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Deuteron production in AuAu collisions at /syy =7 — 200 GeV via pion catalysis

D. R. Oliinychenko!, C. Shen?2, and V. Koch!
1 Cyclotron Rd., Berkeley, California, US, 94720
2 Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA and
8 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

We study deuteron production using no-coalescence hydrodynamic + transport simulations of
central AuAu collisions at /snn = 7—200GeV. Deuterons are sampled thermally at the transition
from hydrodynamics to transport, and interact in transport dominantly via mpn <> 7d reactions. The
measured proton, Lambda, and deuteron transverse momentum spectra and yields are reproduced
well for all collision energies considered. We further provide a possible explanation for the measured
minimum in the energy dependence of the coalescence parameter, BQ(M) as well as for the
difference between B2(d) for deuterons and that for anti-deuterons, Bz(d).

I. INTRODUCTION

Heavy ion collisions are often called “Little Bang” due
to a rapid expansion, cooling, and a sequence of freeze-
outs reminiscent of the evolution of the early Universe.
Another common feature of the Little and Big Bangs is
nucleosynthesis, or production of light nuclei. The Big
Bang nucleosynthesis for deuterons primarily occurred
via pn <> dv reaction. In relativistic heavy ion colli-
sions this reaction does not have sufficient time to create
the observed amount of deuterons, which follows from
its small cross section and the typical time of collision
~ 10723 — 10722 5. Here other reactions are at work,
depending on collision energy and rapidity region. In
particular, we have previously suggested that the pion
catalysis reaction mpn <> wd plays the dominant role in
deuteron production at /syn = 2760 GeV in the mid-
rapidity region [IL [2]. In the present paper we shall argue
that the same reaction is still the most important one
down to collision energies of /s ~ 7GeV for deuteron
production at mid-rapidity.

We note, however, that the two most popular models
of deuteron production — thermal [3H7] and coalescence
[SHI9] models — do not need to explicitly involve any
particular reactions. The thermal model postulates that
light nuclei are created from a fireball in chemical equilib-
rium with hadrons. At the chemical freeze-out the reac-
tions that change hadron yields cease and hadrons only
continue to collide (quasi-)elastically. These collisions
change the momentum distributions, but do not change
the yields. Thus, for hadrons the chemical freeze-out
temperature, Tcro, which is determined from hadron
yields, is larger than the kinetic temperature Tk po which
is extracted from the momentum spectra, Topo > Tk Fo-
This picture is supported by the fact that the yield-
changing reactions typically have smaller cross sections,
so they cease earlier during the expansion of the fire-
ball. Deuteron yields and spectra are consistent with the
same Topo and Tk po for nuclei as for hadrons [20]. This
means that they have to be colliding with other particles
between chemical and kinetic freeze-out. However the 2.2
MeV binding energy of deuterons is much smaller than
Tero =~ 150 MeV or Tk ro ~ 110 MeV. Simple intuition

tells that a deuteron must be easily destroyed at such
temperatures. Due to this intuition light nuclei in heavy
ion collisions were called “snowballs in hell” [21], where
light nuclei would be “snowballs” and the fireball of the
heavy ion collisions is referred to as “hell”. However, this
simple intuition fails in two ways. Firstly, even despite
the small binding energy of a deuteron, the elastic cross
section of d + m — d + m reaches as high as 70 mb at
the kinetic energies of pion and proton corresponding to
temperatures of 100-150 MeV (see Fig. 1 of [1]). One as-
sumes that a thermal pion at T" ~ 150 MeV should easily
break up a deuteron, but in g¢lgstic /gtotal ~ 1 /4 of all
m+d collisions this does not happen: instead, the pion ex-
cites one of the nucleons, which subsequently de-excites
emitting a pion back while leaving the deuteron intact.
Secondly, the inelastic reactions that destroy deuterons
(d+X + p+n+X, where X is an arbitrary hadron) have
backreactions that can also create deuterons. We have
shown in [1} [2] that for Pb+Pb collisions at \/syy = 2.76
TeV deuteron creation and destruction occur at approxi-
mately equal rates between Tepo and Tk po. This mech-
anism, thus, resolves the “snowballs in hell” paradox. It
justifies calculating the deuteron yield in the hadron reso-
nance gas model at Topo while determining the deuteron
momentum spectrum in a blast wave model at Tk ro.

In contrast to the thermal model, coalescence models
postulate that deuterons are produced from nucleons at
the kinetic freeze-out. Nucleons coalesce into a deuteron
in case they are close in the phase space. By energy
and momentum conservation proton and neutron cannot
just form a deuteron without a particle carrying away
the energy that binds a deuteron. Coalescence implies
that there is a reaction like pn — dv, or pn — dm, or
pn — Xd, or Xpn — Xd, where X is some particle car-
rying away the energy. The concrete species of the parti-
cle is not important for coalescence models, because this
energy is always neglected in the actual coalescence cal-
culation, although in principle a method was developed
to effectively account for it by putting nucleons off-shell
[19]. Coalescence models sometimes consider not only
pn — d coalescence, but also coalescence of two pro-
tons or two neutrons to a deuteron, see for example [22].
This implies charge exchange reactions like 7~ pp + 7°d,



pp < 1rd, m%nn < 77d, 7T nn < 7°d. However, co-
alescence models never consider coalescence of particles
other than nucleons to deuteron, although the reactions
like Ap <> wd, N*p +> wd, AA < dnm, or Ap +> dK are
possible.

Thermal and coalescence models are considered to be
opposite and conflicting scenarios for deuteron produc-
tion. Indeed, the thermal model postulates deuteron pro-
duction at chemical freeze-out and coalescence postulates
production at kinetic freeze-out. In the thermal model
nucleons from resonances do not contribute to deuterons,
while in coalescence all nucleons, including the ones from
resonance decays, are able to produce deuterons. In coa-
lescence the spatial extend of deuteron wavefunction rel-
ative to the size of colliding system matters, while in the
thermal model it does not. Despite these differences, we
are able to accommodate the core ideas of both ther-
mal and coalescence models in our dynamical simulation
in the following way: We use relativistic hydrodynamics
to simulate the locally equilibrated fireball evolution un-
til the chemical freeze-out. Then we switch to particles
and allow them to rescatter using a hadronic cascade.
To this end we sample deuterons and all other hadrons
according to the local temperature and chemical poten-
tial of the switching hypersurface, which in our work is
controlled by a certain value of the energy density, €.
This transition from hydrodynamic to transport is of-
ten referred to as particlization. The deuteron yield at
this moment is the yield one would obtain in the ther-
mal model, where the volume V is determined by the
particlization hypersurface. The majority of these ini-
tial (thermal) deuterons is destroyed in the subsequent
kinetic evolution, but at the same time the new ones are
created, so that the average yield remains approximately
the same. Like in the coalescence model deuterons that
finally survive are mostly, although not exclusively, those
which are created very late in the hadronic evolution, and
thus do not experience any more collisions. Also our rate
of deuteron production has a large peak at low relative
momentum between nucleons, which means they have to
be close in the phase space to make a deuteron, as the
coalescence model postulates.

Conceptually our approach here is the same as in our
previous study at 2760 GeV [Il, 2]. The key difference
is that at lower energies one has to account for the evo-
lution of the net-baryon current, which does not vanish
anymore. This requires additional equations for baryon
current conservation in the hydrodynamic simulation and
the specification of initial condition for the baryon den-
sity. These extensions are presently not available in the
CLVisc code we used in previous study. Therefore, for the
present study the MUSIC code for the 3D hydrodynami-
cal evolution of the background medium together with
a geometric-based initial condition, which had already
been tuned to reproduce hadron spectra at the consid-
ered energy range [23]. In our previous study we found
that due to reactions like mpn <> wd the deuteron yields
and spectra and intimately related to those of the pro-

tons. Therefore, our primary concern is a good descrip-
tion of the measured proton spectra. For the considered
collision energies (\/syy > 7 GeV) light nuclei produc-
tion is merely a small perturbation over the space-time
evolution of baryon density. For example, the d/p ratio
at 7.7 GeV at midrapidity is around 0.03, and at higher
energies this ratio is even smaller. Therefore, one may
view any dynamical model of light nuclei production as a
combination of a “background” of expanding fireball with
nucleon density evolving in space-time, and of a “pertur-
bation” that acts on this background and creates (and
possibly disintegrates) nuclei. No matter how detailed
and realistic the nuclei production model is, the overall
precision cannot be better than that of the background
model. That is why we pay attention to fitting proton
yields and spectra well. It turned out that a precise ac-
count of weak decays is important, so we also make sure
that we reproduce the yields of A baryon.

As we shall show, applying our model of deuteron pro-
duction to Au+Au collisions at energies from 7 to 200
GeV we observe that we are able to describe the mea-
sured deuteron spectra and yields using the same reac-
tions wpn <> wd, Npn <> Nd, NN <> wd with the same
cross sections that we used to describe the yields, spec-
tra and flow at 2760 GeV [II 2]. The work is organized
as follows: in Section [[I] we explain the details of our
simulation, and in Section [[TT] we present and discuss the
resulting proton, A, and deuteron spectra, yields, and re-
action rates relevant for deuteron production. Finally, we
explore the role of the correction from the weak decays
feeddown to protons in the context of various observables
involving deuterons.

II. HYDRODYNAMICS 4+ TRANSPORT
SIMULATION METHODOLOGY

To simulate the full evolution of a system created in
heavy ion collisions we employ a hybrid relativistic hydro-
dynamics + hadronic transport approach. Hydrodynam-
ics is applied at the earlier stage of collision, where the
density is high and, therefore, hadrons cannot be treated
as individual particles. The transition from the quark-
gluon plasma to a hadron gas is handled implicitly via the
equation of state used in the hydrodynamics. Hadronic
transport is applied at the later stage of collision, when
the fireball is dilute enough so that mean free paths of
the particles are larger than their Compton wavelengths.

A. [Initial state

The initial conditions and hydrodynamic simulations
are based on the work in Ref. [23]. In our study the
main role of this initial state is that it allows to repro-
duce the measured proton phase-space distributions and
midrapidity yields at different collision energies. Here we
mention some features of the initial state, and the full de-



scription can be found in Ref. [23]. We start simulations
by generating event-averaged initial energy density and
net baryon density profiles for hydrodynamics at a con-
stant proper time 7 = /12 — 22 = 79, where z is the co-
ordinate along the collision axis. The proper time 7y is a
function of collision energy, which is chosen to be slightly
longer than the overlapping time that would take nu-
clei to pass through each other in absence of interactions

_ 2R __ \/SNN )
Toverlap = S where v = Fn The values of g
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were chosen such that the the hydrodynamics + hadronic
transport simulations can reasonably reproduce the mea-
sured mean transverse momentum of identified particles
[23]. The initial energy-momentum tensor is assumed to
have a diagonal ideal-fluid form TH" = (e4p)utu” —pgh”.
The initial baryon current is also assumed to have an
ideal-fluid form, j* = ngu*. At 7 = 79, Bjorken flow is
assumed: u* = (coshns,0,0,sinhn,). Based on the local
energy and momentum conservation, the local rest frame
energy-density e(z,y,ns) profile in case of our symmetric
Au+Au collision system is parametrized as described in
[23]:

e(z,y,ms; yom) = Ne(z,y)

N2
(sl = m0)" 1~ )] 1)

X exp | —
P 20%

where the normalization factor N, (x,y) is,

my \/Tj + Té + QTATB COSh(beeam) (2)
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Ybeam = arccosh[v/snn/(2my)] (4)

Ne(z,y) =

and T4 (z,y) and Ts(x,y) are the nuclear thickness func-
tions for the incoming projectile and target nucleus.
Although our colliding system is symmetric, the local
nuclear thickness functions Ta(z,y) # Tp(z,y) at a
nonzero impact parameter. For the initial baryon den-
sity profile np(x,y,ns), we use parametrization as was in
Refs. [23] 24],

1
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Here the longitudinal profiles are parametrized with

asymmetric Gaussian profiles,
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The normalization factor N,, is chosen such that

[ dns f{:‘B/ B(ns) = 1. All the model parameters are speci-
fied in Table 1 of Ref. [23].

B. Hydrodynamics

To calculate the hydrodynamic evolution numerically
we use the open-source hydrodynamic code, MUSIC v3.0
[24-28]. The hydrodynamics equations include energy-
momentum and baryon number conservation, equation
of state p = p(e,np), and Israel-Stewart-type relaxation
equations for the viscous stress tensor. In this work we
include only shear viscous corrections, while bulk vis-
cous corrections and baryon diffusion are neglected. We
used a lattice QCD based “NEOS-BSQ” equation of state
p = p(e,np) described in Ref. [29]. It smoothly interpo-
lates between the equation of state at high temperature
from lattice QCD [30] and hadron resonance gas at low
temperature. Higher-order susceptibilities were used to
extend this EoS to finite baryon chemical potential as a
Taylor expansion. This equation of state explicitly im-
poses strangeness neutrality, ng = 0, and constrains the
ratio of the local net charge density to net baryon den-
sity to that of the colliding nuclei, ng/np = 0.4. A
temperature and chemical potential dependent specific
shear viscosity 1/s(T,up) was included. The detailed
parameterization in given in Fig.4 in Ref. [23]. The hy-
drodynamic equations are evolved in 7 until all computa-
tional cells reach energy density below €g,. A particliza-
tion hypersurface of constant “switching” energy density
€sw is constructed and its normal four-vectors do, are
computed as described in [3I]. The value of €5, = 0.26
GeV /fm3 is adjusted to fit bulk observables in [23]. This
value results in a good simultaneous fit of pion, kaon,
and net proton observables across the range of energies
that we study. However, at 39 GeV and above the pro-
ton yields at midrapidity are somewhat underestimated.
To fine-tune proton yields at midrapidity we take higher
€sw at highest STAR energies: €5, = 0.35 GeV/fm? at
VENN =39 GeV, €5, = 0.45 GeV/fm? at VSNN = 62.4
GeV, and €y, = 0.5 GeV/fm? at VSnN = 200 GeV.
In principle the fine-tuning of proton yields can be per-
formed by adjusting other parameters as well, but tun-
ing €5, was the simplest solution, because pion and kaon
yields are known to be rather insensitive to €g,, in con-
trast to proton and Lambda yields (see Fig. 8 in [29]).
Fine-tuning of €, allowed us to reproduce proton and
Lambda yields slightly better, at the cost of reproducing
anti-proton yields slightly worse.



Performing particlization on the obtained hypersur-
faces and allowing the generated hadrons to subsequently
re-scatter via a hadronic transport approach, one obtains
a good description of the measured pion, kaon, and pro-
ton yields, transverse momentum and rapidity spectra,
and flow vy [23]. The particlization is a standard grand-
canonical Cooper-Frye particlization, conducted by the
i8S sampler v1.0, which was described and tested in [32]
and is available publicly at [33].

C. Transport simulation

The hydrodynamic evolution and particlization are fol-
lowed by a hadronic afterburner, where particles are al-
lowed to scatter and decay. For this purpose we use the
relativistic transport code SMASH [34], version 1.7, in the
cascade mode (= no mean field potentials). Transport
simulation is initialized from particles at particlization.
Then the whole system is propagated from action (colli-
sion or decay) to action, using a list of actions sorted by
time in the computational frame. A collision is added to
the list by the geometrical criterion, 7d?. < o, where dy,
is the transverse distance in the center of mass frame of
colliding particles, and o is the total cross section. The
collision time is defined as a time of the closest approach,
the decay time is randomly drawn from the exponential
distribution, which takes time dilation into account. For
new particles produced by actions, we search for their
subsequent collisions and decays, and merge the found
ones into the sorted list of actions. This timestep-less
collision finding in SMASH 1.7 is an improvement com-
pared to the timestep-based one in SMASH 1.0, described
in the original publication [34], see the comparison and
thorough testing in [35]. The end time of our transport
simulation is set to 100 fm/c, when the system is already
too dilute to sustain even the reactions with very large
cross sections, such as deuteron formation, as evident
from Fig.

Possible reactions in SMASH include: elastic collisions,
resonance formation and decay, 2 — 2 inelastic reactions
such as NN — NA, NN — NN*, NN — NA* (N*
and A* denote all nucleon- and delta-resonances), and
strangeness exchange reactions; string formation and im-
mediate decay into multiple hadrons. The SMASH reso-
nance list comprises most of the hadron resonances listed
in the Particle Data Group collection [36] with pole mass
below 2.6 GeV. The main update relevant for this study
since the publication [34] is the high-energy hadronic
interactions via string formation, in particular baryon-
antibaryon annihilations. All the reactions, except the
ones with strings, obey the detailed balance principle.
The implementation of hadronic interactions in SMASH is
described in detail in [34], while [37] is devoted specifi-
cally to reactions involving strangeness. Soft string for-
mation and fragmentation are similar to the the UrQMD
code [38] and described in detail in [39]. The main dif-
ference to the UrQMD implementation is that the Lund
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fragmentation functions from Pythia 8 [40] are employed
for string fragmentation.

The deuteron treatment is the same as in [I], with
the same reactions and the same cross sections following
the detailed balance principle: wd <> 7mnp, Nd < Nnp,
Nd < Nnp, md <> NN reactions, elastic 7d, Nd and Nd
and all of their CPT-conjugates. The latter produce and
destroy anti-deuterons, and one can observe their role in
Fig. [3| where anti-deuteron yields are reproduced rather
well. The deuteron is modelled as a pointlike particle, as
it is done in [T}, [4TH43]. Treating deuterons as pointlike
particles is only justified, when the mean free path is at
least twice larger than the deuteron size. In our simu-
lation this condition is fulfilled only after ¢ ~ 10 — 20
fm/c depending on the collision energy. At earlier time
our deuterons are not defined as particles and should be
understood as correlated nucleon pairs. The reactions
7d < mnp, Nd < Nnp, Nd <> Nnp, are implemented in
two steps using a fake d’ resonance:

pn < d’ (8)
dX < dX, (9)

where X can be a pion, a nucleon, or an anti-nucleon.
The d’ pole mass is taken to be mg = mg + 10 MeV
and width is T’y = 100 MeV, the spin of d’ is assumed
to be 1. The motivation for this width is to have the d’
lifetime close to the time that proton and neutron spend
flying past each other. The deuteron disintegration cross
sections reach 200 mb, see Figs. 1-2 of [1]. As a con-
sequence of the detailed balance relations and sharp d’
spectral function, the 7d’ and Nd' cross sections are even
larger, reaching up to 1500 mb peak values. To find these
reactions correctly, the default collision finding cutoff in
SMASH is increased to 2000 mb — the same value that was
used in [I]. This cutoff is the only change to the SMASH
publically available code [44] necessary to reproduce our
results related to deuterons.

To reduce the effects of finite range interaction due
to the geometric collision criterion, the testparticle
method is used in SMASH. Specifically, at particlization
the amount of particles is oversampled by factor Nyeg:,
and, at the same time, all cross sections in SMASH are
reduced by factor Nyest. We have shown previously (see
Appendix of [1]) for Nies; = 10 that this helps to main-
tain the detailed balance for deuteron reactions with bet-
ter than 1% precision in an equilibrated box simulation.
The effect of N;es: on our results is discussed further and
is shown in Fig. [I]

III. DEUTERON PRODUCTION

Before comparing the deuteron production to experi-
mental data, let us first explore its general features in our
simulation. For this let us consider deuterons at our low-
est energy (7.7 GeV) at midrapidity, |y| < 0.5. Similarly
to [1], we try two scenarios: (i) deuterons are sampled at
the particlization (ii) deuterons are not sampled at the
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0-10% AuAu, 7.7 GeV, |y| < 0.5 .

w/ nuclei at particlization ]
w/o nuclei at particlization ]

0.51 Niew = 10
"""" Ntest = 100
STAR
NA49
% 20 40 60 80 100
t [fm/c]

FIG. 1. The deuteron yield as a function of time for 0-
10% central AuAu collisions at 7.7 GeV. Two cases are com-
pared: deuterons are sampled at particlization (red lines) and
deuterons are not sampled (blue lines). Also the effect of test-
particle number is shown: Niest = 1 (solid lines), Nies: = 10
(dashed lines), and N¢est = 100 (dotted lines). The exper-
imentally measured yields by STAR [45] and NA49 [46] are
shown for comparison.

particlization. In the second scenario all deuterons are
created in the hadronic afterburner. The deuteron yield
in this case is around 30% smaller than in case (i), and
the data favors sampling of deuterons at particlization.
In Fig. [[] we also show the effect of the number of test-
particles, Nyes; used in the simulation. Larger Nyes re-
duces the non-locality of our geometric collision criterion,
to which deuterons seem to be rather sensitive because
of the large production and destruction cross sections.
The deuteron yield increases by almost 30%, when Nyqq
is increased from 1 to 10. Further increase of Ny.s does
not change the deuteron yield significantly, as shown in
Fig. [T} therefore in our simulations we use Nycs = 10.
In Fig. one can see that the deuteron yield does
not change significantly over time in case when deuterons
are sampled at particlization. At the particlization hy-
persurface (which in our case can also be called hadronic
freeze-out surface, because stable hadron yields including
resonance decay contributions are changing at most by
10% in the hadronic afterburner) the deuteron yield is al-
ready close to the measured yield, however its transverse
momentum spectra at this point correspond to a hadronic
chemical freeze-out temperature. Later the deuteron mo-
mentum spectrum changes, but the yield stays approxi-
mately constant. We understand it as a result of deuteron
being in relative equilibrium with nucleons: the amount
of deuterons is determined by the amount of nucleons,
which stays approximately constant. The relative equi-

librium is kept mostly by nd <> 7wpn reactions. These
are the same features of deuteron production that we ob-
served in [I] for PbPb collisions at a much higher 2.76
TeV energy. In Fig. [I] there is a small initial dip in the
deuteron yield as a function of time. We observed a simi-
lar dip in [I] at 2.76 TeV. We attribute it to the fact, that
we do not sample d': although deuterons start in relative
equilibrium with protons, it takes time to equilibrate d
and d’ together. The dip is, therefore, an unwanted, but
luckily small, artifact of the fake d’ resonance.

To further illustrate the picture described above, in
Fig. we show the reaction rates at midrapidity (ra-
pidity of the reaction was computed from the total mo-
mentum of the incoming particles) at 7.7 GeV. One can
see that the rates of forward and reverse nd <> wpn al-
most coincide, the differences not exceeding 5%. The
Nd < Npn reactions occur at several times lower rate
than md <> 7pn, as one can see in Fig. 2] It means
that the wd < mwpn reaction is dominant even at the
energy as low as 7.7 GeV. In fact, we have observed
in the separate pure transport simulation that at 7.7
GeV 7d <> mpn reactions alone are fast enough to drive
deuteron into relative equilibrium with nucleons. Only
below 4-5 GeV the Nd < Npn reactions become more
important than 7d < mpn, because for lower energies
nucleon abundance increases, while pion abundance de-
creases. The wd <> NN reactions are out of equilibrium,
with deuteron destruction dominating at late time. How-
ever, their rate is negligible compared to wd <> wnp and
the integrated rate over time is too small to influence the
deuteron yield.

Altogether, above we have established that our simu-
lation behaves in a similar way from 7 up to 200 GeV,
as at 2.76 TeV. Apriori it is not obvious that this be-
haviour should still be consistent with the experimental
observables. It is not excluded that some new physical
phenomena become important at 7-200 GeV, that did
not play role at 2.76 TeV; it could be for example contri-
butions from excited states of *He [47] (expected to be
small for deuteron, here we just use them as an example)
or a vicinity of the critical point.

Already in [I] we have noticed that a reasonable pro-
ton description is crucial for meaningful deuteron studies.
Therefore, our first step in comparison of our simulation
results to experiment is to test, if the hybrid MUSIC +
SMASH approach is able to reproduce proton yields and
transverse momentum spectra. One caveat in such test
is that proton yields measured by NA49 collaboration are
corrected for weak decays [46] [48], while those measured
by many other collaborations are not. Specifically, in
STAR [45] 49, [50], PHENIX [51] (although a correction
for A decays is available [52]), E895 [563], E802 [54, B3],
and preliminary HADES data proton yields and spec-
tra [56] are not corrected for the weak decay feeddown.
This causes an apparent disagreement between NA49 and
STAR data shown in Fig. 3] However, from the left panel
of Fig. [3|one can see, that when the weak decays are in-
cluded, the experimental results both from NA49 and
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FIG. 2. Rates of reactions forming and disintegrating deuterons in central AuAu collisions at 7.7 GeV. For nd < 7pn (left
panel) and Nd <+ Npn (middle panel) the forward and backward rates differ by 5-10% at most between 10 to 40 fm/c. These
reactions are close to being equilibrated. In contrast, wd <> pn (right panel) has a much lower rate, it is not equilibrated, and
destroys more deuterons than produces. However, the latter reaction contributes negligibly to the deuteron yield because of its

low rate.

STAR are described well by our approach. The proton
yields with weak decays in Fig. include all possible
weak decays into protons, which comprise contributions
from A, X0, ¥+, ==, and Q. This allows a fair comparison
to the STAR data, because protons from STAR are truly
inclusive with respect to weak decays [45]. To make sure
that we correctly account for weak decays, we check the
midrapidity yield of the A-hyperon. In Fig. [3] we show
A + X0 yields for a fair comparison, because X° has a
very short lifetime of 7.4-10720 s and decays with almost
100% branching ratio as £° — A~y [36]. This makes X°
experimentally indistinguishable from A in heavy ion col-
lisions. The A yields in Fig. [3| do not include weak decay
contributions from = and {2 baryons, both in our model
and in experiment [57]. We also reproduce the proton pr
spectra rather well, as one can see in Fig. [l The pr spec-
tra are characterized comprehensively by the integrated
yield dN/dy and mean transverse momentum (pr). In
Figs. [3] and [4 one can see that they are reproduced in
our calculation for protons. A small cusp in proton and
deuteron (pr) at 19.6 GeV originates from the fact that
the starting time of hydrodynamics 7y is tuned individu-
ally at each collision energy. While the (pr) of A is not
shown, we have checked that the (mr) is the same as that
for protons within error bars, both in our model and in
experiment. To sum up, as demonstrated in Figs. [3| and
proton and A yields, spectra, and (pr) are described
very well by our approach.

Furthermore, one can see in Fig. 3| that the deuteron
yields from different experiments [54}, 506l [63-65], as well
as spectra and (pr) are in good agreement with the MUSIC
+ SMASH simulations. We notice that wherever the pro-
ton spectrum in our model deviates from experiment,
the deuteron spectrum qualitatively deviates in the same
way. For example, at 7.7 GeV, where our description
of proton spectra is the least accurate (to improve it
the initial longitudinal baryon density profile in the hy-

drodynamics has to be considered more carefully) and
over(under)shoots the data, the deuteron spectrum also
over(under)shoots. Therefore we conjecture that if we
tune the model to reproduce proton observables even bet-
ter, the deuteron description will also improve.

The reactions involving anti-deuterons in SMASH are the
CPT-conjugated deuteron reactions with the same cross
sections. Consequently, proton and deuteron yields and
spectra are connected in the same way as anti-proton and
anti-deuteron yields and spectra. Just like for deuterons,
pion catalysis wd < 7ap is the most important reaction
for anti-deuteron production, and it leads to a reason-
able description of the anti-deuteron yields, as shown in
Fig. B] At 62.4 and 200 GeV one can see in Fig. [3] that
the anti-deuteron yield overshoots in our model. This is
mainly because the anti-proton yield overshoots. A bet-
ter description of protons and anti-protons at 62.4 and
200 GeV will require simultaneous fine-tuning of the ini-
tial hydrodynamical baryon density profile (aka baryon
stopping) together with the switching energy density €.

As we have shown, the quality of the model description
of proton and deuteron spectra are strongly related. This
suggests that ratios of these spectra should be described
even better than the yields. Therefore we construct the
so called Bs ratio of the spectra, which plays an impor-
tant role in coalescence models:

Ba(pr) = <de<pa€/2>> /< ANy (P ) (10)

2nprdprdy 2nprdprdy

In coalescence models this ratio is inversely propor-
tional to an emission volume. The Bs ratio is known
both theoretically and experimentally to grow with pr,
consistent with the volume from femtoscopic measure-
ments [66] decreasing with pz. The Bs ratio is also known
to decrease with increasing collision energy, again consis-
tent with the increase of the volume from femtoscopic
measurements with the energy. However, two non-trivial
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Solid lines correspond to the

hydrodynamics + transport simulation, stars are experimental data points. Thin dotted lines in panel (b) are deuteron spectra

at particlization. The difference between dotted and solid lines

features are present in the STAR measurement of Bj
[65]: (i) the experimentally measured Bs(y/s,pr/A =
0.65 GeV) has a broad minimum at 20-60 GeV; (ii) the
anti-deuteron BE(y/s,pr/A = 0.65GeV) is smaller than
the deuteron Bs. In our previous work [I] we specu-
lated that the minimum of By might be connected to a
switch of the dominant deuteron production mechanism
from mpn <> wd to Nnp <> Nd reactions. However, as
shown in this work this conjecture is not supported by
our calculations, because the mpn < 7wd reaction is dom-
inating all the way down to /s = 7.7 GeV, which is well
below the location of the minimum in By. Therefore,
let us inspect the behaviour of By closer and suggest a
possible explanation, why it exhibits the aforementioned
minimum.

We find that the shape of the transverse momentum

demonstrates the effect of the afterburner for deuterons.

dependence of By(pr) is similar for all considered ener-
gies and matches the experiment rather well. However,
comparing the magnitude of By(y/s,pr/A = 0.65GeV)
our simulation significantly overestimates the experimen-
tal values in the energy range of 20 GeV S /s S 60 GeV,
where the minimum is located (see Fig. |5). This discrep-
ancy is surprising given that we reproduce proton, A,
and deuteron spectra rather well; after all By is nothing
but the ratio of the spectra. Investigating this closer we
find that it is the weak decays that play a crucial role in
this discrepancy. Indeed, if we compute Bs by dividing
the deuteron spectrum from STAR over the weak-decay-
inclusive proton spectrum from STAR, we reproduce this
weak-decay inclusive By rather well, see Fig. [Bb. This
shows that the contribution from weak decays is much
larger in our model than the weak decay correction in the
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STAR data. This is exacerbated by the fact that in the
definition of Bs the proton spectrum, and thus the weak
decay correction, enters in square. Furthermore, compar-
ing the By ratio from STAR with and without weak de-
cays we find that the By ratio with weak-decay-inclusive
protons does not exhibit a minimum, whereas that with
weak-decay-corrected protons does show minimum (see
Fig. ) This suggests that the minimum structure in
the energy dependence of BS( /s, pr/A = 0.65 GeV) may
originate from the weak decay corrections. To further ex-
plore the effect of weak decays we consider the the d/p
ratio (see Fig. k). Again, our model calculation repro-
duces the weak-decay-inclusive d/p ratio rather well, but

not the preliminary weak-decay corrected d/p ratio from
STAR [67].

Since our model describes both proton and A yields
well, one is led to the conjecture that the weak decay
corrections to the measured proton yields might be un-
derestimated. Our conjecture is inspired by our model,
but it also has some model-independent support from ex-
perimental data. First, we notice in Fig. [f] that at the
energies where STAR and NA49 data intersect, the weak-
decay-corrected Bs from NA49 is always higher, even
though the Pb+Pb collision system is slightly larger than
the Au+Au system of the STAR measurement. Since Bs
scales with the inverse size of the system, one would ex-
pect the Bs ratio obtained by NA49 to be below that
measured by STAR. If, on the other hand, the weak de-
cay correction to proton yields were larger in the STAR
data, it would improve the agreement between STAR
and NA49 results for By. Second, one can estimate the
weak decay correction in a data-driven way from the
recent STAR measurements of strange particle produc-
tion. Let us consider such an estimate at 39 GeV. The
measured yield of A + X0 is around dN*/dy ~ 10, see
Fig. [3k. Let us assume that the ¥F yield, which is
not measured, is approximately equal to the 3° and A
yields. This assumption is mainly motivated by the ther-

mal model, where the yields are determined by hadron
masses, which are close for 1, 3% and A. Addi-
tional contribution from = and € decays to A consti-
tutes around 10-20% of the A yield. Taking into ac-
count the branching ratios BR(A — pr~) ~ 0.63 and
BR(XT — pr®) ~ 0.52, we obtain the yield of protons
from weak decays dNP~*¢% /dy ~ 9 — 11. Therefore,
at 39 GeV at midrapidity around 20 protons per event
are prompt and approximately 10 originate from weak
decays. The weak decay correction coefficient is thus
~ 30/20 = 1.5. The STAR estimate is roughly 1.15-
1.25, both for the By and d/p ratio, see Fig. We
note, that the weak decay correction estimate in [65] is
not data-driven, but involves the UrQMD model, and
may possibly be model dependent. Needles to say, that
a data-driven weak decay correction would be beneficial
to understand the By(y/s) behaviour.

To sum up, our results as well as data-driven analysis
suggest that the observed minimum in By (y/s) may orig-
inate from the weak decay corrections of proton spectra.
Moreover, there are both theoretical and experimental
indications that these weak decay corrections are under-
estimated in [65]. If these indications are true, then it
has intriguing consequences, which we discuss next.

This work was largely inspired by the study [18], which
relates the yields of light nuclei to spatial fluctuations of
nucleon densities. Specifically, spatial nucleon density
N]t\g”. This ratio has
been measured by STAR recently [67] and it exhibits a
peak, which might be a signal of the enhanced nucleon
density fluctuations and therefore potentially a critical
point. One can see the preliminary STAR data in Fig. [6]
The proton yields in this measurement are corrected for
weak decays. Suppose our conjecture about weak decay
corrections turns out to be correct and the corrections
have to be re-evaluated. What will the corrected N;\,J;,p
ratio be? To answer this question quantitatively we edx—
tract the ratio of total to non-weak-decay (prompt) pro-

fluctuations are connected to the
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would change if weak decay corrections resultlng from our
model were adopted.

tons from STAR data in two ways: from the published
Bs and from preliminary d/p ratio, see Fig. @ These
two ways do not have to give necessarily identical re-
sults. Indeed, in case of d/p ratio the relevant observable
is the ppr-integrated proton yield, while in By it is pp-
differential yield at proton py = 0.65 GeV. However, one

can clearly see in Fig. [6] that the two ways are in agree-
ment. For convenience we parameterize the STAR weak
decay correction x — total proton yield over primordial
proton yield without weak decays — as

TSTAR =

_ log +/s—log 40
= 115+ 105500 Tog a0 (2 — 1.15) 0(v/s — 40),  (11)
where /s is the collision energy in GeV. Our correction
estimated from the hydro + transport approach (which
reproduces the STAR experimental yields) can be ap-
proximately parametrized as

13 log /s —log 7.7

1.6 —1.3). (12
+ log 200 — log 7.7( ) (12)

Tmodel =

We have checked that the weak decay correction in our
hydro + transport simulation closely resembles that of
the thermal model using Thermal-FIST package [68], see
Fig. [} Similarly to our model, the thermal model de-
scribes both proton and A yields rather well at STAR
BES energies (7.7 — 200 GeV). This supports our argu-
ment and allows to test it with a much simpler ther-
mal model setup. Indeed, our calculation of weak de-
cay correction for proton yields is in agreement with
the thermal model calculation presented by the STAR
collaboration in Ref. [45]: we obtain (N}.,.orgiar +

;= 1.23 at 7.7 GeV (Fig. [6h) or

N car) (Nprimordiar + Nipear) = 18.7%, consistent with

18% in Ref. [45]; at 39 GeV we obtain (N?

przmordial +
14 P 14
Nweak)/Np'r'imordial 1.44 or Nweak/( primordial +

NP ) =30.6 %, again consistently with the 29% STAR
has obtained in their estimate, Ref. [45].
After correcting the preliminary STAR data for the

NN];[” ratio by the factor Zmodel/TsT AR, We Observe that

the peak in the &

pronounced. In fact, the ratio scaled in this way be-
comes more consistent with a constant value predicted
by the coalescence models in absence of non-trivial ef-
fects, such as enhanced nucleon density fluctuations. Fi-
nally we would like to underline that our analysis is by no
means conclusive. We simply want to draw attention to
the “technical” issue of weak decay corrections pointing
out that it may influence the interpretation of the data
in a profound way.

We have already mentioned that the By ratio for anti-
deuterons measured by STAR is smaller than that for
deuterons. In Fig. one can see that our simulation
produces the opposite trend: the By of anti-deuterons is
larger than the By of deuterons. It appears that baryon
annihilation, BB — mesons plays a prominent role in
that difference. In SMASH this reaction is not balanced:
the annihilation BB — mesons is allowed, but the re-
verse process is not possible. After switching off the
BB — mesons annihilation reaction we obtain a lower
By (d) (see Fig. [ph), while By(d) remains the same ex-
cept for 62.4 and 200 GeV, where By(d) is also slightly

weak)/ pmmordla

¥ (/3) dependence becomes much less



reduced. As one can see in Fig. [Bh, without baryon an-
nihilation By(d) ~ Bs(d) within statistical error bars.
Thus it seems that the experimentally measured differ-
ence of By for deuterons and anti-deuterons may be due
to baryon-antibaryon annihilations. However, other pos-
sibilities are not excluded, for example, the effect of a
weak decay correction, which is larger for anti-protons

than for protons.

IV. SUMMARY AND DISCUSSION

In summary, the results of this work and [I], based on
hydrodynamics plus transport simulations show that it is
possible to reproduce deuteron yields and spectra at ener-
gies 7-2760 GeV using pion catalysis reactions 7d <> wpn
with large cross sections obeying the detailed balance
principle. One important detail is that the underlying
hydrodynamical simulation has to be tuned to reproduce
protons and Lambdas well, which we successfully accom-
plish. The conclusions from [I] regarding deuteron stay-
ing in relative equilibrium with nucleons and its yield
being almost constant starting from hadronic chemical
freeze-out are still valid down to a collision energy of
/s = 7GeV. This also explains the apparent puzzle why
the deuteron yield is determined at chemical freeze-out
while their spectra correspond to the kinetic freeze-out.
At lower energies the deuteron production mechanism is
expected to change: Nd <> Npn reactions will start to
dominate.

Analysing the By ratio, which is a ratio of the deuteron
spectrum over square of the proton spectrum (Eq. ,
we realized that weak decay corrections to the proton
spectrum play a significant role. In particular we found
that the observed minimum in By(4/s) is most likely re-
lated to the weak decay corrections. Furthermore, we

noticed that weak decay corrections to the proton yield
NN

Nz
exhibits an unexplained peak as a function of the col-
lision energy. We also demonstrated that the difference

between the measured Bs(d) of anti-deuterons and Bz (d)

also affect the interpretation of the ratio, which

10

of deuterons might be related to BB annihilations.

It seems that we have reached a satisfactory under-
standing of proton and deuteron production across the
STAR beam energy scan energies. The next step is to
consider the production of A = 3 nuclei: triton, helium-
3, and possibly hypertriton. Unfortunately, the extension
of our method to A = 3 nuclei requires an additional fake
resonance, t’. It can be avoided, however, through im-
plementing 2 <+ 3 reactions via stochastic rates method.
This work is currently in progress.

Another possible extension of the present work is to
consider the role of the mean field nuclear potentials on
the light nuclei production. Since the light nuclei are
mostly formed at the late stage of collision, their yields
may be sensitive to the nuclear mean fields at few nor-
mal nuclear densities and below. Therefore, it would be
interesting to verify to which extent (if any) the nuclear
matter liquid-gas phase transition influences the light nu-
clei yields.
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