similarity, as associations can 

given a set of paraphrases, as well as a list of the original eight nouns 
or verbs used, and asked to guess which noun or verb they thought 
had occurred in the stimulus sentence. They showed higher accuracy 
for nouns, indicating greater meaning preservation.  
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also influence their scores. For example, the words cow and 
milk cooccur frequently, resulting in a high cosine similarity 
score, despite the obvious fact that a cow is not at all similar 
to milk.  

Thus, we consider the present research to be in part an 
exploration of WEMs’ efficacy in this domain. Future work 
will involve comparing our word2vec results with human 
judgments. For now, we will provisionally assume that they 
can be used as an approximate assessment of similarity. We 
chose word2vec based on evidence that it outperforms other 
WEMs in approximating human similarity judgments in 
humans (Pereira, et al., 2016).4,5 

Method 

Participants   
112 undergraduates completed the study in person at the lab. 
One participant was excluded for not being a native speaker 
of English, one was excluded for providing nonsensical 
answers to all questions, and two were excluded for failing 
the catch-trial criteria of repeating a noun and/or verb on both 
catch trials, for a net of 108 participants. 

Materials 
6 nouns and 6 verbs were used to generate a total of 36 
intransitive sentences. Half of the nouns and half of the verbs 
used were highly polysemous, and half were low-polysemy. 
Polysemy was evaluated by counting synsets in WordNet 2.1, 
excluding any that referred to actual people, places, or events. 

The shaded cells in Figure 1 indicate the combinations in 
which the noun does not satisfy the verb’s expected 
argument, resulting in a semantically-strained sentence (e.g., 

                                                           
4 We used pretrained vectors available from Google, which were 

trained using the CBOW method on part of the Google News corpus 
(about 100 billion words), available at 
https://code.google.com/archive/p/word2vec/. 

The bell suffered). The unshaded cells indicate those 
combinations where the noun is compatible with the verb’s 
selectional restrictions, resulting in an unstrained sentence 
that is literally interpretable (e.g., The professor complained).  

Procedure 
Participants were university students who completed the 
study on a computer. They saw sentences one at a time and 
were told to paraphrase each sentence without repeating any 
of the original content words. They were asked to aim for a 
plausible interpretation of what the speaker meant, rather than 
a mechanical, word-by-word translation—e.g., to paraphrase 
The slimy senator as something like The corrupt politician 
rather than The gooey politician. 

So that each participant saw each noun and verb exactly 
once, the 36 total stimuli sentences were divided into 6 
different assignment factors of 6 sentences. Each assignment 
factor contained two strained and four unstrained sentences. 
Sentences were presented in randomized order. In addition, 
two catch trials were included. The catch trials were simple 
unstrained sentences designed to test for attention and 
following directions; the criteria for excluding a subject was 
repeating a content word in both of the catch trial paraphrases 
or any obviously nonsensical answers in either.  

Assessing Semantic Adjustment 
For each paraphrase, word2vec was used to obtain two 
similarity scores, representing the amount of semantic 
adjustment the initial noun or verb underwent, respectively. 
The following procedure was used. First, separate normalized 
vectors were derived for each initial noun and verb. Next, a 

5 We have also begun analyzing our results following the method 
outlined by Sagi (in press) for using LSA and other WEMs. 

Figure 1: Stimulus nouns and verbs. Shaded cells indicate combinations that result in strained sentences. Pluses and 
minuses indicate high or low polysemy, respectively. For example, - / + indicates a low-polysemy noun and high-
polysemy verb combination, while + / - indicates a high-polysemy noun and low-polysemy verb combination.  
 

   Human Dynamic Artifact Static Inanimate 

   complain suffer pause fail dry burn 

  # 
senses 

2 11 2 13 2 15 

Human 
professor 1 - / - - / + - / - - / + - / - - / + 

queen 10 + / - + / + + / - + / + + / - + / + 

Dynamic 
Artifact 

motor 2 - / - - / + - / - - / + - / - - / + 

bell 10 + / - + / + + / - + / + + / - + / + 

Static 
Inanimate 

tree 2 - / - - / + - / - - / + - / - - / + 

box 10 + / - + / + + / - + / + + / - + / + 
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vector for each paraphrase was generated by averaging its 
normalized component word vectors.6 Then the similarity of 
each paraphrase to the initial noun and to the initial verb was 
computed by taking the cosine of the angle between the 
vector representing the initial noun/verb and the entire 
paraphrase vector. 

Any words not found in the corpus were skipped (along 
with any stop words like the, a, etc.). If none of the words in 
the paraphrase were present in the word2vec dictionary, a 
null vector was generated. Any paraphrases generating null 
vectors were discarded (this only occurred twice).  

Coding 
Certain types of responses were excluded from analysis. 
First, blatantly noncompliant responses (e.g., paraphrasing 
The box dried as just fruit) were excluded. Second, responses 
that did not constitute a meaningful interpretation of the 
stimulus noun and verb were excluded as well. This included 
responses that described the context suggested by the 
stimulus sentence (e.g., paraphrasing The tree shivered as It 
is cold outside), as well as any mechanical, word-by-word 
paraphrases of strained sentences (e.g., paraphrasing The box 
complained as The object was frustrated). For unstrained 
sentences (which are literally interpretable), a word-by-word 
paraphrase is a meaningful paraphrase (e.g., paraphrasing 
The professor paused as The teacher stopped) and therefore 
were not discarded in these cases.   

Two human coders were used. Each coder was presented 
with the original sentence and its paraphrase and was asked 
to code each paraphrase as described above, resulting in the 
exclusion of 137 paraphrases. Cohen’s κ was run to 

                                                           
6 These sentence vectors can be viewed as representing the 

“average meaning” of all the words they contain (Landauer, et al., 
1998). 

determine interrater reliability. There was moderate 
agreement between the two judges, κ = 0.60, (95% CI, 0.52 
to 0.68), p < .0001.  

Analysis and Results 
The 108 participants generated a total of 648 paraphrases. 
137 paraphrases were discarded after coding, leaving a net of 
511 paraphrases. All analyses were conducted in R (R 
Development Core Team, 2008) using the lmer package 
(Bates, Mächler, et al., 2015). Fixed-effect hypothesis tests 
were conducted using a Satterthwaite approximation for 
degrees of freedom  (Luke, 2017). 

First, in order to test Gentner and France’s initial finding – 
that verbs are more mutable than nouns overall – a difference 
score for each paraphrase was calculated by subtracting verb 
score from noun score. Next, a linear mixed-effect model was 
fit, with the difference score as the dependent measure, the 
intercept (mean) as the fixed effect, and random intercepts for 
subject and item. The mean of the difference scores was 
found to differ significantly from 0, t = 2.99, p = .01, 
indicating that, on average, verbs (M = 0.23, SD = 0.11) 
changed their meaning significantly more overall than nouns 
did (M = 0.28, SD = 0.13; lower similarity scores correspond 
to greater amounts of semantic adjustment). 

Next, to test for effects of semantic strain and polysemy, 
two additional linear mixed models were fit: one for nouns 
and one for verbs. In both models, similarity score was the 
dependent measure, and polysemy (high vs. low), strain 
(strained vs. unstrained), and the interaction term were 
included as fixed effects. Both models were initially fit with 
random slopes and intercepts for subjects and random 

Figure 2. Noun and verb similarity scores. Note that lower scores indicate greater semantic adjustment. 
 

 
 

A. Verb similarity scores 

 

 
 

B. Noun similarity scores 
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intercepts for items. The random effects structure was then 
simplified as far as necessary as described in Bates, Kliegl, et 
al.  (2015). 

For verbs, the effect of semantic strain was significant, β = 
-0.18, SE = .08, F = 4.90, p = .03, with verb meaning being 
adjusted to a greater extent in the strained condition (M = 
0.20, SD = 0.09) than in the unstrained condition (M = 0.24, 
SD = 0.11). There was no significant effect of polysemy, F = 
0.98, p = .33, and the interaction was not significant, F = 0.62, 
p = .43). These results are shown in Figure 2a. 

For nouns, there was no significant effect of semantic 
strain, F = 0.11, p = .74. A significant main effect of 
polysemy was found, β = -0.19, SE = .06, F = 8.95, p = .01, 
with high-polysemy nouns (M = 0.25, SD = 0.15) being 
adjusted to a greater extent than low-polysemy nouns (M = 
0.30, SD = 0.11). The interaction was not significant, F = 
0.60, p = .44. These results are shown in Figure 2b. 

Discussion 
There were three objectives in the present research: (1) to 
replicate Gentner and France’s finding that verbs are more 
mutable than nouns under conditions of semantic strain, 
using new materials and a new method of assessment; (2) to 
better understand the processes that drive semantic 
adjustment; and, (3) to investigate possible noun-verb 
differences in these processes.  

The results regarding objective (1) were as predicted: on 
average, across conditions, participants adjusted verb 
meaning significantly more than noun meaning. In addition, 
verbs (but not nouns) were adjusted to a greater extent in 
strained contexts than in unstrained contexts (see Figure 2a). 
Both these results replicate Gentner and France’s findings 
and provide additional evidence for the verb mutability 
effect: during sentence interpretation, the verb’s default 
meaning is more likely to be adjusted to fit the context 
provided by the noun, rather than the reverse – especially 
under semantic strain.  

More surprising were the results regarding objectives (2) 
and (3). Polysemy significantly predicted meaning 
adjustment in nouns, but not verbs; and semantic strain 
predicted adjustment in verbs, but not nouns.  

This leads to the intriguing conclusion that the processes 
driving semantic adjustment vary by word class. That 
polysemy predicted noun adjustment favors the sense-
selection view. That it did not predict verb adjustment is 
evidence that their increased mutability is not a matter of 
having more senses to choose from; rather, online adjustment 
is taking place. Indeed, a qualitative examination of the 
paraphrases supports this explanation. For example, nouns 
were frequently paraphrased as close synonyms (e.g., tree as 
plant or oak; box as container), while verbs were frequently 
adjusted to express meanings that were outside the word’s 
existing set of senses (e.g., paraphrasing The box complained 
as The container couldn’t hold all of its contents).  

What explains the noun polysemy effect?   
That semantic strain predicted meaning adjustment in verbs 
but not nouns is consistent with our prediction that verbs are 
the locus of change in resolving strained utterances. What is 
more surprising is the effect of polysemy in driving meaning 
adjustment for nouns. Why did participants consistently 
adjust high-polysemy nouns to a greater extent than low-
polysemy ones—even in unstrained contexts, where no 
significant adjustment was necessary? We propose three 
possible explanations. 
 
1. Higher polysemy allows for more creativity.  The first 
possibility is that higher polysemy granted participants more 
freedom of interpretation, allowing them to choose a more 
distant meaning than was available with low-polysemy 
nouns. We believe this to be unlikely. Examining the 
paraphrases suggested that, regardless of polysemy (or 
strain), participants usually attempted to choose a meaning as 
close to the original noun as possible (unlike with verbs, 
whose meaning was often changed dramatically). For 
example, it’s not clear that, in substituting container for box 
(a high-polysemy noun), one has attempted to adjust meaning 
further than when one substitutes oak for tree (a low-
polysemy noun). The similarity scores for each pair, 
however, are 0.12 and 0.80 respectively – a relatively large 
difference.  
 
2. The results reflect a problem with word2vec.  A second 
possibility is that the observed effects of polysemy are simply 
an artifact of word2vec and don’t reflect actual human 
intuitions. In all WEMs, the meaning of a word derives from 
the contexts it appears in. A more polysemous word is likely 
to appear in a wider variety of contexts than a less 
polysemous word, rendering it less similar, on average, to any 
one of those meanings (cf., Beekhuizen et al., 2018). 
 
3. High-polysemy words are less similar to their 
synonyms than low-polysemy words are.  A third 
possibility is that the relationship between higher polysemy 
and lower similarity scores reflects a psychologically real 
pattern: namely, that the more polysemous a word is, the less 
similar it is, on average, to any one of its synonyms. In this 
account, polysemy significantly predicted adjustment in 
nouns because, for a high-polysemy word, any synonym one 
replaces it with will, on average, be less similar to the original 
word than when the same is done for a low-polysemy word, 
despite an equal intention to preserve meaning. That is, the 
subjective similarity between synonyms of a given word is 
lower for high-polysemy words than for low-polysemy 
words. If so, the difference in word2vec scores between box-
container and tree-oak reflects a real psychological 
difference.  

To decide between these latter two possibilities, we 
conducted a preliminary study with human raters. The results 
suggest that our WEM results do match human intuitions. We 
asked raters (N=18) to rate the similarity of eight nouns and 
verbs (drawn from Gentner & France, 1988) to their closest 
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synonyms, as determined by a thesaurus (Lewis, 1978).  Each 
base word was paired with three synonyms as well as one 
antonym as an attention check. Participants rated the 
similarity between each base word/synonym pair on a scale 
of 1 to 10, resulting in 865 target ratings. A linear mixed-
effects model analysis was conducted, with human similarity 
rating as the dependent measure, polysemy of the base word 
as the fixed effect, and random intercepts and slopes for 
subject and random intercepts for item. A significant negative 
correlation between polysemy and similarity rating was 
found, β = -0.20, SE = 0.09, F = 5.63, p = .02.  

Thus, we found evidence in favor of our third explanation: 
on average, the more polysemous a word was, the less similar 
it was considered to be to its synonyms. In this way, the 
human findings paralleled our results with word2vec. If this 
pattern generalizes across other materials, it will be important 
to understand the reasons for this converging result in humans 
and in WEMs.  

Do Noun and Verb Change Mean the Same Thing? 
There are several outstanding issues to acknowledge before 
concluding. First, an important question is whether semantic 
distance means the same thing for nouns as it does for verbs. 
In other words, are the two scales commensurable?  WEMs 
like word2vec are blind to syntactic category and thus employ 
the same method of generating and comparing vectors for 
both nouns and verbs (and all word classes). But whether 
humans judge similarity between nouns on the same 
dimensions that they do for verbs is unclear.  

Similarly, whether polysemy means the same thing for 
nouns and verbs is also uncertain. It is possible that verb 
meanings are extended differently than noun meanings, 
resulting in qualitatively different patterns of relatedness 
among senses. At present, little work has examined this issue.  

Lastly, one might question whether there is a circularity in 
assessing mutability using word2vec. As with polysemy, if 
verbs are more mutable than nouns overall, they likely appear 
in a wider variety of contexts than nouns. Thus, the vectors 
for any two verbs may, on average, be further apart than is 
the case for any two noun vectors.   

These objections are important and demand further 
investigation. At the same time, there are striking qualitative 
differences in the manner of adjustment for nouns versus 
verbs. As noted earlier, nouns are often paraphrased as close 
synonyms, whereas verbs are often extended in quite novel 
ways. This suggests that the verb mutability phenomenon is 
not simply a difference in similarity scales, but reflects a 
qualitative difference in processing.  

Conclusion 
There are three main findings. First, we replicated Gentner 
and France’s (1988) results: verbs changed their meaning 
more than nouns overall, and did so to a greater extent in a 
strained context. Second, we found evidence that both sense 
selection and online adjustment processes drive mutability. 
Third, we found that these processes differ between nouns 

and verbs. Semantic adaptation to context appears to be 
driven by sense-selection for nouns, but by online adjustment 
for verbs. 

We also presented initial evidence that the relationship 
between polysemy and meaning adjustment may reflect a 
property of polysemous words; namely, that higher-
polysemy words are, on average, perceived as less similar to 
their synonyms than low-polysemy words are. 

Our results invite a number of future research directions. 
First, the number of items used in this study is small. We are 
currently testing new word sets. Future work will also involve 
more systematic testing of specific verb classes to examine 
how well the results observed here generalize. Second, we 
plan to compare the WEM results with human judgments of 
similarity. Our ultimate goal is to provide a clearer 
characterization of the processes underlying semantic 
adjustment in nouns and verbs.  

Acknowledgements.  We thank Sid Horton, Eyal Sagi, 
and Phil Wolff for their help and advice.  
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