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Abstract

Probabilistic Methods for Neural Source Reconstruction from MEG Data

by

Johanna Margarete Zumer

The field of brain imaging has exploded in the past two decades due to new tech-

nological developments mostly on the hardware/acquistion end. Consequently,

neuroscientists have been excited to study all aspects of brain function and the

general public have been excited to hear what results come from such studies.

Magnetoencephalography (MEG) is a brain imaging method which passively de-

tects the naturally occuring magnetic fields outside the head resulting from neu-

ral cells’ activity in the brain. The MEG sensors record direct neural activity with

millisecond resolution. However, there is inherently no unique solution to deter-

mining where exactly in the brain the neural activity was located that produced

the brainwaves measured by the sensors. With certain general assumptions, a rea-

sonable estimate of the location can be made. However, measurement noise and

other artifacts, including heartbeat and eyeblinks, swamp the signals of interest,

making localization nearly impossible. In this dissertation, two novel methods

are proposed which improve neural source estimate by removing the effects of

noise and interference. These new methods are tested against standard meth-
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ods for both simulated and real data and show improved performance. These

methods are further tested on real data obtained from primates with the ultimate

goal of using electrophysiological data from these primates to compare the MEG

localization with the true location. Finally, an example is shown of one way to

combine neural activity measured by MEG with a method for measuring white-

matter anatomical connections obtained by diffusion tensor imaging.
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Chapter 1

Introduction

1.1 Magnetoencephalography: Overview

The development and use of noninvasive methods for imaging brain function

have grown rapidly in the past few decades. Magnetoencephalography (MEG) is

one such method that detects the tiny magnetic fields outside a person’s head that

naturally occur as a result of neural activity. Together with electroencephalogra-

phy (EEG), which measures the corresponding voltage potentials at the scalp due

to similar neural activity, these techniques are an effective way to directly mea-

sure and map neural function. The tiny magnetic fields measured by MEG are

roughly one billion times smaller than the earth’s magnetic field (∼ 50µT). These

magnetic fields are produced by a simple concept in physics: electric current flow-

ing through a wire produces a magnetic field circling around the wire, in the di-

rection of the right-hand rule; likewise, ionic current flowing through a stimulated
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neuron produces magnetic fields circling the cell.

Several important types of neural cells in the brain, specifically pyramidal

neurons, are structurally shaped as branching trees. The neuron is excited by

other neurons via a small current flowing inward to the cell starting from the

far branches. This current flows down the branches (dendrites) and through the

trunk (apical dendrite) to the soma (cell body), at which point the cell computes

if the signal is strong enough to be worth passing on to other cells. The cur-

rent flowing through one neuron would produce a magnetic field roughly 250fT

near the neuron (Blagoev et al., 2007), but only 0.008aT outside the head since

the strength of the magnetic field weakens as the inverse of the distance squared.

SQUIDs (Superconducting Quantum Interference Devices), the very sensitive de-

tectors used in MEG, have inherent noise around 10fT/
√

Hz. It so happens that

pyramidal neurons are arranged with their trunks in parallel throughout all areas

of cortex, so that the magnetic fields produced by current flowing through them

add, rather than cancel if they were arranged randomly. Additionally, neurons

nearby each other tend to have similar stimulus preferences and functions so that

they tend to be simultaneously active. This spatial and temporal summation of

activity over many neurons in a small patch (roughly 1-8mm3) produce magnetic

fields approximately 10-100fT outside the head: strong enough to be measured by

SQUIDs.

Mapping the spatiotemporal neural activity of the entire brain is an impor-
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tant problem in basic neuroscience research. It is also clinically important for

patients with brain tumors and epilepsy, both in localizing regions important for

cognitive function and for identifying epileptogenic brain regions. Such brain

mapping procedures are useful to guide neurosurgical planning, navigation, and

resection.

Many noninvasive techniques have emerged for functional brain mapping,

such as functional magnetic resonance imaging (fMRI) and MEG/EEG. Although

fMRI is the most popular method for functional brain imaging with high spatial

resolution, it suffers from poor temporal resolution since it measures blood oxy-

genation level-dependent (BOLD) signals with fluctuations in the order of sec-

onds. These BOLD signals are also indirect measures of neural activity which

might not accurately reflect neural activity, especially in regions of altered vascu-

lature. However, dynamic neuronal activity has fluctuations in the submillisec-

ond time-scale that can only be directly measured with MEG and/or EEG.

This dissertation focuses on methods improving the ability to estimate the

underlying neural activity from measured MEG data. The rest of this first chap-

ter provides an introduction to MEG, including the signal propagation from

the neurons to the MEG sensors (forward solution), common methods for es-

timating neural activity from the sensor data (inverse problem), and common

problems for these methods including noise in the data. Chapter 2 presents

two new algorithms for estimating neural activity which incorporate removal of
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noise/interfernce. These methods are developed within a probablistic graphi-

cal model framework, which is also introduced in Chapter 1. In Chapter 3, the

performance of these new probablisitic methods is examined in many simulated

datasets and some example real datasets. They are shown to be an improvement

over existing methods, in estimation of both neural source localization and neural

source dynamics.

Chapter 4 extends the method comparison to a larger set of real data in which

the approximate neural location is known, multiple brain areas are active, and/or

large artifacts are present. Data from healthy humans are examined, as well as

data collected from anesthetized primates as part of a larger study developing a

primate model for MEG validation studies. In Chapter 5, the feasibility of separat-

ing brain areas in primates using MEG is demonstrated. The spatial separability

is further strengthened by the distinct neuroanatomical networks to which they

are connected, as measured by diffusion tensor MRI. The relation of the monkey

to human data is also discussed. Finally, Chapter 6 discusses future directions for

the models proposed in Chapter 2, potential problems of the methods, and future

directions for MEG research in general.

1.2 MEG versus EEG

Since MEG and EEG are measuring such similar phenomena, why should

one be used over the other? The number of experiments using EEG rather than
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MEG is much larger for several reasons. The technology for EEG is much simpler:

electrodes plus conducting gel and amplifiers allowed the first recordings in the

1920s, while the very sensitive SQUID detectors enabling MEG were not invented

until the 1960s. The cost of a commercial MEG system is roughly 50 times that of

EEG. EEG is certainly portable, whereas the dewar of liquid helium enclosing the

SQUIDs stays in the laboratory. Once the EEG electrodes are placed on the scalp,

the subject can move their head as needed, whereas a subject in the MEG must

hold still to within a few millimeters relative to sensor array.

Practical considerations aside, MEG and EEG have different sensitivities to

the neural activity: EEG depends greatly on the estimate of tissue conductivity

to account for the current distortion across tissue boundary layers (from brain to

skull to scalp), whereas these conductivity values do not matter for MEG. Since

EEG measures voltage potentials, these potentials always have to be relative to

some reference electrode, the best placement of which is not clear; MEG does not

have this reference sensor problem. EEG is more sensitive to a radially-oriented

source than a tangential one at the same depth, which may be good or bad de-

pending on the neural sources of interest. On the other hand, if the head is a

perfect sphere, MEG is totally blind to radially-oriented sources; however, due to

cortical surface folding and the fact that the head is not a perfect sphere, some

near-radial sources can be detected. Mainly due to the lack of smearing of voltage

potential across the different conductivity layers, MEG typically has a larger es-
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timated spatial precision in its estimate of source location (Leahy et al., 1998).

Therefore, the source reconstruction methods presented here have focused on

MEG data with the hope of later extension to the more difficult case of EEG source

localization.

1.3 Neural basis of MEG/EEG

Changes in stimulus, attentional state, or goal-directed actions certainly alter

neural activity. However, there is still debate as to what aspect of neural activ-

ity best represents the brain’s way of encoding these changes. Traditionally, the

rate of action potential spikes (the output of neurons in the axon) recorded with

an electrode inside an animal brain was studied as the main correlate of neural

activity. Local field potential recordings (also using an electrode inside the brain)

represent synaptic- and/or dendritic-based electric field changes, more related to

the input a neuron receives than the output decision it makes. Through the use

of current source density recordings, field reversal changes when crossing over

a source, and other studies (Okada et al., 1999), it is generally accepted that the

local field potentials relate much more closely to the signals measured in MEG

and EEG than spiking activity.

An electrode placed in a primary sensory cortex tuned to a particular stimu-

lus feature (such as location of a touch on the skin) will record a burst of spiking

activity and an increase in field potentials within milliseconds after that stimulus
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is given. Likewise, this same stimulus will produce waveforms of similar time

course in MEG data, although slightly different due to the greater spatial area of

activity being summed. Unfortunately, these stimulus evoked field changes mea-

sured by the MEG sensors are as small as all the other ongoing brain activity

unrelated to the stimulus. But since this ongoing brain activity has no tempo-

ral relation to the exact timing of the stimulus onset, an average of many trials

of stimulus presentation will reveal the activity related to the stimulus since the

other activity will average out towards zero, relative to a pre-stimulus baseline.

Most MEG experiments have focused on studying the amplitudes and shapes of

these evoked fields, and it is this paradigm of experiment that is the focus of the

source reconstruction methods presented in this dissertation.

That the neural activity measured by EEG and MEG oscillates at certain fre-

quencies has been known since the first EEG recordings in the 1920s. An increase

in the so-called alpha frequency (roughly 8-12Hz) occurs when a subject closes his

eyes. Higher frequencies tend to be more associated with active brain function,

such as beta (12-30Hz) with motor actions and gamma (30-60Hz) (Pulvermüller

et al., 1995) and high-gamma (60-200Hz) with higher cognitive processes (Crone

et al., 2006). Lower frequencies such as theta (4-8Hz) and delta (below 4Hz) are re-

lated to drowsiness, sleep, and some clinical disorders. These discrete frequency

boundaries are approximate and their relations to brain-state mentioned here are

a broad generalization.
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An interesting alternative to stimulus-evoked analysis is to study the changes

in power of these various frequency bands that result from a stimulus, action or

attentional-shift. One hypothesis is that the power at a given frequency band

for individual neurons is constant, but that when many neurons synchronize

their phase, the average power in that frequency band increases purely due to

the individual phases changing, not an increase in the power/activity of each

neuron. This phenomenon is termed event-related (de)synchronization (ERS/ERD).

ERS/ERD studies have highlighted brain activity related to stimuli/actions that

would not have been seen by an evoked trial-average method alone. Most likely,

some combination of both power increases/decreases and phase changes under-

lie the brain signals recorded in MEG, and these changes are always relative to

some “baseline” state which is certainly not rest/inactivity.

1.4 Magnetoencephalography: Forward Solution

The first step of computing what magnetic field change would be expected

at a SQUID sensor caused by a dipole current at a given location in the brain is

termed the forward solution. The magnetic field does not just decrease as a sim-

ple function of distance from the neural current source as it would if the current

source were in isolation. Instead, the source is inside the brain, where its current

is partially contained by cerebrospinal fluid and skull, and fully contained by the

scalp. The head is therefore a conducting volume for which shape and location
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from the sensors must be taken into account.

The K × Q forward lead field matrix F r represents the physical (and linear)

relationship between a dipole source at voxel location r for each dipole orientation

q = 1 : Q along a coordinate basis and its influence on sensor k = 1 : K (Sarvas,

1987). The lead field F r is calculated from knowing the geometry of the source lo-

cation to the sensor location, as well as assuming the type of conducting medium

in which the source lies. The human head is most commonly approximated as

a single sphere volume conductor for MEG data; for EEG data, a more detailed

model taking into account the tissue conductance boundaries is usually needed.

In the most general case, Q = 3 for all three possible directions of coordinate bases

of a source dipole. In the case of the single-shell sphere, the radial component of

source dipoles contribute nothing to MEG sensors, thus Q = 2 if a spherical co-

ordinate system is used. If there is knowledge of a subject’s cortical anatomy, the

source may be constrained to be perpendicular to the gray matter surface, thus

Q = 1. Throughout the rest of this dissertation, the single-shell model with Q = 2

is used for both simulations and real data from MEG.

1.5 Magnetoencephalography: Inverse Problem

The calculation of the magnetic field changes at a sensor due to a specific neu-

ral current via knowing the forward field is a straightforward computation given

the head geometry. (Obtaining the exact head geometry in practice, however, is
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not trivial). Regardless, the inverse problem of computing the neural current, given

knowledge of the external magnetic fields even with the most precise knowledge

of head geometry, is ill-posed: no unique solution is guaranteed. Additional as-

sumptions must be made to compute a single solution.

Continuing the notation above, the mathematical formulation of MEG data

can be written:

yn =
∑

r

F rsrn + vn (1.1)

Here the subscript n denotes the time index ranging from 1 : N , yn is the MEG

sensor data of dimension K × 1, the forward field F r is as described above, srn is

the source activity at voxel r and dimension Q× 1, and finally the sensor noise vn

is dimension K × 1. The sum over r indicates that all voxels with nonzero source

activity contribute to the sensor data. To be most precise, the sum should really

be an integral over the whole conducting volume, but in practice this is the same

in the limit that the voxel spacing becomes small.

Historically, the most common source reconstruction method is the equiva-

lent current dipole (ECD) method. ECD assumes that there are few point loca-

tions with active neural currents and solves for the best location and orientation

of these few dipoles by minimizing the error between the projected estimate and

the data. This is a nonlinear search over the parameter space and is highly over-

determined since the number of sensors is usually 50-300. When there is only one

true active source, ECD usually performs well. However, for two or more sources,
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the results can be highly dependent on initial location and on the total number of

dipoles being fit. Often, trying to fit three or more dipoles will fit noise rather

than true source locations.

Source localization algorithms can be broadly classified as parametric or to-

mographic, making different assumptions to overcome the ill-posed inverse prob-

lem. Parametric methods, including ECD, assume knowledge about the number

of sources and their approximate locations. A single dipolar source can be local-

ized well, but ECD techniques poorly describe multiple sources or sources with

large spatial extent. Parametric methods could also involve multipole, line source,

and/or patch reconstructions (Schmidt et al., 1999; Yetik et al., 2005; Jerbi et al.,

2002). Many parametric methods involve computation of noise and/or signal

covariances from data where several Bayesian approaches have been reported

(Mosher and Leahy, 1998; Jun et al., 2005, 2006; Huizenga et al., 2002; Waldorp

et al., 2002; de Munck et al., 2004; Bijma et al., 2005).

Tomographic methods reconstruct an estimate of source activity at grid

points across the whole brain, either simultaneously or through scanning. Tomo-

graphic methods could also be classified as adaptive (data-dependent) or non-

adaptive (data-independent). Of many tomographic algorithms, the adaptive

beamformer has been shown to have the best spatial resolution and zero localiza-

tion bias (Sekihara et al., 2005, 2002a; Küçükaltun-Yildirim et al., 2006); however,

it is sensitive to temporally correlated sources.
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Therefore, the main alternative source reconstruction methods estimate the

source activity at each voxel across the whole brain, termed distributive source

reconstruction methods. When the brain volume is discretized to a reasonable

level (usually between 3-5mm edge cubes), the total number of voxelsR can range

from 5,000-20,000. This is now a highly under-determined system; however, if the

number of active sources is less than the number of sensors, then the problem

returns to being over-determined.

The basic equation for distributed source reconstructions is to solve for a

weight w that can be applied to the sensor data y to produce the estimated source

activity ŝ at a particular voxel r:

ŝrn = wT
r yn (1.2)

The next two sections discuss the two main ways to compute the weight: non-

adaptive weights depend solely on the forward field and do not change with the

data recorded, and adaptive weights are a function of both the forward field and

the data. This background material is summarized from work published by Dr.

Sekihara and Dr. Nagarajan (Sekihara et al., 2005, 2002a,b, 2001), as well as out-

lined in their upcoming textbook to be published by Springer-Verlag in 2008.

1.5.1 Non-adaptive weights including sLORETA

If sensor noise is ignored, the simplest initial guess for the weight would be

the inverse of the forward field matrix. However, non-square matrices cannot be
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inverted, but rather may have a left- or right-sided inverse, usually approximated

by a pseudo-inverse. Similar to solving for the best ECD discussed above, the

source estimate ŝ that minimizes the linear least-squares error is the one that uses

the Moore-Penrose pseudo-inverse as the weight:

ŝrn = F r+yn = F rT [FF
T ]−1yn (1.3)

Here, the + indicates the pseudo-inverse, and F indicates the full composite for-

ward field for all voxels (size K ×QR). The quantity FF
T is also called the Gram

matrix G and gives an indication of the spatial correlation or overlap between

the sensitivity profile of the sensors. Since nearby sensors have quite similar

sensitivities, this Gram matrix is close to singular and so is not stable to invert.

Hence, Tikhonov regularization is needed, which involves adding a small amount

of noise to the diagonal of the Gram matrix prior to inversion. This regularization

can be arrived at in an alternate way, by minimizing a sum of squared-error plus

the norm of the source weighted by a Lagrange multiplier, termed the min-norm

solution.

ŝrn = F rT [FF
T + εI]−1yn (1.4)

If the source covariance Γ and sensor covariance Υ are assumed to be known, they

can be included in the minimization function to further improve the estimate:

ŝrn = (ΓF T )r[FΓF
T + εΥ]−1yn (1.5)
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If Γ and Υ are determined before observing the data, this method remains non-

adaptive. But if they are estimated using the current dataset, then this method

appears more like an adaptive method. All of the above three equations can be

expressed as:

ŝrn = F̃ rT G̃−1yn; wT
r = F̃ rT G̃−1 (1.6)

As a side note, all of these min-norm variations that use the Gram matrix depend

on its inclusion of all possible voxels that could contain source activity. Thus, even

if the source activity at only a particular voxel is of interest, the forward field for

the whole volume must be computed. It will be seen that the weights used in

the adaptive methods presented in the next subsection and probabilistic methods

presented in Chapter 2 only rely on the forward field for the voxel of interest.

Dale et al. (2000) proposed to modify this weight by normalizing it to ensure

a uniform noise spatial distribution. This solution can also be obtained by finding

the weight that minimizes wTGw subject to the unit-noise constraint wTw = 1.

Hence, the weight-normalized minimum-norm filter is:

wT
r =

F rTG−1

√

tr(F rTG−2F r)
(1.7)

Pascual-Marqui (2002) proposed a modification to the above weight-

normalized form, called sLORETA (standardized low-resolution electromagnetic

tomography), where the weight matrix is:

wT
r =

F rTG−1

√
F rTG−1F r

(1.8)
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The sLORETA weight is equivalent to normalizing the min-norm solution by the

square root of the resolution kernel and, alternatively, can be derived by find-

ing the weight that minimizes wTGw subject to the unit-total-leakage constraint

wTGw = 1.

Both sLORETA and the weight-normalized min-norm filter can be modified

so that the Gram matrix is regularized. A large amount of regularization leads to

a simplified form approximating the spatial-matched filter wT
r = F r

||F r||
.

1.5.2 Adaptive weights including MVAB

The class of minimum variance adaptive beamformer (MVAB) filters rely on

assumptions that sources are temporally uncorrelated with each other and that

the number of active sources is less than the number of sensors (regardless of how

many voxels are included in the source reconstruction volume). The minimum-

variance methods find the weight that minimizes the output power wT
r Ryywr sub-

ject to various constraints, where Ryy is the data covariance matrix. The output

power should be minimized since it usually has large contributions from noise

and source activity at voxels other than r.

However, the weight should also strive to maximize the pass-through of the

source power at the current voxel. Using a Lagrange multiplier with the unit-gain

constraint wT
r F

r = 1 yields the unit-gain-constraint minimum-variance adaptive
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beamformer (UGC-MVAB):

wT
r =

F rTR−1
yy

F rTR−1
yy F

r
(1.9)

While the unit-gain constraint seems most sensible at first, the gain for a source

at the sphere-center will be infinite for a forward model computed using a single-

sphere approximation since the forward field at the sphere center is zero. Thus,

the norm of the forward field can be used as a constraint wT
r F

r = ||F r|| to form

the array-gain-constrained MVAB (AGC-MVAB):

wT
r =

F̃ rTR−1
yy

F̃ rTR−1
yy F̃

r
(1.10)

where F̃ r = f r/||F r||, so it also can be called the forward-field-normalized MVAB.

The source power estimate is ŝrn = (F̃ rTR−1
yy F̃

r)−1. The unit-noise-gain constraint

of wT
r wr = 1 can also be used to give the UNG-MVAB:

wT
r =

F rTR−1
yy

√

(F rTR−2
yy F

r)
(1.11)

If sources are temporally uncorrelated, then the MVAB estimate at a true

source location will have zero influence from other sources and non-source loca-

tions will have zero power (except for very nearby sources whose resolution ker-

nel has significant spread at that location). However, if two sources at locations p

and q are temporally correlated with correlation value µ, the source estimate and

power at p are:

ŝp = sp − (σp/σq)µsq (1.12)

ŝ2
p = (1 − µ2)σ2

p (1.13)
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where σ is the true source power. For more than two correlated sources, the source

estimate is:

ŝp = sp +
∑

R

R−1
s (pr)

R−1
s (pp)

sr (1.14)

This reduction in source power and cross-talk of source time series estimate

can be very problematic for certain real data situations, such as bilateral auditory

cortex activation. Furthermore, the issue of the difference between ”scalar” MVAB

(weight computed for single known source orientation) or ”vector” MVAB (for

estimating either 2 or 3 directions) has been ignored until now. Solving for the

x, y, z component of a given source means that those three components are 100%

correlated with each other, assuming the source does not rotate over time or is not

composed of multiple sources spatially overlapping.

These correlated source problems can be minimized by explicitly nulling the

influence of other voxels onto the current voxel in computation of the weight. The

linear-constrained minimum variance beamformer uses the additional constraint

of wT
r lq = 0 for all known locations q 6= r that are correlated with r. If the number

of voxels q is large, a signal-space reduction can be used to estimate the main con-

tribution from the region (Dalal et al., 2006). The vector MVAB imposes wT
rx
lry

= 0

and wT
rx
lrz

= 0 to compute the x-component and similar constraints are used for

the other orientations.

One final modification to the adaptive methods will be discussed here. Since

the number of active sources can be reasonably assumed to be less than the num-
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ber of sensors, the data covariance matrix can be partitioned into a ”signal-space”

portion and ”noise-space” portion by using singular-value decomposition (SVD):

Ryy = ET
s ΛsEs + ET

n ΛnEn (1.15)

where Λs are the eigenvalues associated with P active signals and Λn are eigen-

values associated with K − P noise components. The lead field at true source lo-

cations is orthogonal to the space spanned by the noise eigenvectors. Thus, only

the signal subspace of the data covariance remains if the weight is premultiplied

by the projection EsE
T
s :

wsT
r = wT

r EsE
T
s =

F rTET
s Λ−1

s Es

ε
(1.16)

where ε corresponds to the various denominators used in Eqs. 1.9, 1.10, and 1.11.

Furthermore, even if there are slight estimation errors in the forward field due to

incorrect head model, the use of only the signal-space portion further reduces the

contribution of the error and the data noise. It is this eigenspace beamformer with

normalized forward-field that is referred to simply as ”MVAB” for the rest of this

dissertation, and whose performance is compared to the new methods proposed

in Chapter 2.

1.5.3 Noise and interference

All existing methods for brain source localization are hampered by the many

sources of noise present in MEG/EEG data. The magnitudes of the stimulus-

evoked neural sources are on the order of noise on a single trial, and so typically
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50-200 averaged trials are needed in order to clearly distinguish the sources above

noise. This limits the type of cognitive questions that can be answered, and is

prohibitive for examining processes such as learning that can occur over just a

few trials. Acquiring sufficient trials for successful averaging is time-consuming,

making it difficult for a subject or patient to hold still or pay attention through the

duration of the experiment.

Gaussian thermal noise or Gaussian electrical noise are present at the MEG or

EEG sensors themselves. Background room interference such as from powerlines

and electronic equipment can be problematic. Biological noise such as heartbeat,

eyeblink, or other muscle artifact can also be present. Ongoing brain activity it-

self, including the drowsy-state alpha (∼10Hz) rhythm, can drown out evoked

brain sources. Finally, many localization algorithms have difficulty in separat-

ing neural sources of interest that have temporally overlapping activity (Sekihara

et al., 2002a).

The basic min-norm method is biased towards the sensor array even with

no noise, while min-variance methods have no bias. The min-norm method

sLORETA has no localization bias when there is one active source and no noise,

but multiple sources or added sensor noise can cause localization bias (Seki-

hara et al., 2005). The AGC-MVAB and UNG-MVAB methods can be shown to

have no localization bias even when the input SNR is very low (Sekihara et al.,

2005). Examples of performance in simulation and real examples of the MVAB
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and sLORETA will be shown in Chapters 3 and 4.

1.6 Background Mathematics

A few mathematical rules and definitions used in Chapter 2 are presented

here. The values that a variable can take are often assumed to be drawn from some

distribution. For continuous variables, the Gaussian distribution (also known as

the normal distribution or the “bell curve”) is the most common one assumed for

many reasons. In any situation where random specific instances of the variable

(known as a sample) tend to cluster around one specific value and large devi-

ations from this mean are rare, then a Gaussian distribution is a good approxi-

mation, especially when the number of samples is large (due to the law of large

numbers). The form of a Gaussian distribution is described by the probability that

a specific value of the variable will occur, given the mean µ and precision Γ:

p(xn) = N (xn|µ,Γ) =
|Γ|
2π

1/2

exp

[

−1

2
(xn − µ)TΓ(xn − µ)

]

(1.17)

Like any probability distribution, the area under the curve for all values of xn is

normalized to one. The precision is the inverse covariance and is used thoughout

this thesis rather than the more commonly specified covariance. The above ex-

pression is the multivariate Gaussian and describes the distribution for a vector

xn. Hence the precision is, in general, a full-rank matrix if the individual elements

of the vector xn covary with each other.
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Note there are only two parameters needed to specify the distribution: the

mean and precision. For a Gaussian distribution, the estimated mean and covari-

ance are the sufficient statistics (quantities that, once known, the parameters µ and

Γ give no new information). They are given by:

x̄ =
1

N

N
∑

n=1

xn (1.18)

Rxx = E[(xn − x̄)(xn − x̄)T ] (1.19)

In general, the mean of a quantity approximated by a Gaussian distribution

can be estimated by the mean of the samples measured. However, it is often the

case that the data that is measured is an indirect result of the underlying quantity

of interest. This is just another way of stating the inverse problem. This can be de-

scribed in a probabilistic framework through conditional probabilities and Bayes

rule. Bayes rule relates the probabilities of two different variables with each other.

First, think about the MEG data y that could be measured from any subject, in any

head position, doing any cognitive task: the expected mean of this data is termed

the a priori probability of y. Now, think about the expected mean of the data y

given that the head position and functional task (and thereby location of expected

neural activity) are known. If there is a direct/systematic way in which the value

of one quantity influences/causes/predicts the value of another, this conditional

probability is termed the likelihood. In the case of MEG, the true source activ-

ity at a location r causes specific changes in measured external magnetic fields

specified by the forward field. Thus, the form of the likelihood distribution p(y|x)
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is different from that of the prior p(y). Since the forward solution relates x to y,

then p(y|x) is easy to compute. Before the data was measured, some prior guess

exists as to what source activity might be present, given by the prior distribution

p(x). But really of most interest is the unknown/unmeasured quantity x given

the measured data y, the posterior distribution, given by Bayes rule:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∫

dx p(x)p(x, y)
∝ p(y|x)p(x) (1.20)

A useful concept when using Bayes rule is that of a conjugate prior. For a given

likelihood distribution, a conjugate prior distribution is one which gives the same

form of distribution for the posterior distribution (but with different parameter

values). For a Gaussian likelihood distribution, the conjugate prior distribution is

Gaussian. The mean of the posterior Gaussian is the weighted average of the like-

lihood and prior means, weighted proportionally by their certainty (precision).

1.6.1 Probabilistic methods for the inverse problem

Several tomographic algorithms use a Bayesian framework to explicitly in-

corporate prior assumptions about source configuration in the model (Sato et al.,

2004; Phillips et al., 2005; Mattout et al., 2006). Wipf et al. (2007) provide a unify-

ing framework relating methods through their choice in specification of a neural

source prior, whether fixed or learned from the data.

Jun et al. (2005) create a multi-dipole model that explicitly computes the pos-

terior for number of dipoles, location, and orientation. They use prior terms for
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the temporal correlations of the sources, chosen based on the data. A prior on

location or orientation can include information from fMRI or structural MRI, al-

though the article demonstrates use of a uniform prior. The prior on number of

dipoles roughly scales with the inverse of the number. They acknowledge the

problem that the noise covariance has many parameters to estimate, so they use

a Wishart prior distribution and estimate the noise posterior. They also integrate

over the time courses to obtain the posterior for location, orientation and number

of dipoles.

1.7 Graphical Models

Graphical models are a powerful and flexible tool for relating known quanti-

ties with unknown quantities in a probabilistic way. A node on the graph repre-

sents a variable or parameter, known or unknown, and lines are drawn between

nodes that probabilistically depend on one another. In general, for a group of

variables, the joint probability of all variables taking on some specific set of values

assumes dependence of all variables on all other variables. However, a graphical

model can easily indicate which quantities are independent, thus simplifying the

joint probability distribution. Graphs are particularly useful for indicating con-

ditional dependencies: whether A is independent of B given knowledge about

C. The specific rules for whether two nodes are conditionally independent are

different for directed versus undirected graphs. In an undirected graph, the line
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connecting two nodes is nondirectional. However, the lines connecting nodes in

directed graphs are directed, indicated by an arrowhead on the graph and the

meaning of the connection is changed depending on which way the arrow points.

In a directed graph, parent nodes point to children nodes, indicating the children

have a probabilistic dependence on the parents; knowledge of the value of a par-

ent node gives a greater-than-chance guess at the value of the child node. In undi-

rected graphs, neighboring nodes have probabilistic dependencies on each other.

Throughout this work, directed graphs are used. A quantity in a circle is un-

known, but a quantity in a square is known either by measurement or direct com-

putation. A big box surrounds variables (quantities dependent on time, either

measured or unknown), while parameters and hyperparameters, which specify

distributions, are outside this box. When using Bayes rule, there is always a ques-

tion of how to specify or choose the prior distribution of an unknown quantity.

Often, this can be helped by assuming that the prior distribution at this level of

the problem is really a posterior distribution of some higher level of the problem,

and can be computed using Bayes rule and hyperparameters (parameters over

parameters).
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Chapter 2

Probabilistic Methods for Neural

Source Reconstruction: Mathematical

formulation 1

Two distinct methods for neural source reconstruction which incorporate de-

noising have been developed. Both are novel probabilistic models that estimate

source activity while suppressing the effect of interference and noise sources. Both

rely on knowledge of stimulus/event timing to use pre-stimulus data to estimate

the noise and then localize the evoked sources in post-stimulus data. The source

image map is the likelihood of a dipole source at each voxel, and the source time

course is also estimated.
1Portions of this chapter originally appeared as an article in NeuroImage (Zumer et al., 2007b),

NIPS conference paper (Zumer et al., 2007a), and ISBI conference paper (Zumer et al., 2006)



26

The first model (SAKETINI) estimates contributions to sensor data from

evoked sources, interference sources and sensor noise using Bayesian methods

and by exploiting knowledge about their timing and spatial covariance prop-

erties. Full posterior distributions are computed rather than just the MAP es-

timates. The second model (NSEFALoc) uses a set of temporal basis functions

learned from the data. The data is assumed to be a sum of evoked neural sources

plus other interference sources and sensor noise. First, a set of denoised temporal

basis functions are computed from the data which describe the dynamics of all

evoked sources. Next, the spatial weighting of these temporal basis functions is

computed at each voxel to provide a spatiotemporal map of activity across the

brain. One subtype (NSEFALoc1) models the activity outside a particular voxel

by a full-rank covariance matrix and estimates unknown quantities by maximiz-

ing the likelihood. The other subtype (NSEFALoc2) parameterizes activity out-

side the voxel of interest as a linear mixture of a set of unknown Gaussian fac-

tors plus Gaussian sensor noise and estimates all unknown quantities using an

Expectation-Maximization (EM) algorithm.

The mathematical background, framework and derivations of these methods

are presented in this chapter. The performance of these methods in simulated

and real data is presented in Chapter 3. An extended comparison on real data is

further provided in Chapter 4.
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2.1 Overview

Noise in MEG and EEG data is typically reduced by a variety of preprocess-

ing algorithms before being used by source localization algorithms. Simple forms

of preprocessing include filtering out frequency bands not containing a brain sig-

nal of interest. Additionally and more recently, ICA algorithms have been used

to remove artefactual components, such as eyeblinks (Jung et al., 2000). More so-

phisticated techniques have also recently been developed using graphical models

for preprocessing prior to source localization (Nagarajan et al., 2005, 2006). There-

fore, current algorithms for source localization from MEG and EEG data typically

use a two stage procedure - the first for noise/interference removal and the sec-

ond for source localization.

2.2 Factor Analysis

2.2.1 Dimension reduction and denoising methods

MEG and EEG data often are acquired with many (∼100) channels while the

number of underlying neural sources of interest remains the same for a given

task or stimulus. The number of activated brain areas with signal strength large

enough to be measured by MEG/EEG and distinguished as separate entities is

usually under 10; thus much signal-space reduction can be performed on the

many channels of sensor data. Many methods exist for data dimension reduc-
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tion; the two most popular for MEG/EEG data are PCA (principal components

analysis) and ICA (independent components analysis). Factor analysis (FA) is

discussed as an alternative. All three methods estimate an unknown set of under-

lying signals (components or factors) and an unknown mixing (weight) matrix,

but differ in the assumptions of these quantities.

Defined above, an FA model is a probabilistic graphical model that parses the

data into factors (which are hidden variables) premultiplied by a mixing matrix

(factor-loading matrix) plus an additive noise term. Thus, FA is a general case,

of which PCA and ICA are special cases requiring square mixing matrices and

zero-noise. ICA further requires factors to be stationary, independent, and non-

Gaussian.

PCA separates the underlying signals by linear transformation so that they

are orthogonal to each other and are ordered in terms of explained variance of

the data. An eigenvalue decomposition or singular value decomposition (SVD)

is used to compute these principal components. Assumptions of this method are

that the data has zero mean and that the meaningful underlying signals are actu-

ally orthogonal to each other (which is not usually true for brain activity, but can

sometimes be a reasonable approximation). The data y (of dimension K×N with

K measurement sensors and N time points) is decomposed by SVD into WΣV T ,

with Σ a diagonal matrix of the eigenvalues and ΣV T the principal components.

A plot of the ordered eigenvalues usually depicts a transition point where the
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first few eigenvalues are stronger than the remaining ones such that they can be

assumed to represent ”signal” and the remaining eigenvalues represent ”noise.”

These ”noise” eigenvalues can be set to zero and the reverse transform can be

applied to obtain a denoised version of the sensor data. This method is used for

the eigen-subspace beamformer (Sekihara et al., 2002b). A potential problem of

this method is that a strong but non-brain signal, such as eyeblinks, cannot be

distinguished from true signals of interest.

ICA separates signals that are assumed non-Gaussian and independent of

each other, but are allowed to be correlated (i.e. non-orthogonal). The generative

model for data y is y = As where A is the square mixing matrix and s are the non-

Gaussian independent components. The independence implies that knowledge

of one signal does not help to better predict another signal. Many methods for ac-

tually computing the unknown mixing matrix and components exist. In general,

they can be classified as methods that do or do not take higher than second-order

statistics into account. For more details on ICA and the methods for computing

the components, see Hyvarinen et al. (2001) and Cardoso (1998). There is not an

ordering of components like for PCA; commonly the components are displayed

and visually selected for which appear to be signal and the weighting of the re-

maining components can be set to zero. This method can work well for removing

sources of interference such as eyeblinks which have a characteristic time course.

Neither PCA or ICA allow for noise at the sensor level. Thus, any sensor
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noise is effectively projected to the components. Furthermore, both PCA and ICA

involve computation/estimation of a square weight (mixing) matrix, which can

be difficult and/or unnecessary when the true signal space is much less than the

number of sensors and a large number of sensors are present. Factor analysis is

a dimension reduction method which explicitly takes into account both sensor

noise and the dimension reduction via a non-square mixing matrix. The data y is

assumed to come from the model y = Ax + v, where A is in general non-square

(size K × L, where L ≤ K), the dimension of x is then L × N , and v accounts

for sensor noise (dimension K × N ). The signal factors x and noise factors v are

assumed Gaussian, with x drawn from zero-mean, identity precision distribution

and v drawn from a zero-mean with diagonal precision λ distribution. The fol-

lowing is assumed for n = 1 : N :

p(x) =
∏

n

p(xn); p(xn) = N (xn|0, I), (2.1)

p(v) =
∏

n

p(vn); p(vn) = N (vn|0, λ), p(λ) = const. (2.2)

p(y|x,A, λ) =
∏

n

p(yn|xn, A, λ); p(yn|xn, A, λ) = N (yn|Axn, λ) (2.3)

Thus the data y is assumed Gaussian with mean Ax and precision λ. The maxi-

mum likelihood approach could be taken to solve for the unknown factors x by

maximizing the data with respect to (w.r.t.) A and λ; however this produces a

set of nonlinear equations which are difficult to solve. Instead, a method called

Expectation-Maximization is used.
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2.2.2 Expectation-Maximization

Expectation-Maximization (EM) is an iterative algorithm for computing un-

derlying unknown (hidden/missing/latent) quantities. In the E-step, the poste-

rior mean of the unknown factors is computed for a given value of parameters

(either an initial estimate or the value from the previous M-step). In the M-step,

the values of the parameters (such as A and λ) that maximize the averaged com-

plete data likelihood are found. The likelihood is guaranteed not to decrease with

each EM step and the algorithm can iterate until the likelihood appears to con-

verge.

The data likelihood is defined as the logarithm of the observed data: L =

log p(y|Θ). The best solution for the parameters would be the one that maximized

the joint likelihood of the data and hidden variables (if indeed they were known).

This joint likelihood is termed the complete data likelihood, since it involves all

variables, both observed and hidden, written as l = log p(y, x|Θ), where Θ is the

set of all model parameters, in this case Θ = {A, λ}. However, the factors are

unknown, but, given the data, a posterior estimate can be computed. Either just

the maximum a posteriori estimate can be used or an average over all values of x

weighted by their probability, hence creating the averaged complete data likeli-

hood, given by l̄(y|Θ) = Ep(x|y)l(y, x|Θ) =
∫

dx p(x|y)l(y, x|Θ).
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2.2.3 Factor Analysis estimates

Assuming that the factors are independent and identically distributed (i.i.d.)

allows the posterior estimate of the factors to factorize over time (indicated by

subscript n). Since the distribution of the posterior of the factors is Gaussian, the

easiest way to compute the mean and precision is to take the derivative of the log

posterior with respect to the factor. The slope is the precision, and the value of the

factor that makes the derivative zero is the mean. Specifically,

log p(xn|yn) = log p(yn|xn) + log p(xn)

= −1
2
(yn − Axn)Tλ(yn − Axn) − 1

2
xT

nxn

(2.4)

This gives the following for the mean and precision:

p(xn|yn) = N (xn|x̄n,Γ)

x̄n = Γ−1ATλy

Γ = ATλA+ I

(2.5)

For all variables throughout the rest of this dissertation, a bar over the variable

indicates its posterior mean.

Given these posterior estimates, the averaged complete data likelihood can

be maximized for the optimum parameter values. Taking the derivative of

l̄(y|Θ) = Ep(x|y)[l(y, x|Θ)] w.r.t. A and λ gives

A = RyxR
−1
xx

λ =
1

N
diag(Ryy − ARxy)

(2.6)
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where N is the total number of time points. The likelihood function using the

updated values for parameters and factors, which is guaranteed not to decrease

with each EM step, is given by:

L =
N
∑

n=1

log p(yn) =
N

2
log |Σ−1| − 1

2

N
∑

n=1

yT
n Σ−1yn (2.7)

with the covariance of p(yn) given by Σ = AAT + λ−1.

2.2.4 Variational Bayesian Expectation-Maximization

For simple models, the posterior distribution can often be computed directly.

However, for more interesting and realistic models, the posterior is often compu-

tationally intractable. In these cases, some approximation must be made. Two

main branches are sampling methods and variational methods. Sampling meth-

ods, such as Markov Chain Monte Carlo methods (Jun et al., 2005; Gelman and

Rubin, 1996), extensively estimate points in the distribution. However, this is

dependent on the sampled points and can be quite computationally costly. Varia-

tional methods instead choose to factorize the joint distribution over factors and

parameters assuming conditional independence of the factors and parameters,

also termed the mean field approximation.

The energy of a global configuration x, y is the negative of the complete data

likelihood. Instead of computing the averaged (expected) energy w.r.t. to the

true posterior distribution p(x,A|y) in order to get the averaged complete data

likelihood defined earlier, one can instead compute this expected energy w.r.t.
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any arbitrary “free” distribution q(x,A|y). The negative of a quantity termed “free

energy” (from statistical physics) is defined as this expected energy w.r.t. q plus

the entropy of q:

F = Eq(x,A|y,Θ) [l(y, x, A|Θ)] +Hq (2.8)

This can be related to the data likelihood as follows:

F(q,Θ) = Eq(x,A|y,Θ) [l(y, x, A|Θ)] +Hq

=
∫

dx dA q(x,A|y,Θ) [log p(y, x, A|Θ) − log q(x,A|y,Θ)]

=
∫

dx dA q(x,A|y,Θ) [log
p(y, x, A|Θ)

q(x,A|y,Θ)
]

=
∫

dx dA q(x,A|y,Θ) [log
p(x,A|y,Θ)

q(x,A|y,Θ)
+ log p(y|Θ)]

= log p(y|Θ) − KL[q(x,A|y,Θ)||p(x,A|y,Θ)]

= L(Θ) − KL[q(x,A|y,Θ)||p(x,A|y,Θ)]

(2.9)

where Θ is the set of all model parameters and Hq is the entropy of

q(u,B|y,Θ). The Kullback-Leibler divergence between distributions q and p, de-

fined KL(q||p) =
∫

dx q(x)[log q(x)−log p(x)], is always nonnegative and can equal

zero if the two distributions are equal; thus, F is a lower bound to the log likeli-

hood function L. Note further that, if q equals p, then:

F = L = l̄ +Hp (2.10)

Instead of maximizing the likelihood function itself, this new function F is

parameterized by the arbitrary distribution q. Now, finding the q that maximizes

F means that q will be as close to the true posterior distribution as possible, and

that F will be as close to the true likelihood L.
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A full Bayesian EM algorithm iterates between maximizing F w.r.t. q to find

the best full posterior distribution (not just the MAP estimate) and the maximizing

F w.r.t. the parameters. When it is mathematically tractable to compute this exact

q, each E-step brings F equal to L and each M-step increases L.

The parameters can be treated equally with the unknown factors, so that a

full distribution of the parameters can be found as well (rather than just the MAP

estimate). However, this now means the parameters and hidden variables are cor-

related. Exact inference on this model is intractable using the true joint posterior

over the background factors u and mixing matrix B. The marginal conditional

posterior estimates of the background factors and mixing matrix is desired, given

the data. We could choose to estimate just the maximum a posteriori (MAP) esti-

mates, but this ignores the full distribution including its precision.

p(x,A|y) ≈ q(x,A|y) = q(x|y)q(A|y) (2.11)

This variational approximation leads to the final version of maximizing the like-

lihood: Variational Bayesian Expectation Maximization (VB-EM). This approxi-

mation restricts the posterior to a product of factor distributions, but allows the

solution to be computed analytically. F is equal to log p(y|Θ) when the approx-

imation in Eq. (2.11) is true, thus making the KL-divergence zero. The VB-EM

algorithm (Attias, 1999; Ghahramani and Beal, 2001; Beal, 2003) iteratively maxi-

mizes F w.r.t. each factorized distribution to, at least, a local maximum of F , al-
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ternating w.r.t. the posteriors q(x|y) and q(A|y). In the VBE-step, F is maximized

w.r.t. q(x|y), keeping q(A|y) constant, and the sufficient statistics of the hidden

variables are computed. In the VBM-step, F is maximized w.r.t. q(A|y), keeping

q(x|y) constant, to solve for the full distribution of A and the MAP estimate of

any additional parameters or hyperparameters are computed as they would be

in a traditional non-VB M-step. The q(x,A|y) = q(x|y)q(A|y) that maximizes F

is the distribution that minimizes the KL-divergence, thus making the mean field

approximation as close to equivalence as possible under the constraint implied

by Eq. (2.11). A derivation of a similar model is described in the appendix of

Nagarajan et al. (2006) and the variational approximation has been shown to be a

powerful and flexible tool (Jordan et al., 1999). It can further be shown that, given

our previous assumptions of Gaussian prior distributions, the form of the poste-

rior q(x|y) must also be Gaussian, by showing that the function log q is quadratic

in x.

2.2.5 Variational Bayesian Factor Analysis (VBFA)

Even though a prior distribution of the factors xwas assumed, a full Bayesian

approach requires prior distributions on the parameters as well so that full pos-

terior distributions can be computed. The prior terms usually involve hyperpa-

rameters, which here are updated in the VBM-step. In addition to the prior dis-

tributions on x and v mentioned in section 2.2.1, a conjugate prior is used for the
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mixing matrix A, as follows,

p(A) =
∏

kl

p(Akl); p(Akl) = N (Akl|0, λkαl) (2.12)

where αl is a hyperparameter over the lth column of A and λk is the precision of

the kth sensor. The matrix α = diag(α1, ..., αL) provides a robust mechanism for

automatic model order selection, so that the optimal size of A is inferred from the

data through α (for general reference, see Neal (1996)). Examples of the effective-

ness of this automatic dimension selection in the VBFA framework are shown in

Nagarajan et al. (2007); further examples of its use in the source reconstruction

algorithms in this chapter are shown in the next chapter.

The first-stage E-step maximizes F w.r.t. q(x|y), while holding q(A|y) fixed,

using calculus of variations, yielding:

log q(x|y) = Eq(A|y) (log p(y, x, A|Θ)) (2.13)

This q(x|y) is the best function to approximate p(x|y). It can be shown that this q

has a Gaussian form given the previous Gaussian assumptions. To find the mean

and precision of q(x|y), take the derivative w.r.t. x as in FA, and use equations A.6
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and A.9.

∂

∂xn
log q(x|y) =

∂

∂xn
Eq(A|y) [log p(y, x, A|Θ)] = 0

∂

∂xn
Eq(A|y) [log p(y|x,A,Θ) + log p(x|Θ)] = 0

∂

∂xn
Eq(A|y)

[

−1

2

N
∑

n=1

(

(yn − Axn)Tλ(yn − Axn) − xT
nxn

)

]

= 0

Eq(A|y)

[

ATλyn − ATλaxn

]

= 0

ATλyn = ¯ATλAxn (2.14)

Using Eq. (A.13), the following posterior estimates are obtained for the factors:

q(x|y) =
∏

n

q(xn|yn); q(xn|yn) = N (xn|x̄n, γ)

x̄n = γ−1ĀTλyn; γ = ĀTλĀ+Kψ−1
A + I (2.15)

The last line for γ is the final version using the estimate determined below in Eq.

(2.18) that the precision of A is λψA. In the VBM-step, the full posterior distribu-

tion of the mixing matrix A is computed, including its precision matrix ψA, and

the MAP estimates of the noise precision λ and the hyperparameter α. The VBM

step finds the distribution that best approximates p(A|y):

log q(A|y) = Eq(x|y) (log p(y, x, A|Θ)) (2.16)

Similar to the VBE-step, this q also has a Gaussian form. Its mean and precision
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are found by taking the derivative w.r.t. A:

∂

∂Ak
log q(A|y) =

∂

∂Ak
Eq(x|y) [log p(y, x, A|Θ)] = 0

∂

∂Ak
Eq(x|y) [log p(y|x,A,Θ) + log p(A|Θ)] = 0

∂

∂Ak
Eq(x|y)

[

−1

2

N
∑

n=1

(yn − Axn)Tλ(yn − Axn) − 1

2

K
∑

k=1

AkλkαA
T
k

]

= 0

Eq(x|y)

[

N
∑

n=1

(λkynkx
T
n − λkAkxnx

T
n ) − Akλkα

]

= 0

λkR
k
yx − λkAkRxx − Akλkα = 0

λkR
k
yx = Ak(λkRxx + λkα) (2.17)

Thus, the posterior distribution for A is:

q(A|y) = N (A|Ā, λψA)

Ā = Ryxψ
−1
A ; ψA = (Rxx + α) (2.18)

The matrices, such as Ryx, represent the posterior covariance between the two

subscripts.

Ryy =
N
∑

n=1

yny
T
n , Ryx =

N
∑

n=1

ynx̄
T
n (2.19)

To find the MAP estimates in the M-step, take the derivative of F w.r.t. the
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parameter. To obtain the MAP estimate of λ:

∂F
∂λk

=
∂

∂λk
Eq(x|y)Eq(A|y) [log p(y|x,A, λ) + log p(A|λ)] = 0

∂
∂λk

Eq(x|y)Eq(A|y)

[

N
2
log |λ| − 1

2

N
∑

n=1(yn − Axn)Tλ (yn − Axn) + 1
2
log |λ|

−1
2

K
∑

k=1AkλkαA
T
k

]

= 0

Eq(x|y)Eq(A|y)

[

N+1
2
λ−1

k − 1
2

N
∑

n=1(ynkynk − 2Akxnynk +Akxnx
T
nA

T )

−1
2
AkαA

T
k

]

= 0

N + 1

2
λ−1

k =
1

2
Ryy − ĀRk

xy +
1

2
¯AkRxxAT

k +
1

2
¯AkαAT

k

(N + 1) λ−1
k =

Ryy − 2ĀRk
xy + ĀkRxxĀT

k + Tr(Rxxλ
−1ψ−1

A ) + ĀkαĀT
k + Tr(αλ−1ψ−1

A )

(N + 1)λ−1
k = Ryy − 2ĀRk

xy + ĀkψAĀT
k + λ−1

k

λ−1
k =

1

N
(Ryy − 2ĀkR

k
xy + ĀkψAψ

−1
A Rk

xy)

λ−1
k =

1

N
(Rk

yy − ĀkR
k
xy)λ = N

[

diag(Ry′y′ − ĀRxy′)
]−1 (2.20)

The MAP estimate of α is similarly found by maximizing F :

∂F
∂α

=
∂

∂α
Eq(x|y)Eq(A|y) [log p(A)] = 0

∂

∂α
Eq(x|y)Eq(A|y)

[

K

2
log |α| − 1

2

K
∑

k=1

AkλkαA
T
k

]

= 0

K

2
α−1 =

1

2
¯AλATα−1 = diag(

1

K
ĀTλĀ+ ψA); (2.21)

The final maximized likelihood is computed and can be plotted to ensure it
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does not decrease with any E- or M-step due to implementation errors.

L =
N

2
log

|λ|
|γ| +

K

2
log

|α|
|ψA|

− 1

2

N
∑

n=1

(yT
nλyn + xT

nγxn) (2.22)

2.3 Stimulus Evoked Factor Analysis (SEFA)

SEFA (Nagarajan et al., 2007) uses the computational framework of VBFA

but includes the additional concept of how MEG/EEG data are collected in or-

der to further separate out noise components. In the stimulus evoked paradigm,

some baseline control data is collected for several hundred milliseconds termed

the “pre-stimulus period”, then a stimulus occurs, evoking a neural response in

the “post-stimulus period.” The pre-stimulus period is typically used to deter-

mine the mean baseline to subtract from the post-stimulus period as well as to

measure the baseline variance in the data so that the post-stimulus can be com-

pared to see if it indeed is above baseline.

The key idea of SEFA is that background activity such as ongoing brain activ-

ity unrelated to the stimulus, other biological noise such as eyeblinks and heart-

beat, other room noise, and sensor noise will be present in both pre-stimulus and

post-stimulus periods. However, only the evoked brain sources of interest will be

present in post-stimulus period alone and not the pre-stimulus period. Note this is

assumption is valid for the evoked response paradigm, but not the event-related

synchronization/desynchronization analysis, which is not the focus of this thesis

but is discussed in the last chapter. The VBFA model is extended to include the
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background sources:

yn = Bun + vn n=−Npre, . . . ,−1

yn = Axn +Bun + vn n=0, . . . , Npost − 1

(2.23)

Time ranges from −Npre : 0 : Npost − 1 where Npre (Npost) indicates the number

of time samples in the pre-(post-)stimulus period. The K ×M matrix B and the

M ×1 vector un represent the background mixing matrix and background factors,

respectively. The quantities A and x are as defined above in VBFA. Note that the

size of A andB do not need to be the same; in fact, L can be roughly the size of the

number of expected evoked sources (typically less than 10) whereas M is usually

larger, but should scale in relation to the total number of sensors. Furthermore,

Npre and Npost do not need to be the same size, but if Npre is much less than Npost

there will be identifiability issues between A and B. The distribution of the data

now is:

p(y|x, u, A,B, λ) =
∏

n

p(yn|xn, un, A, B, λ)

p(yn|xn, un, A, B, λ) =















N (yn|Bun, λ) n=−Npre, . . . ,−1

N (yn|Axn +Bun, λ) n=0, . . . , Npost − 1

(2.24)

To describe the full model in the Bayesian framework, prior probability dis-
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tributions are given to these quantities:

p(x) =
∏

n

p(xn); p(xn) = N (xn|0, I), (2.25)

p(u) =
∏

n

p(un); p(un) = N (un|0, I), (2.26)

p(v) =
∏

n

p(vn); p(vn) = N (vn|0, λ), p(λ) = const. (2.27)

and, similar to VBFA, hyperparameters are used for the mixing matrices:

p(A) =
∏

kl

p(Akl); p(Akl) = N (Akl|0, λkαl) (2.28)

p(B) =
∏

km

p(Bkm); p(Bkm) = N (Akm|0, λkβm) (2.29)

There are two slightly different ways in which all the posterior estimates of the

factors and parameters can be computed. One would be to use all the data at

once to compute x, u, A and B. However, there is greater chance of identifiability

problems between A and B, especially if the amount of pre-stimulus data is small

relative to post-stimulus data. Furthermore, a better initial estimate of A can be

made if B is already known, rather than learning both A and B from less reliable

initial estimates. Thus, SEFA is best computed by using a two-stage procedure.

First, B, u and λ are learned from just the pre-stimulus data alone (essentially just

doing regular VBFA on the pre-stimulus data). Then, B and λ are held fixed and

A, x and u are computed using just the post-stimulus data. Note that u needs to

be recomputed for the post-stimulus period, since the projection from the data to

the noisy source space is defined by B which is fixed, but the actual realization of

noise strength in the post-stimulus changes from time point to time point.
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Nagarajan et al. (2007) describe the VBEM updates for SEFA using the first

method (learning A and B at once) although in practice the two-step method is

more commonly used. Here, the explicit update rules for the two-stage procedure

are given. The first are identical to VBFA applied to pre-stimulus data: The fol-

lowing posterior estimates are obtained for the factors in the first-stage VBE-step:

q(u|y) =
∏

n

q(un|yn); q(un|yn) = N (un|ūn, γ)

ūn = γ−1B̄Tλyn; γ = B̄TλB̄ +Kψ−1
B + I (2.30)

In the first-stage VBM-step, the full posterior distribution of the background mix-

ing matrix B is computed, including its precision matrix ψB , and the MAP esti-

mates of the noise precision λ and the hyperparameter β.

q(B|y) = N (B|B̄, ψB)

B̄ = RyuψB; ψB = (Ruu + β)−1

β−1 = diag(
1

K
B̄TλB̄ + ψB); λ−1 =

1

N
diag(Ryy − B̄RT

yu) (2.31)

Now that B and λ have been learned from the data, the statistics of these

noise sources are assumed not to change. Unless there is a systematic bias in

a noise source introduced by the experiment itself such that some noise is only

present in post-stimulus time period, this assumption is reasonably valid.
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The free energy function that is maximized in the second step of SEFA is:

F(q,Θ) =

∫

dx du dA q(x, u, A|y,Θ) [log p(y, x, u, A|Θ)− log q(x, u, A|y,Θ)]

= log p(y|Θ) − KL[q(x, u, A|y,Θ)||p(x, u, A|y,Θ)] (2.32)

In the second-stage VBE-step, the posterior distribution of the background

factors given the data is computed by maximizing the above expression for F .

First, define

κn =









xn

un









; Ω =

(

A B̄

)

; Ω =

(

Ā B̄

)

; (2.33)

Then, taking the derivative of optimal posterior q(κ|y) gives:

∂

∂κn
log q(κ|y) =

∂

∂κn
Eq(A|y) [log p(y, κ, A|Θ)] = 0

∂

∂κn
Eq(A|y) [log p(y|κ,Ω,Θ) + log p(κ|Θ)] = 0

∂

∂κn

Eq(A|y)

[

−1

2

N
∑

n=1

(

(yn − Ωκn)Tλ(yn − Ωκn) − κT
nκn

)

]

= 0

Eq(A|y)

[

ΩTλyn − ΩTλΩκn − κn

]

= 0

Ω
T
λyn =

(

ΩTλΩ + I
)

κn (2.34)
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The second-stage VBE-step results as:

q(κn|yn) = N (κn|κn,Γ);

κn = Γ−1Ω
T
λyn;

Γ = ΩTλΩ + I = Ω
T
λΩ +KΨ−1 + I (2.35)

=









ĀT

B̄T









λ

(

Ā B̄

)

+K









0 Ψ−1
A

0 0









+ I (2.36)

In the second-stage VBM-step, the posterior distribution of the interference

mixing matrix A is updated, including its precision ΨA. Note that B̄ and the

sensor noise precision λ were learned and fixed from the pre-stimulus data. The

MAP value of the hyperparameter α is learned here from the post-stimulus data.

∂

∂Ak
log q(A|y) =

∂

∂Ak
Eq(κ|y) [log p(y, κ, A|Θ)] = 0

∂

∂Ak
Eq(κ|y) [log p(y|κ,A,Θ) + log p(A|Θ)] = 0

∂

∂Ak

Eq(κ|y)

[

−1

2

N
∑

n=1

(yn − Axn − B̄un)
Tλ(yn − Axn − B̄un) −

1

2

K
∑

k=1

AkλkαA
T
k

]

= 0

Eq(κ|y)

[

N
∑

n=1

(λkynkx
T
n − λkAkxnx

T
n ) + λkB̄kunx

T
n − Akλkα

]

= 0

λkR
k
yx − λkAkRxx − λkB̄

T
k Rux − Akλkα = 0

λk(R
k
yx − B̄T

k Rux) = Ak(λkRxx + λkα) (2.37)

Thus, the posterior distribution for A is:

q(A|y) = N (A|Ā, λΨA)

Ā = (Ryx − B̄Rux)Ψ
−1
A ; ψA = (Rxx + α) (2.38)
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The matrices, such as Rux, represent the posterior covariance between the two

subscripts

Rxu =
N
∑

n=1

x̄nr̄
T
n +NΣxu = RT

ux; Rxx =
N
∑

n=1

x̄nx̄
T
n +NΣxx (2.39)

where Σ = Γ−1 is specified as:

Σ =









Σxx Σxu

Σux Σuu









(2.40)

The update for α is the same as in VBFA. The likelihood function that is guaran-

teed to converge to at least a local minimum is:

Lr =
N

2
log

|λ|
|Γ| −

1

2

N
∑

n=1

(

yT
nλyn − x̄

′T
n Γx̄

′

n

)

+
K

2
log |α||ΨA| (2.41)

Performance of SEFA to denoise the sensor data, compute a regularized data co-

variance matrix, and estimate the source factors are described further in Nagara-

jan et al. (2007).

Like PCA, VBFA (or SEFA) can be applied to the post-stimulus (or total) data

window of interest to obtain a denoised estimate of the data covariance, which

can be used as an input to some source localization method such as beamform-

ing. The factors can also be further used as temporal basis functions such that

neural activity in source space is a linear combination of the factors. The next two

sections focus on source reconstruction methods that use the probabilistic graph-

ical model framework introduced with the denoising methods like SEFA. These

methods learn hidden variables representing localized source activity while ac-

counting for noise confounds.
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2.4 SAKETINI

SAKETINI is a new probabilistic modeling framework for MEG/EEG source

localization which estimates Source Activity using Knowledge of Event Timing

and Independence from Noise and Interference. SAKETINI builds on the ideas

of SEFA for denoising but additionally computes source localized estimates of

neural activity. The framework uses a probabilistic hidden variable model that

describes the observed sensor data in terms of activity from unobserved brain

and interference sources. The unobserved source activities and model parameters

are inferred from the data by a Variational-Bayesian Expectation-Maximization

algorithm. The algorithm then creates a spatiotemporal image of brain activity

by scanning the brain, inferring the model parameters and variables from sensor

data, and using them to compute the likelihood of a dipole at each grid location

in the brain.

The data is assumed collected in the stimulus evoked paradigm in the same

way as described above for SEFA, such that the stimulus onset or some other

experimental marker indicated the “zero” time point. Ongoing brain activity, bi-

ological noise, background environmental noise, and sensor noise are present in

both pre-stimulus and post-stimulus periods; however, the evoked neural sources

of interest are only present in the post-stimulus time period. The sensor data can

be described as coming from four types of sources: (I) evoked source at a par-

ticular voxel (grid point), (II) all other evoked sources not at that voxel, (III) all
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background noise sources with spatial covariance at the sensors (including brain,

biological, or environmental sources), and (IV) sensor noise.

Section 2.4.1 describes the full SAKETINI model. The use of VBFA (see sec-

tion 2.2.5) to infer the pre-stimulus model describing source types (III) and (IV) is

described in section 2.4.2. Then certain quantities are fixed and the full model de-

scribing the remaining source types (I) and (II) is inferred from the post-stimulus

data, which is described in section 2.4.3. After inference of the model, a map of

the source activity is created, as well as a map of the likelihood of activity across

voxels. In section 2.4.4, the existing MVAB method is shown to be an approxi-

mation of SAKETINI. Performance of SAKETINI compared to existing methods

is shown in the next chapter.

2.4.1 SAKETINI: Full model overview

Let yn denote theK×1 vector of data from sensor data for time point n, where

K is the number of sensors (typically ∼200). Time ranges from −Npre : 0 : Npost−1

whereNpre (Npost) indicates the number of time samples in the pre-(post-)stimulus

period. The generative model for data yn is

yn =















Bun + vn n=−Npre, . . . ,−1

F rsr
n + A\rx

\r
n +Bun + vn n=0, . . . , Npost − 1

(2.42)

The K × Q forward lead field matrix F r represents the physical (and linear)

relationship between a dipole source at voxel r for each dipole orientation q along
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a coordinate basis and its influence on sensor k = 1 : K (see section 1.4 for more

details). As discussed in section 1.4, the single-shell model describing the head

will be used throughout the methods and results described here thus Q = 2. This

forward field (here and in the next method NSEFALoc) is actually normalized by

its column norm as was done in the MVAB case to avoid artificially high weight-

ing towards the center of the head.

The source activity sr
n is a Q × 1 vector of dipole strength at time n for the

voxel r. The K×L matrix A\r and the L×1 vector x\rn represent the post-stimulus

mixing matrix and evoked non-localized factors, respectively, corresponding to

source type (II) discussed above, where the \r superscript indicates for all voxels

not at voxel r. We leave these superscripts off in the rest of this chapter for clarity.

The K ×M matrix B and the M × 1 vector un represent the background mixing

matrix and background factors, respectively, corresponding to source type (III)

discussed above. The K × 1 vector vn represents the sensor-level noise, which is

assumed to be drawn from a Gaussian distribution with zero-mean and precision

(inverse covariance) defined by the diagonal matrix λ. All quantities depend on

r in the post-stimulus period except for B, un and λ, which will be learned from

the pre-stimulus data, and fixed as the other quantities are learned for each voxel.

Note, however, that the posterior update for un (represented by ūn) does depend

on the voxel r. The graphical model is shown in Fig. 2.1. This generative model

becomes a probabilistic model when we specify prior distributions, as described
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β

s

α

B

A

y

F u
x

λ

Φ

Figure 2.1 (Left) SAKETINI Graphical Model. Variables dependent on time are
inside dotted box; parameters independent of time outside dotted box. Values
in circles are unknown and learned from the model, and values in squares are
known. After applying a simpler model to the pre-stimulus data to learn the
sensor noise precision (λ) and interference mixing matrix (B), these quantities
are then known and placed in squares. The source activity (s) at a particular
voxel specified by the forward field (F ) is then estimated, while the influence of
evoked activity at other locations is kept separate (unknown factors x projected by
unknown matrix A). Hyperparameters α and β help learn the correct dimension
of A and B. (Right) Representation of factors influencing the data recorded at the
sensors. In orange, a post-stimulus source at the voxel of interest, focused on by
the lead field F . In red, other post-stimulus sources not at that particular voxel.
In green, all background sources, including on-going brain activity, eyeblinks,
heartbeat, and electrical noise. In blue, thermal noise present in each sensor.

in the next two sections. (See Jordan (1999) and Beal et al. (2003) for additional

information on related graphical models.)

2.4.2 SAKETINI: Separation of background sources learned

from pre-stimulus data

We learn the background mixing matrix B and sensor noise precision λ =

diag(λ1, ..., λK) from the pre-stimulus data using a variational-Bayesian factor

analysis model. All variables, parameters and hyperparameters are hidden and
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are learned from the pre-stimulus data. We assume Gaussian prior distributions

on the background factors and sensor noise; we assume a flat prior on the sen-

sor noise precision. We further assume the background factors are independent

and identically distributed (i.i.d.) across time. The following is assumed for

n = −Npre : −1:

p(u) =
∏

n

p(un); p(un) = N (un|0, I), (2.43)

p(v) =
∏

n

p(vn); p(vn) = N (vn|0, λ), p(λ) = const. (2.44)

p(y|u,B, λ) =
∏

n

p(yn|un, B, λ); p(yn|un, B, λ) = N (yn|Bun, λ) (2.45)

To complete the specification of this model, we need prior distributions on the

model parameters. In the same way as for VBFA, a conjugate prior for the back-

ground mixing matrix B is used, as follows:

p(B) =
∏

km

p(Bkm); p(Bkm) = N (Bkm|0, λkβm) (2.46)

where βm is a hyperparameter over the mth column of B and λk is the precision of

the kth sensor, where again the hyperparameter β helps in model order (dimen-

sion) selection. The variational approximation is again used so that an analytic

solution exists for the posterior updates.

p(u,B|y) ≈ q(u,B|y) = q(u|y)q(B|y) (2.47)
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In the E-step, maximizing F w.r.t. q(u|y) holding q(B|y) fixed gives the following

posterior estimate update for the factors.

q(u|y) =
∏

n

q(un|yn); q(un|yn) = N (un|ūn, γ)

ūn = γ−1B̄Tλyn; γ = B̄TλB̄ +Kψ−1
B + I (2.48)

In the M-step, we compute the full posterior distribution of the background mix-

ing matrix B, including its precision matrix ψB , and the MAP estimates of the

noise precision λ and the hyperparameter β.

q(B|y) = N (B|B̄, ψB)

B̄ = Ryuψ; ψ = (Ruu + β)−1

β−1 = diag(
1

K
B̄TλB̄ + ψB); λ−1 =

1

N
diag(Ryy − B̄RT

yu) (2.49)

2.4.3 SAKETINI: Localizing evoked factors learned from post-

stimulus data

In the stimulus-evoked paradigm, the source strength at each voxel is learned

from the post-stimulus data. The background mixing matrix B and sensor noise

precision λ are fixed, after having been learned from the pre-stimulus data, as de-

scribed in the previous section. Those quantities are assumed to remain constant

through the post-stimulus period and are independent of source location. We as-

sume Gaussian prior distributions on the source factors and interference factors.

We further make the assumption that both of these factors are i.i.d. across time.
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The source factors have prior precision given by the Q × Q matrix Φ, which

relates to the strength of the dipole in each of Q directions. We have used the

superscript r here as a reminder that s is for only one voxel at a time, although in

general we will leave off this superscript.

p(sr) =
∏

n

p(sr
n); p(sr

n) = N (sr
n|0,Φr) (2.50)

The interference and background factors are assumed to have identity precision

(uninformed prior).

p(x) =
∏

n

p(xn); p(xn) = N (xn|0, I);

p(u) =
∏

n

p(un); p(un) = N (un|0, I) (2.51)

We also use a conjugate prior for the interference mixing matrix A, where α =

diag(α1, ..., αL) is a hyperparameter, similar to the expression for the background

mixing matrix, which helps in model order selection for determining the size of

A from the data.

p(A) =
∏

kl

p(Akl); p(Akl) = N (Akl|0, λkαl) (2.52)

We now specify the full model of the data:

p(y|s, x, u, A,B, λ) =
∏

n

p(yn|sn, xn, un, A, B, λ);

p(yn|sn, xn, un, A, B, λ) = N (yn|Fsn + Axn +Bun, λ) (2.53)

Exact inference on this model is intractable using the joint posterior over the

evoked non-localized factors x and mixing matrix A; thus a variational-Bayesian
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approximation for the posteriors is again used.

p(s, x, u, A|y) ≈ q(s, x, u, A|y) = q(s, x, u|y)q(A|y) (2.54)

All variables, parameters and hyperparameters are unknown and are learned

from the post-stimulus data, iterating through each voxel across the brain, us-

ing the VB-EM algorithm. The equation for the free energy F that is maximized

in this problem is:

F(q,Θ) =

∫

dx ds dA q(s, x, u, A|y,Θ) [log p(y, s, x, u, A|Θ)− log q(s, x, u, A|y,Θ)]

= log p(y|Θ) − KL[q(s, x, u, A|y,Θ)||p(s, x, u, A|y,Θ)] (2.55)

The derivations details are similar to that for SEFA (section 2.3). In the E-step,

the posterior distribution of the background factors given the data is computed:

Ω =

(

F A B̄

)

; Ω =

(

F Ā B̄

)

;

κn =

















sn

xn

un

















; Φ =

















Φ 0 0

0 I 0

0 0 I

















; Ψ =

















0 0 0

0 ΨAA 0

0 0 0

















(2.56)
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Then, taking the derivative of optimal posterior q(κ|y) gives:

∂

∂κn
log q(κ|y) =

∂

∂κn
Eq(A|y) [log p(y, κ, A|Θ)] = 0

∂

∂κn
Eq(A|y) [log p(y|κ,A,Θ) + log p(κ|Θ)] = 0

∂

∂κn
Eq(A|y)

[

−1

2

N
∑

n=1

(

(yn − Ωκn)Tλ(yn − Ωκn) − κT
nΦκn

)

]

= 0

Eq(A|y)

[

ΩTλyn − (ΩTλΩ + Φ)κn

]

= 0

Ω
T
λyn =

(

ΩTλΩ + Φ
)

κn (2.57)

The SAKETINI VBE-step results as:

q(κn|yn) = N (κn|κn,Γ);

κn = Γ−1Ω
T
λyn;

Γ = ΩTλΩ + Φ = Ω
T
λΩ +KΨ−1 + Φ

=

















F T

ĀT

B̄T

















λ

(

F Ā B̄

)

+K

















0 0 0

0 ΨAA 0

0 0 0

















+

















Φ 0 0

0 I 0

0 0 I

















(2.58)

In the SAKETINI VBM-step, we update the posterior distribution of the in-

terference mixing matrix A including its precision ΨAA. Note that the lead field

F is fixed and known based on the geometry of the sensors relative to the head

(same quantity assumed known by beamforming and other approaches) and B̄

was learned and fixed from the pre-stimulus data. The sensor noise precision λ is
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also kept fixed from the pre-stimulus period.

∂

∂Ak
log q(A|y) =

∂

∂Ak
Eq(κ|y) [log p(y, κ, A|Θ)] = 0

∂

∂Ak
Eq(κ|y) [log p(y|κ,A,Θ) + log p(A|Θ)] = 0

∂
∂Ak

Eq(κ|y)

[

−1
2

N
∑

n=1(yn − Fsn − Axn − B̄un)Tλ(yn −Fsn − Axn − B̄un)

−1
2

K
∑

k=1AkλkαA
T
k

]

= 0

Eq(κ|y)

[

N
∑

n=1

(λkynkx
T
n − λkFksnx

T
n − λkAkxnx

T
n ) + λkB̄kunx

T
n − Akλkα

]

= 0

λkR
k
yx − λkFkRsx − λkAkRxx − λkB̄

T
k Rux − Akλkα = 0

λk(R
k
yx − FkRsx − B̄T

k Rux) = Ak(λkRxx + λkα) (2.59)

Thus, the posterior distribution for A is:

q(A|y) = N (A|Ā, λΨA)

Ā = (Ryx − FRsx − B̄Rux)Ψ
−1
A ; ψA = (Rxx + α) (2.60)

The MAP values of the hyperparameter α and source factor precision Φ are

learned here from the post-stimulus data.

Φ−1 =
1

N
Rss; α−1 = diag(

1

K
ĀTλĀ + ΨAA) (2.61)

Most of the expressions for posterior covariance were defined previously in sec-
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tion 2.3, so the remaining are defined here:

Ryu =

N
∑

n=1

ynū
T
n , Ryx =

N
∑

n=1

yns̄
T
n (2.62)

Rss =
N
∑

n=1

s̄ns̄
T
n +NΣss, Rsx =

N
∑

n=1

s̄nx̄
T
n +NΣsx (2.63)

Rsu =

N
∑

n=1

s̄nū
T
n +NΣsu (2.64)

where Σ = Γ−1 is specified as:

Σ =

















Σss Σsx Σsu

ΣT
sx Σxx Σxu

ΣT
su ΣT

xu Σuu

















(2.65)

In each iteration of VB-EM, the marginal likelihood is increased. The varia-

tional likelihood function (the lower bound on the exact marginal likelihood) is

given as follows:

Lr =
N

2
log

|λ||Φr|
|Γr| − 1

2

N
∑

n=1

(

yT
nλyn − x̄

′rT
n Γrx̄

′r
n

)

+
K

2
log |αr||Ψr| (2.66)

This likelihood function is dependent on the source voxel r, since the variables

are dependent on r, and thus a map of the likelihood across the brain can be

displayed. Furthermore, an image of the source power estimates and the time

course of activity at each voxel could be plotted.

The computational complexity of SAKETINI is on the order O(KLNS),

roughly equivalent to a single dipole scan, which is of order O(N(K2 + S)).

These are much smaller than the complexity of a multi-dipole scan which is order
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O(NSP ) where P is the number of dipoles, and if S represents roughly several

thousand voxels. We further note that the number of hidden variables to be esti-

mated is less than the number of data points observed, thus not posing problems

for estimation accuracy. See Fig. 3.6 for performance as a function of data points.

2.4.4 Relationship of SAKETINI to MVAB

Minimum variance adaptive beamforming (MVAB) is one of the best-per-

forming source localization techniques (Sekihara et al., 2001, 2005, 2002a; Küçük-

altun-Yildirim et al., 2006). MVAB estimates the dipole source time series by ŝn =

WMV AByn, where

WMV AB = (F TR−1
yy F )−1F TR−1

yy (2.67)

Thus, MVAB also has computational complexity equivalent to a single-dipole

scan, on the order O(N(K2 + S)). MVAB is known to fail when two sources are

highly correlated in time (Sekihara et al., 2002a), although methods exist to correct

this issue (Dalal et al., 2006; Brookes et al., 2007). In this section, we derive that

MVAB is an approximation to SAKETINI.

We start by rewriting Eq. (2.42) as yn = Fsn + zn, where zn is termed the total

noise and is given by zn = Axn +Bun + vn. It has mean zero and precision matrix

Υ = (AAT + BBT + λ−1)−1. Assuming we have estimated the model parameters
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A,B, and λ, the MAP estimate of the dipole source time series is s̄n = Wyn, where

W = Ω−1F T Υ; Ω = F T ΥF + Φ (2.68)

The Φ term exists from the prior distribution of sn. It can be shown that Eq. (2.68)

is equivalent to Eq. (2.67).

In the infinite data limit, the data covariance satisfies Ryy = FΦ−1F T + Υ−1.

Its inverse is found, using the matrix inversion lemma (see Eq. (A.11)), to be

R−1
yy = Υ − ΥFΩ−1F TΥ. Hence, we obtain

F TR−1
yy = (I − F T ΥFΩ−1)F T Υ = ΦΩ−1F T Υ (2.69)

where the last step used the expression for Ω. Next, we approximate Ω ≈ F T ΥF ,

which is equivalent to the prior term on sn having zero precision. We then obtain

W ≈ (F TΥF )−1F T Υ = (F T ΥF )−1ΩΦ−1 · ΦΩ−1F T Υ (2.70)

= (F TR−1
yy F )−1F TR−1

yy = WMV AB

where the last step uses Eq. (2.69).

2.5 NSEFALoc

The second main type of source reconstruction method developed using

probabilistic graphical models is described here. Neurodynamic Stimulus Evoked

Factor Analysis Localization (NSEFALoc) uses SEFA to find a set of temporal ba-

sis functions of which all stimulus evoked activity is assumed to be a linear mix-

ture and then finds the best mixture (spatial weighting) of these basis functions
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at each source voxel. Similar to SAKETINI, NSEFALoc uses a probabilistic hid-

den variable model that describes the observed sensor data in terms of activity

from unobserved brain and interference sources. The unobserved source activi-

ties and model parameters are inferred from the data by a Variational Bayesian

Expectation-Maximization algorithm. These techniques create an image of brain

activity by scanning the brain, inferring the models from sensor data, and using

them to compute the maximized likelihood of the data with the best set of param-

eters at each voxel, creating a spatial map to indicate the most likely locations of

sources.

Like SAKETINI, the probabilistic models for the two versions of NSEFALoc

are based on a physical description of neural activity, in which brain sources are

modeled by current dipoles. For a given volume conductor model, the K × Q

forward lead field matrix F r represents the physical relationship between a dipole

at voxel r and its influence on sensor k = 1 : K (Sarvas, 1987). Unlike SAKETINI,

both versions of NSEFALoc assume the source activity is a linear combination of

L × N temporal basis functions φ computed from the data using SEFA (section

2.3), spatially weighted at each voxel by a Q× L dipole mixing matrix Gr.

Figure 2.2 depicts the generative model and the graphical models for the pro-

cessing steps of NSEFALoc. Evoked brain activity, biological noise, other room in-

terference and sensor noise all contribute to the measured sensor data (top row).

The first step is to apply SEFA and, within the NSEFALoc framework, the evoked
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factors are termed φ (formally x in the SEFA section 2.3). The second row of

Fig. 2.2 depicts the graphical model for SEFA and the temporal basis functions

φ learned from SEFA: the post-stimulus evoked factors separated from other on-

going backround noise sources. Next, the graphical models for NSEFALoc1 and

NSEFALoc2 are shown; either can be run on the data to obtain a likelihood map

indicating the location of sources and the source time course estimates. Each

method is now described in detail in the next two subsections.

2.5.1 NSEFALoc1: Spatial weighting of temporal basis functions

The NSEFALoc1 model and its solution are related to that proposed by Do-

gandzic and Nehorai (2000) and Baryshnikov et al. (2004). NSEFALoc1 differs

from their work by precomputing the basis functions from the data (see section

2.3) and by placing a prior Wishart distribution on the full-rank precision matrix.

The NSEFALoc1 generative model for the K × 1 sensor data yn is:

yn = F rGrφn + wr
n (2.71)

The noise wr
n is modeled by zero-mean Gaussian with a general K × K pre-

cision matrix Λ. Both the parameters G and Λ are unknown. For a large number

of sensors K, the precision matrix becomes quite large and difficult to infer accu-

rately from the data. It may also become ill-conditioned. Hence, a prior probabil-

ity using a Wishart distribution is used for Λ:

p(Λ) = W(Λ|ν,Σ0) ∝ |Λ|ν/2e−
1

2
TrΣ0Λ (2.72)
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Figure 2.2 Graphical models for NSEFALoc1 and NSEFALoc2. Noisy sensor
data is first processed by SEFA to determine the non-localized evoked factors, of
which a linear mixture can produce any localized evoked source. These can be
used as temporal basis functions φ to input as fixed bases to both NSEFALoc1
and NSEFALoc2, which estimate the spatial weighting G of these temporal basis
functions for each voxel. The likelihood map can be displayed, and the source
estimate at its spatial peaks can be plotted.
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where Σ0 and ν are hyperparameters. A Wishart distribution is related to a mul-

tivariate Γ distribution.

We choose ν = K + 2 for the distribution to be normalizable. Whereas Σ0

could be inferred by directly measuring the sample covariance, instead Varia-

tional Bayesian Factor Analysis (VBFA) is used on the pre-stimulus data (section

2.3). From VBFA, λ0 is the diagonal sensor precision and B0 is the interference

mixing matrix, so Σ0 = (B0B
T
0 + λ−1

0 )−1.

For each scanned voxel, we consider the likelihood function:

Lr = log p(y|Λ) + log p(Λ) (2.73)

log p(y|Λ) =
N
∑

n=1

log p(yn|Λ)

The model parameters Gr and Λr are inferred from the data by maximizing Lr.

Again the superscript r indicating the dependence on voxel r is omitted for clarity.

p(yn|Λ) = N (yn|FGφn,Λ) (2.74)

The estimates Λ̂ and Ĝ are the value of each that maximizes the likelihood L.

∂L
∂Λ

= ∂
∂Λ

(

N
2
log |Λ| − 1

2

N
∑

n=1(yn −FGφn)T Λ(yn − FGφn)

+ν
2
log |Λ| − 1

2
Tr(Σ0Λ)

)

= 0

(2.75)

Here we use equation A.5 so that the second term of the r.h.s. equals:

−1

2

N
∑

n=1

Tr
(

Λ(yn − FGφn)(yn − FGφn)
T
)

(2.76)
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The above was rewritten so that equation A.2 could be used to simplify the deriva-

tive:

∂L
∂Λ

=
N

2
Λ−1 − 1

2

N
∑

n=1

(yn − FGφn)(yn − FGφn)
T +

ν

2
Λ−1 − 1

2
Σ0 = 0 (2.77)

Solving for Λ−1:

Λ̂−1 =
1

N + ν

(

Ryy − FGRφy − RyφG
TF T + FGRφφG

TF T + Σ0

)

(2.78)

This expression can be simplified by using the property from equation A.12 so

that

Λ̂−1 =
1

N + ν

N
∑

n=1

(yn − FGφn)(yn − FGφn)
T + Σ0 (2.79)

=
1

N + ν

N
∑

n=1

(yn − FGφn)yT
n + Σ0 (2.80)

=
1

N + ν
(Ryy − FGRφy + Σ0) (2.81)

Now Λ−1 is a function of G (since G was assumed known when taking the

derivative above); an expression for Λ−1 not dependent on G is needed. To solve

for G (assuming Λ−1 is known):

Ĝ = argmax(L) = argmax(log p(y|Λ)) (2.82)

∂L
∂G

=
∂

∂G

(

N

2
log |Λ| − 1

2

N
∑

n=1

(y − FGφn)T Λ(y − FGφn)

)

= 0 (2.83)

=
∂

∂G

(

N
∑

n=1

(φT
nG

TF T Λy + yTΛFGφn − φT
nG

TF T ΛFGφn)

)

= 0
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Taking the derivative and using equations A.7, A.8, and A.9:

2F T ΛRyφ − 2F TΛFGRφφ = 0 (2.84)

F T Λ(Ryφ − FGRφφ) = 0 (2.85)

G = (F T ΛF )−1F T ΛRyφR
−1
φφ (2.86)

Now G is a function of Λ. With two equations and two unknowns, it should

be possible to find an expression for G independent of Λ. F TΛ appears in the

expression for G, so pre-multiply F T Λ onto the expression for Λ−1:

F T =
1

N + ν
F TΛ(Ryy − FGRφy + Σ0) (2.87)

Post-multiply equation 2.85 by R−1
φφRφy and get

F T =
1

N + ν
F T Λ(Ryy − RyφR

−1
φφRφy + Σ0) (2.88)

F TS−1 = F T Λ (2.89)

where

S =
1

N + ν
(Ryy −RyφR

−1
φφRφy + Σ0) (2.90)

Now, G can be rewritten:

Gr = (F TS−1F )−1F TS−1RyφR
−1
φφ (2.91)

Since G is now known, this value can be plugged into equation 2.78 to find Λ. The

maximized likelihood is then:

Lr =
N + ν

2
log |Λr| + const. (2.92)

whose spatial peaks correspond to the most likely source locations.
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2.5.2 NSEFALoc2: Spatial weighting of temporal basis functions

In contrast to NSEFALoc1, the contributions to sensor measurements not aris-

ing from a dipole source at the voxel r are now more explicitly modeled. The L×1

unknown interference factors x\rn correspond to activity in all voxels excluding r,

A is aK×L unknown mixing matrix, and the sensor noise has unknown diagonal

precision λ. The corresponding generative model for the sensor data is:

yn = F rGrφn + A\rx\rn + vr
n (2.93)

The following conditional probabilities complete specification of the model:

p(yn|xn, A, λ) = N (yn|FGφn + Axn, λ) (2.94)

p(xn) = N (xn|0, I), p(vn) = N (vn|0, λ) (2.95)

Notice that in place of the (K2 +K)/2 elements of the precision matrix Λ in NSE-

FALoc1, now just the KL + K elements of A and λ need to be inferred from the

data. Since typically L << K (L <∼ 10 and at UCSF K = 275), NSEFALoc2 has

significantly less parameters and can thus be inferred more accurately.

The VB-EM algorithm is again used to infer the unknown quantities from

the data. The E-step computes the posterior distribution p(xn|yn) over the hidden

variables xn and the M-step updates the parameters G,A, λ. Specifically, in the

E-step, p(xn|yn) is found by taking the derivative of the free energy, where here
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Θ = {G, λ, α}:

F(q,Θ) =

∫

dx dA q(x|y,Θ)q(A|y,Θ) [log p(y|x,A,Θ)+ (2.96)

log p(x) + log p(A|λ, α) − log q(x|y,Θ − log q(A|y,Θ)] (2.97)

Recall that taking the derivative of F w.r.t. q(x|y) yields:

log q(x|y) = Eq(A|y) (log p(y, x, A|Θ)) (2.98)

and that q(x|y) was already shown to be a Gaussian distribution under similar

conditions. Furthermore, the mean of a Gaussian is the value that makes the

derivative zero and the variance of the Gaussian is the slope of gradient:

∂

∂xn
Eq(A|y) [log p(y|x,A,Θ) + log p(x))] = 0

∂
∂xn

Eq(A|y)

[

−1
2

N
∑

n=1(yn − FGφn − Axn)Tλ(yn − FGφn − Axn)

−1
2

N
∑

n=1x
T
nxn

]

= 0

(2.99)

Moving the derivative inside the expectation and using Eqs. A.9, A.6 and A.13,

Eq(A|y)

[

ATλyn − ATλFGφn − ATλAxn − xn

]

= 0

Āλyn − ĀTλFGφn = ( ¯ATλA+ I)xn (2.100)

Finally,

x̄n = Γ−1ĀTλ(yn − FḠφn)

Γ = ATλA+KΨ + I

p(xn|yn) = N (xn|x̄n,Γ) (2.101)
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In the M-step, the full posterior over A is found by finding the q(A|y) that

best approximates p(A|y) and the MAP estimates of the parameters G and λ and

hyperparameter α are found. Thus, solving for A is a VBM-step and solving for

G, λ, and α are M-steps.

log q(A|y) = Eq(x|y) (log p(y, x, A|Θ))

∂

∂Ak
Eq(x|y) [log p(y|x,A,Θ) + log p(A)] = 0

∂
∂Ak

Eq(x|y)

[

−1
2

N
∑

n=1(yn − FGφn − Axn)T λ(yn − FGφn − Axn)

−1
2

K
∑

k=1AkλkαA
T
k

]

= 0

(2.102)

Eq(x|y)

[

N
∑

n=1

(

λkynkx
T
n − λkFkGφnx

T
n − λkAkxnx

T
n

)

− Akλkα

]

= 0 (2.103)

λkR
k
yx − λkFkGRφx = Ak(λkRxx + λkα) (2.104)

The posterior distribution of A is thus:

p(A|y) = N (A|Ā, λΨ)

Ā = (Ryx− FGRφxΨ
−1)

Ψ = Rxx + α (2.105)
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To find the MAP estimate of G, the derivative of the free energy is taken:

∂F
∂G

=
∂

∂G
Eq(x|y)Eq(A|y) [log p(y|x,A,G)] = 0

∂

∂G
Eq(x|y)Eq(A|y)

[

−1

2

N
∑

n=1

(yn − FGφn − Axn)Tλ(yn − FGφn − Axn)

]

= 0

Eq(x|y)Eq(A|y)

[

N
∑

n=1

(F Tλynφ
T
n − F TλFGφnφ

T
n − F TλAxnφ

T
n )

]

= 0

F TλRyφ − F TλFGRφφ − F TλĀRxφ = 0

Ḡ = (F TλF )−1F Tλ(Ryφ − ĀRxφ)R
−1
φφ (2.106)

Or, one may plug in the value for Ā to obtain:

Ḡ = (F TλF )−1F Tλ(Ryφ −RyxΨ
−1Rxφ)

(Rφφ− RφxΨ
−1Rxφ)

−1

(2.107)

Solving for λ in NSEFALoc2 is very similar to solving for λ in VBFA, by letting:

y′n = yn − FGφn (2.108)

Then, take the derivative of F w.r.t. λ to obtain a similar solution:

λ = N
[

diag(Ry′y′ − ĀRxy′)
]−1 (2.109)

The MAP estimate of α in NSEFALoc2 is identical to that for VBFA since it is only

dependent on the prior term for A.

The maximized likelihood function for NSEFALoc2 is the following, where

the dependency on voxel location is made explicit:

Lr =
N

2
log

|λ/2π|
|Γ| +

K

2
log |αΨ| − 1

2

N
∑

n=1

(

(yn − FḠφn)
Tλ(yn − FḠφn − x̄T

nΓx̄n

)

(2.110)
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2.6 Conclusion

The proposed methods have been described in a graphical model framework,

which is a powerful and flexible technique for describing probabilistic dependen-

cies between observed and unobserved quantities. We have chosen a scanning-

based method to formulate the problem, rather than to solve the full tomographic

problem which is very ill-parameterized. The variational-Bayesian Expectation-

Maximization algorithm is used to solve for the values of the unknown quantities

that maximize the marginal log likelihood. A map of the maximized likelihood is

used to depict localized sources and estimates of their time course are extracted

from those spatial peaks.
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Chapter 3

Probabilistic Methods for Neural

Source Reconstruction: Performance

in Simulations and Real Data 1

3.1 Overview

From the introduction, it is clear that improved performance for noisy data

with correlated sources is a desirable trait for a new source reconstruction method.

The simulations and real data tested here were chosen to illustrate these issues

and demonstrate improved performance of SAKETINI and NSEFALoc over ex-

isting methods. In simulations, several parameters such as location of sources,
1Portions of this chapter originally appeared as an article in NeuroImage (Zumer et al., 2007b),

NIPS conference paper (Zumer et al., 2007a), and ISBI conference paper (Zumer et al., 2006)
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rotating or fixed dipoles, SNR, and type of background noise were varied. The

effect of number of sensors and timepoints (total data available) was also tested.

Finally, robustness to choice of number of basis functions or factors by the user is

shown. Furthermore, performance of all methods is compared using some real-

data examples from an auditory evoked MEG dataset and a low-SNR somatosen-

sory MEG dataset.

Both localization ability and source time course estimation were used as the

two main criteria for measuring performance in simulations. However, perfor-

mance quantification is still an open question in the MEG literature. The localiza-

tion error of a single simulated source can be calculated, but this becomes more

difficult when multiple simulated sources are used, since the distinction between

a mislocalized source versus a false positive is blurred. The existence of false pos-

itives or true negatives is dependent on the method of thresholding, which is not

clearcut. Thresholds deteremined by bootstrapping, using subsets of trials and/or

comparing to a control period, has been employed for some methods of source

reconstruction (Sekihara et al., 2004; Darvas et al., 2005). Since a rigorous thresh-

olding method has not yet been developed for these new probablistic source re-

construction methods, care was taken to not let choice of threshold affect the re-

sults. Individual examples of performance are illustrated with the threshold set

to zero, with qualitative conclusions drawn. Then, localization performance over

the variety of simulation parameters mentioned above was quantified at multiple
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thresholds and averaged.

Simulations and real data were analyzed using NUTMEG (Neurodynamic

Utility Toolbox for MEG) (Dalal et al., 2004), a toolbox developed using MAT-

LAB (MathWorks, Natick, MA, USA), obtainable from http://bil.ucsf.edu. NUT-

MEG is useful for coregistration of fiducial points to a structural MRI, selection

of volume-of-interest, computation of forward field, filtering and other denois-

ing preprocessing methods, as well as a variety of source reconstruction methods,

including MVAB, sLORETA and now SAKETINI and NSEFALoc.

3.2 MEG Simulations

Simulations were created using a variety of realistic source configurations

reconstructed on a 5mm voxel grid. A single-shell spherical volume conductor

model was used to calculate the forward lead field (Sarvas, 1987). Simulated

datasets were constructed by placing Gaussian-damped sinusoidal time courses

at specific locations inside a voxel grid based on realistic head geometry. Sources

were set to be active only during a post-stimulus period, which always comprised

62.5% of the total data available, while the remaining 37.5% was pre-stimulus

data. Typically 700 total datapoints were used, unless specified otherwise.

In previous work testing algorithms, simulations are often designed with

only simulated sources and Gaussian sensor noise. This clearly does not reflect

true data which has interference sources somewhere in source space contribut-
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ing to covariance across sensors. However, to test performance on this type of

data and for better comparison with previous studies, this type of simulation was

tested, termed “sensor noise only”.

In another set of simulations, termed “simulated interference” cases, back-

ground activity was drawn from the Gaussian distributions assumed by the

model. The simulated sources mentioned above were projected to the sensors

using the computed forward field. Noise drawn from a Gaussian distribution

was added to each sensor across all time points. Furthermore, to simulate “on-

going brain activity,” time courses were drawn from a Gaussian noise distribution

and were placed in 30 random locations throughout the brain voxel grid, occur-

ring in both pre- and post-stimulus periods. Their activity was projected onto the

sensors and added to both Gaussian sensor noise and source activity. These sim-

ulated background brain sources add noise to the sensors in a spatially-correlated

manner.

In order to test simulation performance using data with more realistic (and

unknown) statistical distributions, a second set of simulations was created termed

“real brain noise.” Real MEG sensor data was collected from a CTF MEG System

with 275 axial gradiometers while a human subject was alert but not performing

tasks or receiving stimuli. This real background data thus includes real sensor

noise plus real ongoing brain activity that could interfere with evoked sources and

adds spatial correlation to the sensor data. Since throughout this work averaged
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Figure 3.1 Localization error of all methods for a single source placed randomly
in a realistic brain volume as a function of SNIR and type of background noise.

data is used, this real data was binned into 100 trials of 700 data points each and

averaged. The Signal to Noise Ratio (SNR) and the corresponding Signal to Noise-

plus-Interference Ratio (SNIR) were varied. SNIR is calculated from the ratio of

the sensor data resulting from sources only to the sensor data from noise plus

interference.
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3.2.1 Localization accuracy of a single source

The localization error for a single active source was first examined. The sin-

gle source was placed randomly within the voxel grid space. Fig. 3.1 shows

localization error of SAKETINI and NSEFALoc relative to MVAB and sLORETA.

The largest peak in the SAKETINI and NSEFALoc likelihood maps were found

and the three-dimensional Euclidean distance from this point to the true source

was recorded. Each datapoint is an average of 20 realizations of the source con-

figuration and source time course. This simulation was performed for a variety

of SNIRs and for both cases of simulated and real brain noise. This figure clearly

shows that the error in localization is smaller for SAKETINI (black), NSEFALoc1

(red), and NSEFALoc2 (green) than for MVAB (cyan) and sLORETA (blue), espe-

cially in the highest noise setting. Errors for the “sensor noise only” case were

not shown since they were zero or essentially zero for all methods for all values

of SNR. Standard error for each data point was usually around 1mm, not worse

than 4mm in the lowest SNIR. Most methods had higher localization error in the

real brain noise case rather than simulated interference, however the lowest SNIR

case for MVAB shows worse error for simulated interference. While the exact

reason for this is unknown, it is possible that some of the simulated interference

might have randomly had a high temporal correlation with the true source while

the real brain noise did not.
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3.2.2 Multiple sources, including correlated sources

Next, performance of the proposed models was tested for three simultane-

ously active sources. Fig. 3.2 shows performance in two examples with three

uncorrelated sources each fixed in orientation across time, with real brain noise

added with SNIR of 5dB. The differences betwen the two examples are the ran-

dom realization of the source time course. Two examples are shown to illustrate

the changes in results as the source time course changes. For each example, the

likelihood (or power) map is on the left and the estimated time courses (cyan)

of the three sources overlaid onto the true time courses (black) are shown on the

right.

These examples in Fig. 3.2 show that all methods localize all three sources

either perfectly or near perfectly. The spatial peaks for MVAB are so focal they are

hidden by the blue dots. The sLORETA power map shows some difficulty in find-

ing the lower left source perfectly, but does show a peak nearby. The SAKETINI

likelihood map localizes all three sources perfectly, though in the left example,

there is a slight secondary peak around (x = −25, z = −15) that could show up

as a false positive depending on the threshold. The NSEFALoc1 likelihood map

finds all three sources perfectly, though in Example 2, there is a possible false pos-

itive around (x = −25, z = 5). The NSEFALoc2 likelihood map also finds all three

sources perfectly, but also with a possible false positive around (x = −30, z = 35).

Fig. 3.2 also shows all methods’ ability to estimate the source time course.
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These examples show that SAKETINI and sLORETA estimate the shape and am-

plitude very well for all sources. NSEFALoc2 also estimates the time courses well,

although there is some cross talk in Example 1, source R. NSEFALoc1 shows more

severe crosstalk errors. MVAB estimates the time courses reasonably well, al-

though a slight mis-estimation of amplitude is seen.

The performance of all methods was further tested when two of the three

sources are highly correlated in time. Fig. 3.3 shows the results from two different

simulation examples where two sources are highly correlated in time (ρ = .95).

The same real brain noise was added at SNIR=5dB and all other aspects of this

simulation were the same as the uncorrelated case above, except that the P’-source

time course was adjusted to correlate strongly with the P-source time course. In all

cases, the estimated time course plotted is the one extracted from the true location,

regardless of the localization map peak locations.

These examples illustrate the failure of MVAB for correlated sources. The

MVAB power map in Example 1 finds the uncorrelated Q-source, but largely

mislocalizes the P-source and only weakly finds the P’-source. The reduction in

power is seen in the P time course plot. The MVAB power map for Example 2 lo-

calizes all three sources within a reasonable error; however the amplitude of the

peak location the two correlated sources (P and P’) is much reduced and might

not be detected depending on the threshold, which is also indicated by the large

reduction in time series amplitude. On the other hand, sLORETA is not in theory
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Figure 3.2 Performance of all methods for three uncorrelated sources in two
different examples of source time course, with real brain noise added. (Left) Blue
circles and squares indicate location of three true sources, labeled in the MVAB
map as P, Q and R. Intensity of map corresponds to normalized likelihood map for
SAKETINI, NSEFALoc1 and NSEFALoc2 and normalized power map for MVAB
and sLORETA. (Right) Black lines indicate simulated time series for each of the
three source locations, with the labels P, Q and R indicating the correspondence
of time plot to location on the map. Cyan lines indicate each method’s estimates
of the source time series at those three locations.
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Figure 3.3 Performance of all methods when two of three sources are highly
correlated in time. On the left for each example, blue squares, labeled P and P’,
indicate location of true sources highly correlated with each other, while the cir-
cle source (labeled Q) is uncorrelated with the other two. Intensity of map cor-
responds to normalized likelihood map (SAKETINI, NSEFALoc) or normalized
power map (MVAB, sLORETA). In the right for each example, black lines indicate
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are included in each time series plot to indicate correspondance with the location
on the map.
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supposed to be sensitive to correlated sources; sLORETA finds all three sources in

Example 1 (though one is weak and a center-of-the-head false positive is of larger

amplitude) but, in Example 2, fails to show distinct peaks for the two correlated

source locations P and P’. Despite these localization issues, the time course esti-

mation of sLORETA in both shape and amplitude were very accurate.

Overall, the probabilistic methods SAKETINI and NSEFALoc2 localize the

sources and estimate source time course better than MVAB and sLORETA in these

examples of correlated sources in Fig. 3.3, while NSEFALoc1 performance is inbe-

tween. The SAKETINI likelihood map localizes all three sources with high ampli-

tude in both examples, although the P-source is mislocalized slightly. The shape

of the SAKETINI time course was very well estimated; the P-source time course

is of lower amplitude due to the slight mislocalization of that source. NSEFALoc1

localizes the sources well in Example 1, but fails to find the P-source in Example

2, with a distant false positive instead. The time course estimates by NSEFALoc1

suffer from quite a bit of crosstalk. Finally, the NSEFALoc2 likelihood maps lo-

calize all three sources clearly with only a slight localization error in the P-source.

Furthermore, the NSEFALoc2 time course estimation is quite good in both shape

and amplitude, with much less crosstalk errors than NSEFALoc1 even though the

same set of temporal basis functions were used.
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3.2.3 Simulation: average performance

In addition to the above illustrative examples, average results over many re-

alizations of simulations were examined. Several simulation parameters were

varied across different simulations. (i) Two different source configurations were

used: one with three sources more near the surface as depicted in Fig. 3.2 and the

other configuration with three deeper sources. (ii) The orientation of the source

was fixed in half the simulations and allowed to rotate over time in the other half.

(iii) The correlation of two of the three sources with each other was set to be ρ = 0,

ρ = 0.95, or ρ = 1; the third source was always uncorrelated with the other two

sources. (iv) Each combination of parameters were tested for 10 different ran-

domly generated source time courses and source orientations. (v) In addition to

the true source contribution to the sensor data, the three cases of sensor noise

only, simulated Gaussian interference or real brain noise were tested. (vi) SNIR

was set at 5dB, 0dB, or −5dB, with corresponding SNR for each case of 10dB, 5dB,

and 0dB. Thus, a total of 1080 simulations were run using all combinations of

simulation parameters.

Performance was measured in two ways: localization ability and estimation

of time course. To assess localization ability, it is important to take into account

source strength, source localization error, and presence of false positives. Thus the

ROC (receiver-operator characteristic) method was modified for brain imaging

results as suggested by Darvas et al. (2004), which is a measure of hit rate versus
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false positive rate. The free-response ROC (FROC) curve in particular allows for

multiple “hits” per image (Bunch et al., 1978).

A “local peak” is defined here as a voxel that is greater in value than its 26

three-dimensional neighbors. A “hit” is defined as a local peak that is within a

specified distance of the true location and above a certain threshold. A “miss” is

defined as a true source location that has no “hit” within the specified distance.

A“false positive” is a local peak above a certain threshold but further than the

specified distance from a true source location. A “true negative” is any voxel that

is none of the above.

FROC curves are generated by varying the threshold and allowable distance

error, thus varying the tradeoff of sensitivity and specificity. The following dis-

tances were used as allowable localization error of a local peak to a true location

in order to be counted as a hit: 5 ∗
√

3mm, 10 ∗
√

3mm, or 15 ∗
√

3mm. The thresh-

old was varied to be 30%, 50%, 70% or 90% of the maximum value in the whole

image. Thus, a hit rate (HR) and false positive rate (FR) was recorded for each of

12 combinations of threshold/error for each of the 1080 simulations.

Since these HR vs FR points do not increase monotonically, as they would

if threshold were the only criteria varied, we chose to use the measure of A’.

A’ is a way to approximate the area under the ROC curve for one HR/FR point

(Snodgrass and Corwin, 1988). The larger the area under the ROC, the better the

method is performing, since this means a higher HR relative to FR for specified



SECTION 3.2. MEG SIMULATIONS 85

thresholds/localization errors. For each simulation, the twelve computed A’ val-

ues were averaged to give one A’ value per simulation. The SAKETINI likelihood

map was used as the spatial map to test localization. For MVAB and sLORETA,

the power map (sum of squares of post-stimulus time points) was used.

The performance of the proposed methods is now shown according to the

metrics of A’ (area under ROC curve) and time course estimation. Fig. 3.4(a)

plots A’ for each method, for each value of source correlation and SNIR, and

for all types of interference. For uncorrelated sources in all cases of noise type,

SAKETINI localizes sources the best according to A’. NSEFALoc1 and NSEFALoc2

both also show very high A’, close to SAKETINI, and higher than MVAB and

sLORETA. For the perfectly correlated source cases, NSEFALoc2 localizes sources

best for all noise types.

The other main test of performance was ability to estimate the source time

course. The estimated time courses for all three methods were obtained from

the true source locations, regardless of whether their respective localization maps

found that source as a “hit.” The correlation of the true time course with the esti-

mated time course was computed for each simulation and the averages are plot-

ted in Fig. 3.4(b). Similar to the A’ results, for uncorrelated sources, SAKETINI es-

timates time courses better than other methods for all types of noise/interference.

In the sensor-noise only case, sLORETA (blue) estimates the time course better

than other methods regardless of source correlation, as previously understood for
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Figure 3.4 Performance of SAKETINI relative to MVAB and sLORETA for variety
of simulated datasets. Each datapoint is an average of 40 simulations, consisting
of two different source locations and either a fixed or rotating source orientation.
Standard errors were less than 0.05 for all points (not shown). (a) A measure of
area under ROC curve A’ is plotted for the three methods as a function of SNIR
for both simulated and real brain interference. See text for discussion of the A’
metric. (b) The correlation of the estimated with the true time course is plotted
for each method.

this method. However, when other source-space interference or real brain noise

is added, this advantage of sLORETA is lost. Instead, similar to the A’ results,

NSEFALoc2 estimates the source time course the best when sources are perfectly

correlated in simulated interference and real brain noise cases.

3.2.4 Simulation: effects of number of sensors and time points

Previous studies have shown advantage of sensor arrays with larger number

of channels (Hamalainen et al., 1993). Likewise, increased amount of data points

across time usually lead to improved estimation of unknown quantities. There-
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fore, the next set of simulations sought to determine how few sensors and how

few time points were needed to preserve the results found above.

To test the effect of the number of sensors, simulations were created similarly

to those discussed above with three uncorrelated sources. Two values of SNIR

were created using real brain noise: 0dB and −10dB. Ten different realizations

of source time course and orientation were tested for each case. All simulations

discussed previously were created using the full 275 channel array from the CTF

system. Here, only a random subset of sensors were selected, using 150, 74, 37, 25

or 15 sensors. The numbers 74 and 37 were specifically chosen to correspond to

the BTi commercial MEG system previously installed in the UCSF lab until 2004

and from which some data in the next chapter was collected.

Fig. 3.5 shows simulation performance resulting from reduced number of

sensors. Fig. 3.5(a) shows the A’ metric as described above; Fig. 3.5(b) shows esti-

mation accuracy of the source time courses. The top row in both (a) and (b) is for

SNIR=0dB and the bottom row is for SNIR=−10dB. SAKETINI, NSEFALoc1 and

NSEFALoc2 did not show any major degradation in performance for either A’ or

time course estimation in the moderate SNIR value of 0dB; only minor decline in

performance is seen for 25 sensors or less. For the very noisy case of SNIR=−10dB,

A’ begins to decline more with only 37 sensors or less; time course estimation for

the noisy SNIR=−10dB is poor for all number of sensors. In contrast to the prob-

abilistic methods, both MVAB and sLORETA show decline in performance for
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Figure 3.5 (a) A’ and (b) time course estimation as a function of the number of
MEG sensors for simulated data with 3 uncorrelated sources. The top row shows
SNIR = 0dB and bottom row shows SNIR = −10dB using real brain noise. Error
bars represent standard error.

both measures in the reduction from 275 to 150 sensors, but then plateaus for

fewer sensors. In all cases of 150 sensors or fewer, all 3 probabilistic methods out-

perform MVAB and sLORETA for both metrics. Interestingly, the MVAB shows

an improvement in source localization A’ as the number of sensors becomes very

small, probably due to less error in inverting the data covariance matrix.

To test the effect of the number of data points, the full set of 275 channels were

used, but the available amount of data points was reduced. All previous simu-

lations have used 700 total data points, where 62.5% were in the post-stimulus

period. The ratio of data points in the post-stimulus period was kept the same,

but the total number was reduced to 300, 200, 150, 100, or 50 time points.

Fig. 3.6 shows the performance results of all methods with decreased num-

ber of time points available. Fig. 3.6(a) shows the A’ localization accuracy metric;
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Fig. 3.6(b) shows the time course estimation. The top row in both (a) and (b) is

for SNIR=0dB and the bottom row is for SNIR=−10dB. The A’ results show that

all three probabilistic methods outperform MVAB and sLORETA for all numbers

of total data points; A’ performance begins to decline for 150 or fewer data points.

sLORETA is a non-data-dependent method thus the inverse weight is not affected

by number of time points available. The MVAB is dependent on the data to pro-

vide an estimate of the data covariance matrix. Since the simulations in both top

and bottom rows are with relatively high noise (SNIR = 0dB and −10dB, respec-

tively), the data covariance estimate might not change much with decreased data,

since it is already noisy (note the time course correlation does not reach above 0.5

for any number of data points tested at SNIR=−10dB).

On the other hand, the time course estimation results show that NSEFALoc1,

NSEFALoc2 and sLORETA do not show a decline in performance with fewer data

points and that all three methods generally perform equally well and better than

MVAB or SAKETINI. This is most likely due to NSEFALoc methods not requiring

many data points in the first step of using SEFA to find temporal basis functions;

once the temporal bases have been found, less data is then needed for localization

of these bases. SAKETINI is the only method to show a decline in time course

estimation with fewer data points (less than 150 total). SAKETINI relies on an

initial estimate of interference sources from the pre-stimulus data; perhaps this

estimate is not as robust when only 30 or less pre-stimulus data points are present
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Figure 3.6 (a) A’ and (b) time course estimation as a function of the number of
total data points for simulated data with 3 uncorrelated sources. The top row of
each shows SNIR = 0dB and bottom row shows SNIR = −10dB using real brain
noise. Error bars represent standard error.

to estimate the 30 interference sources projected to 275 sensors, allowing for some

cross-talk of interference with “evoked” time estimates.

3.2.5 Model Order and Initialization

In general, it is recommended to use as many sensors and time points as are

available, and some care in data collection can contribute to this. However, the

experimenter is still faced with choosing the number of factors and/or temporal

basis functions for SAKETINI and NSEFALoc, even though the hyperparameters

will zero-out extra dimensions to some extent.

Fig. 3.7 shows how the hyperparameters reduce the influence of extra

columns of the mixing matrix when more than necessary are included. In this

example, three sources were placed in a brain volume, uncorrelated with each
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other and each orientation (of two) was uncorrelated (rotating dipole); thus six

independent time courses were projected to the sensors, plus real brain noise

added. SEFA was applied to this simulated sensor data with either L = 4, 5, 6,

or 7 columns for the evoked mixing matrix A. When more than enough evoked

factors are used (seven in the the lower right panel), it is clear the extra factor’s in-

fluence is much reduced (less than 5% of the largest). Furthermore, by including

this extra component, the amplitude of α−1 does not change for the other com-

ponents. Thus, this example indicates the usefulness of the hyperparameters in

determining the number of factors to explain the evoked activity.

In practice, SEFA seems to be a very good way to obtain TBFs of the denoised

evoked activity from real data when the true time course is not known. However,

their use as in input to the NSEFALoc class of models should be tested. Fig. 3.8

compares NSEFALoc1 and NSEFALoc2 with three types of temporal basis func-

tions: the true source time sources, those obtained from SEFA (as the models were

intended) or from PCA. The simulations were the same as in Fig. 3.4 with three

sources placed and three levels of correlation between two of the three sources,

and either rotating or fixed dipole orientation. In all cases, the number of tempo-

ral basis functions was held the same (fewer were used when sources were known

to be correlated for all three types of basis functions). In real brain noise and sim-

ulated interference, using PCA to obtain TBFs results in the worst performance

for both metrics of A’ and time course estimation. In comparing SEFA with the
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Figure 3.8 Performance of NSEFALoc1 and NSEFALoc2 as a function of three
types of temporal basis function used: the true source time sources, those ob-
tained from SEFA (as the models were intended) or from PCA. The plots on the
left are of A’ metric for localization ability and the plots on the right are for time
course estimation accuracy (similar to Fig. 3.4).

true time courses, A’ is not affected, but time course estimation is worse when

using SEFA compared to true; however, NSEFALoc2 with SEFA TBFs performs

reasonably close to the true TBFs (while NSEFALoc1 is considerably worse).

Fig. 3.9 shows examples of SAKETINI and NSEFALoc2 performance in the

same simulated dataset while the number of non-localized evoked factors are var-

ied. The main plots are of α−1 (which controls number of evoked factors not at the

voxel of interest) normalized to the first hyperparameter (which is omitted from

the plot). Each line within all plots is the value for each of 1760 voxels analyzed.

In the top row of Fig. 3.9, NSEFALoc2 was run with either 25 (upper left

plot) or 10 (upper right plot) dimensions for A. From using 25 dimensions, it

seems that the (inverse) hyperparameters get close to zero after about 10 and that

the extra dimensions are not contributing much. By using only 10, the values

stay roughly the same but do change somewhat. Furthermore, the localization
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results (inset in each plot) are roughly the same yet some differences exist. The

left inset (25 dimension result) shows all three sources with strong likelihood, but

the lower source is blurred with the source above it, whereas the right inset (10

dimension result) shows all three sources as distinct peaks although the lower

source is weaker, and also has a possible false positive near it.

In the bottom row of Fig. 3.9, SAKETINI was run with either 10 (lower left

plot) or 5 (lower right plot) dimensions for A (the evoked non-localizing mixing

matrix). It appears that as many as 10 might be needed in this case, since they

don’t tend to reduce to very low values until about the tenth one. The localization

though, does not change; in both cases, the third lower source is not found as a

separate peak.

Finally, Fig. 3.10 shows performance (through the A’ metric and time course

estimation) of all the methods as the number of dimensions was varied, averaged

over many simulations. For MVAB, the x-axis represents the number of eigen-

values, for SAKETINI it is the dimension of the evoked non-localized factors x,

for NSEFALoc1 and NSEFALoc2 it is the number of temporal basis functions, and

it is meaningless for sLORETA whose performance does not depend on such a

parameter. In all simulations, three sources are present with fixed dipole orienta-

tion; the bottom row two of the three sources are perfectly correlated; thus three

dimensions is needed for the top row while only two is needed for the bottom

row.
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Figure 3.9 Plots of α−1 hyperparameter for NSEFALoc2 (top) and SAKETINI
(bottom). Each line within all plots is the value for each of 1760 voxels analyzed.
The first hyperparameter is normalized to one but is not shown. Inset in each plot
is the localization result with the given number of dimension chosen, and blue
symbols indicating correct location. All three sources were rotating orientation
and uncorrelated with each other.
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Figure 3.10 Performance as a function of number of temporal basis functions or
evoked factors. Each line color is same as in Fig. 3.4 (black = SAKETINI, red =
NSEFALoc1, green = NSEFALoc2, cyan = MVAB, blue = sLORETA).

Overall, the lines for all methods are relatively flat, indicating not too large

of a dependence on number of dimension reduction. The time course estimation

in sensor-noise only shows the clear improvement in using at least three dimen-

sions. The correlated-source-case (bottom row) in interference or real brain noise

show the clear advantage of both NSEFALoc2 and SAKETINI over MVAB for time

course estimation. Interestingly, the A’ metric gets worse for SAKETINI and NSE-

FALoc2 in correlated sources in real brain noise as the number of factors/TBFs

increase; this is probably due to incorrectly trying to fit the extra components to

the wrong location confused by the correlated sources.
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3.3 Real MEG Data

Several real datasets were analyzed with the proposed method and compared

to existing methods. For all data, the 275-channel CTF MEG System in a magnet-

ically shielded room was used. All subjects gave written, informed consent to

participate in each study, according to UCSF institutional review board approval.

3.3.1 Bilateral auditory data

The first dataset was obtained by presenting 120 repetitions of a 1kHz tone

binaurally to a healthy subject, at an intertrial interval of 1.4s. The trials were

averaged locked to stimulus onset. This auditory stimulus is known to invoke

bilateral auditory cortex to be active simultaneously, causing problems for the

MVAB’s ability to localize the auditory sources.

The well-characterized auditory evoked M100 peak was observed and the

sensor map for this latency is shown in Fig. 3.11(a). Bilateral auditory cortex is

clearly activated. As mentioned above, MVAB performance deteriorates when

neural sources are highly correlated in time and, in general, bilateral auditory

cortex is known to be correlated (Dalal et al., 2006). Fig. 3.11(b) shows the MVAB

performance on this dataset: the MVAB fails to find either left or right auditory

cortex and instead finds a false source in the center. However, the other four

methods are able to find bilateral auditory cortex (Fig. 3.11(c) - (f)). In this ex-

ample, sLORETA and SAKETINI found both sides equally well. NSEFALoc1 and
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Figure 3.11 Performance of methods using a real auditory evoked MEG dataset.
(a) Sensor map showing bilateral activation at M100 latency. (b) MVAB power
map, showing failure to localize sources to auditory cortex. (c) sLORETA power
map localizes bilateral auditory cortex. (d) SAKETINI likelihood map localizes
activity in bilateral auditory cortex. Time series from left and right peaks are
also shown, where intensity is normalized to maximum value across all voxels
and timepoints. (e) and (f) NSFEALoc1 and NSEFALoc2 likelihood maps localize
activity in bilateral auditory cortex, although the threshold had to be lowered to
see the left peak. Time series from left and right peaks are also shown, where
intensity is normalized to maximum value across all voxels and timepoints.
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NSFEALoc2 found the right side stronger than the left, perhaps because the TBFs

estimated from SEFA slightly favored the actual time course on the right over

the left. Additionally shown in Fig. 3.11(d), (e), and (f) are the time courses of

the SAKETINI, NSEFALoc1, and NSEAFLoc2 source estimates extracted from the

peak voxel on each side. In the SAKETINI case, the correlation of the left with the

right source estimates was found to be 0.93.

3.3.2 High noise somatosensory data

Next, a somatosensory dataset is used since the localization of primary so-

matosensory cortex is relatively easy for all methods when many trials are avail-

able to average. A small diaphragm was placed on the subject’s right index fin-

ger and was driven by compressed air. The stimulus was given 256 times every

500ms. However, if the available data is restricted to only a small subset of trials,

the lower SNR can become limiting for all methods. First, all methods were ap-

plied to the average of all 256 trials to assess performance for the standard (high)

SNR case. Then all methods were applied to the average of only the first 5 trials.

To further test if the performance was consistent across other sets of just 5-trial

averages, all methods were also applied to the 5-trial average of trials 6-10, 11-15,

and 16-20. The average was taken of these four different results. Any location

found consistently will show up in the average.

The left panel of Fig. 3.12(a) shows typical somatosensory evoked MEG data
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with the largest peak at 50ms, expected to be coming from primary somatosen-

sory cortex in the posterior wall of the central sulcus. The next five panels of

Fig. 3.12(a) show localization performance of all five methods, which all accu-

rately localize activity to the contralateral primary somatosensory cortex. How-

ever, performance changes when only 5 trials are used in the average. The left

panel of Fig. 3.12(b) shows the sensor data averaged over trials 1-5 of the same

somatosensory dataset. The next five panels of Fig. 3.12(b) show errors in localiza-

tion in all methods. However, SAKETINI, NSEFALoc1 and NSEFALoc2 all show

the less error, relative to the peak location found using all 256 trials, than MVAB

and sLORETA. Other averages of 5 trials showed varied performance, but, when

averaging four different sets of 5-trial averages together, SAKETINI, NSEAFLoc1

and NSEFALoc2 showed localization fairly close to primary somatosensory cor-

tex, as shown in Fig. 3.12(c), whereas MVAB and sLORETA mislocalize this source

towards the center of the head.

3.4 Discussion

As seen in simulations and real data, the proposed models are not as sensitive

to temporally correlated sources as the standard formulation of MVAB. However,

it is possible to reduce the MVAB’s dependence on correlated sources through

a modified weight matrix computed subject to additional constraints, if a rough

idea of the location of sources is known (Dalal et al., 2006).
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Figure 3.12 Performance of methods using real somatosensory data as a func-
tion of the number of trials. Left column shows sensor data averaged over varied
number of trials, while remaining columns show localization performance of the
five methods. Row (a) shows performance of the three methods applied to the av-
erage of all 256 trials. Row (b) shows the localization performance to the average
of only the first 5 trials. In order to show performance over other subsets of 5-trial
averages, the spatial maps in row (c) are spatial averages of the localization of 4
different 5-trial averages. See Methods for details. Crosshairs in localization maps
show peak location within “active” voxels at the slice of peak location, where the
threshold for “active” was defined at 90% of the maximum for all maps.
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The models take advantage of knowledge of when sources of interest are not

occurring (such as in the pre-stimulus period of a evoked response paradigm).

They learn the statistical structure of the interference sources from the pre-

stimulus period and then can suppress these signals in the post-stimulus period.

Set in a probabilistic framework, the use of prior probabilities and hyperparam-

eters assist in computation of unknown quantities. The flexibility of the models

allows for many possible extensions.

A consideration of algorithms that iteratively update values is the longer

computation time. Both SAKETINI and NSFEALoc algorithms infer the model

values for each voxel and convergence typically occurs after about 10-20 VB-EM

iterations, which takes roughly one second per voxel on a standard Linux per-

sonal computer with 2.0GHz processor. Changing the number of channels or

timepoints also affects computation time.

All methods which do not have a closed-form solution require initialization

of the values to be iteratively updated. It was found that choice of initialization

can change the final results somewhat but not largely, and these effects were not

extensively examined. After finding one method of initialization that worked

well in a few test simulations, that set was used for all results shown. Of note, in

testing data with only sensor noise (no simulated or real brain interference at all),

a greater dependence on initialization values was seen. This is worth mentioning

since many source reconstruction algorithms are only tested on simulated sources
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plus sensor noise, thus comparison with other methods on sensor-noise-only data

should only be done with this in mind. However, since this type of data does not

follow the assumptions of the models that the pre-stimulus data has spatially-

covarying noise, and is therefore not realistic, analysis was not focused on sensor-

noisey only data.
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Chapter 4

Comparison of Methods and

Consistency of Results

4.1 Overview

The previous chapters have shown the mathematical detail and performance

of new probabilistic methods for MEG source reconstruction. Performance was

characterized in many simulations where the true source location was known,

and SAKETINI and NSEFALoc were shown to be an improvement over MVAB

and sLORETA, especially in data with high noise and correlated sources. In some

simulations, real brain noise was added to make the simulations as realistic as

possible. A few examples of performance in real data were shown. However,

a more exhaustive comparison of the methods’ performance in real data should
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be performed, where assumptions of Gaussianity and stationarity could cause er-

rors. Datasets where simple stimuli evoked responses in well-characterized areas,

such as digit and lip somatosensory and auditory, were collected for this purpose.

The methods’ performances were characterized in several ways, where only some

metrics are reliant on an estimate of the true source location.

The underlying neural causes of MEG data are generally agreed to be

from the currents flowing in the apical dendrites of large pyramidal neurons

(Hamalainen et al., 1993). However, the exact link between local neural activity

as measured with classical electrophysiological methods and noninvasive neuro-

dynamic data is not clear. An initial study by Teale et al. (1994) has examined

the auditory evoked fields recorded with MEG in a nonhuman primate and lo-

calized the responses to auditory cortex. However, this animal model needs to

be extended to other brain areas as well as validation of sources from invasive

methods in the same animals.

An on-going project with Dr. Nagarajan, Dr. Disbrow and others is to de-

velop a non-human primate model for examining the underlying neurophysiol-

ogy of signals recorded in a wide variety of MEG experiments. An initial feasibil-

ity study has been performed testing whether spatially separate regions of finger,

lip and auditory areas could be distinguished using MEG data recorded from

anesthetized monkeys given tactile or auditory stimulation. Detailed analysis of

the results of the MEG data, both for species comparison and the separability of
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the brain regions, are presented in the next chapter, along with use of these MEG

reconstructions as a seed location for diffusion-tensor MRI tractography.

The focus of this chapter is the comparison of the methods developed in this

dissertation against existing methods in these additional real-data examples, both

in humans and in monkeys. The comparison is performed on two forms of the

averaged data: broad/unfocused (all sensors onto all brain voxels) and focused

for optimal detection of single primary cortical field (select sensors onto focused

brain regions). Since the true neural location is not obtainable for the healthy hu-

man subjects and the ground-truth electrophysiology locations from the monkeys

are not yet available, the goal for this analysis is to test which methods give the

most reasonable results, roughly in the correct region and with minimal extra re-

gions. The monkey data includes more interference sources than the human data,

thus testing the noise suppressing properties of the new proposed methods.

4.2 Somatosensory and Auditory Evoked MEG data

in Human and Nonhuman Primates

4.2.1 Data acquisition and processing

Four healthy human volunteers (three male and one female, ages 23 − 28)

participated in both MEG and MRI experiments which were performed on sep-

arate days. Four adult male macaque monkeys (9 − 15 kg) were scanned using
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both MEG and MRI on separate days. Localization of primary somatosensory

and auditory cortex obtained using MEG was coregistered to MR data. All stud-

ies were performed with approval of the UCSF Committee on Animal Research

or the Committee on Human Research.

Stimuli

Tactile and auditory stimuli were used in MEG experiments to localize the

corresponding primary sensory cortices. Tactile stimulation was delivered by

compressed air-driven balloon diaphragms clipped onto either the hands or lips.

In the human, two clips were place on the right lateral upper lip and two clips on

the right lateral lower lip; all four clips were activated simultaneously. Taps for

both hand and lip (duration 140ms, 25PSI for monkeys and 18PSI for humans)

were presented in blocks of 256 trials with stimulus-onset-asynchrony (SOA)

1000ms ±50ms for monkeys and SOA 500ms ±50ms for humans. White noise

at low levels was presented continuously to the human subjects during tactile

stimulation via binaural earplugs to mask the sound made by the tappers; mon-

keys wore earplugs for this purpose. Auditory stimulation consisted of bursts of

white noise (350Hz - 17.6kHz, 400ms duration) delivered via binaural earplugs,

with 128 epochs per block and an SOA of 1500ms ±50ms.

For hand stimulation in the monkey, two clips delivering simultaneous taps

were placed on the tip of the thumb (digit one, D1) and the thenar area; three mon-

keys (M2, M3 and M4) were stimulated on the right hand and the other monkey
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(M1) on the left hand. In the humans, four clips delivering simultaneous stimu-

lation were placed on the subject’s right hand: one each on the distal and middle

segments of D2 and D3. For lip stimulation in the monkey, two clips were placed

on lateral upper and lower lips, on the same side as the hand that was stimulated.

MEG acquisition: Humans

All human subjects were scanned using the same 275-channel CTF Omega

2000 system with 3rd-order gradient correction (VSM MedTech, Coquitlam, B.C.,

Canada) used for data discussed in Chapter 3. The localizing coils were taped on

the subjects head prior to placement in the whole-head helmet sensor array. One

coil was placed at the nasion, and two additional coils were placed 1cm away

from the left and right pre-auricular points in the direction of the nasion. The

position of these coils was measured relative to the sensor array before and after

every block of trials. In all blocks, the subjects moved less than the criterion of

5mm. These points were later coregistered with the high-resolution structural

MR image. On separate days, a structural MRI and diffusion tensor image were

collected (for details, see Section 5.4.2).

Somatosensory data were collected in 400ms epochs, with a 150ms pre-

stimulus period, sampled at 1200Hz. Auditory data were collected in 600ms

epochs with 100ms pre-stimulus period, and were sampled at 1200Hz. Each hu-

man subject was scanned only once.
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MEG acquisition: Monkeys

Macaque monkeys were initially anesthetized using intra-muscular (I.M.) ke-

tamine hydrochloride (10mg/kg) and anesthesia was maintained with boluses of

ketamine hydrochloride given intra-venously (I.V.) or I.M. every 15 − 30 minutes

(3−5mg/kg/hr) and optionally boluses of I.V. midazolam (0.05−0.36mg/kg/hr).

Heart rate, respiratory rate, temperature and SpO2 were documented every 30−60

minutes. Heated water bottles and blankets were used to keep the animal warm.

An experimenter stayed in the shielded room to monitor the monkey at all times.

Any large movements that might cause a large change in head position relative to

the sensors, due for example, to a cough, yawn or global arm movements, were

noted and that data block was not analyzed. Sessions lasted 4-6 hours including

preparation time, and then monkeys were returned to their home cage for recov-

ery.

In a shielded room, a 37-channel magnetometer (BTi, San Diego, CA) was

used for MEG recordings of two monkeys (M1 and M2). The monkey’s head ge-

ometry of the bony portions of the forehead and longitudinal fissure was recorded

using a digital sensor position indicator (FASTRAK, by Polhemus, Colchester,

VT). Central forehead and left and right pre-auricular points were landmarked to

define the MEG spatial reference frame for later coregistration with the structural

MR image. The sensor array was centered over the central sulcus contralateral to

the site of stimulation. Somatosensory data were collected in 300ms epochs, with
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150ms pre-stimulus period, sampled at 300Hz. Auditory data were collected in

600ms epochs, with 100ms pre-stimulus, sampled at 1kHz. M1 was scanned on

two separate days while M2 was scanned only one day.

The same 275-channel CTF Omega 2000 system used for humans was also

used to scan monkeys M3 and M4. Three localizing coils were glued and taped

onto the central forehead and 1cm from the left and right pre-auricular points in

the direction of the central coil. Digitized headshape was not necessary in addi-

tion to the three localizing coils. At the start and end of each trial, current ran

through the coils to permit precise localization of those three points relative to

the sensor array. These points were later coregistered with the high-resolution

structural MR image, which included MR-visible fiducials at the same locations.

Somatosensory data were collected in 400ms epochs, with a 150ms pre-stimulus

period, sampled at 1200Hz. Auditory data were collected in 600ms epochs with

100ms pre-stimulus period, and were sampled at 1200Hz. For all monkeys, some-

times the same stimulation was repeated on the same day or on separate days.

On separate days, a structural MRI and diffusion tensor image were collected

on these same monkeys (for details, see Section 5.4.2).

Pre-processing of human data and forward field computation

The Neurodynamic Utility Toolbox for MEG (NUTMEG; (Dalal et al., 2004))

was used for all data pre-processing. The three fiducial points were coregistered

with the structural MRI. The spherical homogeneous single-shell model was fit-
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ted to the scalp derived from the structural MRI. Individual trials with eyeblinks

or other movement artifacts were discarded prior to averaging. For the remaining

blocks, after removal of trials with large artifacts, the raw sensor data was aver-

aged and the mean of the pre-stimulus period was subtracted from the whole

waveform.

Comparisons across all five reconstruction methods were made on the full

dataset (all sensors included) and reconstructed over the whole brain at a 5mm-

spaced grid. Roughly 250 post-stimulation time points were used. This human

data was not very noisy, but using all sensors could lead to problems in the re-

construction by MVAB due to correlated sources (especially in auditory data, but

also between primary and secondary somatosensory cortex). At least two brain

areas are expected active in each dataset.

To focus the data on just the contralateral primary sensory cortex, sources

were estimated over a 2mm-spaced 3D grid over a focused volume of interest

(VOI). (2mm was also the resolution chosen to match up with creating a seed

for the DTI tractography described in the next chapter.) Due to computational

limits for MVAB, the VOI was roughly one tenth of the total brain volume, but

large enough to encompass the primary somatosensory and auditory areas and

surrounding regions. All sensors were used to reconstruct somatosensory acti-

vations, whereas only sensors on the hemisphere of interest were used for audi-

tory data due to the correlated source problem for MVAB. All five reconstruction
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methods were tested and compared on this reduced/focused dataset.

The individual subject’s structural MRI was normalized to MNI space using

SPM2 (http://www.fil.ion.ucl.ac.uk/spm). The same spatial warping was then

applied to the MEG reconstruction (as implemented in NUTMEG) and the MNI

coordinate of the peak MEG voxel was noted as well as the peak latency.

Pre-processing of monkey data and forward field computation

NUTMEG was also used for monkey data pre-processing, which involved

the same steps as for human data. Individual trials with eyeblinks or other move-

ment artifacts were discarded prior to averaging. Any stimulation block during

which large movements were observed was not analyzed further. For the remain-

ing blocks, after removal of trials with large artifacts, the raw sensor data was av-

eraged and the mean of the pre-stimulus period was subtracted from the whole

waveform.

The fiducial points, and digitized headshape if available, were coregistered

with the structural MRI. A VOI was defined to include the whole cerebrum. A

grid size of 2mm was chosen since this is within (or less than) the normal error

of MEG reconstruction, 2mm roughly corresponded to the voxel size of the dif-

fusion tensor images discussed in the next chapter, and any smaller grid would

have put computational limits on the total volume reconstructed using the MVAB

approach.

The forward lead field was calculated based on a single-shell spherical vol-
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ume conductor model, of which the sphere center must be defined. In humans,

the center of the head and the center of the sensor array roughly coincide and ei-

ther one can be used. Due to the much smaller head size of monkeys, it was found

that a sphere center roughly half way between that defined by the head and the

sensor curvature gave the most consistent results. The same coregistration, head

model and computed forward field were used for all five methods (MVAB, SAKE-

TINI, NSEFALoc1 and 2, and sLORETA).

The localization of the MEG data on both structural MR images was per-

formed for the two monkeys that it was available (M3 and M4). Since the coregis-

tration of the monkey MEG data to the structural MRI for purpose of computing

the lead field is more difficult and thus more variable, it was important to include

localizations from both MR images since one was not any a priori better than the

other. Thus, the total number of monkey MEG localizations examined in the “fo-

cused” case was 13 digit sets, 17 lip sets, and 6 auditory sets.

The time window using roughly the first 50−70 time points post-stimulation

was used to calculate the data covariance for MVAB analysis; this same window

was also used at the post-stimulus period for SAKETINI and NSEFALoc, which

used roughly 30 pre-stimulus time points.

Since the monkey’s head is smaller than a human’s head, most of the sensors

were not near the head and were therefore just recording room noise rather than

brain signals, as well as including very large heartbeat artifact. Therefore, using
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all sensors is a good test of the denoising prospects of SAKETINI and NSEFALoc.

The second comparison was to focus only on reconstruction of the contralat-

eral primary sensory area. For M3 and M4 scanned in the 275-channel MEG sys-

tem, only the 37 channels closest to the cortical region of interest were chosen for

three reasons. The sensors in the 275-channel system are spaced about as far apart

as the 37-channel system, so there was not a difference in the tradeoff of spatial

coverage versus spatial sampling; thus it is fair to include data from both MEG

machines. Heartbeat artifacts still affected these 37 sensors in all four monkeys, so

this data also tested the ability of the new algorithms to remove this noise source.

In human brain imaging studies, the individual subject’s data is often warped

to a standard normalized MNI/Talairach space. However, since such an MRI tem-

plate does not yet exist for the macaque monkey brain, each animal’s structural

MRI was registered to the “AC-PC coordinate” frame using just translations and

rotations (no warping). This coordinate system is defined with the anterior com-

misure (AC) as the origin, the y-axis running through the posterior commisure

(PC), and the z-axis running through longitudinal cerebral fissure.

4.2.2 Sensor data results

Clear response peaks were seen in all three types of stimulation in all four

human subjects. The sensor data appeared consistent with previous studies of

somatosensory and auditory stimulation in humans. A discussion of latencies
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and separability of areas is in the next chapter. The averaged sensor data from one

human subject (H4) are shown in Fig. 4.1 as an example. The left column shows

a two-dimensional representation of the sensor map at the peak time latency; the

right column shows the time series from all sensors used for localization in the

“processed” data case.

Response peaks were also consistently observed in the monkey averaged

MEG sensor data. A clear response in the sensor data was observed for digit stim-

ulation in 10/10 blocks total from all animals. Similarly, a clear response from lip

stimulation was observed in 12/13 blocks. Clear auditory responses were seen in

4/4 runs from monkeys M1 and M3. However, only 1/4 auditory blocks showed

a clear peak in M2 and 0/5 auditory blocks in M4 showed a distinguishable peak.

Fig. 4.2 shows an example set of digit, lip and auditory responses in sen-

sor data from M1 in order to introduce the qualitative similarities and differences

from human data. All clear responses from other monkeys were generally similar

to this example. The circle plots on the left of the figure show a two-dimensional

representation of the sensor array and its spatial distribution of the evoked mag-

netic fields at the latency of the largest peak (indicated by red vertical bar on time-

series plot, right). These plots show the topography of MEG data, with positive

and negative adjacent regions, indicating that the neural source is below the zero-

crossing between these regions. The right time-series plot of Fig. 4.2 shows the

average temporal dynamics of each sensor overlaid on a common baseline. The
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Figure 4.1 Averaged MEG sensor data from human subject H4. Top row: hand
stimulation; Middle row: Lip stimulation; Bottom row: Auditory stimulation.
Left column: Two-dimensional representation of sensor array, with red indicating
magnetic fields going into the head and blue coming out, occurring at the latency
of the red vertical bar in the adjacent right plot. Each white circle represents a
sensor. Right column: Averaged time-series for all sensors overlaid on each other,
with stimulus onset occurring at time=0ms. Digit and lip plots show overlay of
all 275 sensors used in beamforming analysis; auditory plot shows only the left
132 sensors used in beamforming analysis.
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first peak latencies in these examples are at 13ms for digit stimulation (top row),

7ms for lip stimulation (middle row), and 62ms for auditory stimulation (bottom

row).

The overall signal-to-noise ratio was not as high in the monkey data as is

normally seen in human MEG data, but was sufficiently high to detect peaks and

perform source localization. Thus, anesthetic effects may have reduced the mon-

keys’ responses somewhat, but not prohibitively. The latencies of the responses

in monkeys were clearly shorter than in humans to identical stimuli as expected

due to shorter transit distances.

4.3 Comparison of Methods on Full Data

4.3.1 Analysis of method comparison on full data

The comparison of methods on the data described above was performed in

two main ways. As mentioned above, the first type of analysis (“unprocessed”)

for method comparison on the above data used all sensors available and recon-

structed over all voxels in the brain. Here, only data from M3 and M4 are ana-

lyzed since the difference between this analysis and the forthcoming analysis on

M3/M4 on reduced sensors was to use all 275 sensors rather than the 37 closest

to the source. The analysis on M1/M2 did not change (using all 37 sensors) so the

M1/M2 results are described thoroughly in the next subsection on focused data.
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Figure 4.2 Averaged MEG sensor data from monkey M1. Top row: hand stimu-
lation; Middle row: Lip stimulation; Bottom row: Auditory stimulation. Left col-
umn: Two-dimensional representation of sensor array, with red indicating mag-
netic fields going into the head and blue coming out, occurring at the latency
of the red vertical bar in the adjacent right plot. Right column: Averaged time-
series for all 37 sensors overlaid on each other, with stimulus onset occurring at
time=0ms.
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sLORETA requires a regularization term which was empirically determined

to give the best results on other similar human MEG data and was left fixed for

all reconstructions reported here. All methods except sLORETA have a choice in

number of dimension reduction related to signal space. Here, “dimension reduc-

tion” refers to the number of eigenvalues selected for the eigenspace MVAB, the

number of factors chosen for SAKETINI or the number of temporal basis func-

tions (TBFs) for NSEFALoc1/2. Values for dimension reduction 1-4 were tested

for each method. For all methods, the value of dimension reduction that gave the

most realistic result (best matching estimated true locations) was used.

All results were studied for multiple spatial peaks, not just the maximum

peak. The A’ metric was introduced in the last chapter as a single number which

quantifies the tradeoffs of threshold on hits versus rejections and of allowed lo-

calization error on hits versus false positives. However, A’ requires knowledge of

the true source location. Since there is no exact answer with real data as to where

the spatial peak should be, these results are relative to best approximations rather

than ground truth. While electrocorticography data can be very useful for ob-

taining this information, this is only possible in patients requiring neurosurgery

and thus is not applicable for routine neuroscience MEG studies in healthy con-

trol subjects. Thus, to obtain the ”ground-truth” coordinates in the healthy human

subjects studied, several researchers very familiar with the localization of primary

digit, lip and auditory areas were polled to mark on the structural MRI where they
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thought the true location was in each of the 4 subjects. Their judgements were

guided by anatomical landmarks, including the central sulcus and the “Omega”

shaped knob of the pre-central gyrus at the hand area. The MNI coordinates of

these opinions were averaged to form the “ground-truth” location. Additionally,

location of secondary somatosensory cortex for digit and lip was found using the

MNI database of coordinates built-in to NUTMEG, adopted from code by John

Ashburner (http://www.sph.umich.edu/∼nichols/JG2/get orig coord2.m). All

coordinates labeled ”Brodmann area 43” were averaged to form the digit subre-

gion and the lip subregion was lateral to the digit.

The primary reason for collecting and analyzing MEG data in primates is to

ultimately compare the MEG localizations with the location giving the strongest

neural response to the same stimulation as recorded by standard, acute elec-

trophysiological procedures. The analysis to obtain the ground truth locations

of activation will be performed by collaborators and unfortunately will not be

completed in time for this dissertation. Thus, for now, the same way to obtain

true source locations was used, of polling researchers familiar with monkey neu-

roanatomy for their best estimate of the true source location, again guided by

anatomical landmarks including the central sulcus.

In both cases of human and monkey estimates, there is some error expected

in this best guess of ground truth estimate. However, it is not expected that the

error would be biased in any particular way. Furthermore, the estimates were
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made without knowledge of specific results of any of the reconstruction methods,

thus should not be biased towards any one method over the others. Finally, the A’

metric is computed at several allowable errors of the reconstruction from the true

location ([5 10 15] ∗ sqrt(3)mm); so the largest error allowed should help reduce

any final differences.

4.3.2 Results and discussion of method comparison on full data

Fig. 4.3 shows that, averaging over all four subjects and three stimulation

types, all three new methods (SAKETINI, NSEFALoc1 and NSEFALoc2) have a

higher A’ value than MVAB and sLORETA. The results differ slightly when fo-

cusing on just one type of stimulation. In digit stimulation results, A’ is equally

high for SAKETINI, NSEFALoc2 and MVAB, while NSEFALoc1 and sLORETA

have a slightly lower value. For digit, all four areas of contra- and ipsi-lateral

primary and secondary somatosensory cortices were used as true locations. In

lip stimulation results, A’ followed the same pattern as the average over all stim-

ulation types. For lip same as for digit, the four areas of contra- and ipsi-lateral

primary and secondary somatosensory cortices were also used as true locations,

but recall that primary and secondary lip areas are much closer to each other than

digit. That SAKETINI, NSEFALoc1 and NSEFALoc2 perform well in this case

means this close distance (of roughly 25mm) was not a problem to resolve. Finally,

the auditory A’ results again show SAKETINI, NSEFALoc1 and NSEFALoc2 with
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Figure 4.3 A’ value for human MEG data under digit, lip and auditory
stimulation
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the highest values, sLORETA only slightly less, but MVAB much lower. Here,

only left and right primary auditory cortices were used as the two true locations,

but their activity is expected to be highly correlated in time, causing well-known

problems for MVAB.

From a clinical standpoint, individual results matter more for a patient’s di-

agnosis than averages across subjects. For example, it could be the case that cS2 is

never found when cS1 is found, and the previously discussed Fig. 4.3 would not
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make this distinction. Fig. 4.4 shows the reconstruction of all methods on sub-

ject H4’s digit MEG data. The left column shows a maximum intensity projection

(MIP) onto a coronal view, while the right column shows a MIP onto an axial view.

Blue squares indicate locations found as a “hit” (above given threshold and dis-

tance error from true location) for each reconstruction method. In this example,

SAKETINI fits three hits (cS1, cS2, and iS1) while NSEFALoc1 and NSEFALoc2

find two hits (cS1 and iS1), and MVAB and sLORETA only find cS1. All methods

show a false positive near the center of the head, but at varying intensities relative

to the true locations.

For the monkey data, Fig. 4.5 shows that, averaging over all runs and stim-

ulation types, all three new methods (SAKETINI, NSEFALoc1 and NSEFALoc2)

have a higher A’ value than MVAB and sLORETA, just like in the human data, but

with NSEFALoc2 the highest by a slight amount, then NSEFALoc1, SAKETINI,

MVAB and then sLORETA. These results can be expected to be slightly different

from the human data for many reasons, but mainly since only one hemisphere

was close enough to the sensors to be detected, hence fewer regions are possible

to be active (only contralateral S1 and S2 for digit and lip, and contralateral A1 for

auditory). Since only one auditory side is expected, the correlated source problem

for MVAB does not occur here.

When focusing just on digit results, NSEFALoc2, SAKETINI and NSEFALoc1

had a slightly higher A’ than MVAB, and all were much better than sLORETA.
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Figure 4.4 Digit localization results from all methods on subject H4. The left
column shows a maximum intensity projection (MIP) onto a coronal view, while
the right column shows a MIP onto an axial view. Blue squares indicate locations
found as a “hit” (above given threshold and distance error from true location) for
each reconstruction method.
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Figure 4.5 A’ value for monkey MEG data under digit, lip and auditory
stimulation
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Often the activated area extended from cS1 down to cS2 and so was not counted

as a separate spatial peak. In just lip results, recall that primary and secondary

lip areas are much closer to each other than digit. NSEFALoc1 and NSEFALoc2

have the highest A’, then followed by SAKETINI, MVAB and then sLORETA. The

same pattern is also seen for auditory-only stimulation average.

4.4 Comparison of Methods on Focused Data

4.4.1 Analysis of method comparison on focused data

In the “focused” case, the data had been processed to reduce noise and cor-

related source problems, to focus on just a single primary sensory response. The

data reduction included removing extra sensors in the CTF monkey data so that

only the 37 sensors closest to the brain area of interest were included, since the

rest were recording noise and large heartbeat artifact. In the human analysis, all

sensors were used for digit and lip stimulation, but only left hemisphere sensors

were used for auditory due to the correlated source problem. Furthermore, the

VOI used in the human analysis was not the whole brain, but a smaller region

including the expected region discretized at 2mm-sided voxels; this region ex-

tended as far as possible while still limiting the total number of voxels to roughly

15,000 for computational-limit reasons. The result of this smaller VOI was that

opposite hemisphere voxels were not included; in fact, roughly only a tenth of
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the total brain volume was used.

The A’ metric was again used to analyze the reconstructions from these fo-

cused datasets. However, the emphasis here is more on improved accuracy of the

single primary peak, not on finding multiple peaks. Yet this is still not entirely

clear-cut when the true location is not known with certainty.

In most cases, the largest spatial peak was the one in the area near the ex-

pected location. However in a few instances, there was a clear spatial peak near

the expected region but it was not the largest. This was noted as a binary result

(1 if absolute maximum, 0 if not) and averaged over all results, and referred to as

“maximum peak index”.

Furthermore, while the coordinate of just the peak voxel was recorded (and

not coordinates of nearby activated voxels), the spatial extent of the activation

near the peak is also of interest for several reasons. All methods examined here

are preferable over traditional single dipole fits in that they attempt to measure

the spatial extent of the activation; the spatial precision of a localization method

matters, not just accuracy.

Two metrics were used to quantify the spatial extent. First, the threshold was

set to obtain either a 21-voxel cluster in monkeys or 100-voxel cluster in humans.

The percentage of the peak voxel’s strength for that cluster that the threshold

was set to, was termed “percentage threshold.” Using the 2mm voxel resolution,

these cluster sizes correspond to roughly the same anatomical size across the two
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species, and to the same size used as seeds for DTI tractography (discussed in the

next chapter). A low percentage threshold here indicates a small cluster and/or

high spatial precision (corresponding to a small full-width half-maximum, an-

other common measure of spatial precision).

The second metric used to quantify spatial resolution, termed “single cluster

index”, was related to quantifying whether, for the given threshold above, other

voxels/clusters besides the anticipated one were above this threshold. This was

quantified as the total number of voxels above that threshold regardless of which

cluster they belonged to, divided by the expected number of active voxels if no

other distant clusters were active. For example, in a localization of monkey data,

the threshold was set to produce a cluster of 21 voxels near the expected region.

If no other voxels were above this threshold, the single cluster index equals 1.

However, if another distant cluster of 30 voxels was above this threshold, then

the index would equal 51/21 = 2.43.

Finally, the actual peak coordinates of all five methods on all datasets are

examined. Each individual localization was compared with the “ground-truth”

estimates discussed previously and the three-dimensional Euclidean distance was

measured. This error for each of 13 digit, 17 lip and 6 auditory results in monkeys,

and 4 digit, 4 lip, and 4 auditory results in humans was averaged. This average

over individual errors is termed the “individual error” in the results plot. Ad-

ditionally, the error between the average localization result and “ground-truth”
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estimate for each of digit, lip and auditory regions was measured, and termed

“average error” in the results below. These two different metrics focus on varia-

tion across subjects and overall bias, respectively. For example, each individual

result could have large error about some mean estimate, leading to large individ-

ual error, but if the mean estimate was exactly equal to the “ground-truth” esti-

mate, then the average error would be zero. Alternatively, there could be small

individual variation about some biased mean, leading to an individual error equal

to the average error.

4.4.2 Results and discussion of method comparison on focused

data

Overall, all five methods perform well on the processed monkey and human

MEG data, with some differences between methods. All methods’ results were

dependent on dimension reduction to some extent. The dimension that gave the

best result for each method was used.

Fig. 4.6 shows the same A’ metric discussed previously, here averaged only

over M3 and M4 data which was collected in the 275-channel MEG system. Since

the data from M1 and M2 was not changed here from the previous section, it

is not included in this plot. This figure shows that, for all methods, using just

the 37 channels closest to the source, rather than all 275 channels, did improve

the reconstruction according to the A’ metric. Surprisingly, it would have been
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Figure 4.6 Comparing A’ for all 275 versus reduced 37 sensors in two monkeys
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expected that this improvement be strongest for MVAB and sLORETA and mod-

est for SAKETINI and NSEFALoc1/2 since they should be more immune to the

noisy sensors. Instead, it was strong for sLORETA, moderate for the three prob-

abilistic methods, and slight for MVAB. However, since A’ is a measure of both

accuracy and minimal false positives, further investigation is needed to tease out

these components, as discussed in the next few figures. The following analysis

and figures are based on averages over all four monkeys (37 channels for all) and

the focused human data as already defined.

The average “percentage thresholds” (threshold level needed to create the

cluster of either 21 or 100 voxels for the monkey or human data, respectively),

are shown in Fig. 4.7. MVAB clearly has the tightest spatial resolution. It is well

known that sLORETA has less spatial precision than MVAB (Sekihara et al., 2005).

The spatial resolutions from the likelihood maps from the new probabilistic algo-

rithms are even less than sLORETA. It is possible that some manipulation of the
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Figure 4.7 Threshold comparison: The threshold was set to obtain either a 21-
voxel cluster in monkeys or 100-voxel cluster in humans. The percentage of the
peak voxel’s strength for that cluster is the “percentage threshold.”
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likelihood (such as a generalized likelihood ratio test, Bayesian Information Cri-

terian or Akaike Information Criterion) would produce a map with tighter spatial

resolution. Furthermore, plotting the spatial map of SAKETINI or NSEFALoc

source power for a given time point (s̄n) displays a spatial resolution similar to

MVAB. However, these maps are not used as the primary method for localiza-

tion since they are not as robust as the likelihood maps for spatial localization of

peaks.

All three new probabilistic methods outperform MVAB and sLORETA in in-

dicating the maximum peak at or near the expected location (see Fig. 4.8). Even

if the source power at the early primary peak may not be as strong as later sec-

ondary peaks, the likelihood maps of SAKETINI and NSEFALoc are able to indi-
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Figure 4.8 Peak maximum comparison
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cate a strong probability of activity at those locations nevertheless.

The average single cluster indices are shown in Fig. 4.9. In general for all

methods, the other active voxels causing this index to exceed 1 were not in any

consistent location or in a location that would make sense based on the stimula-

tion (such as S2 or posterior temporal cortex); thus they appeared to be false pos-

itives. NSEFALoc1 and NSEFALoc2 performed best in this metric of specificity,

followed by sLORETA, then SAKETINI and MVAB.

Finally, the differences (errors) between the peak localization of each method

relative to a “ground-truth” estimate (described above) are shown in Fig. 4.10.

For the monkey data, MVAB and NSEFALoc1 show the smallest individual and

average error, with SAKETINI showing comparable results, but NSEFALoc2 and
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Figure 4.9 Single Cluster Index comparison
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sLORETA showing higher errors. For the human data, MVAB and SAKETINI

show the lowest errors for both individual and average, with NSEFALoc1, NSE-

FALoc2 and sLORETA showing higher errors. Overall, the differences between

methods of the errors were only 2-3mm, within the expected error of MEG in

general, and certainly within a range expected due to the method of selection

of ground-truth coordinates. Thus, MVAB and SAKETINI have slightly smaller

overall errors than the other methods, but this difference is small relative to the

total errors.
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Figure 4.10 Average localization errors of all methods in both monkeys and hu-
mans, for digit, lip and auditory stimulation.

4.5 Conclusion

The MEG derived source localization results from both human and non-

human primates showed peaks in expected primary sensory areas, with the digit

representation superior to lip representation along the central sulcus and the audi-

tory representations most inferior in the superior temporal lobe. The feasibility of

using a nonhuman primate model for validating MEG source localization meth-

ods has been shown. The comparison across methods show that when all sensors

(with artifacts) are used to reconstruct over the whole brain (with potentially cor-

related sources), SAKETINI and NSEFALoc2 outperform the other methods on

average using the A’ metric. When the data is focused on a single brain region by
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reducing number of sensors and/or total voxels reconstructed over, MVAB has

roughly equal localization errors but more false positives than SAKETINI and

NSEFALoc.
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Chapter 5

Separability of functionally-defined

regions and networks through

analysis of MEG data and

MEG-seeded DTI tractography

5.1 Overview

The brain is partitioned into discrete functional areas with specific purposes,

which is why only certain areas are active for a given task and can be distin-

guished from other brain areas using MEG (and fMRI) data. However, each loca-

tion certainly does not act in isolation, but is highly interconnected in organized
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networks. These networks need to be examined both anatomically (by tracing ax-

onal connections) and functionally (by looking for causal influences of the activ-

ity of one region on another). Dissociation between networks based on functional

and anatomical considerations is needed. Functional (and effective) connectivity

has been studied by noninvasive measures in humans (e.g. Biswal et al. (1995);

Friston et al. (2003); Sun et al. (2005); Gross et al. (2001)) though further validation,

such as from electrocorticographical measures, is still needed.

Most of what is known about the functional organization of the cortex, and

the connections of individual cortical fields that compose the processing net-

works of the brain, comes from invasive electrophysiological recording and neu-

roanatomical studies in macaque monkeys and other mammals. The results from

these studies have, to a large extent, guided psychological and brain imaging

experiments in humans. However, this extrapolation is limited due to the in-

creased complexity of human neuroanatomy and the indirect nature of imaging

measurements. Experiments to validate the many noninvasive imaging methods

that have been developed in recent years lag behind their use to study human

brain function. While a macaque monkey model for MEG would help bridge the

gap between a wealth of pre-existing electrophysiological and neuroanatomical

data from the monkey and the less well studied human brain, data on the feasi-

bility of MEG in the monkey is sparse.

Anatomical connectivity has been extensively studied, especially in macaque
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monkeys using invasive neuroanatomical techniques. However, measuring corti-

cal and subcortical connections in humans had been limited to postmortem stud-

ies. The advent of white-matter tractography based on diffusion tensor imag-

ing (DTI) has allowed noninvasive measurements of white-matter tracts in both

healthy and patient populations. One can trace the connections starting from a

seed region in the brain. This procedure is termed tractography. Seed regions are

frequently chosen anatomically, but functionally defining seed regions, as in the

work described here, is becoming increasingly popular.

In this chapter, the use of MEG to determine separate brain regions is demon-

strated, based on differences of latency, spatial reconstruction localization, and

pattern of tracts anatomically connected to a functional region as determined by

MEG-seeded DTI tractography. Diffusion tensor images were acquired from the

same human subjects and same macaque monkeys from which MEG data was

collected to test the feasibility of MEG-seeded DTI tractography in both human

and non-human primates.

5.2 MEG latencies across stimulation type and

species

The previous chapter illustrated the feasibility of reconstructing meaningful

results from MEG data recorded from macaque monkeys. A comparison of the
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monkey and human peak latencies can further assist the usefulness of a primate

model for MEG. In the sensor data, multiple peaks were seen in the data from

each monkey, with some variability in peak magnitude and latency. Table 5.1

shows the peak latencies seen in each human and monkey and the peak with the

strongest amplitude is marked with an asterisk.

5.2.1 MEG latencies in humans

As mentioned previously, the human data was consistent with previous stud-

ies of digit, lip and auditory stimulation. A normal amount of variability across

subjects was also seen, regarding peak amplitude and latency (Table 5.1). For

digit stimulation, the peak averaging 44ms was largest for all subjects. An early

peak was sometimes seen around 22ms (2/4 subjects). Later peaks were seen

in all subjects, some clustering around 85ms (3/4 subjects), some around 120ms

(3/4 subjects), and some around 140ms (2/4 subjects). These later peaks around

120ms probably correspond to the late response seen in somatosensory responses

elsewhere, usually originating from S2 (Hari et al., 1983).

There was more variability in the human lip data regarding peak latency than

for digit stimulation. All (4/4) subjects show an early 19ms peak, which was

largest in 2/4 subjects. All four subjects also showed a peak around 40ms, which

was largest for the two remaining subjects. Later peaks were also seen around

55ms (2/4 subjects) and 105ms (3/4 subjects).
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There also existed variability in the human auditory data. All subjects

showed a peak around 106ms, consistent with the M100 commonly reported (Pan-

tev et al., 1990) as well as a peak around 165ms. The 106ms peak was largest

in 2/4 subjects; the other two subjects showed the largest peak at 165ms. Two

subjects showed a peak around 55ms, consistent with the auditory M50 reported

elsewhere (Reite et al., 1988). All four subjects also showed a peak around 200ms,

consistent with the auditory M200 (Jacobson et al., 1991).

5.2.2 MEG latencies in monkeys

The responses seen in monkeys were generally similar to those seen in hu-

mans, only with shorter latencies. The most consistent largest peak from digit

stimulation in monkeys was seen around 15ms (range 11-27ms, 9/10 datasets)

and this peak was the one focused on for source localization of primary so-

matosensory cortex for creating seeds for DTI tractography. An early peak was

sometimes seen at 3ms (7/10); in two of these cases this early peak was larger

than 15ms peak. Later peaks were also seen around 35ms (range 30-40ms, 7/10)

and around 60ms (range 47-82ms, 8/10).

Like in the human lip data, the monkey lip-stimulated responses showed

some consistent peaks, but there was more variability relative to digit stimulation

regarding which peak was largest. An early peak was seen in 11/12 datasets

around 10ms (range 3-15ms) and was the largest in 7/12 datasets. A second peak
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Table 5.1 Latencies of peaks observed across all sessions of MEG recordings from
monkeys and humans. Peaks with largest amplitude are marked with an asterisk.

Monkey Digit Lip Auditory

M1 3 13* 33 (50%) 64-82 3-12* 20-23 45-54 43 64*

M2 3 18* (67%) 33 47-53 7-10 27* 47-57 50* 110

M3 11* 30 63 13 43* 43* 77

M4 25* 40 (50%) 15* (67%) 27 48-55

Human Digit Lip Auditory

H1 22 46* 85 122 19* 42 108 102* 175 200

H2 50* 60 116 140 19 37* 55 55 112* 165 208

H3 23 39* 96 134 19* 33 55 108 105 155* 195

H4 41* 121 19 36* 101 61 103 153* 200

around 25ms was seen in 10/12 datasets (range 23-30ms) and was largest in 3/12

datasets. Finally, a later peak around 50ms (range 42-57ms, 12/12) and was the

largest in 2/12 datasets.

The auditory responses also showed some consistency and some variability

in peak latencies. A 45ms peak was seen in 4/5 datasets (range 43-45ms) and

was the largest in 2/5 datasets. A slightly later peak was also seen (range 50-

65ms) in 4/5 datasets and was the largest in 3/5 datasets. Finally, a late peak was

sometimes seen (77ms in one case and 110ms in a second case).

5.2.3 Discussion of MEG latencies

Comparing human and monkey digit responses

The latencies of responses recorded using MEG in monkeys generally

showed a pattern similar to human data, though they were shorter in non-human
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than in human primates, most likely due to longer conduction distances. Variabil-

ity in latency and morphology of response peaks also occurred in both species and

again the pattern of variation was similar across species.

This shortening of latency in nonhuman primates relative to humans is in

agreement with previous studies. In particular, McCarthy et al. (1991) studied the

subdural recordings obtained in macaque monkeys from median nerve stimula-

tion and compared them to the human results from the studies by Allison et al.

(1989a) and Wood et al. (1988). They found a N10-P20 wave generated from area

3b and a P12-N25 wave from area 1 in monkeys, which they proposed to be the

correlates of the human N20-P30 and P25-N35.

Tactile stimulation was chosen over electrical median nerve stimulation in

this study because electrical pulses to the median nerve non-selectively stimulate

nerves of various receptor types and receptive fields on the hand. Traditionally,

median nerve stimulation has been employed to provide strong stimulation for

mapping, especially during surgery.

Similarly, Gardner et al. (1984) presented airpuff stimuli to the hand or fore-

arm of alert macaque monkeys while recording epidural SEPs. They found P15

and P25 peaks followed by a large N43 and P70. These latencies are consistent

with the MEG data reported here and are slightly delayed relative to the median-

nerve stimulated latencies of P12-P20 reported by McCarthy et al. (1991). They

also suggest that the latencies do not change substantially as a function of anesthe-
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sia. However, the amplitude of later peaks might be suppressed more with anes-

thetic level, suggested by the data presented here and by Allison et al. (1989b).

The human MEG latency results presented here are in agreement with Forss

et al. (1994), which studied the difference of SEF data from airpuff to the digits

versus electric stimuli to the median nerve. They found that the responses to

airpuffs were about 5ms later than median nerve stimulation and that the later

peak at 65ms was larger than the early 25ms peak, in direct contrast to median

nerve stimulation.

A reasonable speculation is that the 14ms peak seen in the monkey MEG digit

data corresponds to the M40 wave in humans, that the occasional earlier peak at

7ms in monkeys corresponds to the occasional M20 in humans, and that the later

30ms/40ms peak in the monkey responses might correspond to the human M80

(see Table 5.1).

Comparing human and monkey lip responses

The data presented here are in general agreement with previous studies of

evoked potentials/fields in monkeys and humans, although fewer studies exist

for lip than for digit responses. In monkeys, McCarthy and Allison (1995) used

electrical stimulation applied to median nerve, lip, tongue and palate and found

that the lip response was just lateral to the hand response along the postcentral

gyrus and that the latencies were slightly shorter for lip relative to hand (N9-P14

for lip and N10-P20 for hand). The evoked fields resulting from lip stimulation
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in humans have been studied by Disbrow et al. (2003); Hoshiyama et al. (1996);

Nakahara et al. (2004). Similar to the human results shown here, they all found a

clear 20ms peak as well as a later 35ms peak. The human data presented here

are in agreement with these results, although neither study report that the early

20ms peak might be larger than the 35ms peak. A reasonable speculation is that

the monkey 10ms and 25ms peaks seen here correspond with the human 20ms

and 35ms peaks. Ipsilateral responses in monkeys could not be measured since

the sensor array could only be placed by one hemisphere at a time; thus further

examination of possible ipsilateral responses in humans was not pursued.

Comparing human and monkey auditory responses

In both humans and monkeys, the localization of the MEG data from audi-

tory stimulation to the superior temporal lobe agrees with the known location of

primary auditory cortex (Brugge and Merzenich, 1973; Celesia, 1976). Secondary

auditory areas adjacent to and surrounding A1, such as the belt and parabelt,

could also be activated by the stimuli presented in this study. We did not expect

to distinguish primary auditory cortex from adjoining belt regions using MEG

source localization, but to localize the region of A1 and surrounding auditory ar-

eas to seed the DTI tractography.

Evidence exists that the human M100 in particular seems to arise from either

A1 or the planum temporale (Godey et al., 2001; Liegeois-Chauvel et al., 1994).

In monkeys, Arezzo et al. (1975) show early (12-22ms) responses in the monkey
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originating from primary A1 while later responses (N40 and N60) arose from ar-

eas on the superior temporal plane more anterior to A1 and the N70 and N100

arose from more posterior areas. They propose that the monkey N70 corresponds

to the human N100, which they suggest have dual origin in A1 and posterior re-

gions in both species. Furthermore, different components might be distinguished

based on refractory and/or habituation properties, as examined by both Budd

et al. (1998) and Hari et al. (1982), with the component with shorter recovery pe-

riod coming from the superior temporal plane and the component with longer

recovery period more diffuse and frontal. This proposal is consistent with the

data in this study, with peaks in the range from 60ms to 70ms.

5.3 Spatial Separability of MEG MVAB Results

5.3.1 Spatial Separability of human MEG MVAB results

The spatial distribution of the localized sources in the human brain from tac-

tile and auditory stimulation generally agreed with known neuroanatomy. Fig.

5.1 shows the estimated beamformer source localization overlaid on the struc-

tural MRI in the left column and the corresponding estimated temporal activity

at the peak voxel in the right column (reconstructed from the same H4 dataset as

in Fig. 4.1). Both digit and lip localizations are entirely in the post-central gyrus;

the auditory localization in Fig. 5.1 is entirely in the superior temporal gyrus.
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Figure 5.1 Beamformer source localization of human MEG dataset. Top row:
digit localization; Middle row: lip localization; Bottom row: auditory localiza-
tion. Left and middle column showing MEG source activity overlaid on coronal
and axial slices of structural MRI, occurring at the peak latency indicated by blue
vertical bar in adjacent time-series. The 100 most active voxels at the peak la-
tency are shown, which were subsequently used to seed the DTI tractography (see
Methods and Fig. 3). The amplitude threshold used to produce these 100 voxels
is indicated by the horizontal blue lines. Crosshairs on MRI indicate voxel with
largest magnitude activity. Right column indicates source time-series estimated
by beamforming at the peak voxel in crosshairs.
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Fig. 5.1 shows the top 100 voxels at the peak latency of the first major neu-

ral response (∼ 45ms for digit, ∼ 35ms for lip, and ∼ 110ms for auditory) that

were used to create the seed ROI for DTI tracking. This ROI was selected out of

over 20, 000 total voxels reconstructed in the 2mm grid, leading to an active re-

gion of about 0.8cc out of ∼ 175cc examined. The voxel coordinates were then

transformed from the original MRI to the space of the DTI images and was used

as the starting point for tractography.

The group localization data from the human subjects are reported in Fig. 5.2.

The auditory coordinate was found to be significantly inferior to both digit and

lip. Though the digit representation tended to be superior to that of the lip, the

standard deviation was large. The location of the digit representation was signif-

icantly posterior to the lip localization, following the path of the central sulcus.

No other comparisons were significant.

5.3.2 Spatial separability of monkey MEG MVAB results

The results from the previous chapter show that when extra care is taken

with removing noisy sensors and using the best set of eigenvalues for the MVAB,

results can be obtained equivalent to using the more sophisticated methods with

built-in denoising. The spatial distribution of the localized sources in the brain

for tactile and auditory stimulation generally agreed with known neuroanatomy.

Fig. 5.3 shows the MVAB source reconstruction for the MEG dataset from monkey
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Figure 5.2 Average MVAB localization results in four humans
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M1. The data from M1 demonstrate that the digit localization was more medial

and superior than the lip localization, corresponding to the known somatotopic

organization in primary somatosensory cortex. The localization of auditory cor-

tex was inferior to that of tactile stimulation, on the opposite side of the lateral

sulcus. The spatial map of activation overlaid on the structural MRI is shown

for the latency with largest amplitude (largest peak latency). The reconstructed

time series (on the left) is shown for the voxel with maximal activation (in green

crosshairs on MRI). The largest peak latencies in this example are at 13ms for digit

stimulation, 7ms for lip stimulation, and 62ms for auditory stimulation. The 21

most-active voxels are displayed, which are the same used to create the seed ROI

for DTI tracking.

MVAB localization results from all four monkeys showed peaks in roughly
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Figure 5.3 Beamformer source localization of MEG dataset from monkey M1.
Top row: digit localization; Middle row: lip localization; Bottom row: auditory
localization. Left and middle column showing MEG source activity overlaid on
coronal and axial slices of structural MRI, occurring at the peak latency indicated
by blue vertical bar in adjacent time-series. The 21 most active voxels at the peak
latency are shown, which were subsequently used to seed the DTI tractography
(see section 5.4 and Fig. 5.6) The amplitude threshold used to produce these 21
voxels is indicated by the horizontal blue lines. Crosshairs on MRI indicate voxel
with greatest magnitude of signal. Right column indicates source time-series es-
timated by beamforming at the peak voxel in crosshairs.
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the anticipated latency (based on sensor data) and location (based on known neu-

roanatomy), similar to Fig. 5.3. However, some variability existed as well. For

instance, the digit localization in Fig. 5.3 does extend into pre-central gyrus, al-

though no motor activity is expected in this task. Only the runs with clear re-

sponses in the sensor data (described in the previous chapter) were processed

for source localization and further quantification of latency and localization. In

7/10 digit datasets, the beamformer reconstruction producted a spatial peak in

the expected location and latency (at least one dataset from each animal). In the

remaining three datasets, the source estimates were (1) more medial and inferior

(far into white matter), (2) more medial and posterior (in white matter and too

posterior from the central sulcus), and (3) near the central sulcus but much lower

in power relative to an activation on the opposite hemisphere at a later latency.

Likewise, 7/12 lip datasets showed activation in the expected region (at least one

dataset from each animal). The source estimates in the remaining five datasets

were (1) too posterior, (2) in the center of the head, (3 and 4) very inferior into

temporal lobe, and (5) near central sulcus but much weaker than other sources in

frontal areas. Finally, 4/5 auditory data sets were localized to the expected tem-

poral lobe area (in 3/4 monkeys). The remaining localization result was in the

most inferior portion of the temporal lobe.

The AC-PC coordinates of the voxel with largest MEG MVAB activation

across space for the time peak of interest (∼ 12ms for digit, ∼ 8ms for lip, and
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∼ 50ms for auditory) was noted as well as the actual peak latency. For compar-

ing the mediolateral variation across stimulation types and animals, the absolute

value of the mediolateral coordinate was used since M1 was stimulated on the

left while the other three animals were stimulated on the right. The active re-

gion (ROI) used to seed the DTI tracts were chosen to be the top 21 most active

voxels (about 0.17cc) at the afore-mentioned time latency, out of an average of

12, 582 voxels (range 9295-18003) (∼ 100cc) total in the chosen VOI covering the

whole cerebrum. The voxel coordinates were then transformed to the space of

the DTI images. Coregistration was focused on aligning the central sulcus from

the structural MRI to the non-diffusion-weighted (b=0 s · mm −2) echo-planar im-

age, rather than applying a global coregistration, warping or distortion-reduction

algorithm.

In some reconstructions, a few extra voxels in other regions further away

sometimes also showed similar strength of activity. However, since these other

activations were not consistent across runs or animals, and were not in plausi-

ble locations, they were not quantified further or used in calculation of the ROIs

used to seed the DTI tracking. The successful MEG MVAB reconstructions which

showed peaks in roughly the expected areas were the ones used for DTI tracking.

In the cases of the two monkeys that had two different DTI scans (M3 and M4),

all MVAB localizations were roughly similar on both. This finding supports that

the coregistration from the MEG fiducials to the MR structural image to the DT
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image was not different between the two scans for either monkey.

Average latencies and peak source locations using MVAB across multiple

datasets from the four monkeys are listed in Fig. 5.4, with the localizations de-

fined in AC-PC coordinate system (see Section 4.2.1). Note the standard error of

the localization was under 3mm in all cases, well within expected errors of MEG

source localization, and indicating overall agreement across animals.

Comparing the MVAB localizations across stimulation types, the digit local-

izations were found to be significantly different in the superior-inferior dimension

and in the medial-lateral dimensions from both the lip and auditory localizations.

No other significant localization differences were found. While lip and auditory

could not be found significantly different from each other, in most cases lip lo-

calizations were clearly above the lateral sulcus while auditory localizations were

below the lateral sulcus. Significance of differences between the coordinates of

the hand, face and auditory representations for both monkeys and humans were

tested using two-tailed pairwise Students t-tests corrected for family-wise errors

(thus for three tests p< 0.016 is significant).

5.3.3 Discussion of MEG MVAB results and neuroanatomical

variation

The somatosensory MEG localization results are in agreement with the

known somatotopic representation of the body along the post-central gyrus in
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Figure 5.4 Average MVAB localization results in four monkeys
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both humans and monkeys with the foot area most medial and superior, pro-

gressing to the hand, then face area at the most lateral and inferior position (Kaas

et al., 1979; Penfield and Boldrey, 1937; Wood et al., 1988). Some variability in

estimated source location was seen around the central sulcus. From these and

other studies including Zhu et al. (2007), it is assumed that the tactile stimulus is

activating cutaneous receptors in both areas 3b and 1, and possibly area 2. Due to

the spatial resolution limitations of MEG, discrimination between areas 3b, 1 and

2 from the MEG data based on localization is not expected, as these areas are only

several millimeters apart.

These MEG localization results support the assertion that the posterior bank

of the central sulcus is the cortical origin of the large early peak seen in the MEG

data. Since the spatial resolution of MEG is not precise enough to distinguish
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between areas 3b and 1, other data acquired invasively in humans for clinical

purposes can be examined in conjunction with the noninvasive MEG results to

help give support to a more precise statement about the underlying cortical ori-

gin. Previous studies (Wood et al., 1988; Allison et al., 1989b) have examined the

cortical origin of median-nerve electrically-stimulated evoked responses through

use of subdurally-placed electrodes in human patients requiring neurosurgery.

They found the strongest peak in area 3b active first (N20-P30), with area 1 peak-

ing 5ms later (P25-N35). A later wave occurred as N45-P80-N180 from area 3b

and P50-N90-P190 from area 1 (Allison et al., 1989b).

Since neurons in area 3b are generally located in the posterior bank of the

central sulcus, their tangential orientation relative to the surface of the head make

them most likely to be detected with MEG, while the radially-oriented sources of

area 1 on the crown of the post-central gyrus are least likely to be detected with

MEG (Hamalainen et al., 1993). Therefore it is most likely that area 3b is con-

tributing primarily to the MEG data shown here, although it has been shown that

the location of the maps can be shifted dramatically relative to the sulcus, with

3a on the anterior bank, in the depth of the sulcus or even on the posterior bank

of the sulcus (Huffman and Krubitzer, 2001). Inter-subject differences in cortical

gyral anatomy and the relative location of areas 3b and 1, as well as head shape,

suggest that area 1 may contribute more in some subjects than others. Thus while

some of the variation observed is undoubtedly due to technical considerations, it
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is likely that it reflects anatomical variation as well.

While Sutherling et al. (1988) have shown good correspondence of median-

nerve stimulated responses measured by both MEG and ECoG, validation of lo-

calization of a more wide variety of evoked responses is still needed (Halgren,

2004; Dalal et al., 2007; Hoogenboom et al., 2006). Furthermore, the relationship

between MEG time series data and the underlying neural activity is not precisely

known. It is hoped that by comparing this MEG data to local field potential

recordings obtained in the same animals to the same stimuli, a better understand-

ing may be gained of the relative contribution of the somatosensory areas to the

signals recorded in MEG and the factors affecting these contributions.

5.4 DTI Tractography using MEG MVAB Localization

5.4.1 Tractography overview

DTI is a specific type of MRI acquisition that is sensitive to water diffusion

in several arbitrary directions. In gray matter or cerebral spinal fluid (CSF), wa-

ter is free to diffuse in any direction, resulting in a low anisotropy (directionality)

within a voxel. In voxels containing coherently arraged white matter tracts, wa-

ter is restricted to moving in the direction of these tracts, thereby resulting in a

high degree of anisotropic diffusivity in the voxel. The direction with greatest

diffusivity is parallel to the axonal bundles and is the primary eigenvector. Using
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the primary eigenvector of diffusion in each voxel, one can trace the connections

starting from a seed region in the brain, termed tractography.

Studies of the validity and reliability of DTI are sparse. Faithful reproduc-

tions of the major known fasciculi in human cortex have been shown (Catani et al.,

2002). These results were obtained by starting from seed regions in white matter,

marked on the fractional anisotropy image using neuroanatomical references to

place two regions of interest in white matter that are both known to participate in

the same tract. However, common tractography methods are limited in accuracy

due to crossing fibers and partial volume effects. The accuracy with which such

algorithms specify axonally-connected regions is unknown.

Several groups have demonstrated the feasibility of DTI in macaque mon-

keys and showed tracts started from anatomically-defined seed regions in white

matter as a first step towards validation of these data (Croxson et al., 2005; Parker

et al., 2002; Ramnani et al., 2005; Tuch et al., 2005). Several regions have been

examined, such as tracts to prefrontal cortex, the corticospinal tract and optic ra-

diations, cerebral peduncle, and the dorsolateral convexity, pontine decussation,

and pulvinar and temporal subcortical white matter, respectively. Dauguet et al.

(2007) have performed DTI tractography in macaque monkeys from anatomically

defined somatosensory and motor areas and further have compared these tracts

with WGA-HRP injected tracts in the same animals. They showed a generally

good agreement between the methods but also demonstrated limitations of DTI
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far from the initial seed region. However, the ability to determine the validity

of connections seeded from known, functionally-defined gray-matter regions-of-

interest (ROIs), is of major interest to neuroscientists and neurosurgeons.

This MEG-seeded DTI experiment needed to use a well-established MEG

source reconstruction method with minimal bias to obtain the most reliable source

estimates for seed locations. MVAB has been used for over five years and has

been shown to have minimal bias relative to sLORETA even in noisy data (Seki-

hara et al., 2005). Even though the new probabilistic models proposed in Chapter

2 have been shown to improve performance over MVAB especially in noisy data

(Chapters 3 and 4), it has also been shown in Chapter 4 that, when the data is

focused on a particular brain region and sensors with large artifacts are removed,

MVAB performs just as well as the new probabilistic methods. Thus, it was fa-

vored to use MVAB as the more established method, and DTI tracts have been

seeded only from MVAB results.

It is beyond the scope of this dissertation to examine the effects of slightly

different seed locations (based on different MEG localizations) on DTI tractogra-

phy results. It is likely that differences in tract patterns are most due to differ-

ent seed areas (i.e. digit versus lip) than shifts of a given seed location within

that area. The MVAB-based MEG-seeded DTI results shown here are mainly to

demonstrate the feasibility and significance of this type of multimodal data inte-

gration. Hence, this section focuses on the additional information of separability
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obtained from distinct anatomical connectivity patterns resulting from different

functionally-defined seed locations.

5.4.2 DTI acquisition and processing

The same four healthy human volunteers (three male and one female, ages

23-28) used for MEG experiments in the previous chapter also particpated in the

DT-MRI experiments. Additionally, the same four adult male macaque monkeys

(9-15 kg) were scanned using DT-MRI at the same time as their structural MRI

described in the previous chapter.

Localization of primary somatosensory and auditory cortex obtained using

MVAB MEG was coregistered to MR data (described in previous chapter) and

used to seed white-matter tracking from diffusion tensor images collected on the

same subjects. All studies were performed with approval of the UCSF Commit-

tee on Animal Research or the Committee on Human Research. The acquisition

parameter setting and analysis of DTI data were selected and performed by Drs.

Henry and Berman.

MR and DTI acquisition: Humans

All MR scans were performed on a GE Signa 1.5T scanner (GE, Milwaukee,

WI). A standard GE birdcage volume coil was used for all subjects and scans.

Donut-shaped MR-contrast fiducials were placed on the subjects head in the same



SECTION 5.4. DTI TRACTOGRAPHY USING MEG MVAB LOCALIZATION 159

positions as the localizing coils in the MEG session to assist in coregistration of

MEG and MR datasets. After a sagittal localizing scan, a 3D-SPGR image was

acquired (flip angle= 40 deg, TR= 27ms, TE=6ms, FOV= 240 × 240mm, 1.5mm

slice thickness, 256 × 256 × 124 pixels, in-plane resolution 0.94 × 0.94mm). Spin-

echo echo-planar diffusion-tensor images were subsequently acquired with the

following parameters: TR= 6.2s, TE= 105.3ms, NEX= 9, six (plus null) diffusion-

sensitizing directions, b= 1000 s · mm −2, in-plane resolution 1.72 × 1.72mm, and

2.1mm thick slices. The DTI volume spanned from the middle of the pons to the

vertex of the brain.

MR and DTI acquisition: Monkeys

Macaque monkeys were initially anesthetized using I.M. ketamine hy-

drochloride (10mg/kg). Atropine (0.04mg/kg) was also given I.M. to help reduce

secretions. An I.V. catheter was placed and animals received lactated Ringers so-

lution (10mL/kg/hr). Animals were intubated and anesthesia was maintained

using 1-2% isoflurane. Heart rate and SpO2 were monitored at all times with

an MR-compatible pulse-oximeter. Heart rate, respiratory rate, temperature and

SpO2 were documented every 30-60 minutes. Heated water bottles and blankets

were used to keep the animal warm. An experimenter stayed in the MR room at

all times.

All MR scans were performed on the same GE Signa 1.5T scanner as used

for humans. The monkeys were placed in the prone position and their heads
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were secured in an MR-compatible stereotaxic frame. A five inch diameter surface

coil was placed on the superior part of the head. Donut shaped MR contrast

fiducials were glued and taped onto the same three positions as the localizing

coils in the MEG session to assist in coregistration. After a sagittal localizing scan,

a 3D-SPGR image was acquired (flip angle= 40 deg, TR= 27ms, TE= 7ms, FOV=

190 × 190mm, 1.0mm slice thickness, 256 × 256 × 124 pixels, in-plane resolution

0.74 × 0.74mm). Monkeys M1, M3 and M4 all received two scans on different

days; monkey M2 received only one scan.

Spin-echo echo-planar diffusion weighted images were subsequently ac-

quired with six diffusion sensitizing directions at b=1000s·mm−2 in addition to

an image volume with no diffusion weighting. Slight alterations in scan parame-

ters were made across subjects to optimize scan quality by minimizing distortion.

The range of parameters used was: 5-7.9s TR, 70-105ms TE, 1.4-1.72mm isotropic

voxel size, and 12-24 NEX. Also, 1-shot EPI was used for 2 animals (M1 and M2)

and 2-shot EPI was used for the other two animals (M3 and M4). The number

of slices was varied to ensure whole brain coverage, ranging from 23-39 slices

depending on the orientation of the brain in the scanner.

DTI processing: humans and monkeys

The diffusion tensor and associated diffusion eigenvectors (Basser et al., 1994)

were calculated at each voxel using in-house software developed by Dr. Berman

written in the C programming language. The principal eigenvector of each voxel
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was assumed to reflect the orientation of axons in that voxel. Fiber tracking was

performed using software written in Interactive Data Language (ITT Visual In-

formation Solutions, Boulder, CO) by Dr. Berman and based on the Fiber As-

signment by Continuous Tracking method (Mori et al., 1999). Starting regions for

fiber tracking were defined by MEG and contained 21 voxels for monkeys and

100 voxels for humans. In each starting voxel, 27 densely seeded starting points

arranged in a 3 × 3 × 3 grid were used to launch fiber tracks. Fiber trajectories

were then created by following the primary eigenvector from voxel to voxel in

3D. The tract continued until it exited the brain or the angle between the eigen-

vectors of two successive voxels was above 50-80 degrees, indicating unrealistic

white matter pathways.

5.4.3 DTI results

DTI results: Humans

The tracts reconstructed from the digit, lip and auditory seeds in the human

DTI data show qualitative differences. Fig. 5.5 shows the complete set of digit,

lip and auditory tracts from subject H1, as well as examples from subjects H2 and

H3.

Digit seeded data showed local connections in adjacent gyri (4/4), tracts to S2

(2/4) and tracts descending the thalamocortical pathway (2/4) (Fig. 5.5b). Short

tracts to nearby posterior parietal and motor areas were also consistently seen.
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Figure 5.5 DTI tractography results in humans. Top row: digit-seeded tracts;
Middle row: lip-seeded tracts; bottom row: auditory-seeded tracts. The green
lines indicate the tracts that met the anisotropy and angle criteria (see Methods),
as seeded from the ROI created from the MEG source localization (pink), which
is obscured by tracks and/or slice in some images. The MRI slice shown is a few
slices inferior of each ROI and is from the non-diffusion-weighted echo-planar
image.
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In general, the tracts seeded from the lip representation were similar to digit-

seeded tracts showing local connections (4/4), tracts to the thalamus (3/4) and

presumed connections with S2. Unlike the pattern seen for the digit representa-

tion, connections also crossed the midline at the corpus callosum (3/4) (Fig. 5.5d)

consistent with the crossing location identified by Hofer and Frahm (2006). An

additional tract connecting the frontal lobe is seen in subject H1 (Fig. 5.5c), possi-

bly due to the ROI containing some temporal lobe voxels.

The auditory-seeded tracts in humans show local temporal lobe connections

(4/4, Figs. 5.5 e and f), tracts crossing the midline in the corpus callosum (2/4,

Fig. 5.5e), tracts to the frontal lobe (3/4, Figs. 5.5e and f), and tracts to posterior

temporal cortex (3/4). Thus, the auditory-seeded tracts show connection patterns

that are distinctly different from the digit- and lip-seeded tracts, as well as show-

ing general agreement with known connections.

DTI results: Monkeys

The hand, face and auditory ROIs derived from MEG MVAB localization in

monkeys also resulted in qualitatively different tracts obtained from the same

diffusion tensor image. Fig. 5.6 shows a full set of examples from M1 and M2, as

well as hand and lip from M4 and auditory from M3 for additional examples.

The digit representation seed showed connections locally (5/9) and with pos-

terior parietal area (2/9), as well as with the presumed location of S2 (5/9, ex-

ample Fig. 5.6b) and the thalamus (1/9). Nine total digit-seeded results were
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obtained from five digit ROIs seeded onto one DTI scan each (from M1 and M2)

and two digit ROIs were seeded onto two DTI scans each (two DTI scans from

M3 and two DTI scans from M4). Previous neuroanatomical studies in monkeys

have shown that the hand area in S1 is connected to ipsilateral S2, posterior pari-

etal cortex, and the thalamus (Krubitzer and Kaas, 1990). Thus, the tracts seen

are in general agreement with known connections of the digit portion of area 3b.

However, there was variability across the tractography results. In 4/9 cases, pro-

jections to frontal motor area were seen (example Fig. 5.6a): the ROIs in 3/4 of

these cases included voxels extending back to the intraparietal sulcus. In only one

case expected connections were absent, with only local connections (example Fig

5.6c). In one other case, a tract to the prefrontal region was seen.

In general, the tracts seeded from the lip representation were similar to digit-

seeded tracts, showing local connections (11/11), tracts to the thalamus (5/11)

and presumed connections with S2. Unlike the pattern seen for the digit rep-

resentation, connections also crossed the midline at the corpus callosum (6/11)

(Figs. 5.6d, e and f) consistent with the crossing location identified by Hofer and

Frahm (2006). From previous neuroanatomical studies, the face representation in

S1 has also been shown to be connected to ipsilateral S2, posterior parietal cortex,

and thalamus, but, unlike the hand representation, has additional connections

to S1 in the opposite hemisphere (Killackey et al., 1983). Similar to digit-seeded

tractography, the lip-seeded tractography is therefore consistent with known neu-
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Figure 5.6 DTI tractography results in monkeys. Top row: digit seed, middle
row: lip seed, bottom row: auditory seed. 21 voxels for each ROI in pink, tracts in
green, overlaid on slice of non-diffusion-weighted echo-planar image chosen to
highlight location of tracts relative to main features such as the corpus callosum.
In some cases, the pink ROI is covered by the green tracks and/or MRI slice, but
the pink arrows indicate their location.
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roanatomical connections but also shows variability like the digit data. The trac-

tography result in monkey M2 (Fig 5.6e) shows an additional tract in a medial

area coursing anteriorly, most likely due to crossing fibers. Three additional data

sets showed connections crossing the midline in locations that appear to be either

anterior or posterior to position of the callosum. This may be due to some voxels

in the lip ROI extending into areas of S2 or temporal lobe.

The auditory-seeded tracts in monkeys show local temporal lobe connections

(5/5, Fig. 5.6h), tracts crossing the midline in the corpus callosum (3/5, Figs.

5.6g and i), and tracts to the frontal lobe (1/5, Fig. 5.6g). One case shows a

connection to thalamus; two cases show connections crossing the midline in an

area not consistent with the location of the corpus callosum. Both auditory seeds

in monkey M1 also produced posterior-going tracts within temporal lobe (Fig.

5.6g). Kaas and Hackett (1998) have demonstrated primary auditory cortex (A1)

to have dense local connections with the belt and parabelt regions as well as be-

ing connected to contralateral A1. Furthermore, they showed frontal connections

to the orbito-frontal region and to frontal eye fields. Thus, the auditory-seeded

tracts show connection patterns that are distinctly different from the digit- and

lip-seeded tracts, as well as showing general agreement with known connections.

Comparing and averaging across monkey and human DTI results

Showing consistency between monkey and human DTI tractography results

helps for two reasons. First, evidence of similar results in monkeys compared
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with humans lends support that issues such as greater partial voluming and dis-

tortion in the monkey data do not hamper the monkey data significantly for the

type of questions asked here. Second, after monkey DTI tractography has been

compared with the tracer histology in the same animals, the amount of confidence

given to each DTI tract based on this validation could be more convincingly ex-

trapolated to the human tracts if the human and monkey tracts are similar. Figure

5.7 shows the percentage of scans showing a given tract, averaged over all results.

Fig. 5.7(a) shows the percentage of tracts seen averaged over all seed types,

comparing monkey with human results. This figure shows that connections to

local regions, thalamus, corpus callosum crossings, and S2 are consistent across

both species, while connections to posterior parietal, motor and other regions are

more variable across species. This may be due to U-fibers connecting primary

somatosensory one gyrus forward (motor) or back (posterior parietal) were too

difficult to detect in the relatively larger voxels in monkey DTI.

Fig. 5.7(b) shows the percentage of tracts per seed types, comparing monkey

with human results. These results support the following four claims that 1) lip

and auditory regions have connections across the corpus callosum (roughly half

the scans) while digit area does not, 2) somatosensory areas have connections

with posterior parietal and motor areas while auditory does not, 3) auditory has

connections with frontal areas while somatosensory does not, and 4) digit S1 has

connections to S2 while auditory does not and lip S1 to S2 connections cannot be
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Figure 5.7 DTI tractography summary in monkeys and humans. (Average across
9 Digit seeds, 11 Lip seeds, and 5 Auditory seeds on 6, 6, and 4 monkey DTI scans,
respectively, and 4 Digit, 4 Lip and 4 Auditory seeds on 4 DTI scans in humans)
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determined at this resolution. It can be seen that claims 1 and 4 are supported

by both monkey and human data independently, while claims 2 and 3 are more

strongly supported by the human data.

5.4.4 Discussion of MEG-seeded tractography

Expected connections

Previous neuroanatomical tracer studies in monkeys have shown that the

hand representation in 3b is connected to ipsilateral secondary somatosensory

cortex (S2), posterior parietal cortex, as well as thalamus (Burton et al., 1995;

Darian-Smith and Darian-Smith, 1993; Darian-Smith et al., 1993; Jones and Pow-

ell, 1969a,b; Vogt and Pandya, 1978). The face representation in 3b is similarly

connected but also has connections to contralateral S1 via the corpus callosum

(Killackey et al., 1983). Since the lip representation in S2 is adjacent to the lip

representation in S1 (e.g. Krubitzer et al. (1995)), the connection between these

two regions is difficult to distinguish from local connections at this level of res-

olution. Thus, the hand and face representations each have a unique pattern of

connections that we were able to distinguish in the data reported here. Finally,

primary auditory cortex (A1) has been shown to have dense connections with

the belt and parabelt regions as well as being connected to the contralateral A1

via the corpus callosum, to the orbito-frontal region via arcuate fasciculus and to

frontal eye fields (Kaas and Hackett, 1998; Morel et al., 1993; Luethke et al., 1988).
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Thus, it was possible to identify a unique pattern of connections based on the

MEG-derived auditory seed that was similar to pre-existing non-human primate

data.

Hofer and Frahm (2006) have used DTI to illustrate the partitioning of the

corpus callosum in humans, by defining anatomical-based ROIs near specific ar-

eas of cortex. They found an anterior-to-posterior parcellation of the corpus callo-

sum connecting prefrontal, premotor, motor, primary sensory, parietal, occipital

and temporal cortex. The connections seen in the MEG-based lip-seeded data are

consistent with their findings of a crossing roughly in the midsection of the cor-

pus callosum. However, the auditory crossings seen in the data here are further

anterior than seen in Hofer and Frahm (2006). This difference could be due to

technical constraints (see below) or anatomical factors.

While the gross pattern shown in the DTI data was similar to pre-existing

anatomical data, the rich detail obtained using neuroanatomical tracing tech-

niques was absent from the imaging data sets. A promising direction for vali-

dation and study of non-invasive tractography has been demonstrated by Saleem

et al. (2002), who injected a Mn+
2 tracer along with WGA-HRP. The two tracers

followed very similar and highly specific paths, thus validating that Mn+
2 (an

MRI-visible contrast agent) could be used for development of DTI tractography

methods. In addition, collaborators in Drs. Disbrow and Krubitzer’s labs have

gathered neuroanatomical data from the monkeys used in this study in order to
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perform a comparison of invasive and non-invasive techniques.

Functional based seed regions for DTI tractography

Previous DTI studies have demonstrated feasibility of collecting DTI data

from monkeys and performing tractography (Croxson et al., 2005; Parker et al.,

2002; Ramnani et al., 2005; Tuch et al., 2005; Dauguet et al., 2007). However, in

these studies, the seed region was chosen based on anatomical landmarks, not

obtained from any functional specification. Furthermore, their seed regions all

began in a user-defined white-matter area. Previous studies have shown the

importance of choosing a seed region based on a functionally defined seed, for

example using fMRI. Due to anatomical variation of functional localization in

different individuals, an anatomical-based ROI could misrepresent the connec-

tions studied from that region. Guye et al. (2003) have shown tractography re-

sults from a seed in the motor region defined by functional MRI in humans. Kim

et al. (2003) demonstrated feasibility of using an fMRI-derived seed in cat visual

cortex for DTI tractography. Alternatively, in this work, the feasibility of creat-

ing seed regions for tractography from MEG source localization estimates was

demonstrated. The use of both fMRI and MEG for functionally defining a seed

region for DTI tractography most likely will increase in coming years, both for

neuroscience questions and presurgical planning. Functional mapping and DTI

are complementary techniques since MEG can locate functionally specific cortices

while DTI tractography can delineate the connecting white matter.
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One potential concern for using a functionally-defined ROI is that it mostly

will exist in gray matter with low diffusion anisotropy. In considering the number

of voxels to use to define the ROI, fewer voxels would more precisely define the

region, but would also more likely be exclusively in gray-matter. DTI fiber track-

ing from gray matter structures requires that track trajectories traverse the gray-

white matter boundary or that the starting region includes small adjacent regions

of white matter. Increasing the number of voxels too much would lead to impre-

cisely defined regions. It was found that using the top 21 voxels ( 0.17cc) from

monkey MEG activation and the top 100 voxels ( 0.8cc) from human activation

was a good compromise between these considerations. Alternatively, one could

modify some aspect of the DTI acquisition in order to assist seeding in/near gray

matter. Ronen et al. (2003) has shown that if a lower b-value is used, the slower

diffusion in gray matter can be measured and tracts initiated in white matter can

continue further into gray matter than if b= 1000s ·mm−2 was used, although this

would require additional scan time.

Another potential concern of using MEG derived locations as fiber tracking

seed regions involves the inherent spatial uncertainty due to the ill-posed MEG

inverse problem. The main drawback of the MVAB method used here is when

two sources are correlated in time, such as can sometimes be the case for bilateral

auditory cortex, the beamformer is known to produce source power that is artifi-

cially reduced, sometimes to the point of not being detected. Analysis of auditory
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data was restricted to sensors covering only one hemisphere at a time, which

by-passes this potential problem. While later components of somatosensory re-

sponses can include concurrent activation of S1 and S2, the early components are

primarily dominated by S1 (Hari et al., 1984). Thus the coherent source problem

is minimal. The localization results from the new probabilistic methods discussed

in the previous chapter show similar results when specific sensors were used, so

choice of MVAB over these other methods should not result in any largely differ-

ent tractography results (i.e. the majority of variation is in seed selection and/or

DTI methodology, not source localization).

Effects of DTI acquisition parameters and tractography algorithms

Some variability in the tracts destination was seen between individuals in

both the monkey data and human data. Several technical issues may contribute

to some of this variability. First, the human data was collected at a greater anatom-

ical resolution than the monkey data based on relative brain structure size. Even

though the voxel size was approximately the same for both species, the monkey

data will exhibit more partial-volume overlap of cytoarchitectonically different

regions within a given voxel. In addition, several groups have suggested that a

more robust estimation of primary diffusion direction can be made by acquiring

more than the six necessary directions (at least 20 but up to 60) rather than re-

peating acquisition of the 6 directions (Jones, 2004; Poonawalla and Zhou, 2004;

Tuch et al., 2002). High angular resolution diffusion imaging, including q-ball
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techniques, have successfully identified crossing fiber population within cortical

gray matter (Tuch, 2004; Tuch et al., 2005; Wedeen et al., 2005). Hopefully future

studies in primates will incorporate these technological improvements in DTI ac-

quisition.

Ciccarelli et al. (2003) showed the amount of variability occurring across nor-

mal human subjects and that this variability should be taken into account before

comparing with clinical populations. They emphasize that different tracts have

different amounts of potential tracking problems from crossing fibers or abrupt

turns, and that the variability for a given tract should be considered. Between

session reproducibility and between subject variability of diffusion MR and trac-

tography measures were examined by Heiervang et al. (2006). They found that

fractional anisotropy was more reproducible than total tract volume, that tracts

defined by two ROIs (such as start and end points) are more reproducible than

just one seed ROI, and that measuring more than 12 diffusion directions did not

increase reproducibility but that less than 12 did. These are further points to in-

corporate for future studies.

In this work, a common, robust tractography algorithm was used (Mori et al.,

1999); many other tractography algorithms have been proposed. Some probabilis-

tic techniques report the uncertainty or probability of a track (Behrens et al., 2003;

Hagmann et al., 2003; Parker et al., 2003). Still, there is no consensus in the field

of how to report whether a particular track is significant or not. Hopefully, even-
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tually comparing the DTI data obtained in this study with the neuroanatomical

tracer results obtained in the same monkeys will validate and provide a gold-

standard dataset for comparing various tractography methods.

5.5 Conclusion

MEG can be used to distinguish primary somatosensory from auditory cor-

tex and to identify specific body part representations within somatosensory cor-

tex both in macaque monkeys and in humans. These data, obtained using non-

invasive techniques, were in general agreement with previous electrophysiolog-

ical recording studies performed invasively in macaque monkeys and humans

(Penfield and Boldrey, 1937; Wood et al., 1988). Using these functionally defined

somatosensory and auditory regions of cortex, distinct patterns of connections

are seen using DTI tractography for somatosensory versus auditory cortex and

for the hand and face representations within the somatosensory strip. These data,

obtained using non-invasive techniques, were in general agreement with previ-

ous neuroanatomical studies performed invasively in macaque monkeys (Morel

et al., 1993).
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Chapter 6

Conclusion

6.1 Overview

New probabilistic methods for estimating neural activity from noisy MEG

data have been developed and described here. The mathematical framework was

presented in detail in Chapter 2, the performance of these methods on simulated

and example real data was shown in Chapter 3, a more thorough comparison

of the methods on many real datasets is shown in Chapter 4, and steps towards

validation and multi-modal data integration were described in Chapter 5. The

basic idea is that if the noise and interference are explicitly accounted for in the

data model, their effect on source localization is reduced.
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6.2 Future Directions

6.2.1 Direct extensions of models

The graphical models proposed here are just three variations of a class of

models that could be used to perform source reconstruction for MEG and EEG

data. Certainly many aspects of these models can be modified in order to re-

lax assumptions made here. One assumption is that the background interference

sources are stationary across the pre-stimulus and post-stimulus periods. If back-

ground is non-stationary, the model could be modified to include a term similar

to Φ which would influence the posterior update for ū. This would occur, for

instance, if the power of ongoing brain activity decreased as a result of the stimu-

lus/event onset (such as in the ERS/ERD findings).

One could further relax assumptions about the source and interference fac-

tors. They could be modeled by non-Gaussian distributions, although care should

be taken in choice of distribution so that they could still be solved for analytically.

The temporal progression/smoothness of the factors could be explicitly modeled,

such as using an auto-regressive model or Kalman filter.

Since Section 2.4.4 showed how MVAB is an approximation of SAKETINI

under certain assumptions, it might also be possible to use advantages learned

from SAKETINI to help MVAB. Specifically, in observing some individual results

from SAKETINI in the data in Chapter 4, the source estimates from SAKETINI
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very closely resembled MVAB source estimates. Both might be localized to a

reasonably-accurate location or both might be quite mis-localized. In the cases

of mis-localization of the source power estimates, the SAKETINI likelihood map

localized correctly. Perhaps some equivalent of a likelihood map for MVAB could

be derived which might be used as an improved estimate of source localization.

6.2.2 Improved model order selection

The models themselves have two built-in ways of assisting in the dimension

choice. First, the hyperparameters over the columns of the mixing matrices A and

B are updated in the M-step; thus their final values can be plotted (such as in

Fig. 3.7) and used as indication of which columns (and therefore which factors)

contribute more, similar to a plot of eigenvalues for PCA. As long as the number

of dimensions chosen is larger than the true dimension, the extra dimensions can

be “zero-ed out” by the model as those corresponding hyperparameters decrease.

A second way to examine model order is by learning the model for several

values of model order, and then comparing the final maximized likelihood value.

In general, the greater the model order, the easier to explain the data, thus the

likelihood will increase for greater model order. However, there is usually an

inflection point in the plot of likelihood versus model order, again similar to a

plot of eigenvalues for PCA, around which the ideal model order resides.

The hyperparameters help decide the true number of factors/dimensions
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needed to describe the data, both for pre-stimulus interference factors and for

evoked non-localized factors. The figures at the end of Chapter 3 show their util-

ity to some extent, in the sense that as long as the user selects a higher number

of factor than needed, the hyperparameters will remove the extra factors that are

not needed (by setting their influence to zero). However, their influence is usually

not set to exactly zero, but something rather small relative to the other needed fac-

tors. The principle of Occam’s Razor is paraphrased in several ways and basically

states that a model should be as simple as possible but still complex enough to ex-

plain the data properly. Applied to probabilistic modeling, the maximized data

likelihood will keep increasing as the model order/dimension increases since the

data can be better explained. However, this more complex model might not fit the

next dataset as well, or be ”over-fitting” of certain irregular features of the current

dataset. Certain metrics such as Bayesian Information Criteria and Akaike Infor-

mation Criteria are a function of the data likelihood that penalize model complex-

ity. These metrics might be of use in dimension selection for SEFA, SAKETINI and

NSEFALoc in additional to relying on hyperparameters.

6.2.3 Time-frequency analysis

All of the variations of MVAB rely on some estimate of the data covariance

matrix in calculating the weight matrix (inverse solution). Instead of averaging

the data across trials first, and then computing the data covariance matrix em-
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phasizing the stimulus-phase-locked evoked activity, the data covariance could

be computed on each single trial first, and then the data covariance matrices av-

eraged. This allows for signals which are not exactly time-locked to the stimulus

onset to affect the result. Additionally, the data may be filtered into specific fre-

quency bands. Robinson and Vrba (1999) first proposed this modification to the

beamformer to include a frequency-based weight matrix, which then can be used

to compare increases or decreases of power in a specific frequency band relative to

a control time window. This is the basis of SAM (synthetic aperture magnetome-

try) included in the software package for CTF MEG systems. Most analyses using

SAM report a few static images showing increases/decreases across the brain of

the few frequency bands (alpha, beta, and gamma).

It would be of more interest to see how a given location varies over time

across frequencies. Gaetz and Cheyne (2003) and others use a broadband data

covariance to compute the weight, apply it to broadband data (such as 1− 70Hz),

then in source space at spatial peaks of interest, compute a time-frequency spec-

trogram. However, this broadband weight might miss out on high-frequency

(low-amplitude) signal since it is biased towards low-frequency (high-amplitude)

signals. Dalal et al. (2007) proposed to compute a separate weight for each time-

frequency window of interest, which allows each weight to be tuned to that seg-

ment, allowing for reconstructions that are tighter in spatial, temporal and fre-

quency resolution with less cross-talk. These “active” time-frequency reconstruc-
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tions are compared relative to a frequency-specific control time-window.

Thus, in considering SAKETINI and NSEFALoc, if the background is station-

ary, but the source activations vary drastically over the post-stimulus period, it

might help to break up the post-stimulus data into partitions of relatively similar

activity. Specifically, the data could be decomposed into time-frequency windows

where inference of this model on each window would result in a separate likeli-

hood map. The temporal-frequency dependence of the localizations could then be

displayed using the likelihood map rather than source activity map, resulting in

different locations being active (above a threshold) at different times/frequencies.

Working out exactly how to learn the unknown mixing matrices, such as on con-

catenated single trials, needs to be determined.

6.2.4 Improved head modeling and forward field errors

In all results shown, we used a single-shell spherical conductor model

for generation of the forward field F . Certainly more sophisticated forward

fields could be computed using multisphere methods (such as in CTF software),

elliptical-shell models (Dassios and Kariotou, 2004) or BEM models (van’t Ent

et al., 2001), which could further improve performance for all methods. Dis-

tributed sources could be modeled explicitly using a forward field computed from

patch bases (Limpiti et al., 2006).

However, errors in coregistration of MEG or EEG data to the structural MRI
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can affect any computation of forward field. If one wishes to restrict the source

activity to one orientation based on cortical surface, errors in this segmentation

can lead to errors in orientation estimation. Localization of EEG data has larger

errors since tissue conductance values cause uncertainty in the forward field cal-

culation. With MVAB, the array mismatch (use of incorrect forward field) can be

partly reduced by adding noise to the data covariance diagonal (Tikhonov reg-

ularization), but with the tradeoff of reduced spatial resolution. The eigenspace

MVAB reduces this loss of spatial resolution.

Another advantage of the probabilistic framework of the proposed models

could be to include a hyperparameter over the forward field F that would en-

able the algorithm to make small changes to the computed F , using the data to

“learn” an improved estimate of the forward field. Since the forward field in the

simplest single-shell model is really only a function of the three fiducial points

plus sphere center, the full composite lead field (number of sensors by number of

voxels) could be allowed to vary slightly only as a function of these 4 transforma-

tion coordinates (rather than letting each column vary independently).

All of these tweaks of the inverse method to overcome incorrect forward

fields could be examined by purposely added noise to the forward field or shifting

the grid that the forward field is based on.



SECTION 6.2. FUTURE DIRECTIONS 184

6.2.5 Spatial smoothness and tomographic reconstruction

The scanning framework of solving for one voxel’s activity at a time can be

relaxed. Spatial smoothness or spatial priors from other modalities, such as struc-

tural or functional MRI, could be incorporated. Furthermore, one is not limited

to sn in a single voxel; the above formulation holds for any P arbitrarily chosen

dipole components, no matter which voxels they belong to, and for any value of

P . Of course, as P increases the inferred value of Φ becomes less accurate, and

one might choose to restrict it to a diagonal or block-diagonal form.

6.2.6 Combine MEG data with other modalities

Many debate the benefits or drawbacks of collecting MEG versus EEG data.

If possible, collecting both simultaneously would be optimal. Sources weakly

picked up by one modality can often be picked up better by the other (except deep

sources). One drawback to using simultaneous MEG/EEG is that extra electronic

and biological noise enters the MEG sensors from the EEG wires. However, the

methods developed in this dissertation are specifically designed to remove such

interference, thus should be tested in combined MEG/EEG data.

As already discussed in Chapter 5, MEG localizations can be used to seed

white-matter tractography using DTI data. Another possible direction is to use

diffusion images to help compute a voxel-by-voxel estimate of tissue conductivity,

to be used as an input to finite-element-modeling for EEG forward field (Tuch



SECTION 6.2. FUTURE DIRECTIONS 185

et al., 1999).

Finally, MEG and EEG data could be combined with fMRI data to hope-

fully improve the spatial certainty of MEG/EEG and the temporal shortcomings

of fMRI. Many methods for such combination have already been proposed (Liu

et al., 1998; Baillet and Garnero, 1997; Ahlfors and Simpson, 2004; Schulz et al.,

2004; Mattout et al., 2003; Babiloni et al., 2004; Sato et al., 2004; Auranen et al.,

2005; Im and Lee, 2006; Nangini et al., 2007) which mainly use fMRI as a spatial

prior into the MEG/EEG inverse solution. These ideas could easily be extended

to use of fMRI for altering the source power in SAKETINI and NSEFALoc (such

as a prior on s in SAKETINI and a prior on G in NSEFALoc).

As simultaneously collecting EEG data with fMRI becomes feasible with ap-

propriate ballistocardiogram artifact removal techniques, it is becoming more

popular to use EEG power time-series (from electrodes, not source estimates) to

convolve with the hemodynamic (impulse) response function to create a new re-

gressor to look for significant activations in the fMRI related to the EEG. Enough

evidence exists that there are some common underlying factors affecting both

MEG/EEG and fMRI (e.g. Logothetis et al. (2001)). Braitenberg and Schuz (1991)

show that there are roughly six excitatory synapses for every one inhibitory

synapse; thus the metabolic demand for all neural activity is mostly created by

signals that are also measureable by MEG/EEG. There seems to be a specific trend

that fMRI is more related to increases in gamma frequency and decreases in alpha
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frequency (Foucher et al., 2003; Laufs et al., 2003) and a model to account for this

(Kilner et al., 2005), although the relationship is not entirely clear-cut (Winterer

et al., 2006).

Ultimately, a more integrated graphical model that includes hidden nodes

representing different aspects of neural activity which would drive post-synaptic

potentials and metabolic demand in possibly different ways so that MEG/EEG

and fMRI measurements could be allowed to represent these different aspects.

Such an idea has been proposed (Babajani et al., 2005; Babajani and Soltanian-

Zadeh, 2006) but further work is still needed. Measuring intermediate biological

factors such as blood flow (via arterial spin labeling MRI) simultaneously could

also help in infering a large integrated model.

6.2.7 Networks and causal models

A large branch of systems-level neuroscience and brain imaging are focusing

on neural networks, based on the fact that activity in one brain region influences

other brain region’s activity. While the initial focus of fMRI studies was to find

“the area of the brain that does X”, more recent studies have focused on causal

influences of one region onto another (e.g. Friston et al. (2003)). Each neuron

connects with roughly one thousand other neurons; it is widely hypothesized

that it is the strength of connections across many brain regions that matters for

learning and memory and other higher cognitive functions, not simply activity in
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an isolated region.

The source reconstruction methods discussed in this dissertation have not in-

cluded any prior information of causal influences amongst brain regions, though

they certainly could. To start with, the temporal smoothness of evoked potentials

should be used simply to provide an auto-regressive form to the temporal statis-

tics of source estimates. Secondly, source activity at a distant region with known

important causal influences onto the region of interest should be accounted for in

the model to help learn the source activity there.

6.2.8 Relating scales of measurement

For now, invasive studies in animals (and in humans requiring surgery) are

still needed to help validate these noninvasive imaging measures of brain func-

tion and explain how they relate to local field potential and spike recordings. In-

teresting work is being pursued on this topic (e.g. Moran et al. (2007); Sotero

et al. (2007); Robinson et al. (2005)), though there still is a large discord between

the large-scale noninvasive measures of activity (on the order of several cubic

millimeters for both MEG and fMRI) and the individual neuron level/spike-rate

coding. Even if the inverse solution to MEG and EEG was easy and exact, we

still are missing out on the relationship to individual neurons and whether this

missing information matters for a given scientific question of interest. New hard-

ware advances for brand new ways to non-invasively measure brain activity are
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sure to come (both whole-head MEG and fMRI are not even twenty years old at

this point). Advances in modeling local/individual neural output to larger-scale

measures are strongly needed to reduce, and maybe one day eliminate, invasive

recordings.
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Appendix A

Appendix of Useful Matrix
Relationships

Tr(AB) = Tr(BA) (A.1)

∂Tr(AB)

∂A
= BT (A.2)

∂Tr(ATBC)

∂B
= ACT (A.3)

∂Tr(ABAT )

∂A
= 2AB (A.4)

ATBA = Tr(BAAT ) (A.5)

∂xT b

∂x
=
∂bTx

∂x
= b (A.6)

∂aTXb

∂X
= abT (A.7)

∂aTXT b

∂X
= baT (A.8)

∂aTXa

∂a
= (X +XT )a (A.9)

∂bTXTDXc

∂X
= DTXbcT +DXcbT (A.10)
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Matrix Inversion Lemma:

(A−1 + CD−1CH)−1 = A− AC(D + CHAC)−1CHA

(A−1 − BD−1C)−1 = A+ AB(D − CAB)−1CA (A.11)

If µ is the mean of y over all n, then:

N
∑

n=1

(yn − µ)(yn − µ)T =

N
∑

n=1

(yn − µ)yT
n (A.12)

For expectations over n-th order terms,

Ex(x
TAx) = x̄TAx̄+ Tr(ARxx) (A.13)
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