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Third-Order Møller-Plesset Perturbation Theory

Made Useful? Choice of Orbitals and Scaling

Greatly Improves Accuracy for Thermochemistry,

Kinetics and Intermolecular Interactions

Luke W. Bertels,† Joonho Lee,† and Martin Head-Gordon∗,†

†Department of Chemistry, University of California, Berkeley, California 94720, USA.

‡Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA.

E-mail: mhg@cchem.berkeley.edu

Abstract

We develop and test methods that include second and third-order perturbation

theory (MP3) using orbitals obtained from regularized orbital-optimized second-order

perturbation theory, κ-OOMP2, denoted as MP3:κ-OOMP2. Testing MP3:κ-OOMP2

shows RMS errors that are 1.7 to 5 times smaller than MP3 across 7 data sets. To

do still better, empirical training of the scaling factors for the second- and third-order

correlation energies and the regularization parameter on one of those data sets led to

an unregularized scaled (c2 = 1.0; c3 = 0.8) denoted as MP2.8:κ-OOMP2. MP2.8:κ-

OOMP2 yields significant additional improvement over MP3:κ-OOMP2 in 4 of 6 test

data sets on thermochemistry, kinetics, and noncovalent interactions. Remarkably,

these two methods outperform coupled cluster with singles and doubles in 5 of the 7

data sets considered, at greatly reduced cost (no O(N6) iterations).
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Single-reference second-order Møller-Plesset perturbation theory (MP2) is among the

most popular correlated wavefunction methods in electronic structure theory, in part due to

its economical O(N5) scaling, where N is the basis set size.

EMP2 = −1

4

∑
ijab

|〈ij||ab〉|2

∆ab
ij

(1)

Equation (1) gives the correlation energy for MP2, where i, j, . . . represent occupied molec-

ular orbitals, a, b, . . . represent virtual molecular orbitals, and ∆ab
ij = εa + εb − εi − εj is

the (non-negative) energy denominator. The resolution-of-identity (RI) technique applied to

MP2 has allowed for a much more widespread use due to the reduction of the prefactor in

the overall computational cost of the algorithm.1,2

Orbital-optimized MP2 (OOMP2) methods were developed to improve the performance

of MP2 for energies and other properties.3–5 For systems where the unrestricted Hartree-Fock

(UHF) reference exhibits spin-contamination (artifical spin-symmetry breaking), the use of

these reference orbitals can lead to catastrophic performance of MP2.6–9 OOMP2 can also

be thought of as a relatively inexpensive way to approximate Brückner orbitals.3 Orbital

optimization at the MP2 level often reduces the level of spin-contamination and improves

energetics.3,4,10

Despite the benefits of OOMP2 described above, there are several unsatisfying charac-

teristics of the method that limit its applicability. Orbital optimization at the MP2 level

can produce divergent energy contributions due to small energy denominators. This is often

observed when stretching bonds and leads to significant underestimation of harmonic vibra-

tional frequencies.11 OOMP2 also often fails to continuously transition from spin-restricted

(R) to spin-unrestricted (U) solutions even when the U solution is lower in energy.12 A con-

tinuous R to U transition requires a Coulson-Fischer point where the lowest eigenvalue of

the R to U stability Hessian becomes zero.13 Resolution of this issue is necessary to reach

the proper dissociation limit for bond-breaking curves.
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Our group has attempted to remedy these issues of OOMP2 through use of regularization

to prevent divergence of the energy due to small energy denominators. The first of these

approaches was to shift the energy denominator by a constant factor, δ, so that ∆ab
ij ←

∆ab
ij +δ.11 This simple form was able to partially resolve the two issues with OOMP2 described

above. The regularization parameter, δ, both prevents the energy expression from diverging

and damps the correlation energy contribution from MP2, leading the method to more closely

resemble the continuous R to U transition seen in the HF reference. Unfortunately, in the

case of scaled opposite spin OOMP2 (SOS-OOMP2), Razban et al.14 found the values of

δ that could restore Coulson-Fischer points were very large and consequently led to poor

performance on problems that are normally well-treated by MP2.

Recently, two of us15 developed two new classes of orbital energy dependent regularizers

for OOMP2, of which the most promising is denoted as κ-OOMP2. In κ-OOMP2, the matrix

elements associated with small denominators are damped such that:

EMP2(κ) = −1

4

∑
ijab

|〈ij||ab〉|2

∆ab
ij

(
1− e−κ(∆ab

ij )
)2

(2)

Unlike the case of δ-OOMP2, for κ-OOMP2 the unregularized energy expression is recovered

for large energy denominators, and in the limit of small energy denominators, the correlation

energy contributions are zero. Regularization parameters of κ ≤ 1.5E−1
h were found to restore

Coulson-Fischer points for hydrogen, ethane, ethene, and ethyne bond-breaking curves. κ

was trained on the W4-11 set to suggest a value for general application.16 The result, κ =

1.45E−1
h , proved robust to further testing on the RSE4317 and TA1318 sets, and defines κ-

OOMP2 as a replacement for OOMP2. Complex restricted (cR) and complex general (cG)

orbital extensions of κ-OOMP2 have also been used to interrogate singlet biradicaloids19

and the nature of symmetry breaking in fullerenes,20 respectively.

The success and ubiquity of MP2 and OOMP2 have led several research groups to develop

modified second-order methods aimed at improving energetics. Notable examples are spin-
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component-scaled MP2 (SCS-MP2)21–26 and orbital optimized SCS-MP2 (SCS-OOMP2)3,4

methods, which weight correlation contributions coming from same-spin and opposite-spin

pairs of electrons differently. These techniques have also been applied to the second-order

correlation contribution in several double-hybrid density functionals.27–31 A subset of these

methods, scaled-opposite-spin MP2 (SOS-MP2)22,24,26 and SOS-OOMP2,3 are notable in

that they can be implemented via an overallO(N4) computational cost. Another example are

the attenuated MP2 methods that partially cancel basis set superposition errors with errors

in MP2 itself to yield improved intermolecular interaction energies in finite basis sets.32–35

Density-fitting and Cholesky-decomposed variants of OOMP2 have also been developed to

improve the computational efficiency of the method.36

Inclusion of higher-order terms in the perturbative expansion provides another approach

to improve energetics from MP2.

EMP3 =
1

8

∑
ijabcd

(
tabij
)∗ 〈ab||cd〉tcdij

+
1

8

∑
ijklab

(
tabij
)∗ 〈kl||ij〉tabkl

−
∑
ijkabc

(
tabij
)∗ 〈kb||ic〉tackj

(3)

Equation (3) gives the third-order Møller-Plesset (MP3) contribution to the correlation en-

ergy in the spin-orbital basis. MP3 formally scales asO(N6) with basis set size, and describes

the leading interaction of first-order pair-correlations, tabij , with each other. However, despite

the higher compute cost, MP3 only modestly improves MP2 results (e.g. see data presented

later). In passing we note that it is possible to utilize separable density fitting techniques

such as tensor hypercontraction to achieve quartic scaling (O(N4)) MP3 (and also MP2)

energy evaluation.37

Grimme38 developed a spin-component scaled MP3 (SCS-MP3) method that improved

ground state energies over SCS-MP2 for reaction energies, atomization energies, ionization
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energies, and stretched geometries. This method applied an overall third-order correlation

energy scaling factor of 0.25 in addition to the scaling factors for same-spin and opposite-spin

components. For weak noncovalent interactions, application of MP3 has failed to substan-

tially improve binding energies as compared to MP2.25,38–43 Hobza and coworkers41–43 pro-

posed scaling the third-order correlation energy to interpolate between the MP2 and MP3,

leading to the development of MP2.5 and MP2.X, in order to improve binding energies for

noncovalent interactions. Following these successes, Bozkaya and coworkers10,44–47 developed

OOMP3 and OOMP2.5 and evaluated the performance of these methods on thermochem-

istry, kinetics, and noncovalent interactions. OOMP2.5 was shown to outperform coupled

cluster theory with single and double excitations (CCSD)48,49 on reaction energies and barrier

heights10 and perform comparably to coupled cluster with single, double, and perturbative

triple excitations [CCSD(T)]50 for noncovalent interactions.46 These are very promising re-

sults. Analytic gradients for OOMP3, OOMP2.5, and their density-fitting variants have also

been introduced.51,52

Following the recent success of regularized OOMP2 in treating inherent problems in

OOMP2, we decided to explore the use of κ-OOMP2 orbitals at the MP3 level. At the

same time, we wanted to see if κ regularization in MP3 could improve the overall energetics.

Beginning from κ-OOMP2 would allow this method to avoid energy divergences caused by

small energy denominators.15 In κ-OOMP2, damping of the two-electron integrals leads to

the following expression for the t-amplitudes:

tabij (κ) = −〈ab||ij〉
∆ab
ij

(
1− e−κ∆ab

ij

)
. (4)

Inserting Equation (4) into Equation (3) we arrive at a regularized third-order correlation

energy expression, EMP3(κ). Our first candidate ansatz involved calculating the κ-OOMP2

energy and applying a scaled single-shot EMP3(κ) correction.

Ec(κ, κ2, c3) = Eκ−OOMP2(κ) + c3EMP3:κ−OOMP2(κ2) (5)
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As a second, alternative form, we considered using κ-OOMP2 (with κ = 1.45E−1
h ) as a

method to generate molecular orbitals for use in correlated calculations containing second

and third order energies which could then be independently regularized and/or scaled:

Ec(κ, κ2, c2, c3) = c2EMP2:κ−OOMP2(κ2) + c3EMP3:κ−OOMP2(κ2) (6)

In this second case the non-Brillouin singles contribution,−
∑

ia f
2
ia/∆

a
i , is included at second-

order as κ-OOMP2 does not obey the Brillouin theorem. For simplicity (and ease of imple-

mentation), we do not include a non-Brillouin singles contribution at third-order.

We trained both energy functionals on the non-multireference (non-MR) subset of the

W4-11 thermochemistry data set.16 We excluded the MR points in the set from the training

data because the single reference methods we are investigating should not be able to describe

MR systems adequately. Both reference and training calculations were performed using the

aug-cc-pVTZ (aVTZ) basis set53–55 and the corresponding RI basis56,57 without the frozen

core approximation. Reference data were computed using CCSD(T).50 All calculations were

performed in a development version of Q-Chem.58

Figure 1 presents the root mean square deviations (RMSD) for scans of the κ2 and

c3 parameters in the first model, as given by Equation 5. Overall, we see that stronger

regularization at third-order (smaller κ2) serves to lower the error on the training set. For

κ2 = 1.00E−1
h , the optimal scaling parameter for the third-order regularized correlation

energy is 0.5 for a RMSD of 4.85 kcal mol−1. If instead one applies the same regularization

parameter (κ = 1.45E−1
h ) at second- and third-order, we find an optimal scaling parameter

for the third order correlation energy of c3 = 0.4 with a RMSD of 4.91 kcal mol−1. We note

that c3 = 0.0 corresponds to κ-OOMP2 with a RMSD of 7.58 kcal mol−1. Inclusion of scaled,

regularized third-order correlation energy contributions reduces the RMSD of κ-OOMP2 by

more than 2.5 kcal mol−1, which is useful but not dramatic.

Turning to the second form we considered, Figure 2 presents the RMSDs for scans of the
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Figure 1: Scans of the root mean square deviation on the non-MR subset of the W4-11 ther-
mochemistry dataset, in kcal mol−1, for the scaled, two regularization parameter correlation
energy functional given in Equation 5. We fix κ = 1.45E−1

h . All calculations use the aVTZ
basis; CCSD(T) is used for the reference values.

Figure 2: Scans of the root mean square deviation on the non-MR subset of the W4-11 ther-
mochemical dataset, in kcal mol−1, for the regularized, second- and third-order correlation
energy functional given in Equation 6. The optimal value of c2 was found to be 1.0 for all
κ2 values plotted. SCF references were generated via κ-OOMP2 orbital optimization. The
basis set used was aVTZ. Reference values are calculated at the CCSD(T)/aVTZ level of
theory.
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κ2 and c3 parameters in Equation 6 with c2 = 1.0 (the optimal value for all κ2 values plotted).

For this ansatz, we see that the error relative to CCSD(T)/aVTZ is driven down quite

dramatically by weakening the regularization (increasing κ). Indeed, perhaps surprisingly,

we find that computing energies with unregularized MP2 and scaled unregularized MP3

provides the lowest error. In this case, the optimal c3 parameter was found to be 0.8 and

yields a RMSD of only 1.59 kcal mol−1, which is close to chemical accuracy. We also observe

that increasing the regularization strength decreases the optimal fraction of regularized third-

order correlation energy. Impressed with the performance on this set, we chose this method,

which we denote as MP2.8:κ-OOMP2, as our candidate for further evaluation.

In order to assess the transferability of MP2.8:κ-OOMP2, we tested its performance on

a series of benchmarks sets meant to encompass a variety of main group bonded and non-

bonded interactions: the non-MR subset of the W4-11 set16 (the training set), the BH76RC

set,59–61 the RSE43 set,17,62 the HTBH38 set,60 the NHTBH38 set,61 the TA13 set,18 and the

A24 set.63 We compare the performance of MP2.8:κ-OOMP2 against an unscaled version of

the method (MP3:κ-OOMP2), CCSD,48,49 MP2.5,41 MP3, κ-OOMP2,15 OOMP2, and MP2.

Details of the computations (aVTZ basis, CCSDT(T) reference, no frozen core) are the same

as given previously.

Table 1 presents the the RMSDs, mean signed deviations (MSD), minimum deviations

(MIN), and maximum deviations (MAX), in kcal mol−1, for the non-MR subset of the W4-11

set (the training set). This set includes atomization energies (TAE140), bond dissociation

energies (BDE99), heavy atom transfer energies (HAT707), nucleophilic substitution reaction

energies (SN13), and isomerization energies (ISOMERIZATION20).16 We see that CCSD has

a RMSD of 4.94 kcal mol−1 and a MSD of 1.49 kcal mol−1. MP2, MP2.5 and MP3 on top

of UHF orbitals yields RMSDs of 11.99, 8.97, and 9.24 kcal mol−1, respectively. The use of

κ-OOMP2 optimized orbitals for the computation of the MP3 energy reduces the error over

the use of UHF orbitals by a remarkably large factor of 3. MP2.8/κ-OOMP2 yields a RMSD

of 1.59 kcal mol−1 and a MSD of -0.45 kcal mol−1, which is 6 times smaller than MP3. This
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is also an improvement on κ-OOMP2 by a factor of 4. Also remarkably, both third-order

methods computed using κ-OOMP2 optimized orbitals outperform CCSD on this data set.

Table 1: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1 for the non-MR subset of the W4-11 set. All calculations
use the aVTZ basis; CCSD(T) is used for the reference values.

Method RMSD MSD MIN MAX
CCSD 4.94 1.49 -8.60 20.34

MP2.8:κ-OOMP2 1.59 -0.45 -5.83 5.24
MP3:κ-OOMP2 3.22 0.33 -8.12 14.63

MP2.5 8.97 -2.85 -40.24 24.87
MP3 9.24 -0.80 -38.57 31.66

κ-OOMP2 7.58 -3.14 -38.94 13.56
OOMP2 10.82 -3.50 -48.81 17.87

MP2 11.99 -4.90 -51.14 27.28

To validate the performance for thermochemistry outside of the training set, we tested

MP2.8:κ-OOMP2 on the BH76RC59–61 and RSE4317,62 sets. The BH76RC set contains

reaction energies for 30 reactions involved in the HTBH38 and NHTBH38 sets.59–61 On this

set MP2.8:κ-OOMP2 outperforms all other methods surveyed with an RMSD of 0.84 kcal

mol−1 and a MSD of -0.14 kcal mol−1. MP3:κ-OOMP2 also performs very well. Of theO(N5)

methods, κ-OOMP2 provides the lowest RMSD while MP2 provides the lowest overall MSD.

The largest absolute error using the canonical MP methods is for the H + F2 −−→ HF + H

reaction energy. This can be traced back to spin-contamination at the UHF level in the

case of F2 with a 〈S2〉 of 0.293. Both κ-OOMP2 and MP2.8:κ-OOMP2 show significant

improvement on this case with errors of 1.425 kcal mol−1 and 0.536 kcal mol−1, respectively.

MP2.8:κ-OOMP2 improves upon κ-OOMP2 in all but two cases in this set.

Table 3 contains benchmark results for the RSE43 set. The RSE43 set contains reaction

energies for hydrogen abstraction from hydrocarbons by a methyl radical.17,62 For this set

we see MP2.8:κ-OOMP2, with an RMSD of 0.63 kcal mol−1 and a MSD of -0.54 kcal mol−1,

performs slightly worse than CCSD and MP3:κ-OOMP2. However the RMSD is still almost

4 times smaller than MP3. MP2.8:κ-OOMP2, MP3:κ-OOMP2, and OOMP2 all underes-

timate the reaction energies on average. For the O(N5) methods, κ-OOMP2 outperforms
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Table 2: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1, for the BH76RC set.

Method RMSD MSD MIN MAX
CCSD 1.905 -0.645 -7.175 1.977

MP2.8:κ-OOMP2 0.835 -0.143 -1.465 1.534
MP3:κ-OOMP2 1.574 -0.437 -6.213 1.228

MP2.5 4.625 -0.536 -21.407 9.904
MP3 4.511 -0.975 -21.604 4.232

κ-OOMP2 4.220 -0.276 -9.763 11.856
OOMP2 5.524 0.836 -10.010 20.496

MP2 6.341 -0.098 -21.211 15.577

OOMP2 and MP2 both in terms of RMSD and MSD. Several species in the set exhibit spin

contamination, leading to failures of the canonical MP methods.

Table 3: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1, for the RSE43 set.

Method RMSD MSD MIN MAX
CCSD 0.446 0.316 -0.815 0.973

MP2.8:κ-OOMP2 0.634 -0.538 -1.726 0.050
MP3:κ-OOMP2 0.521 -0.416 -1.550 -0.002

MP2.5 3.234 1.907 0.061 12.899
MP3 2.433 1.563 0.109 9.361

κ-OOMP2 0.476 0.119 -0.964 1.020
OOMP2 0.922 -0.607 -2.261 0.478

MP2 4.099 2.252 -0.028 16.445

To evaluate the performance of MP2.8/κ-OOMP2 on kinetics, we tested it on the HTBH3860

and NHTBH3861 data sets. The HTBH38 set contains forward and reverse barrier heights

for 19 hydrogen transfer reactions.60 Results for this set are presented in Table 4. On this

set MP2.8:κ-OOMP2 (and MP3:κ-OOMP2) outperform the other methods surveyed with a

RMSD of 0.71 kcal mol−1 (and 0.73 kcal mol−1), corresponding to chemical accuracy. The

RMSDs are around 3 times smaller than that for CCSD. MP2, MP2.5, and MP3 overes-

timate the barrier heights in nearly all cases in the test set, with worst performances for

the HF + H −−→ H2 + F, HF + H −−→ H2 + F, and OH + NH3 −−→ H2O + NH2 forward

barriers, respectively. MP2.8:κ-OOMP2 improves significantly on these cases with barrier

10



height errors of 0.24 kcal mol−1 and -0.51 kcal mol−1, respectively.

Table 4: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1, for the HTBH38 set.

Method RMSD MSD MIN MAX
CCSD 2.206 1.877 -0.782 4.146

MP2.8:κ-OOMP2 0.711 -0.120 -1.424 1.301
MP3:κ-OOMP2 0.730 0.346 -1.411 1.755

MP2.5 3.686 3.246 -0.273 7.323
MP3 3.883 3.506 0.695 7.214

κ-OOMP2 2.918 1.658 -1.434 9.558
OOMP2 3.479 -0.952 -7.152 8.566

MP2 4.044 2.986 -1.487 12.142

Assessment data for the NHTBH3861 set are presented in Table 5. The NHTBH38 set

contains forward and reverse barrier heights for 19 non-hydrogen transfer reactions. On

this set, MP2.8:κ-OOMP2 outperforms all other methods surveyed (RMSD of 0.76 kcal

mol−1), with MP3:κ-OOMP2 performing second best. The reduction in RMSD relative to

MP3 is more than a factor of 8 for MP2.8:κ-OOMP2. Remarkably, both methods improve

substantially upon CCSD, with the improvement being more than a factor of 3 for MP2.8:κ-

OOMP2 MP2, MP2.5, and MP3 all exhibit large errors in the barrier heights for the reactions

H + N2O −−→ OH + N2, H + F2 −−→ HF + F, and CH3 + ClF −−→ CH3F + Cl. For

H + N2O −−→ OH + N2 and CH3 + ClF −−→ CH3F + Cl, both forward and reverse barriers

are overestimated due to spin-contamination of the UHF reference for the transition state

structures. The UHF reference 〈S2〉 values of 1.011 and 1.026, respectively, are corrected to

mean-field 〈S2〉 values of 0.765 and 0.775, respectively, via the κ-OOMP2 orbital optimization

procedure. For H + F2 −−→ HF + F, the reverse barriers are overestimated by more than 20

kcal mol−1 with MP2, MP2.5, and MP3 while errors in the forward barriers are of similar

magnitude to other systems in the data set. Significant spin-contamination is present in the

UHF reference for both F2 and the transition state structure, leading to a cancellation of

errors in the forward barrier that is not seen in the reverse barrier. Orbital optimization with

κ-OOMP2 helps to mitigate this spin-contamination, reducing the mean-field 〈S2〉 values of
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0.293 and 1.212, respectively, to 0.000 and 0.767, respectively. For all three of these reactions

MP2.8:κ-OOMP2 gives errors that are reduced by a factor of 5-10 relative to MP2, MP2.5,

and MP3.

Table 5: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1, for the NHTBH38 set.

Method RMSD MSD MIN MAX
CCSD 2.534 2.067 0.132 7.646

MP2.8:κ-OOMP2 0.758 0.268 -0.949 1.579
MP3:κ-OOMP2 1.668 1.076 -0.718 7.175

MP2.5 6.590 4.763 -0.328 24.455
MP3 6.651 5.158 1.099 23.283

κ-OOMP2 2.766 1.553 -7.610 5.222
OOMP2 3.901 -1.650 -18.495 2.315

MP2 7.035 4.368 -2.676 25.627

To round out the test suite we assessed the performance of MP2.8:κ-OOMP2 on two

noncovalent interaction sets: the TA13 and A24 sets. The TA13 set contains 13 nonbonded

interaction energies for radical closed-shell complexes.18 We apply a counterpoise correction

to these interaction energies to mitigate basis set superposition error (BSSE). Assessment

data for the TA13 set is presented in Table 6. On this test set we see MP2.8:κ-OOMP2

performs almost as well as CCSD. MP2.8:κ-OOMP2 overbinds each interaction in the set,

especially the H2O-Al interaction which is overbound by 2.05 kcal mol−1. Remarkably, κ-

OOMP2 outperforms all methods surveyed on this set, with an RMSD of 0.35 kcal mol−1.

Table 7 presents the counterpoise-corrected results for the A24 set. The A24 set contains

noncovalent interaction energies for 24 closed-shell small molecule complexes.63 MP2.8:κ-

OOMP2 outperforms all other methods with a RMSD of 0.08 kcal mol−1 and a MSD of 0.01

kcal mol−1. For MP2, MP2.5, and MP3, artifactual spin-contamination at the UHF level

causes underbinding for the ethene-ethene and ethene-ethyne dimers. For the ethene dimer,

the MP2, MP2.5, and MP3 errors are in excess of 2 kcal mol−1 while MP2.8:κ-OOMP2

reduces this error to 0.04 kcal mol−1.

Considering all the data presented, let us summarize the main conclusions obtained from
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Table 6: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1, for the TA13 set.

Method RMSD MSD MIN MAX
CCSD 0.722 0.539 -0.259 1.470

MP2.8:κ-OOMP2 0.823 -0.459 -2.054 -0.011
MP3:κ-OOMP2 0.808 -0.442 -2.463 0.086

MP2.5 1.559 0.276 -3.888 3.708
MP3 1.435 0.391 -2.612 3.997

κ-OOMP2 0.350 -0.019 -0.589 0.650
OOMP2 0.789 -0.149 -1.938 1.370

MP2 1.791 0.160 -5.164 3.419

Table 7: Root mean square deviation, mean signed deviation, minimum deviation, and
maximum deviation, in kcal mol−1, for the A24 set.

Method RMSD MSD MIN MAX
CCSD 0.247 0.226 0.093 0.429

MP2.8:κ-OOMP2 0.075 0.007 -0.169 0.233
MP3:κ-OOMP2 0.106 0.043 -0.113 0.373

MP2.5 0.492 0.132 -0.113 2.303
MP3 0.488 0.187 -0.010 2.203

κ-OOMP2 0.184 -0.045 -0.631 0.199
OOMP2 0.193 -0.131 -0.475 0.063

MP2 0.515 0.078 -0.441 2.403
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this work.

1. At the MP2 level the choice of orbitals matters considerably, as is well known. In our

work, for all 7 data sets considered, orbital optimized MP2 (OO-MP2) yields lower

RMSD than MP2 (using unrestricted orbitals when necessary). Regularization via

κ = 1.45 has formal benefits in restoring Coulson-Fisher points. It also has practical

benefits: κ-OOMP2 yields lower RMSD than OO-MP2 for all 7 data sets tested.

2. Use of κ-OOMP2 orbitals improves MP3 results to a surprising extent. MP3:κ-OOMP2

has lower RMSD than MP3 by factors ranging from 1.7 to more than 5 across the 7

datasets reported here. MP3:κ-OOMP2 is thus a far more robust method than MP3

itself, due to the reduced spin-contamination in κ-OOMP2 orbitals relative to HF

orbitals.

3. Developing a semi-empirical variant based on scaling the MP2 and MP3 contributions

yielded c2 = 1.0 and c3 = 0.8 based on the non-MR part of the W4-11 dataset (no

regularization is preferred). In transferability tests, this MP2.8:κ-OOMP2 method

improves over MP3:κ-OOMP2 in 4 of our 6 test sets, with the other two being very

similar.

4. Remarkably, the results obtained with MP3:κ-OOMP2 and MP2.8:κ-OOMP2 produce

lower RMSD than CCSD itself in 5 of the 7 datasets (the remaining two show no large

failures). This indicates a level of performance that is beyond the physical content

of MP3 theory, and involves some rather systematic cancellation of the effects due to

connected triples.

5. These improved MP3 methods are single reference of course, and the datasets consid-

ered here are suitable for single reference methods. Much poorer performance must be

expected for systems where strong correlations are in play (perhaps with the exception

of biradicaloids19)
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The improved performance granted by the use of κ-OOMP2 optimized orbitals suggests

future developments in electronic structure theory. It will be interesting to assess results

across additional data sets, and explore the use of larger basis sets. We intend to explore

scaled fourth-order perturbation approaches (MP4) and coupled cluster methods with κ-

OOMP2 reference orbitals. The latter would be especially interesting in the context of

nonvariational failures of CCSD(T). In a different direction, perhaps MP3 should be consid-

ered as an independent descriptor of electron correlation in double hybrid density functional

theory, where MP2 is at present most widely used.27–31 With the advances in integral com-

pression techniques such as tensor hypercontraction, both MP2 and MP3 energy evaluations

scale quartically with system size.37 Incorporating this into the development of new double

hybrid density functionals will be a promising future direction.
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