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Genetic Amyotrophic Lateral Sclerosis 3

Genetic ALS caused by hexanucleotide repeat expansions 
in C9orf72
Sarah Mizielinska, Guillaume M Hautbergue, Tania F Gendron, Marka van Blitterswijk, Orla Hardiman, John Ravits, Adrian M Isaacs*, 
Rosa Rademakers* 

GGGGCC repeat expansions in C9orf72 are a common genetic cause of amyotrophic lateral sclerosis in people of 
European ancestry; however, substantial variability in the penetrance of the mutation, age at disease onset, and 
clinical presentation can complicate diagnosis and prognosis. The repeat expansion is transcribed into repetitive 
RNAs and translated into dipeptide repeat proteins, and both accumulate in the cortex, cerebellum, and the spinal 
cord. In addition, neuropathological aggregates of phosphorylated TDP-43 are observed in motor cortex and other 
cortical regions, and in the spinal cord of patients at autopsy. C9orf72 repeat expansions can also cause 
frontotemporal dementia. The GGGGCC repeat induces a complex interplay of loss-of-function and gain-of-
function pathological mechanisms. Clinical trials using antisense oligonucleotides to target the GGGGCC repeat 
RNA have not been successful, potentially because they only target a single gain-of-function mechanism. Novel 
therapeutic approaches targeting the DNA repeat expansion, multiple repeat-derived RNA species, or downstream 
targets of TDP-43 dysfunction are, however, on the horizon, together with the development of diagnostic and 
prognostic biomarkers.

Introduction
Amyotrophic lateral sclerosis (ALS) is characterised by 
the progressive degeneration of upper and lower motor 
neurons, leading to motor dysfunction and, eventually, 
to respiratory failure. While most patients with ALS do 
not have other relatives with the disease (and their 
disease is then categorised as non-familial), about 10% 
of patients have familial ALS. In these cases, a genetic 
mutation has likely been inherited. The most common 
genetic cause of ALS is a mutation that consists of at 
least 30 repeats of the hexanucleotide GGGGCC in the 
C9orf72 gene. In addition to ALS, C9orf72 mutations 
also cause frontotemporal dementia. This mutation is 
one of the many DNA repeat expansions that have been 
identified to cause neurological diseases. The discovery 
of this expanded repeat mutation in 20111,2 opened a 
new field of C9orf72 research in ALS and frontotemporal 
dementia focused on unravelling mechanisms and 
finding biomarkers, and on developing treatments to 
prevent clinical signs and symptoms in carriers of 
C9orf72 mutations. 

This third paper in a Series on genetic ALS aims to 
summarise the remarkable research progress that has 
taken place in the past 14 years, with the characterisation 
of the clinical and pathological hallmarks of C9orf72-
associated ALS (C9orf72-ALS), the unique molecular 
aspects of the repeat expansion, and the complex array 
of underlying mechanisms. We also address how this 
wealth of information is now being translated into 
novel biomarkers to aid in diagnosis and prognosis, 
and review the treatment approaches that are in 
development, including the first clinical trials in 
carriers of C9orf72 repeat expansions. 

The GGGGCC repeat expansion
The GGGGCC repeat expansion implicated in C9orf72-
ALS is located on the short arm of chromosome 9 in the 
C9orf72 genomic region (GGGGCC at chr9:27573529-
27573534, build hg38). Neurologically healthy individuals 
carry between two and 23 GGGGCC copies in this 
region; however, patients with C9orf72-ALS generally 
have one chromosome 9 with hundreds to thousands of 
GGGGCC copies (eg, they are heterozygote carriers of 
the repeat expansion).1,2 An arbitrary pathogenic cutoff is 
set at 30 copies, but intermediate repeats in the range of 
24 to 30 copies can still confer some disease risk.3 

Insufficient data are available to establish pathogenicity 
in individuals with repeat lengths between 30 and around 
100 copies. From the locus, multiple C9orf72 mRNA 
transcripts are generated of which three variants have 
been best characterised (V1, V2, and V3). For V2, the 
repeat is in the promoter region of C9orf72, while in V1 
and V3 the repeat is in the first intron and can thus be 
transcribed. Translation of these major transcripts is 
predicted to result in short and long protein isoforms, yet 
only the long isoform has been consistently detected in 
human brain using validated tools (figurefigure 1).4,5

Most individuals who carry repeat expansions share a 
small number of haplotypes,6,7 which suggests a founder 
effect. Most expansions occur on the so-called Finnish 
founder haplotype (characterised by the T-allele of 
rs3849942), which has been refined to a sub-haplotype 
containing additional risk alleles (A-allele of rs147211831 
and C-allele of rs117204439).8 While still within the 
healthy range, these founder haplotypes carry a greater 
number of repeat units (ie, median of 12 repeat units on 
the sub-haplotype versus median of two repeat units on 
the non-founder haplotypes), possibly increasing the 
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likelihood of conversion to a pathological length in future 
generations. That said, intergenerational de novo 
expansions from a healthy to a pathogenic size have not 
been documented and the threshold for instability might 
lie between more than 30 and around 100 repeats.9 

Genetic diagnosis and clinical correlations
Although PCR-based approaches can be used to establish 
the presence of an expanded C9orf72 repeat,10 Southern 
blots have traditionally been used to estimate its length. 
These studies revealed that the repeat expansion is 
somatically unstable, with substantial variability between 
and within tissues.11 This variability is exemplified by 
descriptions of patients with C9orf72-ALS or C9orf72-
associated frontotemporal dementia (C9orf72-FTD) who 
harbour around 100 repeats in blood, but thousands of 
repeats in the brain.9,11 Occasionally, individuals who had 
small expansions in blood but much longer expansions in 
post-mortem brain tissue, but without clinical symptoms, 
have been reported, perhaps because of brain mosaicism, 
as only a fraction of their brain cells carried expanded 
alleles.12 These cases underscore the difficulty in defining 
a pathogenic cutoff size for the repeat, especially based on 
blood measurements alone. Nevertheless, the length of 
the repeat expansion has been associated with age at 
disease onset, age at blood or brain sample collection, and 

survival time after disease onset.11,13,14 Several studies also 
suggest that the expansion can contract in successive 
generations,14,13 particularly with paternal transmission. 

C9orf72 repeat expansions can also be detected in 
short-read sequencing data using specialised tools.15 
However, to obtain highly accurate length and sequence 
information, and establish whether and to what extend 
the repeat is methylated (methylation might serve as a 
disease modifier), long-read sequencing technologies are 
needed.16,17 Long-read sequencing (panelpanel 1) in cerebellar 
tissue from 28 patients with C9orf72-ALS or C9orf72-FTD 
showed a unique length and composition of the repeat in 
nearly every single DNA molecule examined , whereby 
the expanded allele mainly contained the GGGGCC 
motif, with occasional interruptions by other motifs.18 
Quantitative studies on the degree of C9orf72 repeat 
methylation have not yet been done. Future studies 
should elucidate whether methylation of the repeat 
expansion, possibly in addition to length and sequence 
composition, might contribute to the phenotypic 
heterogeneity in C9orf72 expansion carriers. 

Phenotypes and incomplete penetrance
The C9orf72 repeat expansion is a relatively common 
mutation in people of European ancestry, accounting for 
about a third of patients with familial ALS and a quarter 

Figure 1: C9orf72 gene structure
The chromosome 9p21 genomic locus contains the C9orf72 gene, which has 11 exons and the (CCCCGG)n repeat located between exons 1a and 1b. Coding exons are 
shown in blue and non-coding exons are grey Key genetic variants defining the risk founder haplotype (rs147211831, rs3849942, and rs117204439) are shown 
relative to the C9orf72 genomic locus, with their risk alleles shown in capital in red and the reference (non-risk) alleles shown in green. Note that the founder 
haplotype can have a variable number of repeat units, with a median of 12 repeat units. The number of repeat units determines the pathogenic nature of the repeat. 
Most studies use an arbitrary cutoff for pathogenicity at 30 repeats; however, most neurologically healthy individuals carry repeats with less than 24 repeats, whereas 
repeats between 24 and 100 might confer an increased disease risk. Repeats of more than 100 are considered pathogenic. Alternative splicing generates three 
transcripts (V1–V3). The repeat is located in the first intron of V1 and V3, and in the promoter region of V2. Translation of V2 or V3 generates a C9orf72 protein 
isoform of 481 amino acids. V1 is predicted to encode a shorter C9orf72 protein isoform of 222 amino acids, but its relevance remains unclear. Ref=reference allele. 
Risk=risk allele.
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of patients with familial frontotemporal dementia, in 
addition to 5–6% of patients with apparently non-familial 
ALS or frontotemporal dementia.19–21 The C9orf72 
expansion is much less common in other ancestral 
populations, such as those from Africa, Asia, and Latin 
America, in line with the near absence of the founder 
haplotype in these populations.19 The inheritance pattern 
of the mutation is autosomal dominant with incomplete 
penetrance, which is estimated to be as low as 20–50% in 
some studies,22 but clearly variable between families.23 
This low penetrance has been further substantiated by 
bioinformatic and pedigree-based studies from 
the Netherlands and the UK, that found C9orf72 
expansions in around 0·12% of the general population, 
corresponding to a carrier rate of 1 in 839 individuals.24 

Most expansion carriers clinically present with ALS or 
frontotemporal dementia, as diagnosed by established 
criteria;25,26 however, other neurological diseases have 
also been associated with these mutations, such as 
Alzheimer’s disease and Huntington’s disease-like 
syndrome.27 But it should be noted that a 
neuropathological confirmation of clinical diagnoses 
other than ALS and frontotemporal dementia are often 
absent. Intriguingly, in a study of patients in Ireland,28 
C9orf72 kindreds appeared to be discordant, with some 
family members developing ALS without apparently 
carrying the repeat expansion. Although further 
investigations are warranted, this observation could be 
explained by the presence of somatic expansions only in 
the brain. It is also reasonable to hypothesise that 
additional genetic or environmental factors contribute to 
the risk of the disease in these families of mutation 
carriers. The possibility of additional genetic or 
environmental factors is in line with higher hazard 
ratios of schizophrenia and suicide among first degree 
relatives of C9orf72 expansion carriers, compared with 
population-based controls,29 and the observation of a 
discernible cognitive endophenotype in blood-relatives 
of expansion carriers that is not present in relatives of 
patients with non-familial ALS.30 In fact, emerging 
evidence suggests an oligogenic component to ALS.31,32 
For instance, intermediate ATXN2 repeat expansions 
can be detected in some C9orf72 expansion carriers, and 
are associated with having a higher risk of developing 
ALS than those who do not carry a repeat expansion 
within ATXN2,33 whereas variants in TMEM106B appear 
to protect against developing frontotemporal dementia 
in individuals who carry the C9orf72 repeat expansion.34,35 
Taken together, these data suggest that phenotypes can 
be clinically diverse and genetically more complex than 
previously envisaged. Future in-depth studies of C9orf72 
expansion carriers, ideally including large pedigrees, 
such as those collected as part of the Frontotemporal Frontotemporal 
Dementia Prevention initiativeDementia Prevention initiative36 and the Pre-Pre-
symptomatic Familial ALS Studysymptomatic Familial ALS Study,37 should aid in 
identifying additional phenotypic modifiers and 
providing guidance for genetic counselling. These 

longitudinal cohort studies are also crucial for our 
understanding of the natural history of C9orf72 disease. 

Early and distinct brain changes
The C9orf72 repeat expansion is unique among the 
mutations associated with ALS in its ability to lead to 
distinct clinical phenotypes (from pure frontotemporal 
dementia to pure ALS, and other clinical syndromes 
resembling Huntington’s disease). Indeed, some patients 
present with mixed phenotypes and do not meet either 
ALS or frontotemporal dementia diagnostic criteria.38 At 
a group level, patients with C9orf72-ALS appear to be 
clinically distinct from those with apparently non-familial 
ALS (tabletable 1). Neuroimaging studies of patients with 
C9orf72-ALS reveal involvement of the motor cortex, 
along with extra-motor and deep grey matter changes, 
including the thalamus, that differs from other forms of 
ALS.39,40 However, within a clinical setting, it is not 
possible to reliably distinguish individuals carrying the 
C9orf72 repeat expansion from those who do not carry 
the expansion. At the group level, clinical features that 
distinguish C9orf72-FTD from other forms of apparently 
non-familial FTD include a higher frequency of 
delusions, greater impairment of working memory, and 
milder eating dysregulation.41,42 Neuroimaging studies 
have reported a greater degree of thalamic atrophy in 

For more on the 
Frontotemporal Dementia 
Prevention Initiative see 
https://thefpi.org/

For more on the 
Pre-symptomatic Familial ALS 
Study see https://als-research.
org/research-study/pre-fals-pre-
symptomatic-familial-als-study/

Panel 1: Glossary of terms 

Short-read sequencing: sequencing method that covers short 
DNA fragments, often 100 to 300 base pairs 

Long-read sequencing: sequencing method that spans long 
DNA fragments, generally 10 to 20 kilobases

Penetrance: the likelihood of a mutation carrier to develop 
symptoms characteristic for a pathogenic gene variant

Repetitive or repeat RNAs: RNAs transcribed from both sense 
and antisense strands that contain an expanded repeat

Dipeptide repeat proteins: proteins generated from 
unconventional translation of RNAs that harbour an 
expanded repeat

Somatic expansions: expanded DNA repeats that, after birth, 
become longer in cells over time

Cognitive endophenotype: quantifiable, heritable trait that 
reflects underlying cognitive processes closer to the biological 
foundations of the disease than its observable symptoms

Oligogenic component: refers to several genetic variants acting 
together in developing a disease or modifying its onset or 
presentation

Phenoconversion: in a mutation carrier, the shift from a 
healthy to a clinical stage 

24TLN0701
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C9orf72 mutation carriers, either with ALS or 
frontotemporal dementia, than in patients with these 
diseases who are non-carriers.41 

Although C9orf72-FTD typically presents in late 
adulthood, reduced verbal fluency has been reported in 
mutation carriers before disease onset43 and structural 
brain changes, including reduced cortical gyrification44 
and changes in the thalamus and posterior cortical 
areas that occurred up to 20 years before the projected 
disease onset.45 These findings suggest that the C9orf72 
mutation might have effects early in brain development 
and implies that clinical phenotypes are a late 
manifestation of a lifelong process by which the 
mutation might play an important adverse role in early 
neurodevelopment. Indeed, during life, other genetic 
or epigenetic factors, including environmental 
exposures, can interact with pre-existing cellular and 
network vulnerabilities. Clinical manifestation would 
then occur when compensatory mechanisms that 
attenuate risk are overwhelmed, leading to a clinical 
phenotype and a progressive process of neuronal loss 
and network disintegration. Understanding the 
connections between genetic risk, compensatory 
mechanisms, clinical phenotype, and disease pro
gression is fundamental for the successful development 
and administration of therapeutics, and for disease 
management. If C9orf72 repeat expansions affect early 
neurodevelopmental processes, understanding the 
factors that lead to the tipping points that drive clinical 
manifestations will be essential for early therapeutic 
intervention.

Neuropathology
As in patients with apparently non-familial ALS, TDP-43 
aggregates are also the neuropathological hallmark for 
patients with C9orf72-ALS. This primary neuro
pathological hallmark is the result of the mis-localisation 
of the TAR DNA and RNA binding protein TDP-43 in 
the CNS, including in the spinal cord.46 This neuro
pathological hallmark is also shared by most cases of 
apparently non-familial ALS and by about 45% of cases 
with apparently non-familial frontotemporal dementia, 
and most other genetic forms of ALS, except those 

caused by FUS or SOD1 mutations. TDP-43 pathology is 
found predominantly in neurons, but also in glia. The 
TDP-43 neuropathology type A corresponds to abundant 
neuronal cytoplasmic inclusions and short dystrophic 
neurites in cortical layer II, with occasional intranuclear 
inclusions, whereas type B corresponds predominantly 
to diffuse neuronal cytoplasmic inclusions across all 
cortical layers, with few dystrophic neurites. Unique to 
C9orf72-FTD cases, they frequently have a combination 
of both TDP-43 type A and B neuropathology.47 

Additional neuropathological hallmarks that are 
unique to C9orf72-ALS and C9orf72-FTD include 
accumulation of repeat RNA transcribed from both 
sense and antisense strands, and dipeptide repeat 
proteins that result from unconventional translation of 
repeat RNA. Both sense and antisense repeat RNA 
accumulate into foci that are predominantly nuclear, 
but also occur in the cytoplasm, and can be found in the 
CNS and periphery (figurefigure 2).48–51 Antisense foci are 
more numerous in neurons than sense foci, and often 
have a peri-nucleolar localisation.52 Consistent with 
their lack of specificity to brain regions of clinical 
relevance, studies that have tried to correlate the location 
of RNA foci with clinical features do not support a clear 
pathogenic role.53,54 However, multiple studies have 
shown an association of antisense RNA foci with 
TDP-43 pathology,52,55 and an enhanced RNA foci 
detection method has shown an association of TDP-43 
pathology with sense foci specifically in spinal motor 
neurons.53 

The translation of the repeat RNA can occur in all 
reading frames from both sense and antisense RNA 
strands, resulting in the production of five different 
dipeptide repeat proteins: polyGA, polyGR, polyGP, 
polyPA, and polyPR.48 All five dipeptide repeat proteins 
are detected neuropathologically (figure 2), with the 
sense-encoded polyGA being the most abundant in the 
CNS, followed by the sense-encoded polyGP and 
polyGR;49,50 polyGA and polyGP have also been found in 
skeletal muscle of patients with C9orf72-ALS.51 Similar 
to TDP-43, inclusions of dipeptide repeat proteins occur 
predominantly in the cytoplasm of neurons, but also 
occasionally as small dot-like nuclear inclusions and in 
dystrophic neurites. While aggregates of dipeptide 
repeat proteins are specific to C9orf72 expansion 
carriers, their importance in pathogenesis is uncertain 
since they are variably present and do not correlate with 
disease-relevant CNS areas, unlike TDP-43 pathology.49,50 
For instance, inclusions of dipeptide repeat proteins can 
be detected in the cerebellum and occipital cortex, even 
in cases with minimal neurodegeneration and TDP-43 
pathology.46,50 It has been postulated that dipeptide 
repeat proteins might be early initiators of disease, 
which could explain the lack of correlation of the 
location of their inclusions with clinical symptoms.56 
Some studies have reported an association of 

C9orf72-ALS Non-familial ALS* 

Median age of onset134 59·6 years (95% CI 40·3–76·9) 64·5 years (95% CI 36·5–82·2)

Concomitant frontotemporal dementia135 About 50% About 15%

Family history of ALS or frontotemporal 
dementia135

Frequent Occasional

Mean survival 35·5 months (95% CI 33·8–37·2) 42·2 months (95% CI 41·4–42·9) 

Intensive physical activity as a risk factor137 Likely Inconclusive evidence

Pre-morbid cognitive endophenotype33 Frequent Rare 

Endophenotype in first degree relatives26 Frequent Rare 

ALS=amyotrophic lateral sclerosis. C9orf72-ALS=C9orf72-associated ALS. *Absence of known mutation.

Table 1: Comparison of clinical features between patients with C9orf72-ALS or non-familial ALS

24TLN0701
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polyGR with TDP-43 pathology57 and regions of 
neurodegeneration.58

Pathogenic mechanisms 

Repeat DNA
C9orf72 repeat expansions can exert pathogenicity 
through both loss and gain of function mechanisms. 
Sense and antisense repeat RNAs bind specific RNA-
binding proteins and sequester them into foci.59 In tissue 
from patients with the mutation, transcriptomic 
signatures are consistent with the loss of these proteins.60 
Early work largely focused on the effects of the sense 
GGGGCC repeat RNAs, but a growing body of evidence 
now shows the effects of the antisense repeat RNA. This 
evidence is particularly relevant given the failure of sense 
repeat-targeting antisense oligonucleotides in clinical 
trials, which suggests that antisense repeat RNA or 
dipeptide repeat proteins might play an important role.61 
Sequestration of the phenylalanine-tRNA synthetase 
subunit-α by antisense repeat RNA leads to reductions in 
the incorporation of the amino acid phenylalanine 
during translation, which can compromise neuronal 
function.62 In induced pluripotent stem-cell neurons 
(iPSN) of patients with C9orf72-ALS or C9orf72-FTD, the 
turnover of nuclear pore complex components is 
impaired and has been linked to RNA toxicity.63 Of 
interest, targeting antisense (but not sense) repeat RNA 
in iPSNs alleviates gene expression and splicing 
alterations associated with loss of nuclear TDP-43,64 in 
line with the selective association of antisense foci with 
TDP-43 pathology in human tissue.52 Antisense repeat 
RNAs can also activate the integrated stress response 
and, in a zebrafish experimental model, the inhibition of 
the integrated stress component protein kinase R 
alleviates neurotoxicity.65 

Dipeptide repeat proteins
In several experimental models, all five dipeptide repeat 
proteins produced from the C9orf72 repeat expansion 
have been shown to exert neurotoxicity, with the arginine-
rich polyGR and polyPR being the most toxic, followed 
by polyGA. However, polyPA and polyGP are non-toxic in 
most studies.66,67 

According to evidence from in vitro studies, the 
positively charged arginine-rich dipeptide repeat proteins 
(polyGR and polyPR) have an avidity for membrane-less 
organelles, such as RNA granules, and also for the 
nucleolus and the nuclear pore, and alter the function of 
these organelles by disrupting liquid–liquid phase 
separation behaviour,68–70 a mechanism by which proteins 
and RNA undergo multivalent interactions forming 
dynamic liquid condensates without the requirement for 
membrane-bound vesicle formation. Due to the diversity 
of the affected cellular systems, the effects of arginine-rich 
dipeptide repeat proteins range widely, affecting genomic 
stability, RNA splicing and transport, translation, and 

nucleus-to-cytoplasm transport.69,71 In addition, there is 
evidence that arginine-rich dipeptide repeat proteins also 
contribute to TDP-43 mis-localisation via processes such 
as altered nucleus-to-cytoplasm transport (by sequestration 
of transport factors),72–75 aberrant nucleolar function,68,70 
and the nucleation of TDP-43 aggregation;76 in agreement 
with these findings, TDP-43 proteinopathy develops in 
several experimental models of arginine-rich dipeptide 
repeat proteins.67,72 In neurons, arginine-rich dipeptide 
repeat proteins can also directly bind to microtubules and 
impair transport,77 to ribosomes and impair translation,78 

Figure 2: C9orf72-associated neuropathology 
(A) Immunofluorescence in a healthy motor neuron detecting nuclear TDP-43 (antibody to TDP-43 in green and 
DAPI nuclear staining in blue). (B) Motor neuron from a patient with C9orf72-ALS with loss of nuclear TDP-43 and 
aggregation in the cytoplasm, detected by immunofluorescence (antibody to TDP-43 in green and DAPI in blue). 
(C) Sense-RNA foci in the nucleus of a motor neuron with loss of nuclear TDP-43 but with cytoplasmic aggregates, 
detected by co-immunofluorescence in situ hybridisation (antibody to TDP-43 in green, probes complementary to 
the sense RNA foci containing GGGGCC-repeats in red, and DAPI in blue). The red signal in the nucleolus is non-
specific. (D) Multiple antisense-RNA foci in the nucleus of a motor neuron with loss of nuclear TDP-43 but with 
cytoplasmic aggregates, detected by co-immunofluorescence-in situ hybridisation (antibody to TDP-43 in green, 
probes complementary to the antisense RNA foci containing GGCCCC-repeats in red, and DAPI in blue). The signal 
around the nucleolus is only detected with antisense foci. (E–I) Neurons from the cortex of patients with C9orf72-
ALS showing aggregated dipeptide repeat proteins encoded by the GGGGCC repeat expansion in C9orf72. 
Dipeptide repeat proteins are visualised by immunohistochemistry with antibodies specific to each of the of them. 
G=glycine; R=arginine; A=alanine; P=proline. Reproduced with permission from Acta Neuropathologica.57

20 μm
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and to mitochondrial components, with resultant DNA 
damage and glucose hypometabolism.79 Furthermore, in 
knock-in mouse models, the expression of arginine-rich 
dipeptide repeat proteins using the endogenous mouse 
C9orf72 promoter induces increased levels of extracellular 
matrix proteins in the spinal cord, which provide 
protection against neurodegeneration.80 

PolyGA is the most aggregation-prone dipeptide repeat 
protein and it can sequester other dipeptide repeat 
proteins and cellular factors, including chaperones81 and 
proteasome components, which could further promote 
protein aggregation; experimental models of polyGA also 
develop TDP-43 proteinopathy. Notably, and similar to 
other misfolded proteins involved in neurodegeneration, 
there is evidence for cell-to-cell transmission of dipeptide 
repeat proteins.82 Taken together, findings suggest that 
widespread changes occur when dipeptide repeat protein 
are expressed in experimental models, thus, a major 
challenge is determining which dipeptide repeat proteins 
are the most relevant as therapeutic targets. 

C9orf72 loss of function
The presence of the repeat expansion in the promoter 
region of C9orf72 V2 (figure 1) induces hypermethylation 
and reduced expression of C9orf72, causing loss-of-
function. The C9orf72 protein has homology to the 
differentially expressed in normal cells and neoplasia 
(DENN) family of proteins, which primarily regulate Rab 
proteins and have roles in membrane trafficking. C9orf72 
can affect multiple pathways in neurons and glia, ranging 
from autophagy and lysosomal homeostasis to actin 
dynamics, nucleocytoplasmic transport, lipid 
metabolism, and the regulation of postsynaptic receptor 
recycling at the synapse.83 The C9orf72 protein is 
ubiquitously expressed in most tissues throughout the 
body but its highest concentrations are in the brain and 
spinal cord, with enrichment in neurons and myeloid-
lineage cells; which is consistent with early findings 
showing that loss of C9orf72 in mouse models caused 
primarily an immune system phenotype.67 Indeed, loss of 
C9orf72 in myeloid cells impairs the degradation of a key 
protein in the innate immune response, stimulator of 
interferon genes (STING), resulting in a hyperactive type 
I interferon response.84 In C9orf72 knockout mice, 
peripheral inflammation can be ameliorated by immune-
stimulating gut bacteria85 and interleukin-17A reduction,86 
which might be strategies to modulate C9orf72-related 
immune pathways. In mice, the partial knockdown of 
C9orf72 causes apathy and social behaviour dysfunction, 
mild motor impairment, and importantly, neuronal 
TDP-43 aggregates in old mice. These TDP-43 aggregates 
indicate a potential interaction of aging and C9orf72 loss-
of-function in causing TDP-43 pathology.87 Additionally, 
loss of C9orf72 can exacerbate the toxicity of dipeptide 
repeat proteins, likely due to the disruption of 
autophagy.88,89 These findings provide evidence that 
C9orf72 haploinsufficiency can affect key pathways in 

both neurons and glia in the CNS and in the peripheral 
immune system, with the weight of evidence indicating a 
direct contribution to neuronal vulnerability via both cell-
intrinsic and non-cell autonomous mechanisms. 
Consequently, therapeutic strategies should avoid further 
reducing C9orf72 expression. Rather, enhancing C9orf72 
expression, or modulating its immune functions, could 
provide protection from the toxicity induced by repeat 
expansions.

DNA repeats
Unexpectedly, new evidence suggests an additional 
pathogenic role of the C9orf72 repeat expansion. The 
C9orf72 repeat expansion DNA binds to and causes 
nuclear accumulation of the DNA-binding protein 
DAXX, leading to alterations in epigenetics and 
chromatin structure. Furthermore, in neurons, DAXX 
nuclear accumulation suppresses C9orf72 expression, 
preventing stress-induced upregulation of C9orf72, 
which increases neuronal vulnerability and can be 
rescued by decreasing DAXX concentrations.90 This 
finding is in agreement with recent transcriptomic 
studies showing altered chromatin and epigenetic 
signatures in post-mortem brain and iPSN from patients 
with C9orf72-ALS or C9orf72-FTD.91,92 A new study also 
suggests that the repeat expansion can cause 
chromosomal instability, which could then trigger DNA 
damage or an immune stimulation response, thus 
providing further pathways by which the DNA repeats 
could contribute to pathogenesis.93 

Convergent mechanisms
A reproducible hallmark of iPSNs derived from C9orf72 
mutation carriers is their sensitivity to glutamate 
excitotoxicity, which can result from either the loss or 
gain of function caused by the mutation.94–96 Altered 
nucleocytoplasmic transport,97 lipid metabolism,98,99 and 
activation of the innate immune system STING 
signalling pathway84,100 have also been reported in both 
loss-of-function and gain-of-function contexts, all of 
which compromise neuronal health. Lastly, as TDP-43 
proteinopathy is a neuropathological hallmark in patients 
that carry the mutation and has been observed in both 
loss and gain of function models, TDP-43 associated 
pathomechanisms might play a key convergent role. 

How C9orf72 pathogenic mechanisms (figurefigure 3) lead to 
the diverse clinical presentations in the ALS–
frontotemporal dementia spectrum is unclear. The 
widespread distribution of repeat RNA and dipeptide 
repeat protein pathologies suggests an intrinsic neuronal 
vulnerability in mutation carriers to developing TDP-43 
pathology. This neuronal vulnerability might arise from 
oligogenicity, somatic mosaicism, or other yet undefined 
intrinsic or environmental factors.
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Fluid biomarkers
Biomarkers that facilitate an early diagnosis, inform 
prognosis, predict phenoconversion, or monitor 
responses to therapeutic interventions are urgently 
needed to improve patient care and therapeutics. In 
these regards, neurofilament and dipeptide repeat 
protein proteins might be useful, and new endeavours in 
TDP-43 biomarker discovery are well poised to further 
expand the biomarker arsenal.

Neurofilament
Neurofilaments (intermediate filaments expressed 
exclusively in neurons) are composed of three subunits, 
each defined by their molecular weight: neurofilament 
light (NfL; around 60 kDa), neurofilament medium 
(around 100 kDa), and neurofilament heavy (around 
110 kDa).101 Neurofilaments, and NfL in particular, are 
established markers of neuronal injury with prognostic 
utility for patients with ALS and frontotemporal 
dementia, including those with a C9orf72 repeat 

expansion.102–104 Accordingly, NfL concentrations in blood 
or CSF could improve clinical trial design by enabling 
the stratification of participants with fast or slow disease 
progression. NfL might also serve as a response 
biomarker; for instance, two clinical trials (NCT04288856 
and NCT04931862) testing distinct investigational 
antisense oligonucleotides that target sense GGGGCC 
repeat transcripts failed to show clinical benefit when 
compared with placebo. In fact, participants receiving 
antisense oligonucleotides had higher CSF and blood 
NfL concentrations than those receiving placebo, in line 
with the intervention failing to show clinical benefit.105 In 
tandem with neuropsychological test scores, advanced 
neurophysiology, and neuroimaging biomarkers, 
increases in NfL might also inform about impending 
symptom onset in pre-symptomatic mutation 
carriers,104,106–108 which would allow for their recruitment 
in prevention or early treatment trials. This approach is 
being evaluated for pre-symptomatic carriers of SOD1 
variants associated with rapid disease progression in a 

Figure 3: Pathogenic mechanisms of the C9orf72 repeat expansion
The C9orf72 repeat expansion can exert pathogenesis by gain of functions from the repeat DNA, sense and antisense repeat RNA, and dipeptide repeat proteins, and 
loss of function of the C9orf72 protein. Hence, there is a diversity of cellular pathways affected. The repeat DNA sequesters DAXX, leading to chromatin remodelling 
and transcriptional changes, including reduced C9orf72 expression. Sense and antisense repeat RNA form foci that sequester RNA-binding proteins and affect RNA 
splicing, nuclear pore integrity, translation using phenylalanine, and the integrated stress response. Dipeptide repeat proteins form inclusions. The most toxic polyGR 
or polyPR disrupt liquid–liquid phase separation membrane-less organelles (eg, nucleolus, RNA granules, and nuclear pore) and bind microtubules and mitochondria; 
these effects impair genomic stability, RNA splicing and transport, translation, nucleus–cytoplasm and neuritic transport, and oxidative stress. PolyGA is the most 
aggregation prone dipeptide, and can sequester other dipeptide repeat proteins, nucleus–cytoplasm transport and proteosome components, and chaperones to 
disrupt nucleus–cytoplasm transport and protein clearance. C9orf72 haploinsufficiency causes loss of the C9orf72 protein, affecting its role in membrane trafficking, 
which in turn affects autophagy, lysosome pathways, the cytoskeleton, nuclear–cytoplasm transport, lipid metabolism, and synapse function. Disruption of these 
processes can cause immune cell dysfunction (interferon response) and exacerbate toxicity. A=alanine. DPR=dipeptide repeat protein. G=glycine. P=proline. 
R=arginine.
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trial (NCT04856982) testing whether a SOD1-targeting 
antisense oligonucleotide delays the clinical 
manifestation of ALS.109 However, for pre-symptomatic 
C9orf72 repeat expansion carriers, longitudinal data 
spanning phenoconversion are scarce, rendering it 
difficult to establish the period between rising NfL 
concentrations and subsequent symptom onset. 
Although disease progression models suggest that NfL is 
elevated 1–5 years before estimated onset,110 further work 
is required before prevention trials can be designed for 
pre-symptomatic C9orf72 repeat expansion carriers. 
Preliminary studies suggest that microglia play a role in 
clearing NfL and that some drugs, such as minocycline, 
inhibit this clearance, thereby eliciting an increase in NfL 
in the absence of neurodegeneration.111 Consequently, 
minocycline use could confound the interpretation of 
NfL measures.

Dipeptide repeat proteins
The discovery of dipeptide repeat protein in C9orf72 
repeat expansion carriers and the ensuing studies in 
experimental models showing that these proteins are 
toxic have led investigators to assess their prognostic 
utility.102,112–115 Contrary to expectations that the abundance 
of dipeptide repeat protein would track with clinical 
severity, CSF concentrations of dipeptide repeat protein 
do not associate with age at disease onset, Amyotrophic 
Lateral Sclerosis Functional Rating Scale score, survival 
after symptom onset, disease (ALS or frontotemporal 
dementia), or NfL concentrations.102,112–115 Their poor 
performance as prognostic markers notwithstanding, 
dipeptide repeat protein might be useful as 
pharmacodynamic biomarkers in experimental models 
and clinical trials. Indeed, investigational antisense 
oligonucleotides targeting the repeat expansion decrease 
CSF concentrations of polyGP, polyGA, and 
polyGR,105,113,116,117 showing target engagement but, alas, not 
clinical benefit.

Biomarkers of TDP-43 pathology
TDP-43 neuropathology, a hallmark feature of 
C9orf72-ALS and C9orf72-FTD, is characterised by the 
mislocalisation of TDP-43 to the cytoplasm, where it 
forms aggregates, and the depletion of TDP-43 from the 
nucleus resulting in its loss of function. One such 
function of TDP-43 is to repress the inclusion of cryptic 
exons during RNA splicing. Because the failure of 
TDP-43 to do so can result in the production of cryptic 
exon-encoded peptides, such peptides are being 
investigated as biomarkers of TDP-43 pathology or loss 
of function.118–120 For instance, a cryptic protein derived 
from the gene hepatoma-derived growth factor-like 
protein 2 (HDGFL2), a histone-binding protein 
expressed in the brain that regulates chromatin 
accessibility and assists in DNA damage repair, can be 
detected by use of an immunoassay in CSF and blood 
samples from patients with a C9orf72 repeat 

expansion,119 and its expression in post-mortem brain, 
also measured by use of an immunoassay, is positively 
associated with phosphorylated TDP-43 levels in the 
brain.120 Emerging methods to measure TDP-43 in 
plasma extracellular vesicles121 and to detect TDP-43 
aggregates in CSF using real-time quaking-induced 
conversion seeding assays122 might also speed up the 
development of TDF-43-based prognostic, predictive, or 
pharmacodynamic markers.

Therapeutic approaches
Several therapeutic strategies have been developed over 
the past 10 years to tackle the pathological effects of 
C9orf72 repeat expansions. These strategies include 
removing the genomic repeat expansion, reducing the 
expression of C9orf72 repeat transcripts and dipeptide 
repeat proteins , and manipulating modifiers of TDP-43 
pathology.

RNA and CRISPR-Cas based approaches
Antisense oligonucleotide therapies were rapidly 
developed to target sense repeat transcripts for degrad
ation.123,124 These antisense oligonucleotides targeting 
sense C9orf72 repeat transcripts led to promising 
neuroprotective outcomes in experimental models;123,124 
however, they failed in clinical trials,117,149 despite target 
engagement and reduced concentrations of polyGP and 
polyGA in the CSF of patients. A decrease in polyGP and 
polyGA should not be interpreted as a reduction in all 
dipeptide repeat proteins, particularly those translated 
from antisense C9orf72 repeat transcripts. Measuring 
antisense specific dipeptide repeat proteins in samples 
from participants in the trials would provide a better 
understanding of disease mechanisms. On the other 
hand, antisense oligonucleotides targeting sense C9orf72 
repeat transcripts might have led to some off-target 
degradation of non-expanded transcripts encoding the 
C9orf72 protein, as reported in some initial mouse 
studies. Either way, the failure of these trials brings focus 
on developing new drugs that can target gain-of-function 
and combinatory mechanisms.

Gene editing with CRISPR-Cas systems has been 
successfully evaluated in patient-derived neurons and 
mouse brains. These systems were engineered to 
(1) delete the genomic repeat expansions125 or the 
promoter in exon 1a and the expression of repeat-
containing V1 or V3 isoforms,126 (2) impede transcription 
of C9orf72 sense transcripts using deactivated Cas9,127 
or (3) induce the degradation of both sense and 
antisense repeat transcripts using RNA-targeting Cas 
enzymes.128,129 

A ribonuclease-targeting chimera (ie, RiboTAC), that 
directly binds GGGGCC hexanucleotides in sense 
C9orf72 repeat RNAs and recruits RNase L, induced the 
degradation of sense repeat transcripts in patient-derived 
neurons and mouse brains.130 Further research of these 
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gene editing technologies will be necessary to safely 
bring this new type of drugs into the clinic. 

Targeting dipeptide repeat proteins
The inhibition of the nuclear export of both sense and 
antisense C9orf72 repeat transcripts by partial depletion 
of serine–arginine-rich splicing factor 1 (SRSF1)131 or 
administration of a SRSF1-inhibitory cell permeable 
peptide132 led to reduced expression of dipeptide repeat 
proteins and neuroprotection in patient-derived motor 
neurons and in fruit flies. The partial depletion of 
SRSF1 promotes neuronal survival by the activation of 
homeostasis pathways in neurons.133 Metformin, a 
repurposed drug used to treat patientes with type 2 
diabetes, also inhibits protein kinase R, reducing the 
translation of dipeptide repeat proteins and rescuing 
neurodegeneration-associated deficits in mice, 

Drug Target Trial number Trial 
phase

Participants Outcomes

BIIB078 ASO Degradation of C9orf72 pre-mRNA 
variants V1 and V3, with some off-
target effects in the V2 isoform

NCT03626012 1 106 patients with 
C9orf72-ALS

Halted in March, 2022 (no 
clinical benefit and functional 
decline at highest dose 
[A: correct?])106

WVE-004 Stereopure ASO Degradation of V3 preferentially 
and V1 isoforms, without 
targeting V2

NCT04931862 1/2 35 patients with 
C9orf72-ALS or 
C9orf72-FTD

Halted in May, 2023 (no clinical 
benefit reported)118

Metformin Repurposed 
small molecule

Inhibition of RAN translation NCT04220021 2 18 patients with 
C9orf72-ALS

The study is ongoing

TPN-101 Repurposed 
small molecule

LINE-1 retrotransposon inhibitor NCT04993755 2a 42 patients with 
C9orf72-ALS or 
C9orf72-FTD

Clinical benefits reported 
[A: please specify outcome 
measures]

Apilimod Repurposed 
small molecule

PIKFYVE kinase inhibitor that 
stimulates clearance of aggregated 
proteins via exocytosis

NCT05163886 2a 14 patients with 
C9orf72-ALS

Safety and biomarker 
endpoints met141

BIIB100 Small molecule 
inhibitor 
(KPT-350, 
Karyopharm 
Therapeutics)

XPO1 inhibitor modulating the 
karyopherin-dependent nuclear 
export of proteins and some non-
coding RNAs and toxicity of 
arginine-rich dipeptide repeat 
proteins

NCT03945279 1 49 patients with ALS Halted in June, 2022; no clinical 
benefit reported

Latozinemab Monoclonal 
antibody

Targeting sortilin, to inhibit 
lysosomal degradation of GRN and 
to increase GRN levels

NCT03987295 2 16 patients with 
C9orf72-FTD or 
frontotemporal dementia 
due to GRN mutations

Halted for C9orf72-FTD 
(no clinical benefit); ongoing 
phase 3 for carriers of GRN 
mutations [A: please supply 
NCT number for this phase 3]

BIIB105 ASO Degradation of ATXN2 mRNA to 
reduce ATXN2 protein levels and 
target persistent stress granules 
and protein aggregates

NCT04494256 1/2 99 patients with ALS with 
or without intermediate 
length CAG repeat 
expansions in ATXN2

Halted in May, 2024 (no clinical 
benefit reported)

Lithium 
carbonate

Repurposed 
inorganic salt

Promotion of synaptogenesis and 
autophagy

NCT06008249 3 171 patients with ALS with 
UNC13A mutations 
(homozygous for the 
C-allele at single 
nucleotide polymorphism 
rs12608932)

The study is ongoing

QRL-201 ASO Restauration of STMN2 protein 
expression via splicing modulation

NCT05633459 1 64 patients with ALS 
(excluding patients with 
SOD1 or FUS mutations)

The study is ongoing

ALS=amyotrophic lateral sclerosis. ASO=antisense oligonucleotide. ATXN2=ataxin 2. C9orf72-ALS=C9orf72-associated ALS. C9orf72-FTD=C9orf72-associated FTD. 
DPR=dipeptide repeat protein. FTD=frontotemporal dementia. GRN=progranulin. RAN=Repeat-associated non-AUG. STMN2=stathnin 2. XPO1=exportin 1.

Table 2: Clinical developments for patients with C9orf72-ALS or C9orf72-FTD

Panel 2: Research priorities to accelerate therapeutics to 
prevent or delay C9orf72-associated amyotrophic lateral 
sclerosis

•	 Understand the genetic and environmental factors that 
affect the penetrance of the C9orf72 repeat expansion

•	 Develop TDP-43 neuroimaging and blood biomarkers
•	 Develop methods to measure antisense repeat-derived 

RNAs 
•	 Describe the downstream pathways of C9orf72 mutations 

in both neurons and immune cells
•	 Implement clinical trial platforms for C9orf72 mutation 

carriers capable of testing multiple therapies 
simultaneously, by comparison with a single placebo 
group
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including gait alterations and anxiety-like phenotypes.134 
Metformin is now being evaluated in a phase 2 clinical 
trial in patients with C9orf72-ALS or C9orf72-FTD 
(NCT04220021).

Clearance of dipeptide repeat proteins has been also 
achieved via (1) intraperitoneal administration of human 
anti-polyGA neutralising antibodies in mice, to reduce 
expression and impair cell-to-cell transmission of 
polyGA,135–137 (2) overexpression of heat shock protein 
family B member 8 (HSPB8) in motor neuron-like 
NSC34 cells to promote autophagy-mediated disposal of 
all dipeptide repeat proteins,138 and (3) treatment with 
apilimod, a repurposed PIKFYVE kinase inhibitor that 
activates the exocytosis of aggregation-prone proteins139 
and was recently shown to lower CSF polyGP 
concentrations in patients with C9orf72-ALS in a phase 2a 
clinical trial.140

Targeting modifiers of TDP-43 pathology
Reduced TDP-43 pathology and less severe phenotypes 
were observed in mouse models of TDP-43 proteinopathy 
after the administration of anti-TDP-43 monoclonal 
antibodies141,142 or following depletion of ATXN2 (a gene 
that codifies for an RNA-binding protein) by use of 
antisense oligonucleotides143 or the CRISPR-Cas13 
system.144 However, translation into the clinic might be 
restricted, since experimental models in mice do not 
recapitulate TDP-43 proteinopathy in human beings, and 
an ATXN2-targeting antisense oligonucleotide trial in 
patients with ALS with or without intermediate CAG 
repeat expansions in ATXN2 did not show any clinical 
benefits.145 Another proposed therapeutic strategy has 
been to target the effects of TDP-43 nuclear loss-of-
function. This strategy involves blocking the cryptic 
mis-splicing of STMN2 to restore its expression in 
neurons using an antisense oligonucleotide or an RNA-
targeting Cas system.146 However, restoring the expression 
of STMN2 might not be sufficient, since the loss of 
function of TDP-43 leads to dozens of cryptic mis-splicing 
events, including in the gene UNC13A, which is also 
associated with ALS and frontotemporal dementia.147,148

Progress in clinical trials 
To date, early-phase trials testing therapeutic approaches 
have not shown efficacy, highlighting the need for a 
better understanding of pathological mechanisms. 
Previous and ongoing studies are listed in tabletable 2. Lastly, 

given the heterogeneity in clinical presentation of 
patients with C9orf72-ALS or C9orf72-FTD, specific 
outcome measures of motor, cognition, and behavioural 
testing could be considered in new clinical trial 
designs.150,151 Additional considerations that are crucial for 
future success of clinical trials involve the selection of the 
most appropriate route of drug delivery and the 
identification of diagnostic biomarkers.38 

Conclusions and future directions
Since the discovery of the repeat expansion about 
14 years ago, there have been major advances in the 
clinical and molecular understanding of C9orf72-related 
diseases. The complexity of this mutation is now clear, 
with both loss-of-function and gain-of-function effects, 
and pathogenic consequences via a wide range of 
cellular processes in neurons and glia, both in the CNS 
and periphery. Notwithstanding, there are clear points 
of convergence, such as TDP-43 proteinopathy in most 
patients. The first wave of therapeutics has shown that 
targeting sense C9orf72 repeat RNA alone is insufficient 
to alleviate neurodegeneration, highlighting the urgent 
need to identify and target also other pathological 
drivers of clinical onset and disease progression. The 
development of biomarkers would improve future 
clinical trials by allowing recruitment of participants at 
early disease stages and could facilitate stratification 
and monitoring of target engagement (panelpanel 2). This is 
an exciting time in C9orf72 research and there is 
growing optimism that effective therapeutics can be 
developed to improve the lives of people with these 
severe conditions. 
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