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Cellular heterogeneity arising from stochastic expression of genes, proteins, 

and metabolites is a fundamental principle of cell biology, but single cell analysis 

has been beyond the capabilities of ‘Omics’ technologies.  This is rapidly changing 

with the recent examples of single cell genomics, transcriptomics, proteomics, and 

metabolomics.  The rate of change is expected to accelerate owing to emerging 

technologies that range from micro/nanofluidics to microfabricated interfaces for 

mass spectrometry to third- and fourth-generation automated DNA sequencers.  As 

described in this review, single cell analysis is the new frontier in Omics, and single 

cell Omics has the potential to transform systems biology through new discoveries 

derived from cellular heterogeneity.  

 

Single cell analysis: needs and applications 

Cellular heterogeneity  

Cellular heterogeneity within an isogenic cell population is a widespread event [1, 2]. 

Stochastic gene and protein expression at the single cell level has been clearly 

demonstrated in different systems using a variety of techniques [3-5]. Therefore, 

analyzing cell ensembles individually with high spatiotemporal resolutions will lead to a 
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more accurate representation of cell-to-cell variations instead of the stochastic average 

masked by bulk measurements. Disconnect between single cell and average cell 

measurements is exemplified in Figure 1a. Using an integrated microfluidic bioprocessor 

for single cell gene expression analysis, Mathies group showed that siRNA knockdown 

of GAPDH gene expression led to two distinct groups of individual Jurkat cells-partial 

knockdown (~50%) and complete knockdown (~0%).  The average result from 50 cells 

(~21%) is not representative of any one individual cell [6].   

To fully understand the cellular specificity and complexity of tissue 

microenvironments under physiological conditions, it is necessary to measure molecular 

signatures with single cell resolution. A clear example is provided by the recent work 

from Kim and colleagues, who analyzed single cell gene expression profiles using high-

resolution confocal microscopy and correlated them with known cell lineages in 

Caenorhabditis elegans [7]. The group generated expression profiles of 93 genes in 363 

specific cells from L1 stage larvae. Cells were clustered into groups in a two-dimensional 

scatter plot according to their correlation in gene expression (Figure 1b). Two features of 

the scatter plot stand out: first, cells are diverse, but cluster with known fates such as 

muscles and neurons; second, cells from homogeneous tissue (e.g. intestinal cells) cluster 

more tightly than those from heterogeneous tissue (e.g. neurons). However, even within 

the homogeneous tissue, individual cells show clear heterogeneity. Single cell analysis 

(SCA) will therefore be critical for elucidating cellular diversity and heterogeneity.  

 

Potential applications of single cell analysis 

At the simplest level, SCA reduces biological noise. It provides fundamental 
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improvements in experimental design and data analysis for applications predicated on 

single cells. Stem cells, for example, hold great potential for regenerative medicine 

because they can self-renew and differentiate along different lineages. However, 

embryonic stem cells, adult stem cells, and induced pluripotent stem (iPS) cells are all 

heterogeneous populations [2, 8, 9]. SCA can target specific populations and therefore 

elucidate signaling pathways and networks for self-renewal and for differentiation. 

Cancer is a heterogeneous disease and dissecting cell-to-cell variations is extremely 

important in understanding tumor initiation, progression, metastasis, and therapeutic 

responses. For example, cancer cells have recently been shown to harbor homoplasmic 

and heteroplasmic mutations in mitochondrial DNA (mtDNA) that are above and beyond 

the widespread heterogeneity of mtDNA in normal human cells [10]. SCA may 

functionally differentiate normal and cancer cells and also cancer cells at various 

development stages. Interestingly, the key therapeutic targets in tumors may be cancer 

stem cells [11], which represent a small percentage of the total mass of tumors, but may 

be responsible for tumor repopulation following treatment [12]. SCA has the potential to 

more accurately identify these cells and their unique susceptibilities. Neurons are the 

basic unit of the nervous system. Their electronic properties have been well-characterized 

by electrophysiology, but the molecular complexity of ion channels, neurotransmitters, 

and neuropeptides at the single cell level and even the subcellular level is only beginning 

to be understood [13]. SCA can help elucidate neural communication in unprecedented 

detail, which may yield new strategies to understand and treat neurological disorders. 

Advances in SCA have the potential to accelerate not only biological research, but 

also diagnostics. Preimplantation genetic diagnosis (PGD), for example, is the analysis of 
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a single cell from a biopsy of an embryo after in vitro fertilization. PGD is used to test for 

genetic diseases and chromosome aneuplodies. The most common molecular analysis 

techniques are PCR and FISH (fluorescent in situ hybridization) [14], and newer 

methods, such as comparative genomic hybridization (CGH) [15], are beginning to be 

utilized. As more genetic diseases and predispositions are identified, multiplexed PGD 

using single cell Omics technologies will enable early and accurate identification and 

possible treatment of genetic abnormalities in human embryos.  
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Single cell Omics: current state-of-the-art 

Omics for single cell analysis 

‘Omics’– the large-scale studies of genes (genomics and epigenomics), transcripts 

(transcriptomics), proteins (proteomics), metabolites (metabolomics), lipids (lipidomics), 

and interactions (interactomics) – is both the foundation and driving force for systems 

biology [16]. Omics strives to identify, quantify, and characterize all of the components 

in cellular systems with spatiotemporal resolution, and thereby dissect the intracellular 

pathways and networks. Currently, major technologies for genomics, epigenomics, and 

transcriptomics include DNA sequencing and microarrays (planar-, bead-, and fiber optic 

arrays); for proteomics, mass spectrometry (MS) and protein arrays; and for 

metabolomics, MS and NMR.  

The abovementioned major technologies have undergone dramatic advances in 

automation and miniaturization. The logical limit to the ever-increasing miniaturization 

of Omics technologies is the comprehensive spatiotemporal analysis of genes, transcripts, 

proteins, metabolites, and interactions in single cells and their subcellular compartments. 
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The movement of Omics into SCA represents a significant shift. Previous well-

established methods for SCA, such as imaging and flow cytometry, are limited to the 

examination of a small number of genes, proteins or metabolites.  As a result, these 

methods can only be used to open narrow windows into the complexity and dynamics of 

intracellular pathways. By contrast, single cell Omics has the potential to enable systems 

biology at the level of single cells, ultimately representing the unique convergence of 

technology and biology.  

 

Nucleic acid analysis 

Nucleic acid analysis has already reached the single cell level [4, 17-21]. Newer 

technologies, such as ‘lab-on-a-chip’ [22], have further advanced the field. For example, 

Mathies and colleagues have shown a hybrid (PDMS/glass) microfabricated bioprocessor 

for single cell gene expression analysis [6] (as discussed above). In addition, Quake and 

colleagues have used PDMS structures and on-chip PCR to realize large-scale integration 

for applications in single cell mRNA isolation and analysis [23]. Quake’s technology has 

been commercialized by Fluidigm Corporation, demonstrating the promise of 

miniaturization for single cell Omics. The Fluidigm Dynamic Array™ enables gene 

expression measurements in individual cells, and represents the first dedicated 

commercial product for SCA. This technology, however, needs greater multiplexing 

capabilities for global transcriptomic analysis. It currently can test up to 96 individual 

cells against 96 genes. The number of genes needs to at least increase by two orders of 

magnitude for routine transcriptome profiling.    

Further improvement in the breadth of single cell mRNA analysis has been 
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achieved recently using either mRNA sequencing (mRNA-Seq) [24] or quantitative PCR 

(qPCR) [25]. In the first study, the Surani and Lao groups together developed an assay 

with mRNA-Seq [26] for single cell whole-transcriptome analysis; in this method, single 

cell cDNA amplification [27] was improved from a previous version by increasing the 

cDNA length up to 3 kb. Briefly, the mRNAs from a single cell were reverse-transcribed 

into cDNAs, which were subsequently amplified by PCR. Finally, amplified cDNAs were 

digitally counted with an ultrahigh-throughput DNA sequencer. The researchers first 

verified reproducibility of the method, and then demonstrated its utility in dissecting 

functional consequences of Dicer1 and Ago2 knockdowns, two of the critical genes for 

miRNA synthesis and mRNA regulation, by comparing single mouse Dicer1-/- and Ago2-

/- oocytes versus wild-types (Figure 2a). The described method has the added advantage 

over probe-based methods (such as qPCR) in that it is effective at locating splicing 

variants, including de novo variants, but may face challenges in accurate quantitation due 

to the required amplification process.   

To improve mRNA quantitation from single cells, the Kambara group performed 

direct qPCR from a cDNA pool without pre-amplification [25]. Gene expression for four 

house-keeping genes (TBP, SDHA, B2M, and EEF1G) was quantitatively analyzed in 14 

single cells, showing that the absolute amounts of each of the four genes differed from 

cell to cell (Figure 2b). They further showed that the average number of cDNA 

molecules obtained from single cells was comparable to the per-cell number measured 

from the cell pools (10-1000 cells); however, much larger standard deviation was 

observed for the single cells, as expected from the cellular heterogeneity. The research 

group is currently developing higher-throughput methodology to analyze more individual 
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cells (personal communication). A larger sample size will enable better statistical analysis 

of cell-to-cell variation. The method would also benefit from increased multiplexing of 

the capture beads for the immobilized cDNA library to increase transcriptome coverage.    

Single cell genomics has been achieved for microorganisms. Church and 

colleagues have sequenced the genome of single cells of Escherichia coli and 

Prochlorococcus through so-called polymerase cloning (“ploning”), an optimized version 

of multiple displacement amplification (MDA) using random primers [28]. They obtained 

~65% sequence coverage at an average depth of 4-fold for a single Prochlorococcus cell 

through whole-genome shotgun sequencing. However, the method may suffer 

background contamination during the amplification of single cell DNA and difficulty in 

assembling the genomes. Compared to microorganisms, which typically have a genome 

size of several million base pairs containing a few thousand genes, mammalian genomes 

are much more complex. For example, the human genome has 3 billion base pairs 

containing estimated 20,000-25,000 genes. To the best of our knowledge, there has been 

no report yet on single cell genomics (i.e., global analysis of chromosomal DNA) or 

epigenomics (i.e., global analysis of DNA methylation etc) for mammalian cells. 

However, this may change soon with the recent introduction of several next-generation 

sequencing technologies (discussed in the next section), particularly those centered on 

single molecule sequencing.  

 

Protein and metabolite analysis 

Proof-of-principle SCA has been performed to characterize peptides using matrix-

assisted laser desorption ionization (MALDI) MS [29-31], or to characterize small 
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molecules using electrospray ionization (ESI) MS [32-34]. The Sweedler group 

previously profiled peptides directly from single neurons and individual organelles using 

MALDI-MS [35, 36]; however, the number of peptides detected was limited. Recently, 

the group was able to couple capillary electrophoresis with ESI-MS (CE-ESI-MS) and 

achieved reproducible metabolomic analysis of an isolated single R2 neuron and its 

different subcellular regions [33]. As shown in Figure 3a, different subcellular regions of 

a single R2 neuron (soma vs. neurite) have different relative amounts of several 

metabolites with the extracted ion of 146 m/z. However, this method requires offline 

manual isolation and lysis of single cells in a vial before the front-end CE separation 

followed by MS, thereby posting a significant challenge for in situ metabolomic analysis. 

In addition, CE sample injection is dictated by capillary inlet and outlet of the sampling 

interfaces; currently only 0.1% of the total content of a single metacerebral cell, 

corresponding to 6 nL of the cell lysate, was injected (although more than 100 

compounds were detected). Increasing the injected amount of cellular contents may 

improve the metabolome coverage from a single cell.  

More recently, laser ablation electrospray ionization mass spectrometry (LAESI-

MS) was demonstrated for in situ metabolomic profiling of single cells [34] (Figure 3b). 

Single cell ablation was achieved by delivering mid-IR laser pulses through a GeO2-

based glass fiber (15 μm radius at the tip). When comparing two physically adjacent, 

individual Allium cepa cultivar cells with differences in purple pigmentation, LAESI-MS 

revealed similar essential metabolites for both variants, with colorless cells containing 

anthocyanin and pigmented cells containing anthocyanidins, other flavonoids, and their 

glucosides. One of the key advantages of this method is that single cells can be analyzed 
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in situ, although, as mentioned by the authors, further improvement in optics and ablation 

geometry is needed for cell-by-cell analysis of biological tissue. Another challenge for 

the LAESI-MS is the lack of front-end separation of cellular contents using either LC or 

CE, because laser ablation is performed directly on whole cells. This hinders further 

improvement in metabolome coverage and identification.  
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Previously, flow cytometry (i.e. fluorescence-activated cell sorting, or FACS) has 

been used to profile phosphoprotein networks in single cancer cells [37] and monitor 

global protein levels in single Saccharomyces cerevisiae [38].  In addition, fluorescence 

imaging has been used to measure the levels and locations of nearly 1,000 different 

endogenously tagged proteins in individual living cancer cells at high temporal resolution 

[39]. Current technologies based on fluorescence require prior in vivo or in vitro labeling, 

and are generally limited to 10-20 simultaneous measurements due to the spectral 

overlap. For in vitro labeling, background arising from cross-reactivity and/or nonspecific 

binding remains a challenge. For in vitro labeling, tagging with GFP/YFP and their 

derivatives may alter folding or other characteristics (e.g. interactions with other proteins) 

of the endogenous proteins. Furthermore, photobleaching of fluorophores and 

autofluorescence of cells may interfere with kinetic measurements. A potential solution is 

MS-based flow cytometry (‘mass cytometry’), which has been described for a single cell 

multi-target immunoassay [40]. However, the method still requires labeling of antibodies 

with elemental tags (e.g. lanthanide) prior to antigen binding.  

Mass spectrometry-based single cell proteomics has not been achieved yet despite 

tremendous interest in the field. Recently, an LC-MS/MS-based method was described 

for quantitative proteomic analysis of single pancreatic islets containing 2,000-4,000 cells 
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[41]. A combination of improved chromatographic methods, direct replicate 

measurements, and high accuracy (1-2 ppm) and sensitivity (attomole to femtomole) 

provided by a LTQ-Orbitrap mass spectrometer, allowed for detection of more than 6,000 

proteins from nanogram quantities of protein mixtures. This ultrasensitive method 

represented an important step toward single cell proteomics. However, due to the extreme 

complexity and huge dynamic range of the proteome, new breakthroughs in sample 

manipulation and detection are needed to achieve in situ single cell proteomics with deep 

proteome coverage (discussed in the next section).  

 

Single cell Omics: future prospects 

Technologies for analyzing nucleic acids, proteins, and metabolites are evolving rapidly. 

This section includes notable examples that have the potential to make major 

contributions to single cell Omics.  

 

New technologies for nucleic acid analysis  

Driven by personal genomics and the NIH-launched “$1000 Genome” project, the 

technologies for nucleic acid analysis, particularly the next-generation sequencing 

technologies, have undergone dramatic advances [42-47]. Figure 4 showcases some of 

the technologies that may contribute to SCA.  

Geiss and colleagues from NanoString Technologies, for example, have 

developed the nCounter gene expression system (Figure 4a) for direct multiplexed 

measurement of gene expression with color-coded probe pairs without amplification [42]. 

The technology utilizes molecular barcodes and single-molecule imaging to detect and 
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count hundreds of unique transcripts directly in a single reaction. The company 

demonstrated that the nCounter system is more sensitive than microarrays and similar in 

sensitivity to real-time PCR. The technology has the potential for single cell 

transcriptomics. 

In addition, multiple breakthroughs in single molecule sequencing technologies 

could pave the way for single cell genomics, epigenomics, and transcriptomics. Turner 

and Korlach together with colleagues from Pacific Biosciences have developed a 

technology for single molecule and real-time DNA sequencing by a single DNA 

polymerase (Figure 4b) [44]. They detected the enzymatic incorporation of 

fluorescently-labeled deoxyribonucleoside triphosphates into the growing DNA strand 

with zero-mode waveguide nanostructure arrays. They demonstrated a median accuracy 

of 99.3%, with no systematic error beyond the fluorophore-dependent error rates, with 

the consensus sequences generated from the single-molecule reads at 15-fold coverage. 

Optimism for this technology is high: the company has raised approximately $266 

million to date through a combination of grants and venture capital according to the 

company’s website. 

Traz and colleagues from Helicos Biosciences have developed a high-throughput 

and amplification-free method for transcriptome quantification, named single-molecule 

sequencing digital gene expression (smsDGE) (Figure 4c) [45]. The technology utilizes a 

reverse-transcription and polyA-tailing sample preparation procedure followed by single-

molecule sequencing that generates a single read per transcript as published earlier [43]. 

They confirmed accurate quantification using spiked-in RNAs, and demonstrated 

sequencing of the yeast transcriptome in a single run, yielding an average of 12 million 

 11



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

aligned reads per channel. While they have not used this technology for SCA, they 

recently published a ChIP-Seq study in collaboration with the Bernstein group using a 

small number of cells and only 50 pg of DNA [48]. 

Bayley and colleagues from Oxford Nanopore Technologies have developed a 

single molecule sequencing technology using nanopores (Figure 4d) [46]. The nanopores 

were constructed from hemolysin mutants that were covalently attached to an adapter 

molecule to detect the bases cleaved from the DNA by an exonuclease enzyme. The 

researchers demonstrated the continuous identification of unlabelled nucleoside 5’-

monophosphate molecules with an average 99.8% accuracy. Methylated cytosine was 

also distinguished from the four standard bases. At the present time, the company 

analyzes multiple copies of nucleic acids, but is theoretically capable of single-copy 

detection, although longer sequences would be required because of diffusion (personal 

communication).  Moreover, the platform could be adapted for analysis of proteins, other 

polymers, and small molecules, potentially accelerating multiple phases of SCA. 

Table 1 summarizes the key technologies and other attributes of five major third-

generation DNA sequencing companies, including three mentioned above (Helicos, 

Pacific Bio, and Oxford Nanopore) and two others (Complete Genomics and Ion 

Torrent). In addition, Life Technologies is actively developing a single molecule 

sequencing technology using quantum dots, and Cipriany et al. recently demonstrated a 

method for single molecule epigenetic analysis using nanofluidics and multicolor 

fluorescence microscopy to detect DNA methylation [49]. (For more information on 

next-generation sequencing technologies, please refer to a recent review by Michael 

Metzker [50]) Further improvements in detection sensitivity, sample manipulation and 
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recovery, and sequence assembly will enable the abovementioned technologies to 

become suitable for direct single cell Omics applications.  

 

New technologies for protein and metabolite analysis 

The “holy grail” of proteomics and metabolomics is to decode the proteome and 

metabolome at the single cell level. This is challenging due to the fact that the amount of 

proteins and metabolites is extremely limited in a single cell (i.e. average 1x105 

molecules for proteins). Furthermore, there are no amplification methods for proteins and 

metabolites comparable to those for nucleic acids.  We believe the most prevalent 

bottleneck for SCA of proteins and metabolites in situ is the marriage between extremely 

efficient sample manipulation and highly sensitive detection. Along this line, we believe 

micro/nanofluidics interfaced with mass spectrometry will be hotly pursued for single-

cell proteomics and metabolomics. Figure 5 showcases some promising technologies that 

may contribute to this endeavor.  

To achieve single cell Omics, it is critical to efficiently select and manipulate 

single cells. Laser capture microdissection has been used routinely to isolate a small 

number of cells from tissue [51]. In addition, micropipette-based micromanipulators have 

been used to manipulate single cells. However, these technologies are difficult to 

implement in a micro/nanofluidic device, particularly for living single cells. Newer 

technologies based on droplet encapsulation may circumvent this challenge. For example, 

Chiu and coworkers have developed femtoliter- and picoliter-sized droplets as nanolabs 

for manipulating single cells and subcellular compartments [52].  Figure 5a shows one of 

their PDMS microfluidic devices for thermoelectric manipulation of single cells [53]. In 
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this device, the T-channel was used for droplet generation and freezing (above where a 

thermo-electric cooler (TEC) was placed). The same group earlier combined optical 

trapping, microfluidic encapsulation, and rapid laser photolysis, and demonstrated 

selective encapsulation of single cells and analysis of subcellular organelles through 

fluorescence spectroscopy [54]. More recently, high-throughput hydrodynamic 

encapsulation of single cells into picoliter-volume droplets on PDMS chips has been 

developed by others [55, 56].  Furthermore, online analysis of the contents in single 

droplets by MS has been demonstrated [57], suggesting promising potential of single cell 

encapsulation-MS analysis.   

Micro/nanofluidic devices have been fabricated to directly analyze proteins from 

single cells or extremely small amounts of biomaterials. Zare and colleagues have 

demonstrated chemical cytometry as well as protein counting in a single cell using PDMS 

microfluidic devices [58, 59].  The analysis chips (Figure 5b) can manipulate, lyse, label, 

separate, and quantify the protein contents of a single cell using single molecule 

fluorescence counting [59]. Heath and colleagues have developed an integrated PDMS-

based barcode chip (Figure 5c) for rapid multiplexed analysis of proteins in a microliter 

of blood [60]. The device achieved on-chip blood separation and rapid detection of a 

panel of plasma proteins using fluorescence-based surface immunoassays. Although no 

SCA has been demonstrated yet using the device, its efficient separation and sensitive 

detection of a very small sample amount may enable its application in SCA. Han and 

colleagues have developed a Si-based microfabricated nanofluidic device, an anisotropic 

nanofilter array (ANA), for continuous-flow separation of DNA and proteins [61]. The 

device may serve as a key component for sample preparation and separation in an 
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integrated bioanalytical system. However, all three of these methods (Zare, Heath, and 

Han) require labeling of proteins using fluorescent antibody binding, which limits 

analysis to a small number of previously characterized proteins.  

Mass spectrometry, by contrast, can identify and quantify thousands of proteins 

and their posttranslational modifications (e.g. phosphorylation and acetylation, etc) per 

experiment. Wang and colleagues have developed Si/SiO2-based microfabricated 

monolithic multinozzle emitters for mass spectrometry (M3 emitters) (Figure 5d) [62]. 

Si/SiO2-based materials were selected because hydrophobic polymers, such as PDMS, 

have inherently undesirable properties for the ESI-MS application, including strong 

affinity to proteins and incompatibility with certain organic solvents. In their design, each 

M3 emitter consists of a parallel silica nozzle array protruding out from a hollow silicon 

sliver. Once integrated with a mass spectrometer, M3 emitters achieve sensitivity and 

stability in peptide and protein detection comparable to those of commercial silica-based 

capillary nanoelectrospray. The additional advantages of these emitters are ease of 

fabrication and potential to be integrated with other micro/nanofluidic structures. These 

M3 emitters may serve as a critical component in a fully integrated silicon/silica-based 

lab-on-a-chip for single cell proteomics and metabolomics.  

Key challenges still remain to implement high-quality interfaces between 

micro/nanofluidic chips and mass spectrometers [63], particularly for SCA. This requires 

further reduction in the sampling size (picoliter to femtoliter, i.e. for single cells or 

subcellular components), sample manipulation (i.e. efficient recovery of proteins and 

peptides), integration of multiple processes (i.e. lysis, separation, and detection), and 

dramatic improvement of the mass spectrometers (sensitivity, accuracy, resolution, and 

 15



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

dynamic range). If coupled with abovementioned on-chip droplet encapsulation of single 

cells, MS-chip technologies may open new doors to high-throughput multiplexed SCA. 

Therefore, breakthroughs in micro/nanofabrication methods and mass spectrometry 

technologies are clearly needed to develop an integrated micro/nanofluidics device for 

single cell proteomics and metabolomics.  

 

Challenges and opportunities  

Single cell Omics presents unprecedented challenges and opportunities, both 

technologically and biologically. There is still a great need for further improvement in 

miniaturization, integration, and detection sensitivity. There is also a great need for 

automation, throughput, and bioinformatics to study multiple individual cells to achieve 

statistical significance. New software packages for statistics and bioinformatics [64], for 

example, may have to be developed for the large amount of data generated from multiple 

single cells. All of these technical challenges will add costs to existing Omics methods in 

the short term, but miniaturization and automation are expected to enable the 

development of new affordable high-throughput methods. Moreover, most current 

Omics-based SCA methods require cell lysis, which means that genes, proteins, and 

metabolites are studied at specific timepoints outside of their physiological environments. 

This can be mitigated through live-cell imaging and other in situ techniques that can be 

performed on single cells once the key markers and pathways are discovered through 

SCA [65]. Furthermore, studying individual cells is inherently reductionist, which means 

that tissue-level properties such as interactions between cells and their extracellular 

environment need to be incorporated into experimental designs and data analyses [7].  
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While these challenges are significant, opportunities abound. At the simplest 

level, reducing cellular heterogeneity reduces noise, which is a goal of any analytical 

system.  At a higher level, though, the heterogeneity itself becomes informative.  As 

shown in Figure 1a, identifying the cells with complete GAPDH knockdown would 

significantly reduce the noise in analyses of GAPDH functions. Furthermore, isolating 

cells with both complete and partial knockdowns allows for an examination of RNA 

interference mechanisms and the causes of the disparate, but apparently quantized, 

responses. Detailed analysis of single cells using Omics technologies are expected to 

elucidate the underlying cellular pathways and networks.   

 In summary, single cell analysis is the new frontier in ‘Omics’. Single cell Omics 

represents the unique convergence of technology and biology and will transform systems 

biology by converting cellular heterogeneity from a source of noise to a source of new 

discoveries.   
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Figure 1. Observation of cellular heterogeneity. (a) mRNA expression of GAPDH from 

individual Jurkat cells after siRNA knockdown. The levels fall into roughly two 

categories, 50% and 100% knockdowns (i.e. 50% and 0% expression remained). Note 

that the average GAPDH expression obtained from the measurement of 50 cells (21±4%) 

was not representative of any individual cell. Adapted with permission from Ref. [6]. (b) 

Clustering diagram of 363 cells in C. elegans according to the similarity of their gene 

expression profiles. Distance between cells in the x-y plane indicates levels of similarity. 

Colors indicate different tissue types. Key: b.w.m., body wall muscle; b.neu., body 

neurons; re.epi., rectal epithelial cells; b.c., other body cells; int., intestine cells; hyp., 

hypodermal cells; blast, blast cells; ph.m., pharyngeal muscle; ph.neu., pharyngeal 

neurons; ph.epi., pharyngeal epithelial cells; ph.c., other pharyngeal cells. Adapted with 

permission from Ref. [7]. 

 

Figure 2. Single cell gene expression analysis. (a) Correlation plots of the quantile-

normalized mRNA sequencing reads for mouse oocytes, showing (i) one wild-type 

oocyte versus another wild-type oocyte; (ii) one Dicer1-/- oocyte versus another Dicer1 -/- 

oocyte; (iii) one wild-type oocyte versus one Dicer1-/- oocyte; and (iv) one wild-type 

oocyte versus one Ago2-/- oocyte. All of the reads with changes of greater than fourfold 

are plotted in red. Adapted with permission from Ref. [24]. (b) Number of cDNA 

molecules measured by qPCR in single human colon carcinoma HCT116 cells and cell 

pools, showing (i) cell-to-cell variation in expression of “housekeeping” genes among 14 

single cells, and (ii) average gene expression for single cells as well as cell pools with 
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error bars (single cell: mean ± s.d., n=14; 10–1,000 cells: mean ± s.d., n=5). Adapted 

with permission from Ref. [25]. 

 

Figure 3. Single cell metabolome analysis. (a) Metabolomic profiling of a single Aplysia 

R2 neuron using CE-ESI-MS, showing the extracted ion electropherogram (XIE) 

obtained for 146 m/z from different subcellular regions, i.e. soma versus neurite. Adapted 

with permission from Ref. [33]. (b) Metabolomic profiling using LAESI-MS, showing (i) 

etched optical fiber for laser ablation relative to the target single cell (scale bar = 

100 μm), and (ii) optical image of neighboring individual colorless and pigmented 

epidermal cells of the purple A. cepa cultivar (scale bar = 50 μm). Also shown (ii-a and 

ii-b) are the corresponding LAESI-MS spectra. Selected similar and different peaks (m/z) 

are indicated by arrows (ii-b). Adapted with permission from Ref. [34]. 

 

Figure 4. New technologies for nucleic acid analysis. (a) nCounter gene expression 

system from NanoString Technologies, showing (i) schematic representation of the 

hybridized complex (not to scale); (ii) schematic representation of, from left to right, 

binding, electrophoresis, and immobilization; and (iii) false-color image of immobilized 

reporter probes. Adapted with permission from Ref. [42]. (b) Single-molecule, real-time 

DNA sequencing system from Pacific Biosciences, showing (i, left) schematic 

representation of the experimental geometry with a single molecule of DNA template-

bound DNA polymerase immobilized at the bottom of a zero-mode waveguide (ZMW), 

(i, right) schematic event sequence of the phospholinked dNTP incorporation cycle, with 

a corresponding expected time trace of detected fluorescence intensity from the ZMW; 
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(ii, top) total intensity output of all four dye-weighted channels with pulses colored 

corresponding to the least-squares fitting decisions of the algorithm, and (ii, bottom) the 

entire read that proceeds through all 150 bases of the linear templates. Adapted with 

permission from Ref. [44]. (c) Single-molecule sequencing digital gene expression 

system from Helicos Biosciences, illustrating sample preparation and sequencing 

workflow: (1) preparation of the first-strand cDNA from mRNA, (2) addition of 3’ tail of 

dATP followed by dideoxy-TTP (ddT) blocking, (3) hybridization of tailed sample to 

poly-dT oligonucleotide covalently attached to the flow-cell channel surface, (4) 

sequencing of a single base by adding a Cy5-labeled nucleotide, (5) cleaving off the Cy5 

dye label, and (6) adding and imaging of next nucleotide. Adapted with permission from 

Ref. [45]. (d) Single-molecule nanopore sequencing system from Oxford Nanopore 

Technologies, showing (i, left) nanopore structure of the WT-

(M113R/N139Q)6(M113R/N139Q/L135C)1 mutant with the cyclodextrin covalently 

attached at position 135 (space-filling model), and (i, right) close-up of the β barrel with 

the arginines at position 113 and the location of the cysteines in the mutants tested in the 

study; and (ii) single-channel recording from the nanopore that indicates discrimination 

of dGMP, dTMP, dAMP, and dCMP, with colored bands representative of the residual 

current distribution for each nucleotide. Adapted with permission from Ref. [46].  

 

Figure 5. New technologies for protein and metabolite analysis. (a) A single-cell 

encapsulator, showing (i) the channel systems, and (ii) a string of droplets generated. 

Adapted with permission from Ref. [53].  (b) A single-cell analysis chip, showing the 

cell-manipulation section on the left and the molecule-counting section on the right. 
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Adapted with permission from Ref. [59]. (c) An integrated blood barcode chip, 

comprising channels that harness the Zweifach-Fung effect for plasma separation from a 

finger prick of blood as well as multiple DNA-encoded antibody DEAL barcode arrays 

patterned on the surface of the plasma-skimming channel. Adapted with permission from 

Ref. [60]. (d) Microfabricated monolithic multinozzle emitters (M3 emitters), showing (i) 

a schematic view of a nanoelectrospray emitter with two protruding nozzles, and (ii) 

SEM images and corresponding magnified views of the M3 emitters with different nozzle 

numbers (1-10) and dimensions. Adapted with permission from Ref. [62]. 
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Table 1. A comparison of representative third-generation DNA sequencing companies 
 
 Helicos Pacific 

Biosciences 
Oxford 
Nanopore 

Complete 
Genomics 

Ion Torrent

Key 
technology 
 

Amplificati
on-free 
sequencing,
Ref. [43] 

Zero-mode 
waveguide 
nanostructur
e arrays, 
Ref. [44] 

Protein 
nanopores, 
Ref. [46] 

Self-
assembling 
DNA 
nanoarrays, 
Ref. [47] 

Chemical 
sensitive 
field-effect 
transistor 
arraysa  

Single 
molecule 
detection 

Yes Yes Yes No Undisclosed 

Commercia
lization 

Launched in 
2008 

Launched in 
March 2010 

Undisclosed 
estimated 
launch 

Sequencing 
services  

Launched in 
March 2010 

Funding to 
date 
(millions)b 

~US$115 US$266 £41.3  >US$45  US$23 

a. Patent application WO/2008/076406 3 
4 b: Company websites 
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