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ABSTRACT OF THE THESIS

Neuroscience Inspired Algorithms for the Predictive
Maintenance of Manufacturing Systems

By

Arnav Vaibhav Malawade

Master of Science in Computer Engineering

University of California, Irvine, 2021

Professor Mohammad Al Faruque, Chair

If machine failures can be detected preemptively, then maintenance and repairs can be per-

formed more efficiently, reducing production costs. Many machine learning techniques for

performing early failure detection using vibration data have been proposed; however, these

methods are often power and data-hungry, susceptible to noise, and require large amounts of

data preprocessing. Also, training is usually only performed once before inference, so they

do not learn and adapt as the machine ages. Thus, we propose a method of performing

online, real-time anomaly detection for predictive maintenance using Hierarchical Temporal

Memory (HTM). Inspired by the human neocortex, HTMs learn and adapt continuously and

are robust to noise. Using the Numenta Anomaly Benchmark, we empirically demonstrate

that our approach outperforms state-of-the-art algorithms at preemptively detecting real-

world cases of bearing failures and simulated 3D printer failures. Our approach achieves

an average score of 64.71, surpassing state-of-the-art deep-learning (49.38) and statistical

(61.06) methods.
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Chapter 1

Introduction

Predictive Maintenance (PM) is an emerging new paradigm in manufacturing where symp-

toms of machine degradation are detected before failures occur. It is a major part of the

Industry 4.0 and smart manufacturing vision. Using sensor readings, process parameters,

and other operational characteristics, PM can help maximize tool life by reducing the number

of unnecessary repairs performed while also reducing the likelihood of unexpected failures

[3]. In the United States alone, improper maintenance and the resulting outages cost more

than 60 billion dollars per year [4]. Thus, smart data-driven paradigms such as PM have the

potential to reduce industrial production costs significantly.

Recently, many statistical, machine learning (ML), and deep learning (DL) techniques for

PM have been proposed. However, these methods are not without their shortcomings: statis-

tical methods require extensive domain knowledge and often do not generalize well to more

complex use cases, while DL and ML techniques often require large amounts of training data

and are susceptible to increased error as machines age over time. Furthermore, ML and DL

algorithms are highly susceptible to noise, making them insufficiently robust for industrial

settings without data preprocessing. Due to the high noise level and diversity among indus-
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trial systems, PM models that do not require significant preprocessing or domain knowledge

are considered more practical [5].

To overcome these issues, we propose the use of a learning algorithm inspired by neuroscience

called Hierarchical Temporal Memory (HTM), pioneered by Hawkins and Blakeslee [6].

Using binary sparse distributed representations (SDRs) to represent data and an architecture

incorporating feed-forward, lateral, and feedback connections, HTMs emulate the interac-

tions between pyramidal neurons in the neocortex. HTMs are online learning algorithms

that require less application-specific tuning, are robust to noise, and adapt to variations

in the data as they continuously learn. In practice, this means HTMs can efficiently learn

from a single training pass over small training datasets with little to no hyperparameter tun-

ing. These characteristics also enable HTMs to learn in near real-time. For these reasons,

they are suitable for practical applications such as detecting early symptoms of failure in

manufacturing equipment. In this work, we demonstrate the effectiveness of an HTM-based

anomaly detection methodology at detecting these symptoms in roller-element bearings and

3D printers.

1.1 Related Work

We focus on the specific task of PM on roller-element bearings due to their broad application

and utility in manufacturing. We also evaluate Additive Manufacturing (AM) as it is a

modern technique that presents unique challenges due to the dynamics of 3D printers. Here,

we briefly discuss works related to PM for roller bearings and additive manufacturing.

Many PM methods use statistical models due to their simplicity and explainability. These

approaches rely on extracted time and frequency domain features. For example, the energy

entropy mean and root mean squared (RMS) values of wavelets were used to diagnose ball
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bearing faults in [7]. In another example, the spectral kurtosis (SK) of vibration and current

signals was used to detect and classify the surface roughness of ball bearings in [8]. Using a

particle filter method, Zhang et al. performed fault detection on bearings similar to those

found in helicopter oil cooler fans [9].

In addition to statistical methods, ML techniques have been applied to a wide array of

industrial prognosis tasks. One such method: AutoRegressive Integrated Moving Average

(ARIMA), is one of the most popular techniques for time-series forecasting and was used to

predict failures and identify quality defects in a slitting machine in [10]. In another approach,

Tobon-Mejia et al. used Mixture of Gaussians HMMs and Wavelet Packet Decomposition

to estimate the Remaining Useful Life (RUL) of roller-element bearings [11].

DL methods such as Long Short-Term Memory (LSTM) Networks and Convolutional Neural

Networks (CNNs) have also been used extensively for PM. In one example, Feng et al. used

an LSTM for detecting anomalies in industrial control systems [12]. Additionally, an RNN-

LSTM was used to perform PM on an air booster compressor motor used in oil and gas

equipment in [13].

Due to the increased complexity and relatively late adoption of AM systems, PM techniques

for AM have not been studied in great detail. Proposed approaches often draw from research

in related applications, such as PM for bearings. For example, Yoon et al. evaluated the

feasibility of AM equipment fault diagnosis using a piezoelectric strain sensor and an acoustic

sensor. In this work, features such as RMS value, kurtosis, skewness, and crest factor were

used to detect faults [14]. Deep learning has also been used for AM anomaly detection, such

as in [15] where a neural network was used to classify faults in 3D printer vibration data.

Despite the proliferation of statistical, ML, and DL approaches to PM for manufacturing,

to the best of our knowledge, no HTM-based solutions have been proposed. However, the

structural and temporal properties of HTM algorithms allow them to excel at cross-domain
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tasks that apply to manufacturing, such as anomaly detection [16]. Since the core objective

of PM in manufacturing is detecting early symptoms of part failure, HTMs are a natural

candidate for this task. HTMs were shown to match or surpass neural networks at detecting

and classifying foreign materials on a conveyor belt in a cigarette manufacturing plant [17].

HTMs have also proven effective at detecting anomalies in crowd movements [18], traffic

patterns [19], human vital signs [20], electrical grids [21], and computer hardware [22].

1.2 Research Challenges

Overall, PM for manufacturing presents the following key research challenges:

1. Identifying time-series anomalies in near real-time despite ambient noise.

2. Learning efficiently from small training datasets to improve applicability to practical

use cases.

3. Developing a solution that can be generalized to many heterogeneous manufacturing

systems without requiring extensive domain-specific tuning.

4. Adapting to changes in data statistics (i.e., machine aging).

Despite the successes achieved by existing methods in the aforementioned applications, in-

dustrial manufacturing systems are diverse and complex, making it difficult to find solutions

that generalize across applications. Consequently, PM systems require specialization, which

necessitates specialized knowledge and cross-domain skills. This is especially true in the case

of bearing-failure prognosis, as bearing design and lifetime management lies squarely in the

mechanical and materials engineering domains.
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It is difficult for any single technique to address all these research challenges effectively. For

example, statistical methods such as thresholding based on kurtosis or spectral analysis are

highly efficient and real-time capable but require explicitly defined health indicators and

thresholds, which are machine- and application-specific. Also, stationary methods including

RMS, kurtosis, and crest factor are only effective for stationary signals (signals with time-

invariant statistical properties), but bearing vibration signals are generally cyclostationary

(statistical properties vary cyclically) or non-stationary (statistical properties change de-

pending on speed and load conditions)[23]. Spectral kurtosis is applicable to non-stationary

and non-periodic signals but is sensitive to noise and outliers [24].

Classical ML algorithms such as AR Models, Support Vector Machines, Hidden Markov

Models (HMM), Random Forests, and k-Nearest Neighbors have been demonstrated for PM

in existing work, but require the extraction of explicit health indicators (features) from

data [25]. These algorithms also require application-specific hyperparameter tuning, data

preprocessing as they have poor noise robustness [5], and regular updates of model settings

as they do not adapt to account for machine aging [25]. Moreover, both HMM and AR

methods are ineffective on non-stationary signals [23].

In DL algorithms such as neural networks and LSTMs, health indicators can be learned

implicitly by the network. However, a network trained for one machine cannot generalize to

a new machine without retraining with a large amount of data for hundreds or thousands of

epochs. Larger models may be able to generalize better, but the complexity of training and

optimizing these models increases drastically with size [25]. This domain-specific training

and tuning process can be expensive, time-consuming, and impractical for real-world use

cases. Like the ML methods, DL algorithms also have poor noise robustness [26] and require

high-quality data, or else performance can suffer significantly [5]. To address this, significant

preprocessing steps are often needed to generate clean data for these models [5].

As stated in Section 1.1, HTM-based anomaly detection methods have demonstrated success
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in several distinct fields. However, to the best of our knowledge, no prior work has com-

prehensively explored HTM’s ability to model vibration data or demonstrated its practical

value for PM. Overall, all of these existing methods fall short of addressing one or more

research challenges.

1.3 Our Novel Contributions

To address these key research challenges and improve on the PM performance demonstrated

by previous works, our paper presents the following contributions:

1. We demonstrate the ability of HTM-based anomaly detectors to detect early symptoms

of bearing failure in several months’ worth of real-world vibration data. We show that

HTM’s can efficiently learn with only a single training pass.

2. We demonstrate the ability of HTMs to generalize across applications without much

fine-tuning and their ability to continuously learn and adapt by evaluating their anomaly

detection performance on a second, highly dynamic application: 3D printer vibration

data. These characteristics of HTMs make them more practical for real-world use

cases.

3. We compare the performance of HTM anomaly detection methods against state-of-

the-art anomaly detection techniques and traditional machine prognosis methods such

as condition-based maintenance. Specifically, we evaluate each algorithm’s anomaly

detection accuracy and robustness to noise.

4. We demonstrate the efficiency and real-time capability of HTM-based prognosis by

comparing its execution time with that of the other techniques.
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Chapter 2

Background

2.1 Hierarchical Temporal Memory

Context 

(lateral 

connections)

Feedback

Feedforward (Input)

HTM

Neuron

a) Human Brain c) HTM Neuron

Apical

Proximal

Distal

b) Pyramidal Neuron

Neocortex

Limbic System

Reptilian Brain

Figure 2.1: How Neocortical structures are modeled by Hierarchical Temporal Memory. The
neocortex is composed of a large number of interconnected pyramidal neurons, each with
proximal (feed-forward), apical (feedback), and distal (lateral) dendrites to connect to other
neurons. These relations are modeled in HTM neurons as feed-forward, feedback, and lateral
connections.

Hierarchical temporal memory is a sequence learning framework modeled after the structure

of the neocortex in the human brain [6]. The basic unit of HTM is a neuron modeled after

those present in the neocortex (Fig. 2.1(b)). These neurons are stacked on top of one another

to form a column like the ‘cortical column’ of the neocortex. The final HTM is a composition

of many such columns. A single HTM neuron (Fig. 2.1(c)), is connected to two types of seg-
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ments: (i) proximal segments (aggregation of feed-forward connections from the input) and

(ii) distal segments (aggregation of lateral connections from neurons of the other columns).

Each HTM neuron can be in three states: (i) inactive (the default state), (ii) predictive,

and (iii) active. The predictive state of a neuron is determined by the activity of the distal

segments, which in turn is determined by the activation state of the other neurons. A neuron

becomes active at any time only if it was in the predictive state at the previous instant, with

an exception that will be described in Section 3.1. When the sequences of activations are

viewed temporally, it is easy to see that the distal segments provide the temporal context

for activation and thus capture the temporal relations. The column structure augments this

capability of HTM by enabling them to store multiple such overlapping temporal sequences.

Further details on the HTM-based anomaly detection methodology are discussed in Section

3.1.

2.2 PM of Roller-Element Bearings

Roller-element bearings perform the critical task of reducing friction between rotating parts

in machinery. Generally, catastrophic bearing failures present warning signs such as anoma-

lous vibrations and/or noise. These anomalies can occur due to environmental factors (mois-

ture or debris entering the bearing) as well as installation errors (misalignment, excessive

loads, or poor/improper lubrication) [27]. Recently, sensor-based techniques that leverage

vibration and temperature data to monitor bearing health have been proposed. For exam-

ple, the NASA Bearing Dataset and the Pronostia Bearing Dataset contain vibration and

temperature data for several bearings which were run until failure [1, 28]. In both datasets,

anomalies in the vibration and temperature signals increase in size and frequency as the

bearings approach failure, showing a strong correlation between the sensors’ readings and

system state.
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2.3 PM of 3D Printers

3D printing is a manufacturing process where a physical object is constructed from layers of

material in an iterative process. Fused Deposition Modeling (FDM) is a standard technique

where melted thermoplastic is extruded through a moving print head nozzle to build each

layer. To ensure precision, stepper motors control the extrusion rate of the nozzle as well as

the X, Y, and Z-axis movement of the print head. Since the motors, bearings, and belts are

moving parts, they are prone to wear and must be regularly maintained to prevent component

failures. As shown in [29], these components leak vibration information that can be used by

PM systems. However, this leaked information is non-stationary since 3D printers move on

multiple axes and change direction and speed often, presenting a challenge for conventional

PM methods.
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Chapter 3

Methodology

3.1 Anomaly Detection using Hierarchical Temporal

Memory

The end-to-end framework for the HTM-based detector is shown in Figure 3.1. Our method-

ology for anomaly detection consists of the following steps. First, the time-series vibration

data X(t) is taken as input and encoded into a Sparse Distributed Representation (SDR).

Next, the SDR is passed through the spatial pooler. The spatial pooler’s output is fed into

the temporal pooler, which then outputs a prediction for the next activation Π(tn+1). Si-

multaneously, the prediction from the previous time step Π(tn) is compared with the column

activations in the current time step A(tn) to give a prediction error value: a high error value

indicates that this activation was not expected and may be anomalous. Finally, the anomaly

detector uses the historical distribution of anomaly scores to calculate the anomaly likelihood

L(tn) for the current data point based on the prediction error value; if L(tn) exceeds a set

threshold, then X(tn) is flagged as an anomaly. In the following paragraphs, we describe

each of these components in detail.
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Sparse Distributed 

Representation (SDR)

X(tn-2)

X(tn-1)

X(tn)

. . .
Input Data

Encoder
Anomaly 

Likelihood

Prediction 

Error

Spatial Pooler Temporal Pooler

Π(tn)

Π(tn+1)

A(tn)

(from previous time step)

L(tn)

Figure 3.1: HTM Anomaly Detection Framework. The time-series input X(t) is encoded
into a Sparse Distributed Representation (SDR). This information is passed through a spa-
tial pooler and a temporal pooler before outputting a prediction Π(tn+1) for the next set
of column activations. The prediction error between Π(tn) and A(tn) and the historical
distribution of anomaly scores are used to determine the anomaly likelihood L(tn).

3.1.1 Encoder

The first stage in processing the input data X(t) is the encoder. The encoder converts the

incoming data point X(t) into a sparse distributed representation (SDR). This representation

is a vector of binary values, and it is sparse because only 2% of the bits are activated for any

input. This contrasts with deep learning methods that store and learn a dense, distributed

representation. Later, we shall describe the advantages of using a sparse representation. We

denote the output of the encoder by x, a 1× n vector.

3.1.2 Spatial Pooling

The second stage is spatial pooling. The spatial pooler identifies spatial relations between

different regions of the encoder’s output through the proximal connections. Spatial poolers

can also be stacked to identify more complex relations. The proximal segment of each neuron

in a column is initialized such that each neuron, where the neurons of the same column share

the same proximal segment, is connected to a large fraction of the inputs (50%). The output

of this stage is also an SDR representing the columns of the HTM that will be activated in

the final output. We denote the spatial pooling operation mathematically by Ik(.), where

the input is the list of columns ordered in decreasing order of their proximal segment values,
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and k indicates the number of columns to be picked for activation from the top of this list.

The number k is typically the top 2%, so the output representation is sparse. Let yc denote

the activation of the columns and P denote the proximal connections where P is a binary

matrix of size n×N . Then

yc = Ik(xP ) (3.1)

3.1.3 Prediction

The next stage is prediction. The prediction for the next time step is the predictive state

of the HTM at the end of the current time step. Let the weights of the lateral connections

of the dth distal segment of the ith neuron of jth column be Dd
i,j. We note that only those

weights of connections which are above a certain threshold are considered to be established

and the rest are set to zero. A neuron (i, j) enters the predictive state provided the sum of

activations of at least one of the distal segments exceeds a certain threshold, θd. Denote the

predictive state of a neuron at time tn by πi,j(tn). We denote the current activation state of

all neurons at time tn by A(tn). We denote the total predictive state by the matrix Π(t),

whose elements are therefore πi,j(tn). Mathematically, πi,j(tn) is given by,

πi,j(tn) =

 1; if ∃ d s.t. ||Dd
i,j � A(tn)||1 > θd,

0; otherwise.
(3.2)

where � denotes the element-wise multiplication operation.

12



3.1.4 Temporal Pooling

The final stage is temporal pooling. Temporal pooling computes the activation state A(tn)

(an M ×N matrix where M is the number of neurons per mini-column and N is the number

of mini-columns in the layer) of the HTM, which is also the output of HTM based on a

temporal context. A neuron i is activated provided its column is activated, i.e., yc(j) = 1

and provided it is in the predictive state, i.e., πi,j(tn−1) = 1. The other neurons in this

column are inhibited. If none of the neurons in a column that is active are in the predictive

state, then all the neurons of this column are activated. Here, the predictive state πi,j(tn−1)

from the previous time step is the temporal context. This temporal context is updated at

the end of this time step as described in the prediction step above. Let ai,j(t) be the i, jth

element of A(tn) denoting the activation state of neuron i in column j. Then, the temporal

pooling operation can be mathematically described as:

ai,j(t) =


1; if yc(j) = 1 and πi,j(tn−1) = 1,

1; yc(j) = 1 and
∑

i πi,j(tn−1) = 0,

0; otherwise.

(3.3)

Figure 3.1 shows the different stages of HTM processing in the context of anomaly detec-

tion. After activation, the prediction error between the prediction from the previous time

step Π(tn) and the current activation state A(tn) is computed and passed to the anomaly

likelihood block, which uses the historical distribution of anomaly scores to determine if

X(tn) is a true anomaly.
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3.1.5 Learning

HTMs use a Hebbian-type learning algorithm that reinforces the connection weights of the

segments that correctly predict the activation at the next time-step. Each time step, the

weights are re-evaluated as follows. The connection weights of an activated neuron’s segments

that originated from previously active neurons are increased. The connection weights from

neurons that were not active in the previous time-step are decreased. Additionally, weights of

connections that are wrongly predicted are also decreased but at a lesser rate, i.e., forgetting

happens at a slower rate than updating. It is this type of learning that allows HTMs to learn

continuously and adapt to changes over a long term. The learning algorithm is discussed in

much greater detail in [30].

3.1.6 On Capacity, Robustness, and Efficiency

Here, we illustrate why HTMs are efficient and robust to noise. Let us consider an HTM

with a large n, where n denotes the size of the encoder’s output, x, a binary vector. Denote

by w the maximum number of bits that can be one. Typically, w is small relative to n.

Given this, lets define: α := w/n. Here, α is a measure of sparsity and denotes the fraction

of the bits that can be active in the SDR of size n. An example would be, n = 2048 and

w = 4 and so α ≈ 0.002.

The number of possible unique encodings, Ne that can be stored in vector x, given n and w,

is given by,

Ne =

 n

w

 =
n!

w!(n− w)!
(3.4)

For example, if n = 2048 and w = 20 then Ne = 1047. Given Ne, the probability that one

14



SDR x will match another SDR y, which is randomly picked, is trivially computable:

P(x = y) = 1/Ne (3.5)

Thus, the probability of a false match is, for all practical purposes, zero. This shows that

SDRs can store and recall reliably an astronomically large number of vectors. Consequently,

it follows that HTMs can store and recall reliably an astronomically large number of se-

quences.

We can now relax the requirement and say that two SDRs are equivalent if θ(< w) or more

bits match. In this case, the matching is allowed an error of up to w − θ bits. Denote by

Ωx(b) the set of sparse vectors (of size n and sparsity α) that have an overlap of b bits with

x. Then, the probability that a false match will be generated, Pfm, is given by,

Pfm =

∑
b≥θ Ωx(b)

Ne

, where Ωx(b) =

 w

b

×
 n− w

w − b

 (3.6)

Clearly, the probability of a false match has increased by allowing an error of up to w − θ.

In the same example as above, if θ = 10, then w − θ = 10, that is an error up to 50% is

allowed. We find that the probability of a false match is still 1/1013, which for all practical

purposes is zero. This is what gives SDRs and thereby HTMs robustness to noise.

The sparsity of x allows for sparse computation, which makes computations with SDRs

very efficient. For a representation x of size n and sparsity α, one does not need to store

information on all the bits. Instead, one can just store the address of the locations of bits of

value one. Then, for an operation like matching, one just needs to check the value of the bits

of the vector y at its corresponding locations; this is doable almost in constant time. We can

trivially extend this argument to show that the spatial pooling, prediction, and temporal
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pooling operations described above can also be performed very efficiently in HTMs, thus

giving HTMs their computational efficiency. Next, we discuss our experimental setup for

demonstrating the performance of the HTM-based anomaly detector.

3.2 Experimental Setup

We evaluate our proposed methodology on real-world bearing failure and simulated 3D

printer failure datasets. Here, we discuss details about these datasets and the scoring system

used for evaluation.

3.2.1 Bearing Dataset

We used the NASA Bearing Dataset and the Pronostia Bearing Dataset [1, 28]. The NASA

Bearing Dataset contains three tests of bearings run to failure. The Pronostia Bearing

Dataset contains vibration snapshots recorded with three different radial load and RPM

settings. The accelerometer data for Test 2 of the NASA Dataset is shown in Figure 3.2. In

total, our testing set consists of 40 vibration data files and 191 labeled anomalies.
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Figure 3.2: Accelerometer Data from Test 2 of the NASA Dataset [1]. Symptoms of bearing
failure can be seen on 2/17 and 2/18 before the bearing’s outer race failed on 2/19.

3.2.2 3D Printer Dataset

Our experimental testbed for collecting vibration data from a 3D printer is shown in Figure

3.3. The 3D printer uses one stepper motor to control each movement axis (X, Y, and Z). We
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Data 
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Computer

Figure 3.3: Experimental Testbed used to collect vibration data from our 3D printer. Three
accelerometers were placed on the printer in total; one sensor was placed directly behind
each of the printer’s three stepper motors.

placed one accelerometer directly behind each stepper motor to capture vibration data from

prints of various 3D objects. To the best of our knowledge, no publicly available 3D printer

component-failure datasets exist, and generating real-world failures would risk damaging

our equipment. Thus, we instead opted to generate synthetic anomalies in the 3D printer

vibration data.

3D printer vibration signals are inherently non-stationary, meaning that their statistical

properties vary with time. However, since printers contain bearings and rotating compo-

nents with similar dynamics, they share the same time-series and frequency domain features

as those correlated with bearing health, such as power spectral density (PSD) [23, 24]. For

example, in Figure 3.2 it is clear that the overall power of the vibration signal increases as

the bearing nears failure. Intuitively, this same phenomenon will occur in a 3D printer as

components wear out. Thus, we synthesized anomalies in the 3D printer vibration data by

mapping the PSD from our bearing failure data to the 3D printer data. This composition en-

abled us to simulate the magnitude changes characteristic of bearing and component failures

in the 3D printer while preserving the frequency components unique to the 3D printer.
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Our PSD mapping algorithm, shown in Algorithm 1, operates on a sliding window over one

bearing vibration file and one 3D printer vibration file. For each window t, the following

steps are performed: First, the Fast Fourier Transform (FFT) Xb[t] of the bearing time-series

data b[n] is calculated for a pre-set frequency bin-size. Next, the power in each frequency

bin is calculated. Then, we calculate the ratio C between the previous window’s power

value and the current power value in each bin. This ratio is used to scale the corresponding

frequency bin in the FFT of the 3D printer data FFT (p[t]), yielding an FFT with synthesized

anomalies Xs[t]. Finally, the Inverse FFT (IFFT) of Xs[t] is taken and added to the output

at location s[t].

The result after all iterations is a 3D printer vibration signal with synthesized anomalies

s[n]. Using this mapping algorithm, we produced a simulated 3D printer failure dataset

containing 15 test cases and 57 hand-labeled anomalies.

Algorithm 1: PSD Mapping Algorithm

Result: 3D printer data with anomalies: s[n]
Initialize bearing and 3D printer data: b[n], p[n];
Initialize output signal: s[n]← [0, ..., 0];
t← 1;
while t < length(p) do

Xb[t]← FFT (b[t]);
Pb[t]← |Xb[t]|2;
C ←

√
Pb[t]/Pb[t− 1];

Xs[t]← FFT (p[t])� C;
s[t]← s[t] + IFFT (Xs[t]);
t← t+ 1;

end

3.2.3 Anomaly Detectors

To evaluate the performance of HTMs at PM, we use the following two HTM-based anomaly

detectors in our approach with slightly different temporal memory implementations, which

we denote as HTM [16] and TM-HTM [31]. To explore the effectiveness of anomaly likelihood
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for HTM-based detectors, we evaluated HTM and TM-HTM with three different anomaly

likelihood configurations:

1. no anomaly likelihood: the prediction error of the HTM was directly used as the

anomaly score.

2. historical distribution (HD): the implementation described in Section 3.1.

3. LSTM-based predictor (LP): The HD anomaly likelihood block was replaced with a

2-layer LSTM predictor trained to predict normal HTM prediction error values in order

to filter out false positives/noise. The prediction error of the LSTM was used as the

final anomaly score.

We also evaluated baseline and state-of-the-art anomaly detectors including an RNN-based

detector configured to use LSTM cells (denoted as LSTM) [32] (similar to [12, 13]), Win-

dowed Gaussian (based on the tail probability of the distribution over a sliding window),

a threshold-based detector (similar to condition-based maintenance and [7]), EXPoSE [33],

Contextual Anomaly Detector (CAD-OSE) [34], Relative Entropy [35], Etsy Skyline [36],

KNN Conformal Anomaly Detector (KNN-CAD) [37], Bayesian Changepoint (BC) [38],

Random (random anomaly score), and Null (constant anomaly score). All of the listed al-

gorithms except LSTM were exposed to the training data once before testing and updated

their models as they were exposed to unseen test data. LSTM was trained for over 1000

epochs on the training data and was tested with the model settings that resulted in the

lowest validation loss. LSTM was tested offline, meaning that it did not update its model

weights during testing. The LP anomaly likelihood configuration was also trained in this

manner but used the HTM output as its input data instead.
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3.2.4 Scoring

To score each algorithm fairly, we rely on the Numenta Anomaly Benchmark (NAB) [16].

NAB was designed to fairly benchmark anomaly detection algorithms against one another.

It contains a built-in anomaly scoring algorithm, normalization, and three threshold opti-

mization settings: standard, low false positives (Low FP), and low false negatives (Low FN).

NAB takes in datasets with labeled anomalies and produces anomaly windows. These are

used to score anomaly detectors on how precisely they can pinpoint anomalies; early/on-time

detections are rewarded, and very early/late detections are penalized.

The NAB scoring function is as follows: given an application profileA = [ATP , AFP , ATN , AFN ]

specifying the weights for each kind of detection, and the position y of the detection relative

to the anomaly window, the scoring function for each detection is:

σA(y) = (ATP − AFP )

(
1

(1 + e5y)
− 1

)
(3.7)

These scores are summed up for all the detections in a file; the following weighted penalty

is deducted for every missed detection (fd): AFNfd. The summed score is then normalized

to a 0-100 scale where 0 represents equivalent (or worse) performance to the Null detector,

and 100 represents a perfect anomaly detector. An example of the scoring functionality is

shown in Figure 3.4. To provide ground-truth values of anomaly locations in the dataset,

we followed the NAB official anomaly labeling guide and manually labeled anomalies in each

dataset. The first 15% of each vibration data file was used for training with the remaining

85% used for testing and scoring.
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Chapter 4

Results

4.1 Roller Bearing Anomaly Detection

Table 4.1 shows the NAB results for the selected algorithms on the labeled bearing failure

dataset as well as the total running time of each algorithm. The runtime was recorded

over the complete dataset using a PC with an Intel Core i7-7700k processor. As shown in

Table 4.1, TM-HTM+HD achieved the highest anomaly detection score for the Standard

and Low FN profiles while HTM+LP achieved the highest score for the Low FP profile.

TM-HTM+HD scored 67.05, 73.33, and 56.57 for the Standard, Low FN, and Low FP

profiles, respectively. The approach that scored closest to HTM was Windowed Gaussian,

which achieved scores of 64.70, 70.50, and 57.35 for the same profiles, respectively. HTM

and HTM+LP performed better than TM-HTM TM-HTM+LP, indicating that TM-HTM’s

implementation only works well with the HD anomaly likelihood block.

As expected, the statistical methods (Windowed Gaussian, Threshold-Based, Relative En-

tropy) processed the dataset faster than the DL, ML, and HTM-based methods, albeit with

lower performance. The HTMs using HD were 1.41x slower than the HTMs with no anomaly
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likelihood and 3.76x faster than the HTMs using LP on average. TM-HTM+HD processed

the dataset 8.3x faster than LSTM.

Anomaly Detector Scoring Profile Runtime (s)
Standard Low FN Low FP

TM-HTM+HD (Ours) 67.05 73.33 56.57 4728
HTM+HD (Ours) 66.38 71.93 55.33 5792
Windowed Gaussian 64.70 70.50 57.35 336
HTM+LP (Ours) 64.03 69.12 57.47 21084
HTM (Ours) 59.75 66.24 47.63 4277
TM-HTM+LP (Ours) 54.12 61.53 43.03 18508
TM-HTM (Ours) 54.39 63.33 32.47 3156
Etsy Skyline [36] 47.53 51.51 43.75 742632
CAD-OSE [34] 46.88 52.81 40.96 3589
EXPoSE [33] 41.75 44.80 36.96 5575
Threshold-Based 37.75 43.75 25.21 125
Relative Entropy [35] 34.97 37.05 32.94 806
LSTM [32] 33.99 38.13 28.38 43698
KNN-CAD [37] 32.31 43.06 4.69 4393
Random 3.06 9.16 0.00 233
BC [38] 0.00 0.00 0.00 10270
Null 0.00 0.00 0.00 235

Table 4.1: Normalized NAB scores for anomaly detection on the bearing failure dataset.

To evaluate the qualitative performance of each anomaly detector, we plotted the anomaly

scores over time for each detector for Test 1 of the Pronostia Bearing dataset and compared

them to the labeled ground truth anomaly windows in Figure 4.1.

4.2 3D-Printer Anomaly Detection

Table 4.2 shows our experimental results for the 3D printer dataset. HTM+HD achieved

the highest score on the Low FN profile while LSTM achieved the highest score on the

Standard and Low FP profiles. HTM+HD achieved scores of 63.03, 73.18, and 42.23 for

the Standard, Low FN, and Low FP scoring profiles, respectively. LSTM scored 64.76,

71.43, and 51.34 at the same profiles, respectively. On both applications the HTM, TM-
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Figure 4.1: Anomaly scores for each detector in comparison to the ground truth anomaly
windows for Test 1 of the Pronostia Bearing Dataset.

HTM, and TM-HTM+LP detectors performed worse than the HTM+HD, HTM+LP, and

TM-HTM+HD detectors. Overall, the use of HD anomaly likelihood yielded the best HTM

performance across applications. Each algorithm’s execution time is consistent with the

results shown in Table 4.1.
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Anomaly Detector Scoring Profile Runtime (s)
Standard Low FN Low FP

HTM+HD (Ours) 63.03 73.18 42.23 5813
LSTM [32] 64.76 71.43 51.34 16414
TM-HTM+HD (Ours) 58.01 68.13 44.14 3364
Windowed Gaussian 57.42 67.99 49.31 189
HTM+LP (Ours) 54.56 65.45 36.76 10062
CAD-OSE [34] 54.69 63.27 34.72 1573
KNN-CAD [37] 53.76 65.55 23.48 3375
HTM (Ours) 49.21 62.25 31.16 2713
TM-HTM+LP (Ours) 45.31 57.90 21.93 7456
TM-HTM (Ours) 41.43 54.43 13.86 1724
Relative Entropy [35] 41.78 52.49 15.96 668
Etsy Skyline [36] 39.16 47.84 19.91 146165
BC [38] 21.33 23.64 17.55 1946
Random 11.34 24.75 3.74 49
EXPoSE [33] 6.04 6.20 6.04 7136
Threshold-Based 0.00 0.00 0.00 54
Null 0.00 0.00 0.00 49

Table 4.2: Normalized NAB scores for anomaly detection on the 3D printer dataset.
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Chapter 5

Discussion

5.1 Overall Performance and Adaptability

Interestingly, algorithms that performed well on the bearing dataset, such as EXPoSE and

Etsy Skyline performed worse on the 3D printer dataset. Additionally, algorithms that

performed worse on the bearing dataset, such as LSTM and BC performed much better on

the 3D printer dataset. Our HTM-based methodology using HD anomaly likelihood achieved

consistently high performance on both applications without any hyperparameter tuning,

demonstrating that this configuration can generalize and adapt to different applications

without domain-specific tuning. This result also suggests that HTMs significantly benefit

from the inclusion of an HD anomaly likelihood block.

Also, HTM+LP was the best performing model on the Low FP profile for the bearing dataset.

However, this performance was not replicated in the 3D printer dataset. Similarly, LSTM

beat HTM on the Standard and Low FP profile for the 3D printer dataset while performing

worse than HTM on the bearing dataset. Hence, our results suggest that LSTMs are highly

data-dependent and need to be re-tuned for every machine and/or application. Thus, the
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LSTM approach is time-consuming, expensive, and impractical for real-world applications.

The benefits of HTM’s continuous learning capability are clearly shown in Figure 4.1: after

identifying earlier anomalies, the HTM-based approaches learn the new baseline for the

signal and can pinpoint the future anomalies despite higher signal amplitudes. CAD-OSE

also appears to learn continuously, but not as well as the HTMs.

5.2 Real-Time Detection Capability

In addition to detection accuracy and precision, an optimal PM system should be able to

detect failure symptoms in real-time to allow adequate time for repairs to be scheduled and

performed.

However, part failures are infrequent and generally present progressive symptoms before

failure, so a hard real-time requirement for processing raw sensor data may unnecessarily limit

the complexity (and subsequently the performance) of anomaly detection methods. Thus, we

evaluate the anomaly detectors in the context of “soft real-time,” where we determine if each

detector can process a subsampled data segment before the next subsampled data segment

arrives. For example, 1 second of data can be recorded each minute as a data segment to

reduce data size while still ensuring that a wide range of vibration frequencies are captured

at frequent intervals.

Both HTM+HD and TM-HTM+HD were able to process the complete bearing failure

dataset in under 100 minutes; since the bearing dataset contains several months’ worth

of vibration data and minimal data preprocessing was performed (subsampling and times-

tamping), this demonstrates that HTMs can accurately detect failure symptoms in real-time,

meaning that machine operators can be notified of degradation promptly. Other complex al-

gorithms such as CAD-OSE, KNN-CAD, and EXPoSE had execution time on the same order
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of magnitude as HTMs and are thus also capable of real-time anomaly detection. Although

HTM+LP, TM-HTM+LP, and LSTM took longer to process the dataset than HTM+HD

and TM-HTM+HD, they can still be considered real-time due to the aforementioned dataset

characteristics. However, the significant training time associated with the LSTM (over 12

hours on our hardware platform) and the need for application-specific hyperparameter tuning

put LSTM at a disadvantage in terms of applicability to practical use cases.

5.3 Tunability, and Robustness to Noise

Figure 4.1 clearly shows HTM’s ability to pinpoint anomalies while remaining robust to noise

in the input. This is likely due to HTMs use of sparse encodings, making it unlikely that

bit errors in the input due to noise will affect the bits corresponding to the input pattern,

making them robust to noise. From the figure, it is also clear that the HTM implementations

using anomaly likelihood blocks were more robust to noise outside of the anomaly windows

than the HTM or TM-HTM alone. This is likely because the anomaly likelihood components

filter out smaller detections to isolate only the most plausible anomalies. The HTM+HD

and TM-HTM+HD detected anomalies earlier than the other configurations, albeit with

slightly more false positives. The outputs of the different HTMs starkly contrast with the

highly variable anomaly score outputs of Windowed Gaussian, EXPoSE, KNN-CAD, and

BC, among others. These detectors record high anomaly scores even when there is relatively

low noise in the input, meaning that they will likely suffer from false positives at higher noise

levels.

A detector’s threshold can be tuned to account for higher noise levels; however, for detec-

tors such as Windowed Gaussian, which used the maximum detection threshold of 1.0, the

threshold cannot be increased further to reduce its sensitivity. In contrast, TM-HTM+HD

used a threshold of 0.5497 on the Standard profile. Thus, although Windowed Gaussian out-

28



performed TM-HTM+HD on the Low FP scoring profile, it lacks tunability and will likely

perform much worse than this HTM configuration in more noisy environments.

LSTM appears to have good robustness to noise, as shown in Figure 4.1. However, it is

clear from the figure that it missed some of the earlier anomaly windows completely. In

the context of PM, this can mean that an observer will only be warned of degradation later

and will not have much time to organize repairs. Overall, our methodology demonstrates

significant noise-robustness, better tunability, and the ability to detect early anomalies as

well as larger, late-stage anomalies.

5.4 Limitations and Future Work

Another related PM problem is Remaining Useful Life (RUL) estimation. In many cases,

RUL and anomaly detection go hand in hand as part of a comprehensive PM system. Al-

though we did not evaluate the performance of HTM at RUL estimation, the core architecture

of HTM is good at sequence prediction and could likely be used to solve this problem. We

leave this for future work.

Another limitation of our work is the use of synthesized 3D printer anomalies instead of

real-world examples of 3D printer failures. Due to resource constraints, we opted not to

perform these experiments and used synthetic failure data instead. The question of whether

HTM’s performance on synthetic anomalies translates to real-world PM remains an open

research problem.
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5.5 Feasibility

The idea of predicting machine failures in advance is not brand new; many variants of PM

systems have already been implemented in real-world manufacturing applications. However,

based on our results, we believe that HTM is a better solution than current state-of-the-art

methods. Our results demonstrate that HTMs are efficient enough to run on consumer-

grade processors while learning and adapting continuously. Additionally, HTMs can be

easily installed on existing PM systems as they only require time-series sensor inputs, which

likely already exist in the system. As shown by our results, the industry-standard LSTM

requires a significant amount of time for training (over 1000 epochs) as well as application-

specific tuning. In contrast, HTMs do not require any application-specific parameter tuning

and are essentially plug-and-play since they only need to be trained with a single pass on

normal sensor data. These characteristics make HTMs an extremely viable, out-of-the-box

solution for industrial PM.
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Chapter 6

Conclusion

Existing methods for predicting machine failures from sensor data are limited in their practi-

cality due to shortcomings, including poor noise resistance, efficiency, and adaptability. Our

experiments demonstrated that our methodology outperforms state-of-the-art approaches at

detecting anomalies in both bearing and 3D printer failure data with minimal to no pre-

processing or application-specific tuning. On the Standard scoring profile, our methodology

using HD anomaly likelihood achieved an average NAB score of 64.71. In comparison, the

other top algorithms: LSTM and Windowed Gaussian, achieved average scores of 49.38 and

61.06, respectively. Furthermore, our qualitative results show that our methodology is sig-

nificantly more noise-resistant than the Windowed Gaussian, KNN-CAD, EXPoSE, and BC

detectors, which we attribute to the use of SDRs and an anomaly likelihood component.

We also demonstrated that our methodology is real-time capable, with an execution time on

the same order of magnitude as state-of-the-art methods. Consequently, we conclude that

HTM-based anomaly detection is a novel, practical solution for a wide range of industrial

PM applications.
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