
UC Davis
IDAV Publications

Title
A Model for the Visualization Exploration Process

Permalink
https://escholarship.org/uc/item/9fq9g6fc

Authors
Jankun-Kelly, T. J.
Ma, Kwan-Liu
Gertz, Michael

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fq9g6fc
https://escholarship.org
http://www.cdlib.org/

To appear in the IEEE Visualization 2002 Proceedings

A Model for the Visualization Exploration Process

T.J. Jankun-Kelly∗ Kwan-Liu Ma∗ Michael Gertz†

Computer Science Department
University of California, Davis

ABSTRACT

The current state of the art in visualization research places a strong
emphasis on different techniques to derive insight from disparate
types of data. However, little work has investigated the visual-
ization process itself. The information content of the visualiza-
tion process—the results, history, and relationships between those
results—is addressed by this work. A characterization of the vi-
sualization process is discussed, leading to a general model of the
visualization exploration process. The model, based upon a new
parameter derivation calculus, can be used for automated reporting,
analysis, or visualized directly. An XML-based language for ex-
pressing visualization sessions using the model is also described.
These sessions can then be shared and reused by collaborators. The
model, along with the XML representation, provides an effective
means to utilize the information within the visualization process to
further data exploration.

CR Categories: I.3 [Computer Graphics]: Methodology and
Techniques; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Theory and Methods

Keywords: visualization process, visualization models, visuali-
zation systems, scientific and information visualization, collabora-
tion, XML

1 INTRODUCTION

Over the past decade, the field of visualization has matured; a
wealth of techniques for a variety of data types have been devel-
oped to solve problems in various domains. As the use of visuali-
zation becomes more wide-spread, a formal understanding of how
visualizations and visualization systems are used is needed. Such
a formal understanding can assist in the development of new visu-
alization systems or the refinement of current ones. For example,
a system using a complete model of the visualization process can
suggest courses of data exploration for users by analyzing previ-
ous results captured by the model during the current or previous
exploration sessions. In addition, a standard representation of the
visualization process provides documentation of that process. This
documentation can be used by others to reproduce the visualization
results for validation or to extend those results by continuing the
data exploration. Towards this end, a model for the visualization
exploration process has been developed.

∗Visualization and Graphics Research Group, Center for Image
Processing and Integrated Computing, Computer Science Department,
University of California, Davis, CA 95616. E-mail: {kelly,
ma}@cs.ucdavis.edu

†Database and Information Systems Group, Computer Science De-
partment, University of California, Davis, CA 95616. E-mail:
gertz@cs.ucdavis.edu

It is important to note that a model of the visualization process
alone is not sufficient to describe the knowledge of the user before
or after the visualization. To completely capture this knowledge and
insight, a meta-data model for the visualization process also needs
to be developed. The ultimate goal of this research is to develop
such a meta-data model using the model described here as the basis
for the meta-data’s descriptions. For example, meta-data annota-
tions of previous sessions that suggest what results were “good”
and which were not could help the session analysis process. Thus,
this work is the first step towards that goal.

There are several benefits to capturing the visualization process
with the proposed approach. With our process model, users of visu-
alization systems are able to record their visualization sessions at a
higher level than simple log systems are able to provide. For exam-
ple, the two representations of the visualization process discussed
in Section 3.2.1 would be difficult or impossible to create using a
log file due to the lack of information about the process. Our model
also allows visualization systems designers to build systems that
can share results and process information between different visual-
ization interfaces, an example of which is discussed in Section 5.
Finally, represented with a formal model, the visualization process
is opened up to a variety of analyses. Though work of this nature is
not presented here, it is conceivable that analysts could derive dif-
ferent metrics using the model to further examine and optimize the
visualization process. The process model discussed here addresses
visualization exploration in more depth and with greater generality
than has been previously presented.

2 A CHARACTERIZATION OF
VISUALIZATION EXPLORATION

In order to develop a model which describes the visualization pro-
cess, the characteristics of that process must be understood. Spring-
meyer et al. [20] describe the entire scientific data analysis process
of which scientific visualization is a part. In their taxonomy, visual-
ization is used mainly to interact with and maneuver through scien-
tific data. These actions include generating, examining, querying,
navigating through, comparing, and classifying the data or portions
of the data. While this task-based classification is useful for under-
standing the uses of visualization, it is less useful in distinguishing
the core features of the visualization process.

Upson et al. [22] describe the scientific visualization process as
an iterative analysis cycle. According to this model, data is filtered
into subsets of interest, mapped onto visual primitives, and then
rendered for the user by a function called thevisualization trans-
form. The visualization generated by this transform is then used by
the user to provide feedback into the previous steps, restarting the
cycle. A similar cycle of raw data transformation, visual structure
generation, and view rendering with user interaction is described by
Card et al. [5] for information visualization. The key feature of both
models is that the visualization process is an iterative sequence of
user controlled transformations. Thus, elements that change during
this iteration must be the focus of any description of the visuali-
zation process. These elements are the parameters which control

To appear in the IEEE Visualization 2002 Proceedings

Type Parameter Interactions Continuous Rendering Transform Editing
Interactive Parameter Control Single or multiple parameter editing No None or limited
Dynamic Manipulation Single parameter editing Yes None or limited
Data-flow Single or multiple parameter editing Maybe Full
Image Graph Single parameter editing; parameter propagation to

linked results; operators to create new parameters
No None

Exploration Spreadsheet Create, edit, or remove a single parameter; operators
to create new parameters; interpreter to manipulate pa-
rameters

No None

Table 1: A summary of parameter editing capabilities of visualization exploration interfaces. The first column reports the type of interface, the
second column the different type of parameter manipulation the interface supports, the third column whether the interface supports continuous
rendering from parameter updates, and the fourth column whether the interface supports visualization transform editing. A “limited” in the
fourth column signifies that the interface may combine a static number of different visualization techniques, such as a cutting plane in a
volume rendering display.

the transforms. As parameters are visualization transformation de-
pendent, a description of this transform is also important to any
documentation of the visualization process.

To gain a better understanding of the visualization process, it is
insightful to investigate different visualization user interfaces. The
kinds of interactions a user has with the user interface expose dif-
ferent aspects of the visualization exploration process. Though the
user interface community has extensively looked at user interface
events (for example, see [10]), the actions discussed here are at a
higher semantic level and are tailored for visualization systems. Ta-
ble 1 summarizes the five interface types studied and different capa-
bilities of each. The examples discussed below focus on scientific
visualization interfaces, though parallels can be drawn to informa-
tion visualization tools.

The first two interface types discussed are interactive parame-
ter control and dynamic manipulation interfaces [19]. In the for-
mer interface, interactive manipulation of the parameter values does
not correspond to interactive updates to the rendered result; in the
later interface, the result is rendered interactively during parameter
changes. Visualization transform editing—the process of creating
visualization transforms through means such as data-flow networks
(c.f.)—is not supported in these interfaces, though a fixed number
of different transforms may be available for use. In these systems,
the major action is the editing of parameter values (potentially from
different parameter types in the case of interactive parameter con-
trol interfaces) to generate a visualization result. In interactive in-
terfaces, parameter values can vary over a continuous range during
manipulation. This range corresponds to a range of rendered re-
sults, which must be documented somehow. This behavior does not
occur in non-interactive interfaces.

Data-flow interfaces [1, 14, 22, 23] provide the ability to edit the
visualization transform. The visualization transform is constructed
using a visual programming language. Because the parameter types
are dictated by the visualization transform, special care must be
taken when recording the visualization process for data-flow inter-
faces. Depending on the system, parameter changes and rendering
may be synchronous like dynamic manipulation interfaces or asyn-
chronous like interactive parameter control interfaces.

The fourth type of interface presented here is the Image
Graph [17]. This interface uses a graph representation of the vi-
sualization process that distinctly displays the relationship between
generated images via glyph edges. An image graph interface ex-
hibits two types of parameter manipulation behaviors not found in
the previous interfaces. First, it is possible to propagate a parameter
change down a directed graph of related results, creating an entirely
new subgraph of images. In addition, it is possible to combine sev-
eral parameters from different results via parameter operators to

generate new parameters and thus a new result.
The interfaces discussed so far have coupled parameter editing

and rendering. Though it may be possible to edit several parameters
without generating a result—and even change the same parameter
multiple times before rendering—only parameters which generate
a result are stored. This behavior is not true of Jankun-Kelly and
Ma’s visualization exploration spreadsheet-like interface [11]. In
this interface, parameters can be added, edited, or removed with-
out rendering a result. When desired, the user combines a set of
parameters—represented by a cell in the table—to generate a result.
While all the interfaces perform the same function—collecting pa-
rameter values to create the corresponding visualization result—the
spreadsheet-like interface highlights this behavior.

From the previous discussion, several key properties of the visu-
alization exploration process can be distilled. As illustrated by the
spreadsheet interface, the fundamental operation of the visualiza-
tion exploration process is the application of a set of parameter val-
ues to the visualization transform to generate a visualization result.
The parameter values are generated in one of three ways: a single
parameter value can be generated from an old parameter value (as in
non-interactive interfaces); a range of parameter values can be gen-
erated from an old parameter value (as in an interactive interface);
or a set of parameter values can be derived from a different set of
parameter values via some operator (as in the image graph). The
parameters available vary with the visualization transform which
can also change. Finally, it is possible to generate more than one
result in a single operation in some interfaces. All of these proper-
ties will be addressed by the proposed model for the visualization
exploration process.

3 VISUALIZATION EXPLORATION
PROCESS MODEL COMPONENTS

The visualization exploration process model consists of two com-
ponents: the visualization transform model and the visualization
exploration session model. The transform model provides context
for the process described in the exploration session model. Put an-
other way, the visualization transform model describes how the vi-
sualization occurs while the visualization exploration session model
describes what occurred.

3.1 Visualization Transformation Model
The visualization transform model outlines the type of visualization
being applied. Without this information, it may be difficult to deter-
mine how the visualization results were generated. The transform

2

To appear in the IEEE Visualization 2002 Proceedings

also details what parameter types are used to generate a result. This
information is needed by the session model in the next section.

Previous visualization transform models have focused on de-
scribing the visualization transform itself, leaving out descriptions
of the parameters involved. One model already mentioned is the
data-flow model used by data-flow interfaces [8]. This considers the
visualization transform a pipeline where each stage in the pipeline
represents a transformation. When these stages are collected, they
form a network through which data flows. The data state model [6],
in contrast, focuses on the transformation of data states through the
visualization pipeline. In a data state network, the nodes represent
states of the data and the edges operations on the data. This network
is the dual of the data-flow network. Finally, the display model used
by VisAD [9] is interesting in that it maps data attributes directly
to display via mappings utilizing lattice theory and principles de-
veloped by Bertin [2] and Mackinlay [18]. It is the lowest-level
approach of the three models. These models neither explicitly ad-
dress the parameters encoding the visualization technique nor de-
scribe the visualization process as a whole.

The visualization transform model described here augments the
data state model to include information about the parameters used
in the visualization process. The data state model was chosen be-
cause it already focuses upon the data sets utilized in the visualiza-
tion, an important parameter. Formally, the transform model con-
sists of the following components:

Visualization transform A functionf : D×P1 ×· · ·×Pn → R
which describes the mapping of value (the data set typeD) to
view (the visualization transform result typeR). P1 to Pn are
visualization transform parameter types.

Visualization transform parameter type Any set that is part of
the domain of the visualization transform function. By this
definition, data set types are also a visualization transform
parameter type. A member of a visualization transform pa-
rameter set is avisualization transform parameter value, or
parameter value for short.

Visualization transform result type A set which is in the range
of a visualization transform function. Members of this set,
known asvisualization transform result values, or results for
short, are directly representable in graphical form (such as a
raster image, shaded geometry, etc.).

When documenting the visualization exploration session, only the
visualization transforms and corresponding parameter and result
types used need to be recorded.

3.2 Visualization Session Model
The visualization exploration session model serves two purposes.
Its primary purpose is to capture the path of exploration during the
visualization session. This information encapsulates the details of
the visualization exploration process. The secondary purpose of
the model is to allow the description of the session to be further
analyzed, visualized, or manipulated.

The visualization exploration session model describes four com-
ponents:

• The visualization results generated during the visualization
process.

• The parameter values used during the process.

• A linear history of the generated results.

• An encoding of the relationships between results.

The visualization results are recorded because they are the de-
sired outcome of the user’s exploration process. Each result is
uniquely identified by the parameter values which generated that
result. Without the parameter values, the final results could not
be reproduced. Finally, the history and derivation information is
needed to reproduce the visualization process.

Most research in visualization modeling has not focused on the
process model. One work of note is that of Lee and Grinstein [16],
later expanded in Lee’s thesis [15]. Lee uses a graph-like structure
to model the visualization process for databases. Vertices in the
graph represent the state of the visualization while edges are rela-
tionships between states. These relationships are based upon sim-
ilarities between meta-data attributes of the states. In Lee’s work,
these attributes describe structural attributes of the states/results.
Our work also uses a graph structure to represent relationships, but
the relationships are between parameter value derivations.

Similar work in process modeling was addressed by the GRAS-
PARC project [4]. The project’s work addresses modeling the
search for a solution in a scientific problem solving environment
(PSE). Like the visualization exploration process, this search is pa-
rameter driven; in this case, the parameters are the control variables
for the simulation data in the PSE. A history tree structure is used
to communicate and manipulate the PSE control state where nodes
in the tree store the solution parameters and complete or partial re-
sults (as simulations can be interrupted). Our work differs from
the GRASPARC work in several ways. First, as noted, their work
focuses on the steering aspect of a problem solving process, while
we address the search of the visualization parameter space. Sec-
ond, our work models how the parameter values can change during
the visualization process. This information is not present in the
GRASPARC work. In addition, parameter derivations in our model
can have multiple sources/parents, whereas branches in the GRAS-
PARC history tree are limited to single parent (this is illustrated
later in Figure 3). Finally, the derivation information in our model
allows the visualization process to be analyzed in many different
ways instead of the single, tree-like view GRASPARC provides.

As previously stated, the fundamental operation that occurs dur-
ing the visualization process is the formation of parameter value
sets to derive visualization results. These parameter value sets, or
p-sets, posses a parameter value for each parameter in the visual-
ization transform. New p-sets are created by user interaction with
the visualization system. The session model tracks the relationships
between results by recording how a user generates new p-sets (and
thus results) from old p-sets. P-set derivations can be expressed as
one of three templates using aparameter derivation calculus. In
the following, thepj = {pj(1), . . . , pj(n)} are p-sets and each
pj(i) ∈ Pi is a different parameter value for the same parameter
typePi:

I. p2(i)| p0 7→ p1: parameter valuep0(i) ∈ p0 is replaced by
p2(i) ∈ p2 in order to derive p-setp1.

II. [p0(i), p1(i)]| p0 7→ p1: a continuous range of parameter val-
ues is generated between discrete parameter valuesp0(i) and
p1(i) and applied to p-setp0. p1 represents the p-set at the
end of the continuous interaction.

III. p0(i) → p1(i)| p0 7→ p1: parameter valuep1(i) was calcu-
lated fromp0(i) by some function and then applied top0 to
generatep1.

All derivations are expressed asparameter-list | input-tuple 7→
output-tuple. Such constructions areparameter derivation calculus
instances. The parameter list contains input and output parameter
values; the former is used to derive the later. Output parameter val-
ues are sequentially applied to the elements in the input p-set tuple
to generate the output p-set tuple. In the templates,p0(i) is an input
parameter value whilep1(i) andp2(i) are output parameter values.

3

To appear in the IEEE Visualization 2002 Proceedings

It is possible to have multiple input parameter values, output pa-
rameter values, p-sets in an input tuple, or p-sets in an output tuple.
For example, Figure 1 demonstrates a function derivation with two
output parameter values (in braces) and two elements in the output
tuple (in angle brackets).

The parameter derivation calculus describes all the salient pa-
rameter behaviors described in Section 2. The only operation not
supported is the “remove parameter” function of the exploration
spreadsheet. This model records how results were generated during
the visualization process—thus, only parameters which are used
must be recorded. Parameters that were added and then removed
without rendering a result have no bearing on any generated results
and parameters later hidden from display by removal will still be
present in the model’s representation.

The parameter derivation calculus is the basis for recording the
visualization exploration session. Formally, a visualization session
consists of a set ofvisualization session results. A visualization
session result is a tuple containing a p-set, the visualization result
derived from the p-set, a timestamp to place the result in temporal
context, and a parameter derivation calculus instance detailing how
the result was derived. Example session results are given in Figure
1. Each session result represents the generation of a single visuali-
zation result. As the example illustrates, it is possible for parameter
calculus instances to be the same for two or more session results
(the third and fourth lines in the example). This disparity is due
to the fact that calculus instances correspond to user actions while
session results correspond to rendered results. The same user ac-
tion can create more than one rendered result, all sharing the same
timestamp. Though it is possible for a user to re-visit the same visu-
alization result by generating the same p-set more than once, each
is a unique session result identified by a distinct timestamp.

One issue remaining is the change of visualization transforms
during a visualization exploration session. Changes of visualiza-
tion transform are not explicitly encoded in the model. Currently,
it is assumed that visualization transforms can be uniquely identi-
fied by their signature: the parameter types and result type used in
the visualization transform. Thus, a p-set not only uniquely identi-
fies a visualization result but also identifies the visualization trans-
form that generated the result since the parameter types are defined
by the transform. Explicit identification of a transform change is
not needed since it is implicit in the visualization session result se-
quence.

3.2.1 Visualization Process Graphs

Visualization process graphs visually summarize the visualization
process. Two graphs of interest are the history sequence and the
derivation graph (Figure 2).

In the history sequence, branches in the visualization process are
collapsed into a single element. Each element in the sequence is
a set of session results that were generated by the user in a single
operation. The sequence can be displayed graphically using ver-
tices representing the session results created during a single time
step and directed edges representing the flow of time. These edges
are labeled with the timestamp to order the sequence.

The history sequence is insufficient for describing the relation-
ships between session results. The sequence does not distinguish
between results derived directly from their predecessor or those de-
rived from earlier results. These relationships are vital to under-
standing the entirety of the visualization process and are captured
by the derivation graph.

The derived-from relation forms the basis of the derivation
graph: A session resultsj is derived from resultsi if and only if
sj ’s timestamp is greater thansi’s timestamp and the p-setpi be-
longing tosi either possesses a parameter value which is a member
of the parameter list insj ’s parameter calculus instance orpi is a

s0 = 〈p0, r0, t0, ∅〉
s1 = 〈p1, r1, t1, p1(2)| p0 7→ p1〉
s2 = 〈p2, r2, t2, p1(1) → {p2(1), p3(1)}| p1 7→ 〈p2, p3〉〉
s3 = 〈p3, r3, t2, p1(1) → {p2(1), p3(1)}| p1 7→ 〈p2, p3〉〉
s4 = 〈p4, r4, t3, p4(2)| p0 7→ p4〉

Figure 1: A series of visualization session results. A session result
is a tuple of a p-set (thepi), the visualization result corresponding to
that p-set (ri), a timestamp (ti), and information detailing how the
result was derived. In this example, the second session result was
derived from the first in the second timestep before the third and
fourth results were both derived in the third timestep. Afterwards,
the fifth result was derived from the first.

s3

s2

s4 s1s0
t2 t1 t3

s1

s2

s3

() 101 2 ppp a

() 404 2 ppp a

{ } 321321 ,, pppppp a→

s4

s0

{ } 321321 ,, pppppp a→

Figure 2: The history sequence (top) and derivation graph (bottom)
for the visualization sessions results (thesi) from Figure 1. The
graphs provide an “at-a-glance” overview of the visualization pro-
cess. The graphs clearly show thats4 is not descended froms2

or s3, whereas that information may not be immediately apparent
from the session results.

member of the input p-set tuple insj ’s parameter calculus instance.
In other words,sj is derived fromsi if it was created aftersi and
either used the p-set or a parameter value fromsi’s p-set to derive
sj ’s p-set. Using the relation, the derivation graph is constructed
as follows. Each vertex in the graph represents a single session re-
sult. There is a directed edge between two vertices if and only if
the vertex with the outgoing edge derived the vertex with the in-
going edge; this edge can be optionally labeled with the parameter
calculus information as demonstrated in Figure 2. Derivations that
generated or used several results are clearly identified in the graph.
It is possible for the graph to contain disconnected components.
Each disconnected component corresponds to a different visualiza-
tion transform as there will be no derivations between transforms.
Together with the history sequence, the derivation graph captures
the key features of the visualization process.

One property to note of the derivation graph is that it is a col-
lection of directed, acyclic graphs (DAGs). There are no cycles
because of the ordering enforced by the derivation relation—no
result can derive a result with a lower or same timestamp value.
The DAGs represent the derivations related to a single visualization
transform. Each DAG possesses a node corresponding to the de-
fault result of the visualization transform. The default result is the

4

To appear in the IEEE Visualization 2002 Proceedings

session result that corresponds to the initial parameter values for a
visualization transform; if there is no appropriate default value for
a certain parameter (such as a data set), then an “undefined” value
is used. By convention, any completely new set of parameter val-
ues is derived from this default set. Only the default results are not
derived from any other result.

There are potentially other visualization session graphs that can
be extracted from the visualization session results. In addition, met-
rics can be created to measure different properties of these graphs
and the session they encode. Lee’s thesis [15] describes several
such measurements which could be adapted for analysis of visual-
izations performed with this model. This is a fertile area of research
to be explored.

4 MODEL REPRESENTATION

To transport an instance of the model of the visualization process
between different systems requires the use of a common data for-
mat. To be effective, the format must be extendible to different
visualization applications. It is also desirable that the representa-
tion can be used by data-mining or analysis tools. These goals are
accomplished by using XML to express the visualization process.

The Extended Mark-Up Language (XML [3]) is the standard
data exchange format for the World-Wide Web. Standardized tech-
nologies exist to parse and extract the content from XML docu-
ments. XML documents can also be transformed into HTML [7].
By expressing the visualization session with XML, the session can
be easily shared with collaborators. Specific systems can trans-
late their internal representation into our generic model (via XML)
which can then be translated again to a representation usable by
some other system.

The XML representation of the model is partitioned into five
sections. The first section describes the visualization transforms
used by listing their signatures (the parameter and result types) and
name. In the next section, a list of the parameter values used is
stored, each uniquely identified. Each distinct p-set is then recorded
by identifying the parameter values composing the p-set. The p-
sets are also given a unique identifier. Next, the visualization trans-
form results are stored. For each result, a reference to the p-set
which generated it, an identifier, and the result itself are recorded.
Note, for interactive systems which can generate results continu-
ously over a range, only the first and last result in that range are
stored. It is assumed that the interim results can be generated by in-
terpolating over the parameter that varied. If two results are not suf-
ficient, then “key frame” results—results where interpolation over
the range is sufficient—could also be stored. In the final section,
the visualization session’s results are themselves stored. Each ses-
sion result identifies its p-set, visualization result, timestamp, and
the derivation information for that session result. When generat-
ing the XML session document, there are different approaches to
how parameters and results are stored. It is possible to embed a
representation of these items directly into the XML representation.
For large or binary elements, such as the data set used or the re-
sults themselves, this approach may be inadvisable. Instead, each
parameter or result element in the XML document can provide an
optional link attribute. A link is a URL describing where the actual
parameter or result may be obtained. Linking can be used to ref-
erence large data sets over the network while accessing image files
locally, avoiding costly transfers.

Note that the main purpose of the XML description of the model
is for transport, not analysis. Analysis is performed on the infor-
mation encoded by the XML (the visualization session results from
this model), not on the XML itself. Given an XML document repre-
senting a visualization session, tools are expected to parse the XML
into their own internal structures before operating on the visualiza-
tion session information.

5 EXAMPLES

To better understand the details of the visualization exploration pro-
cess model, we present a few examples. Two examples are pre-
sented in this section. The first example considers a detailed vi-
sualization session in order to demonstrate the effectiveness of the
model and representation. It also provides a concrete example of
how the parameter calculus can describe real visualization sessions.
The second example is a case study demonstrating how an imple-
mentation of the model was added to an existing visualization tool.

The first example (Figure 3) demonstrates the use of the the
model and representation. A volume visualization of blood ves-
sels in the brain was performed using the image graph (top image
in the figure). The user first zoomed into a region of interest (result
b). Two rotations were then used to display different views of the
vessel (c andd). After zooming in again (e), the user decided to
apply the final zoom magnification to the earlier images. This was
accomplished by dragging the zoom edge over the previous zoom
edge. The images using the new magnification (e, f , g) replaced
the old images (d, b, andc respectively) to produce the image graph
shown in the figure. During the exploration, the session results were
recorded (middle portion of the figure); these results explicitly state
how the zoom parameter value frome’s p-set was applied to results
b andc to derive resultsf andg respectively (the fifth and sixth lines
in the middle portion of the figure). The derivation graph (displayed
without edge labels in the figure) illustrates this point by displaying
how multiple results were used to generate the later results. Finally,
the exploration session was stored as an XML document and trans-
formed into HTML (bottom image in the figure). This web page can
be easily viewed and shared with collaborators to discuss results.

In the second example, the model was used to augment an exist-
ing visualization tool. The tool in this example is used to visualize
anomalies in Internet routing using the Border Gateway Protocol
(BGP) [21]. The tool displays different types of changes to owner-
ship of autonomous systems (ASes)—groups of hosts on the Inter-
net. The different types of changes correspond to different colors
(top image in Figure 4). Lines of the appropriate color connect an
AS along the edge of the square to IP addresses affected by the
AS change within the square. The tool allows a user to browse
through different dates with different types of AS changes high-
lighted. Anomalies are found by visually searching the dates for
unusual patterns of lines. In this example session, a range of dates
showing all the AS change types were examined until an anomaly
was discovered on August 14th, 2000 (top row of the bottom image
in Figure 4). The displayed AS change types were then changed
until the type of anomaly was isolated (third column in the lower
image in the figure).

In order to support the model presented here, the original tool
was modified in several stages. First, the types of visualization
transforms used by the system and the parameter and result types of
each transform were determined. In this system, the major param-
eter types are the date, which of the eight AS changes to display,
a list of ASes to highlight, a list of ASes to ignore, and options
for modifying the display. Once the parameters were identified,
the next stage determined how the parameter values can change.
For this example, all parameter changes are discrete: there are no
function applications and parameters cannot be manipulated over
a range. Finally, hooks were added to the user interface elements
corresponding to each parameter type in order to capture changes
in parameter values. These hooks update session information stored
by a separate library. The library (written in Python) interfaces with
the original tool (written in C++) in order to produce the XML rep-
resentation used by the spreadsheet (written in Java, the bottom im-
age in Figure 4) to display the process. The above process can
be repeated with other visualization systems in order to make use
of the model and this XML representation; Figure 5 displays the

5

To appear in the IEEE Visualization 2002 Proceedings

a = 〈pa, ra, t0, ∅〉 Default
b = 〈pb, rb, t1, pb(zoom)| pa 7→ pb〉 Zooma
c = 〈pc, rc, t2, pc(view)| pb 7→ pc〉 Rotateb
d = 〈pd, rd, t3, pd(view)| pb 7→ pd〉 Rotateb
e = 〈pe, re, t4, pe(zoom)| pd 7→ pe〉 Zoomd
f = 〈pf , rf , t5, pe(zoom)| 〈pb, pc〉 7→ 〈pf , pg〉〉 Zoomb
g = 〈pg, rg, t5, pe(zoom)| 〈pb, pc〉 7→ 〈pf , pg〉〉 Zoomc

c

d e

f g b a

Figure 3: Representation of a brain vessel visualization. The fea-
ture of interest is the bulge in the lowest vessel in imagee (captions
added for clarity). During the visualization, the user dragged the
zoom edge going to imagee over the edge froma to zoom the
other images in the image graph (top). These derivations, including
the propagation of the zoom factor frome to resultsf andg, are
recorded in the session results (top middle). The derivation graph
succinctly illustrates the information within the session results (bot-
tom middle). The XML representation of the original visualization
can be used to translate the session from an image graph view to an
HTML page (bottom).

Figure 4: An example of augmenting an existing visualization sys-
tem (top) to store visualization session information using the model.
The interface is a Border Gate Protocol (BGP) visualization tool;
the bottom figure displays a spreadsheet view of an exploration pro-
cess originally captured by the tool. Dates are shown across the
columns and the types of origin AS change displayed (indicated by
color) are shown down the rows.

salient portions of the XML. In this example, parameter values are
encoded in the XML directly (such as the date January 1, 2000 for
“param18”), while results are referenced by local files (such as the
PNG image file result0.png for “result0”).

6 INITIAL EVALUATION

Initial evaluation of the model and representation have been pos-
itive. Users of the BGP tool, for example, were pleased with
the ability to view the visualization in different formats by using
the system-independent XML representation. Demonstrations of a
spreadsheet-based system using the model to display session sum-
maries in HTML have also met with approval. More studies, es-

6

To appear in the IEEE Visualization 2002 Proceedings

Figure 5: The XML representation of a visualization session using
the BGP visualization tool; similar portions of the document are
condensed for illustration purposes. The first section (blue) details
what visualization transforms were used. The next portion (green)
lists all the parameter values explored, followed by the parameter
sets constructed (pink) and the visualization results rendered (red).
Finally, the session information is recorded (purple). This repre-
sentation encodes all the information described by the model and
is used to transport session information between visualization sys-
tems.

pecially those which explore the analytical uses of the model, are
planned for the future.

One concern is the growth of the XML representation as visual-
ization sessions become longer. In the worst case, the size of the
file can increase quadratically with the number of results (if every
new result is derived from all previous results—an unlikely case).
However, in practice, the text XML does not approach anywhere
near the size of the original data set for common large data sets and
can be effectively compressed if needed. In the BGP example, the
XML session encoding never exceeded a megabyte in size for over
eighty session results. Combined with the binary PNG images for
the rendered results, the overall size was 6.1 MB.

7 CONCLUSIONS

The visualization exploration process contains a wealth of infor-
mation; this work has demonstrated a model to describe this in-
formation and a representation to share the information. Both the
visualization technique performed and the process used to generate

visualization results are captured by the model and representation.
This work impacts the user of visualization in several ways. Sys-

tems utilizing the process model assist in reuse since they clearly
track where a user has been, where they are, and possibly suggest
where to go. Visualizations represented using this formalism can
be used in heterogeneous visualization interface environments, en-
abling large-scale collaboration. The salient details of the visual-
ization process are documented, allowing others to reproduce the
process. Finally, others can use the formal model to operate upon
or analyze their results in a rigorous manner.

This work also contributes to the understanding of the visuali-
zation process. A characterization of user interactions with param-
eters during the visualization process has been performed. This
characterization has led to the development of a parameter deriva-
tion calculus to describe the relationships between results created
during a visualization session. Information stored using this cal-
culus can be analyzed and further visualized to gain insight in the
visualization process itself.

7.1 Future Work

This research can be extended in several ways. First, more visual-
ization systems using this model should be developed in order to
test the transport of the visualization process further. A framework
is currently being constructed to assist in this task.

The parameter derivation calculus represents a wealth of infor-
mation that has not been fully exploited. Different graphical visu-
alizations and metrics based upon the calculus need to be investi-
gated. For example, Figure 6 displays a focus+context graph vi-
sualization of the BGP visualization of Figure 4. In this example,
radial distance from the center encodes how many parameter values
in a result’s p-set differed from the p-set of the central result; edge
exist between results with only a single parameter value difference
between them [12]. These sorts of visualizations may help users or
designers gain insight into previous visualization sessions.

Another important aspect in many scientific visualization ses-
sions is the change of visualization transforms. This model does
not currently store any information about modifications to the trans-
form beyond what transforms were used. A “visualization trans-
form derivation” model is needed. However, before this could be
realized, more research into unifying visualization transform rep-
resentations for scientific and information visualization should be
performed if any subsequent work were to be general.

Finally, the model does not currently store any meta-data. Meta-
data can be used to annotate any portion of the model, including
results, parameter settings, or the steps in the process. A scientist’s
notes about a particular result or the operation performed during a
state transition are all examples of meta-data to store. Meta-data
would provide important semantic information about the visualiza-
tion process and help capture the visualization user’s insight gained
from the process. Like the current model, the meta-data model
needs to be flexible, allowing users to customize it to their spe-
cific application. Currently, a model similar to RDF [13] is being
investigated for this purpose.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation, and
the Lawrence Livermore National Laboratory. The reviewers for
this paper also provided insightful input. Finally, we would like
to thank the members of the UC Davis Visualization and Graphics
Research Group for their input and assistance, especially Soon Tee
Teoh for the use of the Border Gate Protocol visualization tool.

7

To appear in the IEEE Visualization 2002 Proceedings

Figure 6: A focus+context visualization of the BGP visualization
session in Figure 4. Results are organized radially out from the
central result. The distance from the center is determined by the
number of parameter differences between the central result’s p-set
and the p-set of the other result. Links exist between results with
only one parameter value difference between them. This type of
visualization can be used to get a sense of the depth of exploration
of the visualization parameter space.

REFERENCES

[1] Greg Abram and Lloyd A. Treinish. An extended data-flow
architecture for data analysis and visualization.Computer
Graphics, 29(2):17–21, May 1995.

[2] Jacques Bertin.Semiology of Graphics: Diagrams, Networks,
Maps. University of Wisconsin Press, 1967/1983.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler. Extensible Markup Language (XML) 1.0 (Second Edi-
tion). Technical report, World Wide Web Consortium, 2000.
http://www.w3.org/TR/REC-xml.

[4] Ken Brodlie, Andrew Poon, Helen Wright, Lesly Brankin,
Greg Banecki, and Alan Gay. GRASPARC—a problem solv-
ing environment integrating computation and visualization. In
Proc. of IEEE Visualization 1993, pages 102–109, 1993.

[5] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman.
Readings in Information Visualization: Using Vision to Think.
Morgan Kaufmann Publishers, 1999.

[6] Ed H. Chi and John T. Riedl. An operator interaction frame-
work for visualization systems. InProc. the IEEE Symposium
on Information Visualization 1998, pages 63–70, 1998.

[7] James Clark. XSL Transformations (XSLT) Version 1.0.
Technical report, World Wide Web Consortium, 1999.
http://www.w3.org/TR/xslt.

[8] Robert B. Haber and David A. McNabb. Visualization idioms:
A conceptual model for scientific visualization systems. In

G.M. Nielson and B. Shriver, editors,Visualization in Scien-
tific Computing. IEEE Computer Society Press, 1990.

[9] William L. Hibbard, Charles R. Dyer, and Brian E. Paul. A
lattice model for data display. InProc. of IEEE Visualization
1994, pages 310–317, 1994.

[10] David M. Hilbert and David F. Redmiles. Extracting usabil-
ity information from user interface events.ACM Computing
Surveys, 32(4):384–421, December 2000.

[11] T. J. Jankun-Kelly and Kwan-Liu Ma. Visualization ex-
ploration and encapsulation via a spreadsheet-like interface.
IEEE Transactions on Visualization and Computer Graphics,
7(3):275–287, July/September 2001.

[12] T.J. Jankun-Kelly and Kwan-Liu Ma. Focus+context dis-
play of the visualization exploration process. Technical re-
port, Computer Science Department, University of California,
Davis, 2002. CSE-2002-13.

[13] Ora Lassila and Ralph R. Swick. Resource Descrip-
tion Framework (RDF) Model and Syntax Specification.
Technical report, World Wide Web Consortium, 1999.
http://www.w3.org/TR/REC-rdf-syntax.

[14] C. Charles Law, Amy Henderson, and James Ahrens. An
application architecture for large data visualization: A case
study. InProc. of the 2001 Symposium on Parallel and Large-
Data Visualization and Graphics, pages 125–128, 2001.

[15] John Peter Lee.A Systems and Process Model for Data Ex-
ploration. PhD thesis, U. of Massachuesetts Lowell, 1998.

[16] John Peter Lee and George G. Grinstein. An architecture for
retaining and analyzing visual explorations of databases. In
Proc. of IEEE Visualization ’95, pages 101–108, 1995.

[17] Kwan-Liu Ma. Image graphs - a novel approach to visual data
exploration. InProc. of IEEE Visualization ’99, pages 81–88,
1999.

[18] Jock D. Mackinlay. Automating the design of graphical pre-
sentations of relational information.ACM Transactions on
Graphics, 5(2):110–141, 1986.

[19] Penny Rheingans. Are we there yet? Exploring with dynamic
visualization. IEEE Computer Graphics and Applications,
22(1):6–10, January/February.

[20] Rebecca R. Springmeyer, Meera M. Blattner, and Nelson L.
Max. A characterization of the scientific data analysis pro-
cess. InProc. of IEEE Visualization ’92, pages 235–242,
1992.

[21] Soon Tee Teoh, Kwan-Liu Ma, Felix Wu, and X. Zhao. Case
study: Interactive visualization for internet security. InProc.
of IEEE Visualization ’02, 2002.

[22] Craig Upson, Thomas A. Faulhaber, Jr., David Kamins, David
Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz, and
Andries van Dam. The Application Visualization System: a
computational environment for scientific visualization.IEEE
Computer Graphics and Applications, 9(4):30–42, July 1989.

[23] Mark Young, Danielle Argiro, and Steven Kubica. Can-
tata: Visual programming environment for the Khoros system.
Computer Graphics, 29(2):22–24, May 1995.

8

