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1  |  INTRODUC TION

Nitric oxide (NO), a free radical molecule, is synthesized in almost 
all tissues, including the skin. While excessive NO can provoke ox-
idative stress, leading to the development of a variety of systemic 
disorders, physiological levels of NO are required to maintain normal 
cellular function. Insufficiency of NO is linked to the development of 
a number of disorders, including hyperlipidemia, diabetes, hyperten-
sion, and to the severity of atherosclerosis.1 For example, deficiency 
in endothelial nitric oxide synthase (eNOS) results in increased blood 
pressure in mice.2,3 Accordingly, knockout of eNOS alone lowers sur-
vival rates by ≈50%, while knockout of all three NOS isoforms, induc-
ible NOS (iNOS), neuro NOS (nNOS) and eNOS, reduces 10-month 

survival rate of mice by 80%.4 In premature lambs, inhalation of low 
doses of NO decreases neutrophil infiltration and myeloperoxidase 
activity, while increasing pulmonary blood flow.5 NO also exerts 
antimicrobial properties.6,7 Topical applications of a NO donor in-
crease erythropoietin production in the kidney,8 and inhalation of 
NO improves pulmonary hypertension in premature neonates.9 In 
contrast, blockade of NO synthesis decreases T regulatory cells, 
worsens renal damage and increases blood pressure in rats.10–12 
Studies have also demonstrated an important regulatory role for NO 
in cutaneous functions. Previous studies showed that NO stimulates 
keratinocyte migration in vitro,13 while deficiency in iNOS delays 
cutaneous wound healing.14 Conversely, either topical applications 
or peritoneal injections of a NO donor accelerate cutaneous wound 
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Abstract
Nitric oxide (NO), a free radical molecule synthesized by nitric oxide synthases (NOS), 
regulates multiple cellular functions in a variety of cell types. These NOS, including 
endothelial NOS (eNOS), inducible NOS (iNOS) and neural NOS (nNOS), are expressed 
in keratinocytes. Expression levels of both iNOS and nNOS decrease with ageing, and 
insufficient NO has been linked to the development of a number of disorders such as 
diabetes and hypertension, and to the severity of atherosclerosis. Conversely, exces-
sive NO levels can induce cellular oxidative stress, but physiological levels of NO are 
required to maintain the normal functioning of cells, including keratinocytes. NO also 
regulates cutaneous functions, including epidermal permeability barrier homeostasis 
and wound healing, through its stimulation of keratinocyte proliferation, differentia-
tion and lipid metabolism. Topical applications of a diverse group of agents which 
generate nitric oxide (called NO donors) such as S-nitroso-N-acetyl-D,L-penicillamine 
(SNAP) can delay permeability barrier recovery in barrier-disrupted skin, but iNOS is 
still required for epidermal permeability barrier homeostasis. This review summarizes 
the regulatory role that NO plays in epidermal permeability barrier functions and the 
underlying mechanisms involved.
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healing.15–18 This evidence demonstrates a regulatory role of NO in 
the biological functioning of multiple systems/organs.

The epidermal permeability barrier, residing in the stratum cor-
neum, protects against excessive water loss and regulates water-
soluble substances in and out of the body. Formation of the epidermal 
permeability barrier is largely regulated by epidermal lipid produc-
tion and expression of keratinocyte differentiation marker-related 
proteins,19 so any factors that regulate keratinocyte differentiation 
and lipid production can affect this barrier. Previous studies showed 
that NO regulates keratinocyte proliferation and differentiation as 
well as epidermal permeability barrier homeostasis.20–22

2  |  PRODUC TION AND REGUL ATION OF 
NITRIC OXIDE

NO synthases (NOS) (EC 1.14.13.39) convert arginine to citrulline, 
generating NO (Figure 1). Flavin mononucleotide, flavin adenine di-
nucleotide, nicotinamide adenine-dinucleotide phosphate and (6R
- )5,6,7,8-tetrahydro-L-biopterin are cofactors (which help catalyst 
activity) of NOS. The three major isoforms of NOS; that is nNOS, 
iNOS and eNOS, are preferentially expressed in different tissues. 
nNOS, also termed NOS1, is mainly expressed in neurons and the 
brain, while eNOS, also referred to as NOS3, is primarily expressed 
in endothelial cells. iNOS (NOS2) is normally expressed at low levels 
in almost all tissues. Both eNOS and nNOS are constitutively ex-
pressed in all tissues, while keratinocytes notably express all three 
NOS isoforms.23,24 In general, the physiological functions of nNOS-
generated NO include synaptic plasticity in the central nervous sys-
tem, central regulation of blood pressure, smooth muscle relaxation 
and vasodilatation, while eNOS-generated NO positively regulates 
vasodilation and angiogenesis, and negatively regulates platelet ag-
gregation and leucocyte adhesion.25 The essential role of NO gener-
ated by iNOS is non-specific defense against microorganisms. The 
exact functions of these NOS in the epidermis have not been well 
defined yet.

A number of factors regulate NOS expression and activity. 
While physiologic levels of intracellular calcium regulate activity of 
eNOS and nNOS via calmodulin-calcium interaction,26 high calcium 
levels increase the binding of calmodulin to NOS, leading to an in-
crease in NO synthesis. But in certain instances, eNOS can synthe-
size NO independently of calcium in response to certain stimuli.20 
Moreover, expression levels of eNOS and nNOS are also regu-
lated by physical stimuli (such as heat and light exposure), irritant 
and allergic agents, sex hormones, cytokines, growth factors and 

bacterial lipopolysaccharides.26 While iNOS activity is regulated by 
calcium-dependent and -independent signalling pathways in some 
cell types,27 bacterial infection can increase both iNOS expression 
and NO production.28 Regulation of NOS expression by certain 
stimuli is organ specific. For instance, bone fractures upregulate 
expression levels of mRNA for all three NOS29; gamma irradiation 
increases iNOS expression in the ileum, but not in the colon30; and 
either intravenous or intraperitoneal injection of lipopolysaccharide 
markedly increases iNOS expression in the ileum, but not in the 
duodenum.31,32

In the epidermis, cutaneous wounding and certain growth factors 
can increase nNOS expression in keratinocytes.33 Mechanical stimu-
lation of the skin increases NO production by both nNOS and eNOS 
in the epidermis,34 and both UVB and UVA irradiation increase iNOS 
expression in keratinocytes.35,36 The potency of interferon gamma-
induced iNOS expression in keratinocytes is dependent on tissue 
origins. A more dramatic increase in iNOS expression was observed 
in epidermal keratinocytes than in either HaCat or CaSki cells.37 A 
recent study demonstrated an elevation in iNOS mRNA expression 
following acute disruption of the epidermal permeability barrier.22 
In addition to enzymatic production of NO, non-enzymatic decom-
position of photo-reactive nitrogen oxides can produce NO in the 
skin. For example, UVA irradiation (40 J/cm2) of either human skin 
or skin homogenates can increase NO content by ≈90%.38 Because 
inhibition of NOS does not attenuate UVA-induced increase in NO 
production in skin homogenates, UVA irradiation-induced produc-
tion of NO is independent of NOS in skin homogenates. Thus, UVA-
induced NO production can also be independent of NOS in the skin. 
Collectively, many endogenous and exogenous factors can regulate 
NO production in keratinocytes.

3  |  REGUL ATION OF EPIDERMAL 
PERME ABILIT Y BARRIER BY NO

The role of NO in regulating epidermal permeability barrier homeo-
stasis was first shown by the acceleration of epidermal permeabil-
ity barrier recovery following topical application of either a specific 
nNOS inhibitor (Nω-propyl-l-arginine) or a broad NOS inhibitor (l-
NG-nitro-L-arginine methyl ester) immediately after barrier disrup-
tion with tape-stripping, while in contrast, topical application of a 
NO donor to barrier-disrupted skin delayed epidermal permeability 
barrier recovery.39 This negative impact of NO on epidermal per-
meability barrier recovery was further demonstrated by the accel-
eration of permeability barrier recovery in both nNOS and eNOS 
knockout mice, but not in iNOS knockout mice.39,40 However, recent 
studies by Dang et al. demonstrated a need for iNOS in epidermal 
permeability barrier homeostasis.22 First, disruption of the epider-
mal permeability barrier increased expression levels of iNOS mRNA 
by over onefold in mouse epidermis, consistent with previous find-
ings that barrier disruption increases NO release in the epidermis.39 
While iNOS deficiency delays permeability barrier recovery, topical 
applications of NO donors largely corrected the permeability barrier F I G U R E  1  Schematic diagram of nitric oxide synthesis
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abnormality in iNOS knockout mice.22 The discrepant results be-
tween various studies in iNOS knockout mice likely can be attributed 
to the differences in methodology. In one study which showed no 
alterations in barrier recovery in iNOS knockout mice,40 ears were 
used to assess barrier recovery. Because inflammatory reactions to 
the same stimuli are more severe on the ears than on the flanks of 
normal mice,41 tape-stripping-induced inflammation and NO release 
could be less in the ear of iNOS-deficient mice than in the ears of 
normal mice. Reduced inflammation and NO production could ben-
efit epidermal function in the skin of iNOS knockout mice, because 
excessive inflammation and/or excessive NO levels can compromise 
epidermal function and induce more inflammation.42,43 Thus, de-
pending on the amount of NO levels, barrier recovery can be normal 
or accelerated on the ears of NOS-deficient mice. In the other study, 
barrier recovery was assessed on the mouse flanks,22 where inflam-
mation and NO are less prominent than on the ears. Although too 
much NO can be harmful, lower levels of NO benefit lipid processing 
and keratinocyte differentiation,20,44–46 which are both required for 
epidermal permeability barrier function. But, because of even lower-
than-normal NO levels, delayed barrier recovery can be observed 
on the flanks of iNOS knockout mice. However, a side-by-side com-
parison of barrier recovery between the ears and the flanks of iNOS 
knockout mice would be needed to validate the above speculations. 
Moreover, the topical NO donor-induced delay in barrier recovery in 
barrier-disrupted mouse skin could also be ascribed to excessive NO, 
leading to impaired epidermal function. Because barrier disruption 
alone already increases NOS mRNA expression and NO release,22,39 
topical application of NO to barrier-disrupted skin will further el-
evate NO levels, likely resulting in a deterioration of epidermal func-
tion. Another study revealed that addition of the NO donor, 3-ethyl-
3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene (10 μM), to cultured 
keratinocytes decreased transepithelial electrical resistance (TEER) 
by ≈60%, indicating transepithelial permeability barrier dysfunction, 
while increasing lucifer yellow paracellular flux by 75% to 100%.47,48

In support of the negative impact of NO on the epidermal 
permeability barrier in barrier-disrupted skin (a condition already 
showing excessive NO levels), Ormerod et al. showed that a topical 
NOS inhibitor (NG-nitro-L-arginine methyl ester) lowered transepi-
dermal water loss rates in human skin irritated with sodium lauryl 
sulphate.49 UVB is another inducer of NO production, and it com-
promises the transepithelial barrier.50,51 Inhibition of NOS by NG-
nitro-L-arginine methyl ester also improved the tight junction barrier 
in UVB-irradiated keratinocytes.47 Irradiation of keratinocytes with 
UVB (5  mJ/cm2) reduced claudin 1 expression by ≈50% while in-
ducing an increase in expression levels of eNOS protein by ≈75%, 
accompanied by significant increases in lucifer yellow paracellular 
flux and reduction in TEER, indicative of a defective transepithelial 
permeability barrier. In addition, inhibition of eNOS attenuated UVB 
irradiation-induced changes in both lucifer yellow paracellular flux 
and TEER.47 Together, these data suggest that NO is required for 
normal permeability barrier function, while excessive NO can com-
promise epidermal permeability barrier. Although certain inflamma-
tory dermatoses such as eczematous dermatitis and psoriasis exhibit 

infiltrates of neutrophils, macrophages and T cells, which all can 
produce NO, in the epidermis,52–55 whether excessive production of 
NO by inflammatory cells contributes to dysfunction in epidermal 
permeability barrier in these inflammatory skin disorders remains 
unknown.

4  |  MECHANISMS BY WHICH NO 
REGUL ATES EPIDERMAL PERME ABILIT Y 
BARRIER

4.1  |  Normal Skin

Because keratinocytes account for 95% of all cells in the epider-
mis,56 epidermal functions are largely dictated by keratinocyte 
functions. NO is vital as a signalling molecule regulating multiple epi-
dermal functions, including keratinocyte proliferation and differen-
tiation, apoptosis, migration, and oxidative stress, as well as cytokine 
production.13,20,45,57,58

4.1.1  |  Keratinocyte Proliferation and 
Differentiation

Keratinocyte proliferation is required for the formation of the epi-
dermal permeability barrier. Accordingly, a number of studies have 
demonstrated the importance of NO in regulating keratinocyte 
proliferation: (i) treatment of primary keratinocytes with a NO 
donor,1-Hydroxy-2-oxo-3,3-bis (3-aminoethyl)-1-triazene (DETA/
NO), at concentrations of 0.01 to 0.25  mM, for 48  h induced a 
dose-dependent increase in Ki67 positive cells20; (ii) incubation of 
keratinocytes with either S-nitrosoglutathione (GSNO) or DETA/NO 
for 24 h increased proliferation rates by ≈40%59; and (iii) conversely, 
inhibition of either iNOS or eNOS decreased Ki67 positive cells and 
proliferating cell nuclear antigen expression in a cutaneous wound 
healing model of both mice and rats.60,61 Likewise, topical applica-
tions of an nNOS inhibitor also prevented epidermal hyperprolifera-
tion induced by repeated disruption of the epidermal permeability 
barrier.39 Following cutaneous wounding, reductions in Ki67 posi-
tive cells in eNOS knockout mice further support a requirement 
for NO in regulating keratinocyte proliferation.62 Yet, the impact of 
NO on keratinocyte proliferation depends on the concentration of 
NO donors. For example, S-nitroso-N-acetylpenicillamine (SNAP) 
at concentrations of 0.001 to 0.5 mM dose-dependently increased 
the number of Ki67 positive cells, while the concentrations of SNAP 
>0.5 mM decreased the number of Ki67 positive cells.20 Likewise, 
GSNO at a concentration of 500 μM inhibited keratinocyte prolif-
eration.59 Evidence also suggests that the epidermal hyperprolifera-
tion in psoriasis could be linked to insufficient NO levels.63

In addition to proliferation, NO also regulates keratinocyte 
terminal differentiation, a crucial event to generate structural 
proteins that contribute to the epidermal permeability barrier. 
Incubation of keratinocytes with NO donors (either DETA/NO 



4  |    MAN et al.

or SNAP) for 48  h induced a dose-dependent increase in cyto-
keratin 6-positive cells.20 Similarly, sodium nitroprusside (SNP) at 
concentrations of 0.05 to 1  mM dose-dependently upregulated 
expression levels of involucrin and K16 in keratinocyte cultures.33 
Expression levels of keratin 14 mRNA also increased by over one-
fold in the presence of SNAP following 48-h incubation under 
high calcium conditions.45 Conversely, iNOS-deficient mice dis-
play significantly lower expression levels of mRNA for epidermal 
differentiation marker-related proteins both under basal condi-
tions and 2  h after barrier disruption.22 But topical applications 
of a NO donor to iNOS knockout mice significantly upregulated 
expression levels of mRNA for filaggrin, loricrin and involucrin, 
indicating that NO is required for keratinocyte differentiation. 
Stimulation of keratinocyte differentiation is mediated by reac-
tive nitrogen species (peroxynitrite), rather than NO.64 However, 
Rossi, et al. have demonstrated that incubation of keratinocytes 
with 1 mM SNAP for 1 week induced threefold reductions in the 
formation of cornified envelopes, along with decreased activities 
of transglutaminase 1 and 3, possibly due to long-term incuba-
tion with a high concentration of this NO donor, again because 
the extent of reductions in cornified envelope formation and 
transglutaminase activities induced by NO were dose- and time-
dependent.65 Other studies showed that either SNAP (0.2  mM) 
or L-NAME (10 mM) can lower expression levels of keratin 10 and 
profilaggrin in keratinocytes cultured under high calcium condi-
tions (1.1  mM).45 Although the underlying mechanisms contrib-
uting to these contradictory results remain unclear, these results 
nevertheless indicate that NO donors regulate keratinocyte pro-
liferation and differentiation.

4.1.2  |  Lipid production and post-
secretory processing

Formation of a competent epidermal permeability barrier requires 
epidermal lipid synthesis and post-secretory lipolytic processing 
to generate ceramides and free fatty acids, crucial steps in forming 
intercellular membrane bilayers in the stratum corneum.66–69 Our 
previous studies showed that inhibition of either phospholipase A2 
or β-glucocerebrosidase activities delayed epidermal permeability 
barrier recovery.66–69 Although incubation of keratinocytes with 
SNAP induced a transit reduction in ceramide synthesis at early time 
points (24 and 48 h), the rates of ceramide synthesis were compa-
rable between SNAP- and vehicle-treated keratinocytes at 96-h in-
cubation.45 However, 96-h incubation of keratinocytes with SNAP 
induced significant increases in β-glucocerebrosidase activity and its 
mRNA expression levels, with a further increase following 144- and 
192-h incubation (≈2-fold increase), suggesting that NO can stimu-
late lipid processing, potentially explaining the observation that NO 
accelerates permeability barrier recovery. Our recent studies dem-
onstrated significant reductions in expression levels of mRNA for 
lipid synthetic enzymes, including 3-hydroxy-3-methyl-glutaryl-CoA 
reductase, serine palmitoyltransferase 1 and fatty acid synthase in 

iNOS-deficient mice,22 each of which is required for epidermal per-
meability barrier homeostasis. The possible role of NO in regulating 
lipid production is demonstrated by the significant upregulation of 
mRNA expression levels for epidermal lipid synthetic enzymes (3-
hydroxy-3-methyl-glutaryl-CoA reductase, serine palmitoyltrans-
ferase 1 and fatty acid synthase) after topical applications of a NO 
donor in iNOS knockout mice.22 Yet, other studies showed that NO 
negatively regulated lipid production in other tissues.70–72 Thus, fur-
ther studies are needed to further illuminate the role of NO in epi-
dermal lipid synthesis.

4.1.3  |  Keratinocyte apoptosis

As mentioned earlier, keratinocyte differentiation is required for the 
formation of the epidermal permeability barrier. Previous studies 
from our group and others have demonstrated the necessity of cas-
pases 3 and 14 for keratinocyte differentiation and apoptosis,73–77 
and pertinently, NO increases caspases 3 and 14 activities and their 
expression levels. For example, treatment of cardiomyocytes with 
500 μM 3-morpholinosydnonimine hydrochloride, a NO donor, in-
creased expression levels of caspase 14 by over twofold.78 Similarly, 
treatment of keratinocytes with 3  mM SNP, another NO donor, 
for 48  h, induced condensed and fragmented nuclei, indicators of 
apoptosis. In parallel, pro-caspase 3 activity also was upregulated 
by incubation of keratinocytes with SNP.44 Conversely, treatment 
of keratinocytes with a NOS inhibitor, NG-methyl-L-arginine, de-
creased apoptotic cells, while inhibiting the cleavage of poly (ADP-
ribose) polymerase 1,57 a process that is required for keratinocyte 
differentiation.79 Thus, NO-induced apoptosis could benefit the for-
mation of epidermal permeability barrier.

In UVB-irradiated keratinocytes, the results of NO in regulating 
apoptosis were inconclusive. UVB irradiation of keratinocytes can 
induce NO release, resulting in keratinocyte apoptosis.58,80 Likewise, 
addition of NOC18 (1  mM) (a diazeniumdiolate slow-releasing NO 
donor) to culture medium immediately after UVB irradiation en-
hanced UVB-induced apoptosis.81 In contrast, other studies have 
demonstrated that inhibition of nNOS with L-NAME (10  mM) in-
creased caspase 3 activity, while a NO donor (0.2 mM SNAP) inhib-
ited caspase 3 activity.45 Likewise, low concentrations of a NO donor 
(250 μM or 500 μM NOC18) inhibited apoptosis, caspase 3 activity, 
and expression levels of p53, while upregulating Bcl-2 expression 
in UVB-irradiated murine keratinocytes.81 SNAP also prevented the 
UVB irradiation-induced increase in apoptosis and caspase activity.82 
Conversely, addition of a NOS inhibitor (NG-nitro-L-arginine methyl 
ester) prior to UVB irradiation increased apoptosis in comparison 
with UVB irradiation alone.83 Deficiency in either iNOS or eNOS 
enhanced apoptosis following irradiation with UVB. Interestingly, 
eNOS deficient mice are more sensitive than iNOS-deficient mice to 
UVB-induced apoptosis.82 Hence, the impact of NO on apoptosis in 
UVB-irradiated keratinocytes is possibly attributable to variations in 
experimental conditions. Nonetheless, this line of evidence indicates 
that the influence of NO on keratinocyte apoptosis depends on the 
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NO concentration and the condition of keratinocytes, and that NO-
induced stimulation of keratinocyte apoptosis can benefit epidermal 
permeability barrier function at least in normal skin.

4.1.4  |  Other NO-induced mechanisms

Additional mechanisms could also contribute to the improved epi-
dermal permeability barrier induced by NO. Frank, et al. showed 
that addition of 500  µM s-nitrosoglutathione, a NO donor, to ke-
ratinocyte cultures rapidly increased expression levels of the vas-
cular endothelial growth factor (VEGF) mRNA by sixfold, in addition 
to augmenting keratinocyte growth factor- and pro-inflammatory 
cytokine-induced elevations in VEGF expression.84 The positive 
effect of NO on VEGF expression was also evidenced by intraperi-
toneal injection of 2.5 mg L-N6-(1-iminoethyl)lysine (L-NIL), a selec-
tive inhibitor of iNOS, twice-daily for only 1  day, which markedly 
decreased expression levels of cutaneous VEGF mRNA, and a more 
profound reduction was observed on day 7 (≈3-fold reduction vs. 
vehicle).84 Because VEGF is required for epidermal permeability ho-
meostasis,85 NO-induced upregulation of VEGF expression could be 
another one of its operating mechanisms that promotes epidermal 
permeability barrier homeostasis.

Darkly pigmented skin displays a superior epidermal permeabil-
ity barrier in comparison with lightly pigmented skin.86-88 Previous 
studies demonstrated that NO increased melanogenesis in me-
lanocyte cultures, while inhibition of NO production decreased 
melanogenesis in mice.89-91 Stimulation of melanogenesis may well 
represent yet another mechanism by which NO benefits the epider-
mal permeability barrier.

4.2  |  Barrier-disrupted skin

While NO is a signalling molecule that regulates cellular functions 
in various cell types, excessive levels of NO can cause oxidative 

stress, which can negatively impact cellular functions.92,93 Reactive 
oxygen species increase the expression levels of both eNOS and 
iNOS,94  leading to an increase in NO levels. Both UVB irradiation 
and cutaneous barrier disruption increase NO release,39,47,95 which 
can activate soluble guanylyl cyclase.39,96 The latter can further 
increase NO production,97 leading to amplification of NO levels, 
consequently resulting in increased oxidative stress. Conversely, 
inhibition of guanylyl cyclase accelerates permeability barrier recov-
ery, while activation of guanylyl cyclase delays barrier recovery in 
tape-stripped skin.39 Moreover, NO-induced activation of guanylyl 
cyclase increases intracellular calcium, which can inhibit lamellar 
body secretion, which is a critical requirement for the repair of the 
epidermal permeability barrier.39,98–100 Furthermore, NO can react 
with superoxide to form peroxynitrite, resulting in an increase in 
endocytosis of claudin 1.47 Because inhibition of endocytosis over-
came UVB irradiation-induced alterations in TEER, claudin 1 expres-
sion and paracellular influx,47,48 NO-induced endocytosis of claudin 
1 is another mechanism attributable to NO's negative influence on 
epidermal permeability barrier function. Thus, NO-induced dysfunc-
tion in epidermal permeability barrier homeostasis can be largely 
attributed to (i) oxidative stress, (ii) inhibition of lamellar body secre-
tion, and (iii) reduction in claudin 1 expression in barrier-disrupted 
and UVB-irradiated skin (Figure 2).

Finally, while NO exhibits anti-inflammatory properties under 
normal physiological conditions,43 evidence nonetheless indicates 
a pathogenic role of NO in inflammatory skin disorders,101,102 sug-
gesting that NO could compromise epidermal permeability barrier 
in inflamed skin. Studies have shown that NO-releasing glucocor-
ticoids enhance anti-inflammatory efficacy in comparison with glu-
cocorticoids alone.103–105 However, whether topical applications of 
NO can improve epidermal permeability barrier in eczematous der-
matitis in clinical settings remains to be determined, although the 
extent of the abnormality in the epidermal permeability barrier cor-
relates directly with the severity of dermatitis.106–108 The putative 
mechanisms whereby NO regulates epidermal permeability barrier 
are illustrated in Figure 2.

F I G U R E  2  Putative mechanisms by which nitric oxide regulates the epidermal permeability barrier
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5  |  CONCLUSIONS

Keratinocytes express nitric oxide synthases (i.e., nNOS, iNOS and 
eNOS). Upon stimulation by pro-inflammatory cytokines, infection 
or injury, these NOS synthesize and release nitric oxide (NO). NO 
can influence the epidermal permeability barrier via divergent mech-
anisms, including regulation of keratinocyte proliferation and differ-
entiation, apoptosis, lipid processing and melanogenesis. Although 
evidence indicates a definite requirement for NO for the mainte-
nance of epidermal permeability barrier, whether NO positively or 
negatively regulates the epidermal permeability barrier largely de-
pends on the cutaneous conditions involved and NO content levels. 
Generally, low NO levels are required to maintain a normal epidermal 
permeability barrier, while excessive NO compromises this barrier. 
The impact of NO on the epidermal permeability barrier in clinical 
settings needs further evaluation.
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