
UC Irvine
ICS Technical Reports

Title
System modeling and presynthesis using timed decision tables

Permalink
https://escholarship.org/uc/item/9fm4z0hv

Authors
Li, Jian
Gupta, Rajesh K.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fm4z0hv
https://escholarship.org
http://www.cdlib.org/

^L- e.Af5.

Notice: This Material
may be protected ^
by Copyright Law
(Title 17 U.S.C.)

System Modeling and Presynthesis Using Timed Decision Tables

^Jian Li and ^Rajesh K. Gupta

^Department of Computer Science ^Information k Computer Science
University of Illinois at Urbana-Champaign University of California, Irvine

Urbana, Illinois 61801 Irvine, CA 92697

Abstract

In this paper, we present a tabular model of system behavior called Timed Decision

Table (TDT). The TDT model is useful for identifying control-data interaction and in

performing control-oriented optimizations. TDTs provide an ideal vehicle to implement

source-level optimizations on a given behavioral description in a procedural hardware

description language (HDL). These optimizations are used to produce improved synthesis

results by simplifying the HDL models using DonH Cares or assertions in particular.

TDT also provides a convenient data structure for extracting information that can be

used in further synthesis subtasks to obtain improved synthesis results. One example of

this is the information on mutual exclusiveness between a pair of operations, which can

be used to optimize operation scheduling.

Source-level control-flow optimization and analysis which extracts useful information

from input HDL source for optimization in synthesis process are collectively referred to

as presynthesis. IVe have implemented TDT-based presynthesis techniques in a pro
gram called PUMPKIN. Our experiments running PUMPKIN on named benchmarks

shows improved synthesis results after presynthesis has been carried out on the input

HDL descriptions and information extracted in presynthesis has been incorporated in

the synthesis optimizations.

1 Introduction

Due to the maturity of optimization and synthesis tools at logic and register transfer levels, sys
tem specification is increasingly being done at the behavioral level using Hardware Description

Languages (HDL). Behavioral descriptions in HDLs are similar to software (textual) programs
in high-level programming languages. A program-lihe description of hardware is compiled into a
formal representation on which various synthesis tasks are carried out.

Traditionally graph models such as variants of data-flow graphs (DFGs) and control-data flow
graphs (CDFGs) [1, 2, 3, 4, 5, 6] have been used for various software compilation or haxdware
synthesis tasks. Most DFG-based representations are efficient in implementing data-oriented trans
formations, but ofteninadequate in control-flow modeling. In most CDFG models, the control-flow
isembedded in the modeling hierarchy that limits the scope ofcontrol-oriented transformations [7],
To address this problem, algebraic models such as Control-flow Expression (CFE) [8] have been
proposed for control-oriented optimizations. The CFE is based on process algebra and regular
expressions- It is useful in identifying synchronization relationships between concurrent processes
and minimizing process interactions. However, CFEs have little information about actions and thus

make restrictive assumptions on control and data interactions. This limits the quality and scope
of possible optimizations on the HDL input.

Tabular models have been used for hardware modeling at different abstraction levels [9,10,11].
In [9] the authors model hardware as a set of functions each of which is implemented as a table.
Relational algebra is used to manipulate hardware as a set of tables. In [10] the authors have
proposed "behavior tables" as a register transfer language using finite state machine model. These
tables have been used to evaluate control versus data tradeoff while preserving cycle-accurate
(RTL) behavior. This is accomplished by using an "indirection transformation". For instance, a
state indirection puts the state control variable into a register thus reducing many state-related
control operations into a single register operation [10]. Behavior tables have also been used to
describe interface behavior [12].

In this paper, we present a model called Timed Decision Tables (TDT). Our original idea on
TDT came from decision tables [13, 14]. We have added features such as timing semantics for the
purpose ofhardware modeling and followed a modeling methodology which is suitable for modeling
general control-flows in behavioral HDL descriptions.

The TDT model provides an ideal vehicle for presynthesis. Presynthesis works on source-level
HDL descriptions. It is a pre-processing process performed on input behavioral HDL source code
before any synthesis tasks are carried out. Presynthesis does two things: (I) source-level opti
mization which removes control-flow redundancies in the behavioral code using assertions [11], and
searches for similar operations that can be shared, (II) analysis which extracts useful information
that helps in synthesis optimizations.

Source-levelcode optimization which removes specification redundancies and searches for sharable

code segments is also referred to as presynthesis optimization. Presynthesis optimization is useful
for many reasons. First, as we mentioned earlier, system specification is increasingly being done
at the behavioral level using HDLs. Specific optimizations are needed for both efficient synthe
sis of HDL description into hardware and software compilation of HDL description into directly
executable binary code that can be executed by a general purpose processor. Hardware specific
optimizations concern the degree of simultaneity ofoperations as it affects scheduling and resource
allocation steps, while control-flow optimizations are required for both hardware and software. Sec-

ond, a hardware module usually operates in a very well-defined external environment, on which

Don't Cares or assertions in particular can be derived and used to get efficient designs. Third, in

hardware synthesis optimization at the source level can save time in tasks at lower levels of the

synthesis process since design details grow in size as the abstraction level goes lower.

One example of information extracted for use in synthesis optimization is the mutual exclusive-

ness of operation pairs. It is known that scheduling and binding are two interrelated problems in

high-level synthesis and that the goals of reducing the total delay and reducing the resource usage

are often conflicting [7]. However, operations can share resource without increasing the total delay
if they are mutually exclusive (m.e.). Therefore the detection of m.e. operations becomes important

in obtaining optimal scheduling/binding solution, and in particular becomes important in obtaining

the optimal operation schedule when there are constraints on resource usage [15, 16, 17].

In this paper, we discuss the TDT model and demonstrate its utility in presynthesis. The rest of

the paper is organized as follows. In Section 2, we present the TDT model, along with a discussion

of Don't Cares in the context of TDT. We show how limited exceptions can be conveniently modeled

in the TDT representation. In Section 3, we present basic behavior-preserving TDT transforma

tions. Section 4 discusses TDT presynthesis techniques based on those transformations. Section 5

discusses the PUMPKIN presynthesis tool and shows how presynthesis can also be applied to

behavioral descriptions with exceptions. We discuss experimental results in Section 6 and conclude

in Section 7.

2 The TDT Representation of System Behaviors

This section presents the TDT model. We first introduce the basic definitions along with the

execution semantics of TDTs. We then discuss Don't Cares in the context of TDT, followed by

a two-level representation of TDTs. Finally, we show how limited exceptions can be conveniently

modeled in TDT.

2.1 The Basics of TDT

The TDT model is based on the notions of condition and action. A condition may be the presence of

an input, or an input value, or the outcome of a test condition. A conjunction of several conditions

defines a rule. A decision table is a collection of rules that map condition conjunctions into sets of

actions. Actions include logic, arithmetic, input-output(IO), and message-passing operations.

Actions are grouped into action sets, or compound actions. With each action set, we associate

a concurrency type of serial, parallel, or data-parallel. An action set of type serial is equivalent to a

compound statement in an ordinary sequential program. A parallel type indicates that no ordering
among individual actions is assumed in the action set. This models the concurrency inherent in

hardware models. A data-parallel type means parallel action subject to data-dependencies between

actions. Each action is associated with an execution delay which may be fixed, variable or even
unbounded. We assume that condition testing takes zero time. The action delay is typically used
to model the data-path delay associated with operations.

Condition Stub Condition Entries

Action Stub Action Entries

Figure 1: Basic structure of timed decision tables.

The basic structure of a TDT is shownin Figure 1. It consists of four quadrants. Condition stub
is the set of conditions used in building the TDT. Condition entries indicate possible conjunctions
of conditions as rules. Action stub is the list of actions that may apply to a certain rule. Action
entries indicate the mapping from rules to actions. A rule is a column in the entry part of the
table, which consists of twohalves, one in the condition entry quadrant, called decision part of the
rule, one in the action entry quadrant, called action part of the rule.

There are twoways to arrange the condition stub (or the action stub) and the condition entries
(or action entries). In the limited-entry form the stub contains a list of possible conditions (or
actions) and the entry section is a matrix with binary values that selects appropriate conditions
(or actions). In contrast, in an extended-entry form^ the entries may assume a range of values.
In below, we give two examples. Example 2.1 shows a TDT representation with its action part
arranged in an extended-entry form. Example 2.2 shows the same behavior as a TDT with its

action part arranged in limited-entry form.

Weprefer the limited-entry form over the extended-entry form for two reasons. First, in limited-
entry form, action sets can be shared among rules. Second, the limited-entry form is useful to
describe more general control structures as discussed later. In the rest of this paper, we will focus
on the limited-entry form and only use the actions in extended-entry form as a short-hand for the
cases where each action is selected by only one column.

Example 2.1. Consider the following behavior description in HardwareC:

±1 C1 {
if C2

al;
else

a2;
>
else {

a3;
>

Assuming that action a2 takes 2 cycles, while the rest take 1 cycle, the above behavior is described by the
following timed decision table:

A al a2 a3
delay ~I 2 T"

Condition entries in this TDT eu-e in the limited-entry form. Condition literals 'Cl' and 'C2' form the

condition stub. The action entries are in extended-entry form, containing three possible values 'al', 'a2',

and 'a3' of action 'A'. A rule { 'Y', 'N', 'a2'} in column 2 represents the condition that when 'Cl' evaluates

to true and 'C2' evaluates to false, the action set represented by literal 'a2' is executed. The 'X' in the

condition entry indicates that a condition assumes a Don't Care value, for a particular condition. •

Example 2.2. The action part of the above TDT can be arranged in limited-entry form as shown below:

A '1' in the action entries indicates that the action set in the corresponding row will be executed when the

rule in the corresponding column is selected. In contrast, a '0' in the action entries indicates that the action

set in the corresponding row will not be executed when the rule in the corresponding column isselected. O

Execution Semantics of TDT. The execution of a TDT consists of two steps: (I) select the set
of rules to apply, and (II) execute the actions that the selected rules map to. Execution of actions
may generate events which are actions with future time stamps. These time stamps are determined
by the execution delays and scheduling of operations in an action.

More than one action sets can be executed in Step 2 when one rule is selected for execution. The

order of execution in suchcase depends on the concurrency type, data dependency, and serialization
relation specified between action sets in the action stub.

The concurrency type between two action sets can be serial, parallel, or data-parallel. When a
concurrency type of parallel is specified between two action sets, they are invoked simultaneously
if both are selected for one rule. When a concurrency type of serial is specified between two action
sets, a serialization order also needs to be specified between these two actions. Normally, we use
the order in which these actions appear in the action stub unless the order is otherwise specified.
Execution of the two action sets follows the serialization order if both action sets are selected for

execution in one TDT rule. When a concurrency type of data-parallel is specified between two action

sets, either a serialization order or a data-dependence relation may be specified to determine the
order ofexecution when both action sets are selected in one TDT rule. If neither data dependency
nor serialization order is specified, the two actions may be run in paxallel. Concurrency type, data
dependency, and serialization relation between any two operations can be specified in an auxiliary
table as shown in Example 2.3.

Example 2.3. Consider the following TDT where more than one action sets are selected for each rule.

The meaning of each symbol is explained in Table 1. The colume 'delay' lists the number of cycles each
action set tsikes to execute. Note that in TDTs in limited-entry form, each delay value is associated with
each action set in the same row. This TDT can be re-written in HardwareC as shown in below.

if C1 <
if C2

C all; al2;]
else

< a21; a22; >

>
else

{. a31; a32; } /* a32 consunes data produced in a31 */

Note that in HardwareC, a pair of squared brackets (' C and ') indicate a concurrency type of serial, a

pair of arrowed brackets ('<' and '>') indicate a concurrency type of parallel, and that a pair of braces ('{'
and '}') indicate a concurrency type of data-parallel. •

Table 1: Symbols used in the data-flow sub-table.

Tas and cas appear in mutually exclusive path

p ra3 and cas runs in parallel if both selected for one rule

s+ serial, ras should be executed before cas if both are selected for a rule

serial, ras should be executed after cas if both are selected for a rule

d+ data-parallel ras feeds data to cas

data-parallel ras consumes data from cas

dO data-parallel no data dependence

ras(row action set) : the action set in this row of the auxiliary table

cas(column action set): the action set in this column of the auxiliary table

Iterations, as in loop structures and processes, are modeled using process TDTs. A process
TDT is executed repeatedly until a deadlock occurs or an explicit exit operation is executed. A

TDT that is executed only once each time it is enabled, as a part of an action, is called a procedure
TDT. Procedure TDTs are used to model function calls in the HDL descriptions. This calling
semantics also distinguishes TDTs from behavior tables that represent only concurrent processes.

2.2 Don't Cares in TDT

Not all conditions may be applicable to a rule. Conditions that are not applicable to a rule take

a Don't Care value, indicated by an 'X' in the corresponding column. We call these Don't Cares

condition entry Don't Cares. Not all column may ever be selected for execution. Columns never

selected for execution are called Don't Care columns.

The ON-set, OFF-set, and DC-set of an operation can be described as follows.

Definition 2.1 (^Condition Vectorj; A column in the condition part of a TDT represents a

condition vector as an assignment of values to the condition variables of the TDT.

Definition 2.2 f'ON-setj; The set of condition vectors in a TDT r that selects an operation O
for execution is called the ON-set of O in r.

Definition 2.3 f^OFF-set/' The set of condition vectors in a TDTr that does not select operation

O for execution is called the OFF-set of O in r.

Definition 2.4 f'Care SetJ: The care set is the union of ON&OFF sets.

Definition 2.5 (DC-set^: The DC-set is the complement of the care set.

The DC-set of operation O depends on the assertions either explicitly specified on the environ

ment of a system by the designer or extracted from the data-flow. An assertion is a special case of

Don't Cares and it can be expressed as a function of conditions that always evaluates to true [18].
In the context of the TDT representation, an assertion is a function over condition variables. A

column in the condition part of a TDT represents an assignment of variables. If such an assignment
satisfies this assertion, we say that this column (or corresponding rule) satisfies this assertion. If
a column does not satisfy an assertion, we say that each operation takes a Don't Care value in

this column, and the corresponding condition vector belongs to the DC-set of each operation. A
column that does not satisfy an assertion will never be selected for execution, and is therefore also
a Don't Care column.

Example 2.4. Consider the following TDT:

Y I Y I N

Then the ON-set of oi is ciC2 -f ci. The OFF-set of oi is C\C2- The ON-set of 02 is The OFF-set

of 02 is C1C2. The DC-sets of both operations we empty sets. •

Example 2.5. Now given the assertion, /(ci,C2) = Ci, the third column does not satisfy this assertion.
Then it can be considered a Don't Care column indicating all action sets as Don't Cares.

In this case, the ON-set of 0\ is C1C2. The OFF-set of oi is Ci^. The ON-set of oj is C\^. The OFF-set of

02 is C1C2. The DC-sets of both operations are We also say that oj and 02 take Don't Care values when

Ci is false. •

2.3 A Two-level Representation of TDT

The logical relationships expressed in limited entry TDTs can be expressed algebraically using
Boolean variables. Before we present the two-level logic expression for TDTs, we introduce some

definitions.

Definition 2.6 (Action Enabling Vector^; An action enabling vector is a vector where each
element indicates the condition under which the corresponding operation is enabled for execution.
The action part of each column in a TDT corresponds to an action enabling vector each element of
which is either '0', '1', or a Don't Care value indicated by a

Definition 2.7 (X)R Operation between Two Action Enabling Vectors/* Given two action
enabling vectors Ai —(aci,i, aei,2, ••*061,n)> A2 = (062,1,062,2, ••*062,n), where n is the number
of operations in action enabling vectors, we have Ai -f ^42 = (oci,i + 062,1, aci,2 + O62 2,***061 „ -|-

oe2,n) where '=' indicates "is defined as", and we use a '-h' to denote both the logic OR operation
and the OR operation defined here.

Definition 2.8 fA^^ Operation between a Boolean Variable and an Action Enabling
Vector/* Given a condition variable c and an action enabling vector A = (061,062,* •*oe„), where
n is the number of operations in A, then c - A = (c •061, c •062, ••-c • 06n) where = indicate "is
defined as", and we use a '-'to denote both the logic AND operation and the AND operation defined
here.

Note that the OR operation as defined above is associative and commutative and that the AND

operation as defined above is commutative. These properties of the newly defined operations can
be easily proved by following basic definitions.

Now we present the two-level algebraic representation for the TDTs. As mentioned earlier, a
TDT can be viewed as a collection of rules, each of which is determined by a conjunction of several
conditions. The conjunction of conditions can be expressed as follows

^3 = h,r^2,3---bnc,3 (1)
nc

~ n (2)

ICj, when ce,j=V
Ci,when c€ij = N (3)

1, when ceij = X

where represents the Boolean AND operation, nc is the number of conditions or number of

rows in the decision section, ci through Cnc are condition literals in the condition stub, ccij is the
condition entry value at row i and column j which is either a true (V) or false {N) value or a Don't

Care value (A"). With this representation of conjunction of conditions, each rule, or each column

in a TDT, can be represented by

rj = Sj-Aj (4)

where '•' is the AND operation defined in Definition 2.8, (Ay), = acij and acjj is the action entry
value at row i and column j. Finally, the TDT can be written as

nc

TDT = (5)
j=i

nc

= (6)

= Si •Ai + 32 •A2" 'Snr ' Anr (7)

= 61,1 • '̂2,1 •••^nc,l •Ai + 6i,2 •62,2 •••bnc,2 "A2 H h^nr ' ^2,nr *' *̂ 'nc.nr ' Anr (8)

where indicates the OR operation defined in Definition 2.7, nr is the number of rules or number

of columns in the TDT.

Cxample 2.6. Consider the TDT in Exzunple 2.1. It can be put into an algebraic form as

4

TDTex2.1 = ~ CiC2(I,0,0) + CiC2(0, 1,0) + Ci(0,0, 1)
J=1

Note that for brevity, we have omitted the '-'s in the above expression. Assumingci = 0, TDTbx2.i evaluates

to (0,0,1). This indicates that only 03 will be selected for execution whenever ci is false. •

2.4 Modeling Exceptions in TDT

Behavioral descriptions in HDLs use control-flow constructs such as conditional branches and loops,
which are also commonly used in programming languages. In addition to the normal control

flow constructs such as if statement or while loop, some HDLs also support mechanisms for
exception handling. There are two kinds of exceptions: (I) immediate transfer of control such as

a goto statement inside a loop that transfer control out of this loop on exceptional conditions,

(II) interruption, in which the interrupted control flow is resumed after exception processing is
completed. The exception handling is frequently used for concurrent system simulation, although

its use in synthesis has been very limited. Using TDT, it is possible to model control transfers

described above as limited exceptions that can be used in later synthesis tasks.

As an example of exception modeling mechanism, consider the Verilog disable statement.

Verilog disable statements are defined on named blocks [19]. A Verilog block is defined by a pair
of begin and end and groups together one or more behavioral statements. Verilog blocks can be

assigned names. A Verilog block with a name is called a named block. A disable statement is

defined within a named block. Semantically, a disable statement on a named block is equivalent

to a goto to the end of this block. The disable statements are used to break out of a loop or
nested branches or to continue executing with the next iteration of the loop. A disable statement

in multiple processes is used to model interruption. In this paper, we focus on modeling control
exceptions within a single process. We give one example in below. Since each column in a TDT

represents a control path and all action sets are presented, modeling a control jump in a TDT
simply requires a correct selection of action sets in each path.

Example 2.7. Consider the Verilog description in Example 2.7showing a neimed block and a disable
statement.

begin: blockA
if (A)

begin
if(B)

begin
ABC;
disable blockA;

end

XYZ;

end

Here the outermost block is named blockA. The statement "disable blockA;" breaks out of the nested
branches. It can be modeled using a TDT with action stub and action entries in limited-entry form as below:

A II Y I V I N I
B N Y X

ABO II 0 I 1 I 0
XYZ 1 0 0

~TUn II 1 I d I 1
The conditions 'A' and 'B' are taken from the condition expressionsin the original Verilog description. There

are three action sets 'ABC, 'XYZ', and 'FGH'. •

3 Behavior-Preserving Transformation on TDTs

In this section, we introduce a set of behavior preserving TDT transformations. By "behavior pre

serving" we mean that, given any input sequence, the TDT models before and after transformations

produce identical output sequences. Since behavioral TDT models are un-scheduled, the exact cy

cle time of the output sequence depends on the scheduling decisions made by schedulers. Based

on these behavior-preserving transformations, we have constructed several optimization schemes

targeting at minimizing the size of TDTs and removing specification redundancies in TDT models,

which will eventually lead to size reduction in the final synthesized circuits.

3.1 Transformation on a Single TDT

Now we list a set of behavior preserving transformations on a single TDT. These transformations

can be classified in three categories: (I) column operations, (II) row operations in the condition

part, and (III) row operations in the action part.

3.1.1 Column Operations

Column operations are performed on columns, or rules, of a TDT. Three column operations may be
applied: column merging^ column elimination, and action entry modification. The three operations

refer to merging two columns in a TDT, removing a column from a TDT, and changing action

entries in a column of a TDT respectively. These operations may be applied to a TDT without

changing the specified behavior under certain conditions. In below, we list the conditions under

which each operation can be safely applied.

(a) column merging: Two columns are merged under two conditions: (I) the condition entries of
the two columns differ in only one row, and (II) the action entries of the two columns are

identical.

(b) column elimination: A Don't Care column may be eliminated.

(c) action entry modification: A Don't Care column will never be selected for execution. It

is, therefore, safe to modify the action entries of a Don't Care column without changing
the behavior. This transformation is typically performed to make other transformations

applicable.

3.1.2 Row Operations in the Condition Part

Each row in the condition part of a TDT, including the condition and its corresponding row of
condition entries, is referred to as a condition row. Row operations in condition part apply to
condition rows. The following operations may be applied: row elimination, row insertion, row
negation, row encoding, and row swapping. In the following, we list each operation along with the
condition under which the operation may be safely applied without changing the behavior of a
TDT.

(a) row elimination: A condition row may be eliminated if each condition entry assumes a Don't
Care value.

(b) row insertion: A condition row with all Don't Care values in its condition entries may be
added without changing the behavior of a TDT.

(c) row negation: A condition may be negated if its entry values are merged accordingly at the
same time.

(d) row splitting: A condition in the form of a logic expression may be split into two rows that
preserves the logical relationship between conditions and actions. The procedure of this

splitting is outlined in Algorithm 3.1 below.

Algorithm 3.1 Algorithm for Row Splitting.

rowSpIit(td/, cond)

1. Factor cond = <exprl> <op> <expr2>;

2. Replace cond row with two rows corresponding to <expl> and <exp2>;

3. foreach condition entry in row cond do

4. Replace this condition entry with all possible value combinations of <expl> and <exp2>
s.t. <exprl> <op> <expr2> gives the value of this condition entry;

5. Duplicate condition entries and action entries in other rows accordingly

if more than one columns result in Step 4;

6. end foreach.

Notice that we have dropped details of the data structure to focus on giving a big picture to
the readers. In an actual implementation, Step 4 is realized via checking the truth table of
operator op. The running time does however depends on the data structure. Here we give an
estimation based on our implementation. Step 1 takes constant time. Step 2 also takes con
stant time if the conditions are implemented as a double linked list as in our implementation.
In the worst case, all condition entries and action entries need to be duplicated. This could
cost 0(R(A -\- C)) in Step 3-6, where R is the number of columns, or rules, in tdt^ A is the
number of action sets, and C is the number of conditions.

(e) row encoding: Conditions can be encoded to reduce the number ofrows in the condition part,
and hence the amount of condition checking in behavioral descriptions. For a TDT with Nc
columns, a minimum of \l0g2Nc] conditions are needed. Kmore than \log2Nc'\ conditions are

used, the conditions can be replaced by a new set of Boolean variables where the new set of

variables are functions of original variables.

(f) row swapping: Two condition rows can always be safely swapped.

3.1.3 Row Operations in the Action Part

Each row in the action part of a TDT, including the action set in the action stub, and its corre

sponding row of action entries, is referred to as an action row. Row operations in the action part

apply to action rows. Three operations may be applied: row elimination^ row merging, and row

swapping. We give in below an explanation of each operation along with the condition under which

each of the operations may be safely applied.

(a) row merging: Merge rows in the action part with identical action sets. If we find two identical

action sets in the action stub, we merge the two corresponding rows in two steps: (I) merge

action entries into one row, each column of which should be marked as selected (T') in the row

if the same column of any original row is marked as selected, (II) modify the data dependence

relations so that the shared copy will inherit all the original relations specified on the action

stub. Note that action row merging is valid only if every copy of the identical action set has

the same concurrency types relations in relation to other action sets.

(b) row elimination: An action row which does not apply to any rules may be safely eliminated.

(c) row swapping: Two action rows may be swapped if a concurrency type of data-parallel is

specified and there is no data dependency specified between the two action sets. Two action

rows may also be swapped if a concurrency type of parallel is specified.

3.2 TDT Merging

Transformation can also be performed on more than one TDTs or on a TDT with preceding/following
action set via TDT merging. Merging is used to create a more concise TDT representation. In

addition, it also increases the scope for TDT optimizations which are based on transformations on

single TDTs. Leaf TDTs are merged by recursively identifying and applying one of the following

merging cases. Three basic cases are possible: (I) merging TDTs in a sequence, (II) merging TDTs

in a hierarchy, and (III) merging a TDT with a following or preceding action set. In this paper, we
focus our discussion on merging that involves only procedure TDTs.

3.2.1 Merging TDTs in a Sequence

Two procedure TDTs in a sequence can be merged if (I) they appear in an enclosing action set
of concurrency type data-parallel, and (II) they share no columns except Don't Care columns or

columns that contain no action sets. Merging two TDTs as described here result in a TDT which

contains the union of the columns in the two original TDTs if the two condition stubs are identical.

If the condition stubs in the two TDTs are different, transformationsare needed to first change the
condition stubs into an identical form. Four transformations on the condition rows are typically
applied for this purpose: row insertion, row splitting, row negation, and row swapping. We give
one example in the following.

Example 3.1. Consider a TDT sequence {TDT2\TDTz) where

TDT2 =

+4 1 +5

TDTz =
!T1 && X

Before merging, we perform row splitting to convert TDTz to TDT^ and then row negating to convertTDT^
to TDT^ as shown in below.

TDT^ = X I Y I N I X TDT^ = I X I Y I NTX

TDT2 and TDT^ can then be merged into TDTm where

TDTm = I X I X I N 1^
I A I +4 I +5 I +6

3.2.2 Merging TDTs in a Hiersurchy

Procedure TDTs in a hierarchy result from nested branches in behavioral HDL descriptions. In
below, we present an algorithm for merging two procedure TDTs in a hierarchy. We refer to the
outermost TDT as calling TDT and the inner TDT in the hierarchy as the called TDT. The called

TDT is an action of an action set in a rule of the calling TDT.

Algorithm 3.2 Algorithm for Merging Two Procedure TDTs

merge(tdil, idi2, i, j)
1. /♦ preconditions:
2. * tdt2 is listed as the ith action set of tdtl
3. * tdtl calls tdt2 in its jth rule
4. »/
5. Duplicate the ith action row into A{tdt2) rows;
6. Duplicate the jth column into R{idi2) columns;
7. Append condition rows of tdt2 to the condition part of tdtl-,
8. Copy condition entries of tdt2 over starting at position {C{tdt2), j);
9. Copy action entries of tdt2 over starting at position (t, j)]
10. foreach condl in tdtl and cond2 in tdt2 do

if cond2 = \condl then
Negate the condition row of cond2;

if cond2 = condl then
Remove the column where condition entries of condl an cond2 do not agree;
Replace condition rows condl and cond2 with their intersection;

16. end foreacb.

Algorithm 3.2 presents a procedure which keeps modifying tdtl to obtain the resulting procedure
TDT. Line 1-4 state the preconditions of this algorithm, or conditions that must hold before

this merge procedure is called. The functions C(tdt), A(tdt), and R(tdt) return the number of
conditions, the number of action sets, and the number of rules in tdt respectively. Line 8 copies
the condition entries of tdt2 over {CE{l^m)\C{tdtl) < I < C{tdtl) -\- C{tdt2) - l,j < m < j +
R{tdt2) —1}, where CE{l,m) is the condition entry at the lib. row and the mth column. Line 9

copies action entries of tdt2 over {AE{1, m)\i < / < t + A(tdt2) - 1,j <m<j-\- R(tdt2) - 1}. Line
10-15 handles the case when the two TDTs contain an identical condition or a pair of conditions

in the two TDTs are negation of each other. The intersection of two condition rules is obtained

by treating each condition row as a cub set. For example, the intersection of row {Cl, Y, X} and
{Cl, X, N} is a new row {Cl, Y, N}.

In the worst case, the running time of this algorithm is 0(C\C2(R\ + R2) + Ai + A2), where
C, R, and A stands for the number of conditions, the number of rules, and the number of action

sets respectively.

3.2,3 Merging a TDT and an Action Set

A TDT and an action set can usually be merged unless the action set modifies a variable that is

used to compute a condition in the TDT. There are two cases: (I) when the action set appears
before the TDT, the two can always be merged; (11) when the action set appears after the TDT,
merging is valid only if there is no def-use path which starts from within one action set ends in one

condition in the TDT. A def-use path is a sequence of operations where each operation defines a

data item used in the computation of the next one.

After merging a TDT with its following or preceding action set, the condition stub and the

condition entries in the resulting TDT remains the same. The action set needs to be inserted

appropriately in each column of the resulting table. We give one example in below.

Example 3.2. We assume 03 follows TDTI in an action set of concurrency type serial. We can then
merge as and TDTI to produce a new table TDT2 with the same functionality and timingsemantics.

TDTI: I Qi II 1
di 0

TDT2: -^1 L
Q2 0
a.-i 1

To preserve the behavior, we specify a concurrency type ofserial between (ai, 03) and (02, 03) in the action

stub of TDT2. The serialization order follows the order in which these actions appear in the action stub. •

4 TDT-Based Presynthesis Techniques

Presynthesis works on behavioral descriptions. It removes control redundancies using assertions and

extracts information useful in obtaining optimal synthesis result. The process of removing control
redundancies and producing optimized behavioral descriptions is also referred to as presynthesis

optimization.

Presynthesis optimization is implemented by first translating the input HDL description into

the TDT representation, then performing TDT optimization techniques, and finally translating the

optimized TDT model back into the HDL description. The TDT optimization techniques are based

on the TDT transformations introduced in the previous section. Three optimization techniques are

carried out: (I) column reduction, (II) row reduction, and (III) action sharing.

TDT transformations can also be used to extract additional information that is useful in syn

thesis to obtain optimal final results. As an example, we will show how m.e. operator pairs can

be identified in TDT models and how this information can be used to obtain optimal scheduling

solutions.

input HDL
user specification

merged TDT Assertions

coiumn reduction
merger

merged TDT Assertions
TDT(l)

optimizer
row reduction

optimized TDT
TDT(2)

code generator m.e. analyzer
action sharing

optimized HDLI info, on m.e. paii
optimized TDT

Figure 2: Flow diagram for presynthesis: (a) the whole picture, (b) details of the optimizer.

Figure 2 illustrates the presynthesis process. Note that the m.e. analysis is performed on the op

timized TDT representation. The TDT merging transformations presented in the previous section

are used in the merger. In this section, we focus on the details of the presynthesis optimizer and

the m.e. analyzer. We introduce column reduction, row reduction, action sharing, and m.e. analysis

respectively in each subsection. Both the optimizer and the m.e. analyzer are based on the basic

TDT transformations presented in the previous section.

4.1 Column Reduction

By reducing the number of rowsand the number of columns, the TDT transformations presented in
the previous section can be usedfor controloriented optimization of system behavior. Forexample,
consider the sequence of transformations performed on a TDT shown in below.

Example 4.1. Given assertion: C1 A^2 = 0, consider the following transformations on TDT(a).

I C1 II Y I N I N I ! Cl II Y I N II K II ! Cl II Y I N 11 N II

al I a2 I a3

X I X

al I a2

al I a2 al I a2 II a2

Column 3 in TDT (a) is identified as a Don't Care column and marked explicitly in (b). Since action entry
in the Don't Care column can assume any value, we change action entry in TDT (b) to 'a2' to produce TDT

(c). Because column 2 and 3 in TDT (c) differ only in one condition entry, they are merged to produce TDT
(d). TDT (e) isobtained by dropping the Don't Care column in TDT (d). Finally, since row 2 inTDT (e)
contains only Don't Care values, we can drop this row and obtain TDT (f). •

As shown above, a sequence of behavior-preserving transformations can be applied to reduce the
number of columns in a TDT. This process is very similar to that of two-level logic optimization.
Equation 8 in Section 2 shows that a TDT can be expressed in a sum-of-product (SOP) form,
where each term in the sum consists of several products of condition literals or negative condition
literals. Recall that assertions are Boolean functions over conditions that are always true. Then
minimizing the number of columns in a TDT is equivalent to minimizing the number of product
terms (or the cardinality) of the SOP form of the TDT.

The Column Reduction Problem: Given a TDT in its algebraic form as in
Equation 8, and assertions specified in the form -4(Ci,(72,• ••,C„) = 1, minimize the
cardinality of Equation 8.

This problem can be solved using logic synthesis techniques. We can use a two-level logic
minimizer such as Espresso to minimize the number of columns in a TDT. This is accomplished
by mapping as follows:

condition literal

action enabling vector

assertion

input literal

output literals

Don't Care

Since assertion are specified in logic equations, minterms that satisfy the assertion equations need

to be generated to form the PLA format as input for ESPRESSO. We give one example in below

to show how the representation is changed and how Espresso is used to reduce the number of

columns in a TDT.

Example 4.2. Consider TDT (a) with assertion: C1 A^2 = 0.

.i 2

. .ilb C1 C2
I C1 II Y I N I N I .0 3

C2 II XI VI NI .olb al a2 a3
al II 1 I 0 I 0 I .p 3

"i2~ "T) I JT 1- 100
a3 0 0 1 01 QIC

^ 00 001
a3 II 0 I 0 I 1

.i 2

.ilb C1 C2

.0 3

.olb al a2 a3

•P 3
1- 100

01 010

00

a2 II 0 I 1

.i 2

.lib C1 C2

.0 3

.olb al a2 a3

•P 2
0- 010

1- 100

al II 1 I 0
a2 0 1

Column 3 in TDT (a) violates the specified assertion and therefore can be identified as a Don't Care column.

Since a Don't Care column will never be selected for execution, we can change each action entry in TDT

(a) into a Don't Care to form TDT (b). We do a representation transformation to change TDT(b) into

PLA form in (c). ESPRESSO works on the PLA form in (c) and produces an optimized PLA representation

in (d). We transform the PLA form in (d) back into TDT (e). Finally, we perform row reduction to remove

the condition row with all Don't Cares and the action row with all 'O's in (e) to produce TDT (f). •

4.2 Row Reduction

Row reduction reduces the number of condition literals, or condition rows, in a TDT. The number

ofrows canbe reduced by performing two ofthe behavior preserving TDTtransformations: (I) row
elimination, which eliminates condition rows with all Don't Cares,or (II) row encoding, which finds
a form ofencoding ofcondition rows to reduce the number of conditions. Row reduction is typically
carried out after column reduction for two reasons. First, additional condition-entry Don't Cares
are produced after column reduction is carried out. Second, row encoding has to be performed
after column reduction since the result of row encoding depends on the number of columns and
values of condition entries which are changed after column reduction.

4.3 Action Sharing

Action sharing refers to the identification of duplicate actions. Action sharing is performed in two
major steps: (I) searching for identical action sets, (II) merging corresponding action rows when it's
valid. Merging is valid only if the concurrency types among action sets and specified serialization
relations can be preserved. For example, suppose we have two identical action sets, one produces
data for action set asj, one for 0S2, then both osi and as2 need to depend on the shared action set
in order for this sharing to be valid.

The optimization process ofaction sharing isoutlined in Algorithm 4.1. Before merging identical
action sets in Step 3, we check to see if the merging violates any originally specified concurrency
relations or serializations in Step 2. Step 3 also modifies the serialization relations so that each

shared copy will basically inherit all the data dependencies of the original action sets.

Algorithm 4.1 Sharing Identical Action Sets

shareAciionSets(idt)
1. Search for identical action sets in the action sub of tdt]
2. Decide if it is valid to merge these action sets into a shared copy by checking into the concurrency

types among action sets and serialization relations;
3. If Step 2 returns invalid go to Step 4, otherwise merge the corresponding eiction rows and modify

the serializations when necessary;
4. Repeat Step 1-3 until no more action sets can be shared.

Notice that many details have been left out so we can focus on giving a big picture. The search
process can be implemented as a repeat loop which will be executed O(A^) times, where A is the
number of action sets. In the worst case, all serialization relations and concurrency types wiU be
checked, which costs 0{A^) in running time. Each merging takes 0(R) in time, where R is the
number of rules in tdt. In the worst case, merging takes 0{AR) when all action sets are identical.
However, this is unlikely to happen. In conclusion, the worst case running time of this algorithm
is 0{A^ + AR), while the typical running time should be 0(A^ + iZ).

Example 4.3. Consider the description fragment shown in (a). It isfirst translated into a TDT model in

(b). Following Algorithm 4.1, we search for identical action sets in TDT (b) and merge them to form TDT
(c). Then, we generate the optimized code in (d) from TDT (c).

if(sjmcjBode) {
if(msgvait(ichannel))

xdata = receive(c); /*!»/
else

anotber^ctiozi_8et;

}
else

xdata - receive(c); /*Z*/

(a)

sync-mode
msgwait

xdata = receive(c]
another.act ion.set 0 10

sync.mode Y Y N
msgwait ~Y N X"

xdata = receive(c) /*\^ ~I D D"
another.act ion..set ~0 1 O"

xdata = receive(c) /»3»/ D D T

if(!syncjDOde I msgvait(c))
xdata = receive(c):

else

another^ction.8et;

(d)

Here we have merged the two copies of the "receive(c)" operation. •

4.4 Identifying Mutually Exclusive Operations for Behavioral Synthesis

Information on mutually exclusive (m.e.) operator pairs can be used to improve solution in the
scheduling and binding phase of high-level synthesis. Scheduling determines the start time of each
operation while binding maps operations to hardware components. Binding and scheduling are
interrelated problems. Decisions made in binding will affect the result ofscheduling and vice versa.
The quality ofbinding and scheduling can be determined by the resource usage and the total delay.
The two goals ofreducing total delay and reducing resource usage are often conflicting. Total delay
can be be reduced by maximizing operations in each control step. This however often increases
the number of required resources. On the other hand, resource sharing often results in additional
serialization and hence a longer delay. However, operations can share resource without increasing
the total delay only if they are "mutually exclusive".

Mutually exclusive operations in a behavioral description are operations that will never be
executed in the same control step in any execution of the system behavior. In addition, as shown
in one example in this paper, the execution of an operation may imply that the execution of
another operation is a behavioral Don't Care [20]. These implications provide a rich source of
mutually exclusive operations that can be exploited to improve the quality of high-level synthesis.
Accordingly, we also consider operations as mutually exclusive if they never need to be executed
together.

4.4.1 Classification of m.e. Operator Pairs in Behavioral Models

In a non-pipelined execution, two operations with a data dependency can not be scheduled in
the same control step, and therefore are not mutually exclusive. Two operations with no data

dependency are mutually exclusive if they belong to mutually exclusive control paths such as

conditional branches, or if the result of one operation is a Don't Care when the other operation is

executed. According to the way how mutually exclusive (m.e.) operations are identified, we can

divide them into three categories,

(i) structuraly

(ii) behavioral, and

(iii) data-flow.

A pair of operations is considered as a structural m.e. pair if the two operations can be identified

entirely based on the language structures in the input HDL description. A behavioral m.e. pair refers

to two operations conditionally enabled under mutually exclusiveconditions (that is, conditions that

never evaluate to true simultaneously). A data-flow pair of m. e. operations refers to two operations

that are never required to be executed in any execution of the system behavior based on the data

values. Identification of data-flow m.e. pairs relies on the data-flow analysis and the knowledge of
other m.e. pairs.

Example 4.4. Consider the following HDL description in HardwareC. It is modified from the example
in [151.

process exampleCa, b, c, d, e, i, g, x, y, u, v)
in port a[8], bC8], cfS], d[8] , e[83, fC8], gCS];
in port X, y;
out port u[8], V[83;

static Tl;
static T2[83;
static T3[83;
static T4[83;
static T5[83;

if(y) i
il(Tl)

u - T3 + d

else il(!x)
u = T2 + d

if(!T1 X)
2 = T2 + e

>
else f

T4 = T3 + e;

T5 = T4 + t-,
u = T5 + g;

>

Operator pairs {+4. +5}, {+4. +7}. {+4, +8}. {+4, +9}. {+5. +7}, {+5, +8}, {+5. +9}, {+6. +7}, {+6,
+8}, and {+6, +9} are structural m.e. pairs. Operator pairs {+4, +6} and {+5, +6} are behavioral. Operator
pairs {+1, +7}, {+1, +8}, {+1, +9}, {+2, +3}. {+2, +4}, {+2, +7}, {+2) +8}, and -{+2) +9} are data-flow
m.e. pairs. •

4.4.2 TDT-Based Approach for Identifying M.E. Operator Pairs

Algorithm 4.2 Identify M.E. Operator Pairs Using TDT

meFind(inputHDL)
1. Convert inputHDL descriptions into connected leaf TDTs;
2. Merge the leaf TDTs;
3. Perform TDT-based optimization to produce optimizedJ.di\
4. Mark any two operators in two different columns of a TDT as a m.e. pair;
5. Gail dataflowjmeFind{optimizedJ.dt) to identify the remaining m.e. operator pairs.

Step 1-3 are performed for tasks other than identifying m.e. operator pairs. M.E. pairs identified
in Step 4 areeither structural m.e. pairs orbehavioral pairs. Instep 1,any one m.e. pair ofoperators
will end up in one leaf TDT. It can be checked that merging transformationsas described in Section
4 will keep two operators in a leaf TDT in separate columns of one TDT until they are marked
as m.e. in Step 4. Merging and optimization process check condition dependencies. Operators
enabled under mutually exclusive conditions will eventually be placed in different columns of a
TDT. Therefore behavioral m.e. pairs will also be marked in Step 4. Data-flow m.e. pairs are
identified in Step 5 with the help of a TDT-based def-use analysis. We leave the detailed discussion
on data-flow pairs to the next sub-section.

Notice that Step 1-3 won't need to be performed once we have optimized TDT representation,
which is also used in other presynthesis tasks. Step 4 takes O(n^) in time, where n is the total
number of operators. Running time of Step 5 will be shown later with Algorithm 4.3.

4.4.3 Identifying Data-flow M.E. Operators in TDT Models

Data-flow m.e. pairs are identified with the help ofdef-use analysis. We perform a def-use analysis
on the merged TDT representation. We give our definition of the use set of an operator in below.

Definition 4.1 The use set of an operator o is the set of operators that consumes the data com
puted by o.

Use sets of all operators in a behavioral description can be computed using standard data-flow
techniques as discussed in [1]. We list the operator use sets of the description example in Table 2.
An 'OCfT' indicates that the result of the operator is written to an output port or sent to another
process via a messaging channel.

Table 2: Use sets of operators in the example in Figure 1.

operator operator use set operator operator use set

+1 { +4, +6, 4-e} +6 { OUT]

+2 { +5, +0} + 7 { +8 }

+3 { +4, +7} +8 { +9 }

+4 { OUT } +9 { OUT]

+5 { OUT }

Given the use sets of operators and information on whether or not some of the operator pairs

are mutually exclusive, additional information on m.e. pairs can be obtained following Theorem 4.1

as shown in below. M.E. pairs thus detected are said to be data-flow m.e. pairs.

Theorem 4.1 Given two operators oi and 02 and their use sets US£(oi) and [/SB(o2),

(a) oi and 02 are mutually exclusive if^Q € f/5£(oi),V/? € USE(o2), a and (3 are mutually
exclusive;

(b) oi and 02 are mutually exclusive ifict € USE[o\), a and 02 are mutually exclusive;

(c) 0\ and 02 are not mutually exclusive i/3a 6 USE{oi)3j3 € USE(o2) such that a and are

not mutually exclusive;

(d) oi and 02 are not mutually exclusive if 3a 6 USE{oi) such that a and 02 are not mutually
exclusive.

Proof: First we define usage condition operator o as the condition under which the result of o is ever used.

We denote usage condition of o as ucond{o). Then we observe that

(i) ucond{o) — (J ucond(o)
a^USE{o)

(ii) Two operators 0' and 0" are mutually exclusive if and only if ucond{o') D ucond{o") —4>.

We start with proving (b). Suppose Vo € U5E(oi),a and 02 are mutuzilly exclusive. Then we have

Va 6 USE{o\),ucond{Q)C\ucond{o2) = <j>. Then IJ ticond(a) fl ticond(o2) = <t>. Since ucond{oi) =
aeUSE{oi)

IJ ucond(Qr), ucond{oi) Ducond(o2) = and therefore oi and 02 are mutually exclusive.
a€y5£:(oi)

We use (b) to prove (a). Suppose Va € USE{oi),'i0 G USE{o2), a and are mutually exclusive. Pick

arbitrarily a £ US£'(oi). Then a are 02 are mutually exclusive according to (b). Since a is picked arbitreirily,

oi and 02 are now mutually exclusive.

It is straight forward to prove (c) and (d) by following basic definitions. •

After TDT merging, any pair of operators that appear in different columns of a TDT are
determined as a m.e. pair. We canalso determine that anypairofoperators with a data-dependency
between them is not a m.e. operator pair. With this information as a starting point, we can apply
Theorem 4.1(b) recursively to determine all data-flow m.e. pairs. The order to apply Theorem 4.1
is presented in the Algorithm 4.3. Notice that we start with a TDT not only properly merged, but
also optimized.

Algorithm 4.3 Algorithm to Identify Data-flow m.e. Operator Pairs

dataflowjmeFind(opiimizedjdi)
1. Create a def-use graph G = {V,E} where

V = {o\ois an operator}U{OC^T},
E = { (01,02) |o2 € 17S£'(oi)};

2. Visited ^ {OUT}\
3. foreach edge e = (oi, 02) do
4. me(oi,02) ^'N';
5. foreach pair (01,02) do
6. if oi and 02 are in different columns of a TDT then
7. me(oi,02) ^'Y';
8. repeat
9. Pick o G (V - Visited) where all operator in USEio) have been visited:
10. foreach 0 G Visited do
11. Determine the valueof me(o,/?) following Theorem 4.1(b);
12. Visited ^ Visited U {0};
13. until (all nodes in V have been visited).

The complexity of this algorithm is O(n^), where n is the number of operators. The creation
of def-use graph takes 0{-n?). The first loop takes 0{E) where E is the number of edges in the
def-use graph. The second loop takes O(n^). The repeat loop will be repeated n times. The first
operation in this loop needs to be expanded before actual implementation, since we are showing
only an outline. If we manage a list ofunvisited nodes and for each un-visited node we also manage
a list of use nodes, the total time spent on the first operation in n iterations will be O(n^). In
each iteration of the repeat loop, the inner loop takes 0(71^) since it takes Oi\USE(o)\) to check
Theorem 4.1 (b).

In this section, we have looked into presynthesis techniques. We have followed Figure 2 to
present the key algorithms used in the TDT-based presynthesis system, namely the algorithms for
column reduction, row reduction, action sharing, and m.e. analyzer.

In the next section, we introduce PUMPKIN, our software implementation of the TDT-based
presynthesis system which takes HardwareC descriptions as input and outputs optimized Hard-
wareC code and information on m.e. operator pairs. Since the code generator as shown in Figure 2
is more implementation dependent, we also leave the discussion of the code generator to the next

section, where we will show our HardwareC code generation algorithm along with other details of
PUMPKIN.

5 PUMPKIN Presynthesis System

The presynthesis system shown in Figure 2 has been implemented in about 20,000lines of C++ code

named PUMPKIN. The PUMPKIN presynthesizer features a UNIX shell-like command interfeice

that is provided to allow interactive use by the system designer. The system designer reads in a
given HardwareC description and applies External Don't Care(EDC) conditions as additional input
for the optimizer. A list of EDC conditions is maintained that can be updated as the modeling
and synthesis of other blocks with which the system interacts proceeds. The command interface
to PUMPKIN is shown in Table 3. A typical command sequence in optimization include readhc,

mergedt, edcj.nput, opdt, and dt2hc.

Table 3: Commands in PUMPKIN.

readhc Read in a HardwareC description, and convert it into connected leaf TDTs

mergedt Merge leaf TDTs obtained from readhc

edc_input Invoke the edc sub system to specify external Don't Cares.

pedc Print all the currently specified external Don't Cares.
reset-edc Reset the list of current Don't Care conditions to NULL.

opdt Perform various optimization techniques as described in Section 3.
dt2hc Generate HardwareC code from (optimized) TDT model,

pno Detect and print m.e. operator pairs in the (optimized) TDT.
preloaddt Load TDT directly,

pdt Print TDT models.

The structure of PUMPKIN foUows the flow diagram in Figure 2. We have presented basic
algorithms for the merger in Section 3. We have given details on the optimizer and m.e. analyzer
in Section 4. In the rest of this section, we show how HardwareC code is generated in PUMPKIN
and how PUMPKIN handles input HDL code with exceptions.

5.1 Generating HDL Descriptions from TDT

To use the existing tools, we translate TDT models back into HDL behavioral descriptions. Algo
rithm 5.1 shows how PUMPKIN generates HardwareC code from optimized TDT models. Note
that when one action set is selected for execution in all paths in a sub-tdt, only one copy of the
code corresponding to this action set is generated. However, if control jump structures are not
allowed in a HDL, it is not always possible to rewrite a description without duplicating identical

code segments. In cases when several but not all columns shared an action set in a TDT, often we

have to duplicate the shared action sets during code generation.

Algorithm 5.1 Generating HardwareC Code from TDTs Actions in Limited>entry Form

gencodeFromTDT(idt)
Tl. if ^here is an action row with all 'I'sl then
T2. !^lit tdt into tdt\, actionSetm, ana tdt2',
T3. Ca\\ gencodeFromTDT{idti)\
T4. Call g€ncodeFromActionSet{actionSetm);
T5. Call gencodeFromTDT(td<2);
T6. elseif (there is still a shared action row) then
T7. Separate the shared part from tdt;
T8. CjuI gencodeFromActionSetQ on the separated action sets;
T9. Call gencodeFromTDTO on the reset of tdt',
TIO. Put two pieces of HardwareC code generated above according to

the way the action set is separated from tdt;
Til. elseif {tdt is a unit TDT with one condition) then
T12. Emit "if (condition oitdi)
T13. Call gencodeFromActionSet{yes-&ction-8et of tdt)\
T14. Emit "else";
T15. Call gencod€FromActionSei{no-a.ction-set of tdt)\
T16. else
T17. Pick in the condition entries a row with no Don't Cares;
T18. /* Create teo tables tdtA and tdts as follovs */
T19. Copy all columns in tdt with 'Y' in row i to tdta',
T20. Copy all columns in tdt with 'N' in row i to tdtg',
T2I. Delete row i from tdtA and tdts',
T22. /* Generate HardvareC code as follows */
T23. Emit "if (CO";
T24. Call g€ncodeFromTDT{tdtA)',
T25. Emit "else";
T26. Call gencodeFromTDTUdtB)]
T27. endif.

gencodeFromActtonSet{actionSet)
51. foreach action in actionSet do
52. Emit proper delimiter according to the concurrency type;
53. Call gencodeFromAction(actioii);
54. Emit proper delimiter according to the concurrency type;
55. end foreach,

g€ncodeFromAction{action)
Al. switch {action —»type)
A2. case TDT: call gencodeFromTDT{action —* tdt)\
A3. case ActionSet: call gencodeFromActionSet{action —*• subActionSet):
A4. case ALU: ...
A5. case 10: ...
A6. case MessagePassing: ...
A7. endswitch.

One approach to avoid duplicating shared action sets, as shown in the second branch in

gencodeFromTDT^ is to separate the shared action sets from the TDT while generating Hard

wareC code from TDT. This separation is not always possible. It is only valid in the following

(a) A concurrency type of data-parallel is specified on the action stub and the shared action

appears as the first action set.

(b) A concurrency type of data-parallel is specified on the action stub and the shared action

appears as the last action set.

(c) Cases that can be transformed into the above cases via behavior preserving transformations.

For example, the order of two action set can be swapped in a TDT if a concurrency type of

data-parallel is specified and there is no data-dependency specified between the two action

Though this approach has avoided having multiple copies of identical action sets, it introduces

additional control circuits.

5.2 Presynthesis Optimization on Behavioral Descriptions with Exceptions

Translating HDL descriptions with disable statements involving modifying both the parser and

merger. Algorithm 5.2 shows the major changes. Since each column in a TDT represents a control

path and all action sets are presented, modeling a control jump in TDTs simply requires deletion
of action sets between the control jump and the jump target point in each path that contains the

control jump.

Algorithm 5.2 Translate HDL Description with Disable into TDT and Perform Merging Op
eration

1. /* consider step 2-4 as a modified parser ♦/

2. Process disable in the same way as all other ALU statements;
3. Add a special endblock statement for each named block
4. Call the original parser;
5. /♦ consider step 6-9 as the modified merger */
6. Call other merging algorithms;
7. foreach column with a pair of disable and endblock statements do
8. Mark all action sets in between as '0';
9. Remove all disable statements;
10. Remove all endblock statements.

We have shown in this section some details on PUMPKIN, a software tool that carries out

presynthesis on HardwareC descriptions. The tool is available at

http: //www. ics. uci. edu/~j iein/software-distribution.

We are under the process of adding a VHDL front end so that PUMPKIN will soon be able to

perform the same set of presynthesis tasks on VHDL descriptions.

6 Experimental Results

We have run PUMPKIN on named benchmarks to test our presynthesis algorithms. We first
present results on source-level optimizations, followed by results related to the extraction of m.e. in-

formation on operations.

6.1 Results on Presynthesis Optimizations

PUMPKIN performs optimization in the order of column reduction, row reduction, and action
sharing. To evaluate the elfect of each optimization scheme, we turn offother optimizations in the
experiments. Since row reduction is typically made possible after column reduction is performed,
we evaluate the combined effect of column and row reduction with one group of experiments.

For each group of experiments, our experimental methodology is as follows. The HDL de
scription is compiled into TDT models, run through certain optimizations, and finally output as a
HardwareC description. This output is provided to the Olympus High-level Synthesis System [7]
for hardware synthesis under minimum area objectives. We use Olympus synthesis results to com
pare the effect of optimizations on hardware size on HDL descriptions. Hardware synthesis was
performed for the target technology of LSI Logic lOK library of gates. Results are compared for
final circuits sizes, in terms of numbers of cells used.

6.1.1 Results on Column/Row Reduction

Results on column/row reduction are presented in Table 4. Description 'gcd' models a hardware
module that repeatedly samples the input on the rising edge of a control signal, then computes
the greatest common divisor of two input values using Euclid's algorithm. Description ^motorc-
ntrl' refers to a trolley controller that is used to transport assembly components on a shop-floor.
Description *ecc' decodes parity encoded data transmitted through a serial line and corrects trans
mission errors. Description 'parker86' is taken from [21]. Finally, 'traffic' refers to the HDL model
of a traffic light controller.

Table 4: Synthesis results: cell counts before and after column/row reduction.

design

gcd

motorcntrl

motorcntrl

parker86

traffic

circuit size

(in number of cells) Don't Care condition

before

optimization

after

optimization

condition

272 230 positive inputs

2952 366 no position variation

2952 2774 there is always variation

141 119 correct only single error

384 270 in2 -1- in3 = 0

35 34 no external dc specified

user input

to PUMPKIN

xi > 0 yi >0

iveer

iveer <>0;

rpCO]+rpCl]+rp[2]<=l;

cp [0] +cp [1] +cpC2] <=1;

in2 + in3 =

Two different external conditions are considered for the design 'motorcntrl'. The first one, no

position variation, is based on the assumption that the trolley is to be used in an application which

provides guiding trails. The second one, which is that there is always variation, assumes the same

environment and produces a slightly different model of the system which results in a final circuit

with the same functionality and less area. The error correction modeled in 'ecc' is considered for

use in which only single errors are corrected.

As shown in Table 4, use of external conditions can lead to reductions in the size of the hard

ware circuits. Thus HDLlevel presynthesis using PUMPKIN makes it possible to build a portable
library of HDL models that can be instantiated into specification application domains. It should

be noted, however, that the reduction in size ranging from 3-88% is neither typical nor represen
tative. The actual reduction depends strongly upon the external Don't Care information used in

presynthesis. This chief function of column/row reduction of the optimizer is to to enable the
system designers to specify additional information about system environment and use it for system
optimization. As a consequence, it makes the most general purpose modules easily reusable in a

similar but different environment.

6.1.2 Results on Action Sharing

Results on action sharing are presented in Table 5. Description 'comm/exec_unit' refers to the
execution unit in a ethernet controller. Description 'cruiser/State' models a hardware module for

speed regulation in a cruiser. Description 'i8251/xmit' is the transmit process in a HardwareC
version of the '18251' design. Description 'daio_receiver' is the receiver part of the Digital Audio
Output (DAIO) chip. Description 'frisc' refers to a simplified RISC processor. All the designs are
from the high-level synthesis benchmark suite [7].

Table 5: Synthesis results: cell counts before and after action sharing.

design circuit size (ceUs) A%

before after

comm/exec.unit 864 587 32

cruiser/State 356 270 24

i8251/xmit 971 921 5

daio_receiver 440 388 12

frisc 4353 3940 9

In Table 5, we compare the synthesized circuit sizes of each benchmark description before and
after action sharing is performed. The percentage of circuit size reduction is computed for each
description and listed in the last column of Table 5. Note that this improvement depends on the

amount of sharable code segments in the input behavioral descriptions.

The overall effect of presynthesis optimizations is to rewrite the description and remove re

dundancies in the input description either as a part of the original specification or as a result of

a.ssertions. This task is often done by the system designer in an attempt to arrive at an efficient

implementation. Performing this task by an automated tool such as PUMPKIN makes the results

of the synthesis process relatively insensitive to HDL coding-styles, and hence reduces the time

designers spend in behavioral specification.

6.2 Results on Identifying m.e. Operators

Our approach for identifying m.e. operator pairs has been implemented as a part of the PUMPKIN

presynthesis system. As shown in Figure 2, this part for extracting m.e. information, also referred

to as the m.e. analyzer, starts with the optimized TDT representation.

We first run PUMPKIN on the sample description in Example 4.4. For comparison, we also

manually run other approaches on the same example. In Table 6, we list all the m.e. operator pairs
and mark those identified by each approach in a correspondingcolumn. In the table, Kim's approach
refers to Kim and Liu's approach [16]. Approach 'SB' stands for the status bit approach [22].
Approach 'CV refers to condition vector approach [17]. The approach 'path-based' refers to an

approach based on path analysis [23]. Approach 'CG' stands for the usage condition approach using
condition graphs [15]. Finally, approach 'TDT' refers to our approach based on TDT modeling and
def-use analysis.

Note in particular that the result in the 'CO' column has been obtained by following the
algorithms presented in [15]. Though according to the authors of [15] the 'CO' approach can be
modified to identify all m.e. operator pairs [24], our chief contribution on m.e. detection lies in

that the TDT-based approach provided a combined framework for both presynthesis optimizations
and extracting m.e. information on the optimized behavior representations in addition to a clear

classification based on the source of each m.e. operator pair.

We have run the comparison experiment on more sample behavior descriptions and presented
the results in Table 7. The behavioral descriptions in Table 7 are either picked from previous
publications or from the high-level synthesis benchmark suite. Description 'kim' refers to the

example used in [16]. Description 'jian' is the example presented in Section 4. Description 'juan'
refers to the example used in [15]. Description 'parker' is a HardwareC example from the high-level
synthesis benchmark suite [7].

We discuss mutual exclusiveness in the context where operations can share resource in a certain

implementation. For example, it won't be useful to consider the the mutual exclusiveness of an

integer subtraction and a floating point subtraction. For this reason, we only consider certain

types of operators that can be implemented on the same type of function units when we count the

Table 6: A comparison of m.e. operator pairs identified by different approaches.

mutu&Uy

exclusive

operxtoTS

{+!.+?}
{+ 1 >+»)
{+ 1• +9}
{+ 2' +3}
{+2. +4}
{+ 2. +7}
i+2_> +8)
{+ 2. +9}

{+3. +6)
{+ 4. +5}
{+4p +6}
{+4. +7}

{+4" +8}
{+4. +9}
{+S._+6}
{+5. +7}

{+ 5. +9}
{+6. +7}
{+6- +«}
{+6. +9}

approaches

path-based

•J y

number of operators and compute the number of mutually exclusive operator pairs. The line 'waka
r lists the experimental result assuming all addition and subtraction are implemented on one type
of adders. The line 'waka 2' shows the result assuming all operations are implemented on ALUs.
The line 'waka 3' considers only addition and adders.

Information on m.e. operator pairs can be used in synthesis to obtain optimal scheduling.
Consider the behavior description in Example 4.3. Assume that only one adder is used. We use a
modified list scheduler which utilizes information on m.e. pairs. When provided with different sets
of m.e. operator pairs, different scheduling results are obtained as shown in Table 8. Column 'no'

Table 7: The result for m.e. operator pair identification.

behavioral total # of % of m.e. pairs identified
description | # of operators m.e. pairs Kim's SB CV path-based I CG I TDT

kim 24 120 100 100 100 100 100 100

jian 9 22 45 45 55 64 86 100

juan 6 7 14 14 43 43 100 100

parker 16 55 78 78 96 78 78 100

waka 1 14 21 76 76 100 76 100 100

waka 2 16 22 73 73 100 73 95 100

waka 3 8 12 83 83 100 83 100 100

indicates that no m.e. information ha^ been incorporated in scheduling. Column 'CG'indicates that
the set of m.e. operator paris identified by the 'CG' method has been incorporated in scheduling.
Column 'TDT' indicates that information on the full set ofm.e. operator pairs, as detected by our
TDT-based approach, has been incorporated.

Table 8: Scheduling results when informed of different sets of m.e. pairs.

description # of control steps

no I CG I TDT
iian 9 I 4 I 3

7 Conclusion and Future Work

In this paper, we have presented presynthesis on HDL descriptions which consists of two major
tasks: (I) optimize input behavioral HDL descriptions before any synthesis task is carried out, and
(II) extract information that can be used to improve the results of synthesis optimizations. To
implement the presynthesis tasks, we have come up with a novel tabular model called TDT. We
have presented a set of behavior-preserving transformations on TDTs that are used in the three

presynthesis optimization schemes: (I) column reduction, (II) row reduction, and (III) action shar
ing. We have also presented the TDT-based def-use analysis which is used to extract information
on m.e. operator pairs. The tabular model allows us to specify and use Don't Care information in

presynthesis optimizations.

We have presented a software implementation of our presynthesis system code named PUMP
KIN. We have run PUMPKIN on named benchmarks. Our experiments show improved synthesis
results after presynthesis optimizations are carried out on the input HDL descriptions or the infor
mation extracted from the input source has been incorporated in synthesis.

Despite the preliminary results, there are several limitations in the algorithms presented here.
First, our merging algorithms handle only one condition loop at a time. When there are nested
condition loops, they are represented as hierarchically connected process tables. Hence our scheme
fails to remove the control-flow redundancy when there is an assertion concerning more than one
loop conditions. Second, a few ofour basic TDT transformations takes 0{RN) time, when R is the
number of rules in a TDT, and N is either the number of action sets or the number of conditions

in a TDT. This will be inefficient when the number of rules in a TDT grows exponentially with
the number of operations and conditions in the input HDL descriptions. Therefore, as the first
step of our future work, we plan to work on algorithms to increase the scope of the presynthesis
optimizations, and to improve the efficiency of some of the algorithms.

During the course of this work, we find as by-products a few interesting facts about TDT

models. First, the action sharing scheme can be used for code compaction in software generation.

Second, the TDT offers a natural starting point for Hardware/Software partition, which is to

implement condition part in hardware and actions in software. The ability of indirection [25] to

shift the border between conditions and actions makes this model more appealing as an intermediate

model for Hardware/Software partitioning. Also, it appears a convenient vehicle to derive timing

information and interface driver routines from the TDT models. As the next step of our future

work, we plan to investigate the feasibility, the advantages, and the disadvantage of applying TDT

to other system design tasks such as scheduling, Hardware/Software partitioning, and interface

resolution.

8 Acknowledgment

This research is supported in part by NSF CAREER. Award MIP 95-01615. The first author also

acknowledges the support from FMC fellowship provided by the FMC foundation and the college

of engineering at the University of Illinois.

References

[1] A. V. Aho, R. Sethi, and J. D. UUman, Compilers: Principles, Techniques and Tools. Addison
Wesley, 1986.

[2] R. K. Brayton, R. Camposano, G. D. Micheli, R. Otten, and J. van Eijndhoven, "The Yorktown
Silicon Compiler System," in Silicon Compilation (D. Gajski, ed.), pp. 204-310, Addlson-

Wesley, 1988.

[3] A. L. Davis and R. M. Keller, "Data flow program graphs," IEEE Computer, vol. 15, no. 2,
February 1982.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, "An efficient method
of computing static single assignment form," ACM SIGPLAN Notices, 1989.

[5] M. C. McFarland, "The Value Trace: A data base for automated digital design," Tech. Rep.
DRC-01-4-80, Design Research Center, Carnegie-Mellon University, 1978.

[6] A. Parker, J. Pizarro, and M. Milnar, "A program for data path synthesis," in Proceedings of
the 23rd Design Automation Coference, pp. 461-466, June 1986.

[7] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, "The Olympus Synthesis System for
Digital Design," IEEE Design and Test Magazine, pp. 37-53, Oct. 1990.

[8] C. Coelho and G. D. Micheli, "Dynamic scheduling and synchronization synthesis of concur
rent digital systems under system-level constraints," Proceedings of the IEEE International

Conference on Computer-Aided Design, pp. 175-181, November 1994.

[9] A. J. W. M. ten Berg, C. Huijs, and T. Krol, "Relational algebra as formalism for hardware
design," Microprocessing and Microprogramming, 1993.

[10] K. Rath, M. E. Tuna, and S. D. Johnson, "Behavior Tables: A basis for systemrepresentation
and transformational system synthesis," in Proceedings of the IEEE International Conference
on Computer-Aided Design, 1993.

[11] J. Li and R. K. Gupta, "HDL optimization using timed decision tables," in Proceedings of the
Design Automation Conference, pp. 51-54, June 1996.

[12] K. Rath, V. Choppella, and S. D. Johnson, "Decomposition of sequential behavior using
interface specification and complementation," VLSI Design Journal, vol. 3, no. 3-4, pp. 347-
358, 1995.

[13] P. J. H. King, "Decision tables," The Computer Journal, vol. 10, no. 2, August 1967.

[14] A. Lew, "On the emulation of flowcharts by decision tables," Communications of the ACM,
vol. 25, no. 12, pp. 895-905, 1982.

[15] H.-p. Juan, V. Chaiyakul, and D. D. Gajski, "Condition graphs for high-quality behavioral
synthesis.," in Proceedings of the IEEE International Conference on Computer-Aided Design,
pp. 170-174, 1994.

[16] T. Kim, J. W. Liu, and C. L. Liu, "A scheduling algorithm for conditional resource sharing,"
in Proceedings of the IEEE International Conference on Computer-Aided Design, pp. 84-87,
1991.

[17] K. Wakabayashi and T. Yoshimura, "A resource sharing and control synthesis method for
conditional branches," in Proceedings of the IEEE International Conference on Computer-
Aided Design, pp. 62-65, 1989.

[18] D. Brand, R. A. Bergamaschi, and L. Stok, "Be careful with don't cares," in Proceedings of
the IEEE International Conference on Computer-Aided Design, pp. 83-86, 1995.

[19] D. E. Thomas and P. R. Moorby, The Verilog Hardware Description Languge. Kluwer Academic
Publishers, 1995.

[20] R. K. Gupta and J. Li, "Control optimization using behavioral don't cares," in Proceedings of
the IEEE International Symposium on Circuits and Systems, 1996.

[21] A. Parker, J. Pizarro, and M. Mlinar, "A Program for Data Path Synthesis," in Proceedings
of the 23^^^Design Automation Conference, pp. 461-466, June 1986.

[22] C.-J. Tseng, R.-S. Wei, S. G. Tothweiler, M. M. Tong, and A. K. Bose, "Bridge: A versatile
behavioral synthesis system," in Proceedings of the 2h*^Design Automation Conference, pp.84-
87, 1988.

[23] R. Camposano, "Path-based scheduling for synthesis," IEEE Trans. CAD, vol. 10, no. 1,
pp. 85-93, 1991.

[24] private communication.

[25] K. Rath, M. E. Tuna, and S. D. Johnson, "Specification and synthesis of bounded indirection,"
Tech. Rep. 398, Indiana University Computer Science Department, February 1994.

List of Figures

Basic structure of timed decision tables

Flow diagram for presynthesis: (a) the whole picture, (b) details of the optimizer. .

List of Tables

Symbols used in the data-flow sub-table 6

Use sets of operators in the example in Figure 1. 23

Commands in PUMPKIN 25

Synthesis results: cell counts before and after column/row reduction 28
Synthesis results: cell counts before and after action sharing 29

A comparison of m.e. operator pairs identified by different approaches. 31

The result for m.e. operator pair identification 31

Scheduling results when informed of different sets of m.e. pairs 32

