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Abstract

Personalized, or genomic, medicine entails tailoring pharmacological therapies according to individual genetic variation at
genomic loci encoding proteins in drug-response pathways. It has been previously shown that steady-state mRNA
expression can be used to predict the drug response (i.e., sensitivity or resistance) of non-genotyped mammalian cancer cell
lines to chemotherapeutic agents. In a real-world setting, clinicians would have access to both steady-state expression levels
of patient tissue(s) and a patient’s genotypic profile, and yet the predictive power of transcripts versus markers is not well
understood. We have previously shown that a collection of genotyped and expression-profiled yeast strains can provide a
model for personalized medicine. Here we compare the predictive power of 6,229 steady-state mRNA transcript levels and
2,894 genotyped markers using a pattern recognition algorithm. We were able to predict with over 70% accuracy the drug
sensitivity of 104 individual genotyped yeast strains derived from a cross between a laboratory strain and a wild isolate. We
observe that, independently of drug mechanism of action, both transcripts and markers can accurately predict drug
response. Marker-based prediction is usually more accurate than transcript-based prediction, likely reflecting the genetic
determination of gene expression in this cross.
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Introduction

Realizing the promise of personalized medicine – a rational

approach to tailoring pharmacological therapy to individual

patients – is an area of intense research [1,2]. One of the central

experimental challenges of personalized medicine is to identify

physiological correlates (i.e., biomarkers) of individual genetic

variation that would serve as reliable diagnostic indicators of

(desired) drug response and (undesired) side effects [3–5]. The

most obvious diagnostic indicator of drug response is genetic

variation itself in the form of single-nucleotide polymorphisms

(SNPs), insertions or deletions, or gross chromosomal rearrange-

ments, which can be catalogued by genotyping techniques.

Genetic variation in genes known to modulate drug response in

general, such as the ABC family of xenobiotic transporters, or the

cytochrome P450 detoxification enzymes, has been successfully

correlated to clinical outcomes of drug therapy [6–11]. Addition-

ally, in candidate-gene approaches, polymorphisms in the

molecular targets of drugs (or downstream pathway components)

have also been correlated with clinical outcome in cancer and in

other diseases [12–18].

A complementary diagnostic indicator of drug response is

mRNA expression. This approach is less biased than candidate-

gene approaches because it uses global transcriptional signatures of

cells in the untreated state to predict drug response. Specifically,

previous work, exemplified by Staunton et al., on the NCI-60 panel

– a collection of 60 tumor cells lines of different tissue origins that

has served as the primary cellular model of cancer genomics [19] –

demonstrated that steady-state mRNA expression could be used to

predict the sensitivity of cancer cell lines to anti-neoplastic drugs

[20]. In related work, others have shown that different

physiological correlates besides gene expression, such as protein

abundance, may be used to predict drug response [21,22]. More

recently, studies have exploited a collection of genotyped

mammalian cell lines to interrogate drug response, and others

have performed expression profiling of mammalian cells in

response to drug treatment [14,17,23]. We sought to perform a

drug-response prediction analysis in a well-controlled system. We

have previously studied segregating variation in a panel of 104

genotyped segregants derived from a cross between a laboratory

strain (BY) and a wild isolate (RM) of Saccharomyces cerevisiae [24–

27]. In the present study we compare how well drug response is

predicted by two types of variables—expression and genotype, test

the potential improvement in drug-response prediction by

combining more than one variable type, and evaluate why one

variable type is more predictive than another for a given drug or
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class of drugs. Our approach affords an opportunity to assess the

predictive power of transcripts versus genetic markers in a simple

model system, and may serve as an initial point of departure for

future analogous studies of personalized medicine in humans.

Results

Drug response can be predicted from transcript levels in
untreated cells

We sought to predict the response of each segregant to each

small-molecule perturbagen (drug), or SMP, from patterns of gene

expression measured in a neutral (i.e., SMP-free) medium. We

classified each segregant as sensitive, resistant or partially resistant

to a given SMP according to its final yield in that SMP; 225 SMP

responses were tested (this represents 89 SMPs, with multiple

responses to some SMPs measured at different time points and

concentrations). The gene expression levels of the segregants

classified as sensitive or resistant were used to train a support

vector machine (SVM) [28]. SVMs are very powerful at classifying

multidimensional data, and therefore should give us the ability to

predict both Mendelian and genetically complex SMP responses.

For each SMP, we used a feature selection algorithm within each

fold of the cross-validation approach (see Methods) to rank the

genes according to their individual contribution to the ability to

predict segregant SMP responses. We then trained support vector

classifiers using 1, 10, 50, 100, 200, 500, and 1000 highest ranked

gene(s). The classifiers were used to predict sensitive/resistant

status of segregants not included in the training set using a cross-

validation approach (Methods and Data S1). We found that the

support vector classifier trained on 1000 genes had the greatest

average predictive power, correctly predicting the SMP response

of 69.7% of the segregants on average for the SMPs considered,

although it should be noted that the differences between 50, 100,

200, 500 and 1000 highest ranked genes are negligible (Figure 1).

The prediction accuracy for individual SMPs varied from near

100% to near chance. We compared this classifier to a naı̈ve mode

classifier, using the same cross validation as with the SVM, which

calls all segregants in the test set sensitive or resistant according to

the category that occurs more frequently in the training set (this

provides a better comparison of the predictive value of expression

information than does 50:50 random classification). Taking the

prediction accuracy from the best performing set of features for

each compound, the SVM outperformed the mode classifier on

average (74% vs. 64%) and equaled or outperformed it for all but

one SMP considered (the single instance was well within the

standard deviation of the SVM performance). Instances where the

mode classifier performed well reflect unequal distributions of

sensitive and resistant segregants. Performance was very robust

Figure 1. Summary of marker-based and transcript-based prediction algorithms. Box plots representing the distribution of prediction
accuracies for all SMPs plotted against number of features selected for prediction. (A) Results of marker-based expression. (B) Results of transcript-
based prediction.
doi:10.1371/journal.pone.0006907.g001

Yeast Pharmacogenomics Model

PLoS ONE | www.plosone.org 2 September 2009 | Volume 4 | Issue 9 | e6907



when the algorithm employs classifiers trained on the 50 through

1000 most highly ranked genes. Performance decreased slightly for

the classifier with 10 genes, and dropped more appreciably for the

classifier trained using the single most highly ranked gene

(although performance still remained above chance). This decline

in performance is likely due to insufficient or noisy information

when too few genes are used.

Comparison of transcript- and marker-based prediction
of drug response

After demonstrating our ability to predict SMP response using

steady-state expression alone, we sought to compare these results

to prediction based on genotypes. Linkage analysis is dependent

on an association between a genotyped marker and a phenotype,

in our case sensitivity or resistance to an SMP. Any response to an

SMP that significantly links to a marker should therefore be well

predicted by that same marker. We first used a much simpler

algorithm than the one described above, wherein the genotype at

the single most correlated marker was used to predict sensitivity or

resistance. We repeated this process in a leave-one-out fashion for

all classified segregants. Because we are using the most correlated

marker, the response to SMPs exhibiting strong linkage should be

easier to predict than response to SMPs exhibiting weak linkage or

no linkage. On average we correctly predicted SMP response with

69% accuracy, but, as expected, prediction accuracy was good

(75%) when a strong linkage signal was present (lod $4) and poor

(55%) otherwise. When no strong linkage signal was present, the

prediction accuracy was worse than the performance of the mode

classifier, highlighting that in these instances the single most

correlated marker offered almost no information to perform

classification.

We further sought to examine our ability to predict more

complex SMP responses (those without strong linkage results). We

trained support vector classifiers using 1, 10, 50, 100, 200, 500 and

1000 highest ranked marker(s). We found the support vector

classifier trained on the 500 highest-ranked markers to have the

greatest predictive power overall, correctly predicting the SMP

response of 71.7% of the segregants on average for the SMPs

considered (Figure 1). Performance was very robust in the range

of 50–500 highest-ranked markers, but worsened at 1000. A

deterioration in classifier performance when more than 500

markers are considered is a result of classifier overfitting. After

removing two outliers (alpha factor and niguldipine, which each

show linkage with lod .40 and are nearly perfectly predicted

using both transcripts and markers), we correlated prediction

accuracy with linkage (e.g., lod score) when the prediction

algorithm utilizes either the 200 highest-ranked features

(Figure 2) or the single highest-ranked feature (Figure S1).

Figure 2. The relationship between linkage and prediction accuracy. Scatter plot of prediction accuracy (in percent) of (A) transcript-based
prediction or (B) marker-based prediction versus SMP lod score when the 200 best features are selected.
doi:10.1371/journal.pone.0006907.g002
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The correlation between marker-based prediction accuracy and

linkage is modestly positive (r = 0.13) when using 200 features and,

as expected, significantly greater when predicting on the single

best feature alone (r = 0.48).

A direct comparison of transcript-based prediction and marker-

based prediction is presented in Figure 3. For classifiers trained

on feature sets ranging from 1 to 1000 features, we plotted the

maximum prediction accuracies of transcript- and marker-based

prediction for each SMP; more or fewer features are required for

maximum accuracy depending on the SMP. The plot reveals that

both prediction algorithms perform equally well for a large

number of SMPs, but are weakly correlated (r = 0.37) with each

other. This weak correlation suggests that there is non-overlapping

biological information embodied by transcript levels as compared

to genotyped markers. However, some SMP responses (the on-

diagonal points in Figure 3) are equally well predicted by

transcripts and by markers, demonstrating that both are providing

equivalent amounts of information. It is possible that the

information being provided by the two sets of predictors is

redundant, resulting from the fact that expression differences

among the segregants arise due to the underlying genetic variation.

For example, consider the response to the SMP alpha factor.

Alpha factor is a 13 amino acid pheromone secreted by yeast cells

of the alpha mating type in the presence of yeast cells of the

opposite a mating type; a cells arrest in the presence of alpha

factor because they express the sensitizing alpha-factor receptor

STE2. Genotype at the mating type locus and expression of STE2

are completely redundant in this case where sensitivity is

determined by the presence or absence of the drug target. A

clinical analogy would be clinical efficaciousness of EGF-receptor

antagonists (e.g., gefitinib) in the 10% of patients with lung cancers

that express sensitizing alleles (somatic deletions and point

mutations) of the EGF receptor [29]. Genotyping the EGF

receptor stratified patients into drug-responsive and drug-unre-

sponsive cohorts, and EGF receptor expression levels correlate

with drug sensitivity.

22 SMPs are better predicted (.15% percent improvement) by

markers than transcripts, while no SMPs are better predicted by

transcripts than markers by the same margin. In fact, only 6 SMPs

are better predicted by transcripts than markers by 10%, and of

these none by greater than 12.2% (Figure 3; Figure S1). One

SMP for which genotype is much more predictive is tetrachlor-

oisophthalonitrile, an uncoupler of oxidative phosphorylation. The

maximum predictive power of expression for tetrachloroisophtha-

lonitrile is 65% considering the 500 most predictive transcripts,

while the maximum predictive power of genotype is 90%

considering only the single most strongly linked genetic marker.

In previous work we showed that a non-synonymous mutation in

the gene PHO84, which encodes a high-affinity inorganic

phosphate transporter, alters sensitivity to tetrachloroisophthalo-

nitrile [27]. We also showed that the quantitative trait locus (QTL)

on chromosome 13 that contains PHO84 is a linkage hot spot that

Figure 3. Head-to-head comparison of marker-based prediction and transcript-based prediction. Plotted are maximum predictive
accuracies (in percent) of transcript-based prediction (y-axis) versus marker-based prediction (x-axis). Regression line is solid black; the diagonal (x = y)
is dashed black; red points denote SMPs described in the main text as that are well predicted by genotype but poorly predicted by expression.
doi:10.1371/journal.pone.0006907.g003
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affects response to 25 SMPs [27]. The above-mentioned SNP in

PHO84 also alters to a lesser extent sensitivity to the chemically

similar SMP pentachlorophenol, which suggests that greater

genetic complexity underlies the physiological response of cells

to pentachlorophenol. The maximum predictive accuracy of

expression for pentachlorophenol is 69% considering the 500 most

predictive transcripts, while the maximum predictive power of

genotype for it is 90% considering the single most linked genetic

marker. Another example of more accurate genotype-based

prediction is response to copper sulfate (CuS04). The maximum

predictive power of expression for copper sulfate is 58%

considering the 10 most predictive transcripts, while the maximum

predictive power of genotype is 93% considering only the single

most linked genetic marker. Linkage analysis has shown that a

marker near CUP1, which encodes a copper-binding protein that

mediates resistance to copper stress, segregates with copper sulfate

resistance; CUP1 is also subject to copy-number variation between

strains [27]. The inability of transcripts to predict SMP response

may occur when genetic variation does not perturb expression

levels under neutral (drug-free) conditions, especially in the case of

stress-responsive genes, and therefore does not manifest a steady-

state expression signature that would enable transcript-based

prediction.

Next we considered cases where transcript-based prediction out-

performs marker-based prediction. Expression outperforms geno-

type for 80 SMP response predictions above the diagonal in

Figure 3. This improvement may be due to chance or to

expression signatures caused by genetic factors. However, as

mentioned above, there are no SMP responses for which

expression-based prediction is 15% more accurate than geno-

type-based prediction (Figure 3). This result is consistent with

expectation given that expression differences are ultimately

explained by genetic differences in these yeast strains. However,

there are 6 SMP responses where expression-based prediction

outperforms marker-based prediction by 10% or more. In these

cases, expression may be a better predictor of SMP response than

genotype because several unlinked polymorphisms, possibly in

transcriptional regulatory genes, could affect steady-state expres-

sion of multiple genes in the pathway modulated by the SMP.

Additionally, in cases where transcript-based prediction outper-

forms marker-based prediction by at least 10%, the average LOD

score is 5, while in the reverse case it is 8.5. This is consistent with

the idea that transcripts may be valuable when sensitivity or

resistance has a complex genetic basis with many minor-effect

variants rather than one major-effect variant.

Using both transcript and marker data improves
prediction ability for SMPs

We next asked whether combining both transcripts and markers

into a single prediction algorithm would improve our ability to

predict SMP response. First, we looked at the best prediction

accuracy across all feature sets of both marker- and transcript-

based prediction. In 80 out of 226 SMP responses tested, the best

transcript-based prediction outperformed the best marker-based

prediction, with an average improvement in accuracy of 4.8%.

Interestingly, there are no distinguishing mechanistic characteris-

tics of this group of 60 SMP responses, (which, in some cases,

includes the same compound tested at multiple concentrations or

at multiple time points); in other words, they are structurally

diverse and target a wide array of cellular processes. This suggests

that transcript information can provide additional predictive

information above genotype data alone.

As a second test, we created a combined set of features that

included all transcripts and markers, totaling over 9,000 features.

We repeated the above-described process of selecting the best 1,

10, 50, 100, 200, 500 and 1000 features, and then used them to

train a support vector classifier. The set of 500 features performed

best on average with an accuracy of 72%, essentially the same as

the marker-based prediction using the same number of features

(71.6%). Interestingly, genotyped markers comprised over 95% of

all selected features, with many (60) SMP response predictions

based solely on marker features. These results are consistent with

the observation that genotyped markers provide most of the

information used in SMP response prediction. However, when

transcripts are selected, they often encode gene products involved

in biological processes affected by the SMP. For example,

carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) is a

proton ionophore that depolymerizes the mitochondrial mem-

brane potential [30]. At least three QTL determine drug response

to FCCP in this cross [27]. Expression of two genes, one encoding

a component of the vacuolar ATPase (YDL185W) and the other a

component of the F1-F0 ATP synthase (YMR064W), improves

FCCP response prediction. The differing information provided by

the best combined set of features versus the best set of markers

suggests that valuable insight may be gained from using both

steady-state transcript levels and genotyped markers. However,

combining both transcripts and markers into a single set of features

rarely performs better than taking the best of marker-only or

transcript-only prediction accuracy, possibly due to the added

noise of too large a set of features.

Discussion

We and others have previously shown that naturally recombi-

nant yeast strains provide a model for the study of therapeutically

relevant complex traits (i.e., small-molecule drug response)

[26,27,31]. Here we have shown that in addition to serving as a

model for complex traits a panel of 104 genotyped and expression-

profiled yeast strains may also serve as a model for personalized

medicine. In the present study, we used a pattern recognition

algorithm to accurately predict the sensitivity to small molecules of

individual segregants from both steady-state transcript levels in

untreated cells and genotyped markers. We observed that markers

are slightly more predictive overall, but much better in a few cases.

For example, resistance to polychlorinated phenols due to a

polymorphism in the high-affinity inorganic phosphate transporter

PHO84 is poorly predicted by transcripts but accurately predicted

by markers. It should be noted that we predicted compound

response from steady-state mRNA expression levels not only when

inheritance of both compound response and expression levels is

Mendelian, but also in cases when inheritance of both compound

response and expression levels is genetically complex. Moreover,

we accurately predicted SMP response in cases when there existed

strong linkage between a marker and SMP response (lod .4) as

well as when no strong linkage was present (lod , 4).

Transcript-based prediction performs similarly to marker-based

prediction for most SMP responses, and thus expression profiles

provide a useful proxy when genotypes are not available.

Expression may sometimes be a better predictor of compound

response than genotype because expression can integrate many

genetic changes, and may therefore reflect the overall physiological

state of the cell rather than just the effect of one locus. On the

other hand, expression may be a poorer predictor of compound

response than genotype in cases when transcript levels of untreated

cells is uncorrelated to transcript levels of drug-treated cells. Gene

expression may capture the same information as genotypes for

several reasons. First, a polymorphism may affect both gene

expression and compound response independently (pleiotropy),

Yeast Pharmacogenomics Model
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with the expression levels providing a read-out of the inheritance

at the locus. Second, a polymorphism that affects compound

response may be linked to a different polymorphism that affects

gene expression. The third and most interesting case involves

polymorphisms that affect the expression of drug targets or other

genes that function in the pathways that are involved in SMP

response; in this case the expression changes provide direct

functional information. Further functional studies are needed to

distinguish these possibilities and quantify the prevalence of each.

We observed that expression provided little predictive power

over genotype alone. In our system, genotype largely determines

both expression levels and drug response; environmental condi-

tions were kept constant during expression experiments, and only

differed on the basis of SMP treatment in drug response

experiments. We expect that gene expression will provide

considerable additional predictive power when environmental

variation is present, for example in human patients who will differ

in diet, drugs taken, and other factors. This study demonstrates the

benefit of having multiple sources of data in understanding

complex pharmacogenomic traits.

Methods

Chemoprediction algorithm
Segregants were classified as sensitive or resistant based on the

standard deviation from zero of each segregant’s six replicate

growth values. If a segregant’s average growth rate in the presence

of a given SMP was at least one standard deviation below zero it

was considered sensitive to that SMP; if the average growth rate

was a standard deviation or more above zero it was considered

resistant. Segregants with standard-deviation ranges overlapping

zero were not classified, and were removed from the analysis.

Segregant growth rates at various time points were available for

some of the 92 SMPs surveyed, providing a total of 333 sets of

segregant growth rates. To be able to determine a pattern between

gene expression and sensitivity or resistance to a given SMP, a

sufficient number of ‘‘sensitive’’ and ‘‘resistant’’ segregants are

needed. Therefore only growth rate sets with at least 10 sensitive

and 10 resistant segregants were treated, eliminating 107 growth

rate sets.

Before applying the prediction algorithm, we reduced noise in

the data by ranking each of the segregants’ genes’ association with

drug sensitivity. For each of the 226 sets considered, a stratified 10-

fold cross-validation scheme was used to select features and train

support vector classifiers, and to test the classifiers. This involves

random division of the data into ten similarly sized parts, each

with a classification profile (in this case, the ratio of sensitive to

resistant segregants) approximately representative of the full data

set; one part is kept aside for testing the classifier, and the

remaining nine subsets are used for feature selection and then

training; the full selection/training/testing process is carried out

ten times using a different portion of data for testing each time.

Feature selection – in our case selecting the most relevant genes for

segregant response to an SMP – was performed to reduce noise in

the data and hopefully make any pattern more readily identifiable.

The feature selection algorithm, performed within each fold of the

cross-validation scheme, used a support vector machine (SVM)

[28], a pattern-recognition or machine-learning algorithm, to

weight each gene according to the strength of its relationship with

the segregants’ sensitivity/resistance to the SMP. (Note that this

SVM is independent of the support vector classifier described

below, which we use in the second stage of prediction.) The

features were then ranked according to the square of the weight

assigned by the SVM, with the greatest square ranked highest, and

only a specified number of the top-most genes were used for

training. Sequential minimal optimization (SMO) [32–34] with an

RBF kernel, a machine-learning algorithm, was used to train a

support vector classifier. For each run through the 10-fold cross-

validation, the SMO parameters were optimized and then applied

to the segregants’ chemosensitivity classification and the selected

gene expression data. The classifier was then used to predict the

chemosensitivity of each segregant in the test portion, and the

results were compared with the actual chemosensitivity to

determine classifier performance for that run. The entire process

is repeated until each of the 10 subsets has been used for testing.

The accuracy quoted is the percent of correctly classed instances in

the test portion averaged over all ten runs. Support vector

classifiers were trained using the 1, 10, 50, 100, 200, 500 and 1000

highest ranked gene(s). Computation for the training, testing and

analysis was carried out using algorithms from Weka (Waikato

Environment for Knowledge Analysis) [35] and the Java

programming language.
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