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SUMMARY

Ewing sarcoma (EWS) is a tumor of the bone and soft
tissue that primarily affects adolescents and young
adults. With current therapies, 70% of patients with
localized disease survive, but patients with metasta-
tic or recurrent disease have a poor outcome. We
found that EWS cell lines are defective in DNA break
repair and are sensitive to PARP inhibitors (PARPis).
PARPi-induced cytotoxicity in EWS cells was 10- to
1,000-fold higher after administration of the DNA-
damaging agents irinotecan or temozolomide. We
developed an orthotopic EWS mouse model and
performed pharmacokinetic and pharmacodynamic
studies using three different PARPis that are in clin-
ical development for pediatric cancer. Irinotecan
administered on a low-dose, protracted schedule
previously optimized for pediatric patients was an
effective DNA-damaging agent when combined
with PARPis; it was also better tolerated than combi-
nations with temozolomide. Combining PARPis with
irinotecan and temozolomide gave complete and
durable responses in more than 80% of the mice.

INTRODUCTION

Ewing sarcoma (EWS) is the second most common bone tumor

in children and adolescents; approximately 250 new cases are

diagnosed each year in the US (Howlader et al., 2013). Most

EWS tumors have a translocation involving the EWS gene on

chromosome 22 and the FLI gene on chromosome 11 (Delattre

et al., 1992). The EWS-FLI translocation is an important driver

of tumorigenesis in EWS (Lessnick and Ladanyi, 2012). Patients

with recurrent or metastatic disease have a poor outcome (Gran-

owetter et al., 2009; Stahl et al., 2011). Recent clinical trials in

relapsed disease have shown that the combination of irinotecan
C

(IRN) and temozolomide (TMZ) is active in EWS, and these drugs

are now used in combination with other agents such as temsiro-

limus (Bagatell et al., 2011).

EWS cell lines are sensitive to the poly-ADP ribose polymer-

ase inhibitor (PARPi) olaparib, and this sensitivity is selective

for EWS cell lines (Brenner et al., 2012; Garnett et al., 2012).

Olaparib sensitivity depends on the EWS-FLI translocation,

suggesting a direct mechanistic connection between PARP inhi-

bition by olaparib and the mechanism of transformation by

EWS-FLI (Brenner et al., 2012; Garnett et al., 2012). Brenner

et al. also showed that the EWS-FLI1 fusion protein interacts

with PARP1 and proposed a positive-feedback loop involving

both proteins (Brenner et al., 2012). High levels of PARP1

expression are correlated with increased sensitivity to PARPis

(Byers et al., 2012; Pettitt et al., 2013; Bajrami et al., 2014),

consistent with a ‘‘trapping’’ mechanism whereby the inhibitor

acts as a poison to stabilize a PARP-DNA complex (Murai

et al., 2012). Furthermore, EWS cell lines express high levels of

Schlafen-11 (SLFN11), a putative DNA/RNA helicase whose

expression is positively correlated with increased sensitivity to

Topoisomerase I inhibitors (Topo1i) and other DNA-damaging

agents, but not protein kinase inhibitors or tubulin poisons (Bar-

retina et al., 2012; Zoppoli et al., 2012). For BRCA-deficient

breast cancer and ovarian cancer, PARPis are combined with

DNA-damaging agents to potentiate selective tumor-cell killing

(Ashworth, 2008; Bryant et al., 2005; Farmer et al., 2005; Fong

et al., 2009; Tutt et al., 2005).

In this study, we tested the cytotoxic activity and in vivo effi-

cacy of three different PARPis (BMN-673, olaparib, veliparib) in

combination with IRN and TMZ. Both TMZ and IRN potentiated

PARPi-mediated killing of EWS cells, but at least a 1,000-fold

higher concentration of TMZ was required to achieve the same

level of potentiation as that achieved with IRN. We performed

in vivo plasma and tumor pharmacokinetic (PK) experiments in

parallel with pharmacodynamics (PD) studies for each PARPi

to determine themurine-equivalent dose (MED) andwhether suf-

ficient levels of drug can be reached in the tumor to mediate tu-

mor-cell killing. The data were used to design preclinical phase I,
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II, and III studies to test 15 drug combinations incorporating all

three PARPis with IRN, TMZ, or both.

RESULTS

EWS Cells Are Defective in DNA Break Repair
An analysis of the Cancer Cell Line Encyclopedia indicates that

EWS behaves as an outlier and shows high levels of both

PARP1 and SLNF11 compared to other cancers, including oste-

osarcoma (OS), another form of bone cancer (Barretina et al.,

2012). Because high levels of SLFN11 expression can increase

sensitivity to DNA-damaging agents (Zoppoli et al., 2012), we

reasoned that EWS might be deficient in DNA damage repair.

We performed quantitative PCR (qPCR) using TaqMan probes

for 46 DNA repair genes and confirmed the downregulation of

BRCA1, GEN1, and ATM; in addition, several other genes in

EWS cell lines were downregulated relative to their levels in OS

cell lines and OS orthotopic xenografts (Figures S1). Gene

expression array data from primary EWS and OS tumors were

consistent with our qPCR data and confirmed higher levels of

PARP1 and SLFN11 in EWS (Table S1).

To monitor DNA damage in individual cells, we performed a

single-cell alkali gel electrophoresis (comet) assay using an OS

cell line (U2OS) and ES-8 EWS cells (Figure 1A). Thirty minutes

after 10 Gy ionizing radiation (IR) exposure, the tail moment

significantly increased for both cells (Figures 1B and 1C). How-

ever, 11 hr after IR exposure, the tail moment in the OS line

was restored to basal levels, but that ES-8 EWSwas not (Figures

1B and 1C). To analyze the contribution of PARP, we performed

a similar experiment in the presence of olaparib, veliparib, and

BMN-673 at two concentrations (1 or 10 mM). At 10 mM olaparib

and 1 or 10 mM BMN-673, the basal level of DNA damage after

12 hr of exposure to the PARPi was elevated in ES-8, especially

for BMN-673 (Figures 1D–1G). This DNA repair defect was even

more pronounced when the cells were exposed to 10 Gy IR (Fig-

ures 1D–1G).

To independently validate these data, we performed g-H2AX

immunostaining analysis on ES-1, ES-6, ES-8, EW-8, U2OS,

and SAOS cells. The basal proportion of cells that were g-

H2AX+ and the distribution of g-H2AX+ foci per nucleus were

similar across the EWS and OS cell lines (Figure S1). All cell lines

showed rapid g-H2AX localization to foci with double-strand

DNA (dsDNA) breaks after exposure to 5 Gy IR (Figure S1). To

determine whether any defect in the repair of the dsDNA breaks

occurred after IR exposure, we performed a time course exper-

iment. Cells were exposed to 5 Gy IR, and then, at 5 min, 2 hr,

8 hr, and 24 hr, the proportions of g-H2AX+ cells (>20 foci/cell)

were scored. In the OS cell line, the proportion of g-H2AX+

decreased at 2 hr after IR exposure; by 8 hr, the cells were indis-

tinguishable from the original cell population. The resolution of g-

H2AX+ foci was significantly slower for the EWS cell line (p <

0.01; Figure 1H). To determine whether exposure to PARPis

further delays the repair of IR-induced dsDNA breaks, we per-

formed a similar experiment in the presence of olaparib, veli-

parib, or BMN-673 (Figure S1). The number of g-H2AX+ cells

was significantly increased at 24 hr after IR exposure in the pres-

ence of PARPis (p < 0.01; Figure S1). Together, these data sug-

gest that EWS cell lines are defective in DNA repair.
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DNA-Damaging Agent and PARPi Cytotoxicity in
EWS Cells
IRN and TMZ are used in combination to treat recurrent EWS

(Casey et al., 2009), and both drugs induceDNAdamage through

distinct mechanisms (Figure 2A) (Hsiang et al., 1989; Quiros

et al., 2010). We performed dose-response experiments mea-

suring the cytotoxicity of SN-38 (the active metabolite of IRN),

TMZ, BMN-673, olaparib, and veliparib in eight Ewing sarcoma

cell lines (ES-1, ES-4, ES-6, ES-7, ES-8, EW-8, RD-ES, and

SK-ES1), three OS cell lines (SAOS2, SAOS2LM7, and U2OS),

and five OS xenografts (MAST22, MAST38, OS39R, OS43, and

OS45).The EWS cell lines were chosen to reflect diversity in

EWS-FLI1 translocation type, p53 status, and STAG2 status

(Supplemental Information). At 72 hr of exposure, EW-8, ES-8,

and ES-1 cells were sensitive to BMN-673 and olaparib, and,

at 144 hr, all EWS cell lines except ES-6were sensitive to all three

PARPis (Figures 2B–2E and S2; Table S2), though veliparib ac-

tivity was marginal. ES-6 cells, which have a nonfunctional

EWS-FLI1 translocation, were reported to be resistant to ola-

parib at 72 hr but had some sensitivity at later time points in col-

ony assays (Garnett et al., 2012). In our analysis, ES-6 cells were

resistant to all three PARPis at 72 hr and to BMN-673 and veli-

parib at 144 hr and had significantly lower potency for olaparib

and SN-38 compared to other EWS cell lines (Table S2). At

144 hr, all EWS cell lines tested excluding ES-6 had EC50

<10 nM for SN-38 and >100 mM for TMZ. In contrast to EWS

cells, OS cells showed little sensitivity to any of the compounds

tested. Only one compound had an EC50 <100 nM: SN-38 in

SAOS2 (Table S2).

To determine whether sensitivity to PARPis depends on

the expression of PARP1, we knocked down PARP1 protein in

ES-8 cells with a small interfering RNA (siRNA) (Murai et al.,

2012) (Figures 2F–2J). For each drug, PARPi sensitivity was

reduced when PARP1 expression was knocked down relative

to a control siRNA, consistent with the PARP trapping mecha-

nism (Murai et al., 2012, 2014). Indeed, PARP trapping potential

followed the same trend observed in the cytotoxicity assay

BMN-673 > olaparib > veliparib (Figure S2).

Development of an Orthotopic EWS Xenograft Model
To generate an EWS orthotopic xenograft, we developed a

method for injecting EWS cell lines or primary human tumor cells

into the bone marrow of the femur of immunocompromised mice

(Supplemental Information). Briefly, cells are resuspended inMa-

trigel at 100,000 cells/ml and drawn up in a Hamilton syringe with

a 25 G needle. The patella and ligaments of the knee are laterally

displaced, and the needle is inserted into the intercondylar fossa

by using a closed technique (Figures 3A–3F). Early signs of

engraftment include periosteal elevation on X-ray images, fol-

lowed by local tumor cell invasion, and hair-on-end appearance

(Figure 3G), as seen in patients with EWS. The soft-tissue fea-

tures of EWS orthotopic xenografts can be visualized by MRI

(Figure 3H), and tumor calcification and accompanying alter-

ations in femoral architecture can be monitored via micro-CT

(Figure 3I). We also tested two positron emission tomography

(PET) tracers (F18-deoxyglucose and C11-methionine); C11-

methionine provided superior sensitivity and signal-to-noise for

the orthotopic EWS xenografts (Figures 3J–3M; data not shown).



Figure 1. EWS Cell Lines Are Defective in dsDNA Break Repair

(A) Representative image of single-cell alkali electrophoresis with genomic DNA is shown in red; the tail moment is indicated.

(B and C) Comet data for U2OS cells (B) or ES-8 cells (C) prior to exposure to 10 Gy IR (untreated), 30 min after treatment, or 11 hr after treatment. The red line

indicates the mean.

(D–G) Comet data for cells treated with 1 or 10 mM PARPi before and 12 hr after exposure to 10 Gy IR.

(H) Micrographs of U2OS and ES-8 nuclei (blue) stained for g-H2AX (red). Scale bars, 1 mm. The proportion of g-H2AX+ cells (>20 foci/nucleus) are shown in the

histograms to the right of the micrographs. Each bar represents the mean ± SD of duplicate scoring.
Tumor growth surrounding the femur (Figure 3N) and tumor his-

tology (Figures 3O and 3P) of the orthotopic tumors were very

similar to EWS tumors in patients.

In Vivo PK and PD of Veliparib, Olaparib, and BMN-673
To determine the murine equivalent dose (MED) and the level of

tumor penetration of the three PARPis, we measured drug con-

centration in the plasma and tumors of CD1-nude mice with or-

thotopic xenografts at time points ranging from 30 min to 24 hr

(Figure S3). We estimated the plasma area under the concentra-

tion-time curve (AUC) for each drug and compared those data to
C

the AUC from plasma PK data in patients (Figure S3; Supple-

mental Information). Our data suggest that the most appropriate

dose for twice-daily oral administration in mice is 12.5 mg/kg ve-

liparib, 50 mg/kg olaparib, and 0.125 mg/kg BMN-673 (Supple-

mental Information). At 12 hr after dosing, concentration of at

least 0.05 mM veliparib, 0.09 mM olaparib, and 0.015 mM BMN-

673 were achieved in the orthotopic tumor (Figure S3).

Next, we combined the in vivo tumor pharmacokinetic data

with the cytotoxicity data for each PARPi in combination with

SN-38 or TMZ using a modified response surface model (RSM)

approach (Figure S3; Supplemental Information). A total of seven
ell Reports 9, 829–840, November 6, 2014 ª2014 The Authors 831



Figure 2. Potentiation of PARPi Cytotoxicity with IRN and TMZ

(A) Model of DNA damage and synthetic lethality for the combination of PARPis with TMZ or IRN.

(B–D) Dose response for EW-8, ES-6, and SAOS cells 72 hr after exposure to each indicated PARPi. Curves fit using data pooled from two biological replicates,

each with at least three technical replicates.

(E) A similar experiment was performed at 144 hr.

(F and G) (F) Immunoblot with quantification (G) of the knockdown of PARP1 in EW-8 cells transfected with a PARP1 siRNA.

(H–J) Dose response for BMN-673, olaparib, and veliparib in EW-8 cells at 72 hr with (solid line) andwithout (dashed line) knockdown of PARP1. Each data point is

the mean ± SD of triplicate wells.

(K–P) Potentiation of PARPi in the presence of increasing concentrations of TMZ and SN-38. Curves were generated by taking horizontal slices through the

efficacy surface estimated using the response surface model (RSM) approach.

832 Cell Reports 9, 829–840, November 6, 2014 ª2014 The Authors



Figure 3. Development and Characterization of an Orthotopic EWS Tumor Model

(A) Diagram of the injection procedure.

(B–D) X-ray images of a mouse leg showing the injection procedure before, during, and after injection.

(E and F) Hematoxylin and eosin staining of mouse femur and bone marrow after injection of EWS cells in Matrigel (yellow dashed line). Arrows indicates the

injection site.

(G) X-ray image of an orthotopic tumor with bony extensions (arrow).

(H) Transverse view of the soft-tissue and bony component of the orthotopic EWS xenograft in an MRI.

(I–M) Micro-PET/computed tomography (CT) scans using 11C-methionine. The tumor (arrow) shows accumulation of the radiotracer.

(N) Photograph of the femur removed from a mouse with a large mass from the orthotopic xenograft.

(O and P) High- and low-power images of the orthotopic tumor showing its extension from the bone to the surrounding soft tissue.
drug pairs were examined (three PARPi + SN-38, three PARPi +

TMZ, and SN-38 + TMZ) in four EWS cell lines. We used

nonlinear regression to fit the observed 2D assay response sur-

face as a function of the hill equation parameters for each com-
C

pound, the overall efficacy, and kappa (k), a measure of the inter-

action between the two drugs (k < 0 indicates antagonism, k = 0

indicates Loewe additivity, and k > 0 indicates synergy). In every

EWS cell line tested, the fitted k value indicated additivity or
ell Reports 9, 829–840, November 6, 2014 ª2014 The Authors 833



Figure 4. Preclinical Phase I/II Studies

(A) Drug-combination schedules. Yellow circles

represent the PARPi, green bars represent the TMZ

and red stars represent daily IP dosing of IRN.

(B–D) Survival of mice in the preclinical phase I trial

of each PARPi combined with IRN (I) or TMZ (T). In

some groups, TMZ was reduced by 50% (T50), 64%

(T36), or 70% (T30). For BMN-673, the dose was

reduced by 20% in one group (P80).

(E–G) Preclinical phase II data for IRN + TMZ alone

or in combination with veliparib (blue), olaparib (red),

or BMN-673 (green). Tumor burden was monitored

by Xenogen imaging.

(H–L) Representative Xenogen images for each

treatment group and photographs of the tumors

(arrows) or femurs at the end of the study.
synergy for all PARPi + SN-38 or TMZ combinations. Overall, the

RSM analyses suggest that combining PARPi with either TMZ or

SN-38 will be synergistic in EWS cell lines, with a greater degree

of synergy observed for PARPi + TMZ drug pairs.

Although the sign and magnitude of the interaction between

drug pairs is important, the combined efficacy at physiologically

reasonable concentrations is more relevant when determining

the potential utility of a drug combination for in vivo application.

Using the RSM, one can predict the combined efficacy of a drug

combination at any concentration. In translocation-positive EWS

cell lines, SN-38 begins to significantly potentiate PARPi be-

tween 1 and 10 nM, whereas 10–100 mM TMZ is required for

the same level of potentiation (Figures 2K–2P). In all transloca-

tion-positive EWS cell lines, we predict that the most efficacious
834 Cell Reports 9, 829–840, November 6, 2014 ª2014 The Authors
drug combinations are: BMN 673 + SN-

38 > Olaparib + SN-38 > BMN 673 + TMZ

> all other drug pairs. In summary, our

in vitro synergy study using RSM suggests

that, although PARPi + TMZ pairs tend to

be more synergistic than PARPi + SN-38

pairs, less SN-38 is needed to achieve a

desirable level of efficacy.

To verify that the drugs penetrated the

tumor and inhibited PARP in the tumor

cells in vivo, we performed a PD assay II

(Supplemental Information). At the MED,

each of the PARPis reduced PARP activity

within 1 hr, and PARP activity was restored

over the next 6–12 hr (Figure S3). BMN-673

and olaparib sustained PARP inhibition

longer than did veliparib in vivo.

Preclinical Phase I Study
Having established that sufficient levels of

the three PARPis can be achieved in the or-

thotopic xenograft in vivo to inhibit PARP

at theMED, we initiated a preclinical phase

I trial to test the tolerability of PARPis as

single agents and in combination with

IRN, TMZ, or both. Our preclinical phase I

trials were performed in three to five female
CD1-nude mice per treatment group for a total of four to six

courses of therapy (12–18 weeks; Figure 4A). The PARPis were

administered orally twice daily to match the dosing in patients.

Importantly, we used a low-dose, protracted schedule of IRN

(i.e., 1.25 mg/kg twice daily for 5 days (d 3 5 3 2) equivalent

to 20 mg/m2 d 3 5 3 2 in children (Furman et al., 1999; Supple-

mental Information). The pediatric dose using this d 3 5 3 2

schedule is much lower than that used in adults with cancer,

who receive 100–350 mg/m2 IRN one to three times per course

(Kummar et al., 2011; Samol et al., 2012). TMZ was initially

administered at 33 mg/kg on a d 3 5 schedule, which is equiva-

lent to 100 mg/m2 in children (Horton et al., 2007).

For veliparib, nearly all combinations were well tolerated for

four courses (12 weeks), except the veliparib + IRN + TMZ



combination (Figure 4B). In patients who do not tolerate the com-

bination of TMZ + IRN, the dose is often reduced 50% from

100 mg/m2 to 50 mg/m2 (Wagner et al., 2009). Veliparib +

IRN + TMZ (50%) was well tolerated for four courses (Figure 4B).

Similar results were obtained with olaparib (Figure 4C). The toler-

ability of TMZ was even less in combination with BMN-673 (Fig-

ure 4D). The TMZ dose had to be reduced by 70% (10 mg/kg

in mice and 30 mg/m2 in children), and the BMN-673 dose by

20% of the MED (0.1 mg/kg) to make this combination tolerable

(Figure 4D; Table S3).

Preclinical Phase II Study
To test if any of the PARPis reduce orthotopic EWS tumor growth

in vivo, we performed a preclinical phase II study. Phase II

studies are designed to provide rapid efficacy data by using a

randomized, placebo-controlled study design (Supplemental

Information).

Five groups comprising five mice per group with EW-8 or-

thotopic xenografts were used in this study. In addition to

the placebo group, we included IRN + TMZ (50%) as a control

group. The placebo group showed rapid tumor progression,

and all mice were off study by 14 days after enrollment (data

not shown). The mice in the IRN + TMZ (50%) group had stable

disease (SD) or progressive disease (PD) but no partial

response (PR) or complete response (CR) (Figures 4E–4G;

Supplemental Information). The veliparib + IRN + TMZ (50%)

group included 1 mouse with PR; the rest had SD or PD (Fig-

ure 4E). The olaparib + IRN + TMZ (50%) group had two mice

with CR, one with PR, and one with SD (Figure 4F). The BMN-

673 (80%) + IRN + TMZ (30%) group had four mice with CR

(Figure 4G). Overall, the bioluminescence from the Xenogen

imaging correlated with tumor weight and histopathologic

evaluation (Figures 4H–4L and S4; Supplemental Information).

As long as 12 weeks after cessation of treatment, mice with a

CR that received olaparib + IRN + TMZ (50%) or BMN-673

(80%) + IRN + TMZ (30%) have no evidence of tumor recur-

rence, but those with PD, SD, or PR have all progressed

rapidly (data not shown). ES-1 cells had poor engraftment

and IRN + TMZ completely eliminated the tumors (data not

shown). Mice with orthotopic ES-8 xenografted cells had

similar response to the EW-8 cells (Figure S5). The ES-6 cells

were similar to ES-1 in their poor engraftment efficiency and

slow growth but the tumors showed response to olaparib +

IRN + TMZ (50%) and BMN-673 (80%) + IRN + TMZ (50%)

(Figure S5).

The Cmax and AUC of SN-38 in mouse plasma has been re-

ported to be slightly higher than those in human plasma because

mice have higher levels of the plasma carboxylesterases that

convert IRN to SN-38 (Morton et al., 2000, 2005). To determine

whether the efficacy of IRN + PARPis in vivo was caused by

the higher Cmax or AUC of SN-38 in mice, we performed plasma

PK and efficacy studies in carboxylesterase-deficient mice that

more closely recapitulate the PK profile of SN-38 in humans

(Morton et al., 2005). As shown previously, the plasma SN-38

Cmax and AUC were slightly reduced in the carboxylesterase-

deficient mice after intraperitoneal injection of IRN (Figure S5;

Supplemental Information), but there was no effect on tumor

response (Figure S5).
C

Preclinical Phase III Study
Our in vitro RSM predicted that BMN-673 + IRN or BMN-673 +

TMZ would be significantly cytotoxic, olaparib + IRN may be

more efficacious than olaparib + TMZ, and that veliparib-combi-

nation chemotherapy would probably not achieve significant

in vivo efficacy at the dose and schedule used for these experi-

ments. To test these predictions and directly compare the effi-

cacy of each PARPi in combination with TMZ, IRN, or both, we

performed a double-blind, randomized, placebo-controlled pre-

clinical phase III trial. Briefly, we performed 350 intrafemoral in-

jections of luciferase-labeled ES-8 cells into female CD1-nude

mice. Over 5 weeks, the trial enrolled 274 mice and randomized

them to 15 treatment groups (Table S4). Ten mice each were

assigned to the placebo and single-agent PARPi groups;

25 mice were assigned to the BMN-673 (80%) + IRN + TMZ

(30%) group; and 20 mice each were assigned to the other

treatment groups (Table S4). All mice were assigned a mouse

medical record number at enrollment, which allowed their data

to be linked via an OpenClinica database (Supplemental

Information).

Overall survival of mice in the placebo group did not signifi-

cantly differ from that in the single-agent PARPi-treatment

groups (Figure 5A). As predicted by the RSM, of the groups

that received combinations of PARPis with TMZ, only those

that received BMN-673 + TMZ (50%) had significantly improved

overall survival (p = 0.0004, Figure 5B). The groups that received

PARPi + IRN tolerated the combinations well; responses were

significantly better in the olaparib + IRN or BMN-673 + IRN

groups than in the veliparib + IRN or TMZ + IRN groups (p =

0.0001, Figure 5C). All but one mouse in the olaparib + IRN +

TMZ (50%) or BMN-673 (80%) + IRN + TMZ (30%) groups

were alive at the end of the 12 week study (Figure 5D). All mice

that came off study due to tumor growth were classified as hav-

ing PD. Those that completed the four courses of therapy were

classified as having CR, PR, SD, or PD based on the Xenogen

thresholds used in the preclinical phase II study. The following

percentages of each group showed CR: 15% (3/20) in the veli-

parib + IRN + TMZ (50%) group, 71% (12/17) in the olaparib +

IRN + TMZ (50%) group, and 88% (14/16) in the BMN-673

(80%) + IRN + TMZ (30%) group. The Xenogen data correlated

with tumor burden and histopathology (Figures 5I–5K).

In cell culture, IRN and TMZ showed strong potentiation of ve-

liparib-mediated killing of EWS cells (Table S2). However, at the

MED of that used in pediatric brain tumor phase II studies of ve-

liparib with temozolomide (Su et al., 2014), our model predicted

and our preclinical phase II and III studies validated that the

levels of veliparib in the tumors were not sufficient to achieve

high rates of CR. The pediatric brain tumor combination

phase I trial with veliparib and temozolomide was designed to

maximize the temozolomide dose and escalate the veliparib.

However, our data presented here suggest that the opposite

may be advantageous for Ewing sarcoma. Therefore, we per-

formed additional phase I/II studies with a higher dose of veli-

parib (62.5 mg/kg twice a day 35 32) in combination with IRN

and TMZ (50%). The higher dose veliparib was well tolerated in

combination with IRN and TMZ and had efficacy similar to that

of olaparib + IRN + TMZ (50%) and BMN-673 + IRN + TMZ

(30%) (Figure S5).
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Figure 5. Preclinical Phase III Study

(A–D) Survival curves for each of the 15 treatment groups.

(E–G) Tumor response for individual mice in the TMZ + IRN group and the triple-drug combinations for veliparib (blue), olaparib (red), and BMN-67e (green). The

cutoffs for progressive disease (PD), stable disease (SD), partial response (PR), and complete response (CR) are indicated by gray shading.

(H) Histogram of the proportion of CRs seen in each triple-drug treatment group.

(legend continued on next page)
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DISCUSSION

Three PARPis in combination with DNA-damaging agents

showed that PARPi-mediated cytotoxicity can be potentiated

by IRN and TMZ in vitro and in vivo. In vivo PK of veliparib, ola-

parib, and BMN-673 in plasma and tumor were used to calculate

the MEDs and demonstrate tumor penetration and PARP inhibi-

tion at clinically relevant doses in orthotopic EWS xenografts. A

preclinical phase I study revealed that combinations of PARPis

with IRN were better tolerated than those with TMZ. Further-

more, the low-dose, protracted schedule of IRN used to treat pe-

diatric patients with solid tumors (20 mg/m2 d 35 32) was well

tolerated with all three PARPis, but the TMZ dose had to be

reduced (50%–70%). The levels of all three PARPis in the tumor

were sufficient to potentiate cytotoxicity with DNA-damaging

agents but were insufficient to induce cytotoxicity on their own.

A preclinical phase II study demonstrated the efficacy of all

three PARPis in combination with IRN and TMZ, and this pro-

vided justification for a subsequent in vivo efficacy study. In a

double-blind, randomized, placebo-controlled preclinical phase

III trial, we found significant improvement in overall survival and

outcome when olaparib or BMN-673 was combined with TMZ

and IRN. Most of the mice had a CR and did not exhibit tumor

recurrence as long as 12weeks after cessation of therapy. These

data suggest that the combination of PARPis and IRN adminis-

tered in the low-dose, protracted schedule optimized for pediat-

ric patients should be considered for clinical development. A

reduced dose of TMZmay be incorporated to provide full poten-

tiation of PARP inhibition in EWS. Although veliparib was not as

active as olaparib and BMN-673 in the preclinical phase III study,

a higher dose of veliparib was well tolerated in preclinical phase I

and had efficacy comparable to olaparib and BMN-673 in a pre-

clinical phase II with IRN and TMZ.

DNA-Damaging Agents and PARPis in EWS
EWS cells express high levels of SLFN11 and PARP1 compared

to other cancers, providing a rationale for combining DNA-

damaging agents and PARPis. TMZ has been favored in the

PARPi EWS clinical trials developed to date because in adults,

camptothecins (topotecan or IRN) caused dose-limiting myelo-

suppression and diarrhea when combinedwith PARPis (Kummar

et al., 2011; Samol et al., 2012). However, the low-dose, pro-

tracted schedule and the sensitivity of EWS cells to IRN make

this camptothecin an attractive agent to combine with PARPis.

Our PK, PD, and in vitro drug-combination studies showed

that concentrations of PARPis and IRN can be achieved in vivo

at levels sufficient to potentiate PARP-mediated cytotoxicity

in vivo.

We did not test ionizing radiation in our studies, but this is

another therapy that should be considered in combination with

PARPis and DNA-damaging agents. EWS tumors are sensitive

to IR, and similar potentiation might be achieved with IR in vivo

(Lee et al., 2013). The majority of EWS cell lines have TP53 mu-
(I) Representative Xenogen images of single-agent PARPis and corresponding tr

(J) Representative photographs of tumors from placebo, IRN + TMZ, single-agen

(K and L) Representative micrographs of hematoxylin-and-eosin-stained tissue

sponding triple-drug treatment groups. Scale bars in (K), 500 mm, and in (L), 100

C

tations (Tirode et al., 2014), so it is difficult to compare the sensi-

tivity of wild-type and TP53-deficient EWS cell lines to PARPis

and DNA-damaging agents. However, TP53-deficient osteosar-

coma cell lines are insensitive to those drug combinations, so

p53 status alone cannot explain the sensitivity to PARPis and

DNA-damaging agents in our study. Indeed, Oplustilova and

colleagues found that PARPis can sensitize cells to camptothe-

cin or ionizing radiation independent of p53 status in colorectal

carcinoma cells (Oplustilova et al., 2012).

Our results suggest that STAG2 status does not correlate with

sensitivity to DNA-damaging agents or PARPis in EWS, and this

has important clinical consequences. In a separate whole-

genome sequencing study, 17% of EWS tumors had inactivating

somatic mutations in STAG2, a component of the cohesin com-

plex (Tirode et al., 2014). Those data are consistent with previ-

ously published data from Solomon et al. showing that STAG2

is frequently lost in EWS (Solomon et al., 2011). Although

STAG2-deficient glioblastoma cells appear to be more sensitive

to PARPis (Bailey et al., 2014), this does not appear to be the

case in EWS. It is encouraging that the TP53;STAG2-deficient

EWS lines remain sensitive to the drug combinations because

those patients have theworst overall survival (Tirode et al., 2014).

PARP Trapping
Although it is unlikely that high PARP1 levels alone are sufficient

for conferring sensitivity to PARPis—a DNA repair defect must

also be present—we did observe that the in vitro sensitivity of

PARPis in EWS correlated with PARP trapping potential (Murai

et al., 2012, 2014). The apparent differences in PARP trapping

may be the result of differences in drug retention times. Specif-

ically, BMN-673 may be more active as a single agent because

it remains bound to PARP1 longer than olaparib or veliparib, re-

sulting in more persistent PARP-DNA adducts. This may also

contribute to its reduced tolerability. The implications of these

data are related to dosing of each PARPi: efficacy may be

improved if veliparib is dosed at a higher intensity to overcome

these differences in tumor clearance and ultimately retention of

PARP-bound drug in the tumor cells. Indeed, our preclinical

phase II study with high-dose veliparib + IRN + TMZ showed

efficacy similar to that of BMN-673 and olaparib. Similarly,

once-daily dosing of BMN-673 may be better tolerated than

twice-daily dosing without affecting PARP inhibition and effi-

cacy. Because PARPis are combined with DNA-damaging

agents to treat patients, it will be essential to balance the dosing

and schedule of the PARPis with DNA-damaging agents to

achieve maximum efficacy and tolerability.

Preclinical Testing for Pediatric Solid Tumors
Survival of patients with recurrent or metastatic EWS is among

the worst of pediatric cancers. More importantly, outcome has

not been significantly improved in 20 years. This explains the

enthusiasm for treating recurrent EWS with PARPis, once the

original discovery showed that EWS cell lines are sensitive to
iple-drug treatment groups.

t PARPi groups, and corresponding triple-drug treatment groups.

sections from placebo, IRN + TMZ, single-agent PARPi groups, and corre-

mm.
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olaparib (Garnett et al., 2012). Indeed, the first clinical trial

(NCT01583543) opened within a month of that publication. How-

ever, several unanswered questions from that first study had

important implications for the clinical trial. Could the levels of ola-

parib required to kill EWS cell lines in vitro be achieved in a pa-

tient’s tumor in vivo? Could the PARPi be combined with a

DNA-damaging agent? Which DNA-damaging agent should be

used? What is the best dose and schedule for the PARPi and

the DNA-damaging agent?

In this study, we developed and optimized a comprehensive

preclinical-testing paradigm to answer these questions in

EWS. The advantage of the program presented here is that it

directly relates in vivo PK and PD to cytotoxicity in vitro and

then uses MEDs and schedules to test those predictions in an

array of systems (i.e., cell culture to relevant orthotopic EWS xe-

nografts). Also, our preclinical phase I, II, and III trials mirror the

approach used in clinical trials and provide an efficient system

to advance new therapies. However, the key of any preclinical-

testing effort is the predictive power of the preclinical results.

The data presented here predict that single-agent olaparib will

not be an effective treatment of EWS, and the efficacy of ola-

parib + TMZ may be limited by tolerability. As the ongoing trials

with BMN-673 accrue patients, we will have additional opportu-

nities to determine the predictive power of our preclinical-testing

efforts.

The drug combination results from this study, specifically the

utility of individual PARPi, should not be generalized to non-

EWS tumors in part because of the sensitivity of EWS cell lines

to IRN (Barretina et al., 2012). Also, in vivo drug efficacy is the

product of a multitude of effects beyond intrinsic cell sensitivity,

such as influence of the tumor niche, immune system, and phar-

macokinetics. Future efforts should focus on primary human

orthotopic xenografts to complement the EWS cell line data

presented here.

EXPERIMENTAL PROCEDURES

Comet Assay

Fifty thousand ES-1, ES- 6, ES-8, or U2OS cells or 100,000mesenchymal stem

cells were plated onto 12-well dishes per well. Cells were incubated for 24 hr

and then treated with Parp inhibitor: 10 mM BMN-673, 1 mM BMN-673, 10 mM

Veliparib, 1 mM Veliparib, 10 mM Oliparib, 1 mM Oliparib, or DMSO. Cells were

incubated with the inhibitor for 14 hr and then treated with 10 Gy IR or were left

untreated. Cells were incubated an additional 10 hr and then trypsinized and

collected. For unrepaired control, cells were treated 10 Gy IR and immediately

harvested. Fifty thousand cells were suspended in 30 ml PBS. Tenmicroliters of

this suspension was mixed with 200 ml of 0.5% low melting point agarose

(Sigma) and layered on CometSlides (Trevigen). Alkaline single-cell gel electro-

phoresis was performed as described previously (Benavente et al., 2013).

Animals

CD-1 nude immunodeficient mice were purchased from Charles River (strain

code 087, heterozygous). Esterase-deficient SCID mice were bred and ob-

tained from Philip Potter (St. Jude Children’s Research Hospital). This study

was carried out in strict accordance with the recommendations in the Guide

to Care and Use of Laboratory Animals of the NIH. The protocol was approved

by the Institutional Animal Care and Use Committee at St. Jude Children’s

Research Hospital. All efforts were made to minimize suffering. All mice

were bred and housed in accordance with approved IACUC protocols.

Animals were housed on a 12:12 light cycle (light on 6 a.m. off 6 p.m.) and pro-

vided food and water ad libitum.
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Veliparib was purchased from Selleck (S1004, CAS 912444-00-9), Olaparib

was purchased from LC Labs (O-9201, CAS 763113-22-0), BMN-673 was

purchased from Abmole (BMN673, 1207456-01-6), Temozolomide was pur-

chased from Combi-Blocks (OR-2567, CAS 85622-93-1), and SN-38 was pur-

chased from (CAS 86639-52-3). The purity of all compounds was confirmed to

be R95% using LC/MS coupled with UVTWC/ELSD detection, and concen-

tration was verified using CLND if nitrogen was present in the compound.

Gene Expression Array Analysis

Microarray assays of Ewing sarcoma tumor samples (GSE37371) were

compared to osteosarcoma arrays (HGU133v2 Affymetrix arrays, M.A.D. un-

published data). The data were RMA normalized, evaluated for quality by

PCA and, after outlier removal, statistically compared using the unequal vari-

ance t test in Partek Genomics Suite 6.6. Select data known to be associated

with DNA repair were then evaluated.

qPCR Analysis

Real-time RT-PCR experiments were performed using the Applied Biosystems

7900HT Fast Real-Time PCR system and custom TaqMan Array Micro Fluidic

Cards (Life Technologies). RNA was prepared using Trizol following manufac-

turer instructions (Life Technologies, 15596018). cDNA was synthesized using

the High Capacity cDNA to RNA kit (Life Technologies, 4387406) per user in-

structions. Samples were analyzed in triplicate and normalized to ACTB2

expression levels.

Histology and Immunohistochemistry

Paraffin-embedded formalin-fixed EWS tumors were serially sectioned for

routine hematoxylin and eosin staining. Immunostaining for histochemical

analysis was done with Ki67 (ThermoShandon, cat. RM-9106) (dilution

1:200) using hematoxylin as a counterstain (1:10 dilution). Histology images

were obtained using Aperio ImageScope (Leica Biosystems).

PARP1 Knockdown

Gene-specific siRNAs (mix of four sequences) for PARP1 (ThermoScientific, L-

006656-03-0005) were transfected into ES-8 cells using Libofectamine RNAi-

MAX Reagent (Invitrogen, 13778). Cells were harvested 48 hr posttransfection

and lysed for western analysis to confirm knockdown of PARP1. Also, cells

were harvested by trypsinization, seeded onto 96-well plates at a density of

5000 cells per well in 40 ml of media. Seventy-two hours after transfection, cells

were treatedwith 0, 1, 2.5, 5, 10, 20, 50, or 100 mMOlaparib, Veliparib, or BMN-

673 in triplicate for each condition. Seventy-two hours after addition of PARPi,

cells were analyzed for cellular activity using Cell Titer Glo (Promega, G7570).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.09.028.
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