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Visualizing nD Point Clouds as Topological
Landscape Profiles to Guide Local Data Analysis

Patrick Oesterling, Student Member, IEEE Computer Society, Christian Heine, Member, IEEE Computer
Society, Gunther H. Weber, Member, IEEE Computer Society, and Gerik Scheuermann, Member, IEEE

Abstract—Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as
projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity. We propose to split data analysis
into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase
performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a
topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and
shape reflect cluster coherence, size, and stability, respectively. A second local analysis phase utilizes this global structural knowledge
to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual
clutter in established geometric visualizations and permits a clearer, more thorough data analysis. This analysis complements the
global topological perspective and enables the user to study subspaces or geometric properties, such as shape.

Index Terms—Point clouds, high-dimensional data, cluster analysis, dimension reduction, scalar topology, and visual metaphors.

F

1 INTRODUCTION

ANALYZING real-world phenomena often requires
the identification of groups among observations

and judging group cohesion and separability. Observa-
tions are usually encoded as high-dimensional points
(feature vectors). Popular applications include data min-
ing, analyzing gene expression data, classifying images,
or understanding document collections. One example is
the analysis of a dataset describing the composition of
olive oils with a feature vector consisting of percentages
of eight fatty acids. In this example, one is interested if
these oils form clusters based on their combination of
fatty acids, and whether these clusters correspond, e.g.,
to geographic growing regions. Another example is the
classification of newspaper articles where a user is often
interested in finding “theme“ groups (such as sports, or
politics) and their relation to each other.

Analysis via clustering methods, and visualizing
points with techniques that rely on the human visual
system to identify structure only in the final visual
representation are common approaches to identify struc-
ture in such datasets. Examples include axis-based tech-
niques, such as parallel coordinate plots (PCP) [1], scatter
plots [2], and projections, such as principal component
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analysis (PCA) [3]. However, these techniques are re-
stricted by underlying assumptions about the data’s
structure. Since each point is represented by at least
one pixel, they also suffer from occlusion (at the latest)
when the size of the dataset exceeds that of the screen.
Projective approaches, moreover, have a fundamental
problem: although they rely on visual extraction of struc-
ture (conveyed by distance), they can not ensure distance
preservation for data with more than two dimensions.
Occlusion and illusions are thus inevitable for high-
dimensional data.

Because a visualization cannot preserve both structure
and geometric details at the same time, we propose to
analyze them separately. At first, we neglect geometric
properties (such as distance and shape) to ensure an
adequate, occlusion-free display of a dataset’s struc-
ture. Afterwards, we utilize this structural perspective
to select single clusters for further (geometric) analysis
in multiple linked-views [4]. Scalability issues are thus
solved by the assumption that we will end up with fewer
features than data points, and that further analysis is
applied to only a few features at one time.

Fua et al. [5] also used this general concept, terming
it structure-based brushing, to navigate in hierarchical
organized data. Their approach uses hierarchical cluster
trees and permits brushing-and-linking of selected sub-
trees to highlight aggregated data in several linked
visualizations. We improve this concept by providing
additional information about feature relevance and by
supporting more sophisticated selection in the structural
view. Displaying cluster quality helps to identify inter-
esting features before linking them to other views.

To show a structural perspective, we use the results
of previous work on high-dimensional cluster visualiza-
tion [6]. Fig. 1 provides an overview of the approach
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Fig. 1. Framework for exploring high-dimensional datasets. We obtain a structural perspective onto the data by
analyzing the input point cloud’s density function topologically. Cluster structure and cluster properties are encoded
as a join-tree. The topological analysis and the join tree’s complexity depend on parameters for whose selection we
present interactive controllers. The join tree is finally visualized as a landscape profile. Hills, their nesting, size, and
shape adequately reflect the high-dimensional clustering. We also present specific selection mechanisms to isolate
structural features for linking to PCA- and PCP-views for local analysis.

and indicates which of its parts this paper extends.
We approximate the input data’s density function and
identify clusters as regions of high density. Quantitative
properties of dense regions, such as distinctness or the
number of points, then describe cluster quality and their
relevance. As we cannot visualize the high-dimensional
density function occlusion-free in two dimensions, we
focus only on its structure. To this end, we analyze
the density function’s topology by considering at which
densities regions merge with other regions. The nesting
of regions, including quantitative properties for each of
them, are then encoded in a join tree [7], on which we
finally base our structural perspective.

We improve our previous work by presenting a novel
topological landscape profile representation of the join
tree. Clusters, including their hierarchy and quality mea-
sures, are represented occlusion-free as hills of different
size in the landscape profile (cf. Fig. 2). We add an
additional cluster property, cluster stability, to further
improve perception of cluster relevance in the structural
view. This landscape representation permits extraction of
a dataset’s clustering structure and supports examining
each cluster’s size, compactness, and variance. Com-
pared to the topological landscape used in [6], proper
feature identification and comparison is simplified be-
cause all features are simultaneously visible without
changing the view.

Since local geometric properties are also important
to explain why clusters have sub-clusters, or in which
dimensions clusters differ, we complement the global
analysis with linked views for further local analysis.
We augment the landscape profile with the input data

and present specific selection mechanisms to enable
brushing-and-linking to PCA- and PCP-views.

Our framework depends on several parameters
that affect the visualization in terms of accuracy and
visual clarity. As these parameters require sophisticated
adjustment, we present interactive widgets to help users
to choose these parameters appropriately.

2 RELATED WORK
Projective methods aim to exploit the ability of the
human visual system to group and separate points based
on spatial closeness. Examples include principal compo-
nent analysis (PCA) [3], Self-organizing maps (SOM) [8], or
Multidimensional scaling (MDS) [9]. These approaches are
restricted by underlying assumptions about the data’s
structure, e.g. linearity for PCA, dimensionality of the
manifold for SOM, and neglect for the curse of dimen-
sionality in MDS. This often results in distortions and
overlaps, causing illusionary artifacts and clutter.

Structural overview + local details. Separating
global structural analysis from local geometric details
is in accordance with the visual information-seeking
mantra: ”overview first, zoom and filter, then details-on-
demand“, as proposed by Shneiderman et al. [10]. The
utilization of several interactive plots used for brushing-
and-linking of features to other views relates to the
concept of multiple coordinated views. Roberts et al. [4]
provides an overview of this concept.

Using these concepts for visual cluster analysis,
Fua et al. [5] introduced structure-based brushes to navi-
gate through hierarchical cluster trees. They use a special
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2D brushing tool to permit individual selection of sub-
trees at different levels-of-detail. In [11] they applied
this technique to PCPs by aggregating data as bands of
varying translucency. Yang et al. [12] extended this work
to support other traditional visualization methods, such
as star glyphs [13] or scatterplot matrices [14].

We extend the concept of structure-based brushes by
adding several information about cluster quality and
relevance to the structural perspective. This information
facilitates easier feature identification prior to linking
to other views. We also note that our structural view
does not consider a hierarchical clustering, but a cluster
hierarchy for one level-of-detail. While in [5] level-of-
detail determination and feature selection are combined
in one brushing tool, we consider them separately to
support more sophisticated feature selection.

Johannson et al. [15] proposed the use of pre-clustering
to present inherent data structure via high-precision tex-
tures and different transfer functions. Novotny et al. [16]
used clustering on a binned data representation to com-
bine outliers, trends, and focused data items in an ag-
gregated PCP. Other techniques to present hierarchical
structure include tree-layouts [17], dendrograms [18], or
Icicle Plots [19]. However, these methods present little
information beyond hierarchy and thus provide only a
one-sided global perspective.

Density-based clustering + kernel width. We use a
density-based approach, akin to scalespace analysis [20],
for our structural perspective. Such techniques, includ-
ing DENCLUE [21], OPTICS [22], or DBSCAN [23],
assume one density peak per cluster and low density
between clusters. Density-based clustering is designed to
find clusters of arbitrary shape, as long as dense regions
are separated by regions of low density. However, this
approach is subject to an important parameter: the kernel
window width σ. This value has crucial influence on
the clustering. A value too large can merge separate
clusters, and a value too small can force clusters to
split. Some heuristics determine σ by analyzing the k-
nearest neighbors [23], or by choosing σ such that a
bigger modification does not change the number of
identified density maxima [21]. However, this property
often depends on the data itself and does not necessarily
reflect that anisotropic clusters can feature several den-
sity maxima. To help users in finding this parameter
in a descriptive way, we present widgets that rely on
topological concepts.

Topology-based visualization. Since we cannot visu-
alize the high-dimensional density function in 2D, we
only consider (and visualize) its topological structure.

Using topological concepts to visualize high-
dimensional scalar functions has been an actively
researched field for some years. Weber et al. [24]
introduced topological landscapes, a 3D terrain metaphor
that has the same topology (of the height values) as
an arbitrary dimensional input scalar function. Maxima
and minima of the function show up as hills and
sinks in the terrain, thus accurately reflecting high-

dimensional information in 3D. Subsequent work aimed
at eliminating limitations in the initial implementation
(mainly regarding accuracy and usability) of this
metaphor. Harvey et al. [25] used a tree map [26]
construction scheme to improve the accuracy of
mapping a measure to feature area in the terrain.
Oesterling et al. [27] utilized a flattened version that
conveys structure by color to avoid occlusion of features.
However, as colors are not always easily distinguishable
we illustrate structure by height values in our landscape
profile. This representation allows us to use color as an
additional information channel.

Takahashi et al. [28] adopted the well-known ISOMAP
[29] algorithm and proposed a 3D arrangement of the
input positions that reflects the topology as a tree-
like structure. Gerber et al. [30] proposed a method
that combines topological and geometric techniques to
provide interactive visualizations of discretely sampled
high-dimensional scalar fields. They use an approximate
Morse-Smale complex embedded in 2D space.

Note that these techniques are naturally three-
dimensional or convey structure by color, because they
were designed to describe more complex topology. Since
some topological events are irrelevant for density-based
clustering, we can illustrate the same structure ade-
quately in two dimensions.

Visual aids for parameter choice. Our approach de-
pends on parameters for which we present widgets to
enable convenient determination. We base our controller
design on the concept of Scented Widgets [31], user in-
terface components enhanced with embedded visualiza-
tions to quickly judge interesting thresholds. The idea
to determine the parameters interactively is also in line
with Dynamic Queries, as described by Ahlberg et al. [32].

3 ANALYSIS AND FRAMEWORK DESIGN

In earlier work [6], we developed an approach extending
the concepts of density-based clustering. We proposed
to use the topology of a high-dimensional point cloud’s
density function to obtain a clustering hierarchy. Fig. 1
illustrates this approach and also indicates which of its
components this paper extends.

As input we consider a set of high dimensional points
P = {p1, . . . , pk} ⊆ Rn, from which we first construct a
neighborhood graph ([33]). We then sample the density
function dens : P → R at the input points and at
the center of the neighborhood graph’s edges using
simple Gaussian kernel density estimates, subject to the
filter radius σ. In [6] we presented heuristics for the
determination of this parameter, but in this paper we
suggest selecting the parameter in an interactive widget.

The density function is then studied topologically. By
mapping density to height, the density function can be
conceptually thought of as a high-dimensional height
field. This landscape is then flooded with water and
successively drained, whereby the connectivity of land
mass is studied. The join tree encodes for varying height
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h the joining of regions with minimum height h. As h
is continuously decreased from the maximum, regions
are created at local maxima, grow, and join at special
values called saddles. For h = 0 there is only one region
left, which encompasses the whole domain. This process
is illustrated in Fig. 1 using contours. Data points map
to exactly one edge in the join tree based on the height
for which they become part of a region. The data points
are needed to determine quantitative properties of each
region, and to illustrate them in our landscape profile.
We therefore store a sorted list of point-height pairs for
each edge. Carr et al. [7] describe an efficient algorithm
for computing the join tree.

Each subtree of the join tree represents a cluster C ⊆ P ,
and the tree encodes their nesting. We note that in con-
trast to hierarchical cluster trees, the join tree provides
a cluster hierarchy for one level of detail. Furthermore,
each edge can be assigned a cluster quality measure.
In prior work, we used two topology-driven quality
measures: persistence and cluster size. In this paper
we introduce cluster stability as third quality measure
(Section 3.1).

Topological simplification, based on cluster quality
thresholds, removes noise in the data and leaves only
prominent clusters. While in earlier work we used
heuristically chosen values, in this work we present wid-
gets for threshold specification. Simplification does not
remove data points, but moves them to parent clusters.

This simplified tree is shown in our previous approach
using the topological landscapes of Weber et al. [24]. In
the landscape, clusters show up as hills, and we placed
data points as small spheres at suitable locations in the
landscape to enable detailed exploration. As our method
only uses a part of the density function’s topological
features, we propose to show it as a topological land-
scape profile, enabling simpler overview and interaction.
In this representation, the nesting of hills still reflects
cluster hierarchy, and a hill’s height shows the maxi-
mum density of its corresponding cluster. The profile
makes it possible to use a hill’s width to show precisely
the number of data points belonging to it and a hill’s
shape to show the density distribution of points. It also
enables brushing-and-linking of data subsets for further
inspection via traditional methods.

3.1 Quality Measures and Cluster Relevance

Sub-trees of the join tree correspond to (sub-)clusters
in the input data. To enable cluster comparison we use
three cluster quality measures:

A cluster’s size size(C) = |C| is the number of points it
contains and therefore also the total of the corresponding
tree edges’ associated point lists’ sizes. As a cluster’s per-
sistence [34] pers(C) = max

p∈C
dens(p)−min

p∈C
dens(p) we de-

note the difference of the sub-tree’s minimum and maxi-
mum density. For separated clusters, the minimum den-
sity is zero. Borrowing from the idea of hyper-volume,

we define a cluster’s stability stab(C) =
∑
p∈C

dens(p) as

the sum of the contained points’ densities. Conceptually,
this measure represents the amount of energy required
to erode the cluster, and will thus be reflected by a hill’s
area in our landscape profile.

With these topology-driven quality measures, we are
able to determine cluster significance and a cluster’s
relevance compared to other clusters. In contrast to
distance or shape it is also possible to preserve these
measure without loss in a topological landscape profile.

High density usually reflects data coherence. If feature
vectors are very close, they heavily contribute to their
mutual density. Therefore, a cluster’s density reveals
where points are very similar in feature space. Persis-
tence, on the other hand, can be used to judge the
distinctiveness of a cluster regarding its surrounding
regions. By contrasting a region’s density, or persistence
to its number of points, we can also derive information
about cluster compactness or variance. While a few
points of high density must be very compact, many
points without significant density will be scattered. Fur-
thermore, the density distribution within a cluster also
provides information about coherence. For a cluster to
be relevant, we expect the points to accumulate at high
density, rather than being spread on a wider density
range. This behavior is reflected by the stability, which is
maximal if all points in a cluster have the same density.

These observations about compactness, variance, and
point distribution are very relevant in many application
domains. For example, they indicate how well docu-
ments are arranged around their topical center, i.e. how
similar their content is. For image data, where clusters
correspond to images with similar content, the compact-
ness tells us how well different pictures match the mean-
image of a particular motif or scenery.

3.2 Visual Representation of Global Structure
A clear visual description of the high-dimensional clus-
tering requires an adequate visual representation of the
abstract join tree. One obvious solution would be a tree-
layout in the plane. However, to support comparison
of several edge properties of possibly large trees, this
layout would have to adhere to several conventions
that might result in unfeasible overviews for our second
analysis phase. Weber et al. proposed the topological
landscapes metaphor [24], a terrain visualization that has
the same topology (of the height values) as an input
tree. In this metaphor, structure is conveyed by (sub-)hill
relationships and two edge properties can be reflected
by a hill’s height and footprint. Since this metaphor
was designed to represent more complex topological
relationships than required for clustering, the terrain is
three-dimensional (3D). In 3D, however, proper feature
comparison is impeded by occlusion and perspective
distortion. A 3D landscape also prohibits comparison of
a hill’s height and extent at the same time. Occlusions
are only removed in a top view, where the height of
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hills is invisible. Furthermore, a hill’s footprint was
only approximately correct in the original approach, and
it could take any possible shape; which makes direct
comparison infeasible. Both drawbacks were eliminated
by Harvey et al. [25] who used tree-maps for their
landscape construction. However, although tree-maps
always ensure correctly sized and evenly shaped hills,
rectangular features can still be hard to compare for very
different aspect ratios [35].

To permit an intuitive global overview, we base
our visual representation on the topological landscapes
metaphor. Since clustering results in a topologically
much simpler tree structure, we can adapt this metaphor
to two dimensions (2D). We propose a topological land-
scape profile for natural illustration of the clustering
(represented by the join tree) as a set of hills that
accurately describes hierarchy and edge properties by
sub-hill relationships and a hill’s height, width, and area,
respectively. Due to orthographic projection, each clus-
ter’s properties are always correct and simultaneously
visible. This property makes feature comparison easy
and feasible without adjusting the viewing direction.

Fig. 4 shows a landscape profile for the image seg-
mentation dataset from the UCI machine learning repos-
itory [36]. The dataset describes a fragmentation of seven
outdoor images into 2,310 3x3 pixel regions. Each region
is characterized by 19 attributes (including position,
line densities, edges, and color values) and manually
classified into one of the following types: brickface,
sky, foliage, cement, window, path, and grass. Since
height values represent density, sub-cluster relationships
are reflected by valleys at non-zero height. A valley
at zero-density reflects complete separation. A cluster’s
persistence, size, and stability are precisely reflected by
its hill’s respective height, width, and area.

For each height value, a hill’s width reflects the num-
ber of points in the cluster having at least this density.
This representation of a dense region’s point distribution
as a hill’s shape can serve as a cluster quality measure
and provides insights about data coherence or sepa-
ration. For example, points of a well-separated cluster
feature a significantly higher density than the cluster’s
merge density with another cluster (which is zero in this
case). This concentration of high density makes the hill
look rectangular-shaped, i.e., very stable. This observa-
tion also implies that triangular-, or peak-shaped hills
represent not so compact and isolated clusters. Here, the
densities of the points are distributed between merge-
level and cluster maximum, which makes the cluster
unstable. Finally, if a single hill features plateaus at
different height levels, we know that this cluster consists
of several groups that are not yet separable (suggesting
that the currently chosen filter radius is too large).

In the second analysis phase, we shift attention from
the global clustering to local data analysis. For this
purpose, we augment the landscape profile with his-
tograms to summarize the input point distribution based
on the points’ density and cluster affiliation. Possibly

available classification information is used to extend the
histograms to stacked barcharts, one bar and color per
class. With this representation, as shown in Fig. 5, we
can i) quickly determine whether classes correspond to
clusters by analyzing the colors of the histograms on
the hills, ii) facilitate labeling and semantic zoom based
on metainformation, and iii) use brushing-and-linking to
link brushed subsets to other views for local analysis.

We note that (Euclidean) distance, either between hills
or histograms, has not always a meaning in the profile’s
topological perspective. If hills share valleys at zero-
height, we just consider the clusters to be separated,
no matter how far away they are from each other in
the original domain. Only if hills are connected by a
valley at non-zero height, we can derive closeness due
to region-overlap Furthermore, points summarized by
histograms are not necessarily close to each other. They
only share the same density within the cluster, thus likely
being arranged around the cluster’s density maximum.
We accept these restrictions as (inter-cluster) distance
preservation is not necessarily needed to describe a
clustering, and because it is only disregarding geometric
properties that permits overlap-free visualization in the
first place.

3.3 Interaction and Local Analysis

The topology-based global overview via the land-
scape profile already permits convenient and primarily
overlap-free insights regarding the clustering’s hierarchy
and several quantitative properties. However, using only
this global perspective on the data, we cannot tell why
clusters have sub-clusters, or why points of the same
class are not in one single cluster. A nested, hilly struc-
ture in the landscape profile only tells us that globally
there is a dense region with several local density max-
ima. If one is interested in properties beyond a global
perspective, we need to determine in which dimensions
or subspaces similar data entities differ locally.

Utilizing global structural knowledge for local data
inspection has two main advantages: First, since the
overview minimizes the topological rather than the ge-
ometrical error, we have a reliable and convenient way
to select all occurring clusters. Projections or axis-based
approaches cannot ensure an appropriate selection be-
cause they suffer from occlusion and projection artifacts.
If clusters are overplotted, we neither know their real
structure nor could we appropriately select a single
cluster for further analysis. The second advantage is
that we can greatly reduce visual complexity of other
visualization techniques if we focus on single structural
features rather than on the whole dataset.

3.3.1 Feature selection in the Landscape Profile

We consider either a whole hill (i.e., a cluster), or a part of
a histogram as a feature. Because selection in a particular
hill’s histogram is only meaningful for bars of different
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height or class, we ensure a bar-wise selection of the data
points. We provide the following mechanisms:

1. Whole clusters can be selected by clicking on a hill
in the landscape profile. After changing the color
of the hill, linked visualization techniques subse-
quently use this color or the colors corresponding
to the points’ classes.

2. Selection of arbitrary bars is achieved by sur-
rounding them with a selection rectangle or by
individually clicking on them. Selections can be
concatenated. Linked visualization techniques then
use the colors corresponding to the classes.

3. To distinguish points of one class (color), subse-
quent selections can also be associated with a set
of pre-defined, distinct colors. This association is
especially helpful to select bars of the same class
but at different heights. Linked visualization tech-
niques use the colors of the individual selections.

3.3.2 Subspace Analysis with Axis-Based Methods
Axis-based techniques have great potential to analyze
the homogeneity of subsets throughout many dimen-
sions. However, due to their visual complexity and
occlusion problems, the number of poly-lines to be visu-
alized should be limited or important structure should at
least be highlighted to avoid overloaded visualizations.

Since we visualize structure overlap-free with the
landscape profile, we can use this global knowledge to
focus on single clusters or point sets. This localization
greatly reduces the number of poly-lines, and therefore
the amount of visual overlapping (crossings). We can
rely on an implicit correlation between the landscape
profile and axis-based techniques: Hills in the landscape
profile correspond to poly-line-bundles in axis-based visualiza-
tions. This correlation results from the fact that points of
a global cluster necessarily have to share similar values
throughout many dimensions.

To analyze why clusters consist of sub-clusters, or why
points of the same class are not in the same cluster, we
link selected features to a PCP-view. Note how select-
ing whole hills easily colors line bundles in axis-based
visualizations, even if classification information is not
available for the input data.

3.3.3 Geometric Properties Using Projections
Projections often do not preserve geometric properties
of high-dimensional data sufficiently. Even for well-
separated, low-dimensional clusterings a 2D projection
likely contains some overlapping regions or inexact
shapes if the clusters are oriented just differently enough.

For example, in PCA the greatest variance of multiple
clusters certainly does not reflect the greatest variance of
each individual cluster because all points are considered
as a whole. That is, distances (and thus shapes) are
represented less accurately if other points take part. In
order to minimize the projection error, the optimization
criterion should thus be applied to only a few points.

Fig. 2. Landscape profile (left) for an idealistic 2D clus-
tering (right) with clusters of different compactness, size,
and variance. Adjacent hills that share valleys at the same
height can be sorted for easier comparison.

To select individual clusters reliably, we use the global
knowledge that is adequately conveyed by the landscape
profile. We only project points of whole hills or arbitrary
features, thus maximizing the optimization criterion
solely for these points. As a representative for projective
methods, we implemented the well-known PCA because
its underlying concept is generally accepted and very
intuitive. Typically, other projective methods also reflect
a single cluster’s geometric properties more accurately if
unselected points are omitted. We link selected features
to the PCA-view and specify the projection error as the
variance that is not explained by the first two principal
components. Although this error can still be rather large
for high-dimensional data, we keep it smaller by focus-
ing on single structural entities.

4 IMPLEMENTATION

4.1 Landscape Profile
The fundamental property of the landscape profile is
to have the same topology (of the height values) like
the density function’s join tree. That is, each horizontal
cut through the profile intersects as many hills as the
same cut would intersect edges in the join tree. There is
only little space for spatial optimizations in the profile
without violating this precondition. One possible modifi-
cation, however, is re-ordering a node’s sub-trees, which
enables sorting hills by relevance. Prior to generating
the profile we sort each node’s sub-trees by persistence
to make similarly persistent hills appear next to each
other. This gives the profile a global downward trend
from left-to-right and enables easy feature comparison,
especially for well-separated clusterings where valleys
are all at zero-level (cf. Fig. 2). Sorting by cluster size or
stability is also possible. It is even possible to sort hills by
inter-cluster distance in the original domain. However,
the additional knowledge to be expressed with only two
neighbors is assumed to be rather insignificant for high-
dimensional data. We therefore decided to use topology-
driven relevance measures instead because they better
reflect the topological principles of the profile itself and
because they can be preserved without any loss in 2D.

4.1.1 Construction
To construct the landscape profile we use a simple
recursive algorithm. Because each part of the landscape
profile corresponds to an edge in the join tree, we just
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(a) (b)

Fig. 3. (a) A leaf edge is mapped to a hill with a
width and a height of that edge’s associated number of
points and persistence, respectively. The hill’s shape is
furthermore affected by the occurrences and densities
of the data points associated with that edge. The area
of the hill then reflects the edge’s stability. (b) Non-leaf
edges reserve space for child nodes and represent the
edge to the right. s1, s2, s3 represent whole sub-tree sizes.
Red arrows indicate the currently processed node. In
both cases, a binning approach can reduce the amount
of produced geometry (at the cost of correct shape and
stability).

Algorithm 1 Pseudo-code to construct the profile
Require: root node of the density function’s join tree
Ensure: topological landscape profile

1: procedure PAINTLANDSCAPEPROFILE(xCoordinate)
2: PAINTPART( root, xCoordinate)

3: procedure PAINTPART( node, x)
4: if HASPARENTEDGE( node) then
5: edge← GETPARENTEDGE( node)
6: if ISLEAF( node) then
7: DRAWHILL( edge, x) . cf. Fig. 3a
8: else
9: DRAWINNERPART( edge, x) . cf. Fig. 3b

10: for i← 1 to NUMBERCHILDNODES( node) do
11: childNode← GETCHILDNODE( node, i)
12: PAINTPART( childNode, x)
13: x← x + SUBTREESIZE( childNode)

need to traverse the tree and consider each edge’s (dense
region’s) persistence, number of points, and stability.

For simplicity, y-coordinates in the profile match the
tree nodes’ densities and we start with the root node at
a certain x-coordinate. Algorithm 1 and Fig. 3 provide a
detailed description of the construction process. A node’s
parent edge and child edges are its edges towards the tree’s
root node and the leaves, respectively. The root node
has no parent edge, and the leaves have no child edges.
Together with each edge we store a list of data points
that make up the corresponding dense region.

We use a dual-color scheme to support visual extrac-
tion of hills and their hierarchy. Starting with one color
for hills belonging to the root node, sub-hill relationships
are subsequently emphasized by switching the colors for
each hierarchy level. Note how this color scheme per-

Fig. 4. Topological landscape profile of the image seg-
mentation dataset. Hills correspond to dense regions. A
hill’s height, width and area reflects the corresponding
cluster’s persistence, size and stability, respectively.

Fig. 5. Histograms are used to augment the profile
with the input data, based on their density and cluster
affiliation. Classification information is used for coloring
and extension to stacked barcharts. The data can also be
annotated with labels.

mits easy identification of separated clusters as equally
colored hills sharing a valley at zero-level (cf. Fig. 4).
To avoid visual confusion, we require both colors to be
distinguishable from the colors used for the histograms.
However, the user can still assign other colors to the hills
if classification information is unavailable to color the
histograms, or if data points in linked views should be
highlighted based on the colors of their corresponding
hills. We demonstrate hill coloring as part of the local
data analysis in Section 6.2 and in the supplemental
video material.

4.1.2 Data Point Representation
The landscape profile is augmented with (horizontal)
histograms to display the input data distribution based
on their affiliation to clusters. The width of a histogram
bar is rescaled so that it reflects appropriately the num-
ber of its summarized points. A bar’s height is subject
to a granularity parameter that controls the smoothness
of the distribution. If classification information is avail-
able we permit class-wise selection by extending the
histograms to stacked barcharts, one bar per class.

For a clearly arranged visualization, histograms are
placed centrally on the hills. For inner parts of sub-
hill structures, however, we place them below the left-
most hill. This placement is achieved by assigning the
histogram of an inner edge the x-coordinate of the hill
corresponding to the edge’s first subtree’s leftmost leaf
edge.

To provide additional information, we label the points
summarized by a histogram bar with the excentric label-
ing [37] approach. Using a movable focus area, labels of
enclosed points are placed around the focus and they
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(a) (b)

Fig. 6. (a) Small, thin, or little stable hills can be removed from the landscape profile to increase visual clarity. (b)
Scented widgets in the simplification controller signify interesting thresholds to preserve only the most prominent
features. The controller and the profile are linked to highlight in real-time which hills will remain after simplification.

are connected by a line. The label text can easily be
changed to provide details-on-demand, e.g., more meta-
information when the user zooms in. Fig. 5 shows some
histograms for the image segmentation dataset. Here,
colors reflect class affiliation and the labels specify the
given classes. In general, a label’s text, color, size and
shape could be used to highlight different data aspects.

5 PARAMETER WIDGETS

The landscape profile can accurately present a high-
dimensional clustering, including quantitative proper-
ties, overlap-free in 2D. However, both the underlying
topological analysis [6] and the visual representation are
each subject to one parameter that affects the profile in
terms of correctness and visual clarity. These parameters
are the filter radius σ for the density estimation, and
a simplification threshold used to eliminate topological
noise. Since these parameters require sophisticated ad-
justment, we present scented widgets [31] to support the
lay user in a descriptive way.

5.1 Interactive Simplification Controller

Depending on the filter radius, a point cloud’s density
function usually contains small variations. They occur
in noisy regions, at small point accumulations, or at
outliers. This topological noise causes very small and
thin hills in the landscape profile and thus disturbs its
visual clarity. This behavior can be alleviated by peeling
off less relevant leaf edges from the join tree prior to
profile construction. For clustering it makes sense to
assign the data points associated with removed edges
to their parent edges. This way, a cluster maintains
the relevance of simplified sub-clusters and all data
points are preserved for representation in the profile.
Depending on the user’s preference, edges are removed
if they do not feature enough persistence, number of
points, or stability. Three controllers are provided for
these measures.

Based on the idea of scented widgets [31], each con-
troller highlights the join tree edges’ distribution in terms
of the property controlled by that widget. This allows

the user to quickly judge interesting thresholds if some
edges stand out. Because edge properties change during
simplification, the controllers use a join tree segmenta-
tion called the branch decomposition: a multi-resolution
representation as described by Pascucci et al. [38]. Similar
to the simplification process, the branch decomposition
is obtained by merging leaf edges with adjacent edges.
The order in which leaf edges are simplified defines the
hierarchy of branches and is based on a certain edge
property. This principle was also used by Carr et al. [39]
to simplify topological structures based on local geomet-
ric measures in 3D. Because branches already provide
a multi-resolution view on the join tree, they make the
controller’s scent less susceptible to variations between
two simplifications. They also indicate which thresholds
are necessary to preserve only prominent features.

Fig. 6b shows the interactive simplification controller.
It contains three slider widgets, one for each quality
measure. The persistence threshold is adjusted with a
persistence diagram [40], a 2D scatter plot mapping a
branch’s minimum and maximum density to an x- and y-
coordinate, respectively. Since the persistence of a branch
is the difference of these two values, topological noise
shows up as points near the main diagonal (cf. Fig. 7d).
A persistence diagram permits determination of relevant
branches at different merge densities (horizontal axis)
and it provides a quick way to determine the ratio of
topological noise to interesting branches of high per-
sistence. The latter correspond to points far away from
the diagonal and represent dense regions surrounded by
regions of low density. However, the diagram abstracts
from branch hierarchy and branch affiliation to dense
regions. Beyond persistence, it thus provides only a
distorted idea of the clustering.

Thresholds are set by dragging sliders on the verti-
cal axes. Parameter settings are also indicated as blue
shaded regions in the widgets. When the user drags
a slider, the join tree is simplified in real-time. Edges
that do not satisfy all three thresholds are removed and
the controllers are updated with their respective branch
decompositions. The controllers are also linked to the
landscape profile. For each change, hills that will be
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preserved are colored in red. Hills that will be removed
are colored in blue (cf. Fig. 6a). When the user releases
a slider, the landscape profile is reconstructed (here,
resulting in the profile shown in Fig. 4). We refer to the
supplemental video material for a demonstration of the
simplification controller.

5.2 Filter Radius Setup with a Persistence Diagram

Setting the filter radius for the topological analysis, as
described in [6], can be challenging. A filter radius too
large will result in the whole point cloud appearing as
one dense region, while a filter radius too small will
result in each data point being considered a cluster of
its own. Surely, the correct answer has to lie somewhere
in-between and thus we need to provide the user with
visual assistance to set up this parameter conveniently.

We analyzed the behavior of the density function’s
topology by observing persistence diagrams while vary-
ing the filter radius between the two extremes. We found
a general behavior for all datasets we observed. In
the following, we explain this behavior on the image
segmentation dataset.

We start with a filter radius σ that is too large. The
persistence diagram in Fig. 7a consists of the root branch
as a single point in the upper left corner and a few
branches of near-zero persistence, i.e. topological noise,
in the upper right near the diagonal. Reducing the filter
radius in Figs. 7b-c causes the small branches to start
spreading along the diagonal while the more persistent
branches start departing from the diagonal. This change
signifies that clusters become apparent in the point
cloud. The low persistent branches indicate very small
point accumulations at different density levels. They
occur in found clusters, and in regions where clusters are
still combined. A further reduction of σ in Fig. 7d leads
to more branches of high persistence and we observe
that small branches accumulate in the lower part of the
diagonal. This moment is a critical situation, as it tells
us that separable regions indeed exist. If the point cloud
actually consisted of one single cluster, the branches
would just have moved from the top-right hand side to
the lower bottom without departing from the diagonal.
This behavior reflects that similarly distributed points
cannot be separated into several dense regions, except
with very small filter radii. Further reducing σ (Fig. 7e)
leads to branches converging towards their final position
on the ordinate. We note that they do not continue to
move upwards, as the scale on the ordinate is decreasing
all the time. A branch’s final position depends on the
multiplicity of the points’ occurrences. In our system,
we support multiple occurrences of points. That is, the
input point cloud can have more than one point at the
same position. As a result, these points have a minimum
density depending on the number of duplicates. If there
are, e.g., two points with the same coordinates, both have
a density of, at least, two. The final diagram in Fig. 7f
illustrates the other trivial case. The very small filter

(a) σ = 30, 000 (b) σ = 1, 000

(c) σ = 100 (d) σ = 50

(e) σ = 10 (f) σ = 0.0001

(g)

Fig. 7. (a)-(f) By continuously decreasing the filter radius,
branches move along the diagonal and converge to their
final position on the ordinate. If the data contains clusters,
branches of high persistence depart from the diagonal.
We search for a radius where many persistent branches
depart from the diagonal. (g) Suitability diagram to sum-
marize edge stabilities for different filter radii. We choose
σ depending on where the plot features its local minimum.

radius assigns each point its own density maximum,
and the corresponding branches accumulate at their final
position. The diagram indicates that there are many
doublets and even some triplets in the example dataset.

Based on these observations, we can provide a guide-
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line for choosing an appropriate filter radius. We vary
the value of σ between the two trivial cases while
examining the persistence diagram. If branches depart
significantly from the diagonal (relative to the noise) we
have identified a good start radius which can then be im-
proved by analyzing the hills’ shapes in the profile. We
support this visual exploration with our simplification
controller (provided all thresholds are set to zero).

5.3 Filter Radius Suitability Diagram
Because persistence usually is a good indicator for clus-
ter relevance, the visual determination of the filter radius
via a persistence diagram already yields good results.
However, the diagram ignores that spread clusters of
lower persistence might also be relevant. To refine the
criterion of a good start radius we aim to construct
a function that measures the suitability of a particular
filter radius. A plot of this function would then signify
a suitable filter radius as the value of σ where the func-
tion changes. The function would also permit automatic
filter radius determination by searching for the change
algorithmically.

For the suitability, we directly use a cluster’s stability.
Note that stability is affected by persistence and cluster
size, but also considers the point distribution. Therefore,
stability is more precise than just the product of both
values (equivalent to the relation of a hill’s area to
its circumscribing rectangle in the profile). To evaluate
the suitability of a particular filter radius, we consider
the corresponding density function’s join tree, sum up
all edge stabilities, and normalize this sum by σ. A
plot is then obtained by calculating the suitability for
different filter radii. Fig. 7g shows the plot for the
image segmentation dataset. Due to σ-normalization,
the plot features very large values for small radii, and
small values for large radii. Our desired filter radius
is characterized by the local minimum of the function,
which is approximately at σ = 35.0 in this example.

We provide the user with an interactive suitability
diagram that already shows the plot for the smallest and
largest possible values of σ (which is a line perpendicular
to the diagonal). For the latter, we can use a multiple
of the dataset’s diameter. Automatic determination of
the function’s change is achieved by evaluating different
radii on the logarithmic scale either equidistantly or
using a standard divide-and-conquer approach between
the two initial values. In both cases, the plot is locally
refined at the position where the first minimum is found,
i.e., where an evaluation leads to a smaller value than
at its two neighboring evaluations. The result might be
a plot (for visual inspection) or the value where the
refinement stopped. The user can also refine manually.

6 EVALUATION & DEMONSTRATION

We compare our topological landscape profile to com-
peting visualization techniques, and we discuss their
power to characterize a clustering in terms of hierarchy,

compactness and extent. Furthermore, we demonstrate
how the global topological overview already indicates
interesting features for subsequent inspection via tradi-
tional techniques like PCA and PCP.

The time needed to present a final landscape pro-
file depends on three steps: the topological analysis,
identifying appropriate parameters, and constructing the
profile. Note that finding an appropriate filter radius
usually implies running the topological analysis several
times. Because the actual runtime of the topological
analysis depends on the chosen neighborhood graph
and several optimization steps, we refer the interested
reader to [6] for details. Most of the time is spend on
constructing the approximation of the high dimensional
density function. The construction of the join tree is
very fast ([7]). Simplifying the join tree, extracting the
branch decomposition, and constructing the profile can
be considered as operators on the join tree. That is, they
are generally fast, but depend on the tree’s complexity.
In practice, the analysis of some ten-thousand points in
around fifty dimensions generally is a matter of seconds
on our machine with two 2.6 GHz Quadcore processors
and 8 GB memory. We implemented our prototype under
Linux in C++, but do not yet utilize GPU acceleration
(the join tree calculation on the GPU is an open research
topic). The profile constructions (including the topolog-
ical analysis) for the examples in this section took less
than one second each.

6.1 Visualization aspects

We consider the Italian olive oils dataset [41]. It consists
of 572 oils from nine different regions in Italy. The
features describe the percentage of eight fatty acids. We
try to analyze whether these oils form clusters based
on their combination of fatty acids. Common clustering
information usually includes the number of clusters, sub-
cluster hierarchy, and cluster properties (such as size,
or compactness). A useful cluster visualization should
permit easy extraction and comparison of this informa-
tion. Fig. 8 and Fig. 9c show several visualizations of this
dataset (parameter choice is given by Figs. 9a,b). We do
not consider simple hierarchy trees, as they only focus
on this particular property of a clustering.

The landscape profile in Fig. 9c suggests three sep-
arated clusters, each with sub-clusters. We can easily
identify and compare cluster compactness and size. For
example, the ”Umbria/Liguria” cluster is the most com-
pact one, while the cluster on the right has significantly
more points, but is less compact. Together with the
classification information, conveyed by the histograms,
we notice that clusters, and thus the combination of fatty
acids, correspond to the major growing areas in Italy.

A partition of the results in geometry-based (Fig. 8b,d)
and topology-based (Fig. 8a,c and Fig. 9c) visualizations
shows that both PCP and PCA heavily focus on the data
points and their color, while the topological visualiza-
tions focus on structure and only augment the data. For
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(a) (b)

(c) (d)

Fig. 8. Competing visualizations for the olive oils dataset:
(a) 3D topological landscape, (b) parallel coordinates plot
(PCP), (c) flattened 3D topological landscape, and (d)
projection onto the first two principal components (PCA).

unclassified data, this implies that PCP and PCA can
likely not answer basic clustering questions if points
are just black. The topological visualizations, however,
would still provide the same structural insights.

Considering the PCA in Fig. 8d, even for classified
data, extracting the same clustering information can be
infeasible. Because projections focus on properties like
inter-cluster distance and shape, which are not necessar-
ily needed to describe a clustering, they are less appro-
priate to illustrate structure. For example, the ”Sardinia
Coast“ and ”Apulia South“ points seem to constitute
a cluster in the projection. However, this is only an
illusion caused by the 30% projection error. The profile
tells us that these points correspond to two different
clusters. Cluster compactness might also be an artifact
and occlusion prevents the user from manually counting
data points to determine and compare cluster sizes.

The same holds for overviews via a PCP (Fig. 8b).
Even for colored data, neither basic clustering structure
nor sub-clusters are easily perceivable. To extract and
compare cluster properties, poly-lines need to be count
and analyzed throughout all dimensions.

Coming back to topology-driven cluster visualiza-
tions, Fig. 8a shows the original 3D topological land-
scape [24]. Obviously, proper feature comparison is com-
plicated by view-dependent occlusion, invisible data
points, perspective distortion, and degenerated foot-
prints. Furthermore, a hill’s height and footprint are not
simultaneously observable. Harvey et al. [25] improved
the degenerated footprints using tree-maps. However,
for very different ratios, this still does not facilitate exact
visual comparison and also suffers from problems in 3D.

(a) (b)

(c)

Fig. 9. Olive oils dataset: (a) the filter radius controller
and (b) the simplification controller are used to determine
the parameters necessary to obtain an appropriate (c)
topological landscape profile

The atoll-like visualization in Fig. 8c (which is basically
a colored version of Fig. 8a, seen from above) eliminates
occlusion problems, but still makes feature comparison
difficult, especially regarding the footprints.

The question arises whether there are tasks that favor
one of the previous visualizations. Clearly, geometric ap-
proaches are only useful if the dataset is either simple, or
if it can be simplified, e.g. by using hierarchical parallel
coordinates [11]. Therefore, we also use them for local
analysis instead of the global overview. We also note that
the 3D landscapes as proposed by Weber et al. and Har-
vey et al. originate from other application domains with
more topological complexity. That is, they are naturally
3D, but unnecessarily suffer from it when used for clus-
tering purposes which do not require 3D. However, they
still have advantages: First, a better screen utilization.
When observed from above, the quadratic shape of the
whole landscape is more compact than our left-to-right
layout in 2D. This compactness in combination with the
hills’ 2D footprints also allows to visualize more features
on the same screen compared to our profile.

6.2 Data Analysis aspects

In the style of structure-based brushing, as proposed by
Fua et al. [5], we now demonstrate how the topological
perspective, conveyed by the landscape profile, signifies
features in the data that are worth further analysis.
These features would likely be occluded without the
structural perspective onto the data. We use the image
segmentation dataset [36] again.

Fig. 10a and Fig. 10b illustrate the whole dataset
via PCA and PCP, respectively. Instead of recalling
their drawbacks for large, high-dimensional data, we
rather want to utilize our landscape profile, shown in
Fig. 10c, to reveal and further inspect features that are
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(a) (b)

(c)

Fig. 10. Image segmentation dataset: comparison be-
tween (a) PCA projection, (b) parallel coordinates plot,
and (c) the topological landscape profile. Data point colors
reflect class affiliation. Due to its focus on structure, the
profile permits convenient clustering identification and
cluster comparison - even for unclassified data.

not readily obvious in PCA and PCP. The landscape
profile illustrates clusters of different relevance (in terms
of compactness, coherence and the number of points),
overall consistent with the data’s classification, and it
suggests that the SKY cluster can be separated from
the rest. At least this separation is also suggested by
Figs. 10a,b. We use our overlap-free visualization to
focus on several data features. For example, we quickly
realize that, e.g., the PATH hill is much higher than the
SKY hill. A delegation of only these points to the PCP-
view quickly confirms that the brown poly-line bundle
is generally more compact, especially in the subspace
spanned by the 10th-13th dimensions (Fig. 10b). As these
dimensions encode RGB values in the original images,
this diversity of SKY points suggests sub-clusters for
different kinds of sky. To isolate a single cluster, we
either select the histograms on the cluster’s hill (Fig. 11a),
or we click on the hill(s). As shown in Fig. 11b, the
global trend of the selected points in the PCP is now
much clearer and easier to observe. The sub-hills in the
profile furthermore indicate that this already compact
poly-line bundle is even more separable. To investigate
the reasons for this, we link each hill individually with
different colors (Fig. 11c). The PCP in Fig. 11d reveals
why the cluster breaks into sub-clusters: although the
points have the same global trend, in some dimensions
they are widely spread (D1), shifted (D10-D13, D16-D17)
or even inverted (D14-D15).

Another feature, that is not so obvious at first, is
indicated by the histograms on the profile’s leftmost hill
(Fig. 11e). While gray CEMENT points have their own
cluster in the middle of the profile, they additionally

(a) (b)

(c) (d)

(e)

Fig. 11. (a)-(d) Brushing single hills and sub-hills in the
profile not only reduces visual clutter in the PCP, it also
explains why clusters have sub-clusters. (e) A class-wise
selection of the histograms can be used to analyze why
points of the same class are not in the same cluster.

accumulate at lower height on the main hill. To analyze
this phenomenon, we select the said histogram bars and
the CEMENT hill individually with different colors. The
PCP confirms that although being in the same class, the
corresponding points differ pretty much between the 9th

and 17th dimension and are thus in separated clusters.
In addition to this subspace analysis via axis-based

techniques, a cluster’s shape, extent or distance to other
clusters may also provide relevant insights. Again, we
use our global knowledge to further improve the pro-
jection result. For example, if we wanted to improve the
projection of the cyan SKY points (that only account for
around 84% of their original variance in Fig. 10a), we
could easily delegate them to the PCA-view by clicking
on each of the three hills (cf. Fig. 12a). This increases the
explained variance to approximately 92% in Fig. 12b and
also separates the sub-clusters visually in the projection
- even if no classification was available. The histograms
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(a) (b) PC1+PC2

(c) (d) PC2+PC3

Fig. 12. (a)-(b) A hill-wise selection of (sub-)clusters
increases the projection quality and separates the points
visually (even for unclassified data). (c)-(d) If the profile
indicates more features than the projection can reflect,
the result can be improved by individual selections and
adjusting the projection.

and the shape of the leftmost SKY hill suggest that even
more groups could be separated. Although the first two
principal components account for around 92% of the
cyan points’ original variance, the first three principal
components account for almost 99,3% variance. Because
the green points in Fig. 12b do not seem to reflect
a further separation, we might suffer from projection
artifacts and this separation must be hidden in the third
principal component. In fact, if we select the histograms
with different colors (Fig. 12c) and project the data onto
the second and third principal component, we obtain
a projection that reflects this separation. PCA did not
choose this perspective because it features less data
variance than Fig. 12b. However, the landscape profile
already suggested further investigation if we were inter-
ested in maximizing separability in the final image.

7 CONCLUSION & FUTURE WORK

Because projections and axis-based techniques suffer
from information loss, projection artifacts, occlusions,
and visual complexity, we proposed the split the visual
analysis of high-dimensional clusterings into two sepa-
rated phases. In the global overview phase, we neglect
geometric properties to allow an overlap-free presenta-
tion of the clustering in terms of the clusters’ number,
hierarchy, compactness, size, and variance. We use pre-
viously introduced topology-/ density-based analysis to
identify the global clustering, but present this knowledge
in a novel landscape profile from which structure can be
extracted more precisely and with less user interaction
efforts. To help users to choose parameters conveniently,
we presented scented, interactive controllers.

In the local analysis phase, the topological perspective
on the data is used to brush-and-link features to other
views. Because only selected points need to be handled,
common techniques can reduce information loss, illu-
sions, and visual clutter. This reveals knowledge that
was hidden before. The global knowledge also permits
to classify unclassified data based on the association
of points to their dense regions. Our future endeavors
concern the capturing and representation of other topo-
logical or even geometrical cluster properties.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers
for valuable comments and assistance in revising the
paper. The work presented in this paper was supported
by a grant from the German Science Foundation (DFG),
number SCHE663/4-1 within the strategic research ini-
tiative on Scalable Visual Analytics (SPP 1335), and by
the the Department of Energy (DOE) Office of Science,
Advanced Scientific Computing Research (ASCR), under
Contract No. DE-AC02-05CH11231.

DISCLAIMER

This document was prepared as an account of work
sponsored by the United States Government. While this
document is believed to contain correct information,
neither the United States Government nor any agency
thereof, nor the Regents of the University of California,
nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by its trade name, trademark, man-
ufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency
thereof, or the Regents of the University of California.
The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the
University of California.

REFERENCES

[1] A. Inselberg and B. Dimsdale, “Parallel coordinates: a tool for
visualizing multi-dimensional geometry,” in VIS ’90: Proceedings
of the 1st conference on Visualization ’90, 1990, pp. 361–378.

[2] W. Cleveland and M. McGill, Dynamic graphics for statistics.
Wadsworth & Brooks/Cole Advanced Books & Software, 1988.

[3] I. T. Jolliffe, Principal component analysis. Springer, 2002.
[4] J. C. Roberts, “State of the art: Coordinated multiple views in

exploratory visualization,” in Proceedings of the 5th International
Conference on Coordinated Multiple Views in Exploratory Visualization
(CMV2007). IEEE Computer Society Press, July 2007.

[5] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Structure-based
brushes: A mechanism for navigating hierarchically organized
data and information spaces,” IEEE Transactions on Visualization
and Computer Graphics, vol. 6, pp. 150–159, 2000.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[6] P. Oesterling, C. Heine, H. Jänicke, G. Scheuermann, and
G. Heyer, “Visualization of high-dimensional point clouds using
their density distribution’s topology,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 17, pp. 1547–1559, 2011.

[7] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in
all dimensions,” Computational Geometry, vol. 24, no. 2, pp. 75–94,
2003.

[8] T. Kohonen, Self-Organizing Maps., 3rd ed. Springer, 2001.
[9] J. B. Kruskal and M. Wish, Multidimensional Scaling. SAGE

Publications, 1978.
[10] B. Shneiderman, “The eyes have it: A task by data type taxonomy

for information visualizations,” in Proceedings of the 1996 IEEE
Symposium on Visual Languages. IEEE Computer Society, 1996,
pp. 336–343.

[11] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Hierarchical
parallel coordinates for exploration of large datasets,” in Proceed-
ings of the conference on Visualization ’99: celebrating ten years. IEEE
Computer Society Press, 1999, pp. 43–50.

[12] J. Yang, M. O. Ward, and E. A. Rundensteiner, “Interactive hi-
erarchical displays: a general framework for visualization and
exploration of large multivariate data sets,” Computers & Graphics,
vol. 27, no. 2, pp. 265–283, Apr. 2003.

[13] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey,
Eds., Graphical methods for data analysis. The Wadsworth Statis-
tics/Probability Series, 1983.

[14] R. A. Becker and W. S. Cleveland, “Brushing scatterplots,” Tech-
nometrics, vol. 29, no. 2, pp. 127–142, 1987.

[15] J. Johansson, P. Ljung, M. Jern, and M. Cooper, “Revealing struc-
ture within clustered parallel coordinates displays,” in Proceedings
of the Proceedings of the 2005 IEEE Symposium on Information
Visualization. IEEE Computer Society, 2005, pp. 125–132.

[16] M. Novotny and H. Hauser, “Outlier-preserving focus+context
visualization in parallel coordinates,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 12, pp. 893–900, 2006.

[17] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J.
van Wijk, J.-D. Fekete, and D. W. Fellner, “Visual analysis of large
graphs: State-of-the-art and future research challenges,” Computer
Graphics Forum, vol. 30, no. 6, pp. 1719–1749, 2011.

[18] J. Han and M. Kamber, Data mining: concepts and techniques,
ser. The Morgan Kaufmann series in data management systems.
Elsevier, 2006.

[19] J. B. Kruskal and J. M. Landwehr, “Icicle plots: Better displays for
hierarchical clustering,” The American Statistician, vol. 37, no. 2,
pp. 162–168, 1983.

[20] T. Lindeberg, “Scale-space theory in computer vision,” 1994.
[21] A. Hinneburg and D. A. Keim, “An efficient approach to clus-

tering in large multimedia databases with noise,” in Knowledge
Discovery and Data Mining, 1998, pp. 58–65.

[22] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in Proceed-
ings ACM SIGMOD International Conference on Management of Data.
ACM Press, 1999, pp. 49–60.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in KDD, 1996, pp. 226–231.

[24] G. Weber, P.-T. Bremer, and V. Pascucci, “Topological landscapes:
A terrain metaphor for scientific data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, pp. 1416–1423, 2007.

[25] W. Harvey and Y. Wang, “Topological landscape ensembles for vi-
sualization of scalar-valued functions,” Computer Graphics Forum,
vol. 29, no. 3, pp. 993–1002, 2010.

[26] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-
filling approach,” ACM Trans. Graph., vol. 11, pp. 92–99, 1992.

[27] P. Oesterling, G. Scheuermann, S. Teresniak, G. Heyer, S. Koch,
T. Ertl, and G. H. Weber, “Two-stage framework for a topology-
based projection and visualization of classified document col-
lections,” in IEEE Conference on Visual Analytics in Science and
Technology (IEEE VAST). IEEE Computer Society, 2010, pp. 91–98.

[28] S. Takahashi, I. Fujishiro, and M. Okada, “Applying manifold
learning to plotting approximate contour trees,” IEEE Transactions
on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1185–
1192, 2009.

[29] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global
Geometric Framework for Nonlinear Dimensionality Reduction,”
Science, vol. 290, no. 5500, pp. 2319–2323, December 2000.

[30] S. Gerber, P.-T. Bremer, V. Pascucci, and R. Whitaker, “Visual ex-
ploration of high dimensional scalar functions,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, pp. 1271–1280,
2010.

[31] W. Willett, J. Heer, and M. Agrawala, “Scented widgets: Im-
proving navigation cues with embedded visualizations,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13, pp.
1129–1136, 2007.

[32] C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic
queries for information exploration: An implementation and eval-
uation,” in CHI, 1992, pp. 619–626.

[33] G. Jaromczyk, J.W.; Toussaint, “Relative neighborhood graphs and
their relatives,” in Proc. of the IEEE, ser. Issue 9, vol. 80, 1992, pp.
1502–1517.

[34] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological
persistence and simplification,” Discrete & Computational Geometry,
vol. 28, no. 4, pp. 511–533, 2002.

[35] N. Kong, J. Heer, and M. Agrawala, “Perceptual guidelines for
creating rectangular treemaps,” IEEE Trans. Vis. Comput. Graph.,
vol. 16, no. 6, pp. 990–998, 2010.

[36] A. Frank and A. Asuncion, “UCI machine learning repository,”
2010. [Online]. Available: http://archive.ics.uci.edu/ml

[37] J.-D. Fekete and C. Plaisant, “Excentric labeling: dynamic neigh-
borhood labeling for data visualization,” in CHI ’99: Proceedings of
the SIGCHI conference on Human factors in computing systems, 1999.

[38] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, “The toporrery:
computation and presentation of multi-resolution topology,” in
Mathematical Foundations of Scientific Visualization, Computer Graph-
ics, and Massive Data Exploration, ser. Mathematics and Visualiza-
tion. Springer, 2009, pp. 19–40.

[39] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying flexible
isosurfaces using local geometric measures,” in Proceedings of the
conference on Visualization ’04, ser. VIS ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 497–504.

[40] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of
persistence diagrams,” Discrete Comput. Geom., vol. 37, pp. 103–
120, 2007.

[41] M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia, “Classifica-
tion of olive oils from their fatty acid composition,” Food Research
and Data Analysis, pp. 189–214, 1983.




