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ARTICLE

White matter connectivity in brain networks
supporting social and affective processing predicts
real-world social network characteristics
Ryan Hyon 1✉, Robert S. Chavez 2, John Andrew H. Chwe3, Thalia Wheatley4,5, Adam M. Kleinbaum 6 &

Carolyn Parkinson 1,7✉

Human behavior is embedded in social networks. Certain characteristics of the positions that

people occupy within these networks appear to be stable within individuals. Such traits likely

stem in part from individual differences in how people tend to think and behave, which may

be driven by individual differences in the neuroanatomy supporting socio-affective proces-

sing. To investigate this possibility, we reconstructed the full social networks of three

graduate student cohorts (N= 275; N= 279; N= 285), a subset of whom (N= 112) under-

went diffusion magnetic resonance imaging. Although no single tract in isolation appears to

be necessary or sufficient to predict social network characteristics, distributed patterns of

white matter microstructural integrity in brain networks supporting social and affective

processing predict eigenvector centrality (how well-connected someone is to well-connected

others) and brokerage (how much one connects otherwise unconnected others). Thus, where

individuals sit in their real-world social networks is reflected in their structural brain networks.

More broadly, these results suggest that the application of data-driven methods to neuroi-

maging data can be a promising approach to investigate how brains shape and are shaped by

individuals’ positions in their real-world social networks.
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A ll human cognition and behavior are embedded within the
context of real-world social networks. In any social net-
work, people vary systematically with respect to the

number of friends that they have, the extent to which they are
well-connected to well-connected others, and the extent to which
they connect people who would otherwise be unconnected to
each other. Although these social network position characteristics
have meaningful consequences for individuals and their
communities1–9, they are not well captured by measures typically
used to assess individual differences in personality, such as self-
report surveys administered to individuals in isolation10,11.
However, recent work has shown that social network position
characteristics constitute significantly heritable individual differ-
ence variables that are stable across contexts12,13. The heritability
of social network position characteristics may be driven, at least
in part, by the heritability of social, affective, and behavioral
tendencies, which may be reflected in individual differences in the
networks of brain regions that support relevant aspects of social
perception, cognition, and affective processing. Here, we sought
to investigate this possibility by integrating structural neuroima-
ging data with characterizations of participants’ positions in their
real-world social networks.

A growing body of research has begun to highlight the critical
role of white matter connectivity in supporting social cognition14,
and the structural integrity of white matter tracts has been linked
to a variety of individual differences in social, cognitive, and
behavioral traits15–20. Although past work has largely focused on
how the structural integrity of single white matter tracts relate to
sociobehavioral tendencies, using data-driven machine learning
models to map relationships between distributed patterns of
white matter microstructural integrity and sociobehavioral ten-
dencies can provide an informative window into the complex web
of connectivity between brain regions that supports social
cognition21.

Here, we used diffusion magnetic resonance imaging (dMRI)
to test whether individual differences in distributed patterns of
white matter microstructural integrity are predictive of individual
differences in social network position characteristics. To this end,
we characterized the complete social networks of three different
bounded communities of individuals, a subset of whom under-
went dMRI. We then used probabilistic tractography to delineate
groups of white matter tracts associated with three key facets of
social processing: face perception, mentalizing, and mirroring, as
well as affective processing. Finally, we used a machine learning
algorithm to predict characteristics of individuals’ social network
positions based on patterns of white matter microstructural

integrity across tracts in these brain networks. Rather than only
examining univariate relationships between single tracts and
social network position characteristics, leveraging a data-driven,
multivariate approach can improve predictive performance by
taking into account distributed connectivity signatures (i.e.,multi-
tract patterns of white matter microstructural integrity).

Patterns of microstructural integrity distributed across white
matter tracts in brain networks involved in social and affective
processing were predictive of structural characteristics of indivi-
duals’ positions in their real-world social networks, such as the
extent to which they bridge between disparate people or groups
(brokerage) and the extent to which they are well-connected to
well-connected others (eigenvector centrality). In addition, while
distributed patterns of white matter microstructural integrity
were predictive of social network position characteristics, no
single white matter tract appeared to be necessary or sufficient for
predicting social network position characteristics. These findings
suggest that individual differences in brain networks that support
social perception, affective processing, and understanding others’
actions may be particularly important in determining the struc-
tural positions that individuals occupy in their real-world social
networks.

Results and Discussion
We first characterized the complete social networks of three cohorts
of a graduate program. Members of each cohort (Ncohort-1= 275;
Ncohort-2= 279; Ncohort-3= 285) completed an online survey (see
Methods); data from this survey was used to characterize each
cohort’s social network (Fig. 1). A subset of the individuals who
participated in the social network survey also participated in the
dMRI study (Ncohort-1= 46; Ncohort-2= 32; Ncohort-3= 34 after exclu-
sions based on participant movement; see Methods), in which
diffusion-weighted images were collected (see Methods for more
details).

For each dMRI participant, we characterized their position in
the social network of their cohort in terms of five social network
position characteristics: out-degree centrality (the number of
people whom the participant names as a friend), in-degree cen-
trality (the number of people who name the participant as a
friend), eigenvector centrality (the extent to which the participant
is well-connected to other well-connected individuals), between-
ness centrality (a global measure of brokerage measuring the
fraction of shortest paths between other members of the social
network that pass through the participant), and constraint (a local
measure of brokerage accounting for the extent to which someone
has access to non-redundant social partners; see Methods for

Fig. 1 Social network characterization. Three cohorts of first-year graduate students completed a survey in which they indicated their social ties with other
students. These three social networks were reconstructed using this data. Nodes indicate students and lines reflect mutually reported ties between
students. Across all three cohorts, a subset of students (red nodes; N = 112 after exclusions; see Methods) participated in the dMRI study. The
Fruchterman-Reingold layout algorithm, as implemented in the igraph package, was used to position the nodes.
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details on social network position characteristics). Thus, two
measures of brokerage were considered: constraint and
betweenness centrality. We examined betweenness centrality to
be consistent with prior work that used betweenness centrality as
a measure of brokerage in establishing the heritability of this
aspect of social network position12. We included constraint fol-
lowing our own prior work integrating neuroimaging and social
network data22 and because constraint is a more local measure of
brokerage that may be more impacted by individuals’ own
sociobehavioral tendencies, rather than those of other nearby
individuals in the network23. In contrast, betweenness centrality
captures how often an individual lies on the shortest path
between other people in the social network, and thus can be
dramatically impacted by factors beyond an individual’s own
sociobehavioral tendencies23. For example, individuals with high
betweenness centrality may not function as true brokers, as they
may lie on the shortest paths between others merely because they
are in close proximity to a true broker23. Thus, relative to
betweenness centrality, constraint may bear a stronger relation-
ship to the sociobehavioral tendencies that are characteristic of
brokers, which in turn are reflected in patterns of white matter
microstructural integrity in the brain.

Regions of interest (ROIs) in four a priori defined brain networks
associated with different aspects of socio-affective processing (i.e.,
affective processing, face perception, mentalizing, and mirroring
networks) were functionally defined using the meta-analysis tool
Neurosynth24 (Fig. 2). This method provides an approximation of
the location of a given ROI if it had been mapped with fMRI in each
individual. The three social brain networks examined here were
selected based on recent reviews on white matter and social cog-
nition that have emphasized their role in social interactions and
processing20: Successful social interactions require (1) recognizing
and extracting information from others’ faces (via regions in the face
perception network), (2) quickly understanding their actions,
emotions, and intentions through brain regions involved in both

producing and observing actions (via regions in the putative mir-
roring network), and (3) representing and reasoning about their
mental states (via regions of the mentalizing network). Probabilistic
tractography was then conducted to trace the white matter tracts
connecting every possible pair of ROIs in each brain network (see
Methods). Ultimately, the affective processing network consisted of
33 white matter tracts, the face perception network consisted of 50
white matter tracts, the mentalizing network consisted of 41 white
matter tracts, and the mirroring network consisted of 49 white
matter tracts. To characterize the microstructural integrity of each
white matter tract, average fractional anisotropy (FA) values were
extracted such that each white matter tract had a corresponding
single FA value. FA captures the directional coherence of water in
white matter tracts and has been shown to be highly sensitive to
factors such as myelination, axonal packing density, and axonal
diameter25.

Using a leave-one-subject-out cross-validation scheme, we used
a machine learning algorithm based on ridge regression (see
Methods) to test whether patterns of microstructural integrity of
white matter tracts within each of the four aforementioned brain
networks were predictive of out-degree centrality, in-degree
centrality, eigenvector centrality, betweenness centrality, and
constraint (Fig. 3). Model performances were measured using the
correlation between actual and predicted values of social network
position characteristics, and p-values were corrected for multiple
comparisons using false discovery rate (FDR) thresholding (see
Methods).

Results: Patterns of white matter microstructure within brain
networks involved in social and affective processing are pre-
dictive of social network position characteristics. Patterns of
microstructural integrity across white matter tracts in the affec-
tive processing network significantly predicted individuals’ con-
straint (r= 0.263, p= 0.002, pFDR-corrected= 0.010), betweenness
centrality (r= 0.240, p= 0.006, pFDR-corrected= 0.015), and eigen-
vector centrality (r= 0.211, p= 0.013, pFDR-corrected= 0.026).
Patterns of microstructural integrity across white matter tracts in

Fig. 2 Schematic illustrating the process of reconstructing white matter
tracts between regions involved in particular facets of socio-affective
processing. a Meta-analysis-based images of brain regions associated with
a particular facet of socio-affective processing (e.g., mirroring) were
generated by submitting sets of keywords (e.g., action observation, mirror
neuron, mirror) to Neurosynth22. b These images were aggregated across
terms in a set, and discrete regions of interest were identified. c For each
subject, probabilistic tractography was then conducted to trace white
matter tracts (colored lines in this schematic image) connecting each pair
of brain regions (red nodes). This procedure was repeated to construct the
affective processing, mentalizing, and face perception networks (see
Methods for further details).

Fig. 3 Multivariate prediction of social network position characteristics
based on patterns of white matter microstructural integrity. For each
subject, average FA was extracted from each white matter tract in a given
brain network, and the resulting set of FA values were used as predictors
(as shown in different colors) in a ridge regression-based algorithm to
predict individuals’ social network position characteristics (see Methods for
further details). This procedure was performed for the mirroring, affective
processing, mentalizing, and face perception brain networks.
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the mirroring network significantly predicted individuals’ con-
straint (r= 0.210, p= 0.013, pFDR-corrected= 0.026), eigenvector
centrality (r= 0.244, p= 0.005, pFDR-corrected= 0.019), and out-
degree centrality (r= 0.239, p= 0.006, pFDR-corrected= 0.022).
Patterns of microstructural integrity across white matter tracts in
the mentalizing network significantly predicted individuals’
eigenvector centrality (r= 0.186, p= 0.025, pFDR-corrected= 0.033)
and betweenness centrality (r= 0.172, p= 0.034, pFDR-
corrected= 0.046). Patterns of microstructural integrity across
white matter tracts in the face perception network significantly
predicted individuals’ betweenness centrality (r= 0.229,
p= 0.008, pFDR-corrected= 0.015).

We repeated the above analytic procedure in our primary
analyses to test if patterns of microstructural integrity distributed
across white matter tracts in each brain network were
significantly predictive of social network position characteristics
while controlling for demographic variables (i.e., age, gender), as
well as handedness and academic cohort. We also controlled for
self-reported extraversion, given that extraversion has been
associated with social network position characteristics, such as
eigenvector centrality10 (associations between control variables
and social network characteristics are reported in Supplementary
Note 1). Patterns of microstructural integrity across white matter
tracts in the affective processing network were significantly
predictive of constraint (r= 0.240, p= 0.005, pFDR-
corrected= 0.014) while controlling for these variables. Further-
more, patterns of microstructural integrity across white matter
tracts in the mirroring network were significantly predictive of
eigenvector centrality (r= 0.265, p= 0.002, pFDR-corrected= 0.010)
and constraint (r= 0.232, p= 0.007, pFDR-corrected= 0.014) when
controlling for these variables (Fig. 4).

Results: Patterns of white matter structure across major white
matter tracts are predictive of social network position char-
acteristics. In an exploratory analysis, we used Freesurfer’s TRA-
CULA (TRActs Constrained by UnderLying Anatomy) tool26, an
algorithm for automated global probabilistic tractography, to
reconstruct 18 major white matter tracts for each subject. We then
used the same analytic procedure to test if patterns of micro-
structural integrity across these major, well-established white matter

tracts can predict social network position characteristics. We
observed results similar to those in the primary analysis (see Sup-
plementary Note 2), such that patterns of microstructural integrity
were predictive of eigenvector centrality and betweenness centrality,
and were also predictive of in-degree centrality and eigenvector
centrality when controlling for demographic characteristics (age,
gender), extraversion, handedness, and cohort. These results cor-
roborate our primary findings that distributed patterns of white
matter microstructural integrity are predictive of social network
position characteristics. They also demonstrate that these findings
are robust to the use of markedly different data analytic procedures.

Results: No single white matter tracts are necessary to predict
social network position characteristics. Our primary results
suggest that patterns of microstructural integrity distributed
across white matter tracts in the mirroring network are predictive
of eigenvector centrality, and that patterns of microstructural
integrity distributed across white matter tracts in the affective
processing and mirroring networks are predictive of constraint,
when controlling for covariates. We then sought to conduct
exploratory analyses to investigate whether certain white matter
tracts were disproportionately contributing to the predictive
performance of these models. To this end, we tested whether the
exclusion of any single white matter tract would significantly
diminish the predictive performance of each full model (i.e., using
all P predictors, where P is the number of tracts in a given brain
network). We first calculated the true difference in predictive
performance between the full model and a model leaving one
tract out (i.e., using P - 1 predictors). This true difference value
was then compared against a null distribution of 1,000 difference
values in predictive performance generated by permutation test-
ing. This procedure was repeated P times (i.e., for each tract) for
each of these three models, such that the relative contribution of
each predictor to each model’s predictive performance was
evaluated (see Methods).

There were no single tracts that, when omitted, significantly
compromised the models’ ability to predict eigenvector centrality or
constraint from patterns of white matter microstructural integrity in
the mirroring network. A similar pattern of null results was
observed when testing if the omission of single tracts compromised

Fig. 4 Multivariate patterns of white matter microstructural integrity predicted real-world social network position characteristics. a Whereas patterns
of white matter microstructural integrity in the affective processing network were predictive of constraint, b patterns of white matter microstructural
integrity in the mirroring network were predictive of constraint and eigenvector centrality. For each model, the predictive performance was measured using
the Pearson correlation between the actual and predicted values of the social network variable of interest (N=112); p-values are FDR-corrected; shaded
regions indicate 95% CIs. Social network position values were normalized within cohort and square-root transformed prior to analysis. These analyses
control for extraversion, demographic characteristics (i.e., age, gender), handedness, and academic cohort.
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the models’ ability to predict constraint from patterns of white
matter microstructural integrity in the affective network. These
results suggest that the exclusion of single white matter tracts from
the set of predictors in the affective processing or mirroring
networks does not significantly diminish the respective full models’
performance in predicting social network position characteristics.
Thus, within the brain networks in which patterns of white matter
microstructural integrity were significantly predictive of social
network position characteristics, no single tract was necessary for
making such predictions. This procedure was also repeated using
the set of predictors derived from the TRACULA analysis, and this
analysis also returned null results.

Results: Single white matter tracts alone are not sufficient to
predict social network position characteristics. We next sought
to test whether any single white matter tract in the affective
processing, mirroring, face perception, or mentalizing networks
would be sufficient to predict social network position character-
istics, while controlling for extraversion and our other control
variables (e.g., demographic variables). For each of the 173 white
matter tracts, we used ordinary least squares regression to test
whether its microstructural integrity was predictive of any of the
five social network position characteristics (out-degree centrality,
in-degree centrality, eigenvector centrality, betweenness cen-
trality, and constraint; see Methods). The microstructural integ-
rity of single tracts was not predictive of any of the five social
network position characteristics, even when a relaxed threshold
for determining significance was used (see Methods). This pro-
cedure was also repeated using the set of predictors derived from
the TRACULA analysis, and this analysis also returned null
results.

The results of our primary analysis demonstrate that
distributed patterns of white matter microstructural integrity
across tracts in brain networks supporting social and affective
processes are predictive of structural characteristics of people’s
positions in their real-world social networks. Specifically, patterns
of white matter microstructural integrity amongst white matter
tracts between brain regions associated with affective processing
and mirroring were predictive of the extent to which individuals
connect otherwise unconnected people and the extent to which
individuals are well-connected to other well-connected people in
their real-world social networks, above and beyond the effects of
demographic variables and extraversion (Fig. 4).

Patterns of white matter microstructure may shape socio-
behavioral tendencies linked to social network position char-
acteristics. These findings expand on past work demonstrating
that various social network position characteristics are heritable
individual difference variables that are stable across contexts12,27.
The genetic basis of social network position characteristics may
operate in part via individuals’ passive characteristics, which
influence how others behave toward them (e.g., their appearance).
Consistent with this possibility, physical attractiveness has been
shown to be predictive of social status, popularity, and social
acceptance28–31, and people can somewhat accurately infer
aspects of strangers’ social network position characteristics (i.e.,
in-degree centrality and constraint) based on their physical
appearance32. On the other hand, the genetic basis of social
network position characteristics may also manifest through active
characteristics–e.g., sociobehavioral tendencies that facilitate the
occupation of certain kinds of social network positions13. For
example, such active characteristics might include an individual’s
sociability, their tendency to introduce their friends to one
another, the extent to which they express empathy toward others,
their propensity to engage in behavioral mimicry in social

interactions, or some combination of these factors. Individual
differences in such sociobehavioral tendencies are likely driven by
individual differences in brain structure, but little is known about
the relationship between neuroanatomy and social network
position characteristics.

Past research has demonstrated that out-degree centrality
is linked to individual differences in structural properties
of particular brain regions, as well as white matter
connectivity33–37. The studies referred to here linked individual
differences in neural predictors to social network size, which was
measured in a variety of ways. However, these different measures
of social network size all correspond to out-degree centrality (or
in studies using undirected networks, degree centrality). Thus,
we use the more precise term out-degree centrality here (since
the term network size would imply something different, for
example, in sociocentric networks, such as those characterized
here, than in egocentric networks). To characterize out-degree
centrality, these studies used an egocentric network approach, in
which participants enumerate their contacts via free recall or the
number of friends that participants have in online communities.
This work has yielded important insights into the relationship
between brain structure and sociality. At the same time, such
approaches have important limitations. For example, it
is difficult to disentangle variability in out-degree centrality
(self-reported network size) from individual differences in social
perception or memory (when self-report is used) or from
individual differences in engagement with a particular online
platform (when number of friends on social media websites is
used)23,25,38–42. In contrast, the sociocentric network approach
used here incorporates data on social ties provided by each
individual in the network and can be used to calculate
characteristics of individuals’ social network position that take
into account broader patterns of social ties (e.g., third party
relationships). Thus, the sociocentric network approach can
complement the egocentric network approach by capturing a
more complete picture of a social network, thereby expanding
the types of inferences that can be drawn about people’s relative
social network position characteristics.

Research in sociology and ecology has demonstrated that social
network position characteristics whose calculation often depends
on sociocentric network data (e.g., in-degree centrality, eigen-
vector centrality, constraint, betweenness centrality) have parti-
cularly impactful consequences in real-world social networks.
These include measures of evolutionary fitness and likelihood of
survival across a variety of social species43,44, as well as social
influence2, professional success1,2,9, others’ perceptions of one’s
competence and leadership5,45, and the likelihood of becoming
the target of negative gossip and scapegoating46. Furthermore,
whereas out-degree centrality has not been found to be heritable,
other, often sociocentrically-derived, social network position
characteristics have been shown to be heritable individual
difference variables12. Thus, the latter may constitute stable traits
that are relatively invariant across contexts27. Indeed, a growing
body of research has integrated sociocentric network analysis and
neuroimaging to demonstrate that people spontaneously encode
and track the extent to which others hold positions of in-degree
centrality47,48, eigenvector centrality, and brokerage22 in real-
world social networks. These findings suggest that individuals
spontaneously retrieve complex knowledge about people’s relative
social network position characteristics that may be crucial for
informing cognition and behavior. However, the neural pre-
dictors and sociobehavioral tendencies associated with such social
network position characteristics are not well understood in social
neuroscience and psychology, given that the data necessary to
calculate these characteristics (i.e., sociocentric network data) is
seldom collected.
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Patterns of white matter microstructural integrity in brain
networks supporting socio-affective processing predict social
network position characteristics. The localization of the current
results can shed light on the types of active characteristics, or
sociobehavioral tendencies, that may be associated with particular
social network position characteristics. In particular, patterns of
microstructural integrity of white matter tracts in the affective
processing and mirroring networks were predictive of constraint
(an inverse measure of brokerage), beyond the effects of demo-
graphics (age, gender), handedness, cohort, and extraversion.
Brokers connect people who would not otherwise be connected
and thus wield leverage in controlling the flow of resources (e.g.,
information) and in coordinating behavior across local social
ties49. Given that occupying positions of brokerage involves
interacting with different groups of people, brokers may be
exceptionally skilled in adapting their thoughts and behavior to
meet the variable demands of their diverse social environment.
Indeed, past work has shown that across different contexts,
people occupying positions of brokerage are characteristically
high in self-monitoring50–53, which is associated with an intuitive
sensitivity to subtle social cues and with the ability to modify
one’s behavior to adapt to social circumstances54,55. Individuals
high in self-monitoring have been shown to closely monitor the
thoughts, actions, and feelings of people around them56,57 and
also invest considerable effort in providing emotional help58 and
advice59 to their contacts. Such sociobehavioral tendencies may
be driven by individual differences in patterns of white matter
microstructural integrity across the affective processing and
mirroring networks. The affective processing network may sup-
port the monitoring and interpretation of emotions and the
regulation of one’s own emotions60–62, and the mirroring net-
work may mediate the representation, understanding, and
mimicry of the actions of others63–65. Given that brokers are
highly attuned to cues of situational appropriateness, they are
likely exceptionally skilled at accurately perceiving and inter-
preting the emotions and actions of others. Brokers may also be
particularly likely to exhibit social chameleon-like behavior such
that they engage in nonconscious mimicry and imitate the
behaviors of their social contacts. Such behavior has been shown
to be associated with increased mutual feelings of affiliation,
rapport, and liking66 and would be conducive to bridging dis-
parate groups of people that may behave in different ways.

Additionally, patterns of microstructural integrity of white
matter tracts in the mirroring network were predictive of
eigenvector centrality, a prestige-based measure of centrality that
takes into account not only an individual’s own centrality but also
the centralities of their contacts67. Given the relative dearth of
previous research investigating cognitive and behavioral traits
associated with eigenvector centrality, the link between eigen-
vector centrality and the cognitive and behavioral tendencies
associated with the mirroring network is unclear. However, being
highly attuned to social cues and having the ability to effectively
understand and imitate the actions of others may be particularly
characteristic of individuals occupying positions of high eigen-
vector centrality, as such tendencies are conducive to being well-
liked66 and may also lead to the formation and maintenance of
social ties with other well-connected individuals.

Patterns of white matter microstructure were not significantly
predictive of out-degree centrality, in-degree centrality, and
betweenness centrality beyond the effects of covariates. While it
is difficult to interpret null findings, we note that this may be
attributable to a variety of factors. For example, given that a
sociocentric network approach was used here, participants only
enumerated contacts within their bounded social network; thus,
the measure of out-degree centrality used here was limited to
capturing nominations of friends within the social network.

While the bounded social networks characterized here were
composed of people in a rural, isolated location who largely live,
eat, socialize, and study with one another (see Methods),
participants may have had friends outside of their academic
cohorts that were not characterized. It is possible that patterns of
white matter microstructure in social processing networks would
be predictive of out-degree centrality if friendships with people
outside of participants’ academic cohorts were taken into account.
Alternatively, more targeted analyses in tracts defined a priori
may yield significant predictions of out-degree centrality, whereas
the current study corrected for multiple comparisons across
multiple sets of analyses.

Patterns of white matter microstructural integrity were also
not predictive of in-degree centrality, but they were significantly
predictive of eigenvector centrality. This suggests that indivi-
dual differences in patterns of white matter microstructural
integrity are related to individual differences in characteristics
of the social network position that take into account indirect
relationships and broader patterns of social ties (i.e., being well-
connected to well-connected others) that go beyond more local
characteristics (i.e., the number of direct nominations one
receives from others).

At the same time, consistent with the possibility that
constraint, as a more local measure of brokerage, is more strongly
related to individuals’ sociobehavioral tendencies (in contrast to
betweenness centrality, a measure of brokerage that can be
impacted by more distal factors, such as lying on the shortest path
between others due to being close to a true broker41), patterns of
white matter microstructural integrity were not predictive of
betweenness centrality, but were predictive of constraint.

Patterns of white matter microstructural integrity in the
mentalizing network did not predict social network position
characteristics. While patterns of white matter microstructural
integrity within the affective processing and mirroring networks
were predictive of social network position characteristics when
controlling for covariates, those in the mentalizing network were
not. Thus, structural characteristics of individuals’ positions in
their social networks appear to be linked to connectivity in brain
networks involved in rapid, automatic processes involved in
understanding and relating to others and their emotional states
(e.g., mirroring and affective processing), but not in those sup-
porting more cognitive facets of interpersonal understanding.
Understanding cues to the internal states of others – i.e., the
construct of empathy – may be broken down into emotional and
cognitive empathy, which are distinct processes with distinct
neural mechanisms68–72. On the one hand, regions in the putative
human mirror neuron network support emotional empathy,
which is an automatic, rapid process that mediates one’s emo-
tional, sensorimotor, and visceral response to the affective state of
another person. On the other hand, a different set of brain regions
supports cognitive empathy, which is a comparatively slow,
effortful process that mediates one’s conscious ability to under-
stand or explicitly recognize the mental states (e.g., perspectives,
intentions) of others70,71,73,74.

Here, “empathy” was one of the terms used to define brain
regions in the mentalizing network (see Methods). Whereas this
term may have yielded brain regions associated with both
cognitive and emotional empathy, terms such as “mirror neuron”
and “mirror” that were used to define regions in the mirroring
network are aligned with emotional, but not cognitive, empathy.
Thus, it is possible that individual differences in patterns of white
matter microstructural integrity in the mirroring network reflect
individual differences in emotional empathy (and not cognitive
empathy) and that these individual differences are linked to
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individuals’ social network position characteristics. Indeed, past
work has shown that individual differences in the microstructural
integrity of white matter tracts connecting perception and action-
related regions (i.e., regions in the mirroring network) and
regions involved in affective processing are predictive of
emotional, but not cognitive, empathy62. In contrast, individual
differences in patterns of white matter microstructural integrity in
the mentalizing network likely at least partially reflect individual
differences in cognitive empathy. It is possible that cognitive
empathy is not linked to people’s social network position
characteristics. It is also possible that cognitive empathy relies
on more domain-general neural mechanisms75,76, whereas
emotional empathy relies on more domain-specific neural
circuitry77, which could make associations between cognitive
empathy and its structural correlates less robust than those
between emotional empathy and its structural correlates.
Furthermore, a limitation of the current study is that a group-
level meta-analytic map was used to define regions of interest
associated with the mentalizing network. However, recent work
has demonstrated that the spatial specificity of the mentalizing
network is highly heterogeneous across individuals78. This
finding may explain the current study’s null results when using
patterns of white matter microstructural integrity within the
mentalizing network to predict social network position char-
acteristics, and future work may benefit from using functional
localizers to identify mentalizing regions of interest that would be
used as seed regions in probabilistic tractography.

Conclusions and future directions. We suggest that future work
build on the current findings by examining the extent to which
individual differences in the processes supported by the afore-
mentioned brain networks (e.g., emotional empathy, facets of
affective processing, such as empathic accuracy) mediate the
relationship between brain structure and social network position
characteristics. Future work should also examine the extent to
which individual differences in brain structure precede or result
from individual differences in social network position char-
acteristics. It is possible that brokers attain their advantageous
social network position characteristics through distinctive capa-
cities for interpersonal understanding, which are reflected in
structural characteristics of brain networks involved in mirroring
and affective processing. It is also possible that occupying a high-
brokerage position in one’s social network places more demands
on one’s capacity for social and affective information processing
(e.g., due to the need to be sensitive to differing social and
emotional cues in different social groups and to flexibly modulate
one’s behavior to suit different contexts). Over time, this may lead
to structural differences in the brain networks that support such
processing.

In addition, while the current study pooled data from three
different bounded communities, all participants were graduate
students at a university in the United States. Future work could
extend these findings by examining the relationship between
white matter microstructure and social network position
characteristics in different cultural settings and at different stages
of development. Furthermore, given a large enough sample size,
future work would also benefit from training and testing models
on different samples of individuals, as this would shed light on
whether relationships between white matter microstructural
integrity and social network position characteristics are consistent
across contexts and communities. Additionally, while the current
study used FA as a measure of microstructural integrity, future
work may benefit from testing if other measures of white matter
microstructure, such as axial diffusivity, mean diffusivity, and
radial diffusivity, or the number of probabilistic tractography

streamlines, are predictive of social network position
characteristics.

Future work may also benefit from using functional localizers
to identify seed regions of interest, as the location of functionally
defined brain regions may vary from person to person79. In
particular, aspects of the mentalizing network have recently been
shown to vary substantially across individuals78. Thus, using
functional localizers to define subject-specific seed regions of
interest would likely confer greater sensitivity for detecting
systematic links between patterns of white matter microstructural
integrity and traits such as social network position characteristics.
Furthermore, with functionally localized subject-specific ROIs, it
is also possible to test if the size of ROIs may systematically affect
FA-based prediction of social network position characteristics.

Additionally, the current work focused on patterns of white
matter microstructure across tracts within brain networks, as it
was motivated by an interest in linking individuals’ social
network position characteristics to anatomical connectivity
among brain regions involved in particular mental functions
(e.g., linking characteristics of tracts connecting brain regions
involved in affective processing to measures of social network
centrality). We did not test whether patterns of white matter
microstructure across functionally defined tracts between brain
networks were predictive of social network position character-
istics. It is conceivable that patterns of white matter micro-
structure across between-network tracts and, correspondingly,
interactions between different mental functions (to the extent that
tracts between such networks support interactions between the
corresponding mental functions), also play an important role in
shaping social behavioral tendencies and therefore an individual’s
social network position characteristics. We did, however, find that
patterns of white matter microstructure across TRACULA-
defined major white matter tracts were predictive of social
network position characteristics. Future work could benefit from
specifically considering tracts between different functionally
defined brain networks.

Our exploratory analyses indicated that no single white matter
tract in particular was necessary for predicting social network
position characteristics. Furthermore, no single white matter tract
was sufficient for predicting social network position character-
istics on its own. Rather, our results suggest that multi-
variate patterns of microstructural integrity values derived from
sets of white matter tracts were necessary for predicting social
network position characteristics. These findings expand on recent
neuroimaging research demonstrating the utility of data-driven
machine learning models in mapping relationships between
multivariate sets of neural predictors and person-level outcomes.
Such data-driven predictive modeling frameworks have been
adopted to link functional neuroimaging data to a wide range of
social, cognitive, and behavioral traits80–85. In particular, recent
work has demonstrated that whole-brain patterns of resting-state
functional connectivity are predictive of one’s location in a real-
world social network86. Taken together with the current results,
these findings suggest that applying machine learning to high-
dimensional neuroimaging data is a fruitful approach for gaining
insight into how brain structure and function relate to
individuals’ positions in their real-world social networks.

Methods
Social network characterization. Subjects who completed the social network sur-
vey were from three different cohorts of first-year students in a graduate program at a
private university in the United States who participated as part of their coursework on
leadership. The total size of all three cohorts was 842 students, and 839 students
participated in the social network survey, resulting in an overall response rate of
99.6% (NCohort-1= 275, 91 females, response rate = 99.3%; NCohort-2= 279, 89
females, response rate = 100%; NCohort-3= 285, 120 females, response rate = 99.7%).
For each cohort, an online social network survey was administered 3-4 months after
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the subjects had arrived on campus. Subjects followed an e-mailed link to the study
website where they responded to a survey designed to assess their position in the
social network of students in their cohort of the academic program. The survey was
adapted from prior work1,22,87,88. It read, “Consider the people with whom you like to
spend your free time. Since you arrived at [institution name], who are the classmates
you have been with most often for informal social activities, such as going out to lunch,
dinner, drinks, films, visiting one another’s homes, and so on?” A roster-based name
generator was used to avoid inadequate or biased recall. Subjects indicated the pre-
sence of a social tie with an individual by placing a checkmark next to their name.
Subjects could indicate any number of social ties and were not constrained by a time
limit. The bounded social networks characterized here were composed of people in a
rural, isolated location who predominantly lived, ate, socialized, and studied with one
another. The social network survey used here inquired only about students’ inter-
actions with other members of their academic cohort. Thus, the current approach
does not capture the students’ social ties that exist outside of their cohort of class-
mates (e.g., relationships with family members, friends outside of the program). That
being said, the current study was conducted at a relatively insular and remotely
located institution where subjects’ contacts outside of campus likely play a smaller
role in their daily lives relative to their everyday, in-person interactions with their
classmates. All data collection procedures were performed in accordance with the
standards of the Dartmouth College Institutional Review Board.

Each cohort’s social network data was analyzed using igraph in R89. The social
networks of the three cohorts are depicted in Fig. 1. Five social-network-derived
metrics were calculated for each subject who participated in the neuroimaging
study: out-degree centrality, in-degree centrality, eigenvector centrality, betweenness
centrality, and constraint. An unweighted graph was used to calculate each of these
social network position characteristics for each subject, as described in greater detail
below. For descriptive purposes, for each cohort’s social network, we then calculated
the mean and median numbers of social ties across individuals (i.e., average total
degree centrality, summing incoming and outgoing ties for each individual) and the
reciprocity of the graph, which refers to the probability that person i nominated
person j as a friend if person j nominated person i as a friend (mean social tiesCohort-
1= 91, median social tiesCohort-1= 77, reciprocityCohort-1= 0.53; mean social
tiesCohort-1= 78, median social tiesCohort-1= 70, reciprocityCohort-1= 0.49; mean
social tiesCohort-1= 55, median social tiesCohort-1= 46, reciprocityCohort-1= 0.48).

Social network position characteristics
Out-degree centrality. The out-degree centrality of an individual was calculated as
the sum of the individual’s outgoing social ties (i.e., the number of people whom
the individual nominated).

In-degree centrality. The in-degree centrality of individual was calculated as the
sum of individual’s incoming social ties (i.e., the number of times the individual
was nominated by others).

Eigenvector centrality. A graph consisting of nodes connected by edges can be
characterized by an adjacency matrix A, populated by elements such that aij= 1 if
nodes i and j are directly connected, and aij= 0 if these nodes are not connected.
The eigenvector centrality of each node is given by the eigenvector of A in which all
elements are positive. The requirement that all elements of the eigenvector must be
positive yields a unique eigenvector solution (that is, that corresponding to the
greatest eigenvalue). Here, when computing eigenvector centrality, the direction-
ality of the graph was preserved; in the event of asymmetric relationships, only
incoming, rather than outgoing, ties were used to compute eigenvector centrality.

Betweenness centrality. The betweenness centrality of an individual was calculated
as the proportion of shortest paths between two given nodes that pass through the
individual. An unweighted, undirected graph was used to estimate betweenness
centrality.

Constraint. The constraint of actor i is given by the following equation, where Pij
corresponds to the proportion of i’s direct social ties accounted for by their tie to actor
j. The inner summation approximates the indirect constraint imposed on i by other
actors, q, who are socially connected to both i and j (mutual friends of i and j):

Constrainti= ∑
n

j¼1
Pij þ ∑

n

q¼1
PiqPqj

� �2

ð1Þ

An unweighted, undirected graph was used to estimate constraint; that is, the pre-
sence of any social tie, irrespective of its direction or if it was reciprocated, was used to
compute the constraint of each node. Constraint was then negated to yield a measure
of network brokerage.

All social network position characteristic data were normalized (z-scored)
within-cohort. These data were then concatenated across all three cohorts. For each
of the social network position characteristics, we then applied the square-root
transformation, given that the distributions for each of the social network position
characteristics were positively skewed. Correlations between social network
characteristics are reported in Supplementary Table 1.

Neuroimaging subjects. A subset of 130 individuals who had completed the social
network survey completed a subsequent dMRI study (nCohort-1 = 54; nCohort-2 = 36;
nCohort-3 = 40). Subjects in cohort 1 were scanned 6-7 months after their arrival on
campus, subjects in cohort 2 were scanned 7-8 months after their arrival on
campus, and subjects in cohort 3 were scanned within the first month of their
arrival on campus. Subjects provided informed consent in accordance with the
policies of the institution’s ethical review board. Of the 130 subjects, data from
18 subjects were excluded from analysis due to excess movement. Data from the
resulting 112 subjects (40 female) aged 24–35 (M = 27.78, SD = 2.01) were used
for analysis. The neuroimaging study was advertised to all students in each cohort
via email. All students who were interested in participating and who passed a
standard MRI safety screening participated in the DTI scan.

dMRI acquisition. Magnetic resonance imaging was conducted with a Philips
Achieva 3.0 Tesla scanner using a 32-channel phased array head coil. Diffusion-
weighted images were collected using 70 contiguous 2 mm thick axial slices with 32
diffusion directions (91 ms TE, 8845 TR, 1000 s/mm2 b-value, 240 mm FOV, 90°
flip angle, 1.875 mm × 1.875 mm × 2mm voxel size). Thirty-three diffusion-
weighted volumes were collected per subject. High-resolution anatomical images
were also acquired using a T1-weighted MPRAGE protocol (8.2 s TR; 3.7 ms TE;
240 × 187 FOV; 0.938 mm × 0.938 mm × 1.0 mm).

Diffusion tensor imaging. We performed standard preprocessing steps using the
Diffusion toolbox in FSL 5.0.1090, which included brain extraction, eddy current
correction, and motion correction. We then used FSL’s dtifit to fit a diffusion tensor
model at each voxel to generate an FA map for each subject (FA serves as a general
marker of white matter microstructural integrity)25. We also used FSL’s
BEDPOSTX90,91 to model crossing fibers and white matter fiber orientations in each
voxel. Both linear and non-linear methods were used to align subjects’ fractional
anisotropy images in native space to MNI152 standard space. FSL FLIRT (12 degrees
of freedom, corratio cost function) was used to generate an affine transformation
matrix to align fractional anisotropy images to T1 anatomical images. FSL FLIRT was
used to generate an affine transformation matrix to align T1 space to MNI152 standard
space, and FSL FNIRT used this “affine guess” to generate a non-linear warpfield to
align T1 space to MNI152 standard space. FSL FNIRT was then used to apply the first
affine FLIRT matrix (i.e., native space to T1 space transform) and the FNIRT warpfield
in one step to transform fractional anisotropy images to MNI152 standard space.

Defining social processing networks: ROI definition and probabilistic tracto-
graphy. Probabilistic tractography was conducted to reconstruct white matter
tracts between ROIs associated with each of four facets of social processing:
affective processing, mirroring, mentalizing, and face perception. This process was
used to define the affective processing, mirroring, mentalizing, and face perception
networks (i.e., each of the four sets of ROIs, and the tracts connecting its con-
stituent regions). A schematic of this procedure is visualized in Fig. 2.

Keywords were submitted to Neurosynth24 to generate whole-brain meta-
analysis-based images of networks of brain regions involved in affective processing
(emotion, valence, affective, mood, arousal), mirroring (action observation, mirror
neuron, mirror), mentalizing (theory of mind, mentalizing, empathy), and face
perception (faces, face recognition, face). For each brain network, the meta-
analysis-based images associated with each keyword were aggregated, and the FSL
cluster command was used to identify the discrete ROIs in each of the aggregated
meta-analysis images. The FSL FLIRT and FNIRT commands were used to
transform ROIs from standard space to each subject’s native diffusion space. This
method provides an approximation of the location of a given ROI if it had been
mapped with fMRI in each individual. Each ROI was then dilated by a single voxel
and was masked using a brain mask in order to create more liberal ROI masks to
ensure that ROIs would extend into neighboring white matter. Due to being
exceptionally large and/or spanning multiple regions, a small subset of ROIs were
then masked using subject-specific anatomical masks generated using the
Freesurfer anatomical parcellation algorithm92–94 in order to split the ROI into
smaller constituent ROIs, which were subsequently used for analysis. Details
regarding the size of each ROI, the anatomical regions associated with each ROI,
and whether the ROI was masked using subject-specific anatomical masks are
provided in Supplementary Tables 2–5.

For each brain network, the FSL probtrackx2 command was then used to
perform probabilistic tractography between every possible pair of ROIs within each
of the left and right hemispheres (i.e., tractography was not performed to trace
inter-hemispheric tracts), with a contralateral hemisphere exclusion mask and a
brainstem exclusion mask. Two-mask seeding was used, and 1,000 probabilistic
tract streamlines were taken at each voxel within each mask, which allows resulting
tractography maps to include streamlines originating from and terminating in each
ROI. For each proposed white matter tract, if more than half of the subjects yielded
zero fiber tracts (i.e., if more than half of the subjects did not have a valid tracing),
the corresponding white matter tract was excluded from further analysis. The
remaining output connectivity distribution maps were divided by the
corresponding total number of existing streamlines to normalize and convert the
images into probabilistic maps. These probabilistic maps were then thresholded
such that all voxels with a probability below 1% were zeroed in order to reduce
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false-positive fiber tracts. The resulting probabilistic maps were then binarized
within each subject and summed across all subjects in standard space to create
group-level tractography images. The group-level tractography images were
manually inspected to determine thresholds that minimized spurious connections.
Tracts that were identified as spurious upon manual inspection were excluded from
further analysis. The resulting group-level images were then transformed back into
each subject’s native diffusion space. For each subject, we then masked the resulting
images using subject-specific white matter tissue masks (generated by FSL),
conservatively thresholded at 50% in order to eliminate spurious white matter, and
binarized. For each subject, FA values were extracted from each voxel from each
white matter tract image using subject-specific FA maps thresholded at 0.2, which
is a standard practice to create conservative FA maps. The resulting FA values were
averaged across voxels within each tract to yield a single FA value reflecting the
microstructural integrity of a given white matter tract.

Structural connectome-based predictive modeling of social network position
characteristics. We tested if inter-individual variability in patterns of white matter
microstructural integrity would be predictive of individuals’ positions in their real-
world social network (Fig. 3). That is, the independent variables consisted of a
multivariate set of predictors measuring white matter microstructural integrity, and
the outcome variable consisted of a given social network position characteristic. We
used Scikit-learn95 to implement the predictive modeling analysis. Using Scikit-
learn’s Pipeline function, we created an algorithm that performed two steps in
sequence on the training data for each fold (models fit to each fold’s training data
were used to predict social network position characteristics based on white matter
microstructural integrity values in the corresponding testing data): (1) normalize
the predictors using Scikit-learn’s StandardScaler function (which subtracts the
mean and scales to unit variance) and (2) implement ridge regression. Given the
multicollinearity among the predictors, regularized ridge regression was used. We
used a nested cross-validation scheme to perform hyperparameter tuning using a
grid search procedure (i.e., optimizing the lambda (λ) regularization hyperpara-
meter from a grid/range of values logarithmically spaced between 10−5 and 10),
such that the training data of each of the 10 outer data folds was further subdivided
into 10 inner folds consisting of sub-training and validation datasets. Within each
of these inner folds, for each hyperparameter value provided in the hyperparameter
grid, the algorithm was trained on the sub-training data and tested on the vali-
dation data. The hyperparameter value used in the model with the best perfor-
mance across all validation sets was identified as the optimal hyperparameter for
the corresponding outer training fold. Using this optimal hyperparameter, the
algorithm was trained on the outer fold’s training data and tested on the outer
fold’s testing data. This process was repeated independently for each of the ten
outer data folds. This procedure yielded a predicted social network position
characteristic value for each subject in the sample. Out-of-sample performance was
evaluated by calculating the Pearson r-value between predicted and actual social
network position characteristic values. All reported p-values reflect one-sided tests
of if participants’ actual social network position characteristics were positively
associated with the social network position characteristics predicted by the trained
models, based on participants’ dMRI data (negative associations would not be
interpreted in this context). Given that we tested if patterns of white matter
microstructural integrity associated with brain networks were predictive of five
different social network position characteristics, we corrected for multiple com-
parisons across these five sets of statistical tests using FDR thresholding.

To test whether inter-individual variability in patterns of white matter
microstructural integrity would be predictive of social network position
characteristics above and beyond the effects of demographics and extraversion, we
repeated the analysis described above while controlling for age, gender,
handedness, cohort, and self-reported extraversion. Extraversion was assessed
using the relevant items of the Big Five 44-item inventory96.

Testing whether any single white matter tracts were necessary for predicting
social network position characteristics. The primary results demonstrate that
patterns of microstructural integrity distributed across white matter tracts in the
affective processing network are predictive of constraint, and that patterns of micro-
structural integrity distributed across white matter tracts in the mirroring network are
predictive of constraint and eigenvector centrality, even while controlling for variables
including age, gender, handedness, cohort, and extraversion. Thus, in these three
models (two models predicting constraint; one model predicting eigenvector cen-
trality), we tested if any predictors (i.e., where a predictor corresponds to the micro-
structural integrity of a given white matter tract) in particular were disproportionately
contributing to significant predictions of social network position characteristics.

For each of the three models mentioned above, the following procedure was
implemented. We created P additional ‘leave-one-tract-out’models where P reflects
the number of predictors (tracts) in the corresponding full model. Each of these
additional models excluded one of the P predictors that had been included in the
corresponding full model such that the number of predictors in the resulting leave-
one-tract-out model was equal to P - 1. The permutation testing procedure used in
the primary analysis was then used to calculate the performance of each of the P
leave-one-tract-out models in predicting the relevant social network position
characteristic. For each of the P leave-one-tract-out models, the difference in the
model’s predictive performance (i.e., the r-value measuring the correlation between

predicted and actual values) and that of the full model was calculated. We then
tested the statistical significance of this difference in predictive performance (i.e.,
tested if excluding a given predictor significantly diminished the full model’s
performance). To this end, we used a permutation testing procedure where social
network position characteristics were randomly shuffled across subjects in each of
1,000 permuted datasets. Here, in each permuted dataset, r-values were obtained
for the full model and for each of the P leave-one-tract-out models. For each of the
leave-one-tract-out models, we then calculated the difference between its r-value
and that of the full model within each permuted dataset; this produced a null
distribution of 1,000 difference values for each of the leave-one-tract-out models.
We then calculated a p-value measuring the frequency with which the true
difference value was greater than the permuted difference values in this null
distribution.

Testing whether any single white matter tracts alone were sufficient for
predicting social network position characteristics. We next tested if the
microstructural integrity of any single white matter tract in the social processing
brain networks defined above was alone sufficient to predict social network position
characteristics while controlling for extraversion and demographics. To do so, we
used Scikit-learn95 to implement ordinary least squares regression in a predictive
modeling framework. There were 173 white matter tracts in total across the four
examined brain networks. Thus, to test if microstructural integrity of each of these
173 white matter tracts were predictive of the five social network position char-
acteristics (out-degree centrality, in-degree centrality, eigenvector centrality,
betweenness centrality, and constraint), we conducted 865 statistical tests.

For each statistical test, we used Scikit-learn’s Pipeline function to create an
algorithm that performed two steps in sequence on the training data for each fold
(models fit to each data fold’s training data were used to predict social network
position characteristics based on the white matter microstructural integrity value in
the corresponding testing data; see “Structural connectome-based predictive
modeling of social network position characteristics” for details of the data-folding
procedure): (1) normalize the predictors using Scikit-learn’s StandardScaler
function and (2) implement linear regression. Out-of-sample performance was
evaluated by calculating the Pearson r-value between predicted and actual social
network position characteristic values. All reported p-values reflect one-sided tests
of if participants’ actual social network position characteristics were positively
associated with those predicted by each trained single-tract model (negative
associations would not be interpreted in this context). To correct for multiple
comparisons across all 865 statistical tests, we used FDR thresholding. This
procedure corrects for the total number of models tested and corresponding results
indicated that data from single tracts could not predict social network position
characteristics, unlike the data from distributed patterns of tracts used in our main
analyses. At the same time, we note that the threshold used in these exploratory
single-tract analyses (correcting for multiple comparisons across 865 statistical
tests) was much more conservative than that used in our main analyses, where
predictors from each brain network were combined into a single model to predict
each examined social network position characteristic. Therefore, as an additional
point of comparison, we also examined results of single-tract analyses using a less
conservative threshold for determining statistical significance: Given that we tested
if microstructural integrity associated with single tracts was predictive of five
different social network position characteristics, we corrected for multiple
comparisons across these five sets of statistical tests. This relaxed threshold yielded
identical results to the results obtained using a more conservative threshold (see
Results and Discussion section).

Statistics and reproducibility. Neuroimaging data were normalized within cohorts
and were then pooled across cohorts to yield a sample size of 112 participants. Statistical
analyses were conducted as described in the Structural connectome-based predictive
modeling of social network position characteristics, Testing whether any single white
matter tracts were necessary for predicting social network position characteristics, and
Testing whether any single white matter tracts alone were sufficient for predicting social
network position characteristics sections inMethods. As discussed in theConclusions and
future directions section, the extent to which the observed relationships between white
matter microstructural integrity and social network position characteristics are con-
sistent across contexts and communities is unknown. Future work may shed light on
how such relationships vary across contexts and communities.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used for visualizations in Fig. 4 are available in Supplementary Data 1. All other
data that support the findings of this study are available upon reasonable request.

Code availability
Code that supports the findings of this study is available upon reasonable request.
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