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RESEARCH ARTICLE Open Access

A machine learning model that classifies
breast cancer pathologic complete
response on MRI post-neoadjuvant
chemotherapy
Elizabeth J. Sutton1* , Natsuko Onishi1, Duc A. Fehr2, Brittany Z. Dashevsky1, Meredith Sadinski1, Katja Pinker1,
Danny F. Martinez1, Edi Brogi3, Lior Braunstein4, Pedram Razavi5, Mahmoud El-Tamer6, Virgilio Sacchini6,
Joseph O. Deasy2, Elizabeth A. Morris1 and Harini Veeraraghavan2

Abstract

Background: For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete
response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of
our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior
to surgery.

Methods: This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1)
pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics
analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-
filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The
RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics
and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique.

Results: Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of
222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13
pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between
the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate
(P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC
of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets.

Conclusions: This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately
classifies pCR on MRI post-NAC.
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Background
The management of operable breast cancer has trad-
itionally employed a tri-modality approach: surgery
followed by adjuvant chemotherapy and radiation ther-
apy. Beginning in 2001, randomized clinical trials have
demonstrated the equivalency of neoadjuvant to adju-
vant chemotherapy, findings of which have been
practice-changing. Neoadjuvant chemotherapy (NAC) is
given before surgery and has the advantage of allowing
treatment monitoring and downstaging breast cancer,
thereby decreasing the extent of local surgery [1, 2]. Its
clinical implementation has allowed breast-conserving
surgery (lumpectomy) and sentinel lymph node biopsy
for women who historically required mastectomy and
full axillary lymph node dissection [1, 2]. The goal of
NAC is a pathologic complete response (pCR), defined
as no remaining cancer in the breast. A pCR is a surro-
gate endpoint for improved disease-free and overall sur-
vival [3]. While surgery is currently required to confirm
a pCR post-NAC, surgery may be obviated if pCR could
be identified non-invasively.
Breast MRI is currently recommended pre- and post-

NAC because it is the most accurate test for diagnosing
a pCR compared with physical examination, mammog-
raphy, and ultrasound [1, 4, 5]. However, the reported
sensitivity of MRI for a pCR is quite variable; a meta-
analysis reported a pooled sensitivity of 64% [6] which is
not sufficient to obviate tissue confirmation and surgery
[7]. High-resolution breast MRI holds a wealth of infor-
mation that when combined with machine learning tech-
niques has the potential to result in highly accurate and
non-invasive NAC response detection methods. The
field of radiomics involves the application of computer-
automated quantitative analysis of images, augmenting
visual assessment by extracting features not perceptible
to human eye. These methods are amenable to integra-
tion with machine learning and have shown potential for
non-invasive identification of treatment response in
breast and other cancers [8–11]. Thus, the aim of our
study was to develop and validate a radiomics biomarker
that classifies breast cancer pCR post-NAC on MRI.

Methods
Patients
This retrospective Health Insurance Portability and Ac-
countability Act-compliant study received Institutional
Review Board approval, and written informed consent
was waived. We identified consecutive women 18 years
old or older with operable invasive carcinoma treated
with NAC from 2014 to 2016 and who had (1) pre- and
post-NAC breast MRI performed at our institution and
(2) a post-NAC surgical pathology report assessing re-
sponse. Exclusion criteria were (1) prior history of
treated breast cancer, (2) breast MRI performed at an

outside facility, (3) second primary cancer treated with
chemotherapy, and (4) metastatic disease.
In total, 278 cancers from 273 patients (n = 5 bilateral

synchronous invasive breast cancer) met the inclusion
and exclusion criteria. There is no patient overlap in any
prior published studies as well as in work currently
undergoing review or in press. To ensure better
generalization performance, we divided the dataset into
training and testing sets (80/20 split). The training data-
set consisted of 222 cancers (61 pCR, 161 no-pCR; mean
age 51.8 years). The testing dataset consisted of 56 can-
cers (13 pCR, 43 no-pCR; mean age 51.3 years).
Clinical and pathologic data were extracted from the

electronic medical record and included age, pre- and
post-NAC pathology, NAC regimen, and dates of the
pre- and post-NAC MRI examinations.

MRI acquisition
All patients underwent a pre- and post-NAC contrast-
enhanced MRI on a 1.5 or 3.0 Tesla system (Discovery
750, GE Medical Systems, Waukesha, WI) with a dedi-
cated 8- or 16-channel breast coil (see Additional files 1
and 2 for protocol details). Axial T1-weighted fat-
suppressed images were acquired pre- and post-contrast
(continuously at three time points i.e., post-CE1, post-
CE2, and post-CE3). The gadolinium-based contrast
agent was administered at a concentration of 0.1 mmol
gadobutrol per kg body weight (Gadavist; Bayer Health-
care Pharmaceuticals Inc., Whippany, NJ) at a rate of 2
ml/s. The acquisition parameters for conventional
steady-state DCE-MRI were as follows: TR/TE = 7.9/4.3,
flip angle = 12° in-plane spatial resolution = 1.1 × 1.1 mm,
slice thickness = 1.1 mm, temporal resolution = ~ 120 s,
axial orientation.

Radiomics analysis
Figure 1 shows the framework for radiomics analysis. As
shown, a single volumetric segmentation is generated for
all the pre-contrast and three post-contrast MRIs separ-
ately for the pre-NAC and post-NAC MRIs. Scalar fea-
tures summarizing features from within the segmented
volumes including first-order histogram features, second-
order Haralick texture features, Gabor edge features, and
Haralick texture measures on Gabor edge maps were
computed. The delta features were then computed by dif-
ferencing the features on the post-NAC from the pre-
NAC MRI features. A two-step explicit feature selection
consisting of maximum relevance minimum redundancy
(MRMR) followed by generalized linear regression using
elastic net constraints was performed to pre-select the
most relevant features. These features were then used in a
recursive feature elimination random forest (RFE-RF) clas-
sifier with five-fold cross-validation to extract a model for
classifying pCR.
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Tumor segmentation
Two breast imaging fellowship trained radiologists (EJS
and NO, with 6 and 6 years of experience, respectively)
performed single slice segmentation of the index breast
cancer on the post-CE1 sequence. Figure 2 shows repre-
sentative breast MRI pre- and post-NAC. If there was no
visible tumor, the radiologists segmented the tumor bed

based on the presence of tumor bed fibrosis, location of
an accurately positioned pre-NAC biopsy marker, and/or
anatomic landmarks. Concretely, the radiologists pro-
duced a conservative estimation of the enhancing lesion
on the roughly the central slice containing the tumor. This
segmentation was then used by the algorithm to compute
a model of foreground tumor and the background regions.

Fig. 1 Framework for radiomics analysis. The Grow Cut Gaussian Mixture Model was used to generate volumetric tumor segmentation from the
T1w DCE-MRI. Next, radiomics analysis was performed to extract the texture measures from the segmented volumes followed by machine
learning analysis consisting of feature pre-filtering using Maximum Relevance Minimum Redundancy (MRMR) and generalized linear regression
with elastic net constraints feature selection (GLMNet), followed by a recursive feature elimination random forest (RFE-RF) classifier for extracting a
model for detecting a pCR

Fig. 2 Representative pre-neoadjuvant chemotherapy (NAC) fat-saturated first post-contrast MRI (a and b) and post-NAC fat-saturated first post-
contrast MRI demonstrating c no pathologic complete response (no pCR) for a and d pCR for b
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The extracted model was then applied to all remaining
slices in the image to extract a volumetric segmentation
of the tumor. Tumors were volumetrically segmented
using a previously developed in-house algorithm imple-
mented in MATLAB (R2015b), the Grow Cut Gaussian
Mixture Model [12]. Briefly, this algorithm computes a
statistical model of the tumor appearance from the sin-
gle slice segmentation and extends it to multi-slice volu-
metric segmentation. For our study, multi-phase
contrast-enhanced T1-weighted fat-suppressed MRI
consisting of pre- and three post-contrast images (four
sequences per exam) were volumetrically segmented and
the images were used to compute three temporal differ-
ence images (extracted by differencing the post-contrast
images from pre-contrast MRI) and a voxel-wise tensor
representation called the trace image (computed to inte-
grate the images from the multi-phase MRI). Concretely,
the pre- and three post-contrast image intensity values
at each voxel were represented as a covariance matrix,
with the diagonal entries corresponding to the squared
values of the pre- and the three post-contrast signal in-
tensities and the off-diagonal entries corresponding to
the squared difference between these intensities. A
voxel-wise tensor was then computed from this
matrix through eigendecomposition. A trace value
was computed from the top three eigenvalues of this
decomposition at each voxel, from which a trace
image was computed. This method produced a single
segmentation for all of pre-contrast and the three
post-contrast MRI images. The Grow Cut Gaussian
Mixture Model-generated segmentations for all tu-
mors were visually validated and corrected by one of
the radiologists (EJS).

Radiomics feature extraction
All images were subjected to MRI histogram
standardization [13] to harmonize the MRI images prior
to feature extraction as was done in previously in Um
et al. [14]. We extracted a total of 255 radiomics features
for each breast cancer. We used the same four se-
quences (T1-weighted fat-saturated pre-contrast and
three post-contrast sequences) from the pre- and post-
NAC MRI (total of 8 sequences). Twenty-one radiomics
features were computed for each sequence and consisted
of (a) first-order histogram features consisting of the
mean, standard deviation, kurtosis, and skewness (m =
4); (b) second-order Haralick texture features [15] con-
sisting of energy, entropy, correlation, contrast, and
homogeneity (m = 5); (c) features from Gabor edge maps
[16] extracted using a bandwidth of γ = 1.414 and at an-
gles θ = {0°, 90°} (m = 2); and (d) Haralick texture mea-
sures computed from Gabor edge maps (m = 10). In
addition, one intra-tumor cluster entropy measure (n =
1) was computed for the pre- and post-NAC MRI (see

Additional file 1). The intra-tumor cluster entropy quan-
tified the textural variability within sub-regions in the
tumor. The sub-regions represent regions within the
tumor that have similar textural values. These clusters
were automatically computed using self-tuning spectral
clustering using five Haralick textures as described in
detail in Additional file 1. This resulted in 85 features
for the pre- and post-NAC MRI for a total of 170 fea-
tures. The individual features were scalar (or single)
values that summarized the whole segmented volume.
Delta texture measures were then computed to evaluate
change by subtracting the individual scalar features from
the four post-NAC MRI sequences and the correspond-
ing pre-NAC MRI (m = 85) resulting in a total of 255
radiomics features per patient.
Of note, only five Haralick textures were computed in-

stead of 13 because these features are known to be cor-
related with each other [17] and have been shown to be
useful for radiomics classification in prior works includ-
ing [18, 19]. Cluster shade and prominence features were
removed as these are more useful for clustering and seg-
mentation instead of capturing variability within vol-
umes. We computed Gabor edge features only at two
angles and a fixed bandwidth to reduce the number of
correlated features and the chances of producing an
over-optimistic classifier.

Feature selection and machine learning for radiomics-based
response assessment
Feature pre-selection methods were pre-decided prior to
performing the analysis. Sequential MRI radiomics fea-
ture selection was performed using (i) MRMR [20] and
(ii) a generalized linear regression model [21] using elas-
tic net constraints. MRMR ranked the features according
to their relevance with the goal of reducing redundancy
that occurs when using highly correlated features. The
relevant features from MRMR ranking were further re-
duced using elastic net regression. The regression ana-
lysis was applied with elastic net constraints using three-
fold cross-validation. A model of the outcome variable
(pCR) was computed. The set of variables (or features)
with an importance > 0.1 in this model were selected
and used as inputs for the RFE-RF classifier [22]. Feature
pre-selection using MRMR followed by elastic net re-
gression and recursive feature elimination was done for
handling correlated features and to reduce the chances
of highly over-optimistic classification and that would
lead to the best generalization performance on an inde-
pendent test set. Class imbalance between the minority
(pCR) and majority class (not pCR) was resolved using
the synthetic minority oversampling technique (SMOTE)
as has been used for machine learning MRI radiomics-
based classifiers [18, 19]. Using SMOTE, additional sam-
ples were generated with higher likelihood (3:1) for the
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minority class compared to the majority class. The new
samples were generated by averaging K = 5 nearest
neighbors of a particular class with the samples chosen
randomly. Prior to SMOTE resampling, all radiomics
features were scaled and centered using z-score
standardization. SMOTE-based augmented samples were
generated only for the training set. We fixed the param-
eter for selecting the features from MRMR (top 80%),
and hyper-parameter selection for elastic net regression
was done using cross-validation.
Starting with 255 features, MRMR reduced the num-

ber of features to 204. The elastic net regression method
reduced these features further to 156. In the case of
model 3 that was trained with 243 features after remov-
ing all the MRI intensity features, the MRMR reduced
the features to 204, while the elastic net reduced the fea-
tures to 51 features.
RFE-RF machine learning [23] was subsequently

trained with repeated and nested five-fold cross-
validation using 1000 trees. The RFE-RF classifier con-
ducted additional feature selection using explicit and im-
plicit methods. The recursive feature elimination
method performed explicit feature selection by ranking
features that have a maximum impact on accuracy upon
their removal. The random forest method performed im-
plicit feature selection by selecting a random set of fea-
tures in each node of the classification tree, which were
then evaluated for splitting the data into pCR versus no
CR classes. Features were selected in each tree node that
successively increased the chances of accurate classifica-
tion. Additional details are in Additional file 1. Two
radiomics RFE-RF classifier models were constructed,
one including only the radiomics features (model 1) and
the second also including the breast cancer molecular
subtype (model 2). The molecular subtype was treated as
a categorical variable in the classifier and included in the
RFE-RF classifier. In addition, we evaluated the perform-
ance of radiomics classifier without MRI intensity fea-
tures (model 3) to assess the utility of MRI radiomics
measures without the MRI intensity metrics. The results
of this model are included in Additional file 2, Supple-
mental Table 4.

Statistical analysis
All machine learning analysis was performed with nested
cross-validation with data set aside for independent test-
ing using R (version 3.3) software [24]. The accuracy of
each RFE-RF classifier model was assessed using area
under the receiver operating characteristic curve (AUC),
true positive, true negative, false positive, false negative
rates, positive predictive value, and negative predictive
value. RFE-RF classifiers computed using model 1 and
model 2 as well as model 1 vs. model 3 were compared
by evaluating the differences between the receiver

operating curves using the ROC.test method available in
the pROC package [24]. Statistical associations of radio-
mics features found to be most relevant using the RFE-
RF classifiers with pCR were assessed using the two-
sided Wilcoxon test. Statistical corrections for multiple
comparisons were performed using the Benjamini Hoch-
berg correction. Only P values < 0.05 were considered
significant. The packages pROC, rms, caret, and mRMRe
in the R Core Team (version 3.3) software [24] were
used for statistical analysis. All analysis was performed
after the image features were standardized using z-score
standardization to centralize all the features to zero
mean Gaussian distribution.

Availability of code
The radiomics features were extracted using the open-
source software library CERR software available through
(https://github.com/cerr/CERR) [25]. The methods for
computing the machine learning classification models
are available through the author’s Github link (https://
github.com/harveerar/Code).

Results
Clinical characteristics
Patient characteristics in the training and testing cohorts
are given in Table 1. Histologic confirmation was avail-
able for the entire study population. From a total of 283

Table 1 Characteristics of patients in the training and testing
sets. P values correspond to measures computed using
Wilcoxon rank-sum tests performed to compare the training
and testing cohorts

Characteristics Cohort

Training Testing P value

n 222 56

Age, mean ± SD, years 51.8 (11.8) 51.3 (11.8) 0.90

Pathologic response (%) 0.50

pCR 61 (27.5) 13 (23.2)

no-pCR 161 (72.5) 43 (76.8)

Histology, no (%) 0.90

Invasive ductal 203 (91.4) 51 (91.1)

Invasive lobular 8 (3.6) 3 (5.4)

Mix 5 (2.3) 0 (0)

Invasive NOS 6 (2.7) 2 (3.5)

Molecular subtype, no (%) 0.40

HR+HER2− 76 (34.2) 22 (39.3)

HR+HER2+ 52 (23.4) 9 (16.1)

HR−HER2+ 36 (16.2) 8 (14.3)

Triple negative 58 (26.2) 17 (30.3)

Abbreviations: pCR pathologic complete response, (+) positive, (−) negative;
NOS not otherwise specified
*P value < 0.05
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segmented cancers, we excluded patients who had (a)
technically inadequate post-NAC MRI for analysis (n =
1), (b) no information on molecular subtype (n = 1), and
(c) biopsy-proven metastatic disease during NAC (n = 3).
The final cohort consisted of 278 cancers from 273 pa-
tients as 5 patients had bilateral synchronous breast
cancer.
There was no significant difference between the train-

ing and testing sets regarding the prevalence of pCR: 61/
222 (27.5%) of patients and 13/56 (23%) of patients had
a pCR in the training and testing sets, respectively (P =
0.50). There was no significant difference between the
two sets regarding breast cancer molecular subtype (P =
0.40).

Performance of RFE-RF classifier models for detecting pCR
on training and test sets
Table 2 shows the achieved accuracies of the RFE-RF
classifier models. Model 1 achieved a slightly lower but
not significantly different AUROC on cross-validation of
0.72 (95% CI 0.64, 0.79) in the training set and similarly
accurate (P = 0.10) AUROC of 0.83 (95% CI 0.71, 0.94)
in the test set. In comparison, model 2 achieved a cross-
validation AUROC of 0.80 (95% CI 0.72, 0.87) in the
training set and a similarly accurate (P = 0.90) AUROC
of 0.78 (95% CI 0.62, 0.94) in the test set. Model 3 that
was trained without any of the MRI intensity features
and only the radiomics features achieved a similarly ac-
curate classification as model 1 with a cross-validation
AUROC of 0.71 (95% CI 0.64, 0.79) with (P = 1.0) and
testing AUROC of 0.78 (95% CI 0.62, 0.94) with (P =
0.4). Figure 3 shows the ROCs that were computed using
model 1 and model 2 on both the cross-validation and
testing cohorts. Model 1 produced highly similar accur-
acies on the training and testing cohorts. A similar trend
was observed for model 2, with no significant difference
in the training and testing results. We benchmarked the
performance of these two models to other classifiers (see
Additional file 1).

Figure 4 shows the order of feature importance by
their relevance for classification as determined by the
RFE-RF classifier for model 1 and model 2. Feature im-
portance corresponded to the Gini importance measure
used to rank features in the RF classifier [26]. The model
1 RFE-RF classifier identified 19 different features in-
cluding pre-contrast and first post-contrast MRI inten-
sity features from post-NAC and difference from the
post-NAC to pre-NAC mean intensities, as well as mul-
tiple post-NAC features such as post-NAC first post-
MRI Gabor (90, 1.414) entropy, post-NAC pre-contrast
MRI contrast texture, and delta radiomics features such
as first post-contrast MRI Gabor (0, 1.414) energy, and
delta pre-contrast contrast textures. These features were
found to be significantly different between pCR and no
CR when evaluated on the entire dataset combining
training and testing sets (see Additional file 2, Supple-
mental Table 2). Model 2 identified 12 radiomics fea-
tures and molecular subtype as relevant for pCR
classification. Of these 12, delta pre-contrast mean MRI
intensity, delta pre-contrast MRI homogeneity, delta sec-
ond post-contrast MRI standard deviation, and first
post-contrast MRI mean intensity were all significantly
different between pCR and no CR on the whole dataset
(see Additional file 2, Supplemental Table 3). Model 3
identified 11 radiomics features, of which delta pre-
contrast MRI homogeneity, delta pre-contrast MRI con-
trast, and delta first post-contrast MRI Gabor (90, 14.14)
energy were significantly different between pCR and no
CR (see Additional file 2, Supplemental Table 5).

Discussion
We developed and validated a combined radiomics and
molecular subtype-based classifier model for assessing
pathologic complete response (pCR) with high accuracy
and reproducibility. Our study combines pre-NAC and
post-NAC MRI to compute delta radiomics features for
classifying pCR from DCE-MRI images. This non-
invasive image-based radiomics marker could assist the

Table 2 Performance of the RFE-RF classifier trained using model 1 and model 2 for predicting a pCR. P values are derived from
comparison of the ROC curves computed for the cross-validation and test sets for model 1 and model 2

Model 1 Model 2

Radiomics Radiomics and molecular subtype

Training Testing Training Testing

AUROC 95% CI 0.72 (0.64, 0.79) 0.83 (0.71, 0.94) 0.80 (0.72, 0.87) 0.78 (0.62, 0.94)

Sensitivity or TPR (no-pCR) 0.73 (0.65, 0.79) 0.77 (0.61, 0.88) 0.78 (0.70, 0.84) 0.79 (0.64, 0.90)

Specificity or TNR (pCR) 0.64 (0.51, 0.76) 0.69 (0.39, 0.91) 0.69 (0.56, 0.80) 0.69 (0.39, 0.91)

PPV 0.84 (0.77, 0.90) 0.89 (0.75, 0.97) 0.87 (0.80, 0.92) 0.89 (0.75, 0.97)

NPV 0.47 (0.36, 0.58) 0.47 (0.24, 0.71) 0.54 (0.42, 0.65) 0.50 (0.26, 0.74)

P value = 0.1 P value = 0.9

Abbreviations: AUC area under the receiver operating characteristic curve, pCR pathologic complete response, TPR true positive rate, TNR true negative rate
*P value < 0.05
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radiologist and improve diagnostic accuracy while facili-
tating the standardization of post-NAC MRI reporting.
This is important because the current criteria for the
evaluation of tumor response, such as those defined by
the World Health Organization [27] and the response
evaluation criteria in solid tumors (RECIST) by the
European Organization for Research and Treatment of
Cancer [28], are not used to identify a pCR as they do
not include pertinent criteria specific to breast imaging
[29]. Furthermore, routine breast imaging is not suffi-
ciently accurate for identifying a pCR to replace surgery
[29]. A meta-analysis demonstrated that MRI is more
sensitive than mammography and ultrasound in identify-
ing a pCR. However, the accuracy of MRI when using
no enhancement of the tumor bed on post-NAC MRI
had a specificity of 0.54 (95% CI = 0.39–0.69), demon-
strating the need for a better image-based method of re-
sponse assessment [30].
Our findings are relevant for an increasing number of

clinical trials challenging the status quo that all breast
cancer patients must undergo surgery. Heil et al. [31],
Rauch et al. [32], and Kuerer et al. [33, 34] previously
showed the potential utility of image-guided biopsies as

an alternative to surgery in exceptional responders to
NAC. Thus, a few clinical trials are underway to study
the omission of surgery (e.g., the national cooperative
group multicenter feasibility trial NRG BR005 and
NCT02945579 by MD Anderson) and a few are being
planned (e.g., the multicenter trial [RESPONDER] in the
USA, and NOSTRA and MICRA [35] in the UK and the
Netherlands, respectively).
We evaluated radiomics features from both pre- and

post-NAC MRI. Several studies have evaluated the utility
of pre-NAC MRI to identify a pCR. For example, Bra-
man et al. [36] evaluated the intra- and peritumoral
radiomics features in 117 patients; the combined feature
set yielded a maximum AUC of 0.78 ± 0.03, which im-
proved with the inclusion of molecular subtype. Chan-
ning's et al. [37] performed texture analysis using 85
pre-NAC MRIs and found that kurtosis was associated
with a pCR in non-triple-negative breast cancers. Fan
et al. [38] found 12 radiomics features using 57 pre-
NAC MRIs to be associated with tumor response to
NAC. Wu et al. [39] found that imaging heterogeneity
using a multiregional spatial interaction-based marker
was independently associated with recurrence-free

Fig. 3 Receiver operating curves (ROC) for a radiomics (i.e., R) and b radiomics with molecular subtype (i.e., R+MS) classifier models in the training
and testing sets. Repeated five-fold, nested cross-validation was performed in the training set wherein the accuracy values for the classifier were
produced by evaluating the classifier only on the data not used in the model building in each fold of the validation. An independent hold-out
set that was never seen by the model during training was treated as the test set
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survival. Cain et al. [40] developed a multivariate
machine-learning model using 288 pre-NAC MRIs and
achieved an AUC of 0.707 in identifying pCR of triple-
negative/HER2 breast cancers. Tahmassebi et al.
[41] evaluated multiparametric pre-NAC MRI in 38 pa-
tients and reported an AUC of 0.86 to identify residual
cancer burden class with zero being defined as a pCR.
Our accuracies are comparable to those from several

studies that compared pre-NAC MRI and MRI at an
early-treatment time point during NAC. Thibault et al.
[42] conducted their analysis in 38 patients who under-
went pre-NAC and MRI post-6–8 NAC cycles, extract-
ing 1043 texture features; the best feature-map pair
identified a pCR with 100% sensitivity and specificity.
However, this was a small test cohort that was not inde-
pendently validated. Drukker et al. [43] found in 127 pa-
tients with a pre- and early treatment MRI that the most-
enhancing tumor volume predicted recurrence-free survival
post-NAC. In our study, we found that the difference be-
tween post-NAC and pre-NAC in the mean intensity from
pre-contrast T1-weighted fat-saturated MRI, as well as the

post-NAC pre-contrast T1-weighted fat-saturated mean,
was associated with pCR. Additional texture and edge-
based measures including post-NAC Gabor edge-based tex-
tures, and delta radiomics measures such as contrast, Gabor
edge-based energy, and standard deviation showed signifi-
cant difference between pCR and nCR. We additionally
evaluated the performance of the radiomics classifier after
removing the MRI intensities to determine the contribution
of the texture and edge-based metrics for pCR classification
(model 3). We found that this model performed similarly as
the radiomics classifier incorporating the MRI intensities,
clearly indicating the utility of texture and edge-based
radiomics measures in classifying pCR. These results show
the value of including features from both pre-NAC and
post-NAC MRI for assessing pCR.
We used an automated radiomics approach, which in-

cluded a semi-automated volumetric tumor segmenta-
tion method, thus representing an improvement in
accuracy over other models with similar number of pa-
tients. This segmentation method has been shown to
produce more reproducible radiomics features and

Fig. 4 Relative importance of the radiomics features and molecular subtype as selected by the recursive feature elimination random forest (RFE-
RF) classifier for the a radiomics only model and b radiomics with molecular subtype model. “af” corresponds to post-neoadjuvant chemotherapy
(NAC), “bef” to pre-NAC, and “diff” to difference between post-NAC and pre-NAC radiomics features. “Pre” corresponds to pre-contrast MRI, post1
to the first-post contrast, post2 to the second post-contrast, and post3 to the third post-contrast of the multi-phase DCE-MRI sequence. Gab0
corresponds to Gabor edge feature computed at 0°, while Gab90 to the Gabor edge feature computed at 90°. A bandwidth of 1.414 was chosen
for the Gabor textures for all orientations. Feature importance corresponds to the Gini importance measure used by the random forest model
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ultimately improve machine learning classifier accuracy
compared with radiomics features computed from
manually delineated volumes of interest (VOIs) and
VOIs generated using two other frequently used seg-
mentation methods [12].
We added breast cancer molecular subtype to our

radiomics biomarker because molecular subtype deter-
mines the likelihood of pCR post-NAC [1]. The combin-
ation of radiomics features with molecular subtype
resulted in a clear improvement in classification per-
formance for detecting a pCR over that of molecular
subtype alone and a moderate improvement over that of
radiomics features alone. This suggests that radiomics
features modeling heterogeneity in the imaging pheno-
type have the potential to add value to genomic
signature-based predictors of response. Nevertheless,
NAC response is known to vary even within a breast
cancer molecular subtype, often due to genomic intra-
and inter-tumor heterogeneity [44]. Genomic heterogen-
eity is a major factor in determining treatment response
and cancer progression, and it is a driver of treatment
resistance [45]. Therefore, further study with a larger
dataset and combining such radiomics measures with
additional genomic factors could help validate the poten-
tial for such integrated markers of response.
Our study has several limitations. First, this was a

retrospective, single-institution analysis that was vali-
dated internally by an RFE-RF classifier but not validated
externally. Second, MRI was performed using two differ-
ent field strengths and two different breast coils. A third
issue may stem from variability in segmentations that re-
duce the reproducibility of radiomics features. We miti-
gated this variability by using a semi-automated method
that was shown to result in more reproducible radiomics
measures than manual delineations. However, a fully au-
tomated method is desirable. Our group is working on a
deep learning-based automated segmentation method to
further improve radiomics feature reproducibility.

Conclusions
In conclusion, we developed and validated a machine
learning model combining radiomics with molecular
subtypes that accurately predicts pCR on MRI with an
AUROC of 0.88 in an independent test set. Our results
highlight the potential clinical value of including
radiomics-based feature classifiers to predict pCR post-
NAC.
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