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ABSTRACT OF THE DISSERTATION

Adventures in model-building beyond the Standard Model and

esoterica in six dimensions

by

David C. Stone

Doctor of Philosophy in Physics

University of California, San Diego, 2014

Professor Benjamı́n Grinstein, Chair

This dissertation is most easily understood as two distinct periods of research.

The first three chapters are dedicated to phenomenological interests in physics.

An anomalous measurement of the top quark forward-backward asymmetry in

both detectors at the Tevatron collider is explained by particle content from

beyond the Standard Model. The extra field content is assumed to have originated

from a grand unified group SU(5), and so only specific content may be added.

Methods for spontaneously breaking the R-symmetry of supersymmetric theories,

of phenomenological interest for any realistic supersymmetric model, are studied in

the context of two-loop Coleman-Weinberg potentials. For a superpotential with

a certain structure, which must include two different couplings, a robust method

of spontaneously breaking the R-symmetry is established. The phenomenological

studies conclude with an isospin analysis of B decays to kaons and pions. When the

parameters of the analysis are fit to data, it is seen that an enhancement of matrix

xiv



elements in certain representations of isospin emerge. This is highly reminiscent

of the infamous and unexplained enhancements seen in the K → ππ system. We

conjecture that this enhancement may be a universal feature of the flavor group,

isospin in this case, rather than of just the K → ππ system.

The final two chapters approach the problem of counting degrees of freedom

in quantum field theories. We examine the form of the Weyl anomaly in six

dimensions with the Weyl consistency conditions. These consistency conditions

impose constraints that lead to a candidate for the a-theorem in six dimensions.

This candidate has all the properties that the equivalent theorems in two and four

dimensions did, and, in fact, we show that in an even number of dimensions the form

of the Euler density, the generalized Einstein tensor, and the Weyl transformations

guarantee such a candidate exists. We go on to show that, unlike in two and four

dimensions, the a-theorem is six dimensions has the opposite sign of its counterparts

in lower dimensions, at least in perturbation theory. This would imply, if the result

could be extended without the use of perturbation theory, that the number of

degrees of freedom accessible at a certain energy scale would increase as that energy

scale is decreased. This is contrary to the intuition from two and four dimensions.

We comment on what renormalization group flows, if any, we might find to exhibit

this behavior.

xv



Chapter 1

Introduction

I attempt to motivate the lines of inquiry I have pursued in my research.

Section 1.2 establishes the Standard Model and a few of its most famous extensions.

This section is mostly phenomenologically motivated. Section 1.3 is more theoretical

in nature and discusses the question “What is a quantum field theory?” and

attempts to elucidate an answer to the question by appealing to the notion of

degrees of freedom.

1.1 Preface

Whilst studying the quantization of the electromagnetic field in a quantum

mechanics course during my undergraduate studies I was told of the “jewel” of

physics– quantum electrodynamics, or QED (as made famous by the inimitable

Richard P. Feynman). In QED one can compute the magnetic moment of the

electron in perturbation theory in ~, the fundamental constant that is the harbinger

of quantum mechanical effects. The prediction from QED, I was told, matches the

experimental measurement of this quantity to one part in 100 trillion! It would seem

that the only limit of the success of QED was the computational complexity that is

endowed in the higher order corrections in perturbation theory, and experimental

1
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limitations. With this view of quantum field theory in mind, I came to graduate

school looking to become a scholar of quantum field theory– the master theory of

physical phenomena at the fundamental scale.

Unfortunately, one quickly finds out that the spectacular success of QED

does not carry over to many of the other incarnations of quantum field theory in na-

ture. QED is special, one finds, because it has a gauge group that is Abelian whose

interactions with matter decrease in importance as the number of simultaneous in-

teractions is increased. In nature, where QED is the descriptor of electromagnetism,

there are many other manifestations of quantum field theories, as we shall see.

These include the weak interaction of subatomic particles, the strong interaction

that describes subatomic nuclear physics, and numerous descriptions of condensed

matter systems in terms of quantum field theories (including the quantum Hall

effect, topological insulators, anti-/ferromagnets, et cetera).

My graduate studies progressed from work closer in nature to the perturba-

tive quantum field theory calculations of yore to much broader considerations of

the general features of quantum field theories. Because of the academic liberties

afforded to me by my advisor, it is difficult to establish a unifying assertion that

classifies my research, other than the aforementioned direction. I shall strive in this

introduction to provide basic details that can put the work I completed in context.

1.2 Quantum field theory as the theory of fundamental particles

Being a student of particle physics, we focus on quantum field theories

as the mathematical structures that describe subatomic physics. Quantum field

theory was necessitated, from the theoretical side, by the union of special relativity,

produced in 1905 by Einstein, and quantum mechanics, which rapidly developed in

its second incarnation in the late 1920s. On the experimental side, the decay of

massive particles into many other massive particles did not seem to be computable

within the scope of quantum mechanics.
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The interpretation of particles as the excitations, or quanta, of fields freed

physicists from the unitary interactions in quantum mechanics that preserved

particle number while still maintaining unitarity (which is to say, probability

conservation) of the field theory. On the other hand, it permitted one to take

the Lagrangian and Hamiltonian operators from quantum mechanics and recycle

them in the field interpretation, where they become Lagrangian and Hamiltonian

densities. This permitted a straightforward way to compute observable quantities

in quantum field theory that led to many of its early successes.

So in the early years (up until the mid 1950s), it was thought that the

Lagrangian descriptions of field theory were the defining aspects of quantum field

theory, and a definition that would forever encompass the capabilities of describing

subatomic phenomena within a mathematical framework. Although this changed

when the elements of the strong force began to emerge theoretically in the late

1950s, and when S-matrix theory rose as a competitor to this “orthodox” view of

quantum field theory, we will will focus on this orthodox notion of the defining

features of a quantum field theory, as it characterized the early aspects of my

research.

1.2.1 The Standard Model

The constituents of subatomic matter (and force carriers) are well-described

by a quantum field theory with a particular specification of its Lagrangian. This

form of this Lagrangian is constrained by the symmetries in Nature that we believe

to exist. This is a very powerful statement that makes the construction of a

quantum field theory of subatomic interactions tractable. This Lagrangian is the

main content of the Standard Model of particle physics. Let us briefly establish its

main features and symmetries.

First, there are the spacetime symmetries. We require the physics of our

subatomic particles to be the same under Lorentz boosts, rotations, and translations,
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which together form the Poincaré group. The Standard Model Lagrangian is

Poincaré invariant. This classifies the content of the Standard Model into irreducible

representations of the Poincaré group, labeled by their momenta and spin.

The second important symmetry is that of the gauge “symmetries”1. These

symmetries classify the content of the Standard Model by their “charge.” In the

Standard Model, there are three types of charges for the particle content. These

are the electric charge of electromagnetism, the weak charge, and the color charge.

Electric charge is the most familiar and is a scalar quantity– simply a number.

In fact, it is manifest by the fact that charged particles, like the electron, couple

to the photon, and the strength of their coupling is given by their electric charge.

That the electric charge is a scalar quantity, and is also a conserved quantity, is a

manifestation of the fact that the Lagrangian of the Standard Model is invariant

under a local U(1) symmetry if one assumes that the photon transforms under the

adjoint representation of this local symmetry group2. Historically this transforma-

tion of the photon under this symmetry was called a “gauge” transformation and

so we can state this symmetry feature of the Standard Model with the language

“the Standard Model has a U(1) gauge symmetry that represents the effects of

electromagnetism with the photon, transforming in the adjoint of this gauge group,

being the force carrier associated with this symmetry.” A consequence of this

statement is that the photon is a spin 1 boson, as is familiar from electrodynamics.

The other two types of (implicitly) observed charges, that of the weak and

color charge, are a bit more complicated. To use the language of the previous

paragraph, the weak charge comes from a gauge symmetry with gauge group SU(2),

with its charge communicators/force carriers transforming in the adjoint of SU(2).

This means there are 3 of these force carriers, the W+, W−, and Z0 bosons, where

the subscripts indicate their electric charge. That these force carriers are also

1Really, gauge redundancies, as emphasized to me so often by John McGreevy.
2For U(1), an Abelian (Lie) group, the adjoint representation is not distinct from the funda-

mental (or any other) representation, but this distinction will be useful for later examples.
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charged under the electromagnetic force will be discussed below. These bosons also

carry weak charge– the same charge that they communicate to other particles. The

color charge is described by a gauge symmetry with gauge group SU(3), implying

that there are 8 force carriers, called gluons. The gluons carry no charge other than

the color charge itself. What is curious about these two types of charges is that

their gauge group is non-Abelian, unlike the U(1) gauge group of electromagnetism.

Among other things, this implies that the force carriers carry the same charge that

they communicate, as mentioned.

So far we have stated that the Standard Model has 1 photon, 3 W/Z

bosons, and 8 gluons. These are only the force communicators- what matter do

they communicate to? The actual matter content comes from direct or indirect

evidence in experiments. From the discovery of Thompson in 1897 of the most

well-known elementary particle, the electron, to the discovery of the top quark

at Fermilab in 1995 and the Higgs boson at CERN in 2012, all observed matter

falls into a remarkably simple organization under the aforementioned symmetries

(or redundancies) of the Standard Model. Until 2012, all matter was observed to

have spin 1
2
. These fermions were classified by whether they carried color charge–

in which case they are deemed “quarks”– or not– in which case they are deemed

“leptons.” Both quarks and leptons fit neatly into three sets of what would be

identical replicas of each other if their masses and, in the case of the quarks,

their interactions with the charged W bosons were identical. For example, the

first “generation” of the leptons has the charged electron with both of its left-

and right-handed states (i.e. for a massless electron, its helicity states) plus an

electrically-neutral neutrino, called the electron neutrino. There are two more

copies of this generation which are, in order of increasing mass of the charged

lepton, the charged muon plus neutral muon neutrino and the charged tau plus

neutral tau neutrino. In the quark sector, the lightest generation includes what are

called the up quark and down quark, in both of their left- and right-handed states.

Both these quarks are charged, the up quark with electric charge +2
3

and the down
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quark with −1
3
. The two heavier copies of this generation include the paired charm

and strange quarks and the paired top and bottom quarks, respectively.

Now, there is an intensely curious aspect of this whole method of classifying

the content of the Standard Model, which are the masses of said content. Our best

experimental limits show that the photon and gluon are massless, in accordance with

what we expect from this theoretical framework3. However, the W± and Z bosons

are massive, as are all the quarks and leptons. However, invariance under the SU(2)

gauge symmetry mentioned above, whose exact nature I have not specified, would

prohibit all such masses. What permits this description of the gauge symmetries of

the Standard Model to remain acceptable is the existence of another matter particle,

the Higgs scalar boson. The Higgs boson is a curious particle in many ways; it is

the only scalar in the Standard Model and, as a consequence, it is the only particle

in the Standard Model that does not have a symmetry that would lead us to believe

it was naturally massless. I will not discuss how the Higgs provides a mechanism

to allow gauge theory descriptions of the Standard Model to remain viable while

allowing masses for some of the gauge bosons, which would näıvely destroy the

gauge symmetry, because my research did not focus on Higgs phenomenology. I

will briefly state that the Higgs allows a further clarification of the structure of

the Standard Model in the following sense: The reader has perhaps noticed that I

have only mentioned the electric and color charges of the matter content and not

the weak charges. This is because the Higgs boson plays a major role in how the

weak force is realized in experiments. Without further digression, I will say that

the actual gauge symmetries of the Standard Model have a SU(2) group under

which only the left-handed particles are charged and a U(1) group that we call

”hypercharge” that is distinct from the U(1) of electromagnetism. The distinction

occurs because of the Higgs mechanism, which can be found in any quantum field

3In order for gauge symmetries, along with unitarity of the theory at hand, to be preserved,
the force carriers must be massless. The caveat to this statement lies in the Higgs mechanism, to
be described now.
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theory textbook (e.g. see [2]). The Higgs mechanism provides masses to the SU(2)

W and Z gauge bosons and also the quarks and leptons. In doing so, the SU(2)

gauge symmetry is hidden by the masses of the gauge bosons and the combination

of the SU(2) weak and U(1) hypercharge groups are “broken” to a remaining U(1)

gauge group that is our beloved electromagnetism gauge theory.

To summarize, the content of the Standard Model is stated in table 1.1.

The gauge group of the Standard Model can be written as the direct product

SU(3)c × SU(2)L × U(1)Y for the color, weak, and hypercharge gauge groups,

respectively.

1.2.2 Beyond the Standard Model

The description above is simple in hindsight, but rather remarkable by

way of its record of experimental successes. Where it is possible to compute a

quantity within the framework of the Standard Model, the predictions are found to

match experiment in all but a few measurements. These measurements, anomalous

from the Standard Model, drive an entire industry in particle physics known as

“model-building” and serve as an impetus to consider that the Standard Model,

while almost entirely satisfactory to our present understanding of subatomic physics,

is an incomplete description of Nature as a whole.

The most famous exploration beyond the Standard Model came in the form

of the unification of the Standard Model gauge groups into a single gauge group,

SU(5). In 1974 it was conjectured [3] that, since SU(3)× SU(2)× U(1) ⊂ SU(5),

the Standard Model could come from a specific pattern of Higgs mechanisms that

broke the SU(5) gauge invariance but preserved the specific combination of the

Standard Model. The matter content of the Standard Model fit perfectly, in my

opinion, into representations of SU(5) that are both chiral and anomaly-free. The
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Table 1.1: A list of the particle content of the Standard Model, as organized by
their quantum numbers that show up in the Standard Model Lagrangian (i.e.
before spontaneous symmetry breaking via the Higgs mechanism). The � indicates
that the field transforms in the fundamental representation of a given group (for
SU(N) this is sometimes written as N , for the dimensionality of the fundamental
representational of SU(N)), Ad. in the adjoint, and 1 that the field is a singlet
(does not transform). In the U(1)Y hypercharge column, the number indicates its
charge. The i index runs from i = 1, 2, 3 and represents the three generations of
the quark and lepton matter fields.

Field Name Type
Transformation under gauge group

SU(3)c SU(2)L U(1)Y

Ga
µ Gluon Gauge boson Ad. 1 0

W a
µ W/Z boson Gauge boson 1 Ad. 0

Bµ Hypercharge
boson

Gauge boson 1 1 0

(
uL
dL

)i
= QL Left-handed

quark
Spin 1

2
matter � � 1

6

uiR Right-handed
up-type quark

Spin 1
2

matter � 1 2
3

diR Right-handed
down-type quark

Spin 1
2

matter � 1 −1
3(

νL
eL

)i
= QL Left-handed

lepton fields
Spin 1

2
matter � � 1

6

eiR Right-handed
charged lepton

Spin 1
2

matter 1 1 −1

H Higgs boson Spin 0 matter 1 � 1
2
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charge-conjugated right-handed down-type quarks4 have transformation properties

under (SU(3)c, SU(2)L)U(1)Y being (�, 1)1/3 or, equivalently, (3̄, 1)1/3; the left-

handed lepton doublet has transformation properties (1,�)1/2 or, equivalently,

(1, 2)1/2. These two fit into the anti-fundamental representation of SU(5), the 5̄.

We also have that the charge-conjugated right-handed up-type quarks transform

as (�, 1, )2/3 or (3̄, 1)2/3; the charge-conjugated right-handed charged leptons as

(1, 1)1; the left-handed quark doublet as (�,�)1/6 or (3, 2)1/6. These three fit into

the 10-dimensional anti-symmetric representation of SU(5), called the 10.

This model was not conjectured to explain any known anomalous experimen-

tal measurements, but suggested out of the pure aesthetic beauty of the model.5

Although predictions of the simplest version of this model failed experimentally

(most importantly with its prediction of the proton lifetime), it inspired Chapter 2,

which makes an attempt to explain an anomalous measurement at the Tevatron

collider in the context of a grand unified model– in fact, in a SU(5) model with

additional matter content beyond that proposed in the original model.

The other famous theoretical expedition beyond the Standard Model relevant

to this thesis is its supersymmetric extension. Unlike the SU(5) example, where

the gauge and matter content of the Standard Model were subsumed into a larger,

cohesive gauge symmetry, supersymmetry subsumes the Standard Model in a larger

spacetime symmetry with fermionic dimensions added to the usual space and time.

By Z2-grading the Poincaré algebra6 that classifies particles by their spacetime

properties, one arrives at its most “natural” extension of the spacetime symmetries

that does not give trivial or non-analytic scattering processes [4, 5], the super-

Poincaré algebra. The effect of this gradation is to double the particle spectrum

4In the following classification of particles under SU(5) representations, we write all particles
or anti-particles so that they transform under Lorentz transformations as left-handed particles.
A charge conjugated right-handed fermion (i.e. a right-handed anti-fermion) transforms under
Lorentz transformations as a left-handed fermion. This simplifies further analysis.

5The paper cited above [3], titled “Unity of All Elementary Particle Forces,” is quite hubristic
in its tone.

6We only consider the N = 1 supersymmetric algebra, and do not consider extended super-
symmetries.
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of the Standard Model by pairing each particle with a new particle that has the

opposite spin statistics as the Standard Model one. The mantra for supersymmetry

is that there is a boson-fermion symmetry, such that every boson has a fermion

partner and vice versa (much like every left-handed particle has a right-handed

partner because of the Poincaré symmetry).

The consequences of imposing supersymmetry are much larger in scope than

simply doubling the particle spectrum. In particular, only certain interactions are

allowed such that the potential of the supersymmetric theory, aptly named the

superpotential, must be holomorphic in the superfields that pair the bosonic and

fermionic fields of the theory (roughly, they can only involve fermions of a single

chirality). This constraint on the interactions dictates what models can be built that

use supersymmetry as the basis for beyond the Standard Model phenomenology7.

One of the interesting consequences of supersymmetry is a specific portion of

the algebra. While the Poincaré group is the semi-direct product R3,1 oSO(3, 1) in

3+1-dimensional Minkowski space, the supersymmetry algebra gives an extra U(1)R

symmetry called the R-symmetry, which, in a sense, counts the supersymmetric

“charge” of a particle– particles in the Standard Model have charge R = 0, while

their supersymmetric partners have non-zero R charge. One particular feature of

this R-symmetry is that is prevents a certain supersymmetric particle from gaining

a mass. Since no such particles are observed experimentally, something must break

this R-symmetry. Doing so, within the constraints of having a supersymmetric

theory at high energies, is not as trivial as it sounds; chapter 3 concerns a particular

method to solve this problem.

7We will not discuss supersymmetry breaking, which must be true if supersymmetry is a
symmetry of Nature, as supersymmetry is clearly not seen experimentally at the energy scales
that we have thus far explored.
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1.3 Quantum field theory as a generic mathematical structure of the

universe

The previous section devoted itself to the description of the content of an

established quantum field theory– the Standard Model. In this section we turn to

more formal discussions on the structure of quantum field theory. Although the

description in the previous section seems straightforward, many aspects of quantum

field theory are still not understood.

1.3.1 What defines a quantum field theory?

I think that the best way to approach the notion of what defines a quantum

field theory is to quote the preface in one of the chapters of Anthony Zee’s Quantum

Field Theory in a Nutshell [6]:

. . . I like to tell the students that by the mid-1970s field theorists were
breaking the shackles of Feynman diagrams. A bit melodramatic, yes,
but by that time Feynman diagrams, because of their spectacular
successes in quantum electrodynamics, were dominating the thinking
of many field theorists, perhaps to excess. As a student I was even told
that Feynman diagrams define quantum field theory, that quantum
fields were merely “slices of venison” used to derive the Feynman
rules, and should be discarded once the rules were obtained. The
prevailing view was that it barely made sense to write down ϕ(x).

Zee mentions in a footnote that this “slices of venison” comment originates from

Gell-Mann, who “used to speak about how pheasant meat is cooked in France

between two slices of venison which are then discarded. He forcefully advocated a

program to extract and study the algebraic structure of quantum field theories which

are then discarded.” This is much the way in which I was taught quantum field

theory from standard particle physics textbooks– in a more subtle but equivalent

way, to compute Green’s functions and use those in the computation of any quantum

mechanical process.
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However, the reader will notice that the field content of a quantum field

theory is very much an intuitive and important notion in how we distinguish

different quantum field theories– for example, in table 1.1 we establish the Standard

Model not by some predictions of specific scattering cross sections or magnetic

dipole moments, but by the elementary quantum fields that specify its “content.”

There is some issue to be taken with this classification. One is taught that, in the

leap from the harmonic oscillator in quantum mechanics to a free quantum field

theory, we proceed from a single harmonic oscillator and its associated degrees of

freedom to an infinite collection of these harmonic oscillators, with a harmonic

oscillator and its associated degrees of freedom at every point in space in the field

description.

But there clearly is some value in classifying a quantum field theory as we did

for the Standard Model– by counting (real) scalar fields as a single degree of freedom,

massless Weyl fermions as having two degrees of freedom (one for each spin state),

massless gauge bosons having two degrees of freedom (one for each polarization),

and so on– one can also include the dimensionality of the representation of some

gauge or global symmetry that these fields transform under in the counting of the

degrees of freedom. This is not captured by the infinite collection of harmonic

oscillators mentioned in the usual introduction to quantum field theory.

There are quantities that seem to exist in every quantum field theory that

do this näıve counting of degrees of freedom and provide a great deal of further

information about the field theory in question. This quantity, often called the

central charge of the theory, is best understood in conformal field theories, to which

we now turn for the sake of motivating my research in this area.

1.3.2 A brief digression into conformal field theories

To make these statements more poignant, let us make a brief digression to

discuss one of the more salient features of a special type of quantum field theory–
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conformal field theories in two dimensions. Many exact results can be found in

this context because of the high degree of symmetry latent in the theory and the

low-dimensionality of spacetime. It was also because of my forays into this topic [7]

that I came to be interested in the latter topics of my thesis work.

The conformal symmetry is a spacetime symmetry that scales the metric

tensor by an overall factor:

g′µν(x
′) = Λ(x)gµν(x), (1.1)

where Λ(x) is real-valued. It can be shown that this includes, for finite conformal

transformations on the spacetime coordinates, dilatations,

x′µ = λxµ (1.2)

which rescales all lengths by a common scalar factor λ, and special conformal

transformations,

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
(1.3)

which amount to an inversion of the coordinate xµ, followed by a translation by

the vector bµ, followed by another inversion of the resulting vector. Quantum fields

transform under conformal transformations in a way that depends on their spin and

scaling dimension. For example, in the simplest case of scalar fields, they transform

under conformal transformations that send xµ → x′µ as

φ′(x′µ) =

∣∣∣∣∂x′µ∂xν

∣∣∣∣−∆/d

φ(xν) (1.4)

where d is the dimension of spacetime and ∆ is called the scaling dimension of the

quantum field φ(x).

A quantum field theory that is invariant under local conformal transfor-

mations on all the content of the theory is called a conformal field theory. When
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that theory lives in two dimensions, a remarkable number of results can be com-

puted exactly (rather than in perturbation theory). This is primarily because the

conformal group in two dimensions consists of the set of all analytic maps on the

complex plane, which is an infinite-dimensional symmetry8. More precisely, in

two dimensions it is convenient to switch to “left-” and “right-moving” complex

coordinates, z = x0 + ix1 and z̄ = x0 − ix1, respectively. The z and z̄ coordinates

are also called holomorphic and anti-holomorphic and are taken to be independent

of each other for many calculations in field theory because the two variables often

decouple in calculations9.

Using these anti-/holomorphic coordinates we can elucidate the main points

I would like to make about two-dimensional conformal field theories. For example,

the transformation of a scalar in eq. (1.4) may be written in the z, z̄ coordinates in

two dimensions as

φ′(z′, z̄′) =

(
dz′

dz

)−h(
dz̄′

dz̄

)−h̄
φ(z, z̄) (1.5)

where h and h̄ are equal to the scaling dimension ∆/2 up to a piece from any planar

spin we might associate with more general fields. Now, the most useful piece of a

two-dimensional conformal field theory is undoubtedly the stress-energy tensor of

the theory. Given a Lagrangian for the theory, one may compute the stress-energy

tensor using textbook methods10. One can show that the stress energy tensor in

a conformal field theory is traceless11. More important to this discussion is the

8The group multiplication law would be defined by the composition of these analytic functions.
9At the end of the day, of course, we must impose that z̄ = z∗.

10The easiest of which is to introduce a background metric gµν(x) into the action of the theory,
construct the diffeomorphism-invariant measure, and functionally differentiate with respect to the
metric to obtain the stress-energy tensor:

Tµν(x) =
δ

δgµν(x)

∫
d2x
√
−gL[gµν(x)] (1.6)

ensuring a symmetric stress-energy tensor. Of course, afterwards we normal order this operator
to ensure that it has all the nice properties, like a vanishing one-point vacuum expectation value.

11This fact has a very interesting story behind it; for some of the most recent advances, see the
thesis of my collaborator, Andy Stergiou [8].
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effect of taking the operator product expansion (OPE) of the anti-/holomorphic

components of the stress energy tensor. If one works in the z, z̄ basis and defines

the holomorphic part of the stress energy tensor

T (z) = −2πTzz (1.7)

and equivalently for the anti-holomorphic part, then one can show for a general

field ϕ(z, z̄) the OPE with T (z) is of the form

T (z)ϕ(z′, z̄′) ∼ h

(z − z′)2
ϕ(z, z̄′) +

1

z − z′
∂

∂z′
φ(z′, z̄′) (1.8)

where the ∼ indicates that we are only extracting the singular short-distance

behavior of the product of the two operators; there exist other terms that are finite

as z → z′. The second term in the OPE is the usual transformation of any field

under spacetime symmetry (essentially a translation from z′ to z); the remarkable

property is the first piece, where the coefficient of (z − z′)−2 gives the scaling

dimension of the field in question. For example, in a (Euclidean) field theory of a

massless scalar with action

S =
g

2

∫
d2x∂µφ∂

µφ = g

∫
dzdz̄∂zφ∂z̄φ (1.9)

one can compute12

T (z)∂z′φ(z′) ∼ ∂z′φ(z′)

(z − z′)2
+
∂2
z′φ(z′)

(z − z′)
(1.10)

so that evidently the derivative on the free scalar field has scaling dimension h = 1,

as we would expect in two dimensions where the scalar field has mass-dimension

zero (and so the derivative picks up all the mass dimensions). For a theory of free

12The scalar field φ is a peculiar field with mass dimension 0 in two dimensions, so we study
∂zφ instead, which has the nice property of transforming as a “primary field.” We also drop
anti-holomorphic dependency here, as focusing on the holomorphic fields is sufficient.
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fermions with a two component spinor Ψ(z, z̄) = (ψ(z), ψ̄(z̄)) and

S = g

∫
dzdz̄

(
ψ̄∂z̄ψ̄ + ψ∂zψ

)
(1.11)

one finds from the OPE T (z)ψ(z′) that ψ(z) has scaling dimension h = 1
2
, as we

would expect for a free fermion in two dimensions.

Now here is the punchline: if we take the OPE of T (z) with itself in the

above theories we find an anomalous term that we would not expect from the

general form

T (z)T (z′) ∼ c/2

(z − z′)4
+

2T (z′)

(z − z′)2
+
∂z′T (z′)

(z − z′)
. (1.12)

The OPE of the holomorphic part of the stress energy tensor with itself should

yield the scaling dimension of the stress energy tensor– this is the coefficient 2 of

(z−z′)−2 in the second term. We do not expect the term that goes as (z−z′)−4. Its

coefficient, the central charge c, is an incredibly important and universal quantity

in two-dimensional conformal field theories. It is the same quantity c that shows

up in the quantum Virasoro algebra that classifies the spectrum of a conformal

field theory (which is why it is called the “central charge”). For the free massless

scalar, we get c = 1; for the free massless fermion we get c = 1
2
; for N free,

non-interacting massless scalars with an O(N) symmetry in eq. (1.10) we would get

c = N . Apparently c is somehow measuring the degrees of freedom in the näıve way

that I did for the Standard Model. This is true in a much broader sense, and has

been shown to capture this notion of “degrees of freedom” in many other systems13.

In fact, c can be shown to be related to a slew of other important quantities [9].

It shows up [10]

• in the Casimir energy for a theory defined on a cylinder with periodic

boundary conditions,

• in the coordinate transformation law for the stress energy tensor,

13However, c is not necessarily integer, though it is positive in unitary theories.
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• in the free energy per unit length for a system with finite size,

• as the coefficient of the trace anomaly for a theory on a curved background,

• as the value of Zamolodchikov’s c̃ function at critical points of a theory.

The last two points are, perhaps, the two most important points. They have led to

a slew of work in four dimensions (and, in the case of my research, six dimensions)

to see if something like c exists in higher dimensions. We discuss this work in the

next section.

1.3.3 Degrees of freedom in quantum field theories

In the mid 1980s Zamolodchikov showed [11] that there existed a function of

the couplings (gi) in a quantum field theory, c̃(g), which decreased monotonically14

from a UV fixed point to an IR fixed point. At each fixed point the field theory

becomes critical, becomes conformally invariant, and has vanishing beta functions.

The beta functions βi describe how the couplings flow as we change the energy

scale with which we probe the interactions of the theory; this is to say,

βi(g) ≡ µ
dgi

dµ
, (1.13)

where µ, the renormalization scale, is effectively the energy at which we probe our

theory. At these fixed points, which occur at some value of the couplings gi = g∗i

with βi(g∗) = 0, Zamolodchikov showed that this same function was stationary,

∂c̃/∂gi|g∗ = 0, and equal to the central charge of the conformal field theory at that

fixed point, c̃(g∗) = c(g∗). This result was called the c-theorem.

The interpretation of this result, from our discussion of the central charge in

the previous section, is that the number of degrees of freedom we see in a quantum

field theory decreases as we probe it at lower energies. This fits quite nicely with the

effective field theory notion of “integrating out” heavy (i.e. high energy) degrees of

14Actually, he showed an even stronger condition, that the flow of c̃(g) is a gradient flow.
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freedom, which we lose information about as we look at the low energy description

of a theory.

The immediate question was whether such a powerful theorem existed in

four dimensions (where we humans live), and, if so, what quantity would be the

analog of c̃(g). The answer lies in the penultimate point of the list in section 1.3.2

above. The trace anomaly, where the expectation value of the trace of the stress

energy tensor does not vanish in a curved background, exists in any even number of

dimensions with a well-defined structure [12, 13]. In particular, in two dimensions

in conformal field theories, the trace anomaly has the form, in the presence of a

background metric gµν(x),

〈T µµ(x)〉gµν(x) =
c

24π
R(x) (1.14)

where c is the same central charge from before and R(x) is the Ricci scalar curvature.

It turns out that in two dimensions the Ricci scalar is also, when integrated, a

constant, and hence a topological quantity– it is the Euler density of two dimensions,

and its integral gives the Euler character of the space in question. This clued

Cardy in to conjecture [14] that in four dimensions the quantity that “counts

degrees of freedom” is also related to the topology of the spacetime and can be

computed by extracting the coefficient of the Euler density in four-dimensional

curved backgrounds.

The coefficient of the Euler density in four dimensions, called a, was subse-

quently shown to have all the nice properties of the central charge when the theory

was conformal. A quantity ã, analogous to c̃, was shown to decrease monotonically

in perturbation theory [15], and a weak version of the c-theorem in four dimensions,

called the a-theorem, was proven rather recently [16]15. No proof of the strongest

15In the weak version of the a-theorem it is shown that the change in a between the fixed points
is greater than zero: ∆a = aUV −aIR > 0. This is a necessary consequence of the strongest version
of the a-theorem, where a has a monotonically decreasing flow, but the converse is obviously not
true.
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version of the a-theorem has been given in four dimensions.

And so we arrive at the pursuit of this line of work in six dimensions, first

given impetus by a paper that pursued the weak version of this a-theorem in six

dimensions [17]. The main motivation was to ascertain whether or not patterns

emerge in studying the a-theorem in various dimensions, and determine if a general

statement about degrees of freedom in quantum field theories could be made.

Chapters 5 and 6 tell the rest of this story, up to the current state of the field.

1.4 An Outline of this Dissertation

The topics of this dissertation do not lend themselves to smooth (perhaps

in the mathematical sense) narrative. Because of the gracious liberties my advisor,

Ben, allowed me, the topics that I pursued during my graduate career often came

about via serendipitous interactions with other graduate students and postdocs.

While this type of academic freedom is delightful, it also indicates a lack of academic

discipline that I only developed in the later years of my graduate career. This final

year and a half has narrowed my focus to a more consistent topic, which I will

reiterate below.

And so, to recapitulate, my studies proceeded thusly:

In Chapter 2 we pursued an explanation of a measurement at the Tevatron

collider at Fermilab that was anomalous from Standard Model predictions. We did

so in the context of a grand unified theory approach, adding certain field content

to produce a shift in prediction for the measured value while maintaining desirable

theoretical features like unification of gauge couplings and the origin of additional

particles from SU(5) multiplets.

In Chapter 3 we engage in more model building, this time with the goal

of producing spontaneous R-symmetry breaking by introducing a superpotential

with fields having only R-charge R = 0 or R = 2 (a common restriction when

supersymmetry is broken in a certain manner) and two distinct couplings. The
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couplings are constructed to have different beta functions such that they can

compete to produce a non-trivial two-loop Coleman-Weinberg effective potential

that gives a vacuum expecation value to a field with R = 2 away from the origin.

This spontaneously breaks the R-symmetry and avoids excessive fine-tuning.

In Chapter 4 we finally turn away from model building and examine the

decays of B mesons to light pseudoscalar particles; namely, pions and kaons. What

started off as a project to classify these decays in terms of group invariants of the

approximate SU(3) flavor symmetry of the u, d, s quarks took a surprising turn

when we found that, under the (more exact) SU(2) isospin symmetry of the u and

d, a significant enhancement of matrix elements in certain representations of SU(2)

emerges from analysis of the data. We recognized that this enhancement was very

reminiscent of the enhancements seen in the decay of kaons to two pions, analysed

over 40 years ago and still largely unexplained by perturbative QCD computations.

We postulate that perhaps this enhancement is not specific to kaon system, but

perhaps to any system whose decays can be accurately classified by isospin. This

suggests that the strong dynamics of QCD know a lot more about flavor symmetries

than previously thought.

In Chapter 5 we diverge from the line of research in previous projects and

study six-dimensional quantum field theories with an eye of producing a candidate

for the a-thereom in six dimensions. To do so we use the Weyl consistency conditions

to derive integrability conditions on the trace anomaly in six dimensions. We do

indeed find an integrability condition that presents itself in the exact manner as

is done in two and four dimensions and identify a candidate for a quantity that

decreases monotonically along the renormalization group flow. The monotonicity of

this flow hinges on the positivity of a tensor in the space of couplings that can be

thought of as a “metric” in the space of renormalization group flows. Proving the

positivity of this metric (or showing the contrary!) would establish the strongest

version of the a-theorem, akin to two-dimensional results. However, we are no

closer in finding traction on solving this problem in general then for the equivalent
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case in four dimensions. We note, however, that there is a beautiful regularity in

the production of a candidate for the a-theorem in any even number of dimensions

that relates the variation of the 2n-dimensional Euler density to the generalization

of the Einstein tensor in 2n dimensions.

In Chapter 6 we build off the tedious work done in Chapter 5 and actually

compute the aforementioned metric on the space of couplings. Surprisingly (or

perhaps not, in hindsight– though we do not have the benefit of hindsight yet) we

find that this metric is negative definite in perturbation theory, so that the quantity

ã mentioned in section 1.3.3 increases away from the (perturbative) UV fixed point

that we have at our disposal. This implies that, contrary to the intuition developed

in the latter parts of the introduction, the number of degrees of freedom can increase

as we probe our theory at lower and lower energies, at least somewhere along the

renormalization group flow, and at least in six dimensions. We also compute the

beta functions and anomalous dimensions for the theory with multiple couplings

and interaction Sint =
∫
d6x 1

3!
λijkφ

iφjφk, which have not been computed in the

literature. We conclude with some speculation about the nature of renormalization

group flows in quantum field theories in six dimensions, long a topic of little

revelation, and apparently just as much so now.



Chapter 2

Early curiosities in model

building: A grand unified model

to explain the tt

forward-backward asymmetry

We consider a model that includes light colored scalars from the 45 and

50 representations of SU(5) in order to explain the CDF- and DO-reported tt̄

forward-backward asymmetry, Att̄FB. These light scalars are, labeled by their charges

under the Standard Model gauge groups, the (6, 1)4/3 and (6̄, 3)1/3 from the 50

and the (8, 2)1/2 from the 45. When the Yukawa coupling of the 50 is reasonably

chosen and that of the 45 kept negligible at the scale of MZ , the model yields

phenomenologically viable results in agreement with the total Att̄FB reported by

CDF at the 0.5σ level and with Att̄FB(Mtt̄ ≥ 450 GeV) at the 2σ level.

22
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2.1 Introduction

The Standard Model (SM) has been a very successful model when confronted

with experimental observations. However, there are motivations to study New

Physics (NP) that supersede or extend the SM. The reasons are two-fold. On the

one hand, there are anomalies reported from various experiments that cannot be

explained by the SM. If these anomalies are verified, they necessary imply NP. On

the other hand, the study of NP has been fueled by theoretical curiosities. One of

the often-studied scenarios is the possibility of the unification of fundamental forces.

In this paper, we will explore a NP model that could explain reported anomalies

while at the same time allowing for the unification of fundamental forces.

From the theoretical point of view, the SM suggests the three gauge forces

of SU(3)C ×SU(2)L×U(1)Y unify at at high scale (∼ 1015 GeV). This observation

leads to the formulation of a grand unified theory (GUT) in which all three gauge

forces originate from just one fundamental gauge group. The simplest such model is

the minimal SU(5) model of Georgi and Glashow [3]. However, this minimal model

predicts an incorrect fermion mass ratio. To make the model phenomenologically

viable, scalar fields transforming in the 45-dimensional representation of SU(5) are

introduced [18]. This raises the possibility that there could also be more scalar

fields transforming in some other representations of SU(5). If some components of

these scalar fields are light, they could be relevant for low energy physics.

On experimental side, the CDF and DO collaboration have recently reported

a measurement of the tt̄ forward-backward asymmetry (Att̄FB) [19, 20, 21] which

deviates from the SM prediction [22] at more than the 2σ level. Moreover, CDF

also reports that the asymmetry grows with the invariant mass of the tt̄ system. In

particular, the CDF measurement of Att̄FB for Mtt̄ ≥ 450 GeV [20] is more than 3σ

away from the SM predictions [22]. These discrepancies invite NP explanations.

There are many models proposed in the literature to explain the Att̄FB anomaly.

Most of them involve the introduction of a new particle near the electroweak scale,
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see refs. [23, 24, 25, 26, 27, 28, 29, 30, 31] for a partial list of references.

In this work we focus our attention on models involving new colored scalar

fields. This class of models is interesting in our opinion since the scalar fields could

arise from GUT scalar multiplets. The model with an extra scalar field in various

representations has been previously studied in ref. [23]. However, to generate a large

Att̄FB consistent with CDF and DO measurements, the scalar Yukawa couplings

are generally taken to be large. Such a large Yukawa coupling would become

non-perturbative at a scale not far above the weak scale. This difficulty can be

overcome by having multiple light scalars contribute to the Att̄FB. As an added

benefit, multiple light scalar fields can conspire to give gauge coupling unification.

This idea has been previously explored by Dorsner et. al. [24, 26]. However, the

scalar field studied by Dorsner et. al. can couple quarks to leptons and mediate

proton decay via a dimension-9 operator. Bounds on proton decay lead to a lower

bound on the mass of their scalar of ∼ 1010 GeV, far too high to be of relevance

to tt̄ phenomenology. Thus we seek different scalar representations which could

unify gauge couplings, explain the Att̄FB and not lead to proton decay. Previous

papers have had some success with this approach; in particular, a model with

multiple light colored scalars from a SO(10) GUT has had some success in these

regards [32]. However, those results introduced scalars with masses at both the

electroweak scale and at an intermediate scale. In our model, it is not necessary to

introduce any scales other than the electroweak and GUT scale; we consider this a

distinct advantage.

One might object that adding light scalars leads to a hierarchy problem.

In fact, even in the minimal SU(5) model the mass of the Higgs doublet has

to be fine tuned to be at the electroweak scale. We will assume here that the

hierarchy problem can be solved in a similar fashion, and that a similar mechanism

is responsible for masses of the new scalar fields at the electroweak scale.

The structure of this paper is as follows: In section 2.2 we discuss the effects

these colored scalars have on gauge coupling unification. In section 2.3 we discuss
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the effects these particles have on general tt̄ phenomenology, including the total

cross-section and Att̄FB. Finally, in section 2.4 we draw general conclusions of the

merits of this model, its weaknesses, and look towards the LHC phenomenology of

the model.

2.2 Gauge Coupling Unification

Upon closer inspection, the three gauge couplings of the SM do not quite

unify. However, if one allows for more fields at low energy, the unification of gauge

coupling could be achieved. To have a consistent GUT, these light particles must be

part of some incomplete representation of the GUT gauge group. For definiteness,

we will consider GUT model based on the SU(5) gauge group. We will first give a

brief review of the SU(5) GUT model.

In the minimal SU(5) model, each family of the SM fermion contents are

embedded in the 5 and the 10 representation of SU(5) as follows

χR =



dR1

dR2

dR3

eL

−νL


, ΨL =



0 uR3 −uR2 −uL1 −dL1

−uR3 0 uR1 −uL2 −dL2

uR2 −uR1 0 −uL3 −dL3

uL1 uL2 uL3 0 eR

dL1 dL2 dL3 −eR 0


, (2.1)

where we use the convention that the 5 of SU(5) decomposes to (3, 1)−1/3 ⊕

(1, 2)1/2 under the SM gauge group. In the minimal setup, there are two scalar

representations, the 5 and the 24, denoted by H5 and H24 respectively. The scalars

in the 24 spontaneously break SU(5) → SU(3)C × SU(2)L × U(1)Y while the 5

contains a Higgs doublet responsible for electroweak symmetry breaking.1 However,

1Note that to accomodate neutriono masses, the matter content of the theory must be extended
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such a minimal setup predicts the light fermion mass ratios to be me/mµ ≈ md/ms

which is in contradiction with experimental measurement. The solution to this

fermion mass ratio problem is to introduce another scalar multiplet, the 45 [18].

With this extra multiplet, the correct fermion mass ratio can be achieved.

We take the introduction of scalars in the 45, denoted by H45, as evidence

that there could be addition scalars transforming in some representation of SU(5),

denoted by Φ. Since we want some light components of Φ to contribute to Att̄FB, Φ

must have a Yukawa coupling to the product of ΨL and ΨL. Thus Φ could either

be in the 45 or the 50 representation.2

2.2.1 Possible Light Scalar Representations

In this subsection we will explore possible light components of Φ that could

unify the SM gauge couplings. Recall that the decomposition of the 45 and 50

under the SM gauge group are

45 = (8, 2)1/2 ⊕ (6̄, 1)−1/3 ⊕ (3, 3)−1/3 ⊕ (3̄, 2)−7/6 ⊕ (3̄, 1)4/3 ⊕ (3, 1)−1/3 ⊕ (1, 2)1/2,

50 = (8, 2)1/2 ⊕ (6̄, 3)−1/3 ⊕ (6, 1)4/3 ⊕ (3̄, 2)−7/6 ⊕ (3, 1)−1/3 ⊕ (1, 1)2.

(2.2)

To avoid problems with light scalars mediating proton decay, we consider only

the light scalars that couple to quarks but not leptons. For the 45, the qualified

components are the (8, 2)1/2 and (6̄, 1)−1/3, while for the 50 the qualified components

are the (8, 2)1/2, (6̄, 3)−1/3 and (6, 1)4/3. Now we are ready to address the issue of

gauge coupling unification in the presence of these light scalar fields.

to include an SU(5) singlet, i.e. the right-handed neutrinos.
2We ignore the possibility that Φ is in the 5 representation.
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2.2.2 Gauge Coupling Evolution

The evolution of gauge couplings is governed by the β-functions. At 1-loop

level the running of the couplings in the presence of additional scalar particles is

given by

α−1
i (t) = α−1

i (MZ) +
bi
2π
t+
∑
ti

Θ(t− ti)
δbi
2π

(t− ti), (2.3)

where t = ln(µ/MZ), Θ is the Heaviside function, ti is the scale that new scalars

start to contribute and δbi is the contribution due to these new scalars. The

coefficients of the β functions from the SM fields are (with 3 generations of fermion

and SU(5) normalization for U(1)Y )

(b3, b2, b1) =

(
7,

19

6
,−41

10

)
, (2.4)

while the contributions from additional scalar fields are

(δb3, δb2, δb1)(8,2)1/2
=

(
−2,−4

3
,−4

5

)
,

(δb3, δb2, δb1)(6̄,1)−1/3
=

(
−5

6
, 0,− 2

15

)
,

(δb3, δb2, δb1)(6̄,3)−1/3
=

(
−5

2
,−4,−2

5

)
,

(δb3, δb2, δb1)(6,1)4/3
=

(
−5

6
, 0,−32

15

)
.

(2.5)

We found that in the case where Φ is in the 45, the SM with additional light

(8, 2)1/2 and (6̄, 1)−1/3 scalar fields do not lead to gauge coupling unification without

having an additional particle at an intermediate scale.3 However, this is not the

case for Φ in the 50. The SM fields with an additional light (8, 2)1/2, (6̄, 3)−1/3 and

(6, 1)4/3 lead to gauge coupling unification at the scale ∼ 1017 GeV when the mass

of these extra scalar fields are taken to be around 500 GeV, see FIG. 2.1. Note that

3With an addition of (3, 3)−1/3 at low scale, one could achieve gauge coupling unifications.
However, the (3, 3)−1/3 could mediate proton decay unless Φ is constrained to have Yukawa
coupling with ΨL but not χR. We will not pursue this possibility in this paper.
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(b) Model with Φ in the 50

Figure 2.1: Gauge couplings running. αi = g2
i /4π

this is actually an improvement over typical minimal supersymmetric SM (MSSM)

unification scales of ∼ 2× 1016 GeV [33, 34]. Thus we will ignore the case where Φ

is in the 45 and focus only on the case where Φ is in the 50.

Note that actually all we need to achieve gauge coupling unification is to

have (8, 2)1/2, (6̄, 3)−1/3 and (6, 1)4/3 at a low scale. However, they all don’t have to

come from the same multiplet. For example, it is equally valid to have the (8, 2)1/2

in the same multiplet as the H45 while the (6̄, 3)−1/3 and (6, 1)4/3 are part of Φ

which is in the 50 representation. Since we are interested in having these light

scalar mediating positive Att̄FB, and it is well known in the literature that (8, 2)1/2

leads to negative Att̄FB [23], we will focus only in the case where (8, 2)1/2 is part

of the H45 while (6̄, 3)−1/3 and (6, 1)4/3 are part of the Φ. Then we can take the

Yukawa coupling of H45 to be negligible with impunity. After all, such a coupling

must be small in order to effect only light fermion mass ratios and not the heavier

fermion masses.

Finally we note that the mass of the (6̄, 3)−1/3 and (6, 1)4/3 can be arranged

to be close to the weak scale while the other components remain at GUT scale, see

Appendix A for more detail.



29

2.2.3 Yukawa Couplings of Light Scalars

To have a consistent GUT model, the Yukawa couplings of light scalars at

low scale cannot be arbitrary. In particular, they must remain perturbative and

unify at the GUT scale. Put another way, the Yukawa couplings at a low scale are

determined from the GUT scale Yukawa coupling by the renormalization group

(RG) running. In this subsection we compute the Yukawa couplings of these light

scalars at a low scale via RG running down from GUT scale. The Yukawa coupling

at the GUT scale of the 50 (Φ) and two ΨLs is

LΦ =
Y ab
G

2
ΨaABΨbCDΦAB,CD, (2.6)

where ΦAB,CD = ΦCD,AB = −ΦBA,CD = −ΦAB,DC . Here A,B denote SU(5)

fundamental indices while a, b are flavor indices. We denote the light components

of Φ by φ1 = (6̄, 3)−1/3, φ2 = (6, 1)4/3 and φ3 = (8, 2)1/2. Projecting the Lagrangian

onto the basis of light fields yields

LΦ =
Y ab

6̄

2
qTLaαCqLbβφ

αβ
1 +

Y ab
6

2
uR

i
aCuR

j
bφ2ij + h.c., (2.7)

where C = iγ0γ2 is the charge conjugation matrix, i, j are SU(3)C indices and

α, β are SU(2)L indices. Here the qL are the left-handed SU(2)L quark doublets,

qL =

 ui

di

, where the ui (di) are the ith generation of the up-type (down-type)

quarks. Similarly, the uR are the right-handed SU(2)L singlets.

In general, the Yukawa coupling can be any 3 × 3 symmetric matrices in

flavor space. However, to avoid problems with flavor changing neutral currents in
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Table 2.1: Running of SU(5) Yukawa couplings at GUT scale (YG) to Mz scale.

YG 0.05 0.1 0.5 1 1.25 1.5

αy6 0.0049 0.0181 0.1173 0.1433 0.1474 0.1497

αy6̄
0.0119 0.0392 0.1455 0.1590 0.1608 0.1618

the light quark sector, we take the Yukawa matrix at GUT scale to be

Y ab
6 = Y6


0 0 1

0 0 0

1 0 0

 and Y ab
6̄ = Y6̄


0 0 1

0 0 0

1 0 0

 (2.8)

This structure is preserved by renormalization. We computed the one-loop running

of the Yukawa couplings, assuming that only the top Yukawa coupling, Yt, and Φ

Yukawa coupling, Yi’s, are sizable. The relevant β-functions are

(2π)
dαyt
dt

=

(
9

2
αyt + αy6 +

3

2
αy6̄
−
(

8α3 +
9

4
α2 +

17

20
α1

))
αyt ,

(2π)
dαy6

dt
=

(
4αy6 + 2αyt −

(
8α3 +

8

5
α1

))
αy6 ,

(2π)
dαy6̄

dt
=

(
5αy6̄

+ αyt −
(

8α3 +
9

2
α2 +

1

10
α1

))
αy6̄

,

(2.9)

where we take αyt =
Y 2
t

4π
, αy6 =

Y 2
6

4π
and αy6̄

=
Y 2

6̄

4π
.

Typical values of the new Yukawas at MZ are computed for various pertur-

bative GUT Yukawas in Table 2.1. They indicate that reasonable Yukawas at MZ

can yield both a large tt̄ Att̄FB, as we will see in section 2.3.



31

2.3 tt̄ Phenomenology at the Tevatron

2.3.1 General Considerations of Att̄FB

The forward-backward asymmetry is defined to be

Att̄FB =
σtt̄F − σtt̄B
σtt̄tot

, (2.10)

where forward and backward are defined with respect to the direction of the proton.

In the presence of NP, it is convenient to characterize the asymmetry in terms of

the SM and NP contributions. We follow [30] to define Att̄FB as

ANP+SM
FB =

σNPF − σNPB
(σNP+SM)LO

+ ASMFB

(
σSM

σSM + σNP

)
. (2.11)

Note that the first term comes from the leading effect of NP while the second term is

the dilution of ASMFB due to NP. The observed Att̄FB reported by the CDF collaboration

is ACDFFB = 0.201±0.065stat±0.018sys = 0.201±0.067 [21], where we have combined

the uncertainties in quadrature. DO reports a value of ADOFB = 0.196± 0.065 [19].

The asymmetry as predicted by SM is estimated to be 0.073 [22] which is about

2σ away from either observed value. However, CDF observed that the asymmetry

increased with energy, with ACDFFB = 0.475 ± 0.114 for Mtt̄ ≥ 450 GeV [20]. The

corresponding SM prediction is 0.111 [22], a 3.5σ deviation. We take this discrepancy

as a hint for NP.

It is worth mentioning that any NP models that wish to explain the Att̄FB must

not violate the measured tt̄ production cross-section, σtt̄. The latest measurement

reported by the CDF is σtt̄ = 8.5± 0.6stat ± 0.7sys = 8.5± 0.9 pb [35]. This is to be

compared with the SM prediction of σSM = 6.63 pb [22]. For further reference, we

compile the CDF measurements as well as the SM prediction [22] in Table 2.2.



32

Table 2.2: Measurements and SM predictions of tt̄ observables at the Tevatron.

Observable Measured Value SM Prediction [22]

Att̄FB
0.196± 0.065 [19]

0.201± 0.065stat ± 0.018sys [21]
0.073

Att̄FB(Mtt̄ ≤ 450 GeV) −0.116± 0.153 [20] 0.052

Att̄FB(Mtt̄ ≥ 450 GeV) 0.475± 0.114 [20] 0.111

σtt̄ 8.5± 0.6stat ± 0.7sys pb [35] 6.63

2.3.2 Differential Cross-section for tt̄ Production

To study tt̄ phenomenology, it is convenient to expand the SU(2) indices in

the above Lagrangian, Eq. (2.7), and keep terms relevant for tree-level tt̄ production

cross-section:

LΦ =
Y ut

6̄ + Y tu
6̄

2
(uTCPLtφ

1
1 +

1√
2
dTCPLtφ

2
1) +

Y ut
6 + Y tu

6

2
ūCPLt̄

Tφ2 + h.c.,

(2.12)

where in the above expression SU(3)C indices have been suppressed. We take

the SU(2) two-index symmetric tensor to be φ1 =

 φ1
1 φ2

1/
√

2

φ2
1/
√

2 φ3
1

. Note

that we allow for the possibility that the Yukawa coupling matrices can become

non-symmetric due to radiative corrections. At the Tevatron, tt̄ are dominantly

produced from the u quarks or the d quarks, while other quarks or gluon initial

states are PDF suppressed. The differential cross-section for tt̄ production initiated

from the u quarks is

dσ
(NP )

(6̄,3)

dt̂
(uū→ tt̄) =

1

16πŝ2

1

4

1

9

(
−

8g2
s(4παy6̄

)

s(û−m2
φ1

)

(
(û−m2

t )
2 + ŝm2

t

)
+4(4παy6̄

)2 3

2

(û−m2
t )

2

(û−m2
φ1

)2

)
, (2.13)



33

dσ
(NP )
(6,1)

dt̂
(uū→ tt̄) =

1

16πŝ2

1

4

1

9

(
−8g2

s(4παy6)

s(û−m2
φ2

)

(
(û−m2

t )
2 + ŝm2

t

)
+4(4παy6)2 3

2

(û−m2
t )

2

(û−m2
φ2

)2

)
, (2.14)

where we have defined αy6̄
=
(
Y ut

6̄
+Y tu

6̄

2

)2

/4π, and αy6 is also defined analogously.

Note that we have included interference with the SM in our NP cross-section.

Similarly, the differential cross-section initiated from the d quarks is

dσ
(NP )

(6̄,3)

dt̂
(dd̄→ tt̄) =

1

16πŝ2

1

4

1

9

(
−

4g2
s(4παy6̄
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s(û−m2
φ1

)

(
(û−m2

t )
2 + ŝm2

t

)
+(4παy6̄

)2 3

2

(û−m2
t )

2

(û−m2
φ1

)2

)
. (2.15)

2.3.3 Results from the Colored Scalar Model

The above differential cross-sections must be convoluted with parton distri-

bution functions (PDFs) of the proton and anti-proton to give Att̄FB comparable

with accelerator measurements. We compute the total cross-sections and asym-

metries using the NLO MSTW 2008 PDFs [36]. We find that for a suitable set of

parameters, our model can accommodate the large Att̄FB and be consistent with the

tt̄ production cross-section constraint as can be seen in FIG. 2.2 and 2.3.

The phenomenological aspects of the model provide nice improvements over

SM predictions. The Att̄FB from our model agrees with CDF data within ∼ 2.2σ for

the high-mass bin, ∼ 1.4σ for the low-mass bin, and ∼ 0.8σ for the total asymmetry.

Additionally, our model agrees with the CDF total tt̄ production within ∼ 0.9σ.

While the high-mass bin result seems most problematic with the model, it is actually

the most significant improvement over SM results. The CDF low-mass bin and total

asymmetry measurements are discrepant from the SM predictions (NLO+LL) at

∼ 2σ or less and are not statistically significant [22]. However, the high-mass bin is

discrepant at ∼ 3.5σ, and so our model reduces this deviation to a less stastistically



34

 0.2

 0.22

 0.24

 0.26

 400  450  500  550  600

B

xlabelpsf

A

(a) High invariant mass bin asymmetry

 0.06

 0.08

 0.1

 0.12

 400  450  500  550  600

B

xlabelpsf

A

(b) Low invariant mass bin asymmetry

 0.14

 0.16

 0.18

 0.2

 400  450  500  550  600

B

xlabelpsf

A

(c) Total asymmetry

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 400  450  500  550  600
B

xlabelpsf

A

(d) Total (NP+SM) tt̄ production

Figure 2.2: Computational results for tt̄ phenomenology at a GUT Yukawa coupling
of YG = 0.5. The contours in each plot, from bottom to top, are decreasing in m(6̄,3)

from 550 to 400 GeV. The gray regions are, in plot (a), CDF 2σ allowed regions,
in plot (b), CDF 1.5σ allowed regions, and, in plots (c) and (d), CDF 1σ allowed
regions. Plot (d) also shows the central value for the CDF tt̄ cross-section.

signficant result. The agreement within less than 1.4σ of the rest of the results

serves as a check on the merits of the model.

2.4 Conclusion and Discussion

Light colored scalars extension of SM can account for the observed Att̄FB

reported by CDF and DO. At the same times they also allow for unification of

fundamental forces at sufficiently high scale consistent with bound from proton
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Figure 2.3: Same as FIG. 2.2, except with YG = 1.0. This coupling provides better
agreement with measurements.
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decay. In our explicit model with SU(5) GUT, we extend SM by introducing 3

multiplets of light scalars: (8, 2)1/2 ∈ 45, (6̄, 3)−1/3 and (6, 1)4/3 ∈ 50. These new

scalars lead to gauge coupling unification at scale 1017 GeV which is considerably

higher compared to typical unification scale suggested by MSSM, 2 × 1016 GeV.

Notice that the quantum number of these scalars forbids Yukawa coupling to leptons.

Hence there is no light scalar leptoquark mediated proton decay. In this work we

do not attempt to solve the hierarchy problem associated with these light scalars.

For suitable value of Yukawa coupling and masses these colored scalars that

contribute to Att̄FB yield values of 9.5-11.5% (CDF: -11.6±15.3%) for Mtt̄ ≤ 450

GeV, 21-22.5% (CDF: 47.5±11.4%) for Mtt̄ > 450, and 14-16% (CDF: 20.7±6.7%,

DO: 19.6± 6.5%) for the total forward-backward asymmetry. The corresponding

total tt̄ production cross-section, including these scalars contribution, is around

8.4− 9.6 pb (CDF: 8.5± 0.9 pb). These computations have been checked under

variations of the SM input parameters (mt, αs, and PDF parameters) within their

reported 1σ limits; our results show sub-percent variations and thus the ranges of

the values reported above can be trusted.

It is interesting to explore LHC phenomenology associated with this model.

In principle, a single color sextet scalar φ ∈ {(6̄, 3)−1/3 and (6, 1)4/3} can be singly

produced from a pair of quark initial states qq → φ. The single production channel

does depends on the form of Yukawa coupling matrix. In the case where the Yukawa

coupling is diagonal and of O(1), the production cross-section from the uu initial

state, gg → φ, is ∼ 10 nb [37]. However in our model, due to the particular from

of the Yukawa coupling, the possible initial states are ut or db. Thus single φ

production will be suppressed by the t(b) PDF. The φ would decay into a pair of

ut(db) which lead to 2 jets with or without lepton.

Nevertheless, the LHC is known as a gluon factory, thus more promising

production mechanism is a pair production from gluon fusion, gg → φφ̄. The

production cross-section in this channel taken the mass of φ ≈ 500 GeV is at the

order of a few pb [38]. The φ would decay into a pair of ut(db) hence would lead
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to 4 jets, 2 of which are b jets, with or without lepton. Thus in this case it is

possible to observed two widely separated b jets and the invariant mass of these 4

jets displays a resonant structure at 2mφ.
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Chapter 3

Model building with theoretical

motivations: Spontaneous

R-symmetry breaking from the

renormalization group flow

We propose a mechanism of R-symmetry breaking in four-dimensional DSB

models based on the RG properties of the coupling constants. By constraining

the UV sector, we generate new hierarchies amongst the couplings that allow a

spontaneously broken R-symmetry in models with pure chiral fields of R-charges

R = 0 and R = 2 only. The result is obtained by a combination of one- and

two-loop effects, both at the origin of field space and in the region dominated by

leading log potentials.

3.1 Introduction

In the last decade many different mechanisms of supersymmetry breaking

have been investigated. Dynamical supersymmetry breaking (DSB) is an attractive

38
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possibility because it can evade constraints imposed by the supertrace formula

STr(M2). Unfortunately, DSB models often lead to non-calculable strongly coupled

sectors, in which the knowledge of the spectrum requires the use of non-perturbative

techniques that are not always available. A new scenario for DSB was proposed in

[39]. There a weakly coupled IR supersymmetry breaking sector was obtained from

supersymmetric duality. A mass deformed N = 1 asymptotically free supersymmet-

ric field theory flows in the IR to a weakly coupled dual theory with parametrically

long-lived metastable minima that break the supersymmetry. At the lowest orders

in the perturbative expansion the dynamics are dominated by a model of pure

chiral fields, like the O’Raifeartaigh model. It is therefore important to know the

exact and general properties of O’Raifeartaigh-like models for the study of DSB. To

provide a phenomenologically viable scenario, we must also break the R-symmetry

that generically accompanies these models to give the gaugino a non-zero Majorana

mass.

In this work we focus on R-symmetric O’Raifeartaigh-like models whose field

content has R-charge R = 0 or R = 2 only. This property is typical of generalizations

of the ISS mechanism but these models suffer from broad constraints that limit the

possibility of spontaneous R-symmetry breaking, which is what we seek to achieve

in this work. In particular, the generic (pseudo)moduli fields that accompany the

supersymmetry breaking superpotential that have R = 2 receive positive corrections

from the one-loop Coleman-Weinberg potential, eliminating the possibility of R-

symmetry breaking via a non-zero modulus field vev, or they remain flat. There is

no general proof for the behavior of the pseudomoduli at higher loops, leaving open

the possibility of spontaneous R-symmetry breaking via higher loop corrections to

pseudomoduli that are one-loop flat. In fact, most examples that have one-loop flat

directions receive negative two-loop corrections that destabilize the origin [40, 41].

Unfortunately, in all of these examples the tachyonic behavior near the origin is

never stabilized at a non-zero pseudomodulus vev, and the potentials run away to

a supersymmetric vacuum or infinite field value.
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In principle, a model could be constructed that stabilizes these potentials

with tachyonic behavior at the origin by going far out in field space and using the

quantum effective potential methods developed by [42]. It then becomes necessary

to introduce one-loop corrections to the pseudomodulus; however, these corrections,

at least at the origin, must be subdominant to the tachyonic two-loop effect. We

give a rough sketch that shows that having both a tachyonic origin and a stabilizing

(i.e. positive) slope in the far field potential cannot be accomplished with a single

superpotential coupling if one-loop effects are subdominant at the origin, in the

perturbative regime, they will continue to be subdominant to higher-loop order

effects far in field space.

This suggests that the myriad obstructions already evident might be evaded

by using more than one superpotential coupling. A mechanism could be introduced

to invert the behavior of the couplings in the two regions of field space and induce

the desired behavior of the effective potential. More concretely, we invert the

natural hierarchy of the perturbative expansion so that at the origin of field space

two-loop effects are dominant, but, far in field space, the one-loop effects become

more important. We achieve this through a new coupling associated with massive

degrees of freedom that are integrated out at small field values but that contribute

far from the origin. This is reminiscent of the interplay between the gauge and

interaction couplings in [43], where the coupling hierarchy is inverted in the field

space because of asymptotic freedom.

In section 3.2 we elaborate on the obstructions to spontaneous R-symmetry

breaking at one and two loops in models with charges R = 0 and R = 2 only. Then

in section 3.3 we propose our mechanism, explicitly check its validity in a toy model,

and provide a UV completion. In section 3.4 we conclude and discuss some open

questions.
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3.2 R-symmetry breaking with R = 0 and R = 2: Obstructions

The one-loop correction to the mass of the O’Raifeartaigh field is non-

negative in models of pure chiral fields with charges R = 0 and R = 2 [44]. This

result holds when more than one pseudomodulus is present [45]; however, the

fate of these pseudomoduli at higher-loop order is generically unconstrained and

R-symmetry breaking is left as a possibility. Unlike the one-loop Coleman-Weinberg

effective potential, which can be calculated in terms of the mass matrices only, at

two-loop order the effective potential must be explicitly calculated by including the

Yukawa and quartic couplings1.

Explicit examples show that at two-loop order there are no non-negativity

constraints on the pseudomoduli masses as in the one-loop case. For example, in

the model studied in [40] the superpotential is2

W = fX + hXφ2
1 + hµφ1φ2 + hY φ1φ4 + hZφ2

4 + hmφ4φ5 (3.1)

where
√
f , µ, and m are mass scales in the theory, h is the superpotential coupling,

the φi fields are tree-level stable at the origin, the X and Y are pseudomoduli

stabilized at one-loop, and the Z field is still a pseudomodulus at one loop that

acquires a negative mass at two loops.

A different possibility has been studied in [41], by starting from the super-

potential

W = fX + hXφ2
1 + hµφ1φ2 + hY φ1φ5 + hZφ2

4 + hmφ4φ5. (3.2)

In this case the one-loop pseudoflat direction Z has a positive two-loop mass that

is stabilized around the R-symmetric vacuum 〈Z〉 = 0.

1If the supersymmetry breaking scale F is smaller than the messenger scale M , F � M2,
there are simpler results for the two-loop effective potential. [46]

2The model studied in [40] is slightly different, but the quantum corrections are computed in
a similar manner and the final result is the same.
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Clearly, while in (3.2) the R-symmetry is not spontaneously broken, the

possibility to break the R-symmetry exists in (3.1). The vacuum structure for this

model must be determined by calculating the behavior of the Z potential away

from the origin. This can be explored by applying the analysis of [42]. There,

one reconstructs the effective potential for a pseudoflat direction far from the

origin but below the cutoff scale by computing the discontinuity in the anomalous

dimension of the massive messengers in the theory. The pseudomodulus is treated

as a background field with non-zero vev. By applying this idea the leading log

potential is obtained order-by-order in perturbation theory- schematically, with

loop order n, one has

Veff (Φ) ' const.+
∑
n

(−1)(n+1) 2

n!
|f |2∆Ω

(n)
X logn

|Φ|
m0

(3.3)

and the sign of the coefficient (−1)(n+1)∆Ω
(n)
X determines the sign of the potential

of the pseudomodulus at large Φ. The discontinuity in the anomalous dimension is

captured in ∆Ω
(n)
X = dn−1γX

dtn−1

∣∣∣t+Φ
t−Φ

. As explained in [42], each derivative of γX gives a

loop factor. This formula is only valid in the region
√
FΦ � 〈Φ〉 � Λ, where FΦ is

the scale set by the supersymmetry-breaking F -terms of Φ.

In the case of (3.1) the leading log potential for Z is negative and the

potential flows towards a supersymmetric minimum (or a runaway)3. So there are

no R-symmetry breaking vacua in (3.1), even though the potential is destabilized

at the origin.

One can still try to break the R-symmetry with the addition of a tree-level

term W ⊃ f2Z to the superpotential. Indeed, this term generates a one-loop

contribution to the mass of Z (which is automatically positive) and there is a

tension between the one- and two-loop contributions, potentially giving a non-

supersymmetric vacuum at 〈Z〉 6= 0. One can then distinguish the two cases f2 ' f

3The supersymmetric vacuum structure is usually associated with the UV completion of the
model.
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and f2 � f 4. If f2 ' f the positive one-loop correction dominates at the origin

and the negative two-loop effect dominates at large vev, so the potential has a local

maximum at the origin. On the contrary, if f2 � f the negative two-loop potential

dominates everywhere, since the one-loop effects at the origin are suppressed by

f2/f � 1. In both cases there are no R-symmetry breaking minima.

It would appear that this outcome is generic in the models presented.

This is argued as follows: To achieve spontaneous R-symmetry breaking in these

O’Raifeartaigh-like models, we require that the Z potential be (a) tachyonic at

the origin and (b) increasing (i.e. with positive slope) somewhere further out in

field space. To satisfy (a), we must have two-loop effects that are dominant at the

origin, since one-loop effects will never afford this behavior. Since the two-loop

effects are suppressed by a factor of h2 compared to the one-loop effects (but aided

by a factor of FX/FΦ � 1), this puts a lower bound on the value of h5. As we

move farther out in field space to the regime where (3.3) is applicable we begin to

lose perturbativity as higher loops become increasingly important. However, in a

model of only chiral fields with one coupling, if the two-loop contribution dominates

the one-loop contributions at the origin it will dominate the one-loop contribution

everywhere in field space, since no new field content is introduced. To satisfy (b),

one could argue that the three-loop behavior might accomplish what the one-loop

contribution sought to do, but then our “leading” log arguments are foregone as

we begin to consider all loop contributions. More quantitatively, the requirement

from (b) that the (positive) one-loop leading log dominate the two-loop leading log

out in field space puts an upper bound on the value of h, which will eliminate any

parameter space in h left from the previous lower bound.

We now search for a loophole in this argument based upon the RG properties

of the model in the perturbative large field region with multiple couplings. In

4The case f2 � f is irrelevant because it reverses the role of Z and X in the f2 � f case
5Hereafter we assume h is a real coupling by absorbing the imaginary part in the phases of

the fields.
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the next section we provide a way to invert the hierarchy amongst the one- and

two-loop effects when the potential is dominated by the leading log.

3.3 R-symmetry breaking from the renormalization group flow

We have seen that in O’Raifeartaigh-like models with only R = 0 and R = 2

fields R-symmetry breaking is quite constrained. One-loop quantum corrections will

leave pseudomoduli flat or stabilize them at the origin, while two-loop corrections

can be either positive or negative. At the quantum level, this means that there

can exist tension between a positive one-loop and a negative two-loop correction6.

In the models previously studied this leads to runaway behavior, but here we will

attempt to circumvent their fate with a loophole based upon the RG properties of

superpotentials and their moduli spaces.

3.3.1 Generalities

Consider a model with chiral fields, a canonical Kähler potential and a

superpotential W with all fields assigned R-charges R = 0 or R = 2 such that the

R-symmetry is preserved. Let the superpotential be of the form

W = W1(X,Φi, φi) +W2(Φi, ϕi) (3.4)

where we identify the tree-level flat direction with X and Φi and the other fields are

the φi and ϕi. The W1 sector has the usual O’Raifeartaigh field X in addition to

other pseudomoduli Φi and massive messengers φi. The second sector, W2, contains

some of the (pseudo)moduli Φi with non-zero F -terms such that FΦ � FX and

some massive fields ϕi. We assume the masses of the ϕi are much larger than those

of the φi from the first sector, mϕi � mφi .

In this limit the W2 sector decouples around the origin of the (pseudo)moduli

6We ignore higher loop corrections.
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space and the non-supersymmetric vacuum structure is encrypted in W1
7. We

consider W1 such that one of the Φi has a vanishing one-loop mass correction but

a non-zero, negative two-loop correction. The effective potential for this field is

negative around the origin and it remains negative in the region |FX | � |〈Φi〉| � Λ,

where Λ is the strong coupling scale determined by the UV completion of the model

[42]. This model does not generically break the R-symmetry spontaneously, at least

not without the W2 sector. The contributions from W2 become important at a

scale |〈Φi〉| ' mϕi , where the presence of a non-zero F -term for Φi gives a positive

leading log correction to the effective potential. The potential in this region is

V (Φi) ' V (1)(h2, FΦi) + V (2)(h1, FX) (3.5)

where hi is the coupling in the Wi sector. The R-symmetry can be broken if

h2 � h1η(FX , FΦi) where η(FX , FΦi) is a model-dependent function. Figure 3.1

gives a schematic picture of the effective potential for the field Φ.

3.3.2 A toy model

Here we propose a toy model that spontaneously breaks the R-symmetry

in an O’Raifeartaigh-like model with fields that have R-charges 0 and 2 only. We

follow the strategy explained above. The superpotential W1 is

W1 = fXX + hXXφ
2
1 +m1φ1φ2 + Y φ1φ4 + h1Zφ

2
4 +m2φ4φ5 (3.6)

while W2 is

W2 = fZZ + h2Zξ
2
4 +m3ξ4ξ5 (3.7)

7There is still a non-zero F -term associated to Φi in W2 but it is subleading in the limit
FΦ � FX .
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Figure 3.1: A schematic picture of the effective potential for the field Φ. Near the
origin in 〈Φ〉 there is a positive one-loop correction to the tree-level flat potential
for 〈Φ〉. This contribution is suppressed by ∼ FΦ

FX
in comparison to a negative

two-loop correction that dominates the one-loop contribution. Both are computed
perturbatively. As we move away from the origin and lose computational control,
we approach the far-field region, where 〈Φ〉 ∼ mϕi but 〈Φ〉 � Λ, where Λ is the
cutoff scale. Here the potential is computed using the leading log expansion and
the one-loop leading log〈Φ〉 dominates the two-loop leading log2〈Φ〉 by a careful
choice of parameters in the model. As 〈Φ〉 ∼ Λ, we lose all perturbative control
over the behavior of the potential.
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We impose a hierarchy amongst the scales

√
fZ �

√
fX � m1,m2 � m3 � Λ. (3.8)

Around the origin, ξ4 and ξ5 are integrated out at zero vev and the vacuum

structure is well described by W1. The fields φi acquire a tree-level mass at zero

vev while the fields X and Y are tree-level flat directions, stabilized at the origin

by one-loop corrections. The field Z is flat at tree level and its quantum mass is

dominated by the two-loop effect if

ε ≡ f 2
Z

f 2
Xh

2
X

� 1. (3.9)

At larger 〈Z〉 the effects of m3 are no longer suppressed. In the region

m3 � 〈Z〉 � Λ (3.10)

the leading log potential is

Veff = f 2
Z(h2

1 + h2
2) logZ − f 2

Xh
2
Xh

2
1 log2 Z. (3.11)

There can still be an R-symmetry breaking minimum if the inequality

h2 > h1

√
2 logZ

ε
− 1 (3.12)

is satisfied (note this is compatible with (3.8)). The R-symmetry is broken at the

quantum level by the vev of Z, with R(Z) = 2. The presence of two couplings in this

simple example follows the construction outlined in section 3.3.1 and accomplishes

spontaneous R-symmetry breaking.
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3.3.3 A UV completion

In this section we discuss a supersymmetric gauge theory with supersymmetry-

breaking metastable vacua that also break its R-symmetry. In the IR the model

reduces to the class introduced above, where W1 and W2 provide a generalization

of the toy model.

In this model we tune the masses of the fields in the UV sector, while the

tuning on the couplings is dynamical. This provides a more natural explanation of

the necessary hierarchies amongst the couplings required by our construction. The

field content is (see Figure 3.2 for a quiver representation of the model)

Field SU(NF1) SU(Nc) SU(NF2) SU(M)

Q1 ⊕ Q̃1 NF1 + ÑF1 Ñc ⊕Nc 1⊕ 1 1⊕ 1

Q2 ⊕Q2 1⊕ 1 Nc ⊕ Ñc ÑF2 +NF2 1⊕ 1

q
(i)
3 ⊕ q̃

(i)
3 with i = 1, 2 1⊕ 1 1⊕ 1 NF2 + ÑF2 M̃ ⊕M

with superpotential

W = m1Q1Q̃1 +m2Q2Q̃2 +m3q
(1)
3 q̃

(2)
3 +m3q

(2)
3 q̃

(1)
3 +

1

Λ0

Q2Q̃2q
(1)
3 q̃

(1)
3 (3.13)

The groups SU(NF1) and SU(NF2) are flavor symmetries while SU(Nc) is the

gauge symmetry. At this level we do not specify the dynamics of SU(M); Figure

3.2 indicates the possibilities for this SU(M) in the context of a quiver diagram.

42 31

Figure 3.2: A quiver representing the electric theory. The green boxes are flavor
nodes, the red the gauge node. We do not fix the nature of the blue node: it can
be either a flavor symmetry or a weakly gauged global symmetry.
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We consider this SU(Nc) gauge symmetry in the free magnetic range,

Nc + 1 < NF1 +NF2 <
3

2
Nc (3.14)

so that the model is described in the IR by the Seiberg dual with field content (see

Figure 3.3 for the quiver representation)

Field SU(NF1) SU(Ñc) SU(NF2) SU(M)

q1 ⊕ q̃1 NF1 + ÑF1 Ñc ⊕Nc 1⊕ 1 1⊕ 1

q2 ⊕ q2 1⊕ 1 Nc ⊕ Ñc ÑF2 +NF2 1⊕ 1

M11 NF1 × ÑF1 1 1 1

M12 ⊕M21 ÑF1 +NF1 1 NF2 + ÑF2 1

M22 1 1 NF2 × ÑF2 1

q
(i)
3 ⊕ q̃

(i)
3 with i = 1, 2 1⊕ 1 1⊕ 1 NF2 + ÑF2 M̃ ⊕M

where Ñc = NF1 +NF2 −Nc and the superpotential is

W = hµ2
1M11 + hµ2

2M22 + h

 M11 M12

M21 M22


 q1

q2

( q̃1 q̃2

)

+
Λg

Λ0

M22q
(1)
3 q̃

(1)
3 +m3

(
q

(1)
3 q̃

(2)
3 + q

(2)
3 q̃

(1)
3

)
. (3.15)

If we fix the hierarchy among the electric masses as

m3 � m1 � m2 (3.16)

there is a classical vacuum solution that breaks supersymmetry which can be
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2 41 3

Figure 3.3: A quiver representing the magnetic theory. The green boxes are flavor
nodes, the red one is the gauge node, while the blue one can be both.

written as

 q1

q2

 =



µ11Ñc×Ñc

0(NF1
−Ñc)×Ñc

0NF2
×Ñc


,

(
q̃1 q̃2

)
=

(
µ11Ñc×Ñc 0Ñc×(NF1

−Ñc) 0Ñc×NF2

)
(3.17)

with the rest of the fields at zero expectation value. We can expand about this

vacuum and choose a convenient parametrization of the field fluctuations:

 q1

q2

 =



µ1 + σ1

φ1

φ5


,

(
q̃1 q̃2

)
=

(
µ1 + σ̃1 φ2 φ4

)



51

M11 =

 Σ11 φ6

φ7 X

 , M12 =

 φ8

Ỹ

 , M21 =

(
φ9 Y

)
, M22 = Z

 q
(1)
3

q
(2)
3

 =

 ξ4

ξ6

 ,

(
q̃

(1)
3 q̃

(2)
3

)
=

(
ξ5 ξ7

)
(3.18)

This yields the IR superpotential

W = Tr[hµ2
1X + hXφ1φ2 + hµ1(φ1φ6 + φ2φ7 + φ4φ8 + φ5φ9)

+ hµ2
2Z + hZφ4φ5 + h2Zξ4ξ5 +m3(ξ4ξ6 + ξ5ξ7)

+ hφ1Y φ4 + hφ2Ỹ φ5] (3.19)

plus terms that are supersymmetric at two loops, which is the order to which

we study supersymmetry breaking effects in this work. Here we have defined

h2 ≡ Λg/Λ0.

From (3.16) we have

m2
3 � hµ2

1 � hµ2
2 (3.20)

and we can integrate out the q
(i)
3 and q̃

(i)
3 (with 〈q(i)

3 〉 = 〈q̃(i)
3 〉 = 0). Deep in the IR

we have the usual W1 model, with m2
Z < 0 from two-loop quantum effects. There

is also a one-loop contribution that is suppressed (µ1 � µ2). In particular, the one-

and two-loop Z masses are

m
(1) 2
Z = ε4

h2µ2
1

24π2NF2Ñc

{
h2 + h2

2

(
µ1

m3

)2
}

+O (ε6)

m
(2) 2
Z =

2h4µ2
1

(16π2)2NF2Ñc

{
log 4− 1− π2

6
+ ε4g(Λ)

}
+O (ε6) (3.21)
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where g(Λ) is a complicated but well-behaved function that depends on8 log2 Λ and

we have defined ε ≡ µ2/µ1. The trace in (3.19) gives a factor of NF2Ñc.

These masses indicate how the potential for Z behaves at the origin. Clearly,

to have a R-symmetry breaking minimum, we must have m2
Z = m

(1) 2
Z +m

(2) 2
Z < 0.

However, there is another constraint on the parameters in m2
Z that comes from the

behavior of the potential for Z in the far field region. Here µ1 << 〈Z〉 << Λ; the

one- and two-loop contributions to the potential in this region are in tension with

one another, since they are introduced with opposite signs (cf. (3.3)), and we must

include the effects of the m3 mass terms. Then, to two-loop order,

Veff(Z) = V
(1)

eff (Z) + V
(2)

eff (Z)

=
2µ4

2

16π2

(
h2 + h2

2

)
log
〈Z〉
µ2

− 1

(16π2)2

(
4µ4

1h
4 log2 〈Z〉

µ1

+ 2µ4
2

(
h2 + h2

2

)2
log2 〈Z〉

µ2

)
(3.22)

up to an unimportant constant. To have a stable R-symmetry breaking minimum

in the pseudomodulus Z, we require that the slope of the potential far in field space

be positive, so that an intermediate minimum is guaranteed (cf. Figure 3.1). This

further constricts the allowed values of ε, h, and h2; however, the allowed parameter

space is substantial, depending on the ratio between h and h2, which we define as

ρ ≡ h2

h2
2
. Figure 3.4 illustrates the allowed values of ε and h2 as a function of the

ratio ρ.

This model is a UV completion of the former toy model in the sense that

it provides a gauge theory that underlies the model of the chiral fields. This

completion has two sources of tuning, the first being the mass hierarchy that is

necessary to enforce the decoupling of the W2 messenger sector in (3.4). There is

also tuning in the value of ρ. According to Figure 3.4, values where ρ � 19 are

8The dependence on the cutoff in m
(2) 2
Z is introduced through the Z-self corrections, and

vanishes in the limit that µ2 → 0.
9But not too small, as the two-loop effects in (3.6) would vanish completely as ρ→ 0! Figure

3.4 shows that very small values of ρ are disfavored.
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preferred to maximize the available parameter space. For the lowest value depicted,

ρ = 0.0001, this corresponds to h ∼ 1
100
h2, but there is still appreciable available

parameter space for h ∼ 1
10
h2 (ρ = 0.01). We also know that this ratio is related

to the scales in (3.13) and (3.15), ρ = h2
(

Λ0

Λg

)2

. Indeed, dynamically it is more

natural to have 1
h

Λg
Λ0

= 1√
ρ
� 1 than the case preferred here, where Λg

Λ0
� h or

ρ� 1. For example, if the quartic term in (3.13) arises from a massive field that is

integrated out at Λ0, then Λ0 is roughly its mass and is generically larger than Λg,

the duality scale.

The tuning in ρ can be accommodated by assuming that the h2 sector is a

generic strongly coupled sector. After integrating out the massive field associated

to, Λ0 the RG flow reduces the effective Λ0/Λg such that Λg
Λ0(Λg)

� h at the scale

Λg, where the flow changes. These ideas are illustrated in Figure 3.5.

3.4 Conclusions

We have shown that there exist R-symmetric O’Raifeartaigh-like models

with fields having only R-charge 0 and 2 that spontaneously break their R-symmetry.

The model we examined had two couplings in the superpotential that exhibited

distinct behaviors under their renormalization group flow; in particular, one of the

couplings (h2 in (3.19)) had to be tuned to within ∼ 10% by the RG evolution

to achieve a spontaneously broken R-symmetry. There are also two scales in the

model that were arranged in a hierarchy, with tuning of order ∼ 10− 20%. The

R-symmetry is broken by the non-zero vev of a R-charged pseudomodulus in the

model that has a potential dictated by one- and two-loop quantum corrections to

its tree-level flat potential. The parameter space that allows a non-trivial minimum

of the potential is substantial but prefers the tuning in the scales and couplings

already mentioned.

Many extensions of our work are possible. One may look at a brane engi-

neering of the UV model (or some generalizations), as done in [47, 48, 49] for the
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ISS model. It would be interesting to check if the brane action can capture the

physics of the non-supersymmetric state that we discovered in this field theory.

Because there is tuning in its marginal couplings, a better understanding

of our UV completion is also necessary. A possible explanation of this tuning can

come from the strong dynamics of the UV sector- for example, one can suppose that

the UV dynamics are governed by an approximate CFT that generates a hierarchy

amongst the couplings from their anomalous dimensions, as in [50].

One can ponder the possibility of a general result (like in [44]) for the sign

of the two-loop masses, possibly associated to some (global) charge assignment. In

the case of R = 0 and R = 2 there is no sign constraint on the mass at two loops,

but extra conditions might provide such a constraint (at least at the origin).

We conclude by discussing the embedding of the model in a phenomenological

scenario. One can imagine gauging some of the global symmetries and gauge

mediating the supersymmetry breaking effects to a SSM sector. This requires the

existence of an explicit R-symmetry breaking sector to prevent massless axions

[51]. It would be important to generate the explicit R-symmetry breaking term

in the UV theory and study the possible constraints of such a term on the other

couplings.

I am grateful to B. Grinstein, K. Intriligator and A. Mariotti for discussions

and comments.

This chapter is a reprint of material as it appears in “Spontaneous R-

symmetry Breaking from the Renormalization Group Flow,” A. Amariti and

D. C. Stone, JHEP 1301, 092 (2013) [arXiv:1210.3028 [hep-th]], of which I was a

co-author.

http://arxiv.org/abs/1210.3028v2
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Figure 3.4: The parameter space that satisfies the requirements (a) that the mass
of the Z pseudomodulus is tachyonic at the origin and (b) that the slope of the far
field potential be positive. This space is parametrized by the ratio of scales ε ≡ µ2

µ1

and the m3 sector coupling h2 as a function of the ratio ρ = h2

h2
2
. Note that small

values of ρ are preferred, but not too small. The behavior of the allowed regions is
smooth everywhere.
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g
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Figure 3.5: A complete arrangement of the scales introduced into (3.19) so as
to accomplish spontaneous R-symmetry breaking. The ratio ρ ∼ Λ0(Λg)/Λg is
arranged to be smaller than one via running in a strongly coupled sector between
the scales Λ0 down to Λg. The tuning in ρ is actually quite mild- for appreciable
parameter space that allows a spontaneously broken R-symmetry, ρ can be as large
as 1

100
(corresponding to h ∼ 1

10
h2- see Figure 3.4).



Chapter 4

Model independent studies of

Standard Model phenomena: B

decays to two pseudoscalars and a

generalized ∆I = 1
2 rule

We perform an isospin analysis of B decays to two pseudoscalars. The

analysis extracts appropriate CKM and short distance loop factors to allow for

comparison of non-perturbative QCD effects in the reduced matrix elements of the

amplitudes. In decays where penguin diagrams compete with tree-level diagrams

we find that the reduced matrix elements of the penguin diagrams, which are

singlets or doublets under isospin, are significantly enhanced compared with the

triplet and fourplet contributions of the weak Hamiltonian. This similarity to the

∆I = 1
2

rule in K → ππ decays suggests that, more generally, processes mediated

by Hamiltonians in lower-dimensional isospin representations see enhancement over

higher-dimensional ones in QCD.

57
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4.1 Introduction

One of the longstanding puzzles in flavor physics is the ∆I = 1/2 rule. An

isospin-1
2

neutral kaon may decay into two pions in either an isospin-0 or isospin-2

(s-wave) state with amplitude A0 or A2, respectively. Empirically,

ReA0

ReA2

= 22.5 . (4.1)

The ∆I = 1/2 rule is the statement that the amplitude A0, mediated by the part

of the weak Hamiltonian that transforms as an I = 1/2 tensor, is much larger than

A2, mediated by the larger I = 3/2 tensor.

There is no satisfactory understanding of this rule. In Refs. [52, 53, 54] and,

more recently, Ref. [55] the rule was investigated in chiral perturbation theory, in

the large Nc limit. However, it was argued in Ref. [56] that for QCD, Nc = 3 is

not large enough for this limit to be useful. More recent studies using Monte Carlo

simulations of QCD in the lattice have addressed the ∆I = 1/2 rule [57]; a very

recent study on the lattice of the validity of the vacuum insertion approximation

was done in [58]. The ratio in (4.1) is still twice as large as any values obtained

on the lattice with unphysical quark masses, but it is expected that simulations

at physical quark masses will reproduce the empirically observed ratio and shed

light on the origin of the enhancement [59]. This begs the question– does this

enhancement occur in systems other than the K → ππ system?

There is evidence that answers this question in the affirmative. Identifying

any patterns of enhancements will give new insights into the long distance dynamics

of QCD. For example, the SU(3) analysis of D → KK, ππ decays reveals a similar

enhancement. In that system, the D0 → K+K− and D0 → π+π− amplitudes may

be written as [60]

A(D0 → K+K−) = (2T + E − S)Σ + 1
2
(3T + 2G+ F − E)∆
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A(D0 → π+π−) = −(2T + E − S)Σ + 1
2
(3T + 2G+ F − E)∆

where Σ ≡ 1
2
(V ∗csVus − V ∗cdVud) and ∆ ≡ 1

2
(V ∗csVus + V ∗cdVud). S, E and F are the

invariant matrix elements between a D meson and a meson pair in an octet of

the 6̄, 15 and 3 components of the weak Hamiltonian, respectively, G of the 3

to a singlet pair and T of the 15 to a meson pair in the 27. Note that Σ ≈

λ = sin θC , while |∆| ∼ λ5, so that |∆|/Σ ∼ 10−3. Neglecting ∆ one would

have Γ(D0 → K+K−) = Γ(D0 → π+π−) in the SU(3) limit. Experimentally

Γ(D0 → K+K−)/Γ(D0 → π+π−) ≈ 3 requires both the Σ and ∆ terms in the

amplitude to contribute with similar strengths. Barring accidental cancellations

this means that the matrix elements G and F are significantly enhanced. Since ∆

has a large phase, significant CP-violation in these decays was predicted [61] and

recently confirmed by experiment [62, 63, 64].

If SU(3)-breaking effects are included, the ratio Γ(D0 → K+K−)/Γ(D0 →

π+π−) ≈ 3 can be attained with only a “mild” enhancement of F and G relative

to the other reduced matrix elements of about an order of magnitude [65, 66, 67,

68, 69, 70]. The enhancement in F and G is similar to that of the ∆I = 1/2 rule

in that it appears in matrix elements of the smallest SU(3)-representation of the

Hamiltonian. In this case, the dominant contributions are from the 3 Hamiltonian

(as opposed to the 6̄ and 15), whereas for the ∆I = 1/2 rule the dominant piece is

from the I = 1/2 Hamiltonian (as opposed to the I = 3/2 piece).

In this work we investigate the possibility of similar enhancements in B de-

cays. We will show that an isospin analysis of B → Kπ decays and CP-asymmetries

shows a marked enhancement of amplitudes mediated by the weak Hamiltonian

in the lowest isospin representation. An analysis of B → ππ decays shows that,

although there is little enhancement of doublet versus fourplet amplitudes, the

matrix elements of penguin contributions (which are purely ∆I = 1/2) are still

enhanced to produce the observed data. Both these analyses support the general

rule that amplitudes mediated by the piece of the weak Hamiltonian in the smallest
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representation of the symmetry group are enhanced.

It should go without saying that we have no dynamical explanation of the

enhancement. This comes as no surprise, since the very ∆I = 1/2 rule has resisted

explanation for more than a half century. But we hope that insights provided by

this new, generalized rule may eventually lead to a global understanding of these

enhancements.

4.2 Isospin analysis

The strong interactions, to a good approximation, obey isospin symmetry.

In hadronic spectra and decays isospin violating effects are no larger than a few

per cent. We study the amplitudes for the decay of B-mesons to two light scalar

mesons using isospin symmetry, under which kaons and B-mesons transform as

doublets and pions as a triplet. The possible two-body final states are easily

classified according to their transformation properties under isospin. We also need

the transformation properties of the effective Hamiltonian responsible for the weak

decay. The effective Hamiltonian is given in terms of four-quark operators, whose

transformation properties are readily determined.

4.2.1 B → Kπ

The effective Hamiltonian density for the ∆B = −1, ∆S = −1 decays, to

leading order in the Fermi constant GF , can be written as [71, 72]

H =
GF√

2

[
λu (C1Q1 + C2Q2)− λt

6∑
i=3

CiQi

]
. (4.2)

Here λq ≡ V ∗qbVqs are CKM factors and Ci’s are the Wilson coefficients. The “tree”

(Q1,2) and “penguin” (Q3−6) operators are defined as

Q1 =
(
b̄aub

)
V−A (ūbsa)V−A ,
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Q2 =
(
b̄u
)
V−A (ūs)V−A ,

Q3 =
(
b̄s
)
V−A

∑
q=u,d

(q̄q)V−A ,

Q4 =
(
b̄asb

)
V−A

∑
q=u,d

(q̄bqa)V−A ,

Q5 =
(
b̄s
)
V−A

∑
q=u,d

(q̄q)V+A ,

Q6 =
(
b̄asb

)
V−A

∑
q=u,d

(q̄bqa)V+A (4.3)

where (q̄q)V±A is shorthand for q̄γµ(1±γ5)q. Both the coefficients Ci and the matrix

elements of the operators Qi depend on an arbitrary renormalization point µ but

their combination in the Hamiltonian, Eq. (4.2), is µ-independent. QCD-penguins

arising from u and c quark loops combine into terms precisely of the form of top-

quark penguins, since λc + λu = −λt. We have also neglected electroweak penguins

(EWP), operators Q7−10 in Ref. [71]. These introduce new isospin triplets into the

Hamiltonian with a λt coefficient, suppressed relative to the top-penguins by α/αs.

We have ignored EWP contributions out of pragmatism: were we to include their

effects in our fits the number of unknown matrix elements would exceed the number

of measured data. But our pragmatism is informed: the coefficients of EWP in the

effective Hamiltonian are suppressed relative to QCD penguins roughly by a factor

of α/αs, or about 7% if evaluated at µ = MZ and smaller at mb. As will become

evident, the approximation is supported by the very good fit of the model to both

B → Kπ and B → ππ processes.

As far as the group theory analysis of rates and CP asymmetries is concerned,

different four-quark operators contributing to the Hamiltonian can be distinguished

solely by their isospin quantum numbers and CKM factors. The Hamiltonian

can therefore be compactly written in terms of the isospin representations in the

following way:

H = V ∗ubVus
(
1 + [3]11

)
+
αs
8π

V ∗tbVts 1′ , (4.4)



62

Table 4.1: Data available in B → Kπ decays [1]. The C and S parameters are
measured for decays into the final CP eigenstate, B0

d → K0
sπ0. The amplitude for

B0
d → K0π0 on the other hand is given as A(B0

d → K0π0) =
√

2 A(B0
d → K0

sπ
0).

Mode B (10−6) ACP Cf Sf

B+ → K+π0 12.9± 0.5 0.037± 0.021 – –

B+ → K0π+ 23.8± 0.7 −0.014± 0.019 – –

B0
d → K0π0 9.9± 0.5 – 0.00± 0.13 0.58± 0.17

B0
d → K+π− 19.6± 0.5 −0.087± 0.008 – –

where 1 (1′) denotes the singlet coming from the tree (penguin) operators, [3]11

represents the triplet operator, and αs the strong coupling constant evaluated at

MZ . We choose to normalize the singlet penguin operator with an agnostic factor

of αs/(8π) to make explicit the loop factor associated with it. This normalization

does not affect the results of this paper, but it is a useful choice that, näıvely,

would give reduced matrix element values of the same order of magnitude for every

contribution. We introduce shorthand for the reduced matrix elements, as follows:

〈2̄|1|B〉 ≡ Pb, 〈2̄|1′|B〉 ≡ Pa,

〈2̄|3|B〉 ≡ T, 〈4̄|3|B〉 ≡ S . (4.5)

While we cannot compute Pa, Pb, S and T from first principles, we can determine

them by fitting to experimental measurements of decay rates and CP asymmetries.

In terms of the reduced matrix elements in Eq. (4.5), the isospin decomposi-

tion of the decay amplitudes is

A(B+ → K+π0) = V ∗ubVus
1√
2

(Pb + T + 2S) +
αs
8π

V ∗tbVts
Pa√

2
,

A(B+ → K0π+) = V ∗ubVus (Pb + T − S) +
αs
8π

V ∗tbVts Pa ,

A(B0 → K0π0) = V ∗ubVus
1√
2

(−Pb + T + 2S)− αs
8π

V ∗tbVts
Pa√

2
,
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A(B0 → K+π−) = V ∗ubVus (Pb − T + S) +
αs
8π

V ∗tbVts Pa . (4.6)

There is a contribution proportional to V ∗ubVus to the amplitude A (B+ → K0π+).

The only contribution to this process stems from the annihilation diagram, shown

in Fig. 4.1. There is extensive literature on annihilation diagram suppression with

respect to W -emission diagrams [73, 74]. To evaluate this expectation, denote

the matrix element associated with the annihilation diagram by M ≡ Pb + T − S

and let |M | = x|Pa| so that x measures the relative importance of annihilation in

comparison to the top-loop penguin. The value of x for which the annihilation and

penguin contributions to B+ → K0π+ are of the same order can be estimated as

x =
αs
8π

∣∣∣∣ V ∗tbVtsV ∗ubVus

∣∣∣∣ ' 0.24 . (4.7)

B+

K0

π+

Figure 4.1: Leading order diagram contributing to the B+ → K0π+ process.

Results of the fit

The available decay data for B → Kπ are collected in Table 4.1; the

observables are defined in Appendix B. Performing a χ2 fit of matrix elements in

Eq. (4.6) to the data, we find values for the matrix elements that match the observed

data with a 95% confidence level. These minima are illustrated with 68% and 95%

confidence levels in the |Pa| vs. |Pb| and |T | vs. |S| planes, respectively, in Fig. 4.2.

The best fit has {|Pa|, |Pb|, |T |, |S|} ' {0.237, 7.2× 10−3, 8.4× 10−3, 2.2× 10−3}

MeV with a chi-squared of χ2 = 1.70 for two degrees of freedom (a common phase

in the reduced matrix elements is unobservable). The ∆I = 0 contribution to the

amplitudes, from the Hamiltonian in the singlet representation, is given by the
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(a) (b)

Figure 4.2: Fit to data of the reduced matrix elements for B → Kπ. The figures
show the 68% (green) and 95% (yellow) CL regions in the |Pa| vs |Pb| and |T |
vs |S| planes. These two pairs of variables are what dictate the enhancements in
Eqs. (4.10) and (4.11). The corresponding minima are labeled in each plot. The
raggedness of the contours is an artifact of the numerical computation.

quantity

a∆I=0 = Pb +
αs
8π

V ∗tbVts
V ∗ubVus

Pa (4.8)

and the ∆I = 1 contribution, from the triplet Hamiltonian, by

a∆I=1 = {T + 2S, T − S}. (4.9)

for (B+ → K+π0, B0 → K0π+) and (B+ → K0π+, B0 → K+π−) respectively. For

the best fit then, we find ∣∣∣∣a∆I=0

a∆I=1

∣∣∣∣ = {4.8, 9.9} (4.10)

which is reminiscent of the ∆I = 1
2

rule from K → ππ decays.

A second, slightly higher χ2-minimum has {|Pa|, |Pb|, |T |, |S|} ' {0.075,
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0.052, 7.3× 10−3, 2.4× 10−3} MeV with a chi-squared of χ2 = 1.80 and∣∣∣∣a∆I=0

a∆I=1

∣∣∣∣ = {5.2, 12.6} . (4.11)

Both of these minima have significant enhancement of the penguin singlet,

Pa, over the triplet matrix elements, T and S. In the best fit case, however, the

other singlet matrix element, Pb, does not show significant enhancement over the

triplet matrix elements. Consequently, the annihilation diagram contribution is

negligible in the best fit (|M | = 0.013 MeV or, equivalently, x = |M/Pa| = 0.055,

to be compared with Eq. (4.7)) but provides a larger contribution than that of the

penguin diagram in the second best fit (where |M | = 0.055 MeV or, equivalently,

x = 0.732).

For completeness we note that there are two additional minima corresponding

to χ2 = 3.04 and 4.34. These two minima are less favorable, so we ignore them in

the rest of our study.

In all but the least favored minimum, there is significant enhancement of

|Pa| over the triplet Hamiltonian matrix elements. Moreover, the total contribution

from the ∆I = 0 Hamiltonian, a∆I=0, enjoys an enhancement over the ∆I = 1

contribution, a∆I=1. More precise data will be welcomed to distinguish between

these minima, which would also decide the role of the annihilation diagram in these

decays.

4.2.2 B → ππ

The isospin analysis for ππ final states is analogous to that for K decays,

where the ∆I = 1
2

rule was discovered. Operator contributions are of the form in

(4.3), but for ∆S = 0 processes. The Hamiltonian decomposes under isospin as

2̄× 2× 2̄ = 2̄ + 2̄ + 4̄ so that

H = V ∗ubVud
(
[2̄]2 + [4̄]12

1

)
+
αs
8π

V ∗tbVts [2̄′]2 , (4.12)
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(a) (b)

Figure 4.3: Fit to data of the reduced matrix elements for B → ππ. The figures
show the 68% (green) and 95% (yellow) CL regions in the |Qπa| vs |Qπb| and
|Qπa| vs |U | planes. The raggedness of the contours is an artifact of the numerical
computation.

The final states transform as (3×3)S = 1 + 5, so the non-vanishing reduced matrix

elements are

〈1|2′|B〉 = Qπa, 〈1|2|B〉 = Qπb, 〈5|4|B〉 = U (4.13)

and the decay amplitudes relevant to the processes in Table 4.2 are

A(B+ → π+π0) =

√
3

2
V ∗ubVud U ,

A(B0 → π0π0) = V ∗ubVud
1√
3

(
Qπb −

√
2U
)

+
αs
8π

V ∗tbVtd
1√
3
Qπa ,

A(B0 → π+π−) = V ∗ubVud
1√
3

(√
2Qπb + U

)
+
αs
8π

V ∗tbVtd

√
2

3
Qπa . (4.14)

Results of the fit

The data available in this decay channel are listed in Table 4.2. We perform

a χ2-fit of the model, Eq. (4.14), to the data. The result of the fit is illustrated
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Table 4.2: Data available in B → ππ decays from Ref [1].

Mode B (10−6) ACP Cf Sf

B+ → π+π0 5.5± 0.4 0.03± 0.04 – –

B0 → π0π0 1.91±0.22 – −0.43± 0.24 –

B0 → π+π− 5.12± 0.19 – −0.38± 0.15 −0.65± 0.07

with 68% (green) and 95% (yellow) CL regions in the |Qπa| vs |Qπb| and |Qπa|

vs |U | planes, respectively, in Fig. 4.3. For the best fit to the data we obtain

{|Qπa|, |Qπb|, |U |} ' {0.35, 8.8 × 10−3, 5.8 × 10−3} MeV with a chi-squared of

χ2 ' 1.39 for 2 degrees of freedom. Two additional regions with a good fit to the

data are found, one with {|Qπa|, |Qπb|, |U |} ' {0.82, 3.9× 10−3, 5.8× 10−3} MeV

for a chi-squared of χ2 ' 2.07 and the other with {|Qπa|, |Qπb|, |U |} ' {0.82, 7.7×

10−3, 5.8 × 10−3} MeV for a chi-squared of χ2 ' 3.38. Since the last minimum

is less favorable, we will ignore it. The contribution to the amplitudes from the

Hamiltonian in the doublet representation is

a∆I=1/2 = Qπb +
αs
8π

V ∗tbVtd
V ∗ubVud

Qπa (4.15)

and from the fourplet Hamiltonian

a∆I=3/2 = U. (4.16)

We find no enhancement of the ∆I = 1/2 amplitude with respect to the ∆I = 3/2

amplitude. To wit, for the best fits (next favorable minimum) we find∣∣∣∣a∆I=1/2

a∆I=3/2

∣∣∣∣ = 1.04 (1.05). (4.17)

There is little enhancement of the reduced matrix element corresponding to the

tree-level doublet Hamiltonian, Qπb, with respect to the tree-level quadruplet U .

However, the large enhancement of the penguin doublet reduced matrix element
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Qπa over U is analogous to that in the K → ππ decays, which has identical

isospin analysis to the B → ππ case. That a similar enhancement exists in the B

system —both in Kπ and ππ final states— is striking, and cries out for a dynamical

explanation of the role of flavor symmetries in these enhancements.

4.3 Short distance QCD effects

How much of the enhancement in the lower dimensional isospin representation

matrix elements can be attributed to computable short distance QCD effects?

Comparing the effective Hamiltonian in Eq. (4.2) against the decay amplitudes in

Eq. (4.6), we see that

αs
8π
Pa = 〈Kπ|

6∑
i=3

Ci(mb)Qi|B〉 = |C6(mb)|〈2|1′|2〉. (4.18)

Our analysis cannot yield information about the matrix elements of each of the

operators Q3,...,6. The last step in (4.18) defines the matrix element of the sum

of the operators, 〈2|1′|2〉, after extracting the magnitude of the largest Wilson

coefficient, |C6|.

Similarly we can define

Pb = 〈Kπ|
∑
i=1,2

Ci(mb)Qi|B〉 = C−(mb)〈2|1|2〉,

T = 〈Kπ|
∑
i=1,2

Ci(mb)Q−|B〉 = C−(mb)〈2|3|2〉,

S = 〈Kπ|
∑
i=1,2

Ci(mb)Q−|B〉 = C−(mb)〈4|3|2〉,

(4.19)

where C± = C1 ± C2 and Q± = Q1 ±Q2. The Q± operators do not have definite

isospin. However, for the B → ππ case the corresponding operator Q− is pure

∆I = 1/2, so using the Q± basis is natural. Moreover, at 1-loop the operators Q±

do not mix among themselves. Hence, to estimate the matrix elements of the “tree”
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operators we have extracted the coefficient C−. In any case, since C± are of order

1, this introduces little bias in our analysis.

For our analysis we take the numerical value of Wilson coefficients at NLO

in the NDR scheme for Λ
(5)

M̄S
= 225 MeV from table 8 of [71]. We find that, for

matrix elements from our best fit,

|〈2|1′|2〉| ≈ 0.028 MeV,

|〈2|1|2〉| ≈ 0.006 MeV,

|〈2|3|2〉| ≈ 0.007 MeV,

|〈4|3|2〉| ≈ 0.002 MeV.
(4.20)

while for the secondary χ2 minimum

|〈2|1′|2〉| ≈ 0.009 MeV,

|〈2|1|2〉| ≈ 0.041 MeV,

|〈2|3|2〉| ≈ 0.006 MeV,

|〈4|3|2〉| ≈ 0.002 MeV.
(4.21)

The ∆I = 0 enhancement for both of these sets of matrix elements, Eqs. (4.10)

and (4.11), corresponds to an enhancement of one or the other singlet matrix

element relative to the largest triplet by a factor of between 4 and 7.

An analogous analysis can be performed for B → ππ decays. We define

αs
8π
Qπa = 〈ππ|

6∑
i=3

Ci(mb)Qi|B〉 = |C6(mb)|〈1|2′|2〉.

Qπb = 〈ππ|
∑
i=1,2

Ci(mb)Qi|B〉 = C−(mb)〈1|2|2〉,

U = 〈ππ|C+(mb)Q+|B〉 = C+(mb)〈5|4|2〉, (4.22)

The matrix element of the operator Q+ can be determined because it is the only

“tree” contribution to a ∆I = 3/2 transition. We find that, for matrix elements

from our best fit,

|〈1|2′|2〉| ≈ 0.040 MeV, |〈1|2|2〉| ≈ 0.007 MeV,

|〈5|4|2〉| ≈ 0.006 MeV,
(4.23)
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while for the secondary χ2 minimum

|〈1|2′|2〉| ≈ 0.094 MeV, |〈1|2|2〉| ≈ 0.003 MeV,

|〈5|4|2〉| ≈ 0.006 MeV .
(4.24)

4.4 Discussion and Conclusions

There is a striking consistency in the reduced matrix element enhance-

ment that persists in the B decay channels studied. As suggested at the end of

Section 4.2.2, this may be indicative of the importance of flavor symmetries in

non-perturbative regimes in QCD, or perhaps in new physics contributions (note

we have only assumed the quark model, CKM parametrization, etc. of the Stan-

dard Model). The enhancement of matrix elements with effective Hamiltonians in

lower-dimensional isospin representations is only present when penguin diagrams

can compete against tree level weak exchanges, which are also the processes where

CP violation is predicted at lowest order. These are the B → Kπ and B → ππ

channels in this work.

In our estimates for hadronic matrix elements in Eqs. (4.20), (4.23) and

(4.24), but not (4.21), it is the penguin contributions to the lowest isospin change

operator (∆I = 0 for B → Kπ and ∆I = 1/2 for B → ππ), rather than both

penguin and tree contributions, that are enhanced. While we cannot select among

the fits a priori, in the best fits for both B → Kπ and B → ππ the penguin

dominates the total enhancement, giving a factor of between 4 and 7. The precise

value of the enhancement is immaterial: we have made plausible assumptions to

remove the short distance QCD effects, but we don’t have the means to do this

precisely and unambiguously. Moreover, the matrix elements Pa, . . . , U are defined

with convenient factors of
√

2 and
√

3 which further adds to the ambiguity. But the

enhancement of amplitudes, Eqs. (4.10) (or (4.11)), is unambiguous. Comparable

enhancements in the penguin matrix elements for B → Kπ and B → ππ lead to
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a significant amplitude enhancement in B → Kπ but very little enhancement in

B → ππ, but only because the latter is CKM-suppressed relative to the former.
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Chapter 5

Studies of degrees of freedom in

quantum field theories I:

Consequences of Weyl consistency

conditions

The running of quantum field theories can be studied in detail with the use

of a local renormalization group equation. The usual beta-function effects are easy

to include, but by introducing spacetime-dependence of the various parameters

of the theory one can efficiently incorporate renormalization effects of composite

operators as well. An illustration of the power of these methods was presented

by Osborn in the early 90s, who used consistency conditions following from the

Abelian nature of the Weyl group to rederive Zamolodchikov’s c-theorem in d = 2

spacetime dimensions, and also to obtain a perturbative a-theorem in d = 4. In

this work we present an extension of Osborn’s work to d = 6 and to general even d.

We compute the full set of Weyl consistency conditions, and we discover among

them a candidate for an a-theorem in d = 6, similar to the d = 2, 4 cases studied

by Osborn. Additionally, we show that in any even spacetime dimension one finds

72
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a consistency condition that may serve as a generalization of the c-theorem, and

that the associated candidate c-function involves the coefficient of the Euler term

in the trace anomaly. Such a generalization hinges on proving the positivity of a

certain “metric” in the space of couplings.

5.1 Introduction

When a symmetry of a quantum field theory (QFT) is broken by quantum

corrections, then the corresponding anomaly can be reproduced by a contribution

to the generating functional of the theory [75, 76]. The algebra of the symmetry

that is violated constrains the symmetry-breaking parameters that appear in these

anomalous contributions, which are thus forced to satisfy the so-called Wess–Zumino

consistency conditions [75].

The study of the Wess–Zumino consistency conditions for the Weyl anomaly

was undertaken by Osborn in the early 90s and produced remarkable results [77]. In

d = 2 spacetime dimensions, for example, Osborn obtained an independent proof of

Zamolodchikov’s c-theorem [11]. Furthermore, an extension of the c-theorem to 4d,

commonly referred to as the a-theorem, was demonstrated perturbatively [15, 77],

establishing in perturbation theory the intuition that the number of massless degrees

of freedom of a QFT decreases under renormalization-group (RG) flow.

This perturbative 4d result was based on previous work by Jack and Os-

born [15], who computed the local RG equation for a general renormalizable QFT

in a curved background using dimensional regularization. To account for effects of

renormalization of composite operators, Jack and Osborn used spacetime-dependent

coupling constants, a trick that allows for straightforward computations of Green

functions of composite operators (at least of those that appear in the Lagrangian)

and the stress-energy tensor. Their candidate c-function agrees with Cardy’s sug-

gestion [14]: it is equal to the coefficient a of the Euler term in the trace anomaly

at fixed points of the RG-flows. Nevertheless, it differs from a if the corresponding
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flat-space theory is not a conformal field theory (CFT). In subsequent work Osborn

reproduced the main results of [15] by requiring that two successive Weyl variations

of the effective action commute (since the Weyl group is Abelian), and also showed

that the main results of the analysis are scheme-independent [77].

Invariance under the Weyl group in the flat background limit is a priori a

stronger requirement than that of scale invariance of a theory on a flat background.

The former imposes the vanishing of the trace of the stress-energy tensor, while the

latter requires that the trace be the divergence of a suitable vector operator [78].

This suggests that the study of Weyl deformations may elucidate the relation

between scale and conformally invariant theories in flat backgrounds. Indeed, these

methods have recently been used to show, in perturbation theory, that a unitary

4d QFT invariant under the Poincaré group extended by the generator of scale

transformations is automatically invariant under the four generators of special

conformal transformations [79], even though the parameters of the theory may

display cyclic behavior [80].1

In this paper we undertake an investigation of the response of QFTs to

Weyl transformations in d = 6.2 In particular, we determine the Weyl consistency

conditions and general RG properties of six-dimensional QFTs. It is evident that

this line of inquiry is interesting if it leads to results similar to those already obtained

in d = 4, say, a perturbative extension of the 2d c-theorem and a proof that scale

implies conformal invariance in 6d. But the investigation is also interesting in

light of the advent of strongly coupled conformal CFTs that lack a Lagrangian

description in d = 6, like the famous (2, 0) theory.3 This suggests the existence of

flows, i.e. families of non-conformal QFTs, between such theories, with an associated

flow of a presumed c-function. The class of perturbative, renormalizable, d = 6

1The same result was also obtained using different methods in [81]. In renormalizable theories
with N = 1 supersymmetry it was shown perturbatively that cyclic behavior of parameters does
not arise [82, 83]. The situation in d = 4− ε needs further investigation [84, 85, 86].

2Weyl consistency conditions in d = 3 were studied recently in [87].
3The consistency conditions we derive can be seen as relations among correlation functions

involving composite operators.
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models is restricted to scalar fields with cubic interactions for which the general

analysis is of limited interest. They could, however, be put to use as a check of

results using standard methods of perturbation theory.

As we will see, the consistency conditions bring us very close to an extension

of the c-theorem to d = 6. More specifically, one can define a quantity ã, which is

a function of the dimensionless coupling constants gi, that satisfies the equation

dã

dt
= −1

6
Hijβ

iβj, (5.1)

where the RG time is t = − ln(µ/µ0), taken here to increase as we flow to the

IR, and βi = −dgi/dt, as usual. The quantity ã agrees with the coefficient of the

Euler term in the 6d trace anomaly at fixed points. The symmetric tensor Hij

can be viewed as a metric in the space of couplings. A proof of the a-theorem

would be immediate if Hij were shown to be positive-definite. This is analogous to

the situation in d = 4 where perturbative positivity of the analogous “metric” has

been shown by explicit computation in a generic QFT—it is here and only here

that perturbation theory is used in proving the a-theorem and that scale implies

conformal invariance in d = 4.

The analysis of the Weyl consistency conditions in d = 6 is significantly

more complicated than in d = 4. This analysis reveals generic features that were

not apparent in Osborn’s treatment, and actually allows us to demonstrate the

validity of (5.1) for QFTs in any even-dimensional spacetime. The only ingredient

missing for a generalization of Zamolodchikov’s c-theorem to any even dimension is

a demonstration that the “metric” Hij is positive-definite. As already mentioned,

Hij is positive-definite in d = 4 at lowest order in perturbation theory. It would

be interesting to extend this result to higher even dimensions. Of course, a non-

perturbative proof of the positivity of Hij in even d ≥ 4 is the ultimate goal of this

line of research.

To address questions similar to those that motivated this work, Komargodski
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and Schwimmer have put forward an argument that gives a non-perturbative

physicist’s proof of the weak version4 of the a-theorem in d = 4 [16]. More

specifically, they provided a compelling argument that in the flow from a UV CFT

to an IR CFT the inequality aUV > aIR is satisfied, without however providing a

monotonically-decreasing c-function. Attempts to extend that line of reasoning to

the d = 6 case have been unsuccessful, although in explicit examples the validity of

aUV > aIR was demonstrated [17]. The method we use in this work is very different

from that used in [16, 17], and allows us to obtain results local in the RG scale.

The organization of the paper is as follows. In the next section we summarize

the results of Osborn in 2d and 4d. We continue in Section 5.3 by describing the 6d

case in detail, and we then illustrate in Section 5.4 the ingredients that allow us to

genaralize our analysis regarding the a-theorem to all even spacetime dimensions.

In Appendices C and D we present details regarding our conventions as well as the

terms that participate in the consistency conditions in 6d. A Mathematica file that

contains all the consistency conditions in 6d is included with our submission.

5.2 Summary of the 2d and 4d cases

To begin, let us introduce the basic setting. More details can be found

in [77, 89]. We are working in Euclidean space and we define the generating

functional W of connected Green functions via

eW =

∫
[dφ] e−S,

where S is the Euclidean action with all required counterterms. S contains a

potential of the form giOi, where gi are parameters which can be taken to be

dimensionless, and Oi are scaling-dimension-d operators where d is the spacetime

4For a discussion of the various versions of the a-theorem see [88].
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dimension.5 W is a function of the renormalized couplings gi and the metric γµν .

Consider now the RG flow as a flow in the space of theories as parametrized

by their couplings gi. The arbitrary RG parameter µ has to be introduced, and the

flow is then generated by

D = µ
∂

∂µ
+ βi

∂

∂gi
,

where βi = µ dgi/dµ is the beta function. W is a finite scalar function, since it is

derived from S which includes all necessary counterterms, and it is thus invariant

under the RG flow:

DW = 0. (5.2)

This is simply the Callan–Symanzik equation.

To define a local RG equation we let the parameters of S as well as the

spacetime metric be arbitrary functions of spacetime. New counterterms involving

derivatives on the metric and the couplings are then necessary for finiteness. With

their inclusion in S functional differentiations of W are guaranteed to produce finite

operator-insertions in Green functions. Local rescalings of length are described by

γµν(x)→ e2σ(x)γµν(x)

and they form the Weyl group.

We define the quantum stress-energy tensor and finite composite operators

using

Tµν(x) = 2
δS

δγµν(x)
, [Oi(x)] =

δS

δgi(x)
,

where functional derivatives are defined in d spacetime dimensions by

δ

δγµν(x)
γκλ(y) = 1

2
δ κ

(µ δ
λ
ν) δ

d(x, y),
δ

δgi(x)
gj(y) = δ ji δ

d(x, y),

with X(iYj) ≡ XiYj + XjYi, δ
d(x, y) = δd(x − y)/

√
γ(x), γ is the determinant of

5Non-marginal operators can also be included, see [77].
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the metric, and δd(x) the usual delta function in d dimensions. At the level of the

generating functional we implement infinitesimal local Weyl transformations with

the generators

∆W
σ = 2

∫
ddx
√
γ σγµν

δ

δγµν
, ∆β

σ =

∫
ddx
√
γ σβi

δ

δgi
.

With these definitions it is obvious that

∆W
σW = −

∫
ddx
√
γ σγµν〈Tµν〉, ∆β

σW = −
∫
ddx
√
γ σ〈βi[Oi]〉.

It is known that the Weyl variation of W , ∆W
σW , is anomalous in curved space [12],

even when the flat-space theory is a CFT.

In general, one can write

∆W
σW = ∆β

σW +

∫
ddx
√
γ (terms with derivatives on γµν , g

i, σ). (5.3)

For a classically scale invariant theory we also have

(
µ
∂

∂µ
+ 2

∫
ddx
√
γ γµν

δ

δγµν

)
W = 0,

and so if the integral in (5.3) is neglected, then (5.3) reduces to the Callan–Symanzik

equation (5.2). Therefore, (5.3) serves as a local version of the Callan–Symanzik

equation. It is straightforward to see that (5.3) is equivalent to

γµνTµν = βi[Oi] + (curvature, ∂µg)-terms. (5.4)

This is the most general form of the trace anomaly.6 Consistency conditions follow

from requiring that [∆W
σ −∆β

σ,∆
W
σ′ −∆β

σ′ ]W = 0, as imposed by the fact that the

6Actually there is a more general form that includes renormalization effects of a specific
vector operator of classical scaling dimension d− 1. In d = 4 such operators were considered by
Osborn [77], and were also found in dimensional regularization in [15]. For the significance of
such contributions the reader is referred to [79].
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Weyl group is Abelian.

5.2.1 The 2d case

In two dimensions, the number of terms that are diffeomorphism and scale

invariant that can contribute to the trace anomaly is small, and the elegance of the

c-theorem is manifest. There is one curvature term and two terms with derivatives

on spacetime-dependent couplings one can write down. The trace anomaly is

reproduced by

∆W
σW = ∆β

σW −
∫
d2x
√
γ σ(1

2
βΦR− 1

2
χij∂µg

i∂µgj) +

∫
d2x
√
γ ∂µσ wi∂

µgi, (5.5)

where R is the Ricci scalar and βΦ, χij , and wi are functions of the couplings. From

[∆W
σ −∆β

σ,∆
W
σ′ −∆β

σ′ ]W = 0 with (5.5) we obtain a single consistency condition,

namely

∂µβ
Φ + wi ∂µβ

i + βi∂iwj ∂µg
j − χijβi ∂µgj = 0,

where ∂i ≡ ∂/∂gi. Since this has to be true for arbitrary ∂µg
i, we conclude that

∂iβ̃
Φ = χijβ

j + ∂[iwj]β
j, β̃Φ = βΦ + wiβ

i, (5.6)

where X[iYj] ≡ XiYj −XjYi. By multiplying (5.6) by βi we get,

dβ̃Φ

dt
= −χijβiβj,

which is equivalent to Zamolodchikov’s c-theorem if χij is positive-definite.

One should note here that there is a degree of arbitrariness in the definition

of the various coefficients in (5.5), corresponding to the addition of allowed terms in

the generating functional of the original 2d theory. Indeed, if we shift W → W+δW ,

where

δW =

∫
d2x
√
γ (1

2
bR− 1

2
bij∂µg

i∂µgj),
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with arbitrary functions b, bij, then

δβΦ = βi∂ib = Lβb, δwi = −∂ib+ bijβ
j

δχij = βk∂kbij + ∂iβ
k bjk + ∂jβ

k bik = Lβbij,

where Lβ is the Lie derivative along the beta-function vector. Nevertheless, the

consistency condition is invariant under this arbitrariness.7 Osborn then establishes

that there is a choice of the arbitrariness so that the corresponding χij is positive-

definite, essentially equal to Zamolodchikov’s metric Gij = (x2)2 〈[Oi(x)][Oj(0)]〉.

With that choice β̃φ becomes Zamolodchikov’s c-function C. As a final remark let

us point out here that possible dimension-one vector operators are neglected in the

treatment of Osborn—such operators were considered in [90].

5.2.2 The 4d case

In four dimensions the elegance of the two-dimensional case is obfuscated by

the fact that there exist four curvature invariants (that conserve parity) and quite

a few terms that involve derivatives on the couplings. The terms that account for

the trace anomaly may be written as

∆W
σW = ∆β

σW +

∫
d4x
√
γ σT +

∫
d4x
√
γ ∂µσZ µ, (5.7)

where

T = βaI + βbE4 + 1
9
βcR

2 + 1
3
χei∂µg

i∂µR + 1
6
χfij∂µg

i∂µgjR + 1
2
χgij∂µg

i∂νg
jGµν

+ 1
2
χaij∇2gi∇2gj + 1

2
χbijk∂µg

i∂µgj∇2gk + 1
4
χcijkl∂µg

i∂µgj∂νg
k∂νgl,

(5.8)

7The arbitrariness we are discussing here is analogous to the arbitrariness that affects the
coefficient of �R in the 4d trace anomaly at the fixed point. In 2d we see that outside the fixed
point βΦ has a degree of arbitrariness. Of course when βi = 0 the well-defined βΦ is the central
charge of the corresponding CFT (up to normalization).
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and

Z µ = Gµνwi∂νg
i + 1

3
∂µ(b′R) + 1

3
RYi∂

µgi

+ ∂µ(Ui∇2gi + 1
2
Vij∂νg

i∂νgj) + Sij∂
µgi∇2gj + 1

2
Tijk∂νg

i∂νgj∂µgk,
(5.9)

up to terms with vanishing divergence. Definitions of the various curvatures can be

found in (C.3). Gµν is the Einstein tensor and the various coefficients are functions

of the couplings.

Here one finds six consistency conditions (which can be further decomposed).

Two of them are particularly interesting. First, there is a consistency condition

like (5.6) involving βb:

∂iβ̃b = 1
8
χgijβ

j + 1
8
∂[iwj]β

j, β̃b = βb + 1
8
wiβ

i. (5.10)

The consistency condition (5.10) can lead to an extension of Zamolodchikov’s result

to 4d if the metric χgij can be shown to be positive-definite. Of course, just like in

2d, there is an arbitrariness in the definition of χgij as well as in other coefficients

in (5.8) and (5.9). To get an a-theorem it suffices to show that there is a choice of

the arbitrariness so that χgij is positive-definite. This relies on the fact that (5.10)

is invariant under the arbitrariness.

The other consistency condition we would like to draw attention to is

βc = 1
4
(∂ib

′ − χei )βi.

This shows that the coefficient of R2 in the trace anomaly is generally non-zero

outside the fixed point. It also motivates the use of the term “vanishing anomalies”

for contributions to the trace anomaly like R2 in d = 4: these are anomalies that

are present along the flow but vanish at the fixed point.

In our treatment so far we have neglected relevant operators with classical

scaling dimension three or two that may be present in a four-dimensional theory.



82

Osborn has considered such operators in [77], and has shown that the condition

(5.10) is actually unaffected by their presence, except for a shift of βi due to the

presence of dimension-three vector operators. This shift played an important role

in [79], where it was calculated at three loops in the most general renormalizable 4d

QFT, and was used to show that at the perturbative level scale implies conformal

invariance in unitary renormalizable 4d QFTs.

5.3 The 6d case

As we saw in the previous section the elegance of the consistency conditions

rapidly disappears in the jump from 2d to 4d. Nevertheless, a consistency condition

similar to (5.6) remains, and it is interesting to see if this is an accident or if such

a consistency condition can be obtained in higher (even) dimensions. This is the

main motivation behind this work, and the treatment of the highly nontrivial 6d

case gives us valuable intuition that actually applies to all even dimensions. We

postpone the discussion of the general even-d case until the next section, and we

turn now to the consistency conditions in d = 6. Appendices C and D contain

information on conventions, basis choices, as well as the terms that appear in the

trace anomaly in 6d away from the fixed point.

5.3.1 Basis of curvature tensors

It is clear from the complexity of the 4d case that the situation in 6d is

significantly more challenging. As a first step we have to classify the curvature

tensors that can be used in the anomaly terms. Of course terms without curvatures

also need to be considered.

To begin, note that for the various contributions to (∆W
σ −∆β

σ)W we are

only constrained by diffeomorphism invariance and power counting. Let us look

at a consequence of this in 4d: in anomaly terms with one power of curvature one

cannot involve the Riemann tensor (without contracting its indices). Indeed, the
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Riemann tensor has four free indices, for which we would need four derivatives

on one or more couplings. This would result in a term with mass dimension six.

Therefore, in 4d, one can only include curvature tensors with up to two free indices,

and those are R, γµνR, and Rµν .
8 Since the variation of the 4d Euler density in

d = 4 is δσ(
√
γE4) = −8

√
γ Gµν∇µ∂νσ, it is preferable to include the Einstein

tensor instead of the Ricci tensor. This choice produces the consistency conditions

in a convenient form, but it is not essential. Indeed, the consistency conditions in a

specific basis can be recast to the form obtained in any other basis by a redefinition

of the coefficients of the various anomaly terms.

In 6d a similar choice is dictated by the fact that the Weyl variation of the

6d Euler density is

δσ(
√
γE6) = 12

√
γ (3E4γ

µν−2RRµν +4Rµ
κR

κν +4RκλR
κµλν−2R µ

κλρ R
κλρν)∇µ∂νσ,

where E4 is given in even d > 2 by E4 = 2
(d−2)(d−3)

(RκλµνRκλµν − 4RκλRκλ + R2).

The tensors quadratic in curvature that we have to consider can be found in (C.3);

the tensor Hµν
1 is chosen so that in d = 6 the variation of the Euler density is

δσ(
√
γE6) = 6

√
γ Hµν

1 ∇µ∂νσ. As far as terms quadratic in curvature are concerned,

we also have to include the terms (C.4), which are basically derivatives of the terms

in (C.3). Terms linear in curvature include (C.1) and (C.2). In writing down the

various curvature tensors one has to identify a complete but not over-complete

basis, a problem complicated by the symmetries of the Riemann tensor and the

Bianchi identities.

As far as scalar terms cubic in curvature are concerned [91, 92], the situation

is slightly more subtle. We have to include the terms in (C.5), but among them

there are trivial anomalies, i.e. the terms J1,...,6 whose coefficient can be varied at

will by a choice of local counterterms. These are not genuine anomalies, but they

8Incidentally, using the same argument one sees that ∇λGµν , where Gµν is the Einstein tensor,
can also not be included in the anomaly terms.
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nevertheless appear in the trace anomaly, even at the fixed point. The well-known

example is the term �R in 4d. In (C.5) there are also vanishing anomalies, i.e.

curvature terms that have to be included outside the fixed point, but that do not

satisfy the consistency conditions at the fixed point and thus their coefficient has to

be set to zero there. These are the terms L1,...,7 in (C.5). As we already mentioned

there is only one such term in 4d, namely R2. Here, the form of L1,...,6 is chosen

based on the fact that these are the terms that shift the coefficients of the trivial

anomalies at the fixed point, i.e. δσ
∫
d6x
√
γ L1,...,6 =

∫
d6x
√
γ σJ1,...,6.

While J1,...,6 can be included in the basis of terms cubic in curvature,

there is a more convenient choice based on the fact that in order to show that

δσ
∫
d6x
√
γ L1,...,6 =

∫
d6x
√
γ σJ1,...,6 one has to integrate by parts. But since total

derivatives can be neglected in our considerations (for σ can be taken to have local

support), this implies that we don’t have to include the trivial anomalies J1,...,6 in

(∆W
σ −∆β

σ)W , so long as we include terms arising from δσ
∫
d6x
√
γ z1,...,6L1,...,6 before

any integrations by parts. (Here z1,...,6 are arbitrary functions of the couplings.)

Consequently, terms cubic in curvature that we need to consider are the three terms

I1,2,3 that lead to Weyl-invariant densities, the 6d Euler term E6, and the seven

vanishing anomalies L1,...,7. As we explained, this relies on the ability to discard

total derivatives.

5.3.2 Contributions to the anomaly

Now that we have a complete basis of curvature tensors we are ready to

write down the most general anomaly functional (∆W
σ −∆β

σ)W . It takes the form

∆W
σW = ∆β

σW +
65∑
p=1

∫
d6x
√
γ σTp +

30∑
q=1

∫
d6x
√
γ ∂µσZ µ

q ,

where the Tp and Z µ
q are dimension-six and dimension-five terms respectively, that

can involve curvatures as well as derivatives on the couplings gi (see Appendix D).



85

Much like Osborn did in d = 2, 4 we split the anomaly contributions into

terms with σ and ∂µσ. This splitting may seem mysterious—as we could also

introduce terms of the form
∫
d6x
√
γ�σV , for example—but it is used here in

order to get the consistency conditions in a most convenient form. We can obtain

the desired form of the consistency conditions even without the splitting, if we

carefully choose the coefficients of the various terms in the anomaly. This can be

seen by integrating by parts to rewrite the Z µ
q terms in the form of the Tp terms,

which would lead to some new Tp terms but also to shifts of coefficients of existing

Tp terms.

Let us illustrate this point more clearly in the 2d case. Suppose that instead

of (5.5) we started with the equivalent

∆W
σW = ∆β

σW −
∫
d2x
√
γ σ(1

2
βΦR− 1

2
χ′ij∂µg

i∂µgj + wi�g
i). (5.11)

After an integration by parts of the �gi term this amounts simply to the definition

χij = χ′ij+2∂(iwj) in (5.5). This can also be seen by computing the Weyl consistency

condition from (5.11) directly. We get

∂iβ̃
Φ = (χ′ij + 2∂iwj)β

j = (χ′ij + ∂(iwj))β
j + ∂[iwj]β

j. (5.12)

Clearly, (5.12) is equivalent to (5.6) with the proper definition of χij.

5.3.3 Some consistency conditions

Here we include some consistency conditions and we comment on the most

interesting ones. A Mathematica file with all the consistency conditions is included

with our submission.

Just like in 2d and 4d we obtain consistency conditions simply by the

requirement [∆W
σ −∆β

σ,∆
W
σ′ −∆β

σ′ ]W = 0. In our case we find a total of forty one
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consistency conditions.9 For example, consistency requires that terms proportional

to ∂µσ�2σ′ − ∂µ σ′�2σ add up to zero, which leads to

∂µ(4b11−3Aiβi)+(4Ai+2G4
i +5H5

i +2H6
i −2I4

i ) ∂µg
i+6Ai ∂µβi−A′ijβj ∂µgi = 0,

which implies that

∂i(4b11 − 3Ajβj) + 4Ai + 2G4
i + 5H5

i + 2H6
i − 2I4

i + 6Aj ∂iβj = A′ijβj.

Among the forty one consistency conditions in 6d the most interesting is

the one similar to (5.6), obtained from terms proportional to (σ∂µσ
′ − σ′∂µσ)Hµν

1 .

It reads

∂µ(6a+ b1 − 1
15
b3) +H1

i ∂µβ
i + βi∂iH1

j ∂µg
j −H1

ijβ
i ∂µg

j = 0,

which can be brought to the form

∂iã = 1
6
H1
ijβ

j + 1
6
∂[iH1

j]β
j, ã = a+ 1

6
b1 − 1

90
b3 + 1

6
H1
iβ

i. (5.13)

The consistency condition (5.13) has a new feature compared to the 2d

and 4d cases, i.e. that the function ã contains the coefficients b1 and b3 of the

vanishing anomalies L1 and L3 respectively. This is of no consequence as far as

the value of ã at the fixed point is concerned: there ã = a, for b1 = b3 = 0 at the

fixed point. This fact is actually made explicit by three consistency conditions.

More specifically, from terms proportional to (∂κσ∇λ∂µσ
′ − ∂κσ′∇λ∂µσ)∇κGλµ,

(σ∂µσ
′ − σ′∂µσ)∇νH

µν
4 , and (σ∂µσ

′ − σ′∂µσ)∇νH
µν
3 we find

b7 = 1
8
Fiβi, (5.14a)

9Some of these consistency conditions can be further decomposed as a result of the variety of
ways with which spacetime derivatives can act on couplings.
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3b1 − 8b7 = −1
4
(∂ib14 + I7

i )βi, (5.14b)

12b1 − b3 − 16b7 = −(∂ib13 + I6
i )βi, (5.14c)

respectively. From similar consistency conditions we can verify that b2, b4, b5 and b6

are also zero at the fixed point, as expected since they are coefficients of vanishing

anomalies.

5.3.4 Possibility for an a-theorem in 6d

The consistency condition (5.13) has the potential to lead to a result similar

to that of Zamolodchikov in 2d. Indeed, contracting with the beta function it

follows that (5.13) implies
dã

dt
= −1

6
H1
ijβ

iβj. (5.15)

Note that here the conditions (6.20) allow us to absorb the b1 and b3 contributions

in ã to a shift of H1
i . Of course what is missing is a proof of the positive-definiteness

of H1
ij.

It is important to point out that the consistency condition (5.13) is actually

stronger than (5.15). Indeed, (5.13) also contains information about the possibility

of a gradient flow interpretation of the RG flow. For that, it has to be that

∂[iH1
j] = 0, in which case ã is the “potential” whose gradient produces the RG flow.

Let us now concentrate on a technical but important point. It turns out that

the tensor Hµν
1 , which appears in δσ(

√
γE6) = 6

√
γ Hµν

1 ∇µ∂νσ, is divergenceless. A

similar statements holds in two, δσ(
√
γR) = 2

√
γ γµν∇µ∂νσ, and four dimensions,

δσ(
√
γE4) = −8

√
γ Gµν∇µ∂νσ. This is actually crucial for the coefficient of the

Euler term to be involved in a consistency condition like (5.13), which has the

chance to lead to an a-theorem. This is not so easy to see in 2d and 4d, but it is

clear in 6d.

Indeed, consider, for example, the consistency condition arising from terms
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proportional to (σ∂µσ
′ − σ′∂µσ)Hµν

4 . It reads

∂ib̃1 = 1
12

(H4
ij + 1

2
Fij)βj + 1

12
∂[iH4

j]β
j + 1

6
I7
i , b̃1 = −b1 + 2

3
b7 + 1

12
H4
iβ

i. (5.16)

The contribution 1
6
I7
i does not allow (5.16) as a candidate for the generaliza-

tion of Zamolodchikov’s result.10 This contribution in fact arises from the term

T18 = I7
i ∂µg

i∇νH
µν
4 . Were ∇νH

µν
1 non-vanishing, we would not be able to find a

consistency condition like (5.13). It can be verified by explicit computations that

Hµν
1 is the only divergenceless symmetric two-index tensor quadratic in curvature.

It is thus a generalization of the Einstein tensor. As we will see in the next section

Lovelock has constructed all such generalizations a long time ago [93], something

that will allow us to argue for a consistency condition similar to (5.13) in all even

d.

5.3.5 Arbitrariness

Just like the coefficient of �R in the four-dimensional trace anomaly, the

various coefficients in Tp and Z µ
q are affected by the choice of additive, quantum-

field-independent counterterms. Indeed, calculations in curved space and with

x-dependent couplings will result in infinities that will need to be renormalized

via counterterms whose finite part is arbitrary. Therefore, different subtraction

schemes will result in different coefficients for Tp and Z µ
q .

The most general addition to the generating functional of our theory is

δW = −
65∑
p=1

∫
d6x
√
γXp,

where the Xp terms have the same form as the Tp terms but with arbitrary

coefficients. There is no arbitrariness introduced by terms X µ
q similar in form to

10Of course this can also be seen from the fact that b̃1 becomes zero at fixed points, and so it
cannot possibly be monotonically-decreasing along an RG flow.
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the Z µ
q terms, for those are total derivatives. Now, the consistency conditions are

invariant under the shift W → W +δW , although the coefficients in the consistency

conditions will shift. Let us see how this works for (5.13).

The relevant terms are

∫
d6x
√
γ (zaE6 + zb1L1 + zb3L3 − 1

2
zH

1

ij ∂µg
i∂νg

jHµν
1 ) ⊂ δW (5.17)

and one can verify that their inclusion leads to shifts

δa = Lβza, δb1 = Lβzb1 , δb3 = Lβzb3 ,

δH1
i = −6∂i(za + 1

6
zb1 − 1

90
zb3) + zH

1

ij β
j, δH1

ij = Lβz
H1

ij ,
(5.18)

under which (5.13) is invariant. Note that a, which is of course well-defined at

the fixed point, is arbitrary along the flow, while H1
i and H1

ij have a degree of

arbitrariness even at the fixed point. Also note that the shifts (5.18) cannot be

used to set the corresponding coefficients to zero, except for H1
i if H1

i = ∂iX for

some X.

This observation leads to an important point, which we have already em-

phasized: regarding the a-theorem, one should not be able to prove that the metric

H1
ij is positive-definite in all generality. Instead, one ought to be able to show

that there is a choice for the arbitrariness (5.17) such that H1
ij is positive-definite.

That specific choice then gives us the quantity ã whose flow is monotonic, through

the dependence of δH1
i on zH

1

ij . Recall that in 2d arbitrariness similar to the one

described here was used by Osborn to rederive Zamolodchikov’s c-theorem (see [77]

for details).

5.4 Consistency conditions in even spacetime dimensions

In this section we identify the ingredients that allow us to conclude that

a consistency condition like (5.13) appears in all even spacetime dimensions. Of
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course non-trivial CFTs in d > 6 are not known, but it is still interesting to consider

the generalization of our results.

According to the classification of [94], for a CFT in any even spacetime

dimension lifted to curved space the conformal anomaly consists of a unique Euler

term (type-A anomaly), a number of terms that lead to locally Weyl invariant

densities (type-B anomalies), as well as a number of trivial anomalies. Outside

the fixed point we also have a number of vanishing anomalies. As for the trivial

anomalies, these can always be accounted for by terms with d/2 − 1 powers of

curvature.

Now, in any even spacetime dimension, d = 2n, it is easy to see that the

Weyl variation of the Euler density
√
γE2n, where

E2n =
1

2n
Ri1j1k1l1 · · ·Rinjnknlnε

i1j1...injnεk1l1...knln ,

gives

δσ(
√
γE2n) =

√
γ Hµν∇µ∂νσ,

for some symmetric tensor Hµν with n− 1 powers of the curvature. As Lovelock

showed [93], this tensor Hµν is the unique tensor with the properties of the Einstein

tensor—in particular, it is the only two-index symmetric tensor with n− 1 powers

of the curvature that is divergenceless:

∇νH
µν = 0.

Regarding the consistency condition similar to (5.13), this observation allows us

to conclude that the only relevant terms among the various contributions to the

anomaly (∆W
σ −∆β

σ)W are

∫
d2nx
√
γ σ

[
(−1)naE2n +

∑
p

bpLp + 1
2
Hij ∂µg

i∂νg
j Hµν

]
+

∫
d2nx
√
γ ∂µσHi ∂νg

iHµν ,
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where Lp are some vanishing anomalies. A consistency condition similar to (5.13)

is thus easily found, and is of course invariant under arbitrariness generated by

contributions similar to (5.17).

A relation of the metric Hij to a positive-definite metric is currently only

known in 2d [77]. A similar relation in higher even d is lacking, but its possible

existence would immediately imply the generalization of Zamolodchikov’s result.

To summarize, in any even spacetime dimension one can find a scalar quantity ã

such that

∂iã = Hijβ
j + ∂[iHj]β

j. (5.19)

The quantity ã becomes the coefficient of the Euler term in the trace anomaly at

the fixed point, but more generally it includes a linear combination of the bps and

a term Hiβ
i. The relation (5.19) immediately implies that

dã

dt
= −Hijβ

iβj,

which, if Hij can be related to a positive-definite metric via the arbitrariness

δHij = Lβz
H
ij with zHij an arbitrary symmetric tensor, is the generalization of the

2d c-theorem.
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Chapter 6

Studies of degrees of freedom in

quantum field theories II: An

unexpected surprise: The

a-theorem in six dimenisions

In the last chapter we established the relation that permits an a-theorem

in d = 2 and d = 4 dimensions: an equation that could imply the monotonic

increase or decrease of a quantity that is stationary at critical points and equal to

the coefficient of the Euler density, a, at those critical points. Here we undertake

the computation of the quantity χIJ in that equation. In the d = 2 case this was

shown to be positive definite, and in the d = 4 case it was shown positive definite

in perturbation theory. In six dimensions, we find that χIJ is actually negative

definite in perturbation theory. We discuss the implications of this computation.

92
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6.1 Introduction

The counting of degrees of freedom in quantum field theories (QFTs) is of

paramount importance in understanding their structure and phases. In particular,

it is often of interest to understand how low-energy, long-range “IR” degrees of

freedom might be related to the underlying microscopic “UV” degrees of freedom.

For example, in quantum chromodynamics we observe protons, pions, etc. at low

energies, but believe them to be made up of quarks and gluons that make up the

microscopic theory.

The most complete understanding of these degrees of freedom exists in

two dimensional QFTs. There, a quantity exists that can be shown to undergo a

monotonically decreasing renormalization group flow from a critical point in the

UV to a critical point in the IR. At the critical points the quantity is stationary

with respect to variations in scale and becomes the central charge c of the Virasoro

algebra that describes the critical point’s conformal field theory, which is also

the coefficient of the topological term (Ricci scalar) in the two-dimensional Weyl

anomaly. This is the result of Zamolodchikov [11].

In the four-dimensional case, which is of great interest to particle physicists,

results are not so definitive. Cardy suggested [14] that the four-dimensional

analog of c is the coefficient of the Euler density in the four-dimensional Weyl

anomaly, a. In fact, it was shown, using heat kernel methods for field theories on

curved backgrounds and Weyl consistency conditions, that a perturbative version

of Zamolodchikov’s result holds [15]. More recently, non-perturbative methods have

made headway into the so-called weak version of the a-theorem, where, instead

of establishing a monotonic flow, a relation between the value of a at the critical

points is established, namely that aUV − aIR > 0.

In this paper we investigate the possibility of an a-theorem in six dimensions

(6D). The six dimensional case is of interest in clarifying the basic structure of any

QFT. For example, in string theoretic constructions of 6D theories from the low
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energy dynamics of M5 branes, the spectrum of operators may be classified without

any knowledge of what Lagrangian “describes” the theory. It may be that the

degrees of freedom of any QFT do not rely on a Lagrangian description, and that

in fact there are more fundamental features that may be elucidated with any such

description. It is with this type of motivation that we pursue a six-dimensional

a-theorem.

In fact, we find that the opposite conclusion of two- and four-dimensional

a-theorems may be drawn in six dimensions, at least in perturbation theory. Namely,

we find that the candidate for an a-theorem singled out by the Weyl consistency

conditions increases monotonically along the renormalization group flow. To come

to such a conclusion, we use the methods developed in [77] and [15]. This involves

constraining the form of the Weyl anomaly from the Abelian nature of the Weyl

group—because the Weyl group is related to a change of scale, this imposes a

particular constraint on the renormalization group properties of quantities in the

anomaly and, in particular, produces a candidate for an a-theorem. In section 6.2

we explain this method, compute the beta functions and anomalous dimensions in

section 6.3, and in section 6.4 we show that the quantity that becomes a at critical

points increases monotonically along the renormalization group flow, at least in

perturbation theory. We discuss the implications of this result in section 6.5.

6.2 The trace anomaly in position space

In this section we outline the method of calculation employed in this paper.

For more details the reader is referred to [95, 96, 97, 98], where such computations

have been thoroughly explained and demonstrated.

In this work we will study quantum field theories defined in spacetime

dimension d by a set of couplings gI and fields φ. For our computations we will use
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dimensional regularization with minimal subtraction so that

gIBare = µk
Iε(gI + LI(g)), φBare = µδεZ1/2(g)φ, (6.1)

for some numbers kI and δ,1 and with LI and Z1/2 containing series of poles in

ε (Z1/2 also contains the unity, Z1/2 = 1 + ε-poles). Then, the beta function and

anomalous dimension are given by

β̂I ≡ µ
dgI

dµ
= −kIgIε+ βI and γ̂ ≡ δε+ Z−1/2µ

dZ1/2

dµ
= δε+ γ,

respectively, where β and γ are the quantum beta function and anomalous dimension

respectively.

Now, in quantum field theory in flat spacetime, wavefunction and coupling

renormalization are enough to render finite correlation functions involving fun-

damental fields. When correlation functions involving composite operators are

included, further counterterms are necessary. A convenient way to deal with these

is by introducing sources for the composite operators, and including counterterms

proportional to spacetime derivatives on those sources. For operators that appear

in the Lagrangian it is enough to take their couplings as spacetime-dependent

sources, gI → gI(x), and introduce counterterms proportional to ∂µg
I(x) [15, 99].

Finally, when a flat-space field theory is lifted to curved space with metric γµν ,

new divergences proportional to the curvatures defined from γµν appear, and thus

further counterterms involving the curvatures are required for finiteness.

In [15] a systematic treatment of such effects was undertaken, and the

general expression

L̃ (φ, g, γ) = L (φ, g, γ)− µ−ελ ·R (6.2)

was proposed, where λ ·R includes all field-independent counterterms, proportional

1Note that the index carried by k is not subject to the summation convention.
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only to curvatures and ∂µg
I(x).2 Also, L already contains wavefunction and

coupling renormalization factors Z1/2 and LI as in (6.1).

The RGE one derives from (6.2) is

(
β̂I

∂

∂gI
+ (γ̂φ) · ∂

∂φ
− ε
)

L̃ = µ−εβλ ·R, (6.3)

which, by (6.2) and the Callan–Symanzik equation, requires

(
ε− β̂I ∂

∂gI

)
λ ·R = βλ ·R. (6.4)

As explained in [15] and we will review in the following, the terms βλ ·R defined by

(6.4) contribute, among others, to the trace anomaly of the theory in curved space.

6.2.1 Background field method

The contribution λ ·R in (6.2) is straightforward to compute in perturbation

theory. Employing the background field method one simply computes the effective

action starting from L , which thus dictates the form of the counterterms λ ·R.

More specifically, we start by splitting the field φ into an arbitrary background

part φb and a fluctuation f ,

φ = φb + f.

We can also introduce a source J , and obtain the effective action W [φb, J, γ]

(generating functional of connected graphs) after we integrate out f :

eW [φb,J,γ] =

∫
Df e−S̃[φ,γ]+

∫
ddx
√
γ J(x)f(x), S̃ =

∫
ddx
√
γ L̃ , (6.5)

where γ is the determinant of the metric γµν .

To continue, let us denote by S(0) the action without any counterterms.

2A term F (φ) that includes all field- curvature- and ∂µg
I(x)-dependent counterterms also has

to be included for finiteness in (6.2), but since it will not be important for our considerations we
will neglect it.
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Then, we expand S(0)[φ, γ] in fluctuations,

S(0)[φ, γ] = S(0)[φb, γ] +

∫
ddx
√
γ
δS(0)

δφ

∣∣∣∣
φb

f +
1

2

∫
ddx
√
γ fMf + Sint[f ], (6.6)

where M = −∇2 + d2V/dφ2, with V the potential in L . Then, by expanding (6.5)

we find that, at the zeroth order,

W (0)[φb, γ] = −S(0)[φb, γ],

and at the one-loop order,

W (1)[φb, γ] = −S̃(1)[φb, γ]− 1
2

ln detM, (6.7)

after we perform in (6.5) the Gaussian integral over f in the third term in the right-

hand side of (6.6) and take J = 0. Here, S(1) contains the one-loop contributions

to Z1/2 and L of (6.1), which are chosen to absorb the infinities coming from the

term −1
2

ln detM so that W (1) is finite. In addition, with the extension (6.2) it is

clear from (6.7) that the one-loop contribution to λ ·R is given by the negative of

the appropriate simple-pole part of −1
2

ln detM :

∫
ddx
√
γ µ−ελ(1) ·R ⊂ −(−1

2
ln detM)pole. (6.8)

Then, from (6.4) and (6.8) we can evaluate β
(1)
λ ·R.

At higher loops the interaction term Sint[f ] in (6.6) is considered and vacuum-

bubble diagrams as well as diagrams with counterterm insertions are constructed.

The counterterms are of course fixed here by the previous loop order, i.e. by

S̃(1). These diagrams can be evaluated in position space, using coincident limits

of propagators according to the diagram topology. With these methods no loop

integrations need to be performed. If we denote by S (2) the contribution of all
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such diagrams, we find

W (2)[φb, γ] = −S̃(2)[φb, γ] + S (2),

which, by (6.2), implies that

∫
ddx
√
γ µ−ελ(2) ·R = −(S (2))pole,

From the simple poles in λ(2) ·R it is straightforward to evaluate β
(2)
λ ·R using

the RGE (6.4). Clearly these computations can be carried out order by order in

perturbation theory.

6.2.2 Heat kernel

Using heat-kernel techniques the evaluation of (−1
2

ln detM)pole is straight-

forward.

At two loops we have to consider the diagrams in Fig. 6.1, where in the

diagram on the right denotes the one-loop counterterm. Note that these are

x y x

Figure 6.1: The diagrams that need to be considered at the two-loop level.

graphs in position space, and that short distance singularities arise here from the

coincident limit of products of position-space propagators.

6.2.3 Trace anomaly

We can define the quantum stress-energy tensor and finite composite opera-

tors by

Tµν(x) = 2
δS̃

δγµν(x)
, [OI(x)] =

δS̃

δgI(x)
,
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where functional derivatives are defined in d spacetime dimensions by

δ

δγµν(x)
γκλ(y) = 1

2
δ κ

(µ δ
λ
ν) δ

d(x, y),
δ

δgI(x)
gJ(y) = δ JI δ

d(x, y),

with X(IYJ) ≡ XIYJ + XJYI , δ
d(x, y) = δd(x − y)/

√
γ(x), where δd(x) is the

usual delta function in d dimensions. At the level of the generating functional we

implement infinitesimal local Weyl transformations with the generators

∆W
σ = 2

∫
ddx
√
γ σγµν

δ

δγµν
, ∆β

σ =

∫
ddx
√
γ σβI

δ

δgI
.

With these definitions it is obvious that

∆W
σW = −

∫
ddx
√
γ σγµν〈Tµν〉, ∆β

σW = −
∫
ddx
√
γ σ〈βI [OI ]〉.

Now, it is easy to see that the term εL̃ in γµνTµν results, after we use (6.3),

in

γµν〈Tµν〉 − 〈γµνTµν〉 ⊃ −µ−εβλ ·R, γµνTµν = βIOI . (6.9)

Equivalently, we can write

∆W
σW −∆β

σW ⊃
∫
ddx
√
γ σµ−εβλ ·R. (6.10)

Terms in the right-hand side of (6.9) have been computed in [15] for field theories

in d = 4. In this work we will compute such terms for a wide class of field theories

in d = 6. As we just saw, these computations give results on the various terms that

appear in the consistency conditions derived from (6.10) [100].
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6.3 Beta functions and anomalous dimensions

The theory we will work with has Lagrangian

L = 1
2
Zij ∂µφi ∂

µφj + 1
3!
µε/2(gZg)ijkφiφjφk. (6.11)

Using background-field and heat-kernel methods the computation of Zij and

(Zg)ijk;lmn is easily done in position space and does not require the calculation

of any integrals.3 These methods have been developed and applied to four-

dimensional theories in [95, 96, 97, 98]. They have also been used in six-dimensions

in [101, 102, 103, 104]. In dimensional regularization with d = 6− ε the Z’s are of

course a series of poles in ε, and the residues of the simple ε-poles determine the

anomalous dimension γij of φi and the beta function βijk.

The anomalous dimension is defined by

γ = −Z−1/2dZ
1/2

dt
, t = − ln(µ/µ0),

where the RG time t is defined to increase as we flow to the IR. At one loop we find

γ(1) =
1

64π3

1

12
, (6.12)

where we use the diagram to denote the corresponding contraction of the couplings,

i.e.

= giklgjkl.

The two-loop anomalous dimension is

γ(2) =
1

(64π3)2

1

18

(
− 11

24

)
. (6.13)

For the case of a single field φ our results (6.12) and (6.13) reduce to the results

3Comparing with (6.1) we can write gZg = g + L, with a L a series of poles in ε.
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of [105] (see also [101, 102, 103, 104]).

The beta function is defined by

β = µ
dg

dµ
= −dg

dt
.

At one loop we find

β(1) = − 1

64π3

(
− 1

12

)
, (6.14)

where permutations of the free indices in the wavefunction-renormalization correc-

tion are understood, i.e.

= gijlglmngkmn + permutations.

Eq. (6.14) reproduces the result of [105] (see also [101, 102, 103, 104]) in the case of

a single field φ. In that case β(1) has a negative sign, and hence the corresponding

theory is asymptotically-free.

The two-loop beta function is

β(2) = − 1

(64π3)2

1

2

(
− 7

36
+

1

2

− 1

9
+

11

216

) (6.15)

The first contribution to (6.15) is non-planar. For the seemingly asymmetric vertex

corrections in (6.15) (second and third term) a symmetrization is understood; for

example,

represents + + .

In the single-field case (6.15) reproduces the result of [105] (see also [102, 103, 104]4),

4There is a typo in the relevant equation in [104].
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which, just like β(1), is also negative.

6.4 The metric in coupling space

Using heat kernel techniques we have computed

λ(2) ·R ⊃ 1

(64π3)2ε

1

12960
Hµν

1 gijk∇µ∂νgijk, (6.16)

where

H1µν = 2(3E4γµν − 2RRµν + 4R κ
µ Rκν + 4RκλRκµλν − 2Rκλρ

µRκλρν),

with E4 given in even d > 2 by E4 = 2
(d−2)(d−3)

(RκλµνRκλµν − 4RκλRκλ +R2). From

(6.16) and (6.10) we can extract

H1
IJ = − 1

(64π3)2

1

3240
δIJ and H1

I = − 1

(64π3)2

1

6480
gI , (6.17)

where we use notation of [100] and denote I = (ijk). The results (6.17) are

unambiguous and scheme-independent. As we observe, the leading, two-loop

contribution to the metric is negative, and so the consistency condition

∂I ã = 1
6
H1
IJβ

J + 1
6
∂[IH1

J ]β
J , ã = a+ 1

6
b1 − 1

90
b3 + 1

6
H1
Iβ

I . (6.18)

derived in [100], and its consequence

dã

dt
= −1

6
H1
IJβ

IβJ , (6.19)

cannot possibly lead to a strong a-theorem for ã.

Now, the theory (6.11) has only the Gaussian fixed point in perturbation the-

ory. Non-perturbatively there may be a non-trivial fixed point, but our results (6.17)
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cannot be used to extract any consequences of (6.19) beyond perturbation theory.

Nevertheless, as long as the flow of our theory can be described perturbatively, the

quantity ã is monotonically increasing.

6.4.1 Perturbative contributions to a

Another use of the consistency conditions is the evaluation of some quantities

at higher loop orders. From the consistency conditions

b1 = 1
3
(FI − 1

4
∂Ib14 − 1

4
I7
I )βI , (6.20a)

b3 = (2FI + ∂Ib13 − ∂Ib14 + I6
I − I7

I )βI , (6.20b)

it is clear that at two loops b
(2)
1 = b

(2)
3 = 0. This, in conjunction with (6.18)

and (6.17), implies that a(2) = 0. These results have been verified by our explicit

computations. Now, at two loops we have also found

F (2)
ijk =

1

(64π3)2

1

1080
gijk, b

(2)
13 = b

(2)
14 = 0, I6(2)

ijk = I7(2)
ijk = 0,

and so we can compute

b
(3)
1 = 1

6
b

(3)
3 = − 1

(64π3)3

1

3240

(
− 1

4

)
.

With these results and using (6.18) with (6.14) and (6.17) we find that the three-loop

contribution to a is

a(3) =
1

(64π3)3

7

388800

(
− 1

4

)
(6.21)

and for the quantity ã

ã(3) =
1

(64π3)3

1

77760

(
− 1

4

)
. (6.22)
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6.5 Discussion

Using the result of our computation, eq. (6.17), in the evolution eq. (6.19),

or equivalently, the explicit form of ã in eq. (6.22), it is apparent that, in pertur-

bation theory, the quantity ã in eq. (6.19) actually increases as one decreases the

renormalization scale, contrary to intuition developed in d = 2, 4 dimensions where

ã seemed to count the degrees of freedom in a QFT.

This result should be taken with two comments in mind. Firstly, that the

result is a perturbative one, and we cannot say anything about non-perturbative

regimes of six-dimensional QFTs. And secondly, that there are no known perturba-

tive critical points other than the single, trivial one at λijk = 0 so in this context

renormalization group flows do not connect pairs of critical points 5. However, it is

still true that, with eq. (6.19) identical in d = 2, 4, and 6 dimensions, the strong

version of the a-theorem holds perturbatively in d = 2, 4 but not in d = 6.

We do not know what is the reason for this failure. One possibility may be

the unstable nature of the theory we are considering. After all, a cubic potential is

unbounded below. However, the state 〈φi(x)〉 = 0 is perturbatively stable and our

computations are valid only in the perturbative regime. Moreover, the analogous

case in 4D, namely an inverted quartic potential, is also perturbatively stable and,

however, does satisfy a perturbative a-theorem (since the metric in theory space,

χIJ , is perturbatively positive in 4D regardless of the sign of the quartic coupling

constants). Another possibility is that a flow between critical points is required for

an a-theorem to hold, but the only critical point in the class of theories in eq. (6.11)

is the Gaussian UV-fixed point at λijk = 0. But, again comparing to known cases,

a perturbative strong a-theorem holds for scalar-plus-spinor theories in 4D in spite

of only having a Gaussian IR fixed point at the origin of coupling constant space.

a-theorems can be used to restrict proposed dynamics of strongly interacting

5This does not mean that they do not exist. Non-trivial, perturbative flows between a UV and
IR critical point have been studied in 6− ε dimensions in the O(N) model recently, as in [106]. It
is an open question as to whether or not such results could be extended to 6 dimensions.
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models [14]. If our result that ã increases in flows towards the IR holds even

non-perturbatively, one could envision using it to restrict putative dynamics of

strongly interacting QFT in 6D. In this sense, the existence of an “anti-a-theorem”

may be just as useful as a normal one. It is therefore of interest to investigate renor-

malization group flows in the vicinity of non-Lagrangian critical QFTs that have

been formulated through studies of low energy dynamics of M5 branes. Of course,

another avenue of research is the establishment of the theorem non-perturbatively.

We would like to thank Ken Intriligator and Jaewon Song for valuable

discussions. This work was supported in part by the US Department of Energy

under contract DE-SC0009919.

This chapter is a reprint of material that is to be submitted to Physical

Review Letters. I am a co-author on this work.



Appendix A

Mass Splitting in the 50 of SU(5)

In this appendix we show that the (6, 1)4/3 and (6̄, 1)−1/3 of the 50 (Φ)

can be made arbitrary light while the masses of the other components remain

close to the GUT scale. The splitting happens during the spontaneous breaking

of SU(5)→ SU(3)C × SU(2)L × U(1)Y by the vev of the adjoint scalar, 〈H24〉 =

v24diag(−2,−2,−2, 3, 3). For convenience, we label each component of the 50 by

(φ1, φ2, φ3, φ4, φ5, φ6) = ((6̄, 3)−1/3, (6, 1)4/3, (8, 2)1/2, (3̄, 2)−7/6, (3, 1)−1/3, (1, 1)2).

To see that the multiplet does indeed split, consider the renormalizable scalar

potential of the form

V (Φ) = m2
1ΦABCDΦ†ABCD +

m2
2

v24

ΦABCDΦ†ABCE(H24)ED

+
m2

3

v2
24

ΦABCDΦ†ABEF (H24)EC(H24)FD,

(A.1)

where mis are at their natural value around the GUT scale, ΦABCD is antisymmetric

in A ↔ B, C ↔ D, symmetric in (AB) ↔ (CD) with εEABCDΦABCD = 0 and

A, . . . , F are SU(5) indices. Expanding around H24 = 〈H24〉, the mass of each

106
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component of Φ is

m2
φ1

= m2
1 +

1

2
m2

2 − 6m2
3,

m2
φ2

= m2
1 −m2

2 + 4m2
3,

m2
φ3

= m2
1 −

3

4
m2

2 −m2
3,

m2
φ4

= m2
1 +

7

4
m2

2 +
3

2
6m2

3,

m2
φ5

= m2
1 +

1

2
m2

2 +
1

4
m2

3,

m2
φ6

= m2
1 + 3m2

2 + 9m2
3.

(A.2)

Thus by tuning m1, m2 and m3, the masses of (φ1, φ2) = ((6̄, 3)−1/3, (6, 1)4/3) can

be made arbitrary light while other the components remain heavy.



Appendix B

Relevant Observables in B Decays

Here we review the definition of various decay observables employed in our

analysis. We will follow the convention of Ref. [1]. We denote an amplitude for the

B-meson, B, decaying to final state f by Af . The CP-conjugated decay is denoted

by Af̄ . Since we are interested in the s-wave 2-body decay of the B, the partial

decay width is given by

Γf =
1

8π

p∗
m2
B

|Af |2 (B.1)

where p∗ is the magnitude of the 3-momentum of one of the daughter particles.

The branching ratio, B, can then be computed from the above partial width.

We are also interested in the CP-violating properties of the decays. For

decays of charged Bs we can define the direct CP-violation as

ACP ≡
|Af̄ |2 − |Af |2

|Af̄ |2 + |Af |2
. (B.2)

In the case of the neutral B0 decay where the final state f is common to both

B0 and B
0

decays, we have to take into account B0 −B0
mixing in defining CP-

violating parameters. This occurs when f is a CP eigenstate, i.e. f̄ = ±f . The

108
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two CP-violating parameters can be defined as 1

Cf ≡
1− |λf |2

1 + |λf |2
, Sf ≡

2Im(λf )

1 + |λf |2
, (B.3)

where

λf =
V ∗tbVtd
VtbV ∗td

Af
Af

. (B.4)

In case of B0 → K0π0 decay, neutral kaon mixing contributes an extra factor of

−V ∗cdVcs/VcdV ∗cs in the definition of λf .

1Here we ignore the effect of CP-violation in B0 −B0
mixing which is less than 1%.



Appendix C

Conventions and a basis for

curvatures in six-dimensions

Throughout this paper we follow the conventions of Misner, Thorne and

Wheeler [107] for the Riemann tensor. For the Weyl variation of the metric we

choose

γµν → e−2σγµν .

Infinitesimally, then, δσγµν = −2σγµν and so δσγ
µν = 2σγµν (we do not use δσ for

an infinitesimal σ, since no confusion can arise).

It is important to classify the curvature terms of various mass dimensions.

These will be used subsequently to construct all possible terms that can appear in

(∆W
σ −∆β

σ)W . In two and four spacetime dimensions this is very easy, but in six it

becomes a rather cumbersome problem, plagued by complications due to the large

number of monomials and the identities of the Riemann tensor.

A complete basis B2 of dimension-two curvature terms that can be used in

∆W
σW is given by the Ricci scalar, the Einstein tensor, and the Riemann tensor,

1
d−1

R, Gµν , Rκλµν , (C.1)
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where we define the Einstein tensor as

Gµν = 2
d−2

(Rµν − 1
2
γµνR) (d ≥ 3),

where Rµν is the Ricci tensor. Taking a derivative leads to three dimension-three

terms, but, by diffeomorphism invariance and simple power counting, only two can

be used in ∆W
σW , namely

1
d−1

∂µR and ∇κGµν . (C.2)

These form the basis B3.

At the level of dimension-four curvature terms only terms with up to two

free indices are allowed in ∆W
σW . We consider the basis B4 with elements

E4 = 2
(d−2)(d−3)

(RκλµνRκλµν − 4RκλRκλ +R2),

I = RκλµνRκλµν − 4
d−2

RκλRκλ + 2
(d−1)(d−2)

R2, 1
(d−1)2R

2, 1
d−1

�R,

H1µν = (d−2)(d−3)
2

E4γµν − 4(d− 1)H2µν + 8H3µν + 8H4µν − 4Rκλρ
µRκλρν ,

H2µν = 1
d−1

RRµν , H3µν = R κ
µ Rκν , H4µν = RκλRκµλν ,

H5µν = �Rµν , H6µν = 1
d−1
∇µ∂νR.

(C.3)

All H1,...,6 are symmetric. I is the Weyl tensor squared, I = W κλµνWκλµν , and
√
γE4 is the four-dimensional Euler density. In our conventions the Weyl tensor is

given by

Wκλµν = Rκλµν + 2
d−2

(γκ[νRµ]λ + γλ[µRν]κ) + 2
(d−1)(d−2)

γκ[µγν]λR (d ≥ 3).

The dimension-five curvature terms we need to consider are given by

∂µE4, ∂µI,
1

(d−1)2R∂µR,
1
d−1

∂µ�R, ∇νH(2,3,4)µν , (C.4)
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and they form the basis B5. Note that we do not need ∇νH1µν , for ∇νH1µν = 0.1

Similarly, ∇νH(5,6)µν are not necessary, for

∇νH5µν = ∇ν{(d− 1)H2µν − 2H4µν − 1
2
γµν [

1
8
(d− 2)2E4− d−2

4(d−3)
I + d−2

4(d−1)
R2−�R]}

and

∇νH6µν = ∇ν [H2µν − 1
d−1

γµν(
1
4
R2 −�R)].

The corresponding matrix of coefficients of the remaining terms in ∇µB4 has full

rank, which shows that B5 is a good basis.

Finally, a complete basis of scalar dimension-six curvature terms was con-

structed in [91]. Its building blocks are K1,...,17 given by

K1 = R3, K2 = RRκλRκλ, K3 = RRκλµνRκλµν , K4 = RκλRλµR
µ
κ,

K5 = RκλRκµνλR
µν , K6 = RκλRκµνρR

µνρ
λ , K7 = RκλµνRµνρσR

ρσ
κλ,

K8 = RκλµνRρλµσR
ρσ
κ ν , K9 = R�R, K10 = Rκλ�Rκλ,

K11 = Rκλµν �Rκλµν , K12 = Rκλ∇κ∂λR, K13 = ∇κRλµ∇κRλµ,

K14 = ∇κRλµ∇λRκµ, K15 = ∇κRλµνρ∇κRλµνρ,

K16 = �R2, K17 = �2R.

At the fixed point we can express the trace anomaly in the basis K’s, and the

consistency condition implies that there are seven combinations of K’s whose

coefficient has to be set to zero [91, 92]. Thus, we can arrange the K’s in the basis

of [92],

I1 = 19
800
K1 − 57

160
K2 + 3

40
K3 + 7

16
K4 − 9

8
K5 − 3

4
K6 +K8,

I2 = 9
200
K1 − 27

40
K2 + 3

10
K3 + 5

4
K4 − 3

2
K5 − 3K6 +K7,

1In any even dimension d, the Weyl variation of
√
γEd is

√
γ Hµν∇µ∂νσ for some symmetric

tensor Hµν . Since δσ
∫
ddx
√
γEd = 0, it follows that ∇µ∇νHµν = 0. In [93] it was shown,

however, that Hµν is actually divergenceless, i.e. ∇νHµν = 0.
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I3 = −11
50
K1 + 27

10
K2 − 6

5
K3 −K4 + 6K5 + 2K7 − 8K8

+ 3
5
K9 − 6K10 + 6K11 + 3K13 − 6K14 + 3K15,

E6 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8,

J1 = 6K6 − 3K7 + 12K8 +K10 − 7K11 − 11K13 + 12K14 − 4K15,

J2 = −1
5
K9 +K10 + 2

5
K12 +K13,

J3 = K4 +K5 − 3
20
K9 + 4

5
K12 +K14,

J4 = −1
5
K9 +K11 + 2

5
K12 +K15,

J5 = K16,

J6 = K17,

which makes manifest the splitting of anomalies at the fixed point into type A (E6)

and B (I1,2,3) according to the classification of [94], and also trivial (J1,...,6). To be

more specific, I1,2,3, which can be expressed as

I1 = W κλµνWρλµσW
ρσ
κ ν ,

I2 = W κλµνWµνρσW
ρσ
κλ,

I3 = W κλµν(δ ρ
κ � + 4R ρ

κ − 6
5
δ ρ
κ R)Wρλµν − 2

3
J1 − 13

3
J2 + 2J3 + 1

3
J4,

lead to locally Weyl-invariant densities, while J1,...,6 can be set to zero in the trace

anomaly by a choice of local counterterm, just like �R in four dimensions. The piece

−2
3
J1− 13

3
J2 +2J3 + 1

3
J4 in I3 is necessary for

√
γI3 to be locally Weyl-invariant [92].

For our purposes all K’s are needed, since we are interested in consistency

conditions valid along the RG flow. It is convenient to work in the basis B6 given
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by

I1, I2, I3, E6,

L1 = − 1
30
K1 + 1

4
K2 −K6, L2 = − 1

100
K1 + 1

20
K2,

L3 = − 37
6000

K1 + 7
150
K2 − 1

75
K3 + 1

10
K5 + 1

15
K6, L4 = − 1

150
K1 + 1

20
K3,

L5 = 1
30
K1, L6 = − 1

300
K1 + 1

20
K9, L7 = K15,

J1, J2, J3, J4,
1
25
J5,

1
25
J6.

(C.5)

The form of L1,...,6 is chosen based on the fact that these are the terms that shift

the coefficients of the trivial anomalies at the fixed point, i.e. δσ
∫
d6x
√
γ L1,...,6 =∫

d6x
√
γ σJ1,...,6.

The choice of bases is arbitrary, and the form of the consistency conditions

depends on the choice. Nevertheless, the essential conclusions derived from the

consistency conditions are basis-independent.



Appendix D

Terms in the six-dimensional

Weyl anomaly

In six spacetime dimensions there are ninety five independent terms that can

contribute to (∆W
σ −∆β

σ)W . We include them in this appendix for easy reference.

In general, we can write

∆W
σW = ∆β

σW +
65∑
p=1

∫
d6x
√
γ σTp +

30∑
q=1

∫
d6x
√
γ ∂µσZ µ

q .

Clearly, the Tp and Z µ
q are dimension-six and dimension-five terms respectively,

that can involve curvatures as well as derivatives on the couplings gi. In writing

down the various terms below, we neglect total derivatives, and we keep in mind

the convenient form in which we want to obtain the consistency conditions.

If only curvatures are included, then we have the terms

T1 = −c1I1, T2 = −c2I2, T3 = −c3I3,

T4 = −aE6, T5,...,11 = −b1,...,7L1,...,7.

We call these the (0, 6) terms, for only curvatures and derivatives on curvatures
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contribute to the power counting. We also have (0, 5)µ terms, given by

Z µ
1 = −b8 ∂

µE4, Z µ
2 = −b9 ∂

µI, Z µ
3 = − 1

25
b10R∂

µR,

Z µ
4 = −1

5
b11 ∂

µ�R, Z µ
5,6,7 = −b12,13,14∇νH

µν
2,3,4.

Next, we can allow one power of ∂µg
i to get

T12 = I1
i ∂µg

i ∂µE4, T13 = I2
i ∂µg

i ∂µI, T14 = 1
25
I3
i ∂µg

iR∂µR,

T15 = 1
5
I4
i ∂µg

i ∂µ�R T16,17,18 = I5,6,7
i ∂µg

i∇νH
µν
2,3,4,

which are the (1, 5) terms. The (1, 4)µ terms are

Z µ
8 = G1

i ∂
µgiE4, Z µ

9 = G2
i ∂

µgi I, Z µ
10 = 1

25
G3
i ∂

µgiR2,

Z µ
11 = 1

5
G4
i ∂

µgi�R, Z µ
12,...,17 = H1,...,6

i ∂νg
iHµν

1,...,6.

The (2, 4) terms are given by

T19 = 1
2
G1
ij ∂µg

i∂µgj E4, T20 = 1
2
G2
ij ∂µg

i∂µgj I, T21 = 1
50
G3
ij ∂µg

i∂µgj R2,

T22 = 1
10
G4
ij ∂µg

i∂µgj �R, T23,...,28 = 1
2
H1,...,6
ij ∂µg

i∂νg
j Hµν

1,...,6,

while the (2, 3)µ terms are

Z µ
18 = Fi∇κ∂λg

i∇µGκλ, Z µ
19 = 1

5
Ei�gi ∂µR, Z µ

20 = 1
5
Eij ∂µgi∂νgj ∂νR.

The (3, 3) terms are

T29 = Fij ∂κgi∇λ∂µg
j∇κGλµ, T30 = F ′ij ∂κgi∇λ∂µg

j∇λGκµ,

T31 = 1
2
Fijk ∂κgi∂λgj∂µgk∇κGλµ, T32 = 1

5
Êij ∂µgi�gj ∂µR,

T33 = 1
10
Eijk ∂µgi∂νgj∂νgk ∂µR,
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and the (3, 2)µ terms are

Z µ
21 = Dij ∂κgi∇λ∂νg

j Rµλκν , Z µ
22 = Ci ∂ν�giGµν ,

Z µ
23 = Cij ∂κgi∇ν∂

κgj Gµν ,

Z µ
24 = C ′ij ∂νgi�gj Gµν , Z µ

25 = 1
5
Bij ∂µgi�gj R.

The (4, 2) terms are

T34 = Dijk ∂κgi∂µgj∇λ∂νg
k Rκλµν , T35 = 1

4
Dijkl ∂κgi∂λgj∂µgk∂νglRκλµν ,

T36 = Ĉij∇µ∂νg
i�gj Gµν , T37 = 1

2
Ĉ ′ij∇κ∂µg

i∇κ∂νg
j Gµν ,

T38 = 1
2
Cijk ∂µgi∂νgj�gkGµν ,

T39 = C ′ijk ∂µgi∂κgj∇κ∂νg
kGµν , T40 = 1

2
C ′′ijk ∂κgi∂κgj∇µ∂νg

kGµν ,

T41 = 1
4
Cijkl ∂µgi∂νgj∂κgk∂κglGµν , T42 = 1

5
Bi�2giR,

T43 = 1
10
B̂ij �gi�gj R,

T44 = 1
10
B̂′ij∇µ∂νg

i∇µ∂νgj R, T45 = 1
10
Bijk ∂µgi∂µgj�gk R,

T46 = 1
10
B′ijk ∂µgi∂νgj∇µ∂νgk R, T47 = 1

20
Bijkl ∂µgi∂µgj∂νgk∂νglR,

and the (5, 0)µ terms are

Z µ
26 = Aij ∂ν�gi∇µ∂νgj, Z µ

27 = A′ij ∂µgi�2gj, Z µ
28 = Aijk ∂νgi∇µ∂νgj�gk,

Z µ
29 = A′ijk ∂κgi∇µ∂λg

j∇κ∂λgk, Z µ
30 = 1

2
Aijkl ∂νgi∂νgj∂µgk�gl.
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Finally, the (6, 0) terms are

T48 = Ai�3gi, T49 = Âij �2gi�gj, T50 = 1
2
Â′ij ∂µ�gi∂µ�gj,

T51 = 1
2
Â′′ij∇κ∇λ∂µg

i∇κ∇λ∂µgj, T52 = 1
8
Âijk�gi�gj�gk,

T53 = 1
2
Â′ijk∇κ∂µg

i∇κ∂νg
j∇µ∂νgk, T54 = Â′′ijk ∂µgi�gj∂µ�gk,

T55 = Ǎijk ∂µgi∇µ∂νg
j∂ν�gk, T56 = 1

2
Ǎ′ijk ∂µgi∂µgj�2gk,

T57 = 1
2
Ǎ′′ijk ∂µgi∂νgj∇µ∂ν�gk, T58 = 1

4
Âijkl ∂µgi∂µgj�gk�gl,

T59 = 1
4
Â′ijkl ∂κgi∂κgj∇µ∂νg

k∇µ∂νgl, T60 = 1
2
Â′′ijkl ∂κgi∂λgj∇κ∂µg

k∇λ∂µgl,

T61 = 1
2
Ǎijkl ∂µgi∂νgj∇µ∂νgk�gl, T62 = 1

2
Ǎ′ijkl ∂κgi∂λgj∂µgk∇κ∇λ∂µgl,

T63 = 1
4
Aijklm ∂µgi∂µgj∂νgk∂νgl�gm, T64 = 1

4
A′ijklm ∂κgi∂κgj∂λgk∂µgl∇λ∂µgm,

T65 = 1
8
Aijklmn ∂κgi∂κgj∂λgk∂λgl∂µgm∂µgn.

Note that when we have more than two derivatives on a coupling only one

ordering of the derivatives is independent. That is because all other orderings

can be produced by commuting covariant derivatives, a process which introduces

Riemann tensors or its contractions. This leads to terms with curvature tensors

that we have already included.

The scalar quantities a, b1,...,14 and c1,2,3 are functions of the couplings

gi. All A, . . . , I are also functions of the couplings, but not all of them are

tensors under reparametrizations in the space of couplings, owing to the fact

that �gi transforms inhomogeneously under gi → ḡi(g); more specifically, �ḡi =

∂j ḡ
i�gj + ∂j∂kḡ

i ∂µg
j∂µgk. Eijk in T33 is an example of this, because of the �gj in

T32.
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